WorldWideScience

Sample records for regulate radiation-induced cytogenetic

  1. Radiation-induced malignant tumours: a specific cytogenetic profile?

    International Nuclear Information System (INIS)

    Chauveinc, L.; Gaboriaux, G.; Dutrillaux, A. M.; Dutrillaux, B.; Chauveinc, L.; Ricoul, M.; Sabatier, L.; Dutrillaux, B.

    1997-01-01

    To date, there is no criterion enabling to determine the spontaneous or radio-induced origin of malignant tumour occurring in a previously irradiated patient. Biological studies are rare. The cytogenetic data which could be found in the literature for eleven radio-induced tumours suggest that aneuploidies and polyclonality are frequent events. We studied, by R-Banding cytogenetic technique, five patients with short-term cultures (3 cases), short and long-term cultures (1 case) and xeno-grafting on nude pattern a high rate of balanced translocations, numerous random break points and a polyclonal evolution (10 clones). All other tumours, including the xeno-grafting sarcoma, had a monoclonal profile with complex karyotypes, hypo-diploid formulas and many deletions. These results show that the mechanism of radiation-induced tumours frequently involves chromosomes losses and deletions. The most likely explanation is that these alterations unmask radiation induced recessive mutations of tumour suppressor genes. (authors)

  2. Cytogenetic methods for the detection of radiation-induced chromosome damage in aquatic organisms

    International Nuclear Information System (INIS)

    Kligerman, A.D.

    1979-01-01

    One means of evaluating the genetic effects of radiation on the genomes of aquatic organisms is to screen radiation-exposed cells for chromosome aberrations. A brief literature review of studies dealing with radiation-induced chromosome damage in aquatic organisms is presented, and reasons are given detailing why most previous studies are of little quantitative value. Suggestions are made for obtaining adequate qualitative and quantitative data through the use of modern cytogenetic methods and a model systems approach to the study of cytogenetic radiation damage in aquatic organisms. Detailed procedures for both in vivo and in vitro cytogenetic methods are described, and experimental considerations are discussed. Finally, suggestions for studies that could be of value in establishing protective guidelines for aquatic ecosystems are presented. (author)

  3. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    1999-01-01

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  4. Mild hyperthermia can induce adaptation to cytogenetic damage caused by subsequent X irradiation

    International Nuclear Information System (INIS)

    Cai, Lu.; Jiang, Jie.

    1995-01-01

    Many low-level environmental agents are able to induce an increased resistance to subsequent mutagenic effects induced by ionizing radiation. In this paper, an induced cytogenetic adaptation to radiation in human lymphocytes was studied with mild hyperthermia as the adaptive treatment and compared with that induced by low-dose radiation. We found that this adaptation could be induced not only in PHA-stimulated human lymphocytes (at 14, 38 and 42 h after addition of PHA), but also in unstimulated G 0 -phase cells (before addition of PHA) by mild hyperthermia (41 degrees C for 1 h) as well as 50 mGy X rays. When the two adaptive treatments were combined, no additive effects on the magnitude of the adaptation induced were observed, suggesting that low-dose radiation and hyperthermia may share one mechanism of induction of adaptation to cytogenetic damage. Some mechanisms which may be involved in the induction of adaptation to cytogenetic damage by low-dose radiation are discussed and compared with the effects of mild hyperthermia in inducing thermotolerance and radioresistance. 56 refs., 4 figs., 3 tabs

  5. Comparison between cytogenetic damage induced in human lymphocytes by environmental chemicals or radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cebulska-Wasilewska, A. [Institute of Nuclear Physics, Cracow (Poland)

    1997-12-31

    Author compared cytogenetic effects of chemicals (benzene and the member at benzene related compounds) and ionizing radiation on the human lymphocytes. Levels of various types of cytogenetic damage observed among people from petroleum plants workers groups are similar to the levels of damages detected in the blood of people suspected of the accidental exposure to a radiation source

  6. Comparison between cytogenetic damage induced in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1997-01-01

    Author compared cytogenetic effects of chemicals (benzene and the member at benzene related compounds) and ionizing radiation on the human lymphocytes. Levels of various types of cytogenetic damage observed among people from petroleum plants workers groups are similar to the levels of damages detected in the blood of people suspected of the accidental exposure to a radiation source

  7. Cytogenetic damages induced in vivo in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    The importance of various environmental exposures has been evident in variation in cancer incidence and mortality. Benzene is considered to be a human carcinogen, is clastogenic to rodents and humans, and it affects the immune response. Workers in various industrial plants, are exposed to benzene and benzene related compounds as a result of various activities in which benzene is processed, generated or used. Major sources of environmental exposure to benzene related compounds, continue to be active and passive smoking, auto exhaust, and driving or riding in automobiles. Benzene is of a particular interest, not only because of its known toxicity, but also because this was to be the parent compound and a model for extensive programs of metabolism of a variety of aromatic chemicals. Ionizing radiation is an unavoidable physical agent that is presented in environment, and public opinion is well aware against radiation risk and strongly against it. The aim of the presentation was comparison between cytogenetic damages induced in vivo by environmental chemicals with those of radiation. Results from biomonitoring survey on genotoxicity in human blood cells of benzene and benzene related compounds were compared to damages detected in lymphocytes of persons who had been accidentally exposed to gamma radiation. In the groups, that had been occupationally or environmentally exposed to benzene related compound, total aberration frequencies, or percent of aberrant cells ranged between 0 - 0.16 aberrations/cell or 16% of aberrant cells respectively. A multivariate regression analysis confirmed: (i) a significant association between cytogenetic damage and exposure to benzene related compound, (ii) a possible association between cytogenetic damage and cancer, (iii) a significant influence of smoking habit. In 1996 few persons were suspected of accidental exposure to gamma radiation. To estimate the absorbed doses, lymphocytes from their blood have been analyzed for the presence of

  8. Natural background radiation induces cytogenetic radioadaptive response more effectively than occupational exposure in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Monfared, A.S.; Mozdarani, H.; Amiri, M.

    2003-01-01

    Ramsar, a city in the northern Iran, has the highest level of natural background radiation in the world. It has been clearly shown that low doses of ionising radiation can induce resistance to subsequent higher exposures. This phenomenon is termed radioadaptive response. We have compared induction of cytogenetic radioadaptive response by High Natural Background Radiation (HNBR) in Ramsar and X-ray occupational exposure as conditioning doses in human peripheral blood lymphocytes. 30 healthy control individuals, living in Ramsar but in normal background radiation areas, 15 healthy individuals from Talesh Mahalleh, a region with extraordinary high level of background radiation, and 7 X-ray radiographers working in Ramsar hospital located in normal natural background ionising radiation area were evaluated. Peripheral blood samples were prepared and exposed to challenge dose of 0 and 2 Gy. Lymphocytes were scored using analysis of metaphase, for the presence of chromosomal aberrations. An adaptive response was observed in HNBR and radiation workers groups in comparison with sham controls. A significant increase in adaptive response was observed in the HNBR group if compared with the occupationally exposed group. These findings indicate that both natural background radiation and occupational exposure could induce cytogenetic radioadaptive response and it is more significant regarding to natural background ionising radiation. (author)

  9. Comparative data in the radiation-induced yields of cytogenetic alterations

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1993-01-01

    The need of biological indicators of radiation injuries is growing for various conditions of exposures like external or internal, acute or chronic. The search for such indicators did not result in techniques fulfilling yet all these requirements. So far, the dielectric chromosome aberration analysis can be used as the most reliable assay in radiation accidents. In the recent years several laboratories including ours have initiated research to apply a more simple cytogenetic technique, i.e. the detection of micronuclei in lymphocytes. The fairly consequent dose-effect relationships obtained by several laboratories made the technique rather promising, especially after the modification recommended to recognize interphase cells after their first mitotic divisions. In this presentation dose-effect relationships of formations of various cytogenetic abnormalities are compared with special emphasis on their applicabilities in dose assessments in radiation accidents. Basically, the materials and methods were as published earlier

  10. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced

  11. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    Science.gov (United States)

    George, Kerry

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after irradiation, at least for space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts' blood lymphocytes assessed by FISH painting and collected at various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  12. Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Amrita [Hampton University Skin of Color Research Institute, Hampton, VA 23668 (United States); Katdare, Meena, E-mail: mkatdare@gmail.com [Hampton University Skin of Color Research Institute, Hampton, VA 23668 (United States); Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA 23507 (United States)

    2015-08-14

    Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics.

  13. Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma

    International Nuclear Information System (INIS)

    Dasgupta, Amrita; Katdare, Meena

    2015-01-01

    Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics

  14. State-of-the-art cytogenetic techniques to detect radiation damage induced by low doses bin human lymphocytes

    International Nuclear Information System (INIS)

    Hadjidekova, V.

    2004-01-01

    Cytogenetic techniques are the most sensitive and reliable tools for bio-monitoring and bio-dosimetry of people professionally or accidentally exposed to ionizing radiation. They are applied in addition to the evaluations of the physical dosimetry and they consider the individual radiosensitivity. The main potential risk for humans from exposure to low doses of ionizing radiations is the enhanced incidence of stochastic effects, i.e. carcinogenesis and heritable genetic effects. This report presents a comparative evaluation of the cytogenetic markers for radiation damage of humans and general conclusions of cytogenetic studies of chromosomal aberrations and micronuclei formation in individuals occupationally exposed to action of ionizing radiation. The sensitivity of the methods is compared and their great development and mastering during the last years, as well as the basis of their application - the relation between the frequency of cytogenetic markers observed in lymphocytes in peripheral blood and the risk of malignant disease. The advantages and disadvantages of different cytogenetic techniques are discussed. (author)

  15. Cytogenetic techniques as biological indicator and dosimeter of radiation damage

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Hristova, R.

    2006-01-01

    Full text: The cytogenetic methods are established techniques for bio monitoring and bio dosimetry of professionally and accidentally exposed to ionizing radiation subjects. They are applied to continue the evaluation of the physical dosimetry and to consider the individual radiosensitivity. The results of cytogenetic monitoring and dosimetry of radiation exposed subjects carried out during the last 5 years in laboratory of Radiation Genetics, NCRRP is reported. Laboratory of Radiation genetics performs cytogenetic monitoring of low dose radiation professionally or medically exposed subjects: workers in Kozloduy NPP, radioactive waste repository workers, X-rays diagnostically exposed patients, and radiotherapy exposed as well. Three cytogenetic indicators are applied as the most sensitive indicators for human radiation exposure: analysis of micronuclei (MN), chromosomal aberrations (CA) and stable translocations (FISH). The optimized methodology for application of different cytogenetic techniques for radiation estimation is discussed

  16. Cytogenetic effects induced by radiotherapy of cancer patients

    International Nuclear Information System (INIS)

    Ekhtiar, A.; Al-Achkar, W.

    2008-03-01

    Ionizing radiation plays a key role in the treatment of many neoplasias. But it is well known that ionizing radiation induce wide specter of DNA damages, including SSBs, DSBs, base damage, and DNA-protein cross links. As a consequence, a second tumor may be developed after the primary tumor therapy. Attempts have been made to evaluate the genotoxicity of ionizing radiation in patients undergoing radiotherapy. In the present work, the cytogenetic damage present in peripheral blood lymphocytes of patients (29 donors) treated with fractionated partial-body radiation therapy for Head-and-neck cancer patient was followed before, during and at the end of treatment by means of the cytokinesis-block micronucleus assay. These patients had no previous chemotherapy or radiotherapy. Our results indicate that the level of spontaneous cytogenetic damage in cancer patients and smokers control (3 donors) were higher than in healthy non smoking controls (3 donor). During and after treatment, increased of micronucleus cells frequencies were observed with increasing treatment doses.(author)

  17. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  18. Cytogenetic examination of cosmonauts for space radiation exposure estimation

    Science.gov (United States)

    Snigiryova, G. P.; Novitskaya, N. N.; Fedorenko, B. S.

    2012-08-01

    PurposeTo evaluate radiation induced chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). Materials and methodsCytogenetic examination which has been performed in the period 1992-2008 included the analysis of chromosome aberrations using conventional Giemsa staining method in 202 blood samples from 48 cosmonauts who participated in flights on Mir Orbital Station and ISS. ResultsSpace flights led to an increase of chromosome aberration frequency. Frequency of dicentrics plus centric rings (Dic+Rc) depend on the space flight duration and accumulated dose value. After the change of space stations (from Mir Orbital Station to ISS) the radiation load of cosmonauts based on data of cytogenetic examination decreased. Extravehicular activity also adds to chromosome aberration frequency in cosmonauts' blood lymphocytes. Average doses after the first flight, estimated by the frequency of Dic+Rc, were 227 and 113 mGy Eq for long-term flights (LTF) and 107 and 53 mGy Eq for short-term flights (STF). ConclusionCytogenetic examination of cosmonauts can be applied to assess equivalent doses.

  19. Radiomodulatory potential of hydroalcoholic extract of a medicinal plant Cynodon dactylon (Family: Poaceae), against radiation-induced cytogenetic damage

    International Nuclear Information System (INIS)

    Satish Rao, B.S.; Upadhya, D.; Adiga, S.K.

    2007-01-01

    The exposure of humans to ionizing radiations may be advertently by routine diagnostic and therapeutic purposes or inadvertently during natural, occupational and nuclear accident situations. Therefore, in order to overcome the deleterious biological effects of radiation several chemical agents have been studied for their radioprotective potential. The medicinal plants being one of the resources for such clinically important natural agents, used extensively in several drug discovery related research. Here the radiomodulatory potential of hydroalcoholic extract of a medicinal plant Cynodon dactylon (Family: Poaceae), against radiation-induced cytogenetic damage was analyzed using Chinese hamster fibroblast cells (V79) and human peripheral blood lymphocytes (HPBLs) growing in vitro is reported

  20. Radiation- induced aneuploidy in mammalian germ cells

    International Nuclear Information System (INIS)

    Tease, C.

    1989-01-01

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  1. Role of cytogenetic techniques in biological dosimetry of absorbed radiation

    International Nuclear Information System (INIS)

    Rao, B.S.

    2016-01-01

    In most of the radiation accidents, physical dosimetric information is rarely available. Further, most of the accidental exposures are non-uniform involving either partial body or localized exposure to significant doses. In such situations, physical dosimetry does not provide reliable dose estimate. It has now been realized that biological dosimetric techniques can play an important role in the assessment of absorbed dose. In recent years, a number of biological indicators of radiation have been identified. These include the kinetics of onset and persistence of prodromal syndromes (radiation sickness), cytogenetic changes in peripheral blood lymphocytes, hematological changes, biochemical indicators, ESR spectroscopy of biological samples, induction of gene mutations in red blood cells, cytogenetic and physiological changes in skin and neurophysiological changes. In general, dosimetric information is derived by a combination of several different methods, as they have potential to serve as prognostic indicators. The role of cytogenetic techniques in peripheral blood lymphocytes (PBL) as biological indicators of absorbed radiation is reviewed here

  2. Cytogenetic consequence of radiation in epithelial kidney cells of a monkey

    International Nuclear Information System (INIS)

    Kosichenko, L.P.; Trots, A.A.

    1980-01-01

    The cytogenetic consequence of radiation in kidney epithelial cells of monkeys are studied 3.5-9 years after the cessation of everyday irradiation in small doses (2.99-4.9 R daily) and 6.0-12.5 years after single 550-652 R irradiation. The increased amount of reconstructed chromosomes is mainly conditioned by stable chromosome exchange; reconstructions of the non-stable type are also preserved. The cytogenetic consequence of irradiation is determined by various factors, radiation conditions and the total dose of radiation, in particular

  3. Effects of inhibitors of protein kinase C and NO-synthase on the radiation-induced cytogenetic adaptive response in Chinese hamster cells in culture

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Bondarev, G.N.; Bikineeva, E.G.; Krasotskaya, G.I.; Noskin, L.A.

    2001-01-01

    The effect of the serine-threonin kinase inhibitor - staurosporine and inhibitor of NO-synthase - L-NAME on the radiation-induced adaptive response were studied in fibroblasts of Chinese hamster in culture. It is shown that staurosporine and L-NAME inhibit cytogenetic adaptive response induced by β-particles in low doses. Inhibition is not connected with radiosensitizing effect of these agents. L-NAME decreases significantly the γ-rays-induced chromosome aberration yield also. Study confirms the role of protein kinase C in induction of the adaptive response and participation of NO-synthase in this process is noticed for the first time [ru

  4. Protection of ionizing radiation-induced cytogenetic damage by hydroalcoholic extract of Cynodon dactylon in Chinese hamster lung fibroblast cells and human peripheral blood lymphocytes.

    Science.gov (United States)

    Rao, Bola Sadashiva Satish; Upadhya, Dinesh; Adiga, Satish Kumar

    2008-01-01

    The radiomodulatory potential of hydroalcoholic extract of a medicinal plant Cynodon dactylon (family: Poaceae) against radiation-induced cytogenetic damage was analyzed using Chinese hamster lung fibroblast (V79) cells and human peripheral blood lymphocytes (HPBLs) growing in vitro. Induction of micronuclei was used as an index of cytogenetic damage, evaluated in cytokinesis blocked binucleate cells. The hydroalcoholic Cynodon dactylon extract (CDE) rendered protection against the radiation-induced DNA damage, as evidenced by the significant (p<0.001) reduction in micronucleated binucleate cells (MNBNC%) after various doses of CDE treatment in V79 cells and HPBLs. The optimum dose of CDE (40 and 50 microg/ml in HPBLs and V79 cells, respectively) with the greatest reduction in micronuclei was further used in combination with various doses of gamma radiation (0.5, 1, 2, 3, and 4 Gy) exposed 1 h after CDE treatment. A linear dose-dependent MNBNC% increase in radiation alone group was observed, while 40/50 microg/ml CDE significantly resulted in the reduction of MNBNC%, compared to the respective radiation alone groups. CDE resulted in a dose-dependent increase in free radical scavenging ability against various free radicals, viz., 2, 2-diphenyl-2-picryl-hydrazyl (DPPH); 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS); superoxide anion (O2*-); hydroxyl radical (OH*) and nitric oxide radical (NO*) generated in vitro. Also, an excellent (70%) inhibition of lipid peroxidation in vitro was observed at a dose of 300 microg/ml CDE, attaining the saturation point at higher doses. The present findings demonstrated the radioprotective effect of CDE, also rendering protection against radiation-induced genomic instability and DNA damage. The observed radioprotective effect may be partly attributed to the free radical scavenging and antilipid peroxidative potential of CDE.

  5. Cytogenetic techniques for biological indications and dosimetry of of radiation damages in humans

    International Nuclear Information System (INIS)

    Hadjidekova, V.

    2003-01-01

    The cytogenetic methods present a proved way for bio-monitoring and bio-dosimetry for persons, submitted to ionising radiation in occupational and emergency conditions. Their application complement and assist the evaluation of the physical dosimetry and takes in account the individual radiosensitivity of the organism. A comparative assessment is made of the cytogenetic markers for radiation damage of humans applied in Bulgaria. It is discussed the sensitivity of the methods and their development in the last years, as well as the basic concept for their application - the causal relationship between the frequency of the observation of cytogenetic markers in peripheral blood lymphocytes and the risk of oncological disease. The conventional analysis of dicentrics is recognised as a 'golden standard' for the quantitative assessment of the radiation damage. The long term persisting translocations reflect properly the cumulative dose burden from chronic exposure. The micronucleus test allows a quick screening of large groups of persons, working in ionising radiation environment. The combined application with centromeric DNA probe improves the sensitivity and presents a modern alternative of the bio-monitoring and bio-dosimetry. It is discussed the advantages of the different cytogenetic techniques and their optimised application for the assessment of the radiation impact on humans

  6. Cytogenetic damage at low doses and the problem of bioindication of chronic low level radiation exposure

    International Nuclear Information System (INIS)

    Geras'kin, S.A.; Dikarev, V.G.; Nesterov, E.B.; Vasiliev, D.V.; Dikareva, N.S.

    2000-01-01

    The analysis undertaken by us of the experimentally observed cellular responses to low dose irradiation has shown that the relationship between the yield of induced cytogenetic damage and radiation dose within low dose range is non-linear and universal in character. Because of the relationship between the yield of cytogenetic damage and dose within low dose range is non-linear, the aberration frequency cannot be used in biological dosimetry in the most important in terms of practical application case. The cytogenetic damage frequency cannot be used in biological dosimetry also because of the probability of synergistic and antagonistic interaction effects of the different nature factors simultaneously acting on test-object in real conditions is high within low dose (concentration) range. In our experimental study of the regularities in the yield of structural mutations in conditions of combined influence of ionizing radiation, heavy metals and pesticides it was found that synergistic and antagonistic effects are mainly induced in conditions of combined action of low exposure injuring agents. Experiments on agricultural plants were carried out in 1986-1989 at the 30-km zone around Chernobyl NPP. It was shown that chronic low dose exposure could cause an inheritable destabilization of genetic structures expressing in increase of cytogenetic damage and yield karyotypic variability in offspring's of irradiated organisms. Obviously exactly this circumstance is the reason of the phenomenon found in our researches of significant time delay of cytogenetic damage reduction rate from radioactive pollution reduction rate from time past from the accident moment. Research of cytogenetic damage of reproductive (seeds) and vegetative (needles) plant organs of the Pinus sylvestris tree micropopulations growing in contrast by radioactive pollution level sites of the 30-km ChNPP zone and also in the vicinity of the industrial plant > for processing and temporary storage of

  7. Review of bayesian statistical analysis methods for cytogenetic radiation biodosimetry, with a practical example

    International Nuclear Information System (INIS)

    Ainsbury, Elizabeth A.; Lloyd, David C.; Rothkamm, Kai; Vinnikov, Volodymyr A.; Maznyk, Nataliya A.; Puig, Pedro; Higueras, Manuel

    2014-01-01

    Classical methods of assessing the uncertainty associated with radiation doses estimated using cytogenetic techniques are now extremely well defined. However, several authors have suggested that a Bayesian approach to uncertainty estimation may be more suitable for cytogenetic data, which are inherently stochastic in nature. The Bayesian analysis framework focuses on identification of probability distributions (for yield of aberrations or estimated dose), which also means that uncertainty is an intrinsic part of the analysis, rather than an 'afterthought'. In this paper Bayesian, as well as some more advanced classical, data analysis methods for radiation cytogenetics are reviewed that have been proposed in the literature. A practical overview of Bayesian cytogenetic dose estimation is also presented, with worked examples from the literature. (authors)

  8. Cytogenetics for dosimetry in cases of radiation accidents and assessing the safety of irradiated food material

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Kesavan, P.C.

    2005-01-01

    One of the many areas of research initiated by Swaminathan at the Botany Division of the Indian Agricultural Research Institute, New Delhi was radiation cytogenetics, which involves study of induced chromosomal aberrations. These studies had impact not only on elucidating basic mechanisms involved in the formation of chromosomal aberrations, but also several practical applications related to human health. In this review, we briefly summarize two applications, namely biological dosimetry following radiation accidents and safety of irradiated food material. (author)

  9. Position of cytogenetic examination of cosmonauts for the space radiation exposure estimate

    Science.gov (United States)

    Snigiryova, Galina; Novitskaya, Natalia; Fedorenko, Boris

    The cytogenetic monitoring was carried out to evaluate of radiation induced stable and un-stable chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). In the period of 1992 -2008 chromosome aberrations in 202 blood samples from 48 cosmonauts were analyzed using the conventional method. In addition 23 blood samples from 12 cosmonauts were analyzed using FISH (fluorescence in situ hybridization) technique. Whole chromosome painting probes for chromosomes 1, 4 and 12 were used simultaneously with a pancentromeric probe. Samples taken before and after the flights were analyzed. Long-term space flights led to an increase of stable (FISH method) and unstable (conventional method) chromosome aber-ration frequencies. The frequencies of dicentrics and centric rings depend on the space flight duration and accumulated dose value. Extravehicular activity also adds to chromosome aber-ration frequency in blood lymphocytes of cosmonauts. Several years after the space flight the increased level of unstable chromosome aberrations is still apparent. The radiation load was decreased for cosmonauts after taking ISS over from MIR station. The cytogenetic results were in agreement with data of physical dosimetry. The dose interval after the first flight, estimated by the frequency of dicentrics, was 113-227 mSv for long-term flights (73 -199 days) and 53-107 mSv for short-term flights (1 -21 days). According to the frequency of FISH translocations, the average dose after the first long-term flight was 186 mSv, which is comparable with estimates made from the dicentric assay. Cytogenetic examination of cosmonauts, including analysis of dicentrics (conventional method) and translocations (FISH method) should find wider applica-tion to assessment of radiation effects associated with long-term space flights such as flights to Mars.

