WorldWideScience

Sample records for regulated protein identifies

  1. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita; Straschil, Ursula; Bateman, Alex; Bö hme, Ulrike; Cherevach, Inna; Gong, Peng; Pain, Arnab; Billker, Oliver

    2010-01-01

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  2. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita

    2010-10-21

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  3. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo

    DEFF Research Database (Denmark)

    Horn, Signe; Kirkegaard, Jeannette S.; Hoelper, Soraya

    2016-01-01

    to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated...

  4. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism.

    Directory of Open Access Journals (Sweden)

    Bruno L Bozaquel-Morais

    Full Text Available In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4, type 2A phosphatase and its related regulator (pph21 and sap185, type 2C protein phosphatases (ptc1, ptc4, ptc7 and dual phosphatases (pps1, msg5 were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190 were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.

  5. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  7. Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator

    DEFF Research Database (Denmark)

    Carayol, Jérôme; Chabert, Christian; Di Cara, Alessandro

    2017-01-01

    of an organism. Proteome analysis especially can provide new insights into the molecular mechanisms of complex traits like obesity. The role of genetic variation in determining protein level variation has not been assessed in obesity. To address this, we design a large-scale protein quantitative trait locus (p...

  8. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  9. Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers

    Directory of Open Access Journals (Sweden)

    Andreas Hohn

    2018-01-01

    Full Text Available During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.

  10. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  11. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation

    Directory of Open Access Journals (Sweden)

    J. M. H. Geddes

    2016-01-01

    Full Text Available The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis.

  12. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques. General Article Volume 22 Issue 1 January 2017 pp 37-50 ...

  13. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1α as a master regulator of plasma protein fucosylation.

    Directory of Open Access Journals (Sweden)

    Gordan Lauc

    2010-12-01

    Full Text Available Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders.

  14. Identifying Key Attributes for Protein Beverages.

    Science.gov (United States)

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P appeal. © 2015 Institute of Food Technologists®

  15. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    interactions with other proteins, or binding of small molecules. Covalent .... vealed through structural elucidation of the protein in free and oxygen-bound forms .... stance, molecular dynamic simulation of glutamine binding pro- tein shows that ...

  16. Interaction of Proteins Identified in Human Thyroid Cells

    Science.gov (United States)

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  17. Interaction of Proteins Identified in Human Thyroid Cells

    Directory of Open Access Journals (Sweden)

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  18. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    Science.gov (United States)

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Linking patient outcome to high throughput protein expression data identifies novel regulators of colorectal adenocarcinoma aggressiveness [v1; ref status: indexed, http://f1000r.es/5ad

    Directory of Open Access Journals (Sweden)

    Christi L. French

    2015-04-01

    Full Text Available A key question in cancer systems biology is how to use molecular data to predict the biological behavior of tumors from individual patients. While genomics data have been heavily used, protein signaling data are more directly connected to biological phenotype and might predict cancer phenotypes such as invasion, metastasis, and patient survival. In this study, we mined publicly available data for colorectal adenocarcinoma from the Cancer Genome Atlas and identified protein expression and signaling changes that are statistically associated with patient outcome. Our analysis identified a number of known and potentially new regulators of colorectal cancer. High levels of insulin growth factor binding protein 2 (IGFBP2 were associated with both recurrence and death, and this was validated by immunohistochemical staining of a tissue microarray for a secondary patient dataset. Interestingly, GATA binding protein 3 (GATA3 was the protein most frequently associated with death in our analysis, and GATA3 expression was significantly decreased in tumor samples from stage I-II deceased patients. Experimental studies using engineered colon cancer cell lines show that exogenous expression of GATA3 decreases three-dimensional colony growth and invasiveness of colon cancer cells but does not affect two-dimensional proliferation. These findings suggest that protein data are useful for biomarker discovery and identify GATA3 as a regulator of colorectal cancer  aggressiveness.

  20. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  1. Identifying New Small Proteins in Escherichia coli.

    Science.gov (United States)

    VanOrsdel, Caitlin E; Kelly, John P; Burke, Brittany N; Lein, Christina D; Oufiero, Christopher E; Sanchez, Joseph F; Wimmers, Larry E; Hearn, David J; Abuikhdair, Fatimeh J; Barnhart, Kathryn R; Duley, Michelle L; Ernst, Sarah E G; Kenerson, Briana A; Serafin, Aubrey J; Hemm, Matthew R

    2018-04-12

    The number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3' end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E. coli small proteins, tagging 80 sORFs in the E. coli genome, and assayed for protein synthesis. The selected sORFs represent diverse sequence characteristics, including degrees of sORF conservation, predicted transmembrane domains, sORF direction with respect to flanking genes, ribosome binding site (RBS) prediction, and ribosome profiling results. Of 80 sORFs, 36 resulted in encoded synthesized proteins-a 45% success rate. Modeling of detected versus non-detected small proteins analysis showed predictions based on RBS prediction, transcription data, and ribosome profiling had statistically-significant correlation with protein synthesis; however, there was no correlation between current sORF annotation and protein synthesis. These results suggest substantial numbers of small proteins remain undiscovered in E. coli, and existing bioinformatics techniques must continue to improve to facilitate identification. © 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Towson University.

  2. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Directory of Open Access Journals (Sweden)

    Paola Fabrizio

    2010-07-01

    Full Text Available The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  3. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Science.gov (United States)

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  4. The Protein Identifier Cross-Referencing (PICR service: reconciling protein identifiers across multiple source databases

    Directory of Open Access Journals (Sweden)

    Leinonen Rasko

    2007-10-01

    Full Text Available Abstract Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR service, a web application that provides interactive and programmatic (SOAP and REST access to a mapping algorithm that uses the UniProt Archive (UniParc as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV or Microsoft Excel (XLS files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR

  5. Identifying Floppy and Rigid Regions in Proteins

    Science.gov (United States)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  6. Automatically identifying gene/protein terms in MEDLINE abstracts.

    Science.gov (United States)

    Yu, Hong; Hatzivassiloglou, Vasileios; Rzhetsky, Andrey; Wilbur, W John

    2002-01-01

    Natural language processing (NLP) techniques are used to extract information automatically from computer-readable literature. In biology, the identification of terms corresponding to biological substances (e.g., genes and proteins) is a necessary step that precedes the application of other NLP systems that extract biological information (e.g., protein-protein interactions, gene regulation events, and biochemical pathways). We have developed GPmarkup (for "gene/protein-full name mark up"), a software system that automatically identifies gene/protein terms (i.e., symbols or full names) in MEDLINE abstracts. As a part of marking up process, we also generated automatically a knowledge source of paired gene/protein symbols and full names (e.g., LARD for lymphocyte associated receptor of death) from MEDLINE. We found that many of the pairs in our knowledge source do not appear in the current GenBank database. Therefore our methods may also be used for automatic lexicon generation. GPmarkup has 73% recall and 93% precision in identifying and marking up gene/protein terms in MEDLINE abstracts. A random sample of gene/protein symbols and full names and a sample set of marked up abstracts can be viewed at http://www.cpmc.columbia.edu/homepages/yuh9001/GPmarkup/. Contact. hy52@columbia.edu. Voice: 212-939-7028; fax: 212-666-0140.

  7. Regulation of protein phosphorylation in oat mitochondria

    International Nuclear Information System (INIS)

    Pike, C.; Kopeck, K.; Sceppa, E.

    1989-01-01

    We sought to identify phosphorylated proteins in isolated oat mitocchondria and to characterize the enzymatic and regulatory properties of the protein kinase(s). Mitochondria from oats (Avena sativa L. cv. Garry) were purified on Percoll gradients. Mitochondria were incubated with 32 P-γ-ATP; proteins were separated by SDS-PAGE. A small number of bands was detected on autoradiograms, most prominently at 70 kD and 42 kD; the latter band has been tentatively identified as a subunit of the pyruvate dehydrogenase complex, a well-known phosphoprotein. The protein kinase(s) could also phosphorylate casein, but not histone. Spermine enhanced the phosphorylation of casein and inhibited the phosphorylation of the 42 kD band. These studies were carried out on both intact and burst mitochondria. Control by calcium and other ions was investigated. The question of the action of regulators on protein kinase or protein phosphatase was studied by the use of 35 S-adenosine thiotriphosphate

  8. Human genetics as a tool to identify progranulin regulators.

    Science.gov (United States)

    Nicholson, Alexandra M; Finch, NiCole A; Rademakers, Rosa

    2011-11-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases.

  9. Protein trafficking and maturation regulate intramembrane proteolysis.

    Science.gov (United States)

    Morohashi, Yuichi; Tomita, Taisuke

    2013-12-01

    Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. BAR domain proteins regulate Rho GTPase signaling.

    Science.gov (United States)

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  11. Regulation of cardiac C-protein phosphorylation

    International Nuclear Information System (INIS)

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased [ 32 P]phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and [ 32 P]phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 μM Iso and 17% in hearts exposed to Iso plus 1 μM methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed

  12. Piezo proteins: regulators of mechanosensation and other cellular processes.

    Science.gov (United States)

    Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G

    2014-11-14

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    Science.gov (United States)

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018

  14. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  15. A coevolution analysis for identifying protein-protein interactions by Fourier transform

    Science.gov (United States)

    Yin, Changchuan; Yau, Stephen S. -T.

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779

  16. A coevolution analysis for identifying protein-protein interactions by Fourier transform.

    Directory of Open Access Journals (Sweden)

    Changchuan Yin

    Full Text Available Protein-protein interactions (PPIs play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA; however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40. The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI.

  17. Anchoring Proteins as Regulators of Signaling Pathways

    Science.gov (United States)

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  18. A Proteomic Screen Identified Stress-Induced Chaperone Proteins as Targets of Akt Phosphorylation in Mesangial Cells

    OpenAIRE

    Barati, Michelle T.; Rane, Madhavi J.; Klein, Jon B.; McLeish, Kenneth R.

    2006-01-01

    The serine-threonine kinase Akt regulates mesangial cell apoptosis, proliferation, and hypertrophy. To define Akt signaling pathways in mesangial cells, we performed a functional proteomic screen for rat mesangial cell proteins phosphorylated by Akt. A group of chaperone proteins, heat shock protein (Hsp) 70, Hsp90α, Hsp90β, Glucose-regulated protein (Grp) Grp78, Grp94, and protein disulfide isomerase (PDI) were identified as potential Akt substrates by two techniques: (a) in vitro phosphoryl...

  19. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    OpenAIRE

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular deve...

  20. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  1. Lipid droplet meets a mitochondrial protein to regulate adipocyte lipolysis

    Science.gov (United States)

    In response to adrenergic stimulation, adipocytes undergo protein kinase A (PKA)-stimulated lipolysis. A key PKA target in this context is perilipin 1, a major regulator of lipolysis on lipid droplets (LDs). A study published in this issue of The EMBO Journal (Pidoux et al, 2011) identifies optic at...

  2. Transcriptional regulation by Polycomb group proteins

    DEFF Research Database (Denmark)

    Di Croce, Luciano; Helin, Kristian

    2013-01-01

    Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins......) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity....

  3. Sphingomyelin synthases regulate protein trafficking and secretion.

    Directory of Open Access Journals (Sweden)

    Marimuthu Subathra

    Full Text Available Sphingomyelin synthases (SMS1 and 2 represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG. SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD, to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN, the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2 are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi.

  4. Exploiting genomic data to identify proteins involved in abalone reproduction.

    Science.gov (United States)

    Mendoza-Porras, Omar; Botwright, Natasha A; McWilliam, Sean M; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2014-08-28

    Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  6. Identification of proteins regulated by curcumin in cerebral ischemia.

    Science.gov (United States)

    Shah, Fawad-Ali; Gim, Sang-Ah; Sung, Jin-Hee; Jeon, Seong-Jun; Kim, Myeong-Ok; Koh, Phil-Ok

    2016-03-01

    Curcumin is known to have a neuroprotective effect against cerebral ischemia. The objective of this study was to identify various proteins that are differentially expressed by curcumin treatment in focal cerebral ischemia using a proteomic approach. Adult male rats were treated with vehicle or curcumin 1 h after middle cerebral artery occlusion. Brain tissues were collected 24 h after the onset of middle cerebral artery occlusion, and cerebral cortices proteins were identified by two-dimensional gel electrophoresis and mass spectrometry. We detected several proteins with altered expression levels between vehicle- and curcumin-treated animals. Among these proteins, ubiquitin carboxy-terminal hydrolase L1, isocitrate dehydrogenase, adenosylhomocysteinase, and eukaryotic initiation factor 4A were decreased in the vehicle-treated animal, and curcumin treatment attenuated the injury-induced decreases of these proteins. Conversely, pyridoxal phosphate phosphatase was increased in the vehicle-treated animal, and curcumin treatment prevented decreases in this protein. The identified altered proteins are associated with cellular metabolism and differentiation. The results of this study suggest that curcumin exerts a neuroprotective effect by regulating the expression of various proteins in focal cerebral ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reid Aikin

    Full Text Available Hedgehog (Hh proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

  8. Genetic and pharmacological screens converge in identifying FLIP, BCL2 and IAP proteins as key regulators of sensitivity to the TRAIL-inducing anti-cancer agent ONC201/TIC10

    Science.gov (United States)

    Allen, Joshua E.; Prabhu, Varun V.; Talekar, Mala; van den Heuvel, AP; Lim, Bora; Dicker, David T.; Fritz, Jennifer L.; Beck, Adam; El-Deiry, Wafik S.

    2015-01-01

    ONC201/TIC10 is a small molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the anti-apoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes including the multi-kinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib co-treatment to enhance anticancer responses. PMID:25681273

  9. Genetic and Pharmacological Screens Converge in Identifying FLIP, BCL2, and IAP Proteins as Key Regulators of Sensitivity to the TRAIL-Inducing Anticancer Agent ONC201/TIC10.

    Science.gov (United States)

    Allen, Joshua E; Prabhu, Varun V; Talekar, Mala; van den Heuvel, A Pieter J; Lim, Bora; Dicker, David T; Fritz, Jennifer L; Beck, Adam; El-Deiry, Wafik S

    2015-04-15

    ONC201/TIC10 is a small-molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway-inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the antiapoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small-molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes, including the multikinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib cotreatment to enhance anticancer responses. ©2015 American Association for Cancer Research.

  10. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  11. Proteomic profiling of human plasma exosomes identifies PPARγ as an exosome-associated protein

    International Nuclear Information System (INIS)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-01

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARγ as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  12. SitesIdentify: a protein functional site prediction tool

    Directory of Open Access Journals (Sweden)

    Doig Andrew J

    2009-11-01

    Full Text Available Abstract Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify, based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/

  13. Regulation of bone morphogenetic proteins in early embryonic development

    Science.gov (United States)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  14. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  15. Improvements in the Protein Identifier Cross-Reference service.

    Science.gov (United States)

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.

  16. Time-dependent, glucose-regulated Arabidopsis Regulator of G-protein Signaling 1 network

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Jaiswal

    2016-04-01

    Full Text Available Plants lack 7-transmembrane, G-protein coupled receptors (GPCRs because the G alpha subunit of the heterotrimeric G protein complex is “self-activating”—meaning that it spontaneously exchanges bound GDP for GTP without the need of a GPCR. In lieu of GPCRs, most plants have a seven transmembrane receptor-like regulator of G-protein signaling (RGS protein, a component of the complex that keeps G-protein signaling in its non-activated state. The addition of glucose physically uncouples AtRGS1 from the complex through specific endocytosis leaving the activated G protein at the plasma membrane. The complement of proteins in the AtRGS1/G-protein complex over time from glucose-induced endocytosis was profiled by immunoprecipitation coupled to mass spectrometry (IP-MS. A total of 119 proteins in the AtRGS1 complex were identified. Several known interactors of the complex were identified, thus validating the approach, but the vast majority (93/119 were not known previously. AtRGS1 protein interactions were dynamically modulated by d-glucose. At low glucose levels, the AtRGS1 complex is comprised of proteins involved in transport, stress and metabolism. After glucose application, the AtRGS1 complex rapidly sheds many of these proteins and recruits other proteins involved in vesicular trafficking and signal transduction. The profile of the AtRGS1 components answers several questions about the type of coat protein and vesicular trafficking GTPases used in AtRGS1 endocytosis and the function of endocytic AtRGS1.

  17. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  18. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.

    Science.gov (United States)

    Fu, Suneng; Fan, Jason; Blanco, Joshua; Gimenez-Cassina, Alfredo; Danial, Nika N; Watkins, Steve M; Hotamisligil, Gökhan S

    2012-08-01

    Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.

  19. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.

    Science.gov (United States)

    Aviner, Ranen; Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo; Elroy-Stein, Orna

    2017-06-02

    Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.

    Directory of Open Access Journals (Sweden)

    Suneng Fu

    2012-08-01

    Full Text Available Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.

  1. Identification of Hypoxia-Regulated Proteins Using MALDI-Mass Spectrometry Imaging Combined with Quantitative Proteomics

    DEFF Research Database (Denmark)

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas

    2014-01-01

    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using...

  2. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Probabilistic analysis for identifying the driving force of protein folding

    Science.gov (United States)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  4. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  5. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    Science.gov (United States)

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the

  6. Heat Shock Protein 90 regulates encystation in Entamoeba

    Directory of Open Access Journals (Sweden)

    Meetali eSingh

    2015-10-01

    Full Text Available Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely – trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90 in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.

  7. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  8. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  9. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit; Zhang, Huoming; Liu, Pei; Tsao, George Sai-wah; Li Lung, Maria; Mak, Nai-ki; Ngok-shun Wong, Ricky; Ying-kit Yue, Patrick

    2015-01-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  10. Genetic and pharmacological screens converge in identifying FLIP, BCL2 and IAP proteins as key regulators of sensitivity to the TRAIL-inducing anti-cancer agent ONC201/TIC10

    OpenAIRE

    Allen, Joshua E.; Prabhu, Varun V.; Talekar, Mala; van den Heuvel, AP; Lim, Bora; Dicker, David T.; Fritz, Jennifer L.; Beck, Adam; El-Deiry, Wafik S.

    2015-01-01

    ONC201/TIC10 is a small molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway inducer KSR1. Unexpectedly, KSR1 sile...

  11. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    Science.gov (United States)

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  12. Chromatin-regulating proteins as targets for cancer therapy

    International Nuclear Information System (INIS)

    Oike, Takahiro; Ogiwara, Hideaki; Kohno, Takashi; Amornwichet, Napapat; Nakano, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. (author)

  13. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  14. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  15. An AICD-based functional screen to identify APP metabolism regulators

    Directory of Open Access Journals (Sweden)

    Lee Jeremy C

    2007-08-01

    Full Text Available Abstract Background A central event in Alzheimer's disease (AD is the regulated intramembraneous proteolysis of the β-amyloid precursor protein (APP, to generate the β-amyloid (Aβ peptide and the APP intracellular domain (AICD. Aβ is the major component of amyloid plaques and AICD displays transcriptional activation properties. We have taken advantage of AICD transactivation properties to develop a genetic screen to identify regulators of APP metabolism. This screen relies on an APP-Gal4 fusion protein, which upon normal proteolysis, produces AICD-Gal4. Production of AICD-Gal4 induces Gal4-UAS driven luciferase expression. Therefore, when regulators of APP metabolism are modulated, luciferase expression is altered. Results To validate this experimental approach we modulated α-, β-, and γ-secretase levels and activities. Changes in AICD-Gal4 levels as measured by Western blot analysis were strongly and significantly correlated to the observed changes in AICD-Gal4 mediated luciferase activity. To determine if a known regulator of APP trafficking/maturation and Presenilin1 endoproteolysis could be detected using the AICD-Gal4 mediated luciferase assay, we knocked-down Ubiquilin 1 and observed decreased luciferase activity. We confirmed that Ubiquilin 1 modulated AICD-Gal4 levels by Western blot analysis and also observed that Ubiquilin 1 modulated total APP levels, the ratio of mature to immature APP, as well as PS1 endoproteolysis. Conclusion Taken together, we have shown that this screen can identify known APP metabolism regulators that control proteolysis, intracellular trafficking, maturation and levels of APP and its proteolytic products. We demonstrate for the first time that Ubiquilin 1 regulates APP metabolism in the human neuroblastoma cell line, SH-SY5Y.