  10. Cytogenetic studies in persons, professionally exposed to low doses ionizing radiation

    International Nuclear Information System (INIS)

    Bulanova, M.; Ivanov, B.; Khristova, M.; Praskova, L.; Mikhajlov, M.; Dovev, I.

    1981-01-01

    Cytogenetic techniques were used to examine peripheral lymphocytes taken from 33 subjects employed at the IRT-2000-Sofia Nuclear Reactor and exposed to mixed gamma and neutron radiation in its Zone A. Physical dosimetry data (from pen and film personnel dosimeters) showed the exposures to be below maximum permissible levels, in complience with Radiation Safety Norms in the P.R. of Bulgaria (1972). The subjects were distributed into three groups according to the length of their occupational experience as radiation workers. Comparisons were made with cytogenetic findings in the lymphocyte cultures taken from 30 subjects with no occupational radiation exposure. Radiation workers exhibited a significant increase in chromosomal damage of the chromosome and chromatid type. Subjects with 5-10 years of occupational experience had a higher degree of chromosomal damage than the less-than-5-years group. For persons with more than 10 years of occupational experience, however, no increase over controls could be ascertained in percentage of chromosomal damage. When radiation workers were re-distributed in accord with the exposures received, it was evident that the effect increased with the accumulated dose, the group with about 0.02 Sievert having nearly twice the aberrant cell percentage for the 0.01 Sievert group. In the group of up to 0.05 Sievert, the percentage of aberrant cells was in the order of that observed after exposure to 0.02 Sievert. From the findings in the analysis, radiation quality seemed to play no part in enliciting the cytogenetic response of peripheral lymphocytes. (A.B.)

  11. Cytogenetic studies in workers with chronic occupational radiation exposure

    International Nuclear Information System (INIS)

    Grynszpan, D.

    1989-01-01

    The technique of chromosomal aberration detection on peripheral lymphocytes blood samples from monazite industry workers was used to study the cytogenetic effect of low chronic radiation doses. Cells from 51 workers and 21 controls were analysed. Cytogenetic data from individuals from different working areas were statistically compared among themselves and with the control group. The possible correlations between chromosomal aberration frequencies and cumulative external dose and working time were investigated. The influence of smoking was also tested. The link to the wives spontaneous abortions was analysed. Our results indicate possible biological effects on this sample of workers. (author)

  12. Cytogenetic biodosimetry to estimate radiation doses received in accidental radiological exposures

    International Nuclear Information System (INIS)

    AIsbeih, Ghazi

    2014-01-01

    The tremendous applications of nuclear technologies in various aspects of life increase the probability of over exposure due to involuntary or premeditated nuclear accidents. National radiation-protection preparedness requires adequate estimate of dose received for efficient medical assistance of victims. Cytogenetic biodosimetry is an ISO and IAEA standardized biotechnology technique. We have established a reference biological dosimetry laboratory to boost the nation's ability to respond to sporadic and mass radiation casualty incidents and to assess the magnitude of radiation overexposure. Accurate calculation of radiation doses received will result in evidence based treatment decisions and better management of valuable emergency resources. It will also contribute to the 'National Radiation Protection Program' by playing a role in nuclear emergency plans. The cytogenetic method is standardized and scalable. In addition to diagnosis of over exposure, it provides triage capability for rapid stratification of patients who need more specialized medical care. It can also detect false positives and false negatives exposure particularly in cases of legal allegations

  13. Cytogenetics observation and radiation influence evaluation of exposed persons in a discontinuous radiation exposure event

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Yang Guoshan; Ge Shili; Jin Cuizhen; Yao Bo

    2003-01-01

    The cytogenetics results and dose estimation of exposed and related persons in an discontinuous radiation exposure event were reported in this paper. According to dicentrics + ring and micronucleus results combined with clinical data, slight (middle) degree of subacute radiation symptom of the victim was diagnosed. A part of 52 examined persons were exposed to radiation in a certain degree

  14. Protective role of Carica papaya (Linn.) in electron beam radiation induced hematological and cytogenetic damages in Swiss albino mice

    International Nuclear Information System (INIS)

    Yogish Somayaji, T.; Suchetha Kumari, N.

    2014-01-01

    Carica papaya (Linn.) is known to possess various biomedical applications. It has remarkable antioxidant properties. The main objective of the study was to evaluate the leaf extracts of Carica papaya (Linn.) on hematologic and cytogenetic changes occurring due to irradiation of mice to sub-lethal doses of Electron Beam Radiation (EBR). Analysis of hematological changes occurring due to irradiation of mice to sub-lethal doses of EBR, and the effects of Carica papaya (Linn.) extract on the same. The Assessment of hematopoietic stress by spleen colony forming unit and spleen body weight index. The analysis of cell proliferation and immunomodulation with response to the effects of Carica papaya (Linn.) extract by estimation of IL-6. The estimation of serum total antioxidants, lipid peroxidation and analyzing the activities of enzymes like SOD, ALP, and AST. Male Swiss albino mice were fed orally with papaya aqueous leaf extract for 15 days. They were irradiated with a whole body dose of 6 Gy Electron Beam radiation. The mice were dissected for liver, kidney, bone marrow, spleen and brain. The hematological studies were done using blood cell count in an automated cell counter. The biochemical estimations like urea, creatinine, SGOT, SGPT, Total Protein, Albumin, Bilirubin were done using the serum and homogenates. The total antioxidant capacity, the antioxidant enzymes were estimated. The Interleukin-6 levels were estimated in serum to assess immune modulation. The results show a decrease in the hematological parameters in radiated animals. The papaya treated groups have shown modulation in the hematological parameters. The extract has also reduced the suppression of the bone marrow induced by radiation. The radiation induced liver damage is also reduced in papaya treated groups. The aqueous extract of Carica papaya (Linn.) has shown protective effects in electron beam radiation induced tissue damages in Swiss Albino mice (author)

  15. How cytogenetical methods help victims prove radiation exposure and claim right for social support: NCERM experience

    International Nuclear Information System (INIS)

    Aleksanin, S.; Slozina, N.; Neronova, E.; Smoliakov, E.

    2011-01-01

    Russian citizens who were irradiated because of radiation disasters, nuclear weapons testing and some other sources have a right to some social support and financial compensation. In order to get this compensation people have to prove that they were irradiated. As it is, not all victims for a variety of reasons have formal documents. Thus they apply for cytogenetic investigation to prove irradiation months, years and even decades after irradiation. Since 1992 the cytogenetic investigations related to radiation exposure were performed in NRCERM for more than 700 people. At the beginning of this investigation FISH method was not certified as a biodosimenty test in Russia. Only dicentric analysis was approved as a proof of irradiation. It is known that the rate of dicentrics decrease in time, but the residual level of cytogenetical markers could be revealed a long time after a radiation accident. Thus the dicentric analysis was performed for the people who applied for biological indication of radiation exposure at that time. Rates of dicentrics exceeding control levels were revealed in half the people who applied for radiation conformation. Now FISH method is certified in Russia and both cytogenetic tests of biodosimetry (dicentrics and FISH) are available for all comers. Increased levels of translocations were found in 8 cases (the dose rate from 0.16 to 0.64 Gy). On the basis of the results of cytogenetic tests official documents were supplied to these people and they were entitled to apply for radiation exposure compensation. Thus cytogenetic tests are very effective and in some cases the only possible way for the victims to prove irradiation exposure and to apply for radiation exposure compensation a long time after an accident.

  16. How cytogenetical methods help victims prove radiation exposure and claim right for social support: NCERM experience

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanin, S., E-mail: Aleksanin@arcerm.spb.ru [Nikiforov Russian Center of Emergency and Radiation Medicine EMERCOM of Russia, (NRCERM) ul. Akademika Lebedeva 4/2, 194044 St. Petersburg (Russian Federation); Slozina, N., E-mail: NataliaSlozina@peterlink.ru [Nikiforov Russian Center of Emergency and Radiation Medicine EMERCOM of Russia, (NRCERM) ul. Akademika Lebedeva 4/2, 194044 St. Petersburg (Russian Federation); Neronova, E.; Smoliakov, E. [Nikiforov Russian Center of Emergency and Radiation Medicine EMERCOM of Russia, (NRCERM) ul. Akademika Lebedeva 4/2, 194044 St. Petersburg (Russian Federation)

    2011-09-15

    Russian citizens who were irradiated because of radiation disasters, nuclear weapons testing and some other sources have a right to some social support and financial compensation. In order to get this compensation people have to prove that they were irradiated. As it is, not all victims for a variety of reasons have formal documents. Thus they apply for cytogenetic investigation to prove irradiation months, years and even decades after irradiation. Since 1992 the cytogenetic investigations related to radiation exposure were performed in NRCERM for more than 700 people. At the beginning of this investigation FISH method was not certified as a biodosimenty test in Russia. Only dicentric analysis was approved as a proof of irradiation. It is known that the rate of dicentrics decrease in time, but the residual level of cytogenetical markers could be revealed a long time after a radiation accident. Thus the dicentric analysis was performed for the people who applied for biological indication of radiation exposure at that time. Rates of dicentrics exceeding control levels were revealed in half the people who applied for radiation conformation. Now FISH method is certified in Russia and both cytogenetic tests of biodosimetry (dicentrics and FISH) are available for all comers. Increased levels of translocations were found in 8 cases (the dose rate from 0.16 to 0.64 Gy). On the basis of the results of cytogenetic tests official documents were supplied to these people and they were entitled to apply for radiation exposure compensation. Thus cytogenetic tests are very effective and in some cases the only possible way for the victims to prove irradiation exposure and to apply for radiation exposure compensation a long time after an accident.

  17. Cytogenetic investigation of subjects professionally exposed to radiofrequency radiation.

    Science.gov (United States)

    Maes, Annemarie; Van Gorp, Urbain; Verschaeve, Luc

    2006-03-01

    Nowadays, virtually everybody is exposed to radiofrequency radiation (RFR) from mobile phone base station antennas or other sources. At least according to some scientists, this exposure can have detrimental health effects. We investigated cytogenetic effects in peripheral blood lymphocytes from subjects who were professionally exposed to mobile phone electromagnetic fields in an attempt to demonstrate possible RFR-induced genetic effects. These subjects can be considered well suited for this purpose as their RFR exposure is 'normal' though rather high, and definitely higher than that of the 'general population'. The alkaline comet assay, sister chromatid exchange (SCE) and chromosome aberration tests revealed no evidence of RFR-induced genetic effects. Blood cells were also exposed to the well known chemical mutagen mitomycin C in order to investigate possible combined effects of RFR and the chemical. No cooperative action was found between the electromagnetic field exposure and the mutagen using either the comet assay or SCE test.

  18. Cytogenetic effects of the action of ionizing radiations on human populations

    International Nuclear Information System (INIS)

    Shevchenko, V.A.; Snigiryova, G.P.

    1998-01-01

    The objective of the present work is the analysis of available materials on practical application of the cytogenetic method for dose assessment in people participating in the post-accidental rescue and clean-up operations in Chernobyl (so-called 'liquidators'). These materials will be compared with the results of cytogenetic investigations performed in other regions of Russia exposed to radiation (the village Muslyumovo in the Chelyabinsk region, several localities of the Altai Territory in the vicinity of the Semipalatinsk nuclear test site) as well as with the results of cytogenetic monitoring in the population living around the Three Mile Island (TMI) nuclear power plant (Pennsylvania, USA) where a nuclear accident occurred in 1979. The work presents the results of cytogenetic investigations obtained by the traditional method of analysis of the frequency of unstable chromosome aberrations and by the FISH method based on the frequency of stable chromosome aberrations. (J.P.N.)

  19. Sample tracking in an automated cytogenetic biodosimetry laboratory for radiation mass casualties

    International Nuclear Information System (INIS)

    Martin, P.R.; Berdychevski, R.E.; Subramanian, U.; Blakely, W.F.; Prasanna, P.G.S.

    2007-01-01

    Chromosome-aberration-based dicentric assay is expected to be used after mass-casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample-tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput. This paper focuses on our efforts to eliminate data-transcription errors, increase efficiency, and maintain samples' positive chain-of-custody by sample tracking during sample processing and data analysis. This sample-tracking system represents a 'beta' version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and medical

  20. Sample tracking in an automated cytogenetic biodosimetry laboratory for radiation mass casualties

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.; Berdychevski, R.E.; Subramanian, U.; Blakely, W.F. [Armed Forces Radiobiology Research Institute, Uniformed Services University of Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States); Prasanna, P.G.S. [Armed Forces Radiobiology Research Institute, Uniformed Services University of Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: prasanna@afrri.usuhs.mil

    2007-07-15

    Chromosome-aberration-based dicentric assay is expected to be used after mass-casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample-tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput. This paper focuses on our efforts to eliminate data-transcription errors, increase efficiency, and maintain samples' positive chain-of-custody by sample tracking during sample processing and data analysis. This sample-tracking system represents a 'beta' version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and

  1. Lack of Bystander Effects From High LET Radiation For Early Cytogenetic Endpoints.

    Energy Technology Data Exchange (ETDEWEB)

    Groesser, Torsten; Cooper, Brian; Rydberg, Bjorn

    2008-05-07

    The aim of this work was to study radiation-induced bystander effects for early cytogenetic end points in various cell lines using the medium transfer technique after exposure to high- and low-LET radiation. Cells were exposed to 20 MeV/ nucleon nitrogen ions, 968 MeV/nucleon iron ions, or 575 MeV/nucleon iron ions followed by transfer of the conditioned medium from the irradiated cells to unirradiated test cells. The effects studied included DNA double-strand break induction, {gamma}-H2AX focus formation, induction of chromatid breaks in prematurely condensed chromosomes, and micronucleus formation using DNA repair-proficient and -deficient hamster and human cell lines (xrs6, V79, SW48, MO59K and MO59J). Cell survival was also measured in SW48 bystander cells using X rays. Although it was occasionally possible to detect an increase in chromatid break levels using nitrogen ions and to see a higher number of {gamma}-H2AX foci using nitrogen and iron ions in xrs6 bystander cells in single experiments, the results were not reproducible. After we pooled all the data, we could not verify a significant bystander effect for any of these end points. Also, we did not detect a significant bystander effect for DSB induction or micronucleus formation in these cell lines or for clonogenic survival in SW48 cells. The data suggest that DNA damage and cytogenetic changes are not induced in bystander cells. In contrast, data in the literature show pronounced bystander effects in a variety of cell lines, including clonogenic survival in SW48 cells and induction of chromatid breaks and micronuclei in hamster cells. To reconcile these conflicting data, it is possible that the epigenetic status of the specific cell line or the precise culture conditions and medium supplements, such as serum, may be critical for inducing bystander effects.

  2. [Results of a cytogenetic study of populations with different radiation risks in the Semipalatinsk region].

    Science.gov (United States)

    Sviatova, G S; Abil'dinova, G Z; Berezina, G M

    2002-03-01

    A cytogenetic study was conducted for the first time on human populations neighboring the Semipalatinsk nuclear test site (STS) and exposed to ionizing radiation for a long period of time. In populations with the extreme and maximum radiation risks, high frequencies of radiation-induced chromosomal markers, including acentric fragments (1.99 +/- 0.10 per 100 cells), dicentrics (0.23 +/- 0.01), ring chromosomes (0.38 +/- 0.14), and stable chromosomal aberrations (1.17 +/- 0.02), were found. These frequencies significantly exceeded those in control populations. The spectrum of chromosomal aberrations and the frequencies of the aberrations of different types in persons living in the areas with the highest radionuclide contamination confirmed the mutagenic effect of radiation on chromosomes in the human populations studied.

  3. Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Ulsh, B.A.; Miller, S.M.; Mallory, F.F.; Mitchel, R.E.J.; Morrison, D.P.; Boreham, D.R.

    2004-01-01

    In the studies reported here, the micronucleus assay, a common cytogenetic technique, was used to examine the dose-responses in fibroblasts from three ungulate species (white-tailed deer, woodland caribou, and Indian muntjac) exposed to high doses of ionizing radiation (1-4 Gy of 60 Co gamma radiation). This assay was also used to examine the effects of exposure to low doses (1-100 mGy) typical of what these species experience in a year from natural and anthropogenic environmental sources. An adaptive response, defined as the induction of resistance to a stressor by a prior exposure to a small 'adapting' stress, was observed after exposure to low doses. This work indicates that very small doses are protective for the endpoint examined. The same level of protection was seen at all adapting doses, including 1 radiation track per cell, the lowest possible cellular dose. These results are consistent with other studies in a wide variety of organisms that demonstrate a protective effect of low doses at both cellular and whole-organism levels. This implies that environmental regulations predicated on the idea that even the smallest dose of radiation carries a quantifiable risk of direct adverse consequences to the exposed organism require further examination. Cytogenetic assays provide affordable and feasible biological effects-based alternatives that are more biologically relevant than traditional contaminant concentration-based radioecological risk assessment

  4. On the mechanism of cytogenetic effect of electromagnetic radiation: role of oxidation homeostasis

    International Nuclear Information System (INIS)

    Brezitskaya, N.V.; Timchenko, O.I.

    2000-01-01

    The evaluation of the role of changes in oxidation homeostasis in developing the cytogenetic effects arising by the electromagnetic irradiation impact is carried out. The experiments were performed on white male rats. The animals were subjected to impact of the nonionizing radiations in the microwave range during 40 days by 7 hours a day. It is established that changes in the free-radical oxidation by the impact of nonionizing radiation of the electromagnetic fields have a wave-like character. It is established that changes in the oxidation homeostasis proceed the development of cytogenetic effects and may be the cause thereof [ru

  5. Cytogenetic Monitoring By Use Of The Micronucleus Assay Among Nuclear Malaysia Radiation Workers-A Preliminary Result

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Mohd Rodzi Ali; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Yahaya Talib; Rehir Dahalan

    2014-01-01

    Biological dosimetry based on the analysis of micronuclei in the cytokinesis-block micronucleus (CBMN) assay can be used as an alternative method for scoring dicentric chromosomes in the field of radiation protection. Bio dosimetry is mainly performed, in addition to physical dosimetry, with the aim of individual dose assessment. Aim of this study was to assess occupationally induced chromosomal damage in radiation workers exposed to ionizing radiation. The CBMN assay was used in the peripheral blood lymphocytes of 50 exposed workers. Number of bi-nucleated cell and micronuclei were scored and statistical analysis was done to see the effect and correlation of micronuclei with gender, age and time of worked. In conclusion, scoring of micronuclei is a useful cytogenetic monitoring for radiation workers. (author)

  6. Radiation cytogenetics of the yellow-fever mosquito Aedes aegypti and the plant genus Collinsia. Final report, April 1967--September 1977

    International Nuclear Information System (INIS)

    Rai, K.S.

    1977-01-01

    The major objectives of the project on Aedes aegypti, which is one of the most important disease vectors of man, were to study the cytogenetic effects of radiation and certain chemical mutagens, the genetics of radiation-induced chromosomal rearrangements with particular attention to reciprocal translocations, and the possibility of using translocations for genetic control of natural populations. Results reported on work done during the years 1967 and 1977 show these objectives have been mostly accomplished

  7. Cytogenetic analysis for radiation dose assessment. A manual

    International Nuclear Information System (INIS)

    2001-01-01

    Chromosome aberration analysis is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This has been via a sequence of Co-ordinated Research Programmes (CRPs), the running of Regional Training Courses, the sponsorship of individual training fellowships and the provision of necessary equipment to laboratories in developing Member States. The CRP on the 'Use of Chromosome Aberration Analysis in Radiation Protection' was initiated by IAEA in 1982. It ended with the publication of the IAEA Technical Report Series No. 260, titled 'Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment' in 1986. The overall objective of the CRP (1998-2000) on 'Radiation Dosimetry through Biological Indicators' is to review and standardize the available methods and amend the above mentioned previous IAEA publication with current techniques on cytogenetic bioindicators which may be of practical use in biological dosimetry worldwide. An additional objective is to identify promising cytogenetic techniques to provide Member States with up to date and generally agreed advice regarding the best focus for research and suggestions for the most suitable techniques for near future practice in biodosimetry. This activity is in accordance with the International Basic Safety Standards (BSS) published in 1996. To pursue this task the IAEA has conducted a Research Co-ordination Meeting (Budapest, Hungary, June 1998) with the participation of senior scientists of 24 biodosimetry laboratories to discuss

  8. Regulation of radiation-induced protein kinase Cδ activation in radiation-induced apoptosis differs between radiosensitive and radioresistant mouse thymic lymphoma cell lines

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami; Tsuji, Hideo; Ohyama, Harumi; Wang, Bing; Tatsumi, Kouichi; Hayata, Isamu; Hama-Inaba, Hiroko

    2006-01-01

    Protein kinase Cδ (PKCδ) has an important role in radiation-induced apoptosis. The expression and function of PKCδ in radiation-induced apoptosis were assessed in a radiation-sensitive mouse thymic lymphoma cell line, 3SBH5, and its radioresistant variant, XR223. Rottlerin, a PKCδ-specific inhibitor, completely abolished radiation-induced apoptosis in 3SBH5. Radiation-induced PKCδ activation correlated with the degradation of PKCδ, indicating that PKCδ activation through degradation is involved in radiation-induced apoptosis in radiosensitive 3SBH5. In radioresistant XR223, radiation-induced PKCδ activation was lower than that in radiosensitive 3SBH5. Cytosol PKCδ levels in 3SBH5 decreased markedly after irradiation, while those in XR223 did not. There was no apparent change after irradiation in the membrane fractions of either cell type. In addition, basal cytosol PKCδ levels in XR223 were higher than those in 3SBH5. These results suggest that the radioresistance in XR223 to radiation-induced apoptosis is due to a difference in the regulation of radiation-induced PKCδ activation compared to that of 3SBH5. On the other hand, Atm -/- mouse thymic lymphoma cells were more radioresistant to radiation-induced apoptosis than wild-type mouse thymic lymphoma cells. Irradiated wild-type cells, but not Atm -/- cells, had decreased PKCδ levels, indicating that the Atm protein is involved in radiation-induced apoptosis through the induction of PKCδ degradation. The decreased Atm protein levels induced by treatment with Atm small interfering RNA had no effect on radiation-induced apoptosis in 3SBH5 cells. These results suggest that the regulation of radiation-induced PKCδ activation, which is distinct from the Atm-mediated cascade, determines radiation sensitivity in radiosensitive 3SBH5 cells

  9. Lack of Bystander Effects From High-LET Radiation For Early Cytogenetic End Points

    International Nuclear Information System (INIS)

    Groesser, Torsten; Cooper, Brian; Rydberg, Bjorn

    2008-01-01

    The aim of this work was to study radiation-induced bystander effects for early cytogenetic end points in various cell lines using the medium transfer technique after exposure to high- and low-LET radiation. Cells were exposed to 20 MeV/ nucleon nitrogen ions, 968 MeV/nucleon iron ions, or 575 MeV/nucleon iron ions followed by transfer of the conditioned medium from the irradiated cells to unirradiated test cells. The effects studied included DNA double-strand break induction, γ-H2AX focus formation, induction of chromatid breaks in prematurely condensed chromosomes, and micronucleus formation using DNA repair-proficient and -deficient hamster and human cell lines (xrs6, V79, SW48, MO59K and MO59J). Cell survival was also measured in SW48 bystander cells using X rays. Although it was occasionally possible to detect an increase in chromatid break levels using nitrogen ions and to see a higher number of γ-H2AX foci using nitrogen and iron ions in xrs6 bystander cells in single experiments, the results were not reproducible. After we pooled all the data, we could not verify a significant bystander effect for any of these end points. Also, we did not detect a significant bystander effect for DSB induction or micronucleus formation in these cell lines or for clonogenic survival in SW48 cells. The data suggest that DNA damage and cytogenetic changes are not induced in bystander cells. In contrast, data in the literature show pronounced bystander effects in a variety of cell lines, including clonogenic survival in SW48 cells and induction of chromatid breaks and micronuclei in hamster cells. To reconcile these conflicting data, it is possible that the epigenetic status of the specific cell line or the precise culture conditions and medium supplements, such as serum, may be critical for inducing bystander effects.

  10. Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Yeh, Su-Peng; Lo, Wen-Jyi; Lin, Chiao-Lin; Liao, Yu-Min; Lin, Chen-Yuan; Bai, Li-Yuan; Liang, Ji-An; Chiu, Chang-Fang

    2012-02-01

    Both bone marrow hematopoietic cells (BM-HCs) and mesenchymal stem cells (BM-MSCs) may have cytogenetic aberrations in leukemic patients, and anti-leukemic therapy may induce cytogenetic remission of BM-HCs. The impact of anti-leukemic therapy on BM-MSCs remains unknown. Cytogenetic studies of BM-MSCs from 15 leukemic patients with documented cytogenetic abnormalities of BM-HCs were investigated. To see the influence of anti-leukemic therapy on BM-MSCs, cytogenetic studies were carried out in seven of them after the completion of anti-leukemic therapy, including anthracycline/Ara-C-based chemotherapy in two patients, high-dose busulfan/cyclophosphamide-based allogeneic transplantation in two patients, and total body irradiation (TBI)-based allogeneic transplantation in three patients. To simulate the effect of TBI in vitro, three BM-MSCs from one leukemic patient and two normal adults were irradiated using the same dosage and dosing schedule of TBI and cytogenetics were re-examined after irradiation. At the diagnosis of leukemia, two BM-MSCs had cytogenetic aberration, which were completely different to their BM-HCs counterpart. After the completion of anti-leukemic therapy, cytogenetic aberration was no longer detectable in one patient. Unexpectedly, BM-MSCs from three patients receiving TBI-based allogeneic transplantation acquired new, clonal cytogenetic abnormalities after transplantation. Similarly, complex cytogenetic abnormalities were found in all the three BM-MSCs exposed to in vitro irradiation. In conclusion, anti-leukemic treatments induce not only "cytogenetic remission" but also new cytogenetic abnormalities of BM-MSCs. TBI especially exerts detrimental effect on the chromosomal integrity of BM-MSCs and highlights the equal importance of investigating long-term adverse effect of anti-leukemic therapy on BM-MSCs as opposed to beneficial effect on BM-HCs.

  11. A mouse model of cytogenetic analysis to evaluate caesium137 radiation dose exposure and contamination level in lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roch-Lefevre, Sandrine; Martin-Bodiot, Cecile; Gregoire, Eric; Roy, Laurence [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Dosimetrie Biologique (PRP-HOM/SRBE/LDB), Fontenay aux Roses Cedex (France); Desbree, Aurelie [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-HOM/SDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay aux Roses Cedex (France); Barquinero, Joan Francesc [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Dosimetrie Biologique (PRP-HOM/SRBE/LDB), Fontenay aux Roses Cedex (France); Universitat Autonoma de Barcelona, Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Bellaterra (Spain)

    2016-03-15

    In case of external overexposure to ionizing radiation, an estimation of its genotoxic effects on exposed individuals can be made retrospectively by the measurement of radiation-induced chromosome aberrations on circulating lymphocytes. Compared with external irradiation, intakes of radionuclides may, however, lead to specific features influencing dose distribution at the scale of body, of tissue or even of cell. Therefore, in case of internal contamination by radionuclides, experimental studies, particularly using animal models, are required to better understand mechanisms of their genotoxic effects and to better estimate the absorbed dose. The present study was designed to evaluate a cytogenetic method in mouse peripheral blood lymphocytes that would allow determination of yields and complexities of chromosome aberrations after low-dose rate exposure to {sup 137}Cs delivered in vitro either by irradiation or by contamination. By using M-FISH analysis, we compared the low-dose rate responses observed in mouse to the high-dose rate responses observed both in mouse and in human. Promising similarities between the two species in the relative biological effect evaluation show that our cytogenetic model established in mouse might be useful to evaluate various radiation exposures, particularly relevant in case of intakes of radionuclides. (orig.)

  12. MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence

    International Nuclear Information System (INIS)

    Wang Yong; Scheiber, Melissa N.; Neumann, Carola; Calin, George A.; Zhou Daohong

    2011-01-01

    Purpose: MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. Methods and Materials: In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. Results: We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. Conclusion: Our

  13. Position of cytogenetic examination of cosmonauts for the space radiation expose estimate

    Science.gov (United States)

    Snigireva, Galina; Novitskaya, Natalia; Ivanov, Alexander

    Analysis of chromosome aberrations in human peripheral blood lymphocytes is widely used for the indication and quantitative assessment of radiation. The dose, as estimated by the frequency of chromosome aberrations takes into account not only the physical impact of radiation on the human body but also its individual characteristics, such as radiation sensitivity and functional conditions during irradiation. The purpose of this study was to evaluate the influence of radiation on the chromosome aberration frequency in peripheral blood lymphocytes of the cosmonauts who participated in flights on the ISS (International Space Station). Cytogenetic examination was performed in the period 1992-2013 and included the analysis of chromosome aberrations using conventional Giemsa staining method in blood samples from 38 cosmonauts who participated in flights on the ISS. The cytogenetic examination results showed that cosmic flights lead to an increase of chromosome aberrations in the lymphocytes of cosmonauts. Compared with the pre-flight levels frequencies of dicentrics and centric rings (the radiation exposure markers) are about 4 times higher for cosmonauts after flights. The frequency of chromosome aberrations depends on the length of the flight and, correspondingly, on the accumulated dose of cosmic irradiation. Between flights, a decrease in the chromosome aberration frequency is observed, but even several years after a flight, the level of chromosome aberrations in the lymphocytes of cosmonauts remains high. Cytogenetic monitoring of cosmonauts can undoubtedly play an important role in comprehensive medical surveys of these individuals if we take into account the possible connection of higher levels of chromosomal aberrations with the risk of oncological diseases. Analysis of chromosome aberration dynamics after flights will allow the determination of individuals with an increased cancerogenese risk and provision of required treatments.

  14. Genetic and Cytogenetic Basis of Radiation-Induced Sterility in the Adult Male Cabbage Looper Trichoplusia Ni

    Energy Technology Data Exchange (ETDEWEB)

    North, D. T.; Holt, G. G. [Metabolism and Radiation Research Laboratory, Entomology Research Division, ARS, United States Department of Agriculture, Fargo, ND (United States)

    1968-06-15

    original parent. A dose of 10 krad to a P{sub 1} male, for example, only induces 15 to 20% sterility. However, of the surviving progeny as many as 50% will be semi-sterile with 20% being completely sterile when mated to non-irradiated individuals. The cytogenetic implications of this are discussed; namely, the effect of diffuse centromeres, and the induction of reciprocal translocations. Data are presented on induced translocation frequencies by various doses of radiation and the F{sub 2} - bred behaviour of these individuals. This approach possibly affords a more effective tool in insect control. (author)

  15. Current status, new frontiers and challenges in radiation biodosimetry using cytogenetic, transcriptomic and proteomic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenech, Michael, E-mail: michael.fenech@csiro.au [Commonwealth Scientific and Industrial Research Organisation, Gate 13 Kintore Avenue, Adelaide, SA 5000 (Australia)

    2011-09-15

    Biodosimetric methods for determining exposure dose in individuals following a radiation accident are important for the health management of the exposed cohort and prioritisation of high dose exposure cases to receive emergency medical treatment. This brief review provides a succinct outline of (i) the current status of standard cytogenetic methods used in radiation biodosimetry; (ii) development of high-throughput systems for current standard cytogenetic methods; (iii) emerging minimally invasive methods; (iv) the impact of nutrition and genotype on observed dose-response relationships and (v) new frontiers in biodosimetry using molecular biology techniques such as transcriptomics and proteomics.

  16. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  17. Cytogenetic activity of the coumarin glucoside seseloside

    International Nuclear Information System (INIS)

    Arshava, E.A.

    1986-01-01

    The cytogenetic effect of the coumarin glucoside seseloside on plant objects was studied. It was established that low concentrations of the preparation (from 1 x 10 -5 to 1 x 10 -3 μg/ml) inhibit both spontaneous and radiation-induced mutagenesis. The effect of high concentrations (10 and 100 μg/ml) causes a mutagenic effect

  18. Adaptive response induced by occupational exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Barquinero, J.F.; Caballin, M.R.; Barrios, L.; Egozcue, J.; Miro, R.; Ribas, M.

    1997-01-01

    We have found a significant decreased sensitivity to the cytogenetic effects of both ionizing radiation (IR) (2 Gy of γ rays) and bleomycin (BLM, 0,03 U/ml), in lymphocytes from individuals occupationally exposed to IR when compared with controls. These results suggest that occupational exposures to IR can induce adaptive response that can be detected by a subsequent treatment either by IR or by BLM. When a comparison is made between the cytogenetic effects of both treatments, no correlation was observed at the individual level. On the other hand, the individual frequencies of chromosome aberrations induced by a challenge dose of IR were negatively correlated with the occupationally received doses during the last three years. This correlation was not observed after the challenge treatment of BLM. Moreover, the individual frequencies of chromosome aberrations induced by IR treatment were homogeneous. This is not the case of the individual frequencies of chromatid aberrations induced by BLM, where a great heterogeneity was observed. (authors)

  19. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  20. Cytogenetic effects of in vitro irradiation of human spermatozoa

    International Nuclear Information System (INIS)

    Miro, R.; Genesca, A.; Alvarez, R.; Tusell, L.; Ponsa, I.

    1997-01-01

    The effects of human mutagens, clastogens and aneugens have been studied almost exclusively in somatic tissues. However, currently there is a considerable discussion about the potential of ionizing radiation to induce heritable germ cell mutations. While the various viewpoints remain controversial. One of the aims of germ cell cytogenetic studies must be to improve the ability to identify and estimate the actual genetic risk in humans. One way to assess the risk of transmission of genetic anomalies by men occupationally or accidentally exposed to ionizing radiation is to determine whether there is a dose-related genetic damage in human spermatozoa. Cytogenetic analysis of human spermatozoa is possible after interspecific in vitro fertilization between zona pellucida-free hamster oocytes and human spermatozoa. Using this assay system we have analyzed the radiation induction of structural chromosome abnormalities in sperm derived complements at the first embryo cleavage, as well as the radiation induction of micronuclei and aneuploidy in two-cell hybrid embryos. (author)

  1. Radiological protection effect on vanillin derivative VND3207 radiation-induced cytogenetic damage in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Wang Chuangao; Wang Li; Zhou Pingkun; Wang Zhongwen; Hu Yongzhe; Jin Haiming; Zhang Xueqing; Chen Ying

    2010-01-01

    Objective: To study the protection of vanillin derivative VND3207 on the cytogenetic damage of mouse bone marrow cell induced by ionizing radiation. Methods: BALB/c mice were randomly divided into five groups: normal control group, 2 Gy dose irradiation group, and three groups of 2 Gy irradiation with VND3207 protection at doses of 10, 50 and 100 mg/kg, respectively. VND3207 was given by intragastric administration once a day for five days. Two hours after the last drug administration, the mice were irradiated with 2 Gy γ-rays. The changes of polychromatophilic erythroblasts micronuclei (MN), chromosome aberration (CA) and mitosis index (MI) of mouse bone marrow cells were observed at 24 and 48 h after irradiation. Results: Under the protection of VND3207 at the dosages 10, 50, 100 μmg/kg, the yields of poly-chromatophilic erythroblasts MN and CA of bone marrow cells were significantly decreased (t=2.36-4.26, P<0.05), and the marrow cells MI remained much higher level compared with the irradiated mice without drug protection (t=2.58, 2.01, P<0.05). The radiological protection effect was drug dose-dependent, and the administration of VND3207 at the dosage of 100 mg/kg resulted in reduction by 50 % and 65% in the yields of MN and CA, respectively. Conclusions: VND3207 had a good protection effect of on γ-ray induced cytogentic damage of mouse bone marrow cells. (authors)

  2. A schedule to demonstrate radiation-induced sister chromatid exchanges in human lymphocytes

    International Nuclear Information System (INIS)

    Chaudhuri, J.P.

    1982-01-01

    The reciprocal interchange between the chromatids of a chromosome, termed sister chromatid exchange (SCE), is considered to be one of the most sensitive and accurate cytogenetic parameters and respond to toxic chemicals at very low doses. But the response of SCE to ionizing radiation is very poor. Human lymphocytes fail to give SCE response when irradiated at G 0 . Probably the primary lesions induced at G 0 do not remain available long enough to find expression as SCEs. Based on this assumption a schedule was developed using caffeine to demonstrate radiation induced SCEs. Following this schedule a dose-dependent increase in the frequency of radiation induced SCEs has been observed. (orig.)

  3. Cytogenetic Effects of Low Dose Radiation in Mammalian Cells Analysis of the Phenomenon Hypersensitivity and Induced Radioresistence

    CERN Document Server

    Shmakova, N L; Nasonova, E A; Krasavin, E A; Rsjanina, A V

    2001-01-01

    The induction of cytogenetic damage after irradiation of chinese hamster cells and human melanoma cells within dose range 1-200 cGy was studied. The anaphase and metaphase analysis of chromosome damage and micronuclei test were applied. The hypersensitivity (HRS) at doses below 20 cGy and the increased radioresistence at higher doses (IR) were shown with all cytogenetic criteria for both cell lines. The phenomenon of HRS/IR was reproduced in synchronic as well as in asynchronic population of chinese hamster cells. This fact shows that HRS was caused by high radiosensitivity of all cells and can not be explained by any differential sensitivity of cells in different phases of the cell cycle. So it was supposed that the increasing radioresistence is determined by the inclusion of the inducible repair processes in all cells. This conclusion agress with the fact that there was no evidence of HRS on dose-effect curves and that some part of pre-existent damage was repaired after preliminary irradiation with low dose...

  4. Cytogenetic studies in women with menstrual disturbances, working in an environment of ionizing radiation (external irradiation)

    International Nuclear Information System (INIS)

    Marinova, G.; Dimcheva, M.; Kyncheva, V.

    1976-01-01

    Cytogenetic studies of peripheral blood lymphocytes involved a sample of 30 female radiation workers with menstrual disorders from a total of 400 subjects (female physicians, laboratory technicians, and attendant personnel) included in dispensary polyclinic supervision records for a five-year period. Clinical conditions were distributed as follows: 16 patients, with oligomenorrhea; 8, with irregular bleedings; 3, with hypermenorrhea; 2, with a history of obstetric pathology; and 1, with ovarian cyst. Length of occupational experience in a radiation environment (external exposure) varied from 2 to 25 years; patient age, from 21 to 45 years. Chromosome anomalies were found in 17 of the 30 subjects investigated. Types of chromosome abnormalities detected: aneuploidy, fragments and gaps, and in one case, dicentric aberrations. Amounts of chromosome damage induced were shown to be related to years at risk. (A.B.)

  5. Cytogenetic effects of radiation from Chernobyl nuclear accident on humans and animals in the contaminated area of Belarus

    International Nuclear Information System (INIS)

    Yeliseeva, K.; Mikhalevich, L.; Kartel, N.

    1995-01-01

    Cytogenetic monitoring of amphibian and rodent populations, and children from the radio contaminated regions of the Republic of Belarus was conducted as a follow up to Chernobyl nuclear accident. A statistically significant increase in the levels of cytogenetic damage in bone marrow cells of amphibians and rodent and in peripheral blood lymphocytes of children was found. The presence of chromosome-type aberrations supports the conclusion that radiation is the causative agent. However, no direct relationship between the level of radionuclide contamination and the degree of the cytogenetic damage was found. (Author)

  6. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies - Training Materials

    International Nuclear Information System (INIS)

    2013-01-01

    These materials are designed for use at a four day training course on the application of cytogenetic dosimetry in preparedness for and response to radiation emergencies. They contain information on: (1) Basics of biological effects of ionizing radiation: Parts 1+2; (2) Basics of dosimetry; (3) dicentric assay; (4) Retrospective dosimetry by translocation analysis; (5) Premature chromosome condensation analysis; (6) Cytokinesis block micronucleus assay; (7) Applied statistics for biodosimetry; (8) Automatic analysis of chromosomal assays; (9) Biodosimetry in mass casualty events; (10) Safety of laboratory staff and quality programmes; (11) Examples of accident investigations; (12) Cytogenetic dose estimation in the criticality accident in Tokaimura; (13) Radiological accidents in Latin America; (14) Radiological accidents in Georgia. Additionally, the CD contains two working sessions with the reference materials for use and a standard training programme. This training course consists of lectures and work sessions that can easily be utilized by a State to build a basic capability in biodosimetry application in a nuclear or radiological emergency

  7. Human cytogenetic dosimetry: a dose-response relationship for alpha particle radiation from 241Am

    International Nuclear Information System (INIS)

    DuFrain, R.J.; Littlefield, L.G.; Joiner, E.E.; Frome, E.L.

    1979-01-01

    Cytogenetic dosimetry estimates to guide treatment of persons internally contaminated with transuranic elements have not previously been possible because appropriate in vitro dose-response curves specifically for alpha particle irradiation of human lymphocytes do not exist. Using well-controlled cytogenetic methods for human lymphocyte culture, an experimentally derived dose-response curve for 241 Am alpha particle (5.49 and 5.44 MeV) radiation of G 0 lymphocytes was generated. Cells were exposed to 43.8, 87.7, 175.3 or 350.6 nCi/ml 241 Am for 1.7 hr giving doses of 0.85, 1.71, 3.42 or 6.84 rad. Based on dicentric chromosome yield, the linear dose-response equation is Y = 4.90(+-0.42) x 10 -2 X, with Y given as dicentrics per cell and X as dose in rads. The study also shows that the two-break asymmetrical exchanges in cells damaged by alpha particle radiation are overdispersed when compared to a Poisson distribution. An example is presented to show how the derived dose-response equation can be used to estimate the radiation dose for a person internally contaminated with an actinide. An experimentally derived RBE value of 118 at 0.85 rad is calculated for the efficiency of 241 Am alpha particle induction of dicentric chromosomes in human G 0 lymphocytes as compared with the efficiency of 60 Co gamma radiation. The maximum theoretical value for the RBE for cytogenetic damage from alpha irradiation was determined to be 278 at 0.1 rad or less which is in marked contrast to previously reported RBE values of approx. 20. (author)

  8. Radiation-induced tumors of the nervous system

    International Nuclear Information System (INIS)

    Bernstein, M.; Laperriere, N.

    1991-01-01

    Therapeutic and nontherapeutic ionizing radiation has long been recognized as a putative carcinogenic agent, but the evidence that radiation causes tumors is circumstantial at worst and statistically significant at best. There are no distinct histological, biochemical, cytogenetic, or clinical criteria that can be used to determine if an individual tumor was caused directly by previous irradiation of the anatomic area. Additional supportive evidence for radiation-induced tumors includes a position correlation between radiation dose and tumor incidence (usually in the low dose range) and experimental induction of the same neoplasm in appropriate animal models. even if these criteria are fulfilled, coincidental development of a second tumor can never be discounted in an individual patient, particularly if there is an underlying diathesis to develop multiple tumors of different histology, such as in Recklinghausen's disease, or if there is an strong family history for the development of neoplastic disease. In this paper, the authors critically evaluate the available evidence to support the hypothesis that radiation induces tumors in the nervous system. The current concepts of radiation carcinogenesis are discussed and are followed by a discussion of animal data and clinical experience in humans. Finally, a brief discussion on treatment of radiation-induced nervous system tumors is presented

  9. The Usefulness Cytogenetic Biomarkers in Assessment of Occupational Exposure to Microwave Radiation

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2003-01-01

    In recent years there has been growing interest in the health effects of the electromagnetic radiation's designated extremely low frequency (ELF) and radiofrequency radiation (RFR). Available data on cytogenetic consequences of microwave exposure on the induction of chromosome damage are contradictory, mostly because of different experimental conditions of in vitro and in vivo studies. It has been suggested that exposure to radiofrequency radiation may have genetic effects, which predispose to the development of cancer or birth defects. For the detection of early biological effects of DNA-damaging agents, well-established cytogenetic biomarkers are used. Comet assay was also successfully introduced detection of primary DNA damage and micronucleus assay for simultaneous detection of chromosome damage and spindle disfunction. The chromatid breakage assay, allowing selection of persons with a defect in DNA repair, is also an additional marker in human biomonitoring. Susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes may reflect the way a person deals with carcinogenic challenges. The objective of the present study the assessment of primary DNA damage, chromosome and spindle disfunctions as well as the mutagen sensitivity in peripheral blood leukocytes in radar-facility workers daily exposed to microwave radiation and corresponding control. As sensitive biomarkers three endpoints were chosen: the alkaline comet assay, micronucleus assay and chromatid breakage assay (bleomycin sensitivity test). A large number of experimental and epidemiological studies have been carried out to elucidate the possible health hazards associated with human exposure to ELF or RF electromagnetic fields. The results presented here indicate that the alkaline comet assay, as reliable biomarker of exposure, can be successfully applied in study of DNA damaging effects in microwave exposed subjects. The fact that the comet assay is a microdosimetric

  10. Effect of Mercuric Nitrate on Repair of Radiation-induced DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Paneka, Agnieszka; Antonina, Cebulska Wasilewska [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-10-15

    High concentrations of mercury can cause serious damage to the nervous system, immune system, kidneys and liver in humans. And mercury is toxic to developing embryos because mercury ions can penetrate the blood.placenta barrier to reach the embryo. Studies from human monitoring of occupational exposure to mercury vapours have shown that mercury can alter the ability of lymphocytes to repair radiation-induced DNA damage. The aim of this in vitro study was to investigate, on the molecular and cytogenetic levels, the effect of exposure to mercury ions on the kinetics of the repair process of DNA damage induced by ionising radiation.