  16. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome.

    Science.gov (United States)

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F; Gonias, Steven L

    2010-12-03

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.

  17. Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; Peters, Stephan L. M.; Michel, Martin C.; Alewijnse, Astrid E.

    2008-01-01

    G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization

  18. S100 Proteins As an Important Regulator of Macrophage Inflammation

    Directory of Open Access Journals (Sweden)

    Chang Xia

    2018-01-01

    Full Text Available The S100 proteins, a family of calcium-binding cytosolic proteins, have a broad range of intracellular and extracellular functions through regulating calcium balance, cell apoptosis, migration, proliferation, differentiation, energy metabolism, and inflammation. The intracellular functions of S100 proteins involve interaction with intracellular receptors, membrane protein recruitment/transportation, transcriptional regulation and integrating with enzymes or nucleic acids, and DNA repair. The S100 proteins could also be released from the cytoplasm, induced by tissue/cell damage and cellular stress. The extracellular S100 proteins, serving as a danger signal, are crucial in regulating immune homeostasis, post-traumatic injury, and inflammation. Extracellular S100 proteins are also considered biomarkers for some specific diseases. In this review, we will discuss the multi-functional roles of S100 proteins, especially their potential roles associated with cell migration, differentiation, tissue repair, and inflammation.

  19. Regulation of Cellular and Molecular Functions by Protein ...

    Indian Academy of Sciences (India)

    ... a high-energy linkage. The free energy of hydrolysis 1 of protein bound tyrosine phosphate ... protein kinases, cdc2 kinase (which regulates cell division cycle) and related cdc ... residues in response to extracellular signals such as hormones or growth factors. ... involved in regulating glycogen metabolism. The activity of.

  20. EML proteins in microtubule regulation and human disease.

    Science.gov (United States)

    Fry, Andrew M; O'Regan, Laura; Montgomery, Jessica; Adib, Rozita; Bayliss, Richard

    2016-10-15

    The EMLs are a conserved family of microtubule-associated proteins (MAPs). The founding member was discovered in sea urchins as a 77-kDa polypeptide that co-purified with microtubules. This protein, termed EMAP for echinoderm MAP, was the major non-tubulin component present in purified microtubule preparations made from unfertilized sea urchin eggs [J. Cell Sci. (1993) 104: , 445-450; J. Cell Sci. (1987) 87: (Pt 1), 71-84]. Orthologues of EMAP were subsequently identified in other echinoderms, such as starfish and sand dollar, and then in more distant eukaryotes, including flies, worms and vertebrates, where the name of ELP or EML (both for EMAP-like protein) has been adopted [BMC Dev. Biol. (2008) 8: , 110; Dev. Genes Evol. (2000) 210: , 2-10]. The common property of these proteins is their ability to decorate microtubules. However, whether they are associated with particular microtubule populations or exercise specific functions in different microtubule-dependent processes remains unknown. Furthermore, although there is limited evidence that they regulate microtubule dynamics, the biochemical mechanisms of their molecular activity have yet to be explored. Nevertheless, interest in these proteins has grown substantially because of the identification of EML mutations in neuronal disorders and oncogenic fusions in human cancers. Here, we summarize our current knowledge of the expression, localization and structure of what is proving to be an interesting and important class of MAPs. We also speculate about their function in microtubule regulation and highlight how the studies of EMLs in human diseases may open up novel avenues for patient therapy. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    Science.gov (United States)

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  3. Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation

    Directory of Open Access Journals (Sweden)

    Jeremy M. Henley

    2012-05-01

    Full Text Available Post-translational modifications of proteins are essential for cell function. Covalent modification by SUMO (small ubiquitin-like modifier plays a role in multiple cell processes, including transcriptional regulation, DNA damage repair, protein localization and trafficking. Factors affecting protein localization and trafficking are particularly crucial in neurons because of their polarization, morphological complexity and functional specialization. SUMOylation has emerged as a major mediator of intranuclear and nucleo-cytoplasmic translocations of proteins involved in critical pathways such as circadian rhythm, apoptosis and protein degradation. In addition, SUMO-regulated re-localization of extranuclear proteins is required to sustain neuronal excitability and synaptic transmission. Thus, SUMOylation is a key arbiter of neuronal viability and function. Here, we provide an overview of recent advances in our understanding of regulation of neuronal protein localization and translocation by SUMO and highlight exciting areas of ongoing research.

  4. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  5. Genetic regulation ofmethylation and IL1RL1-a protein levels in asthma

    NARCIS (Netherlands)

    Dijk, F Nicole; Xu, Chengjian; Melén, Erik; Carsin, Anne-Elie; Kumar, Asish; Nolte, Ilja M; Gruzieva, Olena; Pershagen, Goran; Grotenboer, Neomi S; Savenije, Olga E M; Antó, Josep Maria; Lavi, Iris; Dobaño, Carlota; Bousquet, Jean; van der Vlies, Pieter; van der Valk, Ralf J P; de Jongste, Johan C; Nawijn, Martijn C; Guerra, Stefano; Postma, Dirkje S; Koppelman, Gerard H

    2018-01-01

    Interleukin-1 receptor-like 1 (IL1RL1) is an important asthma gene. (Epi)genetic regulation ofIL1RL1protein expression has not been established. We assessed the association betweenIL1RL1single nucleotide polymorphisms (SNPs),IL1RL1methylation and serum IL1RL1-a protein levels, and aimed to identify

  6. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    Directory of Open Access Journals (Sweden)

    Elke eVan Assche

    2015-03-01

    Full Text Available Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed towards the role of small RNAs in bacterial post-transcriptional regulation. However, small RNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RNA-binding proteins, which include (i adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii modulating the accessibility of the ribosome binding site of mRNAs, (iii recruiting and assisting in the interaction of mRNAs with other molecules and (iv regulating transcription terminator / antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.

  7. Kinase Screening in Pichia pastoris Identified Promising Targets Involved in Cell Growth and Alcohol Oxidase 1 Promoter (PAOX1 Regulation.

    Directory of Open Access Journals (Sweden)

    Wei Shen

    Full Text Available As one of the most commonly used eukaryotic recombinant protein expression systems, P. pastoris relies heavily on the AOX1 promoter (PAOX1, which is strongly induced by methanol but strictly repressed by glycerol and glucose. However, the complicated signaling pathways involved in PAOX1 regulation when supplemented with different carbon sources are poorly understood. Here we constructed a kinase deletion library in P. pastoris and identified 27 mutants which showed peculiar phenotypes in cell growth or PAOX1 regulation. We analyzed both annotations and possible functions of these 27 targets, and then focused on the MAP kinase Hog1. In order to locate its potential downstream components, we performed the phosphoproteome analysis on glycerol cultured WT and Δhog1 strains and identified 157 differentially phosphorylated proteins. Our results identified important kinases involved in P. pastoris cell growth and PAOX1 regulation, which could serve as valuable targets for further mechanistic studies.

  8. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense.

    Directory of Open Access Journals (Sweden)

    José Luis Carrasco

    Full Text Available Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6, a previously reported DBP1 interactor, and MAP kinase (MAPK MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV, and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.

  9. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  10. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison.

    Science.gov (United States)

    Terrasson, Emmanuel; Buitink, Julia; Righetti, Karima; Ly Vu, Benoit; Pelletier, Sandra; Zinsmeister, Julia; Lalanne, David; Leprince, Olivier

    2013-01-01

    Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed.

  11. Regulation of the autophagy protein LC3 by phosphorylation

    Science.gov (United States)

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  12. A Dictyostelium chalone uses G proteins to regulate proliferation

    Directory of Open Access Journals (Sweden)

    Hanson Nana E

    2009-07-01

    Full Text Available Abstract Background Several studies have shown that organ size, and the proliferation of tumor metastases, may be regulated by negative feedback loops in which autocrine secreted factors called chalones inhibit proliferation. However, very little is known about chalones, and how cells sense them. We previously identified two secreted proteins, AprA and CfaD, which act as chalones in Dictyostelium. Cells lacking AprA or CfaD proliferate faster than wild-type cells, and adding recombinant AprA or CfaD to cells slows their proliferation. Results We show here that cells lacking the G protein components Galpha8, Galpha9, and Gbeta proliferate faster than wild-type cells despite secreting normal or high levels of AprA and CfaD. Compared with wild-type cells, the proliferation of galpha8-, galpha9- and gbeta- cells are only weakly inhibited by recombinant AprA (rAprA. Like AprA and CfaD, Galpha8 and Gbeta inhibit cell proliferation but not cell growth (the rate of increase in mass and protein per nucleus, whereas Galpha9 inhibits both proliferation and growth. galpha8- cells show normal cell-surface binding of rAprA, whereas galpha9- and gbeta- cells have fewer cell-surface rAprA binding sites, suggesting that Galpha9 and Gbeta regulate the synthesis or processing of the AprA receptor. Like other ligands that activate G proteins, rAprA induces the binding of [3H]GTP to membranes, and GTPgammaS inhibits the binding of rAprA to membranes. Both AprA-induced [3H]GTP binding and the GTPgammaS inhibition of rAprA binding require Galpha8 and Gbeta but not Galpha9. Like aprA- cells, galpha8- cells have reduced spore viability. Conclusion This study shows that Galpha8 and Gbeta are part of the signal transduction pathway used by AprA to inhibit proliferation but not growth in Dictyostelium, whereas Galpha9 is part of a differealnt pathway that regulates both proliferation and growth, and that a chalone signal transduction pathway uses G proteins.

  13. A Dictyostelium chalone uses G proteins to regulate proliferation.

    Science.gov (United States)

    Bakthavatsalam, Deenadayalan; Choe, Jonathan M; Hanson, Nana E; Gomer, Richard H

    2009-07-27

    Several studies have shown that organ size, and the proliferation of tumor metastases, may be regulated by negative feedback loops in which autocrine secreted factors called chalones inhibit proliferation. However, very little is known about chalones, and how cells sense them. We previously identified two secreted proteins, AprA and CfaD, which act as chalones in Dictyostelium. Cells lacking AprA or CfaD proliferate faster than wild-type cells, and adding recombinant AprA or CfaD to cells slows their proliferation. We show here that cells lacking the G protein components Galpha8, Galpha9, and Gbeta proliferate faster than wild-type cells despite secreting normal or high levels of AprA and CfaD. Compared with wild-type cells, the proliferation of galpha8-, galpha9- and gbeta- cells are only weakly inhibited by recombinant AprA (rAprA). Like AprA and CfaD, Galpha8 and Gbeta inhibit cell proliferation but not cell growth (the rate of increase in mass and protein per nucleus), whereas Galpha9 inhibits both proliferation and growth. galpha8- cells show normal cell-surface binding of rAprA, whereas galpha9- and gbeta- cells have fewer cell-surface rAprA binding sites, suggesting that Galpha9 and Gbeta regulate the synthesis or processing of the AprA receptor. Like other ligands that activate G proteins, rAprA induces the binding of [3H]GTP to membranes, and GTPgammaS inhibits the binding of rAprA to membranes. Both AprA-induced [3H]GTP binding and the GTPgammaS inhibition of rAprA binding require Galpha8 and Gbeta but not Galpha9. Like aprA- cells, galpha8- cells have reduced spore viability. This study shows that Galpha8 and Gbeta are part of the signal transduction pathway used by AprA to inhibit proliferation but not growth in Dictyostelium, whereas Galpha9 is part of a differealnt pathway that regulates both proliferation and growth, and that a chalone signal transduction pathway uses G proteins.

  14. ASIC PROTEINS REGULATE SMOOTH MUSCLE CELL MIGRATION

    OpenAIRE

    Grifoni, Samira C.; Jernigan, Nikki L.; Hamilton, Gina; Drummond, Heather A.

    2007-01-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated Epithelial Na+ Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration, however the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence indi...

  15. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  17. Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, Gry Aune Westergaard; Ludvigsen, Maja; Jacobsen, Christian

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify...... the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted...

  18. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  19. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    Science.gov (United States)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    networks have been identified, including scale free distribution of the vertex degree, network motifs, and modularity, to name a few. These studies of network organization require the network to be as complete as possible, which given the limitations of experimental techniques is not currently the case. Therefore, experimental procedures for detecting biomolecular interactions should be complemented by computational approaches. The paper by Lees et al provides a review of computational methods, integrating multiple independent sources of data to infer physical and functional protein-protein interaction networks. One of the important aspects of protein interactions that should be accounted for in the prediction of protein interaction networks is that many proteins are composed of distinct domains. Protein domains may mediate protein interactions while proteins and their interaction networks may gain complexity through gene duplication and expansion of existing domain architectures via domain rearrangements. The latter mechanisms have been explored in detail in the paper by Cohen-Gihon et al. Protein-protein interactions are not the only component of the cell's interactome. Regulation of cell activity can be achieved at the level of transcription and involve a transcription factor—DNA binding which typically requires recognition of a specific DNA sequence motif. Chip-Chip and the more recent Chip-Seq technologies allow in vivo identification of DNA binding sites and, together with novel in vitro approaches, provide data necessary for deciphering the corresponding binding motifs. Such information, complemented by structures of protein-DNA complexes and knowledge of the differences in binding sites among homologs, opens the door to constructing predictive binding models. The paper by Persikov and Singh provides an example of such a model in the Cys2His2 zinc finger family. Recent studies have indicated that the presence of such binding motifs is, however, neither necessary

  20. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    Science.gov (United States)

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  1. 76 FR 39234 - Federal Acquisition Regulation; Unique Procurement Instrument Identifier

    Science.gov (United States)

    2011-07-05

    ..., therefore, was not subject to review under section 6(b) of E.O. 12866, Regulatory Planning and Review, dated... for procurement actions, such as delivery and task orders or basic ordering agreements, the order or... Instrument Identifier (PIID). Agencies shall have in place a process that ensures that each PIID reported to...

  2. A cytoplasmic serine protein kinase binds and may regulate the Fanconi anemia protein FANCA.

    Science.gov (United States)

    Yagasaki, H; Adachi, D; Oda, T; Garcia-Higuera, I; Tetteh, N; D'Andrea, A D; Futaki, M; Asano, S; Yamashita, T

    2001-12-15

    Fanconi anemia (FA) is an autosomal recessive disease with congenital anomalies, bone marrow failure, and susceptibility to leukemia. Patient cells show chromosome instability and hypersensitivity to DNA cross-linking agents. At least 8 complementation groups (A-G) have been identified and 6 FA genes (for subtypes A, C, D2, E, F, and G) have been cloned. Increasing evidence indicates that a protein complex assembly of multiple FA proteins, including FANCA and FANCG, plays a crucial role in the FA pathway. Previously, it was reported that FANCA was phosphorylated in lymphoblasts from normal controls, whereas the phosphorylation was defective in those derived from patients with FA of multiple complementation groups. The present study examined phosphorylation of FANCA ectopically expressed in FANCA(-) cells. Several patient-derived mutations abrogated in vivo phosphorylation of FANCA in this system, suggesting that FANCA phosphorylation is associated with its function. In vitro phosphorylation studies indicated that a physiologic protein kinase for FANCA (FANCA-PK) forms a complex with the substrate. Furthermore, at least a part of FANCA-PK as well as phosphorylated FANCA were included in the FANCA/FANCG complex. Thus, FANCA-PK appears to be another component of the FA protein complex and may regulate function of FANCA. FANCA-PK was characterized as a cytoplasmic serine kinase sensitive to wortmannin. Identification of the protein kinase is expected to elucidate regulatory mechanisms that control the FA pathway.

  3. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    OpenAIRE

    Yang, Guangxiao; Komatsu, Setsuko

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze exp...

  4. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    Science.gov (United States)

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  5. Claudins, dietary milk proteins, and intestinal barrier regulation.

    Science.gov (United States)

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  6. Identify drug repurposing candidates by mining the protein data bank.

    Science.gov (United States)

    Moriaud, Fabrice; Richard, Stéphane B; Adcock, Stewart A; Chanas-Martin, Laetitia; Surgand, Jean-Sébastien; Ben Jelloul, Marouane; Delfaud, François

    2011-07-01

    Predicting off-targets by computational methods is gaining increasing interest in early-stage drug discovery. Here, we present a computational method based on full 3D comparisons of 3D structures. When a similar binding site is detected in the Protein Data Bank (PDB) (or any protein structure database), it is possible that the corresponding ligand also binds to that similar site. On one hand, this target hopping case is probably rare because it requires a high similarity between the binding sites. On the other hand, it could be a strong rational evidence to highlight possible off-target reactions and possibly a potential undesired side effect. This target-based drug repurposing can be extended a significant step further with the capability of searching the full surface of all proteins in the PDB, and therefore not relying on pocket detection. Using this approach, we describe how MED-SuMo reproduces the repurposing of tadalafil from PDE5A to PDE4A and a structure of PDE4A with tadalafil. Searching for local protein similarities generates more hits than for whole binding site similarities and therefore fragment repurposing is more likely to occur than for drug-sized compounds. In this work, we illustrate that by mining the PDB for proteins sharing similarities with the hinge region of protein kinases. The experimentally validated examples, biotin carboxylase and synapsin, are retrieved. Further to fragment repurposing, this approach can be applied to the detection of druggable sites from 3D structures. This is illustrated with detection of the protein kinase hinge motif in the HIV-RT non-nucleosidic allosteric site.

  7. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    Science.gov (United States)

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  8. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2005-04-01

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.

  9. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  10. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  11. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  12. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-01-01

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  13. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  14. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  15. Target and identify: triazene linker helps identify azidation sites of labelled proteins via click and cleave strategy.

    Science.gov (United States)

    Lohse, Jonas; Schindl, Alexandra; Danda, Natasha; Williams, Chris P; Kramer, Karl; Kuster, Bernhard; Witte, Martin D; Médard, Guillaume

    2017-10-31

    A method for identifying probe modification of proteins via tandem mass spectrometry was developed. Azide bearing molecules are immobilized on functionalised sepharose beads via copper catalysed Huisgen-type click chemistry and selectively released under acidic conditions by chemical cleavage of the triazene linkage. We applied this method to identify the modification site of targeted-diazotransfer on BirA.

  16. Regulation of protein translation initiation in response to ionizing radiation

    International Nuclear Information System (INIS)

    Trivigno, Donatella; Bornes, Laura; Huber, Stephan M; Rudner, Justine

    2013-01-01

    Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells

  17. Regulation of protein translation initiation in response to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Trivigno Donatella

    2013-02-01

    Full Text Available Abstract Background Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Methods Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. Results IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Conclusion Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.

  18. A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

    Science.gov (United States)

    Falkenberg, K J; Newbold, A; Gould, C M; Luu, J; Trapani, J A; Matthews, G M; Simpson, K J; Johnstone, R W

    2016-07-01

    Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy.

  19. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    Science.gov (United States)

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  20. Proteolytic degradation of regulator of G protein signaling 2 facilitates temporal regulation of Gq/11 signaling and vascular contraction.

    Science.gov (United States)

    Kanai, Stanley M; Edwards, Alethia J; Rurik, Joel G; Osei-Owusu, Patrick; Blumer, Kendall J

    2017-11-24

    Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the G q/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of G q/11 -evoked Ca 2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of G q/11 -coupled receptor signaling in the cardiovascular, immune, and nervous systems. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison

    Directory of Open Access Journals (Sweden)

    Emmanuel eTerrasson

    2013-12-01

    Full Text Available Desiccation tolerance (DT is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step towards the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterised the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa. The resulting list contained 740 and 2829 transcripts whose levels respectively increased and decreased with DT. Fourty-eight transcription factors were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15 % of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35% and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity

  2. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    Science.gov (United States)

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration

    NARCIS (Netherlands)

    de Kreuk, Bart-Jan; Nethe, Micha; Fernandez-Borja, Mar; Anthony, Eloise C.; Hensbergen, Paul J.; Deelder, Andre M.; Plomann, Markus; Hordijk, Peter L.