  11. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    Science.gov (United States)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  12. Function and regulation of ATF 3 expression induced by ionizing radiation

    International Nuclear Information System (INIS)

    Fan, Feiyue; Wang, Yong; Du, Liqin; Zhan, Qimin

    2008-01-01

    Full text: Ionizing radiation results in a series of damages of mammalian cells as a genotoxic stress. There are some genes expressed after cells damaged, in which ATF 3, a member of ATF/CREB family of transcription factors, is one of them. In this report, we demonstrate that ATF 3 can be induced by ionizing radiation. The induction of ATF 3 protein requires normal status of p53 function in cells. There are some quantitative relationships between ATF 3 induction and dosages of radiation or time post-irradiation. In another word, ATF 3 expression induced by ionizing radiation present dose- and time-dependent. The regulation of ATF 3 expression refers to program of promoter and transcription. Radiation induces ATF 3 expression by activating the promoter and RNA transcription. In method of tetracycline-inducible system (tet-off), we have found that over-expression of ATF 3 protein brings caspase/PARP proteins into cleavage, which induces cell programmed death, and suppresses cell growth. Meanwhile, it was found that ATF 3 expression could slow down progression of cell from G 1 to S phase. It indicates ATF 3 protein might play a negative role in the control of cell cycle progression. It is very excited that expression of ATF 3 protein did not only suppress cell growth, but also demonstrated protecting effect of cell growth suppression resulting from ionizing radiation. It is suggested that ATF 3 protein might take part in the damage repair process of cells. (author)

  13. How to identify partial exposures to ionizing radiation? Proposal for a cytogenetic method

    International Nuclear Information System (INIS)

    Fernandes, T.S.; Silva, E.B.; Pinto, M.M.P.L.; Amaral, A.; Lloyd, David

    2013-01-01

    In cases of radiological incidents or in occupational exposures to ionizing radiation, the majority of exposures are not related to the total body, but only partial. In this context, if the cytogenetic dosimetry is performed, there will be an underestimation of the absorbed dose due to the dilution of irradiated cells with non-irradiated cells. Considering the norms of NR 32 - Safety and Health in the Work of Health Service - which recommends cytogenetic dosimetry in the investigation of accidental exposures to ionizing radiations, it is necessary to develop of a tool to provide a better identification of partial exposures. With this aim, a partial body exposure was simulated by mixing, in vitro, 70% of blood irradiated with 4 Gy of X-rays with 30% of unirradiated blood from the same healthy donor. Aliquots of this mixture were cultured for 48 and 72 hours. Prolonging the time of cell culture from 48 to 72 hours produced no significant change in the yield of dicentrics. However, when only M1 (first division cells) were analyzed, the frequency of dicentrics per cell was increased. Prolonging the time of cell culture allowed cells in mitotic delay by irradiation to reach metaphase, and thus provides enough time for the damage to be visualized. The results of this research present the proposed method as an important tool in the investigation of exposed individuals, allowing associating the cytogenetic analysis with the real percentage of irradiated cells, contributing significantly for the decision making in terms of occupational health. (author)

  14. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies

    International Nuclear Information System (INIS)

    2011-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade.

  15. Cytogenetic biodosimetry using the blood lymphocytes of astronauts

    Science.gov (United States)

    George, Kerry A.; Rhone, Jordan; Chappell, Lori J.; Cucinotta, Francis A.

    2013-11-01

    Cytogenetic analysis of peripheral blood lymphocytes is the most sensitive and reliable method currently available for in vivo assessment of the biological effects of exposure to radiation and provides the most informative measurement of radiation induced health risks. Data indicates that space missions of a few months or more can induce measureable increases in the yield of chromosome damage in the blood lymphocytes of astronauts that can be used to estimate an organ dose equivalent, and biodosimetry estimates lie within the range expected from physical dosimetry. Space biodosimetry poses some unique challenges compared to terrestrial biological assessments of radiation exposures, but data provides a direct measurement of space radiation damage, which takes into account individual radiosensitivity in the presence of confounding factors such as microgravity and other stress conditions. Moreover if chromosome damage persists in the blood for many years, results can be used for retrospective dose reconstruction. In contrast to physical measurements, which are external to body and require multiple devices to detect all radiation types all of which have poor sensitivity to neutrons, biodosimetry is internal and includes the effects of shielding provided by the body itself plus chromosome damage shows excellent sensitivity to protons, heavy ions, and neutrons. In addition, chromosome damage is reflective of cancer risk and biodosimetry values can therefore be used to validate and develop risk assessment models that can be used to characterize health risk incurred by crewmembers. The current paper presents a review of astronaut biodosimetry data, along with recently derived data on the relative cancer risk estimated using the quantitative approach derived from the European Study Group on Cytogenetic Biomarkers and Health database.

  16. CytoBayesJ: software tools for Bayesian analysis of cytogenetic radiation dosimetry data.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Vinnikov, Volodymyr; Puig, Pedro; Maznyk, Nataliya; Rothkamm, Kai; Lloyd, David C

    2013-08-30

    A number of authors have suggested that a Bayesian approach may be most appropriate for analysis of cytogenetic radiation dosimetry data. In the Bayesian framework, probability of an event is described in terms of previous expectations and uncertainty. Previously existing, or prior, information is used in combination with experimental results to infer probabilities or the likelihood that a hypothesis is true. It has been shown that the Bayesian approach increases both the accuracy and quality assurance of radiation dose estimates. New software entitled CytoBayesJ has been developed with the aim of bringing Bayesian analysis to cytogenetic biodosimetry laboratory practice. CytoBayesJ takes a number of Bayesian or 'Bayesian like' methods that have been proposed in the literature and presents them to the user in the form of simple user-friendly tools, including testing for the most appropriate model for distribution of chromosome aberrations and calculations of posterior probability distributions. The individual tools are described in detail and relevant examples of the use of the methods and the corresponding CytoBayesJ software tools are given. In this way, the suitability of the Bayesian approach to biological radiation dosimetry is highlighted and its wider application encouraged by providing a user-friendly software interface and manual in English and Russian. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    Science.gov (United States)

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  18. Cytogenetic Analysis In Blood Lymphocyte From Workers Occupationally Exposed To Low Levels Of Radiation

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Mohd Rodzi Ali; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Yahaya Talib; Shafii Khamis

    2016-01-01

    Whether it comes from the ground, the sky, or medical treatment, humans are constantly exposed to ionizing radiation from the world around them. This is a normal occurrence, and has always been the case. According to the IAEA International Basic Safety Standard, the radiation dose for public is not more than 1 mSv per year. That is just an average though, and the actual figure may fluctuate widely per person depending on where they live and the medical procedures they had that year. The international standard is to allow people who work with and around radioactive material (researchers, nuclear power plant workers, X-ray technicians and others) to have exposures of not more than 20 mSv total per year. The 20 mSv annual dose is considered to be safe and not significantly increase the risk for radiation-related health effects. Biological dosimetry based on the analysis of micronuclei in the cytokinesis-block micronucleus (CBMN) assay can be used as an alternative method for scoring dicentric chromosomes in the field of radiation protection. Bio dosimetry is mainly performed, in addition to the physical dosimetry, with the aim of individual dose assessment. The aim of the present study was to perform a cytogenetic analysis in peripheral blood lymphocyte of 30 individuals occupationally exposed to low level of ionizing radiation and compare the result with 30 controls using CBMN assay. Number of bi-nucleated cell and micronuclei were scored and statistical analysis was done to see the effect of micronuclei with gender, age and occupation. In conclusion, scoring of micronuclei is a useful cytogenetic monitoring for radiation workers and assessment of genetic damage. (author)

  19. Cytogenetic changes in the liver of progeny of irradiated male rats

    Energy Technology Data Exchange (ETDEWEB)

    Kropacova, K.; Slovinska, L.; Misurova, E. [P.J. Safarik Univ., Kosice (Slovakia)

    2002-06-01

    The transgenerational transmission of radiation damage of rat genom was studied on the basis of cytogenetic changes in somatic cells (hepatocytes). It was found, that the irradiation of rat males with dose of 3 Gy of gamma radiation caused latent cytogenetic damage to the liver, which was expressed during the course of an induced proliferation of hepatocytes (by partial hepatectomy) by lower proliferative activity and a high frequency of chromosomal aberrations. In the progeny of irradiated males (in the F{sub 1} generation), the radiation damage to DNA was manifested by similar changes, i.e. by lower proliferation activity and increase in ''spontaneous'' chromosomal aberration occurrence in liver regeneration after partial hepatectomy. Irradiating the progeny of irradiated males (the total radiation load of the progeny being 3 Gy+3 Gy) caused slighter changes in compared with irradiating the progeny of non-irradiated control males (the total radiation load of the progeny being 0 Gy+3 Gy), which suggests some kind of adaptive response, which was also found in other experimental systems and parameters. An analogous course of RNA and DNA quantitative changes in the liver of the F{sub 0} and F{sub 1} generations of rats confirms the partial transmission of radiation damage of genom to the progeny. (author)

  20. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Megumi, E-mail: megumi.hada-1@nasa.gov [NASA Johnson Space Center, Houston, TX 77058 (United States); Universities Space Research Association, Houston, TX 77058 (United States); Wu Honglu; Cucinotta, Francis A. [NASA Johnson Space Center, Houston, TX 77058 (United States)

    2011-06-03

    During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations.

  1. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  2. Cytogenetic monitoring of hospital workers exposed to low-level ionizing radiation

    International Nuclear Information System (INIS)

    Bigatti, P.; Lamberti, L.; Ardito, G.; Armellino, F.

    1988-01-01

    In the present study the cytogenetic effects in hospital workers exposed to low-level radiation were evaluated. Samples of peripheral blood were collected from 63 subjects working in radiodiagnostics and from 30 subjects, working in the same hospitals, who were used as controls. A higher number of cells with chromosome-type aberrations (CA) was observed in the exposed workers vs. the controls and the difference was statistically significant (p<0.05). No correlation was, on the contrary, found between CA and years of exposure. A significant difference was observed in the incidence of cells with CA between smokers and non-smokers, but in the control group only. In contrast, in the workers exposed to ionizing radiation, the frequency of cells with CA was very similar in smokers and non-smokers. 13 refs.; 4 tabs

  3. Molecular cytogenetics of radiation-induced gene mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.; Aleksandrova, M.V.; Lapidus, I.L.; Karpovskij, A.L.

    1996-01-01

    The classical paradigm of spatially unrelated lesions for gene mutations and chromosomal exchange breakpoints induced by ionizing radiations in eukaryotic cells was re-examined in the experiments on the mapping of gamma-ray- or neutron-induced breakpoints in and outside of white (w) and vestigial (vg) genes of Drosophila melanogaster using the in situ hybridization of the large fragments of the genes under study with the polythene chromosomes of the relevant mutants. The results for the random sample of 60 inversion and translocation breakpoints analysed to date have shown that (i) 50% of them are mapped as the hot spots within big introns of both the genes, and (ii) 21 of 60 breaks (35%) are located outside of genes. It is important to note that 26% (16/60) of the breakpoints analysed are flanked by the deletions, the sizes of which vary from the quarter to a whole of the gene. It was found that the deletions flank both the inversion and translocation breakpoints and arise more often after action of neutrons than photons. An unexpectedly high frequency of the multiple-damaged w and vg mutants that have the gene/point mutation and additional, but separate, chromosome exchange (the so-called double- or triple-site mutants) has shown that the genetic danger of ionizing radiation is higher than usually accepted on the base of single gene/point mutation assessments. 11 refs., 3 figs

  4. Cytogenetic dosimetry in suspected cases of ionizing radiation occupational exposure

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A. da

    2001-01-01

    Cytogenetic dosimetry is very useful in routine as well as in serious accident situations in which exposed individuals do not wear physical dosimeters. Since 1984, the technique of cytogenetic dosimetry has been used as a routine in our laboratory at IRD/CNEN to complement the data of physical dosimetry. In the period from 1984 to 2000, 138 cases of occupational overexposure of individual dosimeters were investigated by us. In total, only in 36 of the 138 cases investigated the overexposure was confirmed by cytogenetic dosimetry. The data indicates a total confirmation index of just 26% of the suspected cases.(author)

  5. Radiation induces invasiveness of pancreatic cancer via up-regulation of heparanase

    International Nuclear Information System (INIS)

    Lerner, I.; Bensoussan, E.; Meirovitz, A.; Elkin, M.; Vlodavsky, I.

    2013-01-01

    The full text of the publication follows. Pancreatic cancer is one of the most aggressive neoplasms with an extremely low survival rate. Because most pancreatic carcinoma patients miss the opportunity for complete surgical resection at the time of diagnosis, radiotherapy remains a major component of treatment modalities. However, pancreatic cancer often shows resistance to radiation therapy. Ionizing radiation (IR)-induced aggressiveness is emerging as one of the important mechanisms responsible for the limited benefit of radiation therapy in pancreatic cancer, but the identity of downstream effectors responsible for this effect remains poorly investigated. Here we report that IR promotes pancreatic cancer aggressiveness through up-regulation of the heparanase. Heparanase is a predominant mammalian enzyme capable of degrading heparan sulfate (HS), the main polysaccharide component of the basement membrane and other types of extracellular matrix (ECM). Cleavage of HS by heparanase leads to disassembly of ECM, enables cell invasion, releases HS-bound angiogenic and growth factors from the ECM depots, and generates bioactive HS fragments. We found that clinically relevant doses of IR augment invasive ability of pancreatic cells in vitro and in vivo via induction of heparanase. Our results indicate that the effect of IR on heparanase expression is mediated by Egr1 transcription factor. Moreover, specific inhibitor of heparanase enzymatic activity abolished IR-induced invasiveness of pancreatic carcinoma cells in vitro, while combined treatment with IR and the heparanase inhibitor, but not IR alone, attenuated ortho-topic pancreatic tumor progression in vivo. The proposed up-regulation of heparanase by IR represents a new molecular pathway through which IR may promote pancreatic tumor aggressiveness, providing explanation for the limited benefit from radiation therapy in pancreatic cancer. Our research is expected to offer a new approach to improve the efficacy of

  6. A comparison of physical and cytogenetic estimates of radiation dose in patients treated with iodine-131 for thyroid carcinoma

    International Nuclear Information System (INIS)

    Lloyd, D.C.; Purrott, R.J.; Dolphin, G.W.; Horton, P.W.; Halnan, K.E.; Scott, J.S.; Mair, G.

    1976-01-01

    Physical and cytogenetic estimates of the whole-body radiation doses have been compared in 11 patients receiving large doses of iodine-131 for the treatment of thyroid carcinoma. The physical estimate was based on the measurement of thyroid uptake, of the plasma activity variation, and of urinary activity. The cytogenetic estimate was obtained from the analysis of chromosome aberrations in peripheral blood lymphocytes. Good agreement between the estimates was observed in patients whose thyroid glands had previously be ablated by radioiodine. In patients who had varying degrees of thyroid function, there were considerable differences between the estimates with the cytogenetic value always being higher. It is suggested that these differences might be due in part to non-uniform irradiation of lymphocytes by local sources of activity in the thyroid and in the liver. (author)

  7. Radiation cytogenetic in vitro studies on human donors in the development of a suitable biological dosimeter

    International Nuclear Information System (INIS)

    Barjaktarovic, N.

    1988-02-01

    The final report is on the work carried out under the Agency research contract 3173/RB entitled ''Radiation cytogenetic in vitro studies on human donors in the development of a suitable biological dosimeter'', at the Clinical Hospital Centre ''Zvezdara'' in Belgrade, Yugoslavia. In co-operation and co-ordination dissemination with an international team of cytogeneticists under the IAEA CRP, the development of a suitable biological dosimetry system has been accomplished at the national institute to assist reliably in the absorbed radiation-dose assessment of accidentally-over-exposed personnel. The quantitative yield of asymmetrical chromosomal aberrations, such as dicentrics, rings and fragments consequent to exposure(s) to radiation overdose, help in such estimation of vital prognostic and radiation protection significance. This biological dosimeter system is particularly essential where the exposed person was not wearing any physical dosemeter during the accident. Prerequisite for implementation of an effective biological dosimetry is the availability of a reliable standard dose-response curve and an adherence to a protocol for lymphocytic chromosome analysis in first division phase of lymphocytes. The validation of the reported biological dosimeter is established through its successful analysis of a simulated over-exposure incident, with the associated error of less than 10%. Analytical cytogenetic methods for whole- and part-body acute exposures have been discussed. Part of the results have been reported in the publications under the CRP concerned

  8. Radiation and genetic consequences of ionizing radiation on population of Pinus sylvestris L. within the zone of the Chernobyl NPP

    International Nuclear Information System (INIS)

    Fedotov, I.S.; Kal'chenko, V.A.; Igonina, E.V.; Rubanovich, A.V.

    2006-01-01

    Main results of the nineteen year monitoring of genetic radiation effects of ionizing radiations on pines of forest plantation in the zone of the Chernobylsk NPP accident are presented. It is shown that the acute ionizing irradiation at radiation doses >1 Gy induces the formation of morphosis and depressed growth, and at doses >2 Gy, the reproductive ability of pines is declined. The radiobiological parameters have practically linear dose-dependence relationship. The acute irradiation at dose of 0.5 Gy induces cytogenetic and genetic effects that are significantly higher than corresponding control values. The relationship between the cytogenetic effects and the absorbed dose is exponential. The dependence of mutation frequency at specific loci on the absorbed dose is described by a nonlinear curve. The results of the cytogenetic analysis of seedlings obtained from seeds annually collected in zones of slight, moderate and strong damages of pines are presented [ru

  9. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual’s working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  10. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  11. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  12. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Chinese Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  13. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  14. Monitoring of DNA and cytogenetic damage in lymphocytes from persons with skin cancer diseases

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Krasnowolski, S.; Wierzewska, A.; Budzanowska, E.

    1999-01-01

    There is a lot of interest in the studies that would help to understand whether there is a casual association between cancer and various types of molecular or cytogenetic damage detected in human cells. One major oncogenesis process is activation of proto-oncogenes by point mutations or chromosomal translocation. There are substantial evidence that indicates that the loss of heterozygosity of certain chromosomes is involved in human cancerogenesis. Our study aimed to elicit the possible association between cancer and DNA and cytogenetic abnormalities induced in lymphocytes of people bearing various categories of skin cancer cells. Fresh blood was collected by venipuncture from 25 individuals (including nine prior to cancer treatment). All patients were nonsmoking males, however 42.3 % of them were former smokers. Blood samples were divided into two parts and in the first part of samples cytogenetic studies were performed immediately, while from the second part lymphocytes were isolated and stored at -70 o C for further studies in vitro. In the later one a single cell gel electrophoresis assay (SCGE) known as a Comet assay was performed to study individual susceptibility to the induction of DNA damage by UV or radiation and to estimate variability in cellular repair capabilities. An average of 220 per sample of good metaphase spreads in the first mitotic division, and 100 per sample in the second division, were accepted for analysis of cytogenetic damage. Chromosome and chromatid type aberrations were scored in the cells in the first mitosis and expressed as total aberration frequency including gaps and excluding gaps. Sister chromatid exchanges, high frequency cells and proliferative rate index were screened and evaluated in the second mitosis. Each of the patient revealed exceeding in at least one of the cytogenetic biomarkers level from the biomarker's level detected in a reference group. In order to estimate susceptibility of people to environmentally induced

  15. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    Science.gov (United States)

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  16. Radiation-induced bystander effect: The important part of ionizing radiation response. Potential clinical implications

    Directory of Open Access Journals (Sweden)

    Maria Wideł

    2009-08-01

    Full Text Available It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the “bystander effect” or “radiation-induced bystander effect” (RIBE. This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy, but also after conventional irradiation (X-rays, gamma rays at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not defi nitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effectmay have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation fi eld and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The

  17. A cytogenetic bio-monitoring of industrial radiographers occupationally exposed to low levels of ionizing radiation by using CBMN assay

    International Nuclear Information System (INIS)

    Shakeri, Mahsa; Changizi, Vahid; Zakeri, Farideh; Rajabpour, Mohammad Reza; Farshidpour, Mohammad Reza

    2017-01-01

    Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. The average annual effective dose in industrial radiography is one of the highest among radiation workers. The aim of this study was to investigate the cytogenetic effects of ionizing radiation in the peripheral blood lymphocytes of 60 industrial radiographers and 40 non-exposed individuals as the control group by using cytokinesis-block micronucleus (CBMN) assay. Totally, the frequencies of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) were significantly higher in the industrial radiographers than in the controls (p = 0.000). The mean MN frequency per 1000 binucleated cells in the industrial radiographers with last 5-y radiation dose of >100 mSv was significantly higher than those with ≤100 mSv (34.81 ± 12.70 vs. 26.33 ± 7.940, p = 0.024). The effect of age was observed in the control group and subjects with the age of >30 y showed significantly higher MN frequency compared with the subjects with the age of ≤30 y (9.45 ± 3.710 vs. 6.81 ± 3.050, p = 0.02). No obvious trend of increased MN as a function of either duration of employment or age or smoking status was observed in the industrial radiographers. The results show the increased levels of cytogenetic damages in the industrial radiographers. Even the workers exposed to the permissible doses are subjected to elevated frequencies of DNA damages. These findings confirm the importance of cytogenetic bio-monitoring program beside physical dosimetry, surveying radiation safety of equipment and periodic training of workers for improvement of safety and radiation protection. (authors)

  18. Monitoring of DNA and cytogenetic damage in lymphocytes in patients with skin cancer disease

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Krasnowolski, S.; Wierzewska, A.; Budzanowska, E.

    1999-01-01

    One major oncogenesis process is activation of proto-oncogenes by point mutations or chromosomal translocations. There is substantial evidence that indicates that human carcinogenesis involves loss of heterozygosity of certain chromosomes. Our study aimed at searching the possible association between cancer and DNA and cytogenetic abnormalities induced in lymphocytes of people with various categories of skin cancer cells. Fresh blood was collected by venepuncture from 25 individuals (including nine prior to cancer treatment). All patients were nonsmoking males, however 42.3% of them were former smokers. Blood samples were divided into two parts; in the first part of samples cytogenetic studies were performed immediately, while lymphocytes from the other part were isolated and stored at -70 0C for further studies in vitro. A single cell gel electrophoresis assay (SCGE), known as a Comet assay, was performed on them to study individual susceptibility to the induction of DNA damage by UV or radiation and to estimate variability in cellular repair capabilities. On average 220 good metaphase spreads per sample in the first mitotic division, and 100 spreads per sample in the second division were accepted for analysis of the cytogenetic damage. Chromosome and chromatid type aberrations were scored in the cells in the first mitosis, and expressed as total aberration frequency including and excluding gaps. Sister chromatid exchanges , high frequency cells and proliferating rate index were screened and evaluated in the second mitosis. Each patient showed a level exceeding (in at least one of the cytogenetic biomarker) the biomarker level in a reference group. In order to estimate susceptibility of people to environmentally induced damage, the isolated lymphocytes were irradiated with 2 Gy dose of X-rays or 6 J/m 2 of UV radiation, and the single cell gel electrophoresis (SCGE assay) was performed. To compare various individual capabilities to repair the induced damage

  19. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  20. A cytogenetic biomonitoring of industrial radiographers occupationally exposed to low levels of ionizing radiation by using cbmn assay.

    Science.gov (United States)

    Shakeri, Mahsa; Zakeri, Farideh; Changizi, Vahid; Rajabpour, Mohammad Reza; Farshidpour, Mohammad Reza

    2017-06-15

    Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. The average annual effective dose in industrial radiography is one of the highest among radiation workers. The aim of this study was to investigate the cytogenetic effects of ionizing radiation in the peripheral blood lymphocytes of 60 industrial radiographers and 40 non-exposed individuals as the control group by using cytokinesis-block micronucleus (CBMN) assay. Totally, the frequencies of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) were significantly higher in the industrial radiographers than in the controls (p = 0.000). The mean MN frequency per 1000 binucleated cells in the industrial radiographers with last 5-y radiation dose of >100 mSv was significantly higher than those with ≤100 mSv (34.81 ± 12.7‰ vs. 26.33 ± 7.94‰, p = 0.024). The effect of age was observed in the control group and subjects with the age of >30 y showed significantly higher MN frequency compared with the subjects with the age of ≤30 y (9.45 ± 3.71‰ vs. 6.81 ± 3.05‰, p = 0.02). No obvious trend of increased MN as a function of either duration of employment or age or smoking status was observed in the industrial radiographers. The results show the increased levels of cytogenetic damages in the industrial radiographers. Even the workers exposed to the permissible doses are subjected to elevated frequencies of DNA damages. These findings confirm the importance of cytogenetic biomonitoring program beside physical dosimetry, surveying radiation safety of equipment and periodic training of workers for improvement of safety and radiation protection. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Molecular analysis of radiation-induced mutations in vitro

    International Nuclear Information System (INIS)

    Kronenberg, A.

    1996-01-01

    This review will focus on the nature of specific locus mutations detected in mammalian cells exposed in vitro to different types of ionizing radiations. Ionizing radiation has been shown to produce a wide variety of heritable alterations in DNA. These range from single base pair substitutions to stable loss or translocation of large portions of whole chromosomes. Data will be reviewed for certain test systems that reveal different mutation spectra. Techniques for the analysis of molecular alterations include applications of the polymerase chain reaction, some of which may be coupled with DNA sequence analysis, and a variety of hybridization-based techniques. The complexity of large scale rearrangements is approached with cytogenetic techniques including high resolution banding and various applications of the fluorescence in situ hybridization (FISH) technique. Radiation-induced mutant frequencies and mutation spectra are a function of the linkage constraints on the recovery of viable mutants for a given locus and test system. 44 refs

  2. Adaptive response induced by occupational exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Barquinero, J.F.; Caballin, M.R.; Barrios, L.; Murtra, P.; Egozcue, J.; Miro, R.; Ribas, M.

    1997-01-01

    We have found a significant decreased sensitivity to the cytogenetic effects of ionizing radiation (IR) and bleomycin (BLM) in lymphocytes from individuals occupationally exposed to IR when compared with a control population. These results suggest that occupational exposures to IR can induce adaptive response that can be detected by a subsequent treatment by IR or by BLM. However, no correlation between the results obtained with both treatments was observed. A great heterogeneity in the frequencies of chromatid aberrations induced by BLM was observed. The study of the influence of different harvesting times showed that there was no correlation with the frequencies of chromatid breaks. Our results indicate that the use of BLM to detect adaptive response has several difficulties at the individual level. (author)

  3. Molecular and cytogenetic characterization of radon-induced lung tumors in the rat

    International Nuclear Information System (INIS)

    Dano, Laurent

    2000-01-01

    Radon is a natural radioactive gas. This radioelement, which is an α-particle emitter, is omnipresent in the environment. Inhalation of atmospheric radon is the major exposure route in man of natural radioactivity which results in respiratory tract contamination. An increased lung cancer risk associated with radon inhalation has been shown both in humans and animals by epidemiological and experimental studies, respectively. In rats, characterization of dose-effect relationships has led to the construction of statistical models that may help theoretically in the prediction of human health involvements of both occupational and domestic chronic exposure to radon. However, little is known about the cellular and molecular mechanisms of radon-induced lung carcinogenesis. In the laboratory, a model of lung cancers induced in rats after radon inhalation is available. This model represents a good tool to identify and characterize the genetic events contributing to the development of radon-induced lung tumors. Carrying out a global approach based on the combined use of classical and molecular cytogenetic methods, the analysis of 17 neoplasms allowed the identification of chromosomal regions frequently altered in these tumors. Numerous similarities have been found between our results and the cytogenetic data for human lung cancers, suggesting common underlying genetic molecular mechanisms for lung cancer development in both species. Moreover, our study has allowed to point to tumor suppressor genes and proto-oncogenes potentially involved in radon-induced lung carcinogenesis. Thus, our results may aid further molecular studies aimed either at confirming the role of these candidate genes or at demonstrating the involvement of yet to be identified genes. (author) [fr

  4. Cytogenetic Damages Induced by Chronic Exposure to Microwave Non-Ionizing Radiofrequency Fields

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2013-12-01

    Full Text Available Non-ionizing radiation has a significant and positive impact on modern society through a number of uses. There is increasing public concern regarding the health risks of radio-frequency (RF radiation, particularly that produced by mobile phones. Concern regarding the potential risks of exposure to EMFs has led to many epidemiological investigations, but the effects of EMF exposure on human and other mammalian cells are still unclear. One of the most frequently asked questions about the effects of microwave radiation on biological systems is whether they produce genotoxic effects and could be there a possible link with oncogenic processes. It is most difficult to get accurate and reproducible results for the studies that tell us most about the effects of EMF on humans. Based on some “weak” evidence suggesting an association between exposure to radiofrequency fields (RF emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as ‘possibly carcinogenic to humans’ in group 2B. Literature results suggest that pulsed microwaves from working environment can be the cause of genetic and cell alterations. Taken together, the increased frequency of DNA damages, increased intensity of oxydative stress and production of reactive oxygen species as well as prolonged disruption in DNA repair mechanisms could be possible mechanisms for microwave induced cytogenetic damages even at low-level electromagnetic fields. Although there were contradictory results about harmful effects of electromagnetic fields we recommend that the mobile phone should be kept as far as possible from the body during conversations and also during usual daily activities to reduce the absorption of radiation by cells. In addition, the appropriate intake of antioxidant-rich food or drugs may be helpful for preventing the genotoxic effects that could be caused by mobile phone use.

  5. Detection of radioiodine-induced cytogenetic alterations in circulating lymphocytes of thyroid patients

    Energy Technology Data Exchange (ETDEWEB)

    Kasuba, V [Inst. for Medical Recearch and Occupational Health, Zagreb (Croatia). Laboratory for Mutagenesis; Konrady, A; Koeteles, G J [Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest (Hungary); Kusic, Z [Clinical Hospital Sestre Milosrdnice, Zagreb (Croatia). Dept. of Oncology and Nuclear Medicine

    1994-10-01

    Radioiodines are often used for experimental purposes and for diagnosis and therapy in clinical practice. Human population might also be exposed to radioiodines in nuclear accidents. The ionizing energy of radioiodine affects not only the thyroid where it concentrates but also other tissues, especially the lymphocytes during their circulation through and around the gland containing the radioisotopes. Therefore, it seemed to be of interest to carry out investigations concerning the cytogenetic alterations in blood lymphocytes of patients treated with iodine-131. The method of choice was the relatively easily performable micronucleus assay in cytokinesis-blocked cultures of human peripheral lymphocytes. The test was performed on blood samples of 30 patients before the radioisotope treatment and one, two and four days after, one as well as 6 and - in a few cases - 12 weeks later. The amounts of iodine-131 injected were dependent on the clinical practices to reach the therapeutic radiation doses for hyperthyroidism and adenomas and were in the range of 220 and 5180 MBq. it was observed that the micronucleus frequency increased in the treated hyperthyroid patients while in patients with toxic adenomas the radioiodine did not result in an increase or even as compared to the pretreatment values in a few cases decreased values were seen. The results suggest individual differences in radiosensitivity as well as that the frequency of cytogenetic alterations depend on the physiological or pathological conditions of the thyroid. The significance of this observation will be discussed for dose assessments by cytogenetic techniques due to internal radioiodine. (author).

  6. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  7. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  8. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  9. Effect of low dose radiation in lymphocytes from children exposed to ionizing radiation after the Chernobyl accident. Cytogenetic, chromosome painting, GPA and adaptive response studies

    International Nuclear Information System (INIS)

    Padovani, L.; Appolloni, M.; Anzidei, P.; Spano, M.; Stronati, L.; Testa, A.; Mauro, F.

    1997-01-01

    The present study concerns the monitoring of some children coming from Byelorussian, Ukrainian and Russian republics, exposed to the fall-out, or to the initial acute dose of radiation with the aim of assessing the effects of ionizing radiation on human health and of verifying the persisting of chromosomal damage several years after the accident. Both structural chromosomes damage (conventional cytogenetic and chromosome painting) and molecular mutation (GPA) have been investigated, moreover the possible induction of an adaptive response has been tested. (author)

  10. Cytogenetic biodosimetry: what it is and how we do it.

    Science.gov (United States)

    Wong, K F; Siu, Lisa L P; Ainsbury, E; Moquet, J

    2013-04-01

    Dicentric assay is the international gold standard for cytogenetic biodosimetry after radiation exposure, despite being very labour-intensive, time-consuming, and highly expertise-dependent. It involves the identification of centromeres and structure of solid-stained chromosomes and the enumeration of dicentric chromosomes in a large number of first-division metaphases of cultured T lymphocytes. The dicentric yield is used to estimate the radiation exposure dosage according to a statistically derived and predetermined dose-response curve. It can be used for population triage after large-scale accidental over-exposure to ionising radiation or with a view to making clinical decisions for individual patients receiving substantial radiation. In this report, we describe our experience in the establishment of a cytogenetic biodosimetry laboratory in Queen Elizabeth Hospital, Hong Kong. This was part of the contingency plan for emergency measures against radiation accidents at nuclear power stations.

  11. SN-38 Acts as a Radiosensitizer for Colorectal Cancer by Inhibiting the Radiation-induced Up-regulation of HIF-1α.

    Science.gov (United States)

    Okuno, Takayuki; Kawai, Kazushige; Hata, Keisuke; Murono, Koji; Emoto, Shigenobu; Kaneko, Manabu; Sasaki, Kazuhito; Nishikawa, Takeshi; Tanaka, Toshiaki; Nozawa, Hiroaki

    2018-06-01

    Hypoxia offers resistance to therapy in human solid tumors. The aim of the study was to investigate whether SN-38, the active metabolite of irinotecan, acts as a radiosensitizer through inhibition of hypoxia-inducible factor (HIF)-1α in the human colorectal cancer (CRC) cells. HT29 and SW480 cells were cultured with SN-38 (0-4 μM) immediately after irradiation (0-8 Gy). HIF-1α expression was assessed using flow-cytometry and western blot analysis. Cell proliferation was evaluated by the calcein assay. Apoptosis and cell cycle were determined by flow-cytometry. Radiation up-regulated HIF-1α, and SN-38 inhibited the radiation-induced HIF-1α. The combination of radiation and SN-38 inhibited cell proliferation more than radiation alone; treatment with SN-38 after radiation exposure did not increase the number of apoptotic cells, whereas, it enhanced the S and G 2 /M cell-cycle arrest and decreased the population of cells in G 1 Conclusion: SN-38 inhibits the radiation-induced up-regulation of HIF-1α and acts as a radiosensitizer by inducing cell-cycle arrest in CRC cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. The Possible Protective Role of Curcumin against Radiation Induced Cytogenetic Damages in Mice

    International Nuclear Information System (INIS)

    Hassan, M.R.M.

    2014-01-01

    This study was undertaken to investigate the effect of curcumin on radiation induced damages in albino male mice. Animals were injected intraperitoneally with 20 mg/kg body weight curcumin 30 minutes prior to whole body gamma-irradiation (4Gy). Animals were sacrificed after 1, 3 and 7 days of the irradiation. The possible radioprotective effect of curcumin on bone marrow chromosomes, DNA fragmentation, superoxide dismutase (SOD) activity, reduced glutathione (GSH) content, malondialdehyde (MDA) level, total free radicals in spleen, and peripheral blood differential count was examined at the different time intervals of the experiment. Radiation exposure resulted in a statistically significant elevation in the percentage of the aberrant metaphases, total amount of chromosomal damage, percentage of the DNA fragmentation, (MDA) level, decline in the activities of (SOD) and (GSH) contents, at 1, 3 and 7 days post-irradiation, elevation in the total free radicals one day post-irradiation and percentage of the total number of normal and abnormal white blood cells after 1, 3 days of irradiation specially the abnormal lymphocytes and neutrophils. Curcumin showed a clastogenic effect that it caused elevation of the total number of aberrant cells, structural and numerical aberrant cells after 1 and 3 days of the experiment. Moreover, curcumin caused a decline in the liver (GSH) content after 1, 3 and 7 days of the experiment. On the other hand, intraperitoneal injection of curcumin before irradiation didn‘t show any protective effect on the total aberrant cells and structural aberrant cells induced by irradiation, liver (GSH) content and the percentage of the DNA fragmentation, liver (MDA) level and number of abnormal leukocytes. In contrast, it showed potentiating effect on the numerical type aberrations especially endomitosis after one day post-irradiation. In addition, elevation in the percentage of the total free radicals induced by curcumin 3 and 7 days post

  13. Possible individual variation in susceptibility to radiation-induced genetic changes

    International Nuclear Information System (INIS)

    Gentner, N.E.; Walker, J.A.

    1990-01-01

    Several studies have shown variation between individuals in radiosensitivity. A person could have a high level of cytogenetic indicator because of high exposure or high susceptibility. To relate spontaneous cytogenetic end-points to dose it is advisable to have a measure of both the spontaneous level and of induced susceptibility. These end points need to be compared in irradiated persons who have developed cancer versus those who have not, as a guide to what end points are appropriate for susceptibility to radiogenic cancer. The use of inbred rodent strains may not be appropriate to derive specific locus mutation data relevant to the human situation, in which large differences in susceptibility appear to exist. Variability in response because of differential DNA repair capacity should be kept in mind when evaluating existing human data. For accident situations, using acute exposures for testing susceptibility may be appropriate, but to be relevant to low dose, low dose rate exposures, more use of protracted dose delivery in testing is recommended. There is a need for international collaborative study where these different tests are done on the same donors at the same time. It might now be prudent for radiation protection to take into account the occurrence of critical groups in the population on the basis of their increased radiation sensitivity. (12 refs., 3 figs.)

  14. Dynamics of cytogenetic indexes of agriculture animals dwelling on the Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Mukusheva, M.K.; Sejsebaev, A.T.; Karabalin, B.K.; Tusupbaev, V.I.; Zhapbasov, R.Zh.

    2001-01-01

    Aim of the work is analysis of genetic processes taking place in the agricultural animal populations exposed to constant radiation due to increased radiation background in their dwelling places. By the cytogenetic methods the sheep, cattle and horses were examined. It was revealed cytogenetic effect manifested in form of a high genome genetic instability level for studied animals. It is suggested, that the effect is caused with low chronic ionizing radiation doses exposure on the agricultural animals somatic cells

  15. Cytogenetic analysis for radiation dose assessment in the medical nuclear workers

    International Nuclear Information System (INIS)

    Milacic, S.; Jovicic, D.; Rakic, B.; Djokovic, J.

    2009-01-01

    Radionuclide is used in medicine for laboratory research, laboratory testing for enzymes, hormones, medicines in vitro and in vivo in nuclear medicine (NM) for the diagnosis and treatment of diseases. Commissioners, who performed the application radionuclide (RN), are nuclear medicine specialists, senior medical and radiological technicians, nurses and laboratory technicians. They are daily exposed to ionizing irradiations, from outside sources, as well as inside if they were to contamination. Medical nuclear workers (MNW) are exposed to ionizing irradiation, working with radio nuclides. MNW are periodically reviewed for contamination verified. Cytogenetic analysis of peripheral-blood lymphocytes (Ly) is the most sensitive tests for detecting a clinical biologic response to ionizing radiation. The frequency of chromosomal aberrations (f ca) in peripheral circulating lymphocytes (Ly) correlates with the dose received. (author) [sr

  16. Radiation exposure and chromosome abnormalities. Human cytogenetic studies at the National Institute of Radiological Sciences, Japan, 1963-1988

    International Nuclear Information System (INIS)

    Ishihara, T.; Kohno, S.; Minamihisamatsu, M.

    1990-01-01

    The results of human cytogenetic studies performed at the National Institute of Radiological Sciences (NIRS), Chiba, Japan for about 25 years are described. The studies were pursued primarily under two major projects: one involving people exposed to radiation under various conditions and the other involving patients with malignant diseases, especially leukemias. Whereas chromosome abnormalities in radiation-exposed people are excellent indicators of radiation exposure, their behavior in bone marrow provide useful information for a better understanding of chromosome abnormalities in leukemias and related disorders. The role of chromosome abnormalities in the genesis and development of leukemia and related disorders is considered, suggesting a view for future studies in this field

  17. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents

    International Nuclear Information System (INIS)

    Khvostunov, I.K.; Ivannikov, A.I.; Skvortsov, V.G.; Golub, E.V.; Nugis, V. Yu.

    2015-01-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation. (authors)

  18. Classic and molecular cytogenetic analysis regarding human reactivity to beta radiation

    International Nuclear Information System (INIS)

    Usurelu Daniela; Radu Irina; Gavrila Lucian; Cimponeriu Danut; Apostol Pompilia; Ahmadi Elham

    2007-01-01

    Complete text of publication follows. One of the most important mutagen agents in developing different types of cancer is the action of ionizing radiation. The main events induced by irradiation are: chromosome breakage, chromosome rearrangements and genomic instability. The chromosomal aberrations are very useful biomarkers as intermediate end points in evaluating harmful biological effects of ionizing radiation. So, the main objectives of this work were: the study of human genome reactivity to beta radiation by classic microscopy; the study of the integrity/modification of the telomeres after irradiation and the analysis of the amplification of the RNA telomerase compound by FISH technique. Irradiations were performed at Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania. The samples were irradiated using an ALIN 10 linear electron accelerator. ALIN 10 is a travelling wave type linac operating at 2.998 GHz, 6.5 MeV mean energy, with a 0.1 mm Al foil exit window. Improved Fricke, ferrous sulphate, cupric sulphate and sulphuric acid in triple distilled water dosimetry system has been used to perform preliminary dose measurements. The conventional Hungerford method on short-term cultures for 72 hrs was adapted for human chromosome investigation. The peripheral blood was collected from aged 27, healthy, non-smoker donor. The doses used to irradiate human blood cultures were: 4, 6, 8 and 10 Gy. The slides for optic microscopy were prepared by air-drying and stained with a 10% Giemsa solution. For FISH technique was used Chromosome In Situ Hybridization Kit. The probes were: one satellite probe - for revealing the telomere and the second one for the RNA telomerase compound. A large spectrum of chromosomal rearrangements was induced by beta irradiation in humans in vitro: complex chromosomal interchange involving at least two nonhomologous chromosomes, double minutes (DM), acentric fragments

  19. Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship.

    Science.gov (United States)

    Geras'kin, Stanislav A; Oudalova, Alla A; Kim, Jin Kyu; Dikarev, Vladimir G; Dikareva, Nina S

    2007-03-01

    The induction of chromosome aberrations in Hordeum vulgare germinated seeds was studied after ionizing irradiation with doses in the range of 10-1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose was found to be nonlinear. A dose-independent plateau in the dose range from about 50 to 500 mGy was observed, where the level of cytogenetic damage was significantly different from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexity, using the most common quantitative criteria, demonstrated the advantage of a piecewise linear model over linear and polynomial models in approximating the frequency of cytogenetical disturbances. The results of the study support the hypothesis of indirect mechanisms of mutagenesis induced by low doses. Fundamental and applied implications of these findings are discussed.

  20. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  1. Non-linearity of dose-effect relationship at low level exposure on the example of cytogenetic effects in plant cells

    International Nuclear Information System (INIS)

    Oudalova, A.A.; Geras'kin, S.A.; Dikarev, V.G.; Dikareva, N.S.; Chernonog, E.V.

    2007-01-01

    Complete text of publication follows. There has been an increasing concern in the current scientific society and among the public about the need to protect the environment in order to maintain the ecosystem sustainability and future well-being of man. The linear non-threshold (LNT) hypothesis as the most officially acknowledged concept of biological effect of radiation fails to explain many facts on effects at low level exposures (LLE) accumulated lately. Available information on the dose-effect relationship at low doses is scarce and incomplete for non-human species despite the fact that, under conditions of increased radiation exposure, some biota species occur at a risk of higher impact than humans because of differences in ecological niches occupied. Dose-effect relationships for cytogenetic damage in the range of LLE are studied in a series os experiments with plant (Hordeum vulgare L.) meristem cells. Dose-effect dependences obtained show an obvious non-linear behavior in the LLE region. A piecewise linear model (PLM) for dose-cytogenetic effect relationship that considers an existence of dose-independent part at LLE ('plateau') is developed and specified on the data obtained. An advantage of the PLM over linear model in approximating the frequency of cytogenetic disturbances is demonstrated. From an empirical probability distribution analysis, it is shown that the increase in cytogenetic damage level is tightly connected with changes in a process of absorbed energy distribution between target volumes in terms of fraction of cells experienced a radiation hit event. An appropriateness of the LNT hypothesis to the description of cytogenetic disturbances yield in plant meristem cells in the LLE region is discussed. The results support a conclusion about indirect mechanism of mutagenesis induced by low doses. New data obtained concern a perception of fundamental mechanisms governing cell response to LLE. These findings are of general biological interest, since

  2. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  3. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  4. Cytogenetic chromosomal aberration dosimetry method after radiation accidents and prognostic significance of stereotypically appearing chromosomal aberrations after radiation exposure

    International Nuclear Information System (INIS)

    Bloennigen, K.A.

    1973-01-01

    The paper reports on a radiation accident involving an Iridium-192 rod of an activity of 7.8 Ci and a size of 2 x 2 x 2 mm 3 . The radiation source had remained in direct contact with the left hip and elbow of the examined person for a period of 45 minutes. On the points that had been directly exposed, physical values of 5,000 rad and 10,000 rad were measured while the whole-body dose was 100-200 rad and the gonad dose 300-400 rad. These values were confirmed by observations of the clinical course and haematological and andrological examinations. Chromosome analysis of lymphocytes produced values between 100 and 125 and thus a significant agreement with the values determined by physical methods. The findings suggest that the relatively simple and fast method of cytogenetic dosimetry provides a useful complementary method to physical dosimetry. (orig./AK) [de

  5. Radiation regulation

    International Nuclear Information System (INIS)

    Braithwaite, J.; Grabosky, P.

    1985-01-01

    The five main areas of radiation regulation considered are radiation exposure in the mining of uranium and other minerals, exposure in the use of uranium in nuclear reactors, risks in the transport of radioactive materials and hazards associated with the disposal of used materials. In Australia these problems are regulated by mines departments, the Australian Atomic Energy Commission and radiation control branches in state health departments. Each of these instutional areas of regulation is examined

  6. Cytogenetic analysis and response to ionizing radiations in a girl with severe muscular dystrophy

    International Nuclear Information System (INIS)

    Meola, G.; Barsi, L.; Velicogna, M.; Scarlato, G.; Fuhrman-Conti, A.M.

    1988-01-01

    Duchenne Muscular Dystrophy (DMD) is a severe X-linked condition characterized by a progressive degeneration of skeletal muscle. Mild clinical symptoms have been reported in female carriers of the DMD gene with normal karyotypes, this occurs in about 8% of DMD carriers. The degree of manifestation ranges from pseudohypertrophy of the calf muscles to moderate myopathy with proximal muscle wasting and weakness. Such manifestations can be explained on the basis of preferential inactivation of the X chromosome bearing the normal allele. The authors describe the cytogenetic analysis and the response to ionizing radiations in a severely affected girl exhibiting clinical, neurophysiological, biochemical, and histological findings of DMD

  7. A new Bayesian model applied to cytogenetic partial body irradiation estimation

    International Nuclear Information System (INIS)

    Higueras, Manuel; Puig, Pedro; Ainsbury, Elizabeth A.; Vinnikov, Volodymyr A.; Rothkamm, Kai

    2016-01-01

    A new zero-inflated Poisson model is introduced for the estimation of partial body irradiation dose and fraction of body irradiated. The Bayes factors are introduced as tools to help determine whether a data set of chromosomal aberrations obtained from a blood sample reflects partial or whole body irradiation. Two examples of simulated cytogenetic radiation exposure data are presented to demonstrate the usefulness of this methodology in cytogenetic biological dosimetry. (authors)

  8. Field observations of the effects of protracted low levels of ionizing radiation on natural aquatic population by using a cytogenetic tool

    International Nuclear Information System (INIS)

    Florou, H.; Tsytsugina, V.; Polikarpov, G.G.; Trabidou, G.; Gorbenko, V.; Chaloulou, C.H.