    2011-01-01

    The Rac1 GTPase controls cytoskeletal dynamics and is a key regulator of cell spreading and migration mediated by signaling through effector proteins, such as the PAK kinases and the Scar and WAVE proteins. We previously identified a series of regulatory proteins that associate with Rac1 through its

  4. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  5. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    Science.gov (United States)

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  6. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene.

    Science.gov (United States)

    Christenson, L K; Johnson, P F; McAllister, J M; Strauss, J F

    1999-09-10

    Two putative CCAAT/enhancer-binding protein (C/EBP) response elements were identified in the proximal promoter of the human steroidogenic acute regulatory protein (StAR) gene, which encodes a key protein-regulating steroid hormone synthesis. Expression of C/EBPalpha and -beta increased StAR promoter activity in COS-1 and HepG2 cells. Cotransfection of C/EBPalpha or -beta and steroidogenic factor 1, a transcription factor required for cAMP regulation of StAR expression, into COS-1 augmented 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP)-stimulated promoter activity. When the putative C/EBP response elements were mutated, individually or together, a pronounced decline in basal StAR promoter activity in human granulosa-lutein cells resulted, but the fold stimulation of promoter activity by 8-Br-cAMP was unaffected. Recombinant C/EBPalpha and -beta bound to the two identified sequences but not the mutated elements. Human granulosa-lutein cell nuclear extracts also bound these elements but not the mutated sequences. An antibody to C/EBPbeta, but not C/EBPalpha, supershifted the nuclear protein complex associated with the more distal element. The complex formed by nuclear extracts with the proximal element was not supershifted by either antibody. Western blot analysis revealed the presence of C/EBPalpha and C/EBPbeta in human granulosa-lutein cell nuclear extracts. C/EBPbeta levels were up-regulated 3-fold by 8-Br-cAMP treatment. Our studies demonstrate a role for C/EBPbeta as well as yet to be identified proteins, which can bind to C/EBP response elements, in the regulation of StAR gene expression and suggest a mechanism by which C/EBPbeta participates in the cAMP regulation of StAR gene transcription.

  7. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  8. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  9. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  10. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    Science.gov (United States)

    Thompson, Vicki S; Lacey, Jeffrey A; Gentillon, Cynthia A; Apel, William A

    2015-03-03

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  11. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S; Lacey, Jeffrey A.; Gentillon, Cynthia A.

    2016-08-09

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  12. Comparative vesicle proteomics reveals selective regulation of protein expression in chestnut blight fungus by a hypovirus.

    Science.gov (United States)

    Wang, Jinzi; Wang, Fangzhen; Feng, Youjun; Mi, Ke; Chen, Qi; Shang, Jinjie; Chen, Baoshan

    2013-01-14

    The chestnut blight fungus (Cryphonectria parasitica) and hypovirus constitute a model system to study fungal pathogenesis and mycovirus-host interaction. Knowledge in this field has been gained largely from investigations at gene transcription level so far. Here we report a systematic analysis of the vesicle proteins of the host fungus with/without hypovirus infection. Thirty-three differentially expressed protein spots were identified in the purified vesicle protein samples by two-dimensional electrophoresis and mass spectrometry. Down-regulated proteins were mostly cargo proteins involved in primary metabolism and energy generation and up-regulated proteins were mostly vesicle associated proteins and ABC transporter. A virus-encoded protein p48 was found to have four forms with different molecular mass in vesicles from the virus-infected strain. While a few of the randomly selected differentially expressed proteins were in accordance with their transcription profiles, majority were not in agreement with their mRNA accumulation patterns, suggesting that an extensive post-transcriptional regulation may have occurred in the host fungus upon a hypovirus infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress

    Directory of Open Access Journals (Sweden)

    Stephanie Munk

    2017-10-01

    Full Text Available The mechanisms that protect eukaryotic DNA during the cumbersome task of replication depend on the precise coordination of several post-translational modification (PTM-based signaling networks. Phosphorylation is a well-known regulator of the replication stress response, and recently an essential role for SUMOs (small ubiquitin-like modifiers has also been established. Here, we investigate the global interplay between phosphorylation and SUMOylation in response to replication stress. Using SUMO and phosphoproteomic technologies, we identify thousands of regulated modification sites. We find co-regulation of central DNA damage and replication stress responders, of which the ATR-activating factor TOPBP1 is the most highly regulated. Using pharmacological inhibition of the DNA damage response kinases ATR and ATM, we find that these factors regulate global protein SUMOylation in the protein networks that protect DNA upon replication stress and fork breakage, pointing to integration between phosphorylation and SUMOylation in the cellular systems that protect DNA integrity.

  14. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins During Ex Vivo Osteoblast Differentiation of Human Stromal Stem Cells*

    Science.gov (United States)

    Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.

    2012-01-01

    It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418

  15. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    Science.gov (United States)

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.

  16. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Zhang, Haifeng; Ma, Hongyu; Xie, Xin; Ji, Jun; Dong, Yanhan; Du, Yan; Tang, Wei; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2014-11-01

    The rice blast fungus Magnaporthe oryzae encodes eight regulators of G-protein (GTP-binding protein) signaling (RGS) proteins MoRgs1-MoRgs8 that orchestrate the growth, asexual/sexual production, appressorium differentiation, and pathogenicity. To address the mechanisms by which MoRgs proteins function, we conducted a 2DE proteome study and identified 82 differentially expressed proteins by comparing five ∆Morgs mutants with wild-type Guy11 strain. We found that the abundances of eight amino acid (AA) biosynthesis or degradation associated proteins were markedly altered in five ∆Morgs mutants, indicating one of the main collective roles for the MoRgs proteins is to influence AA metabolism. We showed that MoRgs proteins have distinct roles in AA metabolism and nutrient responses from growth assays. In addition, we characterized MoLys20 (Lys is lysine), a homocitrate synthase, whose abundance was significantly decreased in the ∆Morgs mutants. The ∆Molys20 mutant is auxotrophic for lys and exogenous lys could partially rescue its auxotrophic defects. Deletion of MoLYS20 resulted in defects in conidiation and infection, as well as pathogenicity on rice. Overall, our results indicate that one of the critical roles for MoRgs proteins is to regulate AA metabolism, and that MoLys20 may be directly or indirectly regulated by MoRgs and participated in lys biosynthesis, thereby affecting fungal development and pathogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  18. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  19. Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Jørgensen, Trine Nygaard; Gether, Ulrik

    2010-01-01

    -synaptic neurons. This has led to the identification of a plethora of different kinases, receptors and scaffolding proteins that interact with DAT and hereby either modulate the catalytic activity of the transporter or regulate its trafficking and degradation. Several new tools for studying DAT regulation in live...

  20. Control of striatal signaling by G protein regulators

    Directory of Open Access Journals (Sweden)

    Keqiang eXie

    2011-08-01

    Full Text Available Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation and movement coordination. Activation of G-protein-coupled receptors (GPCRs by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named Regulator of G protein Signaling (RGS. RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.

  1. Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

    Directory of Open Access Journals (Sweden)

    Neal L. Millar

    2012-01-01

    Full Text Available Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-associated molecular patterns (DAMPs, are rapidly released following nonprogrammed cell death, are key effectors of the innate immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important regulators of inflammatory mediators and matrix regulation in tendinopathy.

  2. Regulation of neuronal communication by G protein-coupled receptors.

    Science.gov (United States)

    Huang, Yunhong; Thathiah, Amantha

    2015-06-22

    Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  4. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.

    Science.gov (United States)

    Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun

    2012-12-27

    L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.

  5. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance

    DEFF Research Database (Denmark)

    Menzel, Tobias; Nähse-Kumpf, Viola; Kousholt, Arne Nedergaard

    2011-01-01

    To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2......, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main...

  6. Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators

    Directory of Open Access Journals (Sweden)

    Shucai eWang

    2016-03-01

    Full Text Available OVATE FAMILY PROTEINS (OFPs are a class of proteins with a conserved OVATE domain. OVATE protein was first identified in tomato as a key regulator of fruit shape. OFPs are plant-specific proteins that are widely distributed in the plant kingdom including mosses and lycophytes. Transcriptional activity analysis of Arabidopsis OFPs (AtOFPs in protoplasts suggests that they act as transcription repressors. Functional characterization of OFPs from different plant species including Arabidopsis, rice, tomato, pepper and banana suggests that OFPs regulate multiple aspects of plant growth and development, which is likely achieved by interacting with different types of transcription factors including the KNOX and BELL classes, and/or directly regulating the expression of target genes such as Gibberellin 20 oxidase (GA20ox. Here, we examine how OVATE was originally identified, summarize recent progress in elucidation of the roles of OFPs in regulating plant growth and development, and describe possible mechanisms underpinning this regulation. Finally, we review potential new research directions that could shed additional light on the functional biology of OFPs in plants.

  7. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  8. Thioredoxin 1 regulation of protein S-desulfhydration

    Directory of Open Access Journals (Sweden)

    Youngjun Ju

    2016-03-01

    Full Text Available The importance of H2S in biology and medicine has been widely recognized in recent years, and protein S-sulfhydration is proposed to mediate the direct actions of H2S bioactivity in the body. Thioredoxin 1 (Trx1 is an important reducing enzyme that cleaves disulfides in proteins and acts as an S-denitrosylase. The regulation of Trx1 on protein S-sulfhydration is unclear. Here we showed that Trx1 facilitates protein S-desulfhydration. Overexpression of Trx1 attenuated the basal level and H2S-induced protein S-sulfhydration by direct interaction with S-sulfhydrated proteins, i.e., glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase. In contrast, knockdown of Trx1 mRNA expression by short interfering RNA or blockage of Trx1 redox activity with PX12 or 2,4-dinitrochlorobenzene enhanced protein S-sulfhydration. Mutation of cysteine-32 but not cysteine-35 in the Trp–Cys32–Gly–Pro–Cys35 motif eliminated the binding of Trx1 with S-sulfhydrated proteins and abolished the S-desulfhydrating effect of Trx1. All these data suggest that Trx1 acts as an S-desulfhydrase.

  9. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  10. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    International Nuclear Information System (INIS)

    Matsunaga, Ryota; Nishino, Tasuku; Yokoyama, Atsushi; Nakashima, Akio; Kikkawa, Ushio; Konishi, Hiroaki

    2016-01-01

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.

  11. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Ryota; Nishino, Tasuku [Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 (Japan); Yokoyama, Atsushi [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Nakashima, Akio; Kikkawa, Ushio [Biosignal Research Center, Kobe University, Kobe 657-8501 (Japan); Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp [Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 (Japan)

    2016-01-15

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.

  12. Regulation of heterotrimeric G-protein signaling by NDPK/NME proteins and caveolins: an update.

    Science.gov (United States)

    Abu-Taha, Issam H; Heijman, Jordi; Feng, Yuxi; Vettel, Christiane; Dobrev, Dobromir; Wieland, Thomas

    2018-02-01

    Heterotrimeric G proteins are pivotal mediators of cellular signal transduction in eukaryotic cells and abnormal G-protein signaling plays an important role in numerous diseases. During the last two decades it has become evident that the activation status of heterotrimeric G proteins is both highly localized and strongly regulated by a number of factors, including a receptor-independent activation pathway of heterotrimeric G proteins that does not involve the classical GDP/GTP exchange and relies on nucleoside diphosphate kinases (NDPKs). NDPKs are NTP/NDP transphosphorylases encoded by the nme/nm23 genes that are involved in a variety of cellular events such as proliferation, migration, and apoptosis. They therefore contribute, for example, to tumor metastasis, angiogenesis, retinopathy, and heart failure. Interestingly, NDPKs are translocated and/or upregulated in human heart failure. Here we describe recent advances in the current understanding of NDPK functions and how they have an impact on local regulation of G-protein signaling.

  13. Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics

    DEFF Research Database (Denmark)

    Arevalo-Ferro, C.; Hentzer, Morten; Reil, G.

    2003-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic human pathogen which is responsible for severe nosocomial infections in immunocompromised patients and is the major pathogen in cystic fibrosis. The bacterium utilizes two interrelated quorum-sensing (QS) systems, which rely......-controlled protein spots of the surface fraction, confirming the high specificity of the compound. Importantly, 20 novel QS-regulated proteins were identified, many of which are involved in iron utilization, suggesting a link between quorum sensing and the iron regulatory system. Two of these proteins, PhuR and Has......Ap, are components of the two distinct haem-uptake systems present in P. aeruginosa. In agreement with the finding that both proteins are positively regulated by the QS cascade, we show that the lasI rhlI double mutant grows poorly with haemoglobin as the only iron source when compared with the wild type...

  14. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin.

    Science.gov (United States)

    Blundon, Malachi A; Schlesinger, Danielle R; Parthasarathy, Amritha; Smith, Samantha L; Kolev, Hannah M; Vinson, David A; Kunttas-Tatli, Ezgi; McCartney, Brooke M; Minden, Jonathan S

    2016-07-15

    Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development. © 2016. Published by The Company of Biologists Ltd.

  15. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    Science.gov (United States)

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  16. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  17. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  18. Regulation of AMPA Receptor Trafficking by Protein Ubiquitination

    Directory of Open Access Journals (Sweden)

    Jocelyn Widagdo

    2017-10-01

    Full Text Available The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer’s disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer’s disease, chronic stress and epilepsy.

  19. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  20. Wrecked regulation of intrinsically disordered proteins in diseases: Pathogenicity of deregulated regulators

    Directory of Open Access Journals (Sweden)

    Vladimir N. Uversky

    2014-07-01

    Full Text Available Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs are typically related to regulation, signaling and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.

  1. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  2. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely....... This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs) accounted for 13......% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream...

  3. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport.

    Science.gov (United States)

    Mathews, Helena; Clendennen, Stephanie K; Caldwell, Colby G; Liu, Xing Liang; Connors, Karin; Matheis, Nikolaus; Schuster, Debra K; Menasco, D J; Wagoner, Wendy; Lightner, Jonathan; Wagner, D Ry

    2003-08-01

    We have developed a high-throughput T-DNA insertional mutagenesis program in tomato using activation tagging to identify genes that regulate metabolic pathways. One of the activation-tagged insertion lines (ant1) showed intense purple pigmentation from the very early stage of shoot formation in culture, reflecting activation of the biosynthetic pathway leading to anthocyanin accumulation. The purple coloration resulted from the overexpression of a gene that encodes a MYB transcription factor. Vegetative tissues of ant1 plants displayed intense purple color, and the fruit showed purple spotting on the epidermis and pericarp. The gene-to-trait relationship of ant1 was confirmed by the overexpression of ANT1 in transgenic tomato and in tobacco under the control of a constitutive promoter. Suppression subtractive hybridization and RNA hybridization analysis of the purple tomato plants indicated that the overexpression of ANT1 caused the upregulation of genes that encode proteins in both the early and later steps of anthocyanidin biosynthesis as well as genes involved in the glycosylation and transport of anthocyanins into the vacuole.

  4. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  5. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  6. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages.

    Science.gov (United States)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R; Sheng, Zhi

    2018-02-12

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.

  7. Regulator of G-Protein Signaling 7 Regulates Reward Behavior by Controlling Opioid Signaling in the Striatum.

    Science.gov (United States)

    Sutton, Laurie P; Ostrovskaya, Olga; Dao, Maria; Xie, Keqiang; Orlandi, Cesare; Smith, Roy; Wee, Sunmee; Martemyanov, Kirill A

    2016-08-01

    Morphine mediates its euphoric and analgesic effects by acting on the μ-opioid receptor (MOR). MOR belongs to the family of G-protein coupled receptors whose signaling efficiency is controlled by the regulator of G-protein signaling (RGS) proteins. Our understanding of the molecular diversity of RGS proteins that control MOR signaling, their circuit specific actions, and underlying cellular mechanisms is very limited. We used genetic approaches to ablate regulator of G-protein signaling 7 (RGS7) both globally and in specific neuronal populations. We used conditioned place preference and self-administration paradigms to examine reward-related behavior and a battery of tests to assess analgesia, tolerance, and physical dependence to morphine. Electrophysiology approaches were applied to investigate the impact of RGS7 on morphine-induced alterations in neuronal excitability and plasticity of glutamatergic synapses. At least three animals were used for each assessment. Elimination of RGS7 enhanced reward, increased analgesia, delayed tolerance, and heightened withdrawal in response to morphine administration. RGS7 in striatal neurons was selectively responsible for determining the sensitivity of rewarding and reinforcing behaviors to morphine without affecting analgesia, tolerance, and withdrawal. In contrast, deletion of RGS7 in dopaminergic neurons did not influence morphine reward. RGS7 exerted its effects by controlling morphine-induced changes in excitability of medium spiny neurons in nucleus accumbens and gating the compositional plasticity of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors. This study identifies RGS7 as a novel regulator of MOR signaling by dissecting its circuit specific actions and pinpointing its role in regulating morphine reward by controlling the activity of nucleus accumbens neurons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Proteomics analysis of apoptosis-regulating proteins in tissues with different radiosensitivity

    International Nuclear Information System (INIS)

    An, Jeung-Hee; Seong, Jin-Sil

    2006-01-01

    The aim of this study was to identify of radiosusceptibility proteins in tissues with different radiosensitivity. C3H/HeJ mice were exposed to 10 Gy. The tissues were processed for proteins extraction and were analyzed by 2-dimensional electrophoresis. The proteins were identified by matrix-assisted laser desorption ionizing time-of-flight mass spectrometry and validated by immunohistochemical staining and Western blotting. The peaks of apoptosis levels were 35.3±1.7% and 0.6±0.2% in the spleen and the liver, respectively, after ionizing radiation. Analysis of liver tissue showed that the expression level of reactive oxygen species (ROS) related proteins such as cytochrome c, glutathione S transferase, NADH dehydrogenase and peroxiredoxin VI increased after radiation. The expression level of cytochrome c increased to 3-fold after ionizing radiation in both tissues. However in spleen tissue, the expression level of various kinds of apoptosis regulating proteins increased after radiation. These involved iodothyronine, CD 59A glycoprotein precursor, fas antigen and tumor necrosis factor -inducible protein TSG-6nprecursor after radiation. The difference in the apoptosis index between the liver and spleen tissues is closely associated with the expression of various kinds of apoptosis-related proteins. The result suggests that the expression of apoptosis-related protein and redox proteins play important roles in this radiosusceptibility. (author)

  9. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.

    Science.gov (United States)

    Hamilton, I R; Svensäter, G

    1998-10-01

    Our previous research has demonstrated that with the more aciduric oral bacteria, an acid shock to sub-lethal pH values results in the induction of an acid tolerance response that protects the cells at extremely low pH (pH 3.0-4.0) that kills unadapted control cells maintained at pH 7.5 (Oral Microbiol Immunol 1997: 12: 266-273). In this study, we were interested in comparing the protein profiles of acid-shocked and control cells of nine organisms from three acid-ogenic genera that could be categorized as strong, weak and non-acid responders in an attempt to identify proteins that could be classified as acid-regulated proteins and which may be important in the process of survival at very low pH. For this, log-phase cultures were rapidly acidified from pH 7.5 to 5.5 in the presence of [14C]-amino acids for varying periods up to 2 h, the period previously shown to be required for maximum induction of the acid response. The cells were extracted for total protein and subjected to one-dimensional sodium dodecyl sulfate-polyacrylamide chromatography with comparable control and acid-shocked protein profiles compared by scanning and computer analysis. Of particular interest were the proteins in the acid-shocked cells that showed enhanced labeling (i.e., synthesis) over the control cells, since these were considered acid-regulated proteins of importance in pH homeostasis. Streptococcus mutans LT11 generated the most rapid and complex pattern: a total of 36 acid-regulated proteins showing enhanced synthesis, with 25 appearing within the first 30 min of acid shock. The enhanced synthesis was transient with all proteins, with the exception of two with molecular weights of 50/49 and 33/32 kDa. Within the acid-regulated proteins were proteins having molecular weights comparable to the heat shock proteins and the various subunits of the membrane H+/ATPase. By comparison, the strong responder, Lactobacillus casei 151, showed the enhanced formation of only nine proteins within the

  10. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    Science.gov (United States)

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  11. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness.

    Directory of Open Access Journals (Sweden)

    Guangqi Li

    Full Text Available Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57 would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator, member 5 (SLC25A5 and down-regulated translocator protein (TSPO would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF. In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.

  12. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  13. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga.

    Science.gov (United States)

    Estrada-Gómez, Sebastian; Vargas-Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Cifuentes, Yeimy; Perafan, Carlos

    2017-04-01

    Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein compounds in their venom. The objective of this study was to report and identify different proteins translated from the venom gland DNA information of the recently described Theraphosidae spider Pamphobeteus verdolaga. Using a venom gland transcriptomic analysis, we reported a set of the first complete sequences of seven different proteins of the recenlty described Theraphosidae spider P. verdolaga. Protein analysis indicates the presence of different proteins on the venom composition of this new spider, some of them uncommon in the Theraphosidae family. MS/MS analysis of P. verdolaga showed different fragments matching sphingomyelinases (sicaritoxin), barytoxins, hexatoxins, latroinsectotoxins, and linear (zadotoxins) peptides. Only four of the MS/MS fragments showed 100% sequence similarity with one of the transcribed proteins. Transcriptomic analysis showed the presence of different groups of proteins like phospholipases, hyaluronidases, inhibitory cysteine knots (ICK) peptides among others. The three database of protein domains used in this study (Pfam, SMART and CDD) showed congruency in the search of unique conserved protein domain for only four of the translated proteins. Those proteins matched with EF-hand proteins, cysteine rich secretory proteins, jingzhaotoxins, theraphotoxins and hexatoxins, from different Mygalomorphae spiders belonging to the families Theraphosidae, Barychelidae and Hexathelidae. None of the analyzed sequences showed a complete 100% similarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. SMG1 identified as a regulator of Parkinson's disease-associated alpha-synuclein through siRNA screening.

    Directory of Open Access Journals (Sweden)

    Adrienne Henderson-Smith

    Full Text Available Synucleinopathies are a broad class of neurodegenerative disorders characterized by the presence of intracellular protein aggregates containing α-synuclein protein. The aggregated α-synuclein protein is hyperphosphorylated on serine 129 (S129 compared to the unaggregated form of the protein. While the precise functional consequences of S129 hyperphosphorylation are still being clarified, numerous in vitro and in vivo studies suggest that S129 phosphorylation is an early event in α-synuclein dysfunction and aggregation. Identifying the kinases and phosphatases that regulate this critical phosphorylation event may ultimately prove beneficial by allowing pharmacological mitigation of synuclein dysfunction and toxicity in Parkinson's disease and other synucleinopathies. We report here the development of a high-content, fluorescence-based assay to quantitate levels of total and S129 phosphorylated α-synuclein protein. We have applied this assay to conduct high-throughput loss-of-function screens with siRNA libraries targeting 711 known and predicted human kinases and 206 phosphatases. Specifically, knockdown of the phosphatidylinositol 3-kinase related kinase SMG1 resulted in significant increases in the expression of pS129 phosphorylated α-synuclein (p-syn. Moreover, SMG1 protein levels were significantly reduced in brain regions with high p-syn levels in both dementia with Lewy bodies (DLB and Parkinson's disease with dementia (PDD. These findings suggest that SMG1 may play an important role in increased α-synuclein pathology during the course of PDD, DLB, and possibly other synucleinopathies.

  15. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  16. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  17. Regulation of SUMO2 Target Proteins by the Proteasome in Human Cells Exposed to Replication Stress

    DEFF Research Database (Denmark)

    Bursomanno, Sara; McGouran, Joanna F; Kessler, Benedikt M

    2015-01-01

    In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role...... of the proteasome in determining the fate of proteins conjugated to SUMO2 when cells are treated with DNA replication stress conditions. We conducted a quantitative proteomic analysis in a U2OS cell line stably expressing SUMO2(Q87R) tagged with StrepHA in the presence or absence of epoxomicin (EPOX), a proteasome...... inhibitor. We identified subgroups of putative SUMO2 targets that were either degraded or stabilized by EPOX upon SUMO2 conjugation in response to replication stress. Interestingly, the subgroup of proteins degraded upon SUMO2 conjugation was enriched in proteins playing roles in DNA damage repair...

  18. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  19. Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhou [ORNL; Czarnecki, Olaf [ORNL; Chourey, Karuna [ORNL; Yang, Jun [ORNL; Tuskan, Gerald A [ORNL; Hurst, Gregory {Greg} B [ORNL; Pan, Chongle [ORNL; Chen, Jay [ORNL

    2014-01-01

    Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. Here, a quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found SLs regulate the expression of about three dozens of proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

  20. The homeodomain protein ladybird late regulates synthesis of milk proteins during pregnancy in the tsetse fly (Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Geoffrey M Attardo

    2014-04-01

    Full Text Available Regulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina, the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development. Disruption of milk protein synthesis deprives developing larvae of nutrients and results in extended larval development and/or in abortion. The ability to cause such a disruption could be utilized as a tsetse control strategy. Here we identify and delineate the regulatory sequence of a major milk protein gene (milk gland protein 1:mgp1 by utilizing a combination of molecular techniques in tsetse, Drosophila transgenics, transcriptomics and in silico sequence analyses. The function of this promoter is conserved between tsetse and Drosophila. In transgenic Drosophila the mgp1 promoter directs reporter gene expression in a tissue and stage specific manner orthologous to that of Glossina. Analysis of the minimal required regulatory region of mgp1, and the regulatory regions of other Glossina milk proteins identified putative homeodomain protein binding sites as the sole common feature. Annotation and expression analysis of Glossina homeodomain proteins identified ladybird late (lbl as being accessory gland/fat body specific and differentially expressed between lactating/non-lactating flies. Knockdown of lbl in tsetse resulted in a significant reduction in transcript abundance of multiple milk protein genes and in a significant loss of fecundity. The role of Lbl in adult reproductive physiology is previously unknown. These results suggest that Lbl is part of a conserved reproductive regulatory system that could have implications beyond tsetse to other vector insects such as mosquitoes. This

  1. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Relationship between Protein Accumulation Regulation and Yield Formation in Soybean

    Institute of Scientific and Technical Information of China (English)

    CHEN Lihua; LI Jie; LIU Lijun; ZU Wei

    2006-01-01

    Three different genotypes soybeans were adopted in this experiment under three fertilizer levels.The object of this study was to investigate protein accumulation regulation of soybean cultivars under the condition of different nutrient levels, and their effects on soybean yield and quality, and to provide theoretical evidence for breed, cultivation and agricultural production, also man-powered controllable locations. The concentration of N in the leaves declined after seedling stage, then increased again at stage of early flowering, and started to decrease up to leaf senescence, declined rapidly from seed-filling season to stage of yellow ripeness. The concentration of N in the stems and pod walls declined with growth stage. High seed protein genotypes exhibited higher N assimilating and partitioning during whole growth stages. Pod walls were media of N partitioning. Protein was accumulated mainly during the later period of reproductive growth stage up to harvest, so plant growth after stage of yellow ripeness could not be neglected.

  3. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    Science.gov (United States)

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  4. Central regulation of metabolism by protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Ryan eTsou

    2013-01-01

    Full Text Available Protein tyrosine phosphatases (PTPs are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN, reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.

  5. Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hedi ePeterson

    2013-10-01

    Full Text Available Pluripotency in human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs is regulated by three transcription factors - OCT3/4, SOX2 and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behaviour of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11 and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.

  6. The nuclear import of ribosomal proteins is regulated by mTOR

    Science.gov (United States)

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  7. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  8. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.).

    Science.gov (United States)

    Romero-Castillo, Rafael A; Roy Choudhury, Swarup; León-Félix, Josefina; Pandey, Sona

    2015-05-01

    Throughout evolution, organisms have created numerous mechanisms to sense and respond to their environment. One such highly conserved mechanism involves regulation by heterotrimeric G-protein complex comprised of alpha (Gα), beta (Gβ) and gamma (Gγ) subunits. In plants, these proteins play important roles in signal transduction pathways related to growth and development including response to biotic and abiotic stresses and consequently affect yield. In this work, we have identified and characterized the complete heterotrimeric G-protein repertoire in the Capsicum annuum (Capsicum) genome which consists of one Gα, one Gβ and three Gγ genes. We have also identified one RGS gene in the Capsicum genome that acts as a regulator of the G-protein signaling. Biochemical activities of the proteins were confirmed by assessing the GTP-binding and GTPase activity of the recombinant Gα protein and its regulation by the GTPase acceleration activity of the RGS protein. Interaction between different subunits was established using yeast- and plant-based analyses. Gene and protein expression profiles of specific G-protein components revealed interesting spatial and temporal regulation patterns, especially during root development and during fruit development and maturation. This research thus details the characterization of the first heterotrimeric G-protein family from a domesticated, commercially important vegetable crop. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    Science.gov (United States)

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  10. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages

    DEFF Research Database (Denmark)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man

    2018-01-01

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed...... with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes...... have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays...

  11. Developmental regulation of silk protein P25 in the silkworm ...

    Indian Academy of Sciences (India)

    tribpo

    anti-P25 sera were raised in rabbit and mice. The relative ... of B. mori. Couble et al (1983) identified a new mRNA species in the posterior ... quantitative changes in P25 protein level during development in B. mori. 2 . ..... physiology biochemistry and pharmacology (eds) G A Kerkut and L I Gilbert (New York: Pergamon.

  12. Zinc finger proteins and other transcription regulators as response proteins in benzo[a]pyrene exposed cells

    International Nuclear Information System (INIS)

    Gao Zhihua; Jin Jinghua; Yang Jun; Yu Yingnian

    2004-01-01

    Proteomic analysis, which combines two-dimensional electrophoresis (2-DE) and mass spectrometry (MS), is an important approach to screen proteins responsive to specific stimuli. Benzo[a]pyrene (B[a]P), a prototype of polycyclic hydrocarbons (PAHs), is a potent procarcinogen generated from the combustion of fossil fuel and cigarette smoke. To further probe the molecular mechanism of mutagenesis and carcinogenesis, and to find potential molecular markers involved in cellular responses to B[a]P exposure, we performed proteomic analysis of whole cellular proteins in human amnion epithelial cells after B[a]P-treatment. Image visualization and statistical analysis indicated that more than 40 proteins showed significant changes following B[a]P-treatment (P<0.05). Among them, 20 proteins existed only in the control groups, while six were only present in B[a]P-treated cells. In addition, the expression of 10 proteins increased whereas 11 decreased after B[a]P-treatment. These proteins were subjected to in-gel tryptic digestion followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. Using peptide mass fingerprinting (PMF) to search the nrNCBI database, we identified 22 proteins. Most of these proteins have unknown functions and have not been previously connected to a response to B[a]P exposure. To further annotate the characteristics of these proteins, GOblet analysis was carried out and results indicated that they were involved in multiple biological processes including regulation of transcription, cell proliferation, cell aging and other processes. However, expression changes were noted in a number of transcription regulators, including eight zinc finger proteins as well as SNF2L1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1), which is closely linked to the chromatin remodeling process. These data may provide new clues to further understand the implication of

  13. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates.

    Science.gov (United States)

    Hawley, Robert G; Chen, Yuzhong; Riz, Irene; Zeng, Chen

    2012-05-04

    In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.

  14. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  15. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA...

  16. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  17. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.

    Science.gov (United States)

    Smith, Jeffrey S; Rajagopal, Sudarshan

    2016-04-22

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    Science.gov (United States)

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Regulation of protein synthesis during sea urchin early development

    International Nuclear Information System (INIS)

    Kelso, L.C.

    1989-01-01

    Fertilization of the sea urchin egg results in a 20-40 fold increase in the rate of protein synthesis. The masked message hypothesis proposes that mRNAs are masked or unavailable for translation in the egg. We devised an in vivo assay to test this hypothesis. Our results show that masked mRNAs limit protein synthesis in the unfertilized egg. In addition, we show that protein synthesis is also regulated at the level of translational machinery. Following fertilization is a period of rapid cell divisions. This period, known as the rapid cleavage stage, is characterized by the transient synthesis of a novel set of proteins. The synthesis of these proteins is programmed by maternal mRNAs stored in the unfertilized egg. To study the behavior of these mRNAs, we prepared a cDNA library from polysomal poly (A+) RNA from 2-hour embryos. [ 32 P] labeled probes, prepared from the cDNA library, were used to monitor the levels of individual mRNAs in polysomes at fertilization and during early development

  20. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration.

    Science.gov (United States)

    Chen, Hsin-Hsiung; Chen, Wen-Pin; Yan, Wan-Lun; Huang, Yuan-Chun; Chang, Szu-Wei; Fu, Wen-Mei; Su, Ming-Jai; Yu, I-Shing; Tsai, Tzung-Chieh; Yan, Yu-Ting; Tsao, Yeou-Ping; Chen, Show-Li

    2015-11-15

    Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity. © 2015. Published by The Company of Biologists Ltd.

  1. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  2. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    Science.gov (United States)

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  4. Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Hu, Rongkuan; Huffman, Kenneth E; Chu, Michael; Zhang, Yajie; Minna, John D; Yu, Yonghao

    2016-02-05

    Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.

  5. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and β-cell apoptosis

    DEFF Research Database (Denmark)

    Berchtold, Lukas Adrian; Størling, Zenia Marian; Ortis, Fernanda

    2011-01-01

    Type 1 diabetes (T1D) is a complex disease characterized by the loss of insulin-secreting β-cells. Although the disease has a strong genetic component, and several loci are known to increase T1D susceptibility risk, only few causal genes have currently been identified. To identify disease...... genes in T1D, including the INS gene. An unexpected top-scoring candidate gene was huntingtin-interacting protein (HIP)-14/ZDHHC17. Immunohistochemical analysis of pancreatic sections demonstrated that HIP14 is almost exclusively expressed in insulin-positive cells in islets of Langerhans. RNAi...... knockdown experiments established that HIP14 is an antiapoptotic protein required for β-cell survival and glucose-stimulated insulin secretion. Proinflammatory cytokines (IL-1β and IFN-γ) that mediate β-cell dysfunction in T1D down-regulated HIP14 expression in insulin-secreting INS-1 cells and in isolated...

  6. Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function

    Science.gov (United States)

    Bondos, Sarah

    During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.

  7. Iron-regulated proteins (IRPS of leptospira biflexa serovar Patoc strain Patoc I

    Directory of Open Access Journals (Sweden)

    Sritharan M

    2004-01-01

    Full Text Available BACKGROUND: Iron deficiency has been shown to induce the expression of siderophores and their receptors, the iron-regulated membrane proteins in a number of bacterial systems. In this study, the response of Leptospira biflexa serovar Patoc strain Patoc I to conditions of iron deprivation was assessed and the expression of siderophores and iron-regulated proteins is reported. MATERIALS AND METHODS: Two methods were used for establishing conditions of iron deprivation. One method consisted of addition of the iron chelators ethylenediamine-N, N′-diacetic acid (EDDA and ethylenediamine di-o-hydroxyphenylacetic acid (EDDHPA and the second method involved the addition of iron at 0.02 µg Fe/mL. Alternatively, iron sufficient conditions were achieved by omitting the chelators in the former method and adding 4 µg Fe/mL of the medium in the latter protocol. Triton X-114 extraction of the cells was done to isolate the proteins in the outer membrane (detergent phase, periplasmic space (aqueous phase and the protoplasmic cylinder (cell pellet. The proteins were subjected to SDS-PAGE for analysis. RESULTS: In the presence of the iron-chelators, four iron-regulated proteins (IRPs of apparent molecular masses of 82, 64, 60 and 33 kDa were expressed. The 82-kDa protein was seen only in the aqueous phase, while the other three proteins were seen in both the aqueous and detergent fractions. These proteins were not identified in organisms grown in the absence of the iron chelators. The 64, 60 and the 33 kDa proteins were also demonstrated in organisms grown in media with 0.02 µg Fe/mL. In addition, a 24 kDa protein was found to be down-regulated at this concentration of iron as compared to the high level of expression in organisms grown with 4 µg Fe/mL. The blue CAS agar plates with top agar containing 0.02µg Fe/mL showed a colour change to orange-red. CONCLUSION: The expression of siderophores and iron-regulated proteins under conditions of iron deprivation

  8. Gender-Dimorphic Regulation of Skeletal Muscle Proteins in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Minji Choi

    2013-03-01

    Full Text Available Background: Despite the fact that sexual differences increase diabetic risk and contribute to the need for gender-specific care, there remain contradictory results as to whether or not sexual dimorphism increases susceptibility to the development of type 1 diabetes mellitus. Methods: To examine gender-dimorphic regulation of skeletal muscle proteins between healthy control and STZ-induced diabetic rats of both genders, we performed differential proteome analysis using two-dimensional electrophoresis combined with mass spectrometry. Results: Animal experiments revealed that STZ treatment rendered female rats more susceptible to induction of diabetes than their male littermates with significantly lower plasma insulin levels due to hormonal regulation. Proteomic analysis of skeletal muscle identified a total of 21 proteins showing gender-dimorphic differential expression patterns between healthy controls and diabetic rats. Most interestingly, gender-specific proteome comparison showed that male and female rats displayed differential regulation of proteins involved in muscle contraction, carbohydrate, and lipid metabolism, as well as oxidative phosphorylation and cellular stress. Conclusion: The current proteomic study revealed that impaired protein regulation was more prominent in the muscle tissue of female diabetic rats, which were more susceptible to STZ-induced diabetes. We expect that the present proteomic data can provide valuable information for evidence-based gender-specific treatment of diabetes.

  9. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  10. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress

    International Nuclear Information System (INIS)

    Chen, Liang; Chen, Huiqing; Yao, Chun; Chang, Cheng; Xia, Hengchuan; Zhang, Chunxia; Zhou, Yang; Yao, Qin; Chen, Keping

    2015-01-01

    Highlights: • On the cellular level, we identified IC 50 of NaF on BmN cell by flow cytometry. • High concentration of NaF gives effect on BmN cell morphology. • Five significantly differential proteins were identified by two-dimensional electrophoresis and mass spectrometry. • ALDH2 and WPH were up-regulated, while CRT and SCF were down-regulated, providing new information for metabolic pathway of fluoride. - Abstract: Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8 h (hrs) culture with high concentration of NaF (≥1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC 50 ) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress

  11. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Chen, Huiqing [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Yao, Chun [Department of Stomatology, Zhenjiang First People’s Hospital, Zhenjiang, Jiangsu 212013 (China); Chang, Cheng; Xia, Hengchuan; Zhang, Chunxia; Zhou, Yang; Yao, Qin [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, Keping, E-mail: kpchen@ujs.edu.cn [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-04-09

    Highlights: • On the cellular level, we identified IC{sub 50} of NaF on BmN cell by flow cytometry. • High concentration of NaF gives effect on BmN cell morphology. • Five significantly differential proteins were identified by two-dimensional electrophoresis and mass spectrometry. • ALDH2 and WPH were up-regulated, while CRT and SCF were down-regulated, providing new information for metabolic pathway of fluoride. - Abstract: Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8 h (hrs) culture with high concentration of NaF (≥1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC{sub 50}) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress.

  12. Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV.

    Science.gov (United States)

    Vieira, Monica L; de Morais, Zenaide M; Gonçales, Amane P; Romero, Eliete C; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2010-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Polycomb Group Protein PHF1 Regulates p53-dependent Cell Growth Arrest and Apoptosis*

    Science.gov (United States)

    Yang, Yang; Wang, Chenji; Zhang, Pingzhao; Gao, Kun; Wang, Dejie; Yu, Hongxiu; Zhang, Ting; Jiang, Sirui; Hexige, Saiyin; Hong, Zehui; Yasui, Akira; Liu, Jun O.; Huang, Haojie; Yu, Long

    2013-01-01

    Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. PMID:23150668

  14. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.

    Science.gov (United States)

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian

    2006-07-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

  15. DMPD: Post-transcriptional regulation of proinflammatory proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075353 Post-transcriptional regulation of proinflammatory proteins. Anderson P, P...l) (.csml) Show Post-transcriptional regulation of proinflammatory proteins. PubmedID 15075353 Title Post-tr...anscriptional regulation of proinflammatory proteins. Authors Anderson P, Phillip

  16. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin.