    2004-01-01

    In the present study, an effort is attempted to record the impact of chronic radiation on natural aquatic populations exposed to protracted doses (lower if compared to intervention levels but higher if compared to typical background) and to chemical pollution. The methodology is based on the analyses of chromosome aberrations observed in cells. Therefore, some preliminary research results on the cytogenetic effects on aquatic organisms of various taxa, in coastal ecosystems are presented, considering some selective regions of elevated natural gamma radiation and conventional pollution. These areas are the geothermal spring areas in the island of Ikaria--Eastern Aegean Sea and the port of Pireus, in Greece. The data are compared to the findings recorded in some organisms collected from the North Aegean Sea the early period after the Chernobyl accident. With regard to the different species examined, a first evaluation of the results is made using the reported field findings for the wide area of Chernobyl. The environmental assessment of the studied areas in terms of radiation impact is based on the cytogenetic injuries observed, and evidence of ecosystem disturbance is also pointed out. The final environmental assessment based on the quantified effects observed in the organisms from the studied areas takes into account a published conceptual model of zones of radiation dose rates and the resulting organism responses in a step function scale

  9. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    International Nuclear Information System (INIS)

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  10. Cytogenetics of Post-Irradiation Mouse Leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Wald, N.; Pan, S.; Upton, A.; Brown, R. [Graduate School of Public Health, University of Pittsburgh, PA (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1969-11-15

    The interrelationship between radiation, cytogenetic abnormalities, and viruses in leukaemogenesis has been studied in the RF/Un mouse which develops a high incidence of granulocytic leukaemia on radiation exposure. A virus-like agent has been demonstrated in such leukaemic animals and the disease has been transmitted by passage of apparently acellular materials from irradiated primary animals to normal recipients. Pilot cytogenetic studies revealed consistent abnormal chromosome markers and modal shifts in both irradiated leukaemic animals and in non-irradiated animals developing leukaemia after passage injection. To define better the relationship between consistent bone-marrow chromosome aberrations and postirradiation primary and passaged leukaemia, 100 RF/Un mice were studied which were irradiated with 300 R of 250-kVp X-rays at 100 weeks of age and subsequently developed leukaemia. Eighty-seven had granulocytic leukaemia and in 72 of these, bone-marrow cytogenetic abnormalities were found. The distribution of-numerical and structural chromosome aberrations in 3225 cells studied are reviewed in derail. The correlation of specific aberrations to clinical and histopathologic findings has been attempted: Sequential passages of apparently cell-free material from the post-irradiation leukaemic mice into unirradiated RE/Un recipients and subsequent passages from leukaemic recipients were performed to observe the evolution of any initial chromosome markers and shifts in modal chromosome number in the passage generations. Two-hundred-thirty-six mice were inoculated with the material obtained either from primary post-irradiation leukaemic mice or from serially-passaged leukaemia cases. In the most extensive passaged line, 22 transfer generations containing 129 leukaemic mice were examined by clinical, histopathologic, -haematologic and cytogenetic procedures. Evolution of abnormal chromosome modes from 41 in the early passages to 39 chromosomes consistently after the 4

  11. Lymphoma cytogenetics.

    Science.gov (United States)

    Dave, Bhavana J; Nelson, Marilu; Sanger, Warren G

    2011-12-01

    Lymphomas are a heterogeneous group of neoplasms with distinct morphologic, immunologic, and cytogenetic characteristics. Overlapping morphologic and immunophenotypic features often makes accurate diagnosis difficult. Cytogenetics helps simplify the diagnostic complexities presented in transforming and progressive lymphoid malignancies. Genetic studies using technical advances such as fluorescence in situ hybridization and the newer approaches of array comparative genomic hybridization and gene expression profiling play a critical and often defining role in the diagnosis, progression, prognosis, and therapeutic stratification. This article reviews characteristic cytogenetic abnormalities in specific subtypes of lymphomas at diagnosis, disease progression, and prognosis.

  12. Cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng

    1993-01-01

    The cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice were studied. The results of this study showed that human lymphocytes in vitro and mouse marrow cells in vivo can become adapted to low-level irradiation from 3 H-TdR or exposure to a low dose of X-or γ-irradiation, so that they become less sensitive to the chromosomal damage effects of subsequent exposures. (4 tabs.)

  13. Non-Linearity of dose-effect relationship on the example of cytogenetic effects in plant cells at low level exposure to ionising radiation

    International Nuclear Information System (INIS)

    Oudalova, Alla; Geras'kin, Stanislav; Dikarev, Vladimir; Dikareva, Nina; Chernonog, Elena; Copplestone, David; Evseeva, Tatyana

    2006-01-01

    -particles [Nagasawa and Little, 1992; Mothersill et al., 1995]. Other phenomena including genomic instability, low-dose hypersensitivity, and increased radiation resistance effects are also under study [Marples et al., 1997; Kadhim et al., 2004; Bonner, 2004]. The nonlinearity of the dose-effect relationship with low level exposures has been demonstrated in a number of studies where chromosome aberrations were considered as the endpoint of interest. For example, the number of radiation-induced dicentrics in human peripheral blood lymphocytes found in [Pohl-Ruling et al., 1983; Lloyd et al., 1988, 1992] did not exceed the control level at doses below 40 mGy, with some experimental points lying significantly below control values. Essential deviations of chromosome aberrations appearance from linearity in mammals were also shown at higher doses of 100-300 mGy [Luchnik and Sevankaev, 1976; Takahashi et al., 1982]. In other species, deviations of cytogenetic effect induced by low doses from linearity have also been reported. For example, the dose response for cytogenetic effects in Chinese hamster fibroblasts and Vicia faba germs at doses from 0 to 2.5 Gy was shown to be non linear with a plateau at low doses by [Zaichkina et al., 1992]. Dose-effect curves on chromosome aberrations in root meristem cells of Pisum sativum plantlets in the dose range of 0-10 Gy also showed non-linear responses with a plateau for doses up to 1 Gy [Zaka et al., 2002]. However the available information on dose-effect relationships at low doses for non-human species is scarce despite its importance. In their natural environment, some non-human species may be at a higher risk of impact than humans because of differences in ecological niches occupied. [Geras'kin et.al., 2003]. Currently, radiation protection of the environment and maintenance of ecosystem sustainability is of a special concern. and the development of a harmonized approach to human and biota protection has been recognized as a challenge for modern

  14. Non-Linearity of dose-effect relationship on the example of cytogenetic effects in plant cells at low level exposure to ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, Alla; Geras' kin, Stanislav; Dikarev, Vladimir; Dikareva, Nina; Chernonog, Elena [Russian Institute of Agricultural Radiology and Agroecology, RIARAE, 249032 Obninsk (Russian Federation); Copplestone, David [Environment Agency, Millbank Tower, 25th. Floor, 21/24 Millbank, London, SW1P 4XL (United Kingdom); Evseeva, Tatyana [Institute of Biology, Kommunisticheskaya st., 28 Syktyvkar 167610, Komi Republic (Russian Federation)

    2006-07-01

    alpha-particles [Nagasawa and Little, 1992; Mothersill et al., 1995]. Other phenomena including genomic instability, low-dose hypersensitivity, and increased radiation resistance effects are also under study [Marples et al., 1997; Kadhim et al., 2004; Bonner, 2004]. The nonlinearity of the dose-effect relationship with low level exposures has been demonstrated in a number of studies where chromosome aberrations were considered as the endpoint of interest. For example, the number of radiation-induced dicentrics in human peripheral blood lymphocytes found in [Pohl-Ruling et al., 1983; Lloyd et al., 1988, 1992] did not exceed the control level at doses below 40 mGy, with some experimental points lying significantly below control values. Essential deviations of chromosome aberrations appearance from linearity in mammals were also shown at higher doses of 100-300 mGy [Luchnik and Sevankaev, 1976; Takahashi et al., 1982]. In other species, deviations of cytogenetic effect induced by low doses from linearity have also been reported. For example, the dose response for cytogenetic effects in Chinese hamster fibroblasts and Vicia faba germs at doses from 0 to 2.5 Gy was shown to be non linear with a plateau at low doses by [Zaichkina et al., 1992]. Dose-effect curves on chromosome aberrations in root meristem cells of Pisum sativum plantlets in the dose range of 0-10 Gy also showed non-linear responses with a plateau for doses up to 1 Gy [Zaka et al., 2002]. However the available information on dose-effect relationships at low doses for non-human species is scarce despite its importance. In their natural environment, some non-human species may be at a higher risk of impact than humans because of differences in ecological niches occupied. [Geras'kin et.al., 2003]. Currently, radiation protection of the environment and maintenance of ecosystem sustainability is of a special concern. and the development of a harmonized approach to human and biota protection has been recognized

  15. In vivo study of the adaptive response induced by radiation of different types

    International Nuclear Information System (INIS)

    Klokov, D.Yu.; Zaichkina, S.I.; Rozanova, O.M.; Aptikaeva, G.F.; Akhmadieva, A.Kh.; Smirnova, E.N.; Surkenova, G.N.; Kuzin, A.M.

    2000-01-01

    Low doses of X- and gamma-rays are known to induce the adaptive response (AR), i.e. a reduction in the damage caused by subsequent high doses. Using micronucleus test, we investigated the in vivo induction of AR in mouse bone marrow cells by low doses of radiation of different types. In our experiments we used low-LET gamma-radiation, high-LET secondary radiation from 70 GeV protons and secondary biogenic radiation. The latter is a novel type of radiation discovered only recently. Secondary biogenic radiation is known to be induced in biological objects after exposure to radiation and thought to be responsible for stimulating and protecting effects in cells in response to external irradiation. To expose mice to the secondary biogenic radiation, animals were housed in plastic cages containing gamma-irradiated oat seeds as bedding and food for 2 weeks before challenging with a high dose (1.5 Gy at a dose rate of 1 Gy/min) of 60 Co gamma-radiation. It was found that the yield of cytogenetic damage in mice exposed to both secondary biogenic and gamma-radiation was significantly reduced as compared to that in animals exposed to the challenge dose alone, i.e. the AR was induced. Pretreatment of animals with a low dose of gamma-radiation (0.1 Gy at a dose rate of 0.125 Gy/min) also induced the AR. In contrast, preliminary exposure of mice to a low dose (0.09 Gy at a dose rate of 1 Gy/min) of secondary radiation from 70 GeV protons induced no AR, suggesting that triggering the cascade of events leading to the AR induction depends on the DNA single-strand to double- strand breaks ratio. The precise mechanisms underlying the AR are of great importance since the phenomenon of AR can be used for medical benefits and in assessment of risks for carcinogens. But they have not been elucidated well at present. Taken together, our results suggest the crucial role of particular types of initial DNA lesions and the secondary biogenic radiation induced in cells in response to external

  16. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Annual report, August 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1977-08-01

    New techniques of using irradiation in the genetic improvement of several warm season grasses are described. The economic value of radiation induced plant mutants and the genetic and cytogenetic effects of these treatments are discussed. Alterations in protein quality in pearl millet grain and improved varieties of Bermuda grass following radiation treatment are reported

  17. Revisiting cytogenetic paradigms armed with new tools

    International Nuclear Information System (INIS)

    Cornforth, M.N.

    2003-01-01

    It could be argued that most of the fundamental tenets of radiation biology were either discovered, or subsequently confirmed, by observing eukaryotic chromosomes under the microscope. These include, but are certainly not limited to, dose-response relationships with respect to intensity (dose rate/dose fractionation) and radiation quality (LET/track structure). Chromosome aberrations are exquisitely sensitive indicators of radiation damage, and provide quantitative information of biological effect on a cell-by-cell-basis. As such, they have long been a favored endpoint for theoreticians, thereby figuring prominently in the development of generalized models of radiation action. Most of these seminal contributions to radiation biology occurred over a period of time when cytogenetic techniques were, of course, less refined than today. Considering the increasing rate at which technological advances have been made available to the researcher over the past few years, a reexamination of some of the radiological principles that cytogenetics helped to found seems in order. As an example of such effort, this talk will center around improvements to the use of whole chromosome painting by FISH- principally combinatorial painting techniques like mFISH and SKY- for the purposes of examining in greater detail structural aberrations to chromosomes produced following exposure to ionizing radiations of differing quality and intensity. This and related approaches by various laboratories around the world have turned up a few surprise discoveries that do not always fit established paradigms, and which serve to sharpen arguments that have been used to buttress existing models of aberration formation

  18. Cytogenetic, clinical, and cytologic characteristics of radiotherapy-related leukemias

    International Nuclear Information System (INIS)

    Philip, P.; Pedersen-Bjergaard, J.

    1988-01-01

    From 1978 to 1985, we observed eight cases of acute nonlymphocytic leukemia or preleukemia, three cases of acute lymphoblastic leukemia, and three cases of chronic myeloid leukemia in patients previously treated exclusively with radiotherapy for other tumor types. The latent period from administration of radiotherapy to development of leukemia varied between 12 and 243 months. Clonal chromosome aberrations reported previously as characteristic of acute nonlymphocytic leukemia following therapy with alkylating agents were observed in three of the eight patients with acute nonlymphocytic leukemia (5q- and -7) and in two of the three patients with acute lymphoblastic leukemia (-7 and 12p-). All three patients with radiotherapy-related chronic myeloid leukemia presented a t(9;22)(q34;q11). The results suggest that cytogenetic characteristics may reflect the etiology in radiation-induced acute leukemias, whereas radiation-related chronic myeloid leukemia does not seem to differ chromosomally from de novo cases of the disease

  19. Cytogenetic and molecular cytogenetic methods in hemato-oncology

    International Nuclear Information System (INIS)

    Novakova, P.; Ilencikova, D.

    2010-01-01

    Cancer, either sporadic or hereditary, is a genetic disease that develops through multiple genetic changes. Specific genetic defects have been found to be associated non randomly with the predisposition, genesis, progression, and metastasis of various kinds of neoplasia. Cytogenetics in haematological malignancy to aid in diagnosis and in identifying recurrent chromosomal rearrangements, an essential prerequisite to identifying genes involved in leukaemia and lymphoma pathogenesis. In the late 1980s, a series of technologies based around fluorescence in situ hybridisation (FISH) revolutionised the field. FISH technology, a combination of molecular and conventional cytogenetic techniques, has brought modern cytogenetics to a new era with significantly higher resolutions and much wider testing spectrum. Since then, numerous new FISH-based technologies have been emerging, from metaphase FISH to interphase FISH, from single-color FISH to multicolor FISH, from comparative gnenomic hybridisation (CGH) to array CGH, and so on. In this review the advantages and limitations of each of the various types of conventional and molecular cytogenetic methodologies are discussed with regard to their application in human neoplasia. (author)

  20. Advanced microtechnologies for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Vedarethinam, Indumathi; Shah, Pranjul Jaykumar

    2012-01-01

    Cytogenetic and molecular cytogenetic analyses, which aim to detect chromosome abnormalities, are routinely performed in cytogenetic laboratories all over the world. Traditional cytogenetic studies are performed by analyzing the banding pattern of chromosomes, and are complemented by molecular...... cytogenetic techniques such as fluorescent in situ hybridization (FISH). To improve FISH application in cytogenetic analysis the issues with long experimental time, high volumes of expensive reagents and requirement for trained technicians need to be addressed. The protocol has recently evolved towards...... to introduce automation in the cytogenetic laboratories at a microscale. We have developed membrane based micro perfusion systems capable of expansion of lymphocytes in a shorter time and at a smaller scale. The simulated and experimental results show very efficient exchange of the growth medium...

  1. Radiation Control Regulation 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This Regulation (No. 434-1993) was made in pursuance of the Radiation Control Act 1990 and replaces the Active Substances Regulations 1959 repealed by the Act. It entered into force on 1 September 1993. The Regulation specifies that the technical radiation protection definitions have the same meaning as in the 1990 recommendations. The Regulation provides for the licensing of persons to use radioactive substances and radiation apparatus. It prescribes activities which may only be carried out by an accredited radiation expert and regulates the use of radiation apparatus and radioactive substances as well as the disposal and transport of radiation apparatus and radioactive substances. (NEA)

  2. Radiation protection - Performance criteria for laboratories performing cytogenetic triage for assessment of mass casualties in radiological or nuclear emergencies - General principles and application to dicentric assay

    International Nuclear Information System (INIS)

    2008-01-01

    The potential for nuclear and radiological emergencies involving mass casualties from accidental or malicious acts or terrorism requires generic procedures for emergency dose assessment to help the development of medical response capabilities. A mass-casualties incident is defined here as an event that exceeds the local medical resources. Biological dosimetry, based on cytogenetic analysis using the dicentric assay, typically applied for accidental dose assessment, has been defined in ISO 19238. Cytogenetic triage is the use of chromosome damage to evaluate and assess approximately and rapidly radiation doses received by individuals in order to supplement the clinical categorization of casualties. This International Standard focuses on the use of the dicentric assay for rapid cytogenetic triage involving mass-casualty incidents. The primary purpose of this International Standard is to provide a guideline to all laboratories in order to perform the dicentric-bioassay - cytogenetic triage for dose assessment using documented and validated procedures. Secondly, it can facilitate the application of cytogenetic biodosimetry networks to permit comparison of results obtained in different laboratories. Finally, it is expected that laboratories newly commissioned to carry out the cytogenetic triage conform to this International Standard in order to perform the triage reproducibly and accurately. This International Standard is written in the form of procedures to adopt for dicentric-bioassay - cytogenetic triage biological dosimetry for overexposures involving mass radiological casualties. The criteria required for such measurements usually depend on the application of the results: medical management when appropriate, radiation-protection management, record keeping and medical/legal requirements. For example, selected cases can be analysed to produce a more accurate evaluation of high partial-body exposure; secondly, doses can be estimated for persons exposed below the

  3. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    International Nuclear Information System (INIS)

    Jin Jie; Wang Yu; Xu Yang; Chen Shilei; Wang Junping; Ran Xinze; Su Yongping; Wang Jin

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3 -/- ) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3 -/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3 -/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. (author)

  4. High-throughput microfluidics automated cytogenetic processing for effectively lowering biological process time and aid triage during radiation accidents

    International Nuclear Information System (INIS)

    Ramakumar, Adarsh

    2016-01-01

    Nuclear or radiation mass casualties require individual, rapid, and accurate dose-based triage of exposed subjects for cytokine therapy and supportive care, to save life. Radiation mass casualties will demand high-throughput individual diagnostic dose assessment for medical management of exposed subjects. Cytogenetic techniques are widely used for triage and definitive radiation biodosimetry. Prototype platform to demonstrate high-throughput microfluidic micro incubation to support the logistics of sample in miniaturized incubators from the site of accident to analytical labs has been developed. Efforts have been made, both at the level of developing concepts and advanced system for higher throughput in processing the samples and also implementing better and efficient methods of logistics leading to performance of lab-on-chip analyses. Automated high-throughput platform with automated feature extraction, storage, cross platform data linkage, cross platform validation and inclusion of multi-parametric biomarker approaches will provide the first generation high-throughput platform systems for effective medical management, particularly during radiation mass casualty events

  5. Cytogenetic effects of radioiodine therapy: a 20-year follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Gordon K. [Oak Ridge Institute for Science and Education, Radiation Emergency Assistance Center/Training Site, Oak Ridge, TN (United States); Khvostunov, Igor K. [Medical Radiological Research Center, Obninsk, Kaluga Region (Russian Federation); Gregoire, Eric [Institut de Radioprotection et de Surete Nucleaire, PRP-HOM/SRBE/LDB, BP 17, Fontenay aux roses Cedex (France); Barquinero, Joan-Francesc [Universtitat Autonoma de Barcelona, Facultat de Biociencies, Cerdanyola del Valles (Spain); Shi, Lin; Tashiro, Satoshi [Hiroshima University, Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2016-05-15

    The purpose of this study was to compare cytogenetic data in a patient before and after treatment with radioiodine to evaluate the assays in the context of biological dosimetry. We studied a 34-year-old male patient who underwent a total thyroidectomy followed by ablation therapy with {sup 131}I (19.28 GBq) for a papillary thyroid carcinoma. The patient provided blood samples before treatment and then serial samples at monthly intervals during the first year period and quarterly intervals for 5 years and finally 20 years after treatment. A micronucleus assay, dicentric assay, FISH method and G-banding were used to detect and measure DNA damage in circulating peripheral blood lymphocytes of the patient. The results showed that radiation-induced cytogenetic effects persisted for many years after treatment as shown by elevated micronuclei and chromosome aberrations as a result of exposure to {sup 131}I. At 5 years after treatment, the micronucleus count was tenfold higher than the pre-exposure frequency. Shortly after the treatment, micronucleus counts produced a dose estimate of 0.47 ± 0.09 Gy. The dose to the patient evaluated retrospectively using FISH-measured translocations was 0.70 ± 0.16 Gy. Overall, our results show that the micronucleus assay is a retrospective biomarker of low-dose radiation exposure. However, this method is not able to determine local dose to the target tissue which in this case was any residual thyroid cells plus metastases of thyroidal origin. (orig.)

  6. New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes for radiation molecular cytogenetics

    Directory of Open Access Journals (Sweden)

    Repin Mikhail V

    2009-06-01

    Full Text Available Abstract Background The objective of this work is to obtain the correct relative DNA contents of chromosomes in the normal male and female human diploid genomes for the use at FISH analysis of radiation-induced chromosome aberrations. Results The relative DNA contents of chromosomes in the male and female human diploid genomes have been calculated from the publicly available international Human Genome Project data. New sequence-based data on the relative DNA contents of human chromosomes were compared with the data recommended by the International Atomic Energy Agency in 2001. The differences in the values of the relative DNA contents of chromosomes obtained by using different approaches for 15 human chromosomes, mainly for large chromosomes, were below 2%. For the chromosomes 13, 17, 20 and 22 the differences were above 5%. Conclusion New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes were obtained. This approach, based on the genome sequence, can be recommended for the use in radiation molecular cytogenetics.

  7. Protective effect of zingerone, a dietary compound against radiation induced damage

    International Nuclear Information System (INIS)

    Satish Rao, B.S.; Rao, Nageshwar

    2012-01-01

    The radioprotective potential of phenolic alkanone, Zingerone (ZO) was investigated using human peripheral blood lymphocytes as well as Chinese hamster fibroblast (V79) cells growing in vitro and in vivo by using Swiss albino mice exposed to gamma radiation. In the in vivo studies, mice were administered with ZO (10-100 mg/kg b.wt), once daily for five consecutive days. One hour after the last administration of ZO on the fifth day, animals were whole body exposed to 10 Gy gamma radiations. The radioprotective potential was assessed using animal survival, haemopoietic stem cell survival (CFU) assay, mouse bone marrow micronucleus test, histological observations of intestinal and bone marrow damage. Effect of ZO pretreatment on radiation-induced changes in glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPx) levels was also analyzed. ZO treatment resulted increase in the LD50/30 by 1.8 Gy (dose reduction factor = 1.2). The number of spleen colonies after whole body irradiation of mice (4.5 or 7.5 Gy) was increased when ZO was administered 1 h prior to irradiation. The histological observations indicated a decline in the villus height and crypt number with an increase in goblet and dead cell population in the irradiated group, which was normalized by pretreatment with ZO. A significant (p < 0.001) reduction in micronucleated polychromatic, normochromatic erythrocytes, increased PCE/NCE ratio, increase in the GSH, GST, SOD, CAT and decreased LPx levels were observed in ZO by pretreated group when compared to the irradiated animals. Our in vitro and in vivo studies demonstrate the potential of ZO in mitigating radiation-induced cytotoxic, genotoxicity, apoptosis in cell culture and animal mortality, cytogenetic damage, intestinal and bone marrow protection in vivo. Radioprotective potential of ZO may be attributed to the inhibition radiation-induced decline in the endogenous antioxidant levels

  8. The influence of nalidixic acid and nicotinamide of the radiation-induced cytogenetic injury to hexaploid wheat varities contrast by radioresistance

    International Nuclear Information System (INIS)

    Selezneva, E.M.; Sarapul'tsev, B.I.