    Directory of Open Access Journals (Sweden)

    Gry Aune Westergaard Hansen

    Full Text Available Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection.

  17. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy.

    Science.gov (United States)

    Li, Jiajia; Ding, Xianlong; Han, Shaohuai; He, Tingting; Zhang, Hao; Yang, Longshu; Yang, Shouping; Gai, Junyi

    2016-04-14

    To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean

  18. Method for early detection of infectious mononucleosis by identifying Inmono proteins

    Science.gov (United States)

    Willard, Karen E.

    1984-01-01

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  19. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  20. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    Science.gov (United States)

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease.

    Science.gov (United States)

    Zhang, Yan; Liu, Dianming; Wang, Lihong; Wang, Shuyuan; Yu, Xuexin; Dai, Enyu; Liu, Xinyi; Luo, Shanshun; Jiang, Wei

    2015-12-01

    Coronary artery disease (CAD) is the most common type of heart disease. However, the molecular mechanisms of CAD remain elusive. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, inferring risk regulatory pathways is an important step toward elucidating the mechanisms underlying CAD. With advances in high-throughput data, we developed an integrated systems approach to identify CAD risk regulatory pathways and key regulators. Firstly, a CAD-related core subnetwork was identified from a curated transcription factor (TF) and microRNA (miRNA) regulatory network based on a random walk algorithm. Secondly, candidate risk regulatory pathways were extracted from the subnetwork by applying a breadth-first search (BFS) algorithm. Then, risk regulatory pathways were prioritized based on multiple CAD-associated data sources. Finally, we also proposed a new measure to prioritize upstream regulators. We inferred that phosphatase and tensin homolog (PTEN) may be a key regulator in the dysregulation of risk regulatory pathways. This study takes a closer step than the identification of disease subnetworks or modules. From the risk regulatory pathways, we could understand the flow of regulatory information in the initiation and progression of the disease. Our approach helps to uncover its potential etiology. We developed an integrated systems approach to identify risk regulatory pathways. We proposed a new measure to prioritize the key regulators in CAD. PTEN may be a key regulator in dysregulation of the risk regulatory pathways.

  2. Reticulophagy and Ribophagy: Regulated Degradation of Protein Production Factories

    Directory of Open Access Journals (Sweden)

    Eduardo Cebollero

    2012-01-01

    Full Text Available During autophagy, cytosol, protein aggregates, and organelles are sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for breakdown and recycling of their basic components. In all eukaryotes this pathway is important for adaptation to stress conditions such as nutrient deprivation, as well as to regulate intracellular homeostasis by adjusting organelle number and clearing damaged structures. For a long time, starvation-induced autophagy has been viewed as a nonselective transport pathway; however, recent studies have revealed that autophagy is able to selectively engulf specific structures, ranging from proteins to entire organelles. In this paper, we discuss recent findings on the mechanisms and physiological implications of two selective types of autophagy: ribophagy, the specific degradation of ribosomes, and reticulophagy, the selective elimination of portions of the ER.

  3. Fat-specific protein 27 regulates storage of triacylglycerol

    DEFF Research Database (Denmark)

    Keller, P.; Petrie, J.T.; Rose, P. De

    2008-01-01

    FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins...... in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L...... decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement Udgivelsesdato: 2008/5/23...

  4. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate...... MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact...

  5. Regulation of Lipid and Glucose Metabolism by Phosphatidylcholine Transfer Protein

    Science.gov (United States)

    Kang, Hye Won; Wei, Jie; Cohen, David E.

    2010-01-01

    Phosphatidylcholine transfer protein (PC-TP, a.k.a. StARD2) binds phosphatidylcholines and catalyzes their intermembrane transfer and exchange in vitro. The structure of PC-TP comprises a hydrophobic pocket and a well-defined head-group binding site, and its gene expression is regulated by peroxisome proliferator activated receptor α. Recent studies have revealed key regulatory roles for PC-TP in lipid and glucose metabolism. Notably, Pctp−/− mice are sensitized to insulin action and exhibit more efficient brown fat-mediated thermogenesis. PC-TP appears to limit access of fatty acids to mitochondria by stimulating the activity of thioesterase superfamily member 2, a newly characterized long-chain fatty acyl-CoA thioesterase. Because PC-TP discriminates among phosphatidylcholines within lipid bilayers, it may function as a sensor that links metabolic regulation to membrane composition. PMID:20338778

  6. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78.

    Science.gov (United States)

    Moriya, Chiharu; Taniguchi, Hiroaki; Nagatoishi, Satoru; Igarashi, Hisayoshi; Tsumoto, Kouhei; Imai, Kohzoh

    2018-02-01

    PRDM14 is overexpressed in various cancers and can regulate cancer phenotype under certain conditions. Inhibiting PRDM14 expression in breast and pancreatic cancers has been reported to reduce cancer stem-like phenotypes, which are associated with aggressive tumor properties. Therefore, PRDM14 is considered a promising target for cancer therapy. To develop a pharmaceutical treatment, the mechanism and interacting partners of PRDM14 need to be clarified. Here, we identified the proteins interacting with PRDM14 in triple-negative breast cancer (TNBC) cells, which do not express the three most common types of receptor (estrogen receptors, progesterone receptors, and HER2). We obtained 13 candidates that were pulled down with PRDM14 in TNBC HCC1937 cells and identified them by mass spectrometry. Two candidates-glucose-regulated protein 78 (GRP78) and heat shock protein 90-α (HSP90α)-were confirmed in immunoprecipitation assay in two TNBC cell lines (HCC1937 and MDA-MB231). Surface plasmon resonance analysis using GST-PRDM14 showed that these two proteins directly interacted with PRDM14 and that the interactions required the C-terminal region of PRDM14, which includes zinc finger motifs. We also confirmed the interactions in living cells by NanoLuc luciferase-based bioluminescence resonance energy transfer (NanoBRET) assay. Moreover, HSP90 inhibitors (17DMAG and HSP990) significantly decreased breast cancer stem-like CD24 -  CD44 + and side population (SP) cells in HCC1937 cells, but not in PRDM14 knockdown HCC1937 cells. The combination of the GRP78 inhibitor HA15 and PRDM14 knockdown significantly decreased cell proliferation and SP cell number in HCC1937 cells. These results suggest that HSP90α and GRP78 interact with PRDM14 and participate in cancer regulation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Pooja Singhmar

    Full Text Available Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  8. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals

    Directory of Open Access Journals (Sweden)

    Niria Treviño-Saldaña

    2017-01-01

    Full Text Available Modulation of posttranslational modifications (PTMs, such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol, as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation.

  9. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals

    Science.gov (United States)

    2017-01-01

    Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol), as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation. PMID:29234485

  10. The PTEN protein: cellular localization and post-translational regulation.

    Science.gov (United States)

    Leslie, Nick R; Kriplani, Nisha; Hermida, Miguel A; Alvarez-Garcia, Virginia; Wise, Helen M

    2016-02-01

    The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation. © 2016 Authors; published by Portland Press Limited.

  11. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    International Nuclear Information System (INIS)

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ( 3 H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of 3 H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked 3 H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked 3 H-EFDA in toluene alone, and of the protein-linked 3 H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) for binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III

  12. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    Science.gov (United States)

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  13. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  14. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Science.gov (United States)

    Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  15. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Directory of Open Access Journals (Sweden)

    Jingjing Liang

    2017-01-01

    Full Text Available Ebola (EBOV and Marburg (MARV viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3, a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs, as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA. Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  16. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  17. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  18. Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome

    KAUST Repository

    Skinner, John J.

    2017-12-05

    Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or “theft” mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein–coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein–Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change.

  19. Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome

    KAUST Repository

    Skinner, John J.; Wang, Sheng; Lee, Jiyoung; Ong, Colin; Sommese, Ruth; Sivaramakrishnan, Sivaraj; Koelmel, Wolfgang; Hirschbeck, Maria; Schindelin, Hermann; Kisker, Caroline; Lorenz, Kristina; Sosnick, Tobin R.; Rosner, Marsha Rich

    2017-01-01

    Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or “theft” mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein–coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein–Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change.

  20. Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes.

    Science.gov (United States)

    Sawaki, Yoshiharu; Kobayashi, Yuriko; Kihara-Doi, Tomonori; Nishikubo, Nobuyuki; Kawazu, Tetsu; Kobayashi, Masatomo; Kobayashi, Yasufumi; Iuchi, Satoshi; Koyama, Hiroyuki; Sato, Shigeru

    2014-06-01

    Tolerance to soil acidity is an important trait for eucalyptus clones that are introduced to commercial forestry plantations in pacific Asian countries, where acidic soil is dominant in many locations. A conserved transcription factor regulating aluminum (Al) and proton (H⁺) tolerance in land-plant species, STOP1 (SENSITIVE TOPROTON RHIZOTOXICITY 1)-like protein, was isolated by polymerase chain reaction-based cloning, and then suppressed by RNA interference in hairy roots produced by Agrobacterium rhizogenes-mediated transformation. Eucalyptus STOP1-like protein complemented proton tolerance in an Arabidopsis thaliana stop1-mutant, and localized to the nucleus in a transient assay of a green fluorescent protein fusion protein expressed in tobacco leaves by Agrobacterium tumefaciens-mediated transformation. Genes encoding a citrate transporting MULTIDRUGS AND TOXIC COMPOUND EXTRUSION protein and an orthologue of ALUMINUM SENSITIVE 3 were suppressed in transgenic hairy roots in which the STOP1 orthologue was knocked down. In summary, we identified a series of genes for Al-tolerance in eucalyptus, including a gene for STOP1-like protein and the Al-tolerance genes it regulates. These genes may be useful for molecular breeding and genomic selection of elite clones to introduce into acid soil regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Regulation of the vertebrate cell cycle by the cdc2 protein kinase

    International Nuclear Information System (INIS)

    Draetta, G.; Brizuela, L.; Moran, B.; Beach, D.

    1988-01-01

    A homolog of the cdc2/CDC28 protein kinase of yeast is found in all vertebrate species that have been investigated. Human cdc2 exists as a complex with a 13-kD protein that is homologous to the suc1 gene product of fission yeast. In both human and fission yeast cells, the protein kinase also exists in a complex with a 62-kD polypeptide that has not been identified genetically but acts as a substrate in vitro. The authors have studied the properties of the protein kinase in rat and human cells, as well as in Xenopus eggs. They find that in baby rat kidney (BRK) cells, which are quiescent in cell culture, the cdc2 protein is not synthesized. However, synthesis is rapidly induced in response to proliferative activation by infection with adenovirus. In human HeLa cells, the protein kinase is present continuously. It behaves as a cell-cycle oscillator that is inactive in G 1 but displays maximal enzymatic activity during mitotic metaphase. These observations indicate that in a wide variety of vertebrate cells, the cdc2 protein kinase is involved in regulating mitosis. The authors' approach taken toward study of the cdc2 protein kinase highlights the possibilities that now exist for combining the advantages of ascomycete genetics with the cell-free systems of Xenopus and the biochemical advantages of tissue culture cells to investigate fundamental problems of the cell cycle

  2. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    Science.gov (United States)

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.

    Science.gov (United States)

    Mallik, Saurav; Basu, Sudipto; Hait, Suman; Kundu, Sudip

    2018-04-21

    Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. © 2018 Wiley Periodicals, Inc.

  4. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  5. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  6. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  7. Mitochondrial fission proteins regulate programmed cell death in yeast.

    Science.gov (United States)

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  8. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Ethan S Sokol

    2015-04-01

    Full Text Available The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS. We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.

  9. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  10. msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2014-01-01

    Full Text Available Dynamics of protein-protein interactions (PPIs reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.

  11. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    Directory of Open Access Journals (Sweden)

    Zhenyong Wu

    2017-10-01

    Full Text Available Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs. Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores

  12. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation.

    Directory of Open Access Journals (Sweden)

    Anahi V Odell

    Full Text Available Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.

  13. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Krantz, James; Barker, Natalie

    2017-01-01

    . The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and also revealed MARK2 can co-IP SOGA1......, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and also with tubulin, which identifies SOGA1 as a new microtubule-associated protein....... These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology....

  14. HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manjeet; Kaur, Supinder; Nazir, Aamir; Tripathi, Raj Kamal, E-mail: rajkamalcdri@gmail.com

    2016-05-20

    HIV-1 Nef modulates cellular function that enhances viral replication in vivo which culminate into AIDS pathogenesis. With no enzymatic activity, Nef regulates cellular function through host protein interaction. Interestingly, trans-cellular introduction of recombinant Nef protein in Caenorhabditis elegans results in AIDS like pathogenesis which might share common pathophysiology because the gene sequence of C. elegans and humans share considerable homology. Therefore employing C. elegans based initial screen complemented with sequence based homology search we identified GCC185 as novel host protein interacting with HIV-1 Nef. The detailed molecular characterization revealed N-terminal EEEE{sub 65} acidic domain of Nef as key region for interaction. GCC185 is a tethering protein that binds with Rab9 transport vesicles. Our results show that Nef-GCC185 interaction disrupts Rab9 interaction resulting in delocalization of CI-MPR (cation independent Mannose 6 phosphate receptor) resulting in elevated secretion of hexosaminidase. In agreement with this, our studies identified novel host GCC185 protein that interacts with Nef EEEE65 acidic domain interfering GCC185-Rab9 vesicle membrane fusion responsible for retrograde vesicular transport of CI-MPR from late endosomes to TGN. In light of existing report suggesting critical role of Nef-GCC185 interaction reveals valuable mechanistic insights affecting specific protein transport pathway in docking of late endosome derived Rab9 bearing transport vesicle at TGN elucidating role of Nef during viral pathogenesis. -- Highlights: •Nef, an accessory protein of HIV-1 interacts with host factor and culminates into AIDS pathogenesis. •Using Caenorhabditis elegans based screen system, novel Nef interacting cellular protein GCC185 was identified. •Molecular characterization of Nef and human protein GCC185 revealed Nef EEEE{sub 65} key region interacted with full length GCC185. •Nef impeded the GCC185-Rab 9 interaction and

  15. Curcumin as a natural regulator of monocyte chemoattractant protein-1.

    Science.gov (United States)

    Karimian, Maryam Saberi; Pirro, Matteo; Majeed, Muhammed; Sahebkar, Amirhossein

    2017-02-01

    Monocyte chemoattractant/chemotactic protein-1 (MCP-1), a member of the CC chemokine family, is one of the key chemokines that regulate migration and tissue infiltration of monocytes/macrophages. Its role in the pathophysiology of several inflammatory diseases has been widely recognized, thus making MCP-1 a possible target for anti-inflammatory treatments. Curcumin (diferuloylmethane) is a natural polyphenol derived from the rhizomes of Curcuma Longa L. (turmeric). Anti-inflammatory action underlies numerous pharmacological effects of curcumin in the control and prevention of several diseases. The purpose of this review is to evaluate the effects of curcumin on the regulation of MCP-1 as a key mediator of chemotaxis and inflammation, and the biological consequences thereof. In vitro studies have shown that curcumin can decrease MCP-1 production in various cell lines. Animal studies have also revealed that curcumin can attenuate MCP-1 expression and improve a range of inflammatory diseases through multiple molecular targets and mechanisms of action. There is limited data from human clinical trials showing the decreasing effect of curcumin on MCP-1 concentrations and improvement of the course of inflammatory diseases. Most of the in vitro and animal studies confirm that curcumin exert its MCP-1-lowering and anti-inflammatory effects by down-regulating the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathway. As yet, there is limited data from human clinical trials showing the effect of curcumin on MCP-1 levels and improvement of the course of inflammatory diseases. More evidence, especially from human studies, is needed to better assess the effects of curcumin on circulating MCP-1 in different human diseases and the role of this modulatory effect in the putative anti-inflammatory properties of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  17. Regulation of G Protein-Coupled Receptors by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kamila Skieterska

    2017-04-01

    Full Text Available G protein-coupled receptors (GPCRs comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.

  18. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  19. Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer.

    Science.gov (United States)

    Thompson, Joshua J; Williams, Christopher S

    2018-02-26

    Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric serine-threonine phosphatase-composed of a structural, regulatory, and catalytic subunit-that controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A and its basic biochemistry, the diversity of its components-especially the multitude of regulatory subunits-has impeded the determination of PP2A function. As a consequence of this complexity, PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both positively and negatively and at multiple levels, further understanding of this complex dynamic may ultimately provide insight into stem cell biology and how to better treat cancers that result from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this pathway can contribute to tumorigenesis.

  20. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  1. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Science.gov (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  2. An SMC-like protein binds and regulates Caenorhabditis elegans condensins.

    Directory of Open Access Journals (Sweden)

    Lucy Fang-I Chao

    2017-03-01

    Full Text Available Structural Maintenance of Chromosomes (SMC family proteins participate in multisubunit complexes that govern chromosome structure and dynamics. SMC-containing condensin complexes create chromosome topologies essential for mitosis/meiosis, gene expression, recombination, and repair. Many eukaryotes have two condensin complexes (I and II; C. elegans has three (I, II, and the X-chromosome specialized condensin IDC and their regulation is poorly understood. Here we identify a novel SMC-like protein, SMCL-1, that binds to C. elegans condensin SMC subunits, and modulates condensin functions. Consistent with a possible role as a negative regulator, loss of SMCL-1 partially rescued the lethal and sterile phenotypes of a hypomorphic condensin mutant, while over-expression of SMCL-1 caused lethality, chromosome mis-segregation, and disruption of condensin IDC localization on X chromosomes. Unlike canonical SMC proteins, SMCL-1 lacks hinge and coil domains, and its ATPase domain lacks conserved amino acids required for ATP hydrolysis, leading to the speculation that it may inhibit condensin ATPase activity. SMCL-1 homologs are apparent only in the subset of Caenorhabditis species in which the condensin I and II subunit SMC-4 duplicated to create the condensin IDC- specific subunit DPY-27, suggesting that SMCL-1 helps this lineage cope with the regulatory challenges imposed by evolution of a third condensin complex. Our findings uncover a new regulator of condensins and highlight how the duplication and divergence of SMC complex components in various lineages has created new proteins with diverse functions in chromosome dynamics.

  3. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  4. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.

    Science.gov (United States)

    Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H

    2007-04-15

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

  5. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors

    Directory of Open Access Journals (Sweden)

    Hélène eOmer

    2015-10-01

    Full Text Available Bacillus cereus is a gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.

  6. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    Science.gov (United States)

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  7. Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice

    Directory of Open Access Journals (Sweden)

    Yunhua Xiao

    2017-09-01

    Full Text Available Brassinosteroids (BRs regulate important agronomic traits in rice, including plant height, leaf angle, and grain size. However, the underlying mechanisms remain not fully understood. We previously showed that GSK2, the central negative regulator of BR signaling, targets DLT, the GRAS family protein, to regulate BR responses. Here, we identified Ovate Family Protein 1 (OFP1 as a DLT interacting protein. OFP1 was ubiquitously expressed and the protein was localized in both cytoplasm and nucleus. Overexpression of OFP1 led to enlarged leaf angles, reduced plant height, and altered grain shape, largely resembled DLT overexpression plants. Genetic analysis showed that the regulation of plant architecture by OFP1 depends on DLT function. In addition, we found OFP1 was greatly induced by BR treatment, and OsBZR1, the critical transcription factor of BR signaling, was physically associated with the OFP1 promoter. Moreover, we showed that gibberellin synthesis was greatly repressed in OFP1 overexpression plants, suggesting OFP1 participates in the inhibition of plant growth by high BR or elevated BR signaling. Furthermore, we revealed that OFP1 directly interacts with GSK2 kinase, and inhibition of the kinase activity significantly promotes OFP1 protein accumulation in plant. Taken together, we identified OFP1 as an additional regulator of BR responses and revealed how BRs promote OFP1 at both transcription and protein levels to modulate plant architecture and grain morphology in rice.

  8. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis.

    Science.gov (United States)

    Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L

    2018-05-21

    The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  9. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders

    Directory of Open Access Journals (Sweden)

    Derek W. Stouth

    2017-11-01

    Full Text Available Protein arginine methyltransferases (PRMTs are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD. PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD, spinal muscular atrophy (SMA, and amyotrophic lateral sclerosis (ALS suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs. This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.

  10. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  11. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Data in support of quantitative proteomics to identify potential virulence regulators in Paracoccidioides brasiliensis isolates

    Directory of Open Access Journals (Sweden)

    Alexandre Keiji Tashima

    2015-12-01

    Full Text Available Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM, a systemic mycosis endemic in Latin America. Few virulence factors have been identified in these fungi. This paper describes support data from the quantitative proteomics of Paracoccidioides brasiliensis attenuated and virulent isolates [1]. The protein compositions of two isolates of the Pb18 strain showing distinct infection profiles were quantitatively assessed by stable isotopic dimethyl labeling and proteomic analysis. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with identifier PXD000804.

  13. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  14. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    Science.gov (United States)

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-02

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Ivan Verrastro

    2015-04-01

    Full Text Available Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.

  16. A feedback framework for protein inference with peptides identified from tandem mass spectra

    Directory of Open Access Journals (Sweden)

    Shi Jinhong

    2012-11-01

    Full Text Available Abstract Background Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship. Results In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet. Conclusions The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.

  17. vProtein: identifying optimal amino acid complements from plant-based foods.

    Directory of Open Access Journals (Sweden)

    Peter J Woolf

    Full Text Available BACKGROUND: Indispensible amino acids (IAAs are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS: vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS: For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online

  18. Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer.

    Science.gov (United States)

    Giamas, Georgios; Filipović, Aleksandra; Jacob, Jimmy; Messier, Walter; Zhang, Hua; Yang, Dongyun; Zhang, Wu; Shifa, Belul Assefa; Photiou, Andrew; Tralau-Stewart, Cathy; Castellano, Leandro; Green, Andrew R; Coombes, R Charles; Ellis, Ian O; Ali, Simak; Lenz, Heinz-Josef; Stebbing, Justin

    2011-06-01

    Therapies targeting estrogen receptor α (ERα, encoded by ESR1) have transformed the treatment of breast cancer. However, large numbers of women relapse, highlighting the need for the discovery of new regulatory targets modulating ERα pathways. An siRNA screen identified kinases whose silencing alters the estrogen response including those previously implicated in regulating ERα activity (such as mitogen-activated protein kinase and AKT). Among the most potent regulators was lemur tyrosine kinase-3 (LMTK3), for which a role has not previously been assigned. In contrast to other modulators of ERα activity, LMTK3 seems to have been subject to Darwinian positive selection, a noteworthy result given the unique susceptibility of humans to ERα+ breast cancer. LMTK3 acts by decreasing the activity of protein kinase C (PKC) and the phosphorylation of AKT (Ser473), thereby increasing binding of forkhead box O3 (FOXO3) to the ESR1 promoter. LMTK3 phosphorylated ERα, protecting it from proteasomal degradation in vitro. Silencing of LMTK3 reduced tumor volume in an orthotopic mouse model and abrogated proliferation of ERα+ but not ERα- cells, indicative of its role in ERα activity. In human cancers, LMTK3 abundance and intronic polymorphisms were significantly associated with disease-free and overall survival and predicted response to endocrine therapies. These findings yield insights into the natural history of breast cancer in humans and reveal LMTK3 as a new therapeutic target.

  19. Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F).

    Science.gov (United States)

    Bonilla, Martha L; Todd, Christopher; Erlandson, Martin; Andres, Jose

    2015-12-22

    Seminal fluid proteins control many aspects of fertilization and in turn, they play a key role in post-mating sexual selection and possibly reproductive isolation. Because effective proteome profiling relies on the availability of high-quality DNA reference databases, our knowledge of these proteins is still largely limited to model organisms with ample genetic resources. New advances in sequencing technology allow for the rapid characterization of transcriptomes at low cost. By combining high throughput RNA-seq and shotgun proteomic profiling, we have characterized the seminal fluid proteins secreted by the primary male accessory gland of the migratory grasshopper (Melanoplus sanguinipes), one of the main agricultural pests in central North America. Using RNA sequencing, we characterized the transcripts of ~ 8,100 genes expressed in the long hyaline tubules (LHT) of the accessory glands. Proteomic profiling identified 353 proteins expressed in the long hyaline tubules (LHT). Of special interest are seminal fluid proteins (SFPs), such as EJAC-SP, ACE and prostaglandin synthetases, which are known to regulate female oviposition in insects. Our study provides new insights into the proteomic components of male ejaculate in Orthopterans, and highlights several important patterns. First, the presence of proteins that lack predicted classical secretory tags in accessory gland proteomes is common in male accessory glands. Second, the products of a few highly expressed genes dominate the accessory gland secretions. Third, accessory gland transcriptomes are enriched for novel transcripts. Fourth, there is conservation of SFPs' functional classes across distantly related taxonomic groups with very different life histories, mating systems and sperm transferring mechanisms. The identified SFPs may serve as targets of future efforts to develop species- specific genetic control strategies.

  20. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  1. Shoc2/Sur8 protein regulates neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Gonzalo Leon

    Full Text Available The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.

  2. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  3. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  4. The cell cycle regulator CCDC6 is a key target of RNA-binding protein EWS.

    Directory of Open Access Journals (Sweden)

    Sujitha Duggimpudi

    Full Text Available Genetic translocation of EWSR1 to ETS transcription factor coding region is considered as primary cause for Ewing sarcoma. Previous studies focused on the biology of chimeric transcription factors formed due to this translocation. However, the physiological consequences of heterozygous EWSR1 loss in these tumors have largely remained elusive. Previously, we have identified various mRNAs bound to EWS using PAR-CLIP. In this study, we demonstrate CCDC6, a known cell cycle regulator protein, as a novel target regulated by EWS. siRNA mediated down regulation of EWS caused an elevated apoptosis in cells in a CCDC6-dependant manner. This effect was rescued upon re-expression of CCDC6. This study provides evidence for a novel functional link through which wild-type EWS operates in a target-dependant manner in Ewing sarcoma.

  5. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  6. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  7. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  8. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    Science.gov (United States)

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. G Protein-coupled Receptors and Resistance to Inhibitors of Cholinesterase-8A (Ric-8A) Both Regulate the Regulator of G Protein Signaling 14 (RGS14)·Gαi1 Complex in Live Cells*

    OpenAIRE

    Vellano, Christopher P.; Maher, Ellen M.; Hepler, John R.; Blumer, Joe B.

    2011-01-01

    Background: Regulator of G protein signaling 14 (RGS14) is a G protein regulatory (GPR) protein that participates in unconventional G protein signaling independent of G protein-coupled receptors (GPCRs).

  10. Regulation and Selectivity of Exchange Factors for G-proteins of the Ras-family

    NARCIS (Netherlands)

    Popovic, M.

    2013-01-01

    Small G-proteins are important regulators of the cellular signaling pathways. Among them, members of the Ras family of small G-proteins regulate processes such as cell differentiation, growth, migration, transport and adhesion, and their deregulation may lead to various diseases. Small G-proteins

  11. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  12. Leucocyte protein Trojan, a possible regulator of apoptosis.

    Science.gov (United States)

    Petrov, Petar; Syrjänen, Riikka; Uchida, Tatsuya; Vainio, Olli

    2017-02-01

    Trojan is a leucocyte-specific protein, cloned from chicken embryonic thymocyte cDNA library. The molecule is a type I transmembrane protein with an extracellular CCP domain, followed by two FN3 domains. Its cytoplasmic tail is predicted to possess a MAPK docking and a PKA phosphorylation sites. Trojan has been proposed to have an anti-apoptotic role based on its differential expression on developing thymocyte subpopulations. Using a chicken cell line, our in vitro studies showed that upon apoptosis induction, Trojan expression rises dramatically on the surface of surviving cells and gradually decreases towards its normal levels as cells recover. When sorted based on their expression levels of Trojan, cells with high expression appeared less susceptible to apoptotic induction than those bearing no or low levels of Trojan on their surface. The mechanism by which the molecule exerts its function is yet to be discovered. We found that cells overexpressing Trojan from a cDNA plasmid show elevated steady-state levels of intracellular calcium, suggesting the molecule is able to transmit cytoplasmic signals. The mechanistic nature of Trojan-induced signalling is a target of future investigation. In this article, we conducted a series of experiments that suggest Trojan as an anti-apoptotic regulator. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  13. EBF proteins participate in transcriptional regulation of Xenopus muscle development.

    Science.gov (United States)

    Green, Yangsook Song; Vetter, Monica L

    2011-10-01

    EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Janse, Chris J; van Gemert, Geert-Jan

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature...... whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed...... three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may...

  15. Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis.

    Science.gov (United States)

    Bruneau, J M; Magnin, T; Tagat, E; Legrand, R; Bernard, M; Diaquin, M; Fudali, C; Latgé, J P

    2001-08-01

    Previous studies in Aspergillus fumigatus (Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P, J. Biol. Chem. 2000, 275, 14882-14889) have shown that a glucanosyltransferase playing an important role in fungal cell wall biosynthesis is glycosylphosphatidylinositol (GPI) anchored to the membrane. To identify other GPI-anchored proteins putatively involved in cell wall biogenesis, a proteomic analysis has been undertaken in A. fumigatus and the protein data were matched with the yeast genomic data. GPI-anchored proteins of A. fumigatus were released from membrane preparation by an endogenous GPI-phospholipase C, purified by liquid chromatography and separated by two-dimensional electrophoresis. They were characterized by their peptide mass fingerprint through matrix-assisted laser desorption/ionization-time of flight-(MALDI-TOF)-mass spectrometry and by internal amino acid sequencing. Nine GPI-anchored proteins were identified in A. fumigatus. Five of them were homologs of putatively GPI-anchored yeast proteins (Csa1p, Crh1p, Crh2p, Ecm33p, Gas1p) of unknown function but shown by gene disruption analysis to play a role in cell wall morphogenesis. In addition, a comparative study performed with chitin synthase and glucanosyl transferase mutants of A. fumigatus showed that a modification of the growth phenotype seen in these mutants was associated to an alteration of the pattern of GPI-anchored proteins. These results suggest that GPI-anchored proteins identified in this study are involved in A. fumigatus cell wall organization.

  16. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  17. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes

    Science.gov (United States)

    Trinkle-Mulcahy, Laura; Boulon, Séverine; Lam, Yun Wah; Urcia, Roby; Boisvert, François-Michel; Vandermoere, Franck; Morrice, Nick A.; Swift, Sam; Rothbauer, Ulrich; Leonhardt, Heinrich; Lamond, Angus

    2008-01-01

    The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments. PMID:18936248

  18. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands.

    Science.gov (United States)

    DeMartini, Daniel G; Errico, John M; Sjoestroem, Sebastian; Fenster, April; Waite, J Herbert

    2017-06-01

    The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion. © 2017 The Author(s).

  19. Hidden Markov model approach for identifying the modular framework of the protein backbone.

    Science.gov (United States)

    Camproux, A C; Tuffery, P; Chevrolat, J P; Boisvieux, J F; Hazout, S

    1999-12-01

    The hidden Markov model (HMM) was used to identify recurrent short 3D structural building blocks (SBBs) describing protein backbones, independently of any a priori knowledge. Polypeptide chains are decomposed into a series of short segments defined by their inter-alpha-carbon distances. Basically, the model takes into account the sequentiality of the observed segments and assumes that each one corresponds to one of several possible SBBs. Fitting the model to a database of non-redundant proteins allowed us to decode proteins in terms of 12 distinct SBBs with different roles in protein structure. Some SBBs correspond to classical regular secondary structures. Others correspond to a significant subdivision of their bounding regions previously considered to be a single pattern. The major contribution of the HMM is that this model implicitly takes into account the sequential connections between SBBs and thus describes the most probable pathways by which the blocks are connected to form the framework of the protein structures. Validation of the SBBs code was performed by extracting SBB series repeated in recoding proteins and examining their structural similarities. Preliminary results on the sequence specificity of SBBs suggest promising perspectives for the prediction of SBBs or series of SBBs from the protein sequences.

  20. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    Science.gov (United States)

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  1. Amyloid Precursor Protein Translation Is Regulated by a 3'UTR Guanine Quadruplex.

    Directory of Open Access Journals (Sweden)

    Ezekiel Crenshaw

    Full Text Available A central event in Alzheimer's disease is the accumulation of amyloid β (Aβ peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP. APP overexpression leads to increased Aβ generation and Alzheimer's disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes, non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3'UTR (untranslated region at residues 3008-3027 (NM_201414.2. This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3'UTR G-quadruplex as a novel mechanism regulating APP expression.

  2. Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence.

    Directory of Open Access Journals (Sweden)

    Lior Lobel

    2012-09-01

    Full Text Available Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs, as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence.

  3. The regulated synthesis of a Bacillus anthracis spore coat protein that affects spore surface properties.

    Science.gov (United States)

    Aronson, A; Goodman, B; Smith, Z

    2014-05-01

    Examine the regulation of a spore coat protein and the effects on spore properties. A c. 23 kDa band in coat/exosporial extracts of Bacillus anthracis Sterne spores varied in amount depending upon the conditions of sporulation. It was identified by MALDI as a likely orthologue of ExsB of Bacillus cereus. Little if any was present in an exosporial preparation with a location to the inner coat/cortex region established by spore fractionation and immunogold labelling of electron micrograph sections. Because of its predominant location in the inner coat, it has been renamed Cotγ. It was relatively deficient in spores produced at 37°C and when acidic fermentation products were produced a difference attributable to transcriptional regulation. The deficiency or absence of Cotγ resulted in a less robust exosporium positioned more closely to the coat. These spores were less hydrophobic and germinated somewhat more rapidly. Hydrophobicity and appearance were rescued in the deletion strain by introduction of the cotγ gene. The deficiency or lack of a protein largely found in the inner coat altered spore hydrophobicity and surface appearance. The regulated synthesis of Cotγ may be a paradigm for other spore coat proteins with unknown functions that modulate spore properties in response to environmental conditions. © 2014 The Society for Applied Microbiology.

  4. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  5. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  6. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  7. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication.

    Directory of Open Access Journals (Sweden)

    Nina Peel

    2017-01-01

    Full Text Available In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle.

  8. Regulation of Fanconi anemia protein FANCD2 monoubiquitination by miR-302

    International Nuclear Information System (INIS)

    Suresh, Bharathi; Kumar, A. Madhan; Jeong, Hoe-Su; Cho, Youl-Hee; Ramakrishna, Suresh; Kim, Kye-Seong

    2015-01-01

    Fanconi anemia (FA) is a recessively inherited multigene disease characterized by congenital defects, progressive bone marrow failure, and heightened cancer susceptibility. Monoubiquitination of the FA pathway member FANCD2 contributes to the repair of replication stalling DNA lesions. However, cellular regulation of FANCD2 monoubiquitination remains poorly understood. In the present study, we identified the miR-302 cluster as a potential regulator of FANCD2 by bioinformatics analysis. MicroRNAs (miRNAs) are the major posttranscriptional regulators of a wide variety of biological processes, and have been implicated in a number of diseases. Expression of the exogenous miR-302 cluster (without miR-367) reduced FANCD2 monoubiquitination and nuclear foci formation. Furthermore, miR-302 cells showed extensive chromosomal breakage upon MMC treatment when compared to mock control cells. Taken together, our results suggest that overexpression of miR-302 plays a critical role in the regulation of FANCD2 monoubiquitination, resulting in characteristic defects in DNA repair within cells. - Highlights: • miR-302 binds to the 3′UTR promoter of the FANCD2 gene to regulate gene expression. • miR-302 cluster down-regulates FANCD2 protein expression. • miR-302 cluster reduces FANCD2 monoubiquitination and nuclear foci formation. • miR-302 exhibits the characteristic defects in DNA repair in cells.

  9. Regulation of Fanconi anemia protein FANCD2 monoubiquitination by miR-302

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, Bharathi [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); College of Medicine, Hanyang University, Seoul (Korea, Republic of); Kumar, A. Madhan [Center of Research Excellence in Corrosion, Research Institute King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Jeong, Hoe-Su [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Cho, Youl-Hee [College of Medicine, Hanyang University, Seoul (Korea, Republic of); Ramakrishna, Suresh, E-mail: suresh.ramakris@gmail.com [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); College of Medicine, Hanyang University, Seoul (Korea, Republic of); Kim, Kye-Seong, E-mail: ks66kim@hanyang.ac.kr [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2015-10-16

    Fanconi anemia (FA) is a recessively inherited multigene disease characterized by congenital defects, progressive bone marrow failure, and heightened cancer susceptibility. Monoubiquitination of the FA pathway member FANCD2 contributes to the repair of replication stalling DNA lesions. However, cellular regulation of FANCD2 monoubiquitination remains poorly understood. In the present study, we identified the miR-302 cluster as a potential regulator of FANCD2 by bioinformatics analysis. MicroRNAs (miRNAs) are the major posttranscriptional regulators of a wide variety of biological processes, and have been implicated in a number of diseases. Expression of the exogenous miR-302 cluster (without miR-367) reduced FANCD2 monoubiquitination and nuclear foci formation. Furthermore, miR-302 cells showed extensive chromosomal breakage upon MMC treatment when compared to mock control cells. Taken together, our results suggest that overexpression of miR-302 plays a critical role in the regulation of FANCD2 monoubiquitination, resulting in characteristic defects in DNA repair within cells. - Highlights: • miR-302 binds to the 3′UTR promoter of the FANCD2 gene to regulate gene expression. • miR-302 cluster down-regulates FANCD2 protein expression. • miR-302 cluster reduces FANCD2 monoubiquitination and nuclear foci formation. • miR-302 exhibits the characteristic defects in DNA repair in cells.

  10. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation.

    Science.gov (United States)

    Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael

    2007-02-01

    The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.

  11. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  12. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6.

    Science.gov (United States)

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.

  13. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.

    Directory of Open Access Journals (Sweden)

    Matt eGeisler

    2015-06-01

    Full Text Available Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6,004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

  14. Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis

    OpenAIRE

    Yu, Xiaofei; Li, Li; Li, Lei; Guo, Michelle; Chory, Joanne; Yin, Yanhai

    2008-01-01

    Plant steroid hormones, brassinosteroids (BRs), are of great importance for plant growth and development. BRs signal through a cell surface receptor kinase, BRI1, and a GSK3-like kinase, BIN2, to regulate the BES1/BZR1 family of transcription factors, which directly bind to target gene promoters to activate or repress gene expression and mediate BR responses. To understand how BES1 regulates target gene expression, we identified two BES1-interacting proteins, ELF6 (early flowering 6) and its ...

  15. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.

    Science.gov (United States)

    Wagle, Neil; Xian, Jun; Shishova, Ekaterina Y; Wei, Jie; Glicksman, Marcie A; Cuny, Gregory D; Stein, Ross L; Cohen, David E

    2008-12-01

    Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.

  16. A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion

    Science.gov (United States)

    Toret, Christopher P.; D’Ambrosio, Michael V.; Vale, Ronald D.; Simon, Michael A.

    2014-01-01

    Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling. PMID:24446484

  17. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    Directory of Open Access Journals (Sweden)

    Chih-Yuan eChiang

    2015-07-01

    Full Text Available Burkholderia is a diverse genus of Gram-negative bacteria that cause high mortality rate in humans and cattle. The lack of effective therapeutic treatments poses serious public health threats. Insights toward host-Burkholderia spp. interaction are critical in understanding the pathogenesis of the infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray (RPMA technology was previously proven to characterize novel biomarkers and molecular signatures associated with infectious diseases and cancers. In the present study, this technology was utilized to interrogate changes in host protein expression and post-translational phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections and of which eight proteins were selected for further validation by immunoblotting. Kinetic expression patterns of phosphorylated AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune responses. Modulating inflammatory responses by perturbing AMPK-α1, Src, and GSK3β activities may provide novel therapeutic targets for future treatments.