    1990-01-01

    Nalidixic acid modifies the cytogenetic injury when only applied to seeds of a radiosensitive variety, Moskovskaya 35. The radioprotective effect of nicotinamide on both radiosensitive and radioresistant hexaploid wheat varities is observed being dependent on the extent which the genetic apparatus is impaired

  9. Estimation of absorbed doses on the basis of cytogenetic methods

    International Nuclear Information System (INIS)

    Shevchenko, V.A.; Rubanovich, A.V.; Snigiryova, G.P.

    1998-01-01

    Long-term studies in the field of radiation cytogenetics have resulted in the discovery of relationship between induction of chromosome aberrations and the type of ionizing radiation, their intensity and dose. This has served as a basis of biological dosimetry as an area of application of the revealed relationship, and has been used in the practice to estimate absorbed doses in people exposed to emergency irradiation. The necessity of using the methods of biological dosimetry became most pressing in connection with the Chernobyl accident in 1986, as well as in connection with other radiation situations that occurred in nuclear industry of the former USSR. The materials presented in our works demonstrate the possibility of applying cytogenetic methods for assessing absorbed doses in populations of different regions exposed to radiation as a result of accidents at nuclear facilities (Chernobyl, the village Muslymovo on the Techa river, the Three Mile Island nuclear power station in the USA where an accident occurred in 1979). Fundamentally, new possibilities for retrospective dose assessment are provided by the FISH-method that permits the assessment of absorbed doses after several decades since the exposure occurred. In addition, the application of this method makes it possible to restore the dynamics of unstable chromosome aberrations (dicentrics and centric rings), which is important for further improvement of the method of biological dosimetry based on the analysis of unstable chromosome aberrations. The purpose of our presentation is a brief description of the cytogenetic methods used in biological dosimetry, consideration of statistical methods of data analysis and a description of concrete examples of their application. (J.P.N.)

  10. Chromosomal damages and mutagenesis in mammalian and human cells induced by ionizing radiations with different LET

    International Nuclear Information System (INIS)

    Govorun, R.D.

    1997-01-01

    On the basis of literature and proper data the inference was made about essential role of structural chromosomal (and gene) damages in spontaneous and radiation-induced mutagenesis of mammalian and human cells on HPRT-loci. The evidences of increasing role of these damages in the mutagenesis after the influence of ionizing radiations with high LET are adduced. The consequences of HPRT-gene damages have been examined hypothetically. The geterogeneity of mutant subclones on their cytogenetical properties were revealed experimentally. The data reflect a phenomenon of the reproductive chromosomal instability in many generations of mutant cell. The mutagenesis of mammalian cells is also accompanied by the impairment of chromosome integrity with high probability as a stage of appropriate genome reorganization because of changed vital conditions

  11. Cytogenetical effects of low doses: results obtained by N.N.Luchik and present-day problems

    International Nuclear Information System (INIS)

    Geras'kin, S.A.; Sevan'kaev, A.V.

    1996-01-01

    The analysis of present status of the problem of quantitative assessment of cytogenetic effects low is presented. The importance of works of N.V. Luchik is demonstrated for the development of this field of radiobiology. The results of the author's own experimental and theoretical research on the regularities of induction of cytogenetical damage by low doses of ionising radiation are presented

  12. The results of selective cytogenetic monitoring of Chernobyl accident victims in the Ukraine

    International Nuclear Information System (INIS)

    Pilinskaya, M.A.

    1996-01-01

    Selective cytogenetic monitoring of the highest priority groups of Chernobyl disaster victims has been carried out since 1987. In 1992-1993, 125 liquidators (irradiated mainly in 1986) and 42 persons recovering from acute radiation sickness of the second and third degrees of severity were examined. Cytogenetic effects (an elevated level of unstable as well as stable markers of radiation exposure) were found in all groups, which showed a positive correlation with the initial degree of irradiation severity even 6-7 y after the accident. Comparative scoring of conventional staining vs. G-banding in 10 liquidators showed the identical rate of unstable aberrations. At the same time, the yield of stable aberrations for G-banded slides exceeded the frequency for conventional staining. In order to study possible mutagenic activity of chronic low levels of irradiation, the cytogenetic monitoring of some critical groups of the population (especially children and occupational groups-tractor drivers and foresters) living in areas of the Ukraine contaminated by radionuclides was carried out. In all the examined groups, a significant increase in the frequency of aberrant metaphases, chromosome aberrations (both unstable and stable), an chromatid aberrations was observed. Data gathered from groups of children reflect the intensity of mutagenic impact on the studied populations and demonstrate a positive correlation with the duration of exposure. Results of cytogenetic examination of adults confirmed the importance of considering the contribution of occupational radiation exposure to genetic effects of Chernobyl accident factors on the population of contaminated areas. 17 refs., 3 tabs

  13. Radiation-induced chromosome aberrations in bone marrow cells leading to acute myeloid leukemia in mouse

    International Nuclear Information System (INIS)

    Nobuhiko Ban; Tomoko Kusama

    1996-01-01

    It is well known that radiation-induced acute myeloid leukemia (RI-AML) in mice is charaterized by deletion and/or rearrangement of chromosome 2. While chromosome 2 has been suspected to be a target of RI-AML, radiation-sensitive site of the chromosome might be implicated in the leukemogenesis. There were few cytogenetical studies, however, focusing on chromosomal rearrangements shortly after irradiation, and little was known about the frequency and pattern of chromosome 2 aberrations during the early period. In this study, metaphase samples were prepared from whole-body irradiated mice 24 hours after irradiation, most of the cells considered to be in the first mitotic stage. Distribution of chromosomal breakpoints on the metaphase samples were analyzed to study the relationship between chromosome aberrations and RI-AML. (author)

  14. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia

    International Nuclear Information System (INIS)

    Patnaik, M M; Tefferi, A

    2016-01-01

    Chronic myelomonocytic leukemia (CMML) is a clonal stem cell disorder associated with peripheral blood monocytosis and an inherent tendency to transform to acute myeloid leukemia. CMML has overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms. Clonal cytogenetic changes are seen in ~30%, whereas gene mutations are seen in >90% of patients. Common cytogenetic abnormalities include; trisomy 8, -Y, -7/del(7q), trisomy 21 and del(20q), with the Mayo–French risk stratification effectively risk stratifying patients based on cytogenetic abnormalities. Gene mutations frequently involve epigenetic regulators (TET2 ~60%), modulators of chromatin (ASXL1 ~40%), spliceosome components (SRSF2 ~50%), transcription factors (RUNX1 ~15%) and signal pathways (RAS ~30%, CBL ~15%). Of these, thus far, only nonsense and frameshift ASXL1 mutations have been shown to negatively impact overall survival. This has resulted in the development of contemporary, molecularly integrated (inclusive of ASXL1 mutations) CMML prognostic models, including Molecular Mayo Model and the Groupe Français des Myélodysplasies model. Better understanding of the prevalent genetic and epigenetic dysregulation has resulted in emerging targeted treatment options for some patients. The development of an integrated (cytogenetic and molecular) prognostic model along with CMML-specific response assessment criteria are much needed future goals

  15. Cytogenetic evaluation of hospital workers occupationally exposed to low levels of ionizing radiation. Assessment of two cytogenetic procedures: accumulated dosimetry versus radiosensitivity

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J. M.; Villalon, C.; Lopez-Abente, G.; Arranz, L.; Ferro, M. T.; Ferrando, P.; Pollan, M.; Aragones, N.; Ferrer, N.; Sastre, J. M.

    2004-01-01

    We try to establish a cumulative ionising radiation (IR) biologicla dosimetry in occupationally exposed workers as a routine health tes, analysing chromosome translocations. 100 hospital workers occupationally exposed to low levels of X-ray, g-ray and radioactive isotopes are included in this study. Blood samples were cultured for cytogenetic analysis. Chromosome translocatiosn were scored using whole chromosome paint probes cocktail (Vysis) for chromosomes 1, 2, 3, 4, 5 and 6. Furthermore, a personal detailed interview about confounding factors, as tobacco smoking X-ray examination, occupational exposure to chemotherapeutics agents and solvents, electromagnetic fields exposure, and others was done. Our results showed that there is no statistical association between cumulative doses of IRE, type of LET and chromosome translocation rate. For the contraty, we have found a translocation risk increase related with IR equivalent dose rate, independently of the time of exposure and age. Those workers receiving 1mSv/year or more vs<1mSv/year show a relative risk of 2.56 (95% confidence interval 1.10-5.95). A comparison of translocationrate and different confounding factors suggest a relative risk increase in intensive users of mobile phones. Other exposures as tobacco smoking solvents, UV radiation anaesthetic gases and any other confounding factors have not shown assocaition with translocation rate. At the same time, we try to analyse radiosensitivity through the CBMN-test (cytokinesis block micronucelus test). Results on CBMN are in progress. Finally we try to asses the two cytogentic procedures as the most suitable routine health test in radiation occupational protection. (Author)

  16. Impact of Lutein Intervention in Mice on the Radiation Induced Clastogenic Changes

    Directory of Open Access Journals (Sweden)

    Vidya Vasudeva

    2017-10-01

    Full Text Available One of the genetic effects of radiation is that it may lead to formation of single or double strand breaks in DNA which can be observed in differentially stained polychromatic or normochromatic erythrocytes (PCE and NCE respectively. In pursuit of finding a natural radioprotector to treat the radiation induced damages; lutein, a carotenoid pigment is one such approach. Swiss albino mice are administered with the compound (lutein/gallic acid/DMSO with respective controls for 15 consecutive days after which they are irradiated. The whole blood is drawn for comet assay and the femur of the leg is removed to flush out the content of the bone marrow in BSA for the micronucleus assay. The comet slides are observed under the fluorescent microscope and the PCE/NCE or micronucleated PCEs or NCEs are scored blindly. Lutein in the present study has effectively reduced the olive moment and the tail moment. However, % DNA in tail has been maintained to normal levels in comparison to its control indicating lesser extent of damage to the genetic material. The percent micronucleated NCE (MnNCE has been decreased in the group treated with lutein prior to radiation. The % MnPCE and the PCE/(PCE + NCE ratio has been increased in all the irradiated groups; however lutein treatment has not drastically increased the formation of micronuclei in comparison to its control. This indicates that lutein shows a protective effect against the radiation induced cytogenetic damages in Swiss albino mice.

  17. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun; Kang, Jeong Wook [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Dong Won [Department of Plastic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Oh, Sang Ho [Department of Dermatology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Yun-Sil [College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewah Womans University, Seoul 120-750 (Korea, Republic of); Lee, Eun-Jung [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  18. Cytogenetic variability in pinus sylvestris L. populations experiencing anthropogenic influence

    International Nuclear Information System (INIS)

    Oudalova, A.; Geras'kin, S.; Vasiliev, D.; Dikarev, V.

    2004-01-01

    Techno-genic pollution has become one of the most significant ecological factors determining biosphere existence and development. An analysis of genetic consequences of the radiation accidents in the South Urals and Chernobyl has shown that mutation and recombination processes are considerably accelerated in plant and animal's populations experiencing techno-genic influence. This implies that there are complicated adaptation processes leading to changes in genetic structure of populations and increasing genetic load. Pinus sylvestris L. populations growing at the territory of the 'radon' Leningrad regional radioactive waste reprocessing enterprise and Sosnovy Bor town were monitored 6 years (1997-2002) by a set of cyto-genetical and morphological tests. Cytogenetic damage levels within intercalary meristem of needle as well as in root meristem of seedlings were found to significantly exceed corresponding controls. A higher radioresistance of the Scots pine seeds analyzed was demonstrated with an acute γ-radiation that also revealed a selection process directed at an enhancement of repair efficiency and resulting in a shift of mean values of radioresistance in populations towards higher values. An enlargement of variance of studied cytogenetic parameters was found in the populations experiencing techno-genic influence. This indicates, with an account of phenomenon of the enhanced radioresistance, that there are processes of cyto-genetical adaptation in the investigated regions. An analysis of the structure of ecological-genetical variability was carried out with the purpose of separating two components in the inter-population variability - the first is engaged to the genetically determined variability of biological characteristics intrinsic for this species, and the second is responsible for the variability originating from anthropogenic contamination of the natural habitat. Changes of these two types of variability were studied in dependence on time and techno

  19. Cytogenetic variability in pinus sylvestris L. populations experiencing anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, A.; Geras' kin, S.; Vasiliev, D.; Dikarev, V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    Techno-genic pollution has become one of the most significant ecological factors determining biosphere existence and development. An analysis of genetic consequences of the radiation accidents in the South Urals and Chernobyl has shown that mutation and recombination processes are considerably accelerated in plant and animal's populations experiencing techno-genic influence. This implies that there are complicated adaptation processes leading to changes in genetic structure of populations and increasing genetic load. Pinus sylvestris L. populations growing at the territory of the 'radon' Leningrad regional radioactive waste reprocessing enterprise and Sosnovy Bor town were monitored 6 years (1997-2002) by a set of cyto-genetical and morphological tests. Cytogenetic damage levels within intercalary meristem of needle as well as in root meristem of seedlings were found to significantly exceed corresponding controls. A higher radioresistance of the Scots pine seeds analyzed was demonstrated with an acute {gamma}-radiation that also revealed a selection process directed at an enhancement of repair efficiency and resulting in a shift of mean values of radioresistance in populations towards higher values. An enlargement of variance of studied cytogenetic parameters was found in the populations experiencing techno-genic influence. This indicates, with an account of phenomenon of the enhanced radioresistance, that there are processes of cyto-genetical adaptation in the investigated regions. An analysis of the structure of ecological-genetical variability was carried out with the purpose of separating two components in the inter-population variability - the first is engaged to the genetically determined variability of biological characteristics intrinsic for this species, and the second is responsible for the variability originating from anthropogenic contamination of the natural habitat. Changes of these two types of variability were studied in dependence on

  20. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci

    International Nuclear Information System (INIS)

    Woychik, R.P.; Generoso, W.M.; Russell, L.B.; Cain, K.T.; Cacheiro, N.L.; Bultman, S.J.; Selby, P.B.; Dickinson, M.E.; Hogan, B.L.

    1990-01-01

    Molecular characterization of mutations in the mouse, particularly those involving agent-induced major structural alterations, is proving to be useful for correlating the structure and expression of individual genes with their function in the whole organism. Here we present the characterization of a radiation-induced mutation that simultaneously generated distinct alleles of both the limb deformity (ld) and agouti (a) loci, two developmentally important regions of chromosome 2 normally separated by 20 centimorgans. Cytogenetic analysis revealed that an interstitial segment of chromosome 17 (17B- 17C; or, possibly, 17A2-17B) had been translocated into the distal end of chromosome 2, resulting in a smaller-than-normal chromosome 17 (designated 17del) and a larger form of chromosome 2 designated 2(17). Additionally, a large interstitial segment of the 2(17) chromosome, immediately adjacent and proximal to the insertion site, did not match bands 2E4-2H1 at corresponding positions on a normal chromosome 2. Molecular analysis detected a DNA rearrangement in which a portion of the ld locus was joined to sequences normally tightly linked to the a locus. This result, along with the genetic and cytogenetic data, suggests that the alleles of ld and a in this radiation-induced mutation, designated ldIn2 and ajIn2, were associated with DNA breaks caused by an inversion of an interstitial segment in the 2(17) chromosome

  1. A cytogenetic study of personnel of the Kozloduy NPP with a view to the hazards of late effects

    Energy Technology Data Exchange (ETDEWEB)

    Bulanova, M; Benova, D; Georgieva, I; Georgieva, V; Yagova, A; Rupova, I; Kusheva, R; Khadzhidekova, V; Topalova, S; Nikolova, T [National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    1996-12-31

    Chromosomal analysis of 40 Kozloduy NPP workers has been carried out. Three cytogenetic end-points have been considered: chromosomal aberrations (CA), sister-chromatid exchanges and micro nuclear assays in peripheral blood lymphocytes. A higher incidence of CA has been detected in the investigated group in comparison with a control group. This is attributed to the radiation factor taking into consideration that the highest occurrence is that of dicentric chromosomes induced by radiation exposure. 95% of the workers have been employed for more than 5 years and 60% have received a dose of more than 30 cSv. However no direct relation of CA incidence to the accumulated dose has been observed. Tobacco smoking potentiates additionally the damage of the chromosome structures caused by ionizing radiation. 15 refs., 3 tabs.

  2. Radiation-induced cytogenetic and hematologic effects on aquatic biota within the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Dmitri I.; Shevtsova, Natalia L.; Pomortseva, Natalia A.; Kaglyan, Alexander Ye. [Institute of Hydrobiology, Geroyev Stalingrada Ave. 12, UA-04210 Kiev (Ukraine); Dzyubenko, Elena V. [G. Skovoroda Pereyaslav-Khmelnitsk State Teacher Training University, Sukhomlinskogo Str. 30, UA-08401 Pereyaslav-Khmelnitsk (Ukraine); Rodionova, Natalia K. [R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Vasilkovskaya Str. 45, UA-04073 Kiev (Ukraine); Nazarov, Alexander B. [Chernobyl Specialized Enterprise, Radyanska Str. 70, UA-07270 Chernobyl (Ukraine)

    2014-07-01

    water bodies within the ChEZ repeatedly exceeds the level of spontaneous mutagenesis, inherent to the aquatic species (2.0-2.5%) and can be display of radiation-induced genetic instability. In fish dwelling in lakes of the ChEZ a considerable qualitative and quantitative changes in hematopoietic system were registered. In water bodies with high level of radioactive contamination the content of leucocytes in blood of fish was substantially below than their level in fish of the control reservoirs. At that the total amount of thrombocytes in fish from contaminated lakes was higher than control indexes. In blood of the perch from Glubokoye Lake the decreased content of oval forms of thrombocytes was determined. The erythrocytes of the crucian carp and perch from Glubokoye Lake were the most susceptible to pathological changes of both nucleus and cell wall. The total amount of cell abnormality in this water body was registered at following level: for the crucian carp 59.5 0/00, and for the perch 22.6 0/00, that considerably exceeds the indexes of violations for fish from control reservoirs (1.9-4.1 0/00). Among the studied fish of the ChEZ we have not detected individuals without cellular pathologies in peripheral blood. (authors)

  3. How to identify partial exposures to ionizing radiation? Proposal for a cytogenetic method; Como identificar exposicoes parciais as radiacoes ionizantes? Proposta de um metodo citogenetico

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, T.S.; Silva, E.B.; Pinto, M.M.P.L.; Amaral, A., E-mail: thiagosalazar@hotmail.com [Universidade Federal de Pernambuco (LAMBDA/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Lab. de Modelagem e Biodosimetria Aplicada; Lloyd, David [Health Protection Agency, Oxford (United Kingdom). Radiation Protection Division

    2013-08-15

    In cases of radiological incidents or in occupational exposures to ionizing radiation, the majority of exposures are not related to the total body, but only partial. In this context, if the cytogenetic dosimetry is performed, there will be an underestimation of the absorbed dose due to the dilution of irradiated cells with non-irradiated cells. Considering the norms of NR 32 - Safety and Health in the Work of Health Service - which recommends cytogenetic dosimetry in the investigation of accidental exposures to ionizing radiations, it is necessary to develop of a tool to provide a better identification of partial exposures. With this aim, a partial body exposure was simulated by mixing, in vitro, 70% of blood irradiated with 4 Gy of X-rays with 30% of unirradiated blood from the same healthy donor. Aliquots of this mixture were cultured for 48 and 72 hours. Prolonging the time of cell culture from 48 to 72 hours produced no significant change in the yield of dicentrics. However, when only M1 (first division cells) were analyzed, the frequency of dicentrics per cell was increased. Prolonging the time of cell culture allowed cells in mitotic delay by irradiation to reach metaphase, and thus provides enough time for the damage to be visualized. The results of this research present the proposed method as an important tool in the investigation of exposed individuals, allowing associating the cytogenetic analysis with the real percentage of irradiated cells, contributing significantly for the decision making in terms of occupational health. (author)

  4. Radiation-induced cytogenetic damage in relation to changes in interphase chromosome conformation

    International Nuclear Information System (INIS)

    Pantelias, G.E.

    1986-01-01

    The premature chromosome condensation (PCC) technique was used to study several factors that determine the yield of chromosome fragments as observed in interphase cells after irradiation. In addition to absorbed dose and the extent of chromosome condensation at the time of irradiation, changes in chromosome conformation as cells progressed through the cell cycle after irradiation affected dramatically the yield of chromosome fragments observed. As a test of the effect of chromosome decondensation, irradiated metaphase Chinese hamster ovary (CHO) cells were allowed to divide, and the prematurely condensed chromosomes in the daughter cells were analyzed in their G1 phase. The yield of chromosome fragments increased as the daughter cells progressed toward S phase and chromosome decondensation occurred. When early G1 CHO cells were irradiated and analyzed at later times in G1 phase, an increase in chromosome fragmentation again followed the gradual increase in chromosome decondensation. As a test of the effect of chromosome condensation, G0 human lymphocytes were irradiated and analyzed at various times after fusion with mitotic CHO cells, i.e., as condensation proceeded. The yield of fragments observed was directly related to the amount of chromosome condensation allowed to take place after irradiation and inversely related to the extent of chromosome condensation at the time of irradiation. It can be concluded that changes in chromosome conformation interfered with rejoining processes. In contrast, resting chromosomes (as in G0 lymphocytes irradiated before fusion) showed efficient rejoining. These results support the hypothesis that cytogenetic lesions become observable chromosome breaks when chromosome condensation or decondensation occurs during the cell cycle

  5. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  6. Cytogenetic effects study of in vitro irradiation in peripheral blood lymphocytes of persons working with ionizing radiation

    International Nuclear Information System (INIS)

    Hadzhidekova, V.; Benova, D.; Bulanova, M.

    1998-01-01

    The genome radiosensitivity of persons working in the NPP 'Kozloduy', as well as controls are studied. An indicator of genome radiosensitivity is the chromosomal damage induced by in vitro irradiation. A cytogenetic analysis of peripheral blood lymphocytes before and after in vitro irradiation with a dose of 1.5 Gy gamma rays is carried out. The frequency of chromosomal aberrations and micronuclei before and after the irradiation is scored. In certain cases the technique of fluorescent in situ hybridization for recording stable chromosome rearrangements is applied. The data obtained show a decreased chromosome radiosensitivity in occupationally engaged persons as compared to low doses, over a long period of time, may induce the so called 'adaptive response' which makes cells more resistant of subsequent in vitro irradiation with a high dose (author)

  7. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  8. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  9. Cytogenetic effects in adolescents from different areas of Kemerovskaya oblast'

    International Nuclear Information System (INIS)

    Druzhinin, V.G.; Lifanov, A.Y.; Golovina, T.A.

    1995-01-01

    Considerable variations in the frequency of spontaneous chromosomal aberrations were revealed during a cytogenetic study of two groups of adolescents from ecologically different areas of Kemerovskaya oblast'. In a sample of adolescents living in an industrial center (the Kemerovo city), this parameter (1.4±0.37%) did not exceed the population average value, whereas adolescents of the same age from a mountain region with sparse industry (the town of Tashtagol) exhibited, on average, a frequency of 5.87±0.62%. An increased proportion of chromosomal-type aberrations in the qualitative spectrum of cytogenetic damage, which was observed for the group of adolescents from Tashtagol, suggests that this population was exposed to radiation. 13 refS., 1 fig., 3 tabs

  10. The cytogenetic damage in gynaecological cancer patients during radiotherapy. The variability of cytogenetic response to irradiation

    International Nuclear Information System (INIS)

    Vyinnyikov, V.A.; Maznik, N.A.; Sipko, T.C.; Pshenyichna, N.D.