  18. A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.

    Science.gov (United States)

    Hendrischk, Anne-Kathrin; Frühwirth, Sebastian Walter; Moldt, Julia; Pokorny, Richard; Metz, Sebastian; Kaiser, Gebhard; Jäger, Andreas; Batschauer, Alfred; Klug, Gabriele

    2009-11-01

    Blue light receptors belonging to the cryptochrome/photolyase family are found in all kingdoms of life. The functions of photolyases in repair of UV-damaged DNA as well as of cryptochromes in the light-dependent regulation of photomorphogenetic processes and in the circadian clock in plants and animals are well analysed. In prokaryotes, the only role of members of this protein family that could be demonstrated is DNA repair. Recently, we identified a gene for a cryptochrome-like protein (CryB) in the alpha-proteobacterium Rhodobacter sphaeroides. The protein lacks the typical C-terminal extension of cryptochromes, and is not related to the Cry DASH family. Here we demonstrate that CryB binds flavin adenine dinucleotide that can be photoreduced by blue light. CryB binds single-stranded DNA with very high affinity (K(d) approximately 10(-8) M) but double-stranded DNA and single-stranded RNA with far lower affinity (K(d) approximately 10(-6) M). Despite of that, no in vitro repair activity for pyrimidine dimers in single-stranded DNA could be detected. However, we show that CryB clearly affects the expression of genes for pigment-binding proteins and consequently the amount of photosynthetic complexes in R. sphaeroides. Thus, for the first time a role of a bacterial cryptochrome in gene regulation together with a biological function is demonstrated.

  19. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    Science.gov (United States)

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  20. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    Directory of Open Access Journals (Sweden)

    Hideharu Domoto

    Full Text Available Saturation diving (SD is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw. The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  1. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    Science.gov (United States)

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

  2. A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.

    Science.gov (United States)

    Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi

    2017-07-12

    Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics

  3. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  4. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  5. Maize MeJA-responsive proteins identified by high-resolution 2-DE PAGE

    Directory of Open Access Journals (Sweden)

    Yuliang Zhang

    2015-12-01

    Full Text Available Exogenous methyl jasmonate (MeJA is well-known to induce plant defense mechanisms effective against a wide variety of insect and microbial pests. High-resolution 2-DE gel electrophoresis was used to discover changes in the leaf proteome of maize exposed to MeJA. We sequenced 62 MeJA-responsive proteins by tandem mass spectroscopy, and deposited the mass spectra and identities in the EMBL-EBI PRIDE repository under reference number PXD001793. An analysis and discussion of the identified proteins in relation to maize defense against Asian corn borer is published by Zhang et al. (2015 [1].

  6. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Pflieger, Delphine; Hirt, Heribert

    2014-01-01

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  7. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  8. Regulation of hematopoietic cell function by protein tyrosine kinase-encoding oncogenes, a review

    NARCIS (Netherlands)

    Punt, C. J.

    1992-01-01

    Tyrosine phosphorylation of proteins by protein tyrosine kinases (PTKs) is an important mechanism in the regulation of various cellular processes such as proliferation, differentiation, and transformation. Accumulating data implicate PTKs as essential intermediates in the transduction of

  9. Regional Differences of Proteins Expressing in Adipose Depots Isolated from Cows, Steers and Bulls as Identified by a Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Jin Hyoung Cho

    2016-08-01

    Full Text Available Adipose tissue in the loin muscle area of beef cattle as a marbling factor is directly associated with beef quality. To elucidate whether properties of proteins involved in depot specific adipose tissue were sex-dependent, we analyzed protein expression of intramuscular adipose tissue (IMAT and omental adipose tissue (OMAT from Hanwoo cows, steers, and bulls of Korean native beef cattle by liquid chromatography-tandem mass spectrometry (LC-MS/MS–based proteomic analysis, quantitative polymerase chain reaction (PCR and western blot analysis. Two different adipose depots (i.e. intramuscular and omental were collected from cows (n = 7, steers (n = 7, or bulls (n = 7. LC-MS/MS revealed a total of 55 and 35 proteins in IMAT and OMAT, respectively. Of the 55 proteins identified, 44, 40, and 42 proteins were confirmed to be differentially expressed in IMAT of cows, steers, and bulls, respectively. In OMAT of cows, steers, and bulls, 33, 33, and 22 were confirmed to be differentially expressed, respectively. Tropomyosin (TPM 1, TPM 2, and TPM3 were subjected to verification by quantitative PCR and western blot analysis in IMAT and OMAT of Hanwoo cows, steers, and bulls as key factors closely associated with muscle development. Both mRNA levels and protein levels of TPM1, TPM2, and TPM3 in IMAT were lower in bulls compared to in cows or steers suggesting that they were positively correlated with marbling score and quality grade. Our results may aid the regulation of marbling development and improvement of meat quality grades in beef cattle.

  10. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase

  11. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  12. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Anamitra

    2007-06-01

    Full Text Available Abstract Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1 enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of

  13. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    Science.gov (United States)

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  14. Analysis of the Yeast Kinome Reveals a Network of Regulated Protein Localization during Filamentous Growth

    OpenAIRE

    Bharucha, Nikë; Ma, Jun; Dobry, Craig J.; Lawson, Sarah K.; Yang, Zhifen; Kumar, Anuj

    2008-01-01

    The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling m...

  15. Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma.

    Directory of Open Access Journals (Sweden)

    Biaoyang Lin

    Full Text Available BACKGROUND: A comprehensive network-based understanding of molecular pathways abnormally altered in glioblastoma multiforme (GBM is essential for developing effective therapeutic approaches for this deadly disease. METHODOLOGY/PRINCIPAL FINDINGS: Applying a next generation sequencing technology, massively parallel signature sequencing (MPSS, we identified a total of 4535 genes that are differentially expressed between normal brain and GBM tissue. The expression changes of three up-regulated genes, CHI3L1, CHI3L2, and FOXM1, and two down-regulated genes, neurogranin and L1CAM, were confirmed by quantitative PCR. Pathway analysis revealed that TGF- beta pathway related genes were significantly up-regulated in GBM tumor samples. An integrative pathway analysis of the TGF beta signaling network identified two alternative TGF-beta signaling pathways mediated by SOX4 (sex determining region Y-box 4 and TGFBI (Transforming growth factor beta induced. Quantitative RT-PCR and immunohistochemistry staining demonstrated that SOX4 and TGFBI expression is elevated in GBM tissues compared with normal brain tissues at both the RNA and protein levels. In vitro functional studies confirmed that TGFBI and SOX4 expression is increased by TGF-beta stimulation and decreased by a specific inhibitor of TGF-beta receptor 1 kinase. CONCLUSIONS/SIGNIFICANCE: Our MPSS database for GBM and normal brain tissues provides a useful resource for the scientific community. The identification of non-SMAD mediated TGF-beta signaling pathways acting through SOX4 and TGFBI (GENE ID:7045 in GBM indicates that these alternative pathways should be considered, in addition to the canonical SMAD mediated pathway, in the development of new therapeutic strategies targeting TGF-beta signaling in GBM. Finally, the construction of an extended TGF-beta signaling network with overlaid gene expression changes between GBM and normal brain extends our understanding of the biology of GBM.

  16. Identifying the adaptive mechanism in globular proteins: Fluctuations in densely packed regions manipulate flexible parts

    Science.gov (United States)

    Yilmaz, Lutfu Safak; Atilgan, Ali Rana

    2000-09-01

    A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.

  17. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pandey, Aarti; Chakraborty, Subhra; Datta, Asis; Chakraborty, Niranjan

    2008-01-01

    Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuable information about the underlying pathways involved in environmental stress responses. The nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. To gain a better understanding of dehydration response in plants, we have developed a comparative nuclear proteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water and the changes in the nuclear proteome were examined using two-dimensional gel electrophoresis. Approximately 205 protein spots were found to be differentially regulated under dehydration. Mass spectrometry analysis allowed the identification of 147 differentially expressed proteins, presumably involved in a variety of functions including gene transcription and replication, molecular chaperones, cell signaling, and chromatin remodeling. The dehydration responsive nuclear proteome of chickpea revealed a coordinated response, which involves both the regulatory as well as the functional proteins. This study, for the first time, provides an insight into the complex metabolic network operating in the nucleus during dehydration.

  18. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis

    DEFF Research Database (Denmark)

    Leon, Ileana R; Schwämmle, Veit; Jensen, Ole N

    2013-01-01

    a combination of qualitative and quantitative LC-MS/MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein...... conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents prior to analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative LC-MS/MS workflow quantified over 3700 distinct peptides with 96% completeness between all...... protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows...

  19. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing...... interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330...

  20. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.

    Science.gov (United States)

    Mazalouskas, Matthew D; Godoy-Ruiz, Raquel; Weber, David J; Zimmer, Danna B; Honkanen, Richard E; Wadzinski, Brian E

    2014-02-14

    Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.

  1. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    Science.gov (United States)

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and

  2. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Ková cs, Krisztiá n A.; Steinmann, Myriam; Halfon, Olivier; Magistretti, Pierre J.; Cardinaux, Jean René

    2015-01-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  3. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    Science.gov (United States)

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  4. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  5. Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kajal Gupta

    2010-11-01

    Full Text Available C-di-GMP, a bacterial second messenger plays a key role in survival and adaptation of bacteria under different environmental conditions. The level of c-di-GMP is regulated by two opposing activities, namely diguanylate cyclase (DGC and phosphodiesterase (PDE-A exhibited by GGDEF and EAL domain, respectively in the same protein. Previously, we reported a bifunctional GGDEF-EAL domain protein, MSDGC-1 from Mycobacterium smegmatis showing both these activities (Kumar and Chatterji, 2008. In this current report, we have identified and characterized the homologous protein from Mycobacterium tuberculosis (Rv 1354c named as MtbDGC. MtbDGC is also a bifunctional protein, which can synthesize and degrade c-di-GMP in vitro. Further we expressed Mtbdgc in M. smegmatis and it was able to complement the MSDGC-1 knock out strain by restoring the long term survival of M. smegmatis. Another protein Rv 1357c, named as MtbPDE, is an EAL domain protein and degrades c-di-GMP to pGpG in vitro. Rv1354c and 1357c have seven cysteine amino acids in their sequence, distributed along the full length of the protein. Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. By proteolytic digestion and mass spectrometric analysis of MtbDGC, connectivity between cysteine pairs Cys94-Cys584, Cys2-Cys479 and Cys429-Cys614 was determined, whereas the third cysteine (Cys406 from N terminal was found to be free in MtbDGC protein, which was further confirmed by alkylation with iodoacetamide labeling. Bioinformatics modeling investigations also supported the pattern of disulfide connectivity obtained by Mass spectrometric analysis. Cys406 was mutated to serine by site directed mutagenesis and the mutant MtbC406S was not found to be active and was not able to synthesize or degrade c-di-GMP. The disulfide connectivity established here would help further in understanding the structure - function relationship in MtbDGC.

  6. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  7. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling.

    Directory of Open Access Journals (Sweden)

    Philip M Tan

    2017-11-01

    Full Text Available Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search.

  8. The effects of calcium regulation of endosperm reserve protein ...

    African Journals Online (AJOL)

    The effects of steep liquor calcium ion on sorghum endosperm reserve protein mobilization were evaluated using two improved Nigeria sorghum cultivars (ICSV 400 and KSV 8). The key protein modification factors evaluated were free amino nitrogen (FAN), total non protein nitrogen (TNPN) and soluble protein of cold water ...

  9. Regulation of PCNA-protein interactions for genome stability

    DEFF Research Database (Denmark)

    Mailand, Niels; Gibbs-Seymour, Ian; Bekker-Jensen, Simon

    2013-01-01

    Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding...

  10. Identifying Key Proteins in Hg Methylation Pathways of Desulfovibrio by Global Proteomics, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States). Dept. of Microbiology; Miller, Susan M. [Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry; Wall, Judy [Univ. of Missouri, Columbia, MO (United States). Dept. of Biochemistry; Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-18

    Elemental mercury, Hg(0) is a contaminant at many DOE sites, especially at Oak Ridge National Laboratory (ORNL) where the spread of spilled Hg and its effects on microbial populations have been monitored for decades. To explore the microbial interactions with Hg, we have devised a global proteomic approach capable of directly detecting Hg-adducts of proteins. This technique developed in the facultative anaerobe, Escherichia coli, allows us to identify the proteins most vulnerable to acute exposure to organomercurials phenyl- and ethyl-mercury (as surrogates for the highly neurotoxic methyl-Hg) (Polacco, et al, 2011). We have found >300 such proteins in all metabolic functional groups and cellular compartments; most are highly conserved and can serve as markers for acute Hg exposure (Zink, et al. 2016, in preparation). We have also discovered that acute Hg exposure severely disrupts thiol, iron and redox homeostases, and electrolyte balance (LaVoie, et al., 2015) Thus, we proposed to bring these techniques to bear on the central problem of identifying the cellular proteins involved in bacterial uptake and methylation of mercury and its release from the cell.

  11. Identify High-Quality Protein Structural Models by Enhanced K-Means.

    Science.gov (United States)

    Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.

  12. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    Science.gov (United States)

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  13. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    Science.gov (United States)

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  14. A newly identified protein of Leptospira interrogans mediates binding to laminin.

    Science.gov (United States)

    Longhi, Mariana T; Oliveira, Tatiane R; Romero, Eliete C; Gonçales, Amane P; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2009-10-01

    Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.

  15. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Vladimir López

    2016-03-01

    Full Text Available Mycobacteria of the Mycobacterium tuberculosis complex (MTBC greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB. In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB- and M. bovis-infected young (TB+ and adult animals with different infection status [TB lesions localized in the head (TB+ or affecting multiple organs (TB++]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to

  16. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Science.gov (United States)

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  17. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Wang, Hong X; Konopka, James B

    2013-11-26

    Invasive growth of the fungal pathogen Candida albicans into tissues promotes disseminated infections in humans. The plasma membrane is essential for pathogenesis because this important barrier mediates morphogenesis and invasive growth, as well as secretion of virulence factors, cell wall synthesis, nutrient import, and other processes. Previous studies showed that the Sur7 tetraspan protein that localizes to MCC (membrane compartment occupied by Can1)/eisosome subdomains of the plasma membrane regulates a broad range of key functions, including cell wall synthesis, morphogenesis, and resistance to copper. Therefore, a distinct tetraspan protein found in MCC/eisosomes, Nce102, was investigated. Nce102 belongs to the MARVEL domain protein family, which is implicated in regulating membrane structure and function. Deletion of NCE102 did not cause the broad defects seen in sur7Δ cells. Instead, the nce102Δ mutant displayed a unique phenotype in that it was defective in forming hyphae and invading low concentrations of agar but could invade well in higher agar concentrations. This phenotype was likely due to a defect in actin organization that was observed by phalloidin staining. In support of this, the invasive growth defect of a bni1Δ mutant that mislocalizes actin due to lack of the Bni1 formin was also reversed at high agar concentrations. This suggests that a denser matrix provides a signal that compensates for the actin defects. The nce102Δ mutant displayed decreased virulence and formed abnormal hyphae in mice. These studies identify novel ways that Nce102 and the physical environment surrounding C. albicans regulate morphogenesis and pathogenesis. The plasma membrane promotes virulence of the human fungal pathogen Candida albicans by acting as a protective barrier around the cell and mediating dynamic activities, such as morphogenesis, cell wall synthesis, secretion of virulence factors, and nutrient uptake. To better understand how the plasma membrane

  18. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-01-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with 32 PO 4 , exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ ≅ 100,000 protein and a M/sub r/ ≅ 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ ≅ 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ ≅ 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ ≅ 74,000 (IIIa) and M/sub r/ ≅ 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects

  19. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  20. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules

    International Nuclear Information System (INIS)

    Kuwabara, Hiroko; Yoneda, Masahiko; Hayasaki, Hana; Nakamura, Toshiya; Mori, Hiroshi

    2006-01-01

    The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM

  1. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  2. A genome-wide association study identifies protein quantitative trait loci (pQTLs.

    Directory of Open Access Journals (Sweden)

    David Melzer

    2008-05-01

    Full Text Available There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57, CCL4L1 (p = 3.9x10(-21, IL18 (p = 6.8x10(-13, LPA (p = 4.4x10(-10, GGT1 (p = 1.5x10(-7, SHBG (p = 3.1x10(-7, CRP (p = 6.4x10(-6 and IL1RN (p = 7.3x10(-6 genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R, altered secretion rates of different sized proteins (LPA, variation in gene copy number (CCL4L1 and altered transcription (GGT1. We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha levels (p = 6.8x10(-40, but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis

  3. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    Directory of Open Access Journals (Sweden)

    Yaoming Yang

    2012-06-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of ubiquitin ligases in the clock mechanism. Here we show a role for the rhythmically-expressed deubiquitinating enzyme ubiquitin specific peptidase 2 (USP2 in clock function. Mice with a deletion of the Usp2 gene (Usp2 KO display a longer free-running period of locomotor activity rhythms and altered responses of the clock to light. This was associated with altered expression of clock genes in synchronized Usp2 KO mouse embryonic fibroblasts and increased levels of clock protein PERIOD1 (PER1. USP2 can be coimmunoprecipitated with several clock proteins but directly interacts specifically with PER1 and deubiquitinates it. Interestingly, this deubiquitination does not alter PER1 stability. Taken together, our results identify USP2 as a new core component of the clock machinery and demonstrate a role for deubiquitination in the regulation of the circadian clock, both at the level of the core pacemaker and its response to external cues.

  4. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    Science.gov (United States)

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-01-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.

  5. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  6. Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1.

    Directory of Open Access Journals (Sweden)

    Jiuyi Lu

    Full Text Available Smoothened (Smo mediated Hedgehog (Hh signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1 as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.

  7. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    Science.gov (United States)

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  8. EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum

    Directory of Open Access Journals (Sweden)

    Vandenberg Albert

    2011-06-01

    Full Text Available Abstract Background Colletotrichum truncatum is a haploid, hemibiotrophic, ascomycete fungal pathogen that causes anthracnose disease on many economically important leguminous crops. This pathogen exploits sequential biotrophic- and necrotrophic- infection strategies to colonize the host. Transition from biotrophy to a destructive necrotrophic phase called the biotrophy-necrotrophy switch is critical in symptom development. C. truncatum likely secretes an arsenal of proteins that are implicated in maintaining a compatible interaction with its host. Some of them might be transition specific. Results A directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the biotrophy-necrotrophy switch of C. truncatum and 5000 expressed sequence tags (ESTs with an average read of > 600 bp from the 5-prime end were generated. Nearly 39% of the ESTs were predicted to encode proteins of fungal origin and among these, 162 ESTs were predicted to contain N-terminal signal peptides (SPs in their deduced open reading frames (ORFs. The 162 sequences could be assembled into 122 tentative unigenes comprising 32 contigs and 90 singletons. Sequence analyses of unigenes revealed four potential groups: hydrolases, cell envelope associated proteins (CEAPs, candidate effectors and other proteins. Eleven candidate effector genes were identified based on features common to characterized fungal effectors, i.e. they encode small, soluble (lack of transmembrane domain, cysteine-rich proteins with a putative SP. For a selected subset of CEAPs and candidate effectors, semiquantitative RT-PCR showed that these transcripts were either expressed constitutively in both in vitro and in planta or induced during plant infection. Using potato virus X (PVX based transient expression assays, we showed that one of the candidate effectors, i. e. contig 8 that encodes a cerato-platanin (CP domain containing protein, unlike CP proteins

  9. Identifying biological concepts from a protein-related corpus with a probabilistic topic model

    Directory of Open Access Journals (Sweden)

    Lu Xinghua

    2006-02-01

    Full Text Available Abstract Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text.

  10. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  11. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    Science.gov (United States)

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  12. Characterization of the Raf kinase inhibitory protein (RKIP binding pocket: NMR-based screening identifies small-molecule ligands.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2010-05-01

    Full Text Available Raf kinase inhibitory protein (RKIP, also known as phoshaptidylethanolamine binding protein (PEBP, has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE. In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized.In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity.This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  13. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  14. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits

    NARCIS (Netherlands)

    Jimenez-Sainz, MC; Murga, C; Kavelaars, A; Jurado-Pueyo, M; Krakstad, BF; Heijnen, CJ; Mayor, F; Aragay, AM

    The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells

  15. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E

    2017-01-01

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effec...

  16. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry.

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi

    Full Text Available The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ, a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy.

  17. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  18. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    Science.gov (United States)

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  19. Proteomic Profiling of a Primary CD4+ T Cell Model of HIV-1 Latency Identifies Proteins Whose Differential Expression Correlates with Reactivation of Latent HIV-1.

    Science.gov (United States)

    Saha, Jamaluddin Md; Liu, Hongbing; Hu, Pei-Wen; Nikolai, Bryan C; Wu, Hulin; Miao, Hongyu; Rice, Andrew P

    2018-01-01

    The latent HIV-1 reservoir of memory CD4 + T cells that persists during combination antiviral therapy prevents a cure of infection. Insight into mechanisms of latency and viral reactivation are essential for the rational design of strategies to reduce the latent reservoir. In this study, we quantified the levels of >2,600 proteins in the CCL19 primary CD4 + T cell model of HIV-1 latency. We profiled proteins under conditions that promote latent infection and after cells were treated with phorbol 12-myristate 13-acetate (PMA) + ionomycin, which is known to efficiently induce reactivation of latent HIV-1. In an analysis of cells from two healthy blood donors, we identified 61 proteins that were upregulated ≥2-fold, and 36 proteins that were downregulated ≥2-fold under conditions in which latent viruses were reactivated. These differentially expressed proteins are, therefore, candidates for cellular factors that regulate latency or viral reactivation. Two unexpected findings were obtained from the proteomic data: (1) the interactions among the majority of upregulated proteins are largely undetermined in published protein-protein interaction networks and (2) downregulated proteins are strongly associated with Gene Ontology terms related to mitochondrial protein synthesis. This proteomic data set provides a useful resource for future mechanistic studies of HIV-1 latency.

  20. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases.

    Science.gov (United States)

    Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong

    2015-05-09

    Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting

  1. Regulation of protein quality control by UBE4B and LSD1 through p53-mediated transcription.

    Directory of Open Access Journals (Sweden)

    Goran Periz

    2015-04-01

    Full Text Available Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B and lysine-specific demethylase 1 (LSD1, respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy.

  2. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  3. Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility.

    Science.gov (United States)

    Chintalapudi, Sumana R; Maria, Doaa; Di Wang, Xiang; Bailey, Jessica N Cooke; Hysi, Pirro G; Wiggs, Janey L; Williams, Robert W; Jablonski, Monica M

    2017-11-24

    Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets.

  4. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  5. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  6. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  7. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Altawashi, Azza

    2012-02-28

    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Regulation of protein homeostasis in neurodegenerative diseases : the role of coding and non-coding genes

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Nollen, Ellen A. A.

    Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding,

  9. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    International Nuclear Information System (INIS)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues

  10. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Daryanaz Dargahi

    Full Text Available BACKGROUND: The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%. Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46 compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344 or fruit fly D. melanogaster (n=84. Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS: This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE: This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.

  11. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    Science.gov (United States)

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  12. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  13. Integrative screening approach identifies regulators of polyploidization and targets for acute megakaryocytic leukemia

    Science.gov (United States)

    Wen, Qiang; Goldenson, Benjamin; Silver, Serena J.; Schenone, Monica; Dancik, Vladimir; Huang, Zan; Wang, Ling-Zhi; Lewis, Timothy; An, W. Frank; Li, Xiaoyu; Bray, Mark-Anthony; Thiollier, Clarisse; Diebold, Lauren; Gilles, Laure; Vokes, Martha S.; Moore, Christopher B.; Bliss-Moreau, Meghan; VerPlank, Lynn; Tolliday, Nicola J.; Mishra, Rama; Vemula, Sasidhar; Shi, Jianjian; Wei, Lei; Kapur, Reuben; Lopez, Cécile K.; Gerby, Bastien; Ballerini, Paola; Pflumio, Francoise; Gilliland, D. Gary; Goldberg, Liat; Birger, Yehudit; Izraeli, Shai; Gamis, Alan S.; Smith, Franklin O.; Woods, William G.; Taub, Jeffrey; Scherer, Christina A.; Bradner, James; Goh, Boon-Cher; Mercher, Thomas; Carpenter, Anne E.; Gould, Robert J.; Clemons, Paul A.; Carr, Steven A.; Root, David E.; Schreiber, Stuart L.; Stern, Andrew M.; Crispino, John D.

    2012-01-01

    Summary The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. We found that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. A broadly applicable, highly integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora A kinase (AURKA), which has not been studied extensively in megakaryocytes. Moreover, we discovered that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in AMKL blasts and displayed potent anti-AMKL activity in vivo. This research provides the rationale to support clinical trials of MLN8237 and other inducers of polyploidization in AMKL. Finally, we have identified five networks of kinases that regulate the switch to polyploidy. PMID:22863010

  14. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases

    Science.gov (United States)

    Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682

  15. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Directory of Open Access Journals (Sweden)

    Kari A Dilley

    Full Text Available Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV, and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV. Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR activation.

  16. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Science.gov (United States)

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  17. Global regulation of gene expression by the MafR protein of Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Sofía eRuiz-Cruz

    2016-01-01

    Full Text Available Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR of E. faecalis strain V583 encodes a protein (MafR, 482 residues that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293. In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence.

  18. Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation

    International Nuclear Information System (INIS)

    Sheng, Xiumei; Wang, Zhengxin

    2016-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of symmetrical dimethylation of arginine residues in proteins. WD repeat domain 77 (WDR77), also known as p44, MEP50, or WD45, forms a stoichiometric complex with PRMT5. The PRMT5/p44 complex is required for cellular proliferation of lung and prostate epithelial cells during earlier stages of development and is re-activated during prostate and lung tumorigenesis. The molecular mechanisms by which PRMT5 and p44 promote cellular proliferation are unknown. Expression of PRMT5 and p44 in lung and prostate cancer cells was silenced and their target genes were identified. The regulation of target genes was validated in various cancer cells during lung development and tumorigenesis. Altered expression of target genes was achieved by ectopic cDNA expression and shRNA-mediated silencing. PRMT5 and p44 regulate expression of a specific set of genes encoding growth and anti-growth factors, including receptor tyrosine kinases and antiproliferative proteins. Genes whose expression was suppressed by PRMT5 and p44 encoded anti-growth factors and inhibited cell growth when ectopically expressed. In contrast, genes whose expression was enhanced by PRMT5 and p44 encoded growth factors and increased cell growth when expressed. Altered expression of target genes is associated with re-activation of PRMT5 and p44 during lung tumorigenesis. Our data provide the molecular basis by which PRMT5 and p44 regulate cell growth and lay a foundation for further investigation of their role in lung tumor initiation. The online version of this article (doi:10.1186/s12885-016-2632-3) contains supplementary material, which is available to authorized users

  19. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2 treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998, Lon proteases (dr0349 and dr1974, NADH-quinone oxidoreductase (dr1506, thiosulfate sulfurtransferase (dr2531, the DNA repair protein UvsE (dr1819, PprA (dra0346, and RecN (dr1447, are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways.

  20. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services

    Directory of Open Access Journals (Sweden)

    Hanspers Kristina

    2010-01-01

    Full Text Available Abstract Background Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services. Results Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications. Conclusion By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org.

  1. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels.

    Science.gov (United States)

    Zhang, Yalan; Brown, Maile R; Hyland, Callen; Chen, Yi; Kronengold, Jack; Fleming, Matthew R; Kohn, Andrea B; Moroz, Leonid L; Kaczmarek, Leonard K

    2012-10-31

    Loss of the RNA-binding protein fragile X mental retardation protein (FMRP) represents the most common form of inherited intellectual disability. Studies with heterologous expression systems indicate that FMRP interacts directly with Slack Na(+)-activated K(+) channels (K(Na)), producing an enhancement of channel activity. We have now used Aplysia bag cell (BC) neurons, which regulate reproductive behaviors, to examine the effects of Slack and FMRP on excitability. FMRP and Slack immunoreactivity were colocalized at the periphery of isolated BC neurons, and the two proteins could be reciprocally coimmunoprecipitated. Intracellular injection of FMRP lacking its mRNA binding domain rapidly induced a biphasic outward current, with an early transient tetrodotoxin-sensitive component followed by a slowly activating sustained component. The properties of this current matched that of the native Slack potassium current, which was identified using an siRNA approach. Addition of FMRP to inside-out patches containing native Aplysia Slack channels increased channel opening and, in current-clamp recordings, produced narrowing of action potentials. Suppression of Slack expression did not alter the ability of BC neurons to undergo a characteristic prolonged discharge in response to synaptic stimulation, but prevented recovery from a prolonged inhibitory period that normally follows the discharge. Recovery from the inhibited period was also inhibited by the protein synthesis inhibitor anisomycin. Our studies indicate that, in BC neurons, Slack channels are required for prolonged changes in neuronal excitability that require new protein synthesis, and raise the possibility that channel-FMRP interactions may link changes in neuronal firing to changes in protein translation.

  2. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    Science.gov (United States)

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  3. Characterization of upstream sequences of the LIM2 gene that bind developmentally regulated and lens-specific proteins

    Institute of Scientific and Technical Information of China (English)

    HSU Heng; Robert L. CHURCH

    2004-01-01

    During lens development, lens epithelial cells differentiate into fiber cells. To date, four major lens fiber cell intrinsic membrane proteins (MIP) ranging in size from 70 kD to 19 kD have been characterized. The second most abundant lens fiber cell intrinsic membrane protein is MP19. This protein probably is involved with lens cell communication and relates with cataractogenesis. The aim of this research is to characterize upstream sequences of the MP19 (also called LIM2) gene that bind developmentally regulated and lens-specific proteins. We have used the gel mobility assays and corresponding competition experiments to identify and characterize cis elements within approximately 500 bases of LIM2 upstream sequences. Our studies locate the positions of some cis elements, including a "CA" repeat, a methylation Hha I island, an FnuD II site, an Ap1 and an Ap2 consensus sequences, and identify some specific cis elements which relate to lens-specific transcription of LIM2. Our experiments also preliminarily identify trans factors which bind to specific cis elements of the LIM2 promoter and/or regulate transcription of LIM2. We conclude that developmental regulation and coordination of the MP 19 gene in ocular lens fiber cells is controlled by the presence of specific cis elements that bind regulatory trans factors that affect LIM2 gene expression. DNA methylation is one mechanism of controlling LIM2 gene expression during lens development.

  4. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.

    Science.gov (United States)

    Hackenberg, Dieter; McKain, Michael R; Lee, Soon Goo; Roy Choudhury, Swarup; McCann, Tyler; Schreier, Spencer; Harkess, Alex; Pires, J Chris; Wong, Gane Ka-Shu; Jez, Joseph M; Kellogg, Elizabeth A; Pandey, Sona

    2017-10-01

    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency

    Directory of Open Access Journals (Sweden)

    Maheswara Reddy Emani

    2015-03-01

    Full Text Available The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency.

  6. The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Pedraz Cuesta, Elena; Olesen, Christina Wilkens

    2016-01-01

    BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify...

  7. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  8. Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator.

    Science.gov (United States)

    Cao, Yi; Li, Hongbin

    2008-08-01

    Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.

  9. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  10. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2008-01-01

    Full Text Available Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.

  11. Expression and Location of Glucose-regulated Protein 78 in Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    W Wang

    2014-04-01

    Full Text Available Objective: To know the role of glucose-regulated protein 78 (GRP78/BiP/HSPA5 in spermatogenesis and its expression and location in the testis and epididymis. Methods: Immunohistochemistry and Western blot were used to detect GRP78 location and expression in the testis and epididymis. Results: Glucose-regulated protein 78 was observed in spermatocytes, round spermatids and interstitial cells of the testis and in principal cells of the epididymis. Glucose-regulated protein 78 was first detected in the rat testis at postnatal day 14. Thereafter, the protein level increased gradually with age and was maintained at a high and stable state after postnatal day 28. In the rat, GRP78 was expressed in the principal cells but not in clear cells of the epididymis. Conclusion: Glucose-regulated protein 78 participates in the process of spermatogenesis.

  12. Coordinated Expression of Borrelia burgdorferi Complement Regulator-Acquiring Surface Proteins during the Lyme Disease Spirochete's Mammal-Tick Infection Cycle▿

    OpenAIRE

    Bykowski, Tomasz; Woodman, Michael E.; Cooley, Anne E.; Brissette, Catherine A.; Brade, Volker; Wallich, Reinhard; Kraiczy, Peter; Stevenson, Brian

    2007-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is largely resistant to being killed by its hosts’ alternative complement activation pathway. One possible resistance mechanism of these bacteria is to coat their surfaces with host complement regulators, such as factor H. Five different B. burgdorferi outer surface proteins having affinities for factor H have been identified: complement regulator-acquiring surface protein 1 (BbCRASP-1), encoded by cspA; BbCRASP-2, encoded by cspZ; and three ...

  13. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  14. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...... body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. Methods Protein turnover was determined by stable isotope-labeled leucine...

  16. The antibacterial protein lysozyme identified as the termite egg recognition pheromone.

    Directory of Open Access Journals (Sweden)

    Kenji Matsuura

    Full Text Available Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus 'termite-ball' and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP, which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence

  17. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  18. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  19. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  20. Small RNA profiling of influenza A virus-infected cells identifies miR-449b as a regulator of histone deacetylase 1 and interferon beta.

    Directory of Open Access Journals (Sweden)

    William A Buggele

    Full Text Available The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling.

  1. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  2. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation.

    Science.gov (United States)

    Currie, Erin; Guo, Xiuling; Christiano, Romain; Chitraju, Chandramohan; Kory, Nora; Harrison, Kenneth; Haas, Joel; Walther, Tobias C; Farese, Robert V

    2014-07-01

    Accurate protein inventories are essential for understanding an organelle's functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.

    2010-02-26

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  4. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.; Damsz, B.; Woloshuk, C. P.; Bressan, R. A.; Narasimhan, Meena L.

    2010-01-01

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  5. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein.

    Science.gov (United States)

    Tayou, Junior; Wang, Qiang; Jang, Geeng-Fu; Pronin, Alexey N; Orlandi, Cesare; Martemyanov, Kirill A; Crabb, John W; Slepak, Vladlen Z

    2016-04-22

    RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  7. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  8. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  9. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.

    Science.gov (United States)

    MacNair, Laura; Xiao, Shangxi; Miletic, Denise; Ghani, Mahdi; Julien, Jean-Pierre; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2016-01-01

    Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model

  10. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    Science.gov (United States)

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  11. Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in Saccharomyces cerevisiae

    Science.gov (United States)

    Cromie, Gareth A.; Tan, Zhihao; Hays, Michelle; Sirr, Amy; Jeffery, Eric W.; Dudley, Aimée M.

    2017-01-01

    Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states. PMID:28673928

  12. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. VMAT2 identified as a regulator of late-stage β-cell differentiation.

    Science.gov (United States)

    Sakano, Daisuke; Shiraki, Nobuaki; Kikawa, Kazuhide; Yamazoe, Taiji; Kataoka, Masateru; Umeda, Kahoko; Araki, Kimi; Mao, Di; Matsumoto, Shirou; Nakagata, Naomi; Andersson, Olov; Stainier, Didier; Endo, Fumio; Kume, Kazuhiko; Uesugi, Motonari; Kume, Shoen

    2014-02-01

    Cell replacement therapy for diabetes mellitus requires cost-effective generation of high-quality, insulin-producing, pancreatic β cells from pluripotent stem cells. Development of this technique has been hampered by a lack of knowledge of the molecular mechanisms underlying β-cell differentiation. The present study identified reserpine and tetrabenazine (TBZ), both vesicular monoamine transporter 2 (VMAT2) inhibitors, as promoters of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Neurog3 (referred to henceforth as Ngn3)-positive endocrine precursors. VMAT2-controlled monoamines, such as dopamine, histamine and serotonin, negatively regulated β-cell differentiation. Reserpine or TBZ acted additively with dibutyryl adenosine 3',5'-cyclic AMP, a cell-permeable cAMP analog, to potentiate differentiation of embryonic stem (ES) cells into β cells that exhibited glucose-stimulated insulin secretion. When ES cell-derived β cells were transplanted into AKITA diabetic mice, the cells reversed hyperglycemia. Our protocol provides a basis for the understanding of β-cell differentiation and its application to a cost-effective production of functional β cells for cell therapy.

  14. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation

    International Nuclear Information System (INIS)

    Jin, S.; Roitsch, T.; Ankenbauer, R.G.; Gordon, M.P.; Nester, E.W.

    1990-01-01

    The virA and virG gene products are required for the regulation of the vir regulon on the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. VirA is a membrane-associated protein which is homologous to the sensor molecules of other two-component regulatory systems. The authors overproduced truncated VirA proteins in Escherichia coli be deleting different lengths of the 5'-coding region of the virA gene and placing these genes under lacZ control. These proteins were purified from polyacrylamide gels and renatured. The renatured proteins became radiolabeled when they were incubated with [γ- 32 P]ATP but not with [γ- 32 P]GTP or [α- 32 P]ATP, which suggests an ATP γ-phosphate-specific autophosphorylation. The smallest VirA protein, which retained only the C-terminal half of the protein, gave the strongest autophosphorylation signal, which demonstrates that the C-terminal domain has the autophosphorylation site. The phosphorylated amino acid was identified as phosphohistidine, and a highly conserved histidine was found in all of the VirA homologs. When this histidine was changed to glutamine, which cannot be phosphorylated, the resulting VirA protein lost both its ability to autophosphorylate and its biological function as a vir gene regulator. Results of this study indicate that VirA autophosphorylation is required for the induction of the vir regulon and subsequent tumor induction on plants by A. tumefaciens

  15. Flotillin-1 is an evolutionary-conserved memory-related protein up-regulated in implicit and explicit learning paradigms.

    Science.gov (United States)

    Monje, Francisco J; Divisch, Isabella; Demit, Marvie; Lubec, Gert; Pollak, Daniela D

    2013-06-01

    Studies of synaptic plasticity using the marine mollusk Aplysia californica as model system have been successfully used to identify proteins involved in learning and memory. The importance of molecular elements regulated by the learning- related neurotransmitter serotonin in Aplysia can then be explored in rodent models and finally tested for their relevance for human physiology and pathology. Herein, 2-DE gel-based electrophoresis has been used to investigate protein level changes after treatment with serotonin in Aplysia abdominal ganglia. Twenty-one proteins have been found to be regulated by serotonin, and protein level changes of actin depolymerizing factor (ADF), deleted in azoospermia associated protein (DAZAP-1), and Flotillin-1 have been verified by Western blotting. Flotillin-1, a member of the flotillin/reggie family of scaffolding proteins, has been previously found to be involved in neuritic branching and synapse formation in hippocampal neurons in vitro. However, its importance for hippocampal- dependent learning and memory in the mouse has not been examined. Here, elevated levels of Flotillin-1 in hippocampal tissue of mice trained in the Morris water maze confirmed the relevance of Flotillin-1 for memory-related processes in a mammalian system. Thus, a translational approach-from invertebrates to rodents-led to the identification of Flotillin-1 as evolutionary-conserved memory-related protein.

  16. Expression of GIMAP1, a GTPase of the immunity-associated protein family, is not up-regulated in malaria

    Directory of Open Access Journals (Sweden)

    Carter Christine

    2009-04-01

    Full Text Available Abstract Background GIMAP (GTPase of the immunity-associated protein family proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. Methods A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. Results GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK, in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. Conclusion The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.

  17. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  18. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  19. The effects of calcium regulation of endosperm reserve protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... on barley endosperm protein mobilization during malting. Although, the site and ... fractionating head of the digesting vigreux column. The digest was ... growth and enormous reductions in malting loss (Ezeogu and Okolo ...

  20. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals

    OpenAIRE

    Treviño-Saldaña, Niria; García-Rivas, Gerardo

    2017-01-01

    Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the developm...

  1. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation.

    Science.gov (United States)

    Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2014-04-25

    The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component sign