    2013-01-01

    The limits of cytogenetic changes in blood lymphocytes of gynecological cancer patients undergoing radiotherapy and assessment the individual variability of the kinetics of chromosome aberration yields depending on treatment schemes was evaluated. Cytogenetic study was carried out in 53 female patients with uterine cancer. For the first time in vivo aberration yields were compared in the representational groups of gynecological cancer patients undergoing telegammatherapy, intracavitary brachytherapy or their combination; the limits of cytogenetic changes were evaluated and the magnitude of the individual variability of kinetics of cytogenetic damage yield was assessed depending on the scheme of therapeutic irradiation

  11. The nature of radiation-induced mutations at the white locus of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Pastink, A.; Schalet, A.P.; Vreeken, C.; Eeken, J.C.J.; Paradi, E.

    1987-01-01

    X-ray- and neutron-induced mutations at the white locus of Drosophila melanogaster were used to study the nature of radiation-induced genetic damage. Genetic analysis showed the presence of multi-locus deficiencies in 15 out of 31 X-ray mutants and in 26 out of 35 mutants induced by neutrons. The DNA from 11 X-ray and 4 neutron mutants, which were not multi-locus deficiencies, was analyzed by Southern blot-hybridization. Deletions were observed in 2 X-ray and 1 neutron mutant. In combination with cytogenetic techniques, chromosomal rearrangements affecting the white locus (translocations, inversions, etc.) were identified in 3 X-ray and in 2 neutron mutants. A hot-spot for translocation breakpoints was identified in the left arm of the third chromosome. 5 X-ray mutants, which apparently did not contain large deletions, were subjected to further analysis by the nuclease S1 protection method, after cloning of the white gene. In 4 mutants a small deletion could indeed be detected in this way. Thus it seems that by far the main part of X-ray- and neutron-induced white mutants have arisen through large changes in the white gene, especially deletions. (Auth.)

  12. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  13. Cytogenetic effects of weak and combined actions in plants in connection with a problem of ecological rating

    International Nuclear Information System (INIS)

    Geras'kin, S.A.; Dikarev, V.G.; Udalova, A.A.; Dikareva, N.S.; Vasil'ev, D.V.; Evseeva, T.I.

    2002-01-01

    It is compared sanitary-hygienic and ecological approaches to rating of ionizing radiation action. The features of formation of cytogenetic effects in plants in conditions of separate and combined with factors of other nature action of ionizing radiation low doses are considered. (author)

  14. Cytogenetic studies on some Nigerian species of Solanum L ...

    African Journals Online (AJOL)

    Cytogenetic studies to determine the chromosome number, structure and behaviour of some species of Solanum in Nigeria were carried out. Attempt was also made to induce polyploidy in the species. Comparative analysis of the cytological behaviour of the diploid and polyploid cytotypes was made. The studies show that ...

  15. CLASSICAL AND MOLECULAR CYTOGENETIC STUDIES FOR BREEDING AND SELECTION OF TULIPS

    Directory of Open Access Journals (Sweden)

    Aurel Popescu

    2012-12-01

    Full Text Available Due to their extreme popularity as fresh cut flowers and garden plants, and being used extensively for landscaping, tulips undergone a continuous process of selective breeding. For almost nine decades, classical cytogenetic studies, mainly the chromosome counts, have been an important part in the breeding programme for polyploid tulips. The efficiency of breeding is greatly aided by a thorough knowledge of the occurrence of polyploidy in the plant material. While the traditional cytogenetic approaches are still highly useful in selecting polyploids and aneuploids arising from crosses involving (most often parents of different ploidy or from the material subjected to ploidy manipulation, the new strategies for inducing polyploidy in tulips, either in vivo or in vitro, and advances in molecular cytogenetics are expected to allow a significant increase in breeding efficiency. Together with the shortening of breeding cycle, major genetic improvements could be made for specific traits. In this we review the development of cytogenetic studies in tulips, and the most relevant achievements so far, providing an overview of what we consider to be valuable tools for the processes of selective breeding .

  16. Contributions of Cytogenetics and Molecular Cytogenetics to the Diagnosis of Adipocytic Tumors

    Directory of Open Access Journals (Sweden)

    Jun Nishio

    2011-01-01

    Full Text Available Over the last 20 years, a number of tumor-specific chromosomal translocations and associated fusion genes have been identified for mesenchymal neoplasms including adipocytic tumors. The addition of molecular cytogenetic techniques, especially fluorescence in situ hybridization (FISH, has further enhanced the sensitivity and accuracy of detecting nonrandom chromosomal translocations and/or other rearrangements in adipocytic tumors. Indeed, most resent molecular cytogenetic analysis has demonstrated a translocation t(11;16(q13;p13 that produces a C11orf95-MKL2 fusion gene in chondroid lipoma. Additionally, it is well recognized that supernumerary ring and/or giant rod chromosomes are characteristic for atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma, and amplification of 12q13–15 involving the MDM2, CDK4, and CPM genes is shown by FISH in these tumors. Moreover, myxoid/round cell liposarcoma is characterized by a translocation t(12;16(q13;p11 that fuses the DDIT3 and FUS genes. This paper provides an overview of the role of conventional cytogenetics and molecular cytogenetics in the diagnosis of adipocytic tumors.

  17. No. 434 - Radiation Control Regulation 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This Regulation, made under the Radiation Control Act 1990, replaces the Radioactive Substances Regulation 1959, repealed by the 1990 Act. It deals with licensing of the use of radioactive substances and radiation apparatus, regulates their use, disposal and transport. It also provides for radiation monitoring and emergency planning. (NEA)

  18. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  19. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.

  20. Ionizing radiation and nitric oxide donor sensitize Fas-induced apoptosis via up-regulation of Fas in human cervical cancer cells

    International Nuclear Information System (INIS)

    Park, In Chul; Woo, Sang Hyeok; Park, Myung Jin; Lee, Hyung Chahn; Lee Su Jae; Hong, Young Joon; Lee, Seung Hoon; Hong, Seok II; Rhee, Chang Hun

    2004-01-01

    Fas/CD95/Apo1 is a transmembrane receptor known to trigger apoptotic cell death in several cell types. In the present study, we showed that ionizing radiation (IR) and NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), sensitized Fas-induced apoptotic cell death of HeLa human cervical cancers. Suboptimal dose of IR and SNAP up-regulated cell-surface Fas antigen, detected by FACScan using FITC-anti-Fas antibody. When combined with IR or SNAP, agonistic anti-Fas antibody CH-11 resulted in marked enhancement of apoptosis. This sensitization was completely abrogated by anti-Fas neutralizing antibody ZB4. During the IR and SNAP sensitized Fas-induced apoptosis, mitochondria permeabilization, cytochrome c release, and DNA fragmentation were detected. Furthermore, combined treatment of IR and SNAP additively up-regulated the surface Fas protein expression and sensitized Fas-induced apoptosis. Our finding demonstrate that sensitization of HeLa cervical cells to Fas-mediated apoptosis by IR and NO donor is most likely due to the up-regulation of Fas expression and also provides a means with which to sensitize tumors to the killing effects of cancer therapy via the Fas receptor

  1. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  2. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Science.gov (United States)

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  3. Radiation-induced adaptive response in fetal mice: a micro-array study

    International Nuclear Information System (INIS)

    Vares, G.; Bing, Wang; Mitsuru, Nenoi; Tetsuo, Nakajima; Kaoru, Tanaka; Isamu, Hayata

    2006-01-01

    Exposure of sublethal doses of ionizing radiation can induce protective mechanisms against a subsequent higher dose irradiation. This phenomenon called radio-adaptation (or adaptive response - AR), has been described in a wide range of biological models. In a series of studies, we demonstrated the existence of a radiation-induced AR in mice during late organogenesis. For better understanding of molecular mechanisms underlying AR in our model, we performed a global analysis of transcriptome regulations in cells collected from whole mouse fetuses. Using cDNA micro-arrays, we studied gene expression in these cells after in utero priming exposure to irradiation. Several combinations of radiation dose and dose-rate were applied to induce or not an AR in our system. Gene regulation was observed after exposure to priming radiation in each condition. Student's t-test was performed in order to identify genes whose expression modulation was specifically different in AR-inducing an( non-AR-inducing conditions. Genes were ranked according to their ability in discriminating AR-specific modulations. Since AR genes were implicated in variety of functions and cellular processes, we applied a functional classification algorithm, which clustered genes in a limited number of functionally related group: We established that AR genes are significantly enriched for specific keywords. Our results show a significant modulation of genes implicated in signal transduction pathways. No AR-specific alteration of DNA repair could be observed. Nevertheless, it is likely that modulation of DNA repair activity results, at least partly, from post-transcriptional regulation. One major hypothesis is that de-regulations of signal transduction pathways and apoptosis may be responsible for AR phenotype. In previous work, we demonstrated that radiation-induced AR in mice during organogenesis is related to Trp53 gene status and to the occurrence of radiation-induced apoptosis. Other work proposed that p53

  4. The value of cytogenetic monitoring versus film dosimetry in the hot zone of a nuclear power plant

    International Nuclear Information System (INIS)

    Kubelka, D.; Fucic, A.; Milkovic-Kraus, S.

    1992-01-01

    Cytogenetic analysis was carried out in 41 workers prior to and following regular maintenance work in a nuclear power plant. Although film dosimetry did not show the maximal annual permitted dose in any of the examined subjects, cytogenetic analysis carried out following the work detected dicentric chromosomes in peripheral blood lymphocytes of 20 workers. According to our findings smoking habits and previous exposure to ionizing radiation had no effect on the increased number of chromosomal aberrations. (author). 23 refs.; 1 tab

  5. Molecular cytogenetic characterization of a human thyroid cancercell line

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich G.; Tuton, Tiffany B.; Ito, Yuko; Chu, LisaW.; Lu, Chung-Mei; Baumgartner, Adolf; Zitzelsberger, Horst F.; Weier,Jingly F.

    2006-01-04

    The incidence of papillary thyroid carcinoma (PTC) increases significantly after exposure of the head and neck region to ionizing radiation, yet we know neither the steps involved in malignant transformation of thyroid epithelium nor the specific carcinogenic mode of action of radiation. Such increased tumor frequency became most evident in children after the 1986 nuclear accident in Chernobyl, Ukraine. In the twelve years following the accident, the average incidence of childhood PTCs (chPTC) increased over one hundred-fold compared to the rate of about 1 tumor incidence per 10{sup 6} children per year prior to 1986. To study the etiology of radiation-induced thyroid cancer, we formed an international consortium to investigate chromosomal changes and altered gene expression in cases of post-Chernobyl chPTC. Our approach is based on karyotyping of primary cultures established from chPTC specimens, establishment of cell lines and studies of genotype-phenotype relationships through high resolution chromosome analysis, DNA/cDNA micro-array studies, and mouse xenografts that test for tumorigenicity. Here, we report the application of fluorescence in situ hybridization (FISH)-based techniques for the molecular cytogenetic characterization of a highly tumorigenic chPTC cell line, S48TK, and its subclones. Using chromosome 9 rearrangements as an example, we describe a new approach termed ''BAC-FISH'' to rapidly delineate chromosomal breakpoints, an important step towards a better understanding of the formation of translocations and their functional consequences.

  6. Unlocking the Karyological and Cytogenetic Diversity of Iris from Lebanon: Oncocyclus Section Shows a Distinctive Profile and Relative Stasis during Its Continental Radiation.

    Science.gov (United States)

    Abdel Samad, Nour; Bou Dagher-Kharrat, Magda; Hidalgo, Oriane; El Zein, Rana; Douaihy, Bouchra; Siljak-Yakovlev, Sonja

    2016-01-01

    Despite being an important target of conservation concern and horticultural interest, Lebanese irises yet have a confusing taxonomic history and species' delimitation is often considered problematic, more especially among royal irises (Iris section Oncocyclus). Indeed, these irises of exceptionally large and spectacular flowers have radiated across Caucasus and eastern Mediterranean giving rise to a number of strict endemic taxa, many of them being considered under threat. Whilst efforts have mostly focused on clarifying the evolutionary relationships in the group based on morphological and molecular data, karyological and cytogenetic characters have been comparatively overlooked. In this study, we established for the first time the physical mapping of 35S rDNA loci and heterochromatin, and obtained karyo-morphological data for ten Lebanese Iris species belonging to four sections (Iris, Limniris, Oncocyclus and Scorpiris). Our results evidenced distinctive genomic profiles for each one of the sections, where Oncocyclus irises, while having the lowest chromosome numbers, exhibit both the highest number of 35S loci and CMA3+ sites. The continental radiation of royal irises has been accompanied by a relative karyological and cytogenetic stasis, even though some changes were observed regarding karyotype formula and asymmetry indexes. In addition to that, our results enabled taxonomic differentiation between I. germanica and I. mesopotamica-two taxa currently considered as synonyms-and highlighted the need for further studies on populations of I. persica and I. wallasiae in the Eastern Mediterranean Region.

  7. Cytogenetic and hematological studies in the workers occupationally exposed to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Zakeri, F.; Honarjoo, M.; Rajab pour, M.; Zahadat, A.; Ahmad pour, M.J.; Asghari, K.

    2007-01-01

    Complete text of publication follows. Objective: This study was aimed at detecting both the incidence of chromosomal aberrations and changes in the hematological parameters as biomarkers of possible radiation injury among workers occupationally exposed to low levels of ionizing radiation and detecting the dose-effect relationship. Methods: Samples of peripheral blood were collected from 38 male industrial radiographers exposed to ionizing radiation for 1-16 years and from 24 age- and sex-matched healthy blood donors without radiation history served as control group. All radiation workers were routinely monitored with film badge. Cytogenetic analysis in peripheral blood lymphocytes assessed by the conventional chromosome aberration assay and at least 200 metaphases for each person were scored. The collected blood samples were analyzed for hematological assay using an automatic analyzer Sysmex KX-21, where 14 different parameters were computerized. Mann-Whitney U test was used to compare the frequencies of the unstable aberrations and hematological parameters between test and control groups. Dose-effect relationship and the influence of age and duration of employment was tested by regression analysis. Results and conclusion: The mean frequencies of dicentric and acentric chromosome aberrations were significantly higher in the exposed group than in the control group (P< 0.0005). No correlation between chromosomal aberrations and physical dose and age was observed in the exposed group. Also there is no clear relation between chromosome damage and duration of exposure. However, the increase in chromosome aberrations in the exposed group was not followed by a corresponding hematological depression. The average values of hematological indices were within the reference levels and did not show any significant differences with control group. A tendency of decreasing the absolute lymphocyte count within the referential levels was the only hematological effect in radiation

  8. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    2000-01-01

    Full text:The year 1999 we devoted mainly to the activities concerning our basic research, and requirements and expectations of three research projects. The environmental project from the European Community was supporting our research in the issues of human monitoring of occupational exposure to pesticides. The two other radiobiology projects from the State Committee of Research were supporting our search on the biological efficiency and its enhancement of radio-therapeutic sources of various LET radiation. We succeeded fruitful co-operation with colleagues from Academy of Mining and Metallurgy that let us go faster with modernization of our laboratory by automation of our methods for screening cytogenetic damages. A lot of efforts were paid to modify our work by automatic reports of the coordinates of aberrant metaphases, and to make a smooth work of our new and own metaphase finder. We are sure that our new and unique research tool will not only enhance the accuracy and speed of measurements, but will also be useful for the purpose of the retrospective biological dosimetry of absorbed doses. We have applied fluorescent in situ hybridization (FISH) for cytogenetic studies of biological effects induced by neutrons. Now, we are looking forward to apply this technique in a combination with the DNA damage measures done by SCGE assay, to our research on mechanisms of the induction and repair, or interaction of the lesions induced by genotoxic agents. Understanding of the regulation of these processes could be a good goal for the new century to come. (author)

  9. Cytogenetics in animal production

    Directory of Open Access Journals (Sweden)

    L. Iannuzzi

    2010-04-01

    Full Text Available Cytogenetics applied to domestic animals is a useful biotechnology to be applied in the genetic improvement of livestock. Indeed, it can be used to select reproducers free chromosome abnormalities which are responsible for abnormal body conformation (aneuploidy, lower fertility (balanced chromosome abnormalities or sterility (sex chromosome abnormalities. Cytogenetics may also be applied to assess environmental pollution by studying animals living in hazardous areas and using them as biological indicators (sentinels. Chromosomes also represent optimal biological structures to study the evolution among related (bovids and unrelated (bovidshumans species, especially using comparative FISH-mapping which is one of the most powerful tools to establish the correct order of loci along chromosomes. These comparisons allow us to transfer useful information from richer genomes (human to those of domestic animals. Moreover, the use of specific molecular markers and the FISH-technique on both mitotic and extended (fiber-FISH chromosomes, has heralded a new era of cytogenetics, allowing swift extension of genetic physical maps, better anchoring of both linkage and RH-maps to specific chromosome regions, and use in a variety of applications (clinical cases, embryo and sperm analyses, evolution. In this study a brief review of these fields of the animal cytogenetics is presented.

  10. The history of human cytogenetics in India-A review.

    Science.gov (United States)

    Dutta, Usha R

    2016-09-10

    It is 60years since the discovery of the correct number of chromosomes in 1956; the field of cytogenetics had evolved. The late evolution of this field with respect to other fields is primarily due to the underdevelopment of lenses and imaging techniques. With the advent of the new technologies, especially automation and evolution of advanced compound microscopes, cytogenetics drastically leaped further to greater heights. This review describes the historic events that had led to the development of human cytogenetics with a special attention about the history of cytogenetics in India, its present status, and future. Apparently, this review provides a brief account into the insights of the early laboratory establishments, funding, and the German collaborations. The details of the Indian cytogeneticists establishing their labs, promoting the field, and offering the chromosomal diagnostic services are described. The detailed study of chromosomes helps in increasing the knowledge of the chromosome structure and function. The delineation of the chromosomal rearrangements using cytogenetics and molecular cytogenetic techniques pays way in identifying the molecular mechanisms involved in the chromosomal rearrangement. Although molecular cytogenetics is greatly developing, the conventional cytogenetics still remains the gold standard in the diagnosis of various numerical chromosomal aberrations and a few structural aberrations. The history of cytogenetics and its importance even in the era of molecular cytogenetics are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cytogenetic and molecular genetic analysis of leukemias found in atomic bomb survivors

    International Nuclear Information System (INIS)

    Kamada, Nanao; Tanaka, Kimio; Eguchi, Mariko

    1994-01-01

    Seventy five radiation-related leukemia patients in Hiroshima including 16 patients exposed to more than one Gray were cytogenetically examined. Statistical analysis of data on the frequencies of chromosomal aberrations in the survivor groups according to bone marrow doses by DS86 estimation revealed that the heavily exposed group tended to have significantly higher aberration rates compared to the non-exposed group. Furthermore, the chromosomal aberrations in the survivors were observed to be of a more complex nature and had the characteristic findings of secondary leukemia. These observations therefore suggest that patients with a history of heavy exposure to atomic bomb radiation had leukemic cells originating from a stem cell which had been damaged by irradiation at the time of the bombing as well as cells involved in complex chromosome abnormalities. A higher incidence(p=0.06) of 11q23 abnormality was found in acute leukemia patients who had a history of exposure to A-bomb and developed from 1986 to 1993. However, we could not detect rearrangement of MLL gene in these patients. Break point region on 11q23 of radiation induced leukemias may be different from the common 8.5 kb region. Molecular biologic studies on RAS genes in acute and chronic leukemias and the BCR gene in chronic myelocytic leukemia were performed in exposed and non-exposed groups. So far, no distinctive differences have been observed in the frequency and sites of point mutations in N and K-RAS genes or in the rearrangement of the BCR gene. Further, retrospective analysis using DNA from leukemia patients who developed the disease in the early period from atomic bomb radiation exposure would be useful for elucidation of the mechanisms of radiation-induced leukemia. (author)

  12. Interphase fluorescence in situ hybridization analysis detects a much higher rate of thyroid tumors with clonal cytogenetic deviations of the main cytogenetic subgroups than conventional cytogenetics.

    Science.gov (United States)

    Drieschner, Norbert; Rippe, Volkhard; Laabs, Anne; Dittberner, Lea; Nimzyk, Rolf; Junker, Klaus; Rommel, Birgit; Kiefer, Yvonne; Belge, Gazanfer; Bullerdiek, Jörn; Sendt, Wolfgang

    2011-07-01

    In benign thyroid lesions, three main cytogenetic subgroups, characterized by trisomy 7 or structural aberrations involving either chromosomal region 19q13.4 or 2p21, can be distinguished by conventional cytogenetics (CC). As a rule, these aberrations seem to be mutually exclusive. Interphase fluorescence in situ hybridization (I-FISH) analysis on benign as well as malignant thyroid neoplasias has been performed in the past, but rarely in combination with CC. In the present paper, we have analyzed 161 benign thyroid lesions both with CC and I-FISH on touch preparations by using a multi-target, triple-color FISH assay as well as dual-color break-apart probes for detection of the main cytogenetic subgroups. Within the samples, I-FISH detected tumors belonging to either of the subgroups more frequently than CC (23 vs. 11.4%), either due to small subpopulations of aberrant cells or to cryptic chromosomal rearrangements (three cases). Thus, I-FISH seems to be more sensitive than CC, particularly in the detection of subpopulations of cells harboring cytogenetic aberrations that may be overlooked by CC. In summary, I-FISH on touch preparations of benign thyroid lesions seems to be a favorable method for cytogenetic subtyping of thyroid lesions. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cytogenetics of Legumes in the Phaseoloid Clade

    Directory of Open Access Journals (Sweden)

    Aiko Iwata

    2013-11-01

    Full Text Available Cytogenetics played an essential role in studies of chromosome structure, behavior, and evolution in numerous plant species. The advent of molecular cytogenetics combined with recent development of genomic resources has ushered in a new era of chromosome studies that have greatly advanced our knowledge of karyotypic diversity, genome and chromosome organization, and chromosomal evolution in legumes. This review summarizes some of the achievements of cytogenetic studies in legumes in the Phaseoloid clade, which includes several important legume crops such as common bean ( L., cowpea [ (L. Walp.], soybean [ (L. Merr.], and pigeonpea [ (L. Huth]. In the Phaseoloid clade, karyotypes are mostly stable. There are, however, several species with extensive chromosomal changes. Fluorescence in situ hybridization has been useful to reveal chromosomal structure by physically mapping transposons, satellite repeats, ribosomal DNA genes, and bacterial artificial chromosome clones onto chromosomes. Polytene chromosomes, which are much longer than the mitotic chromosomes, have been successfully found and used in cytogenetic studies in some and species. Molecular cytogenetics will continue to be an important tool in legume genetics and genomics, and we discuss future applications of molecular cytogenetics to better understand chromosome and genome structure and evolution in legumes.

  14. [Progress of cytogenetic detection in myelodysplastic syndromes].

    Science.gov (United States)

    Zhou, Qing-Bing; Hu, Xiao-Mei; Liu, -Feng; Ma, Rou

    2011-12-01

    In recent years, significant progresses have been got in study on pathogenesis, treatment and prognosis of myelodysplastic syndromes (MDS), especially on use of new technology, that has great importance for cytogenetics of MDS. Recently, the progress of cytogenetic detection in MDS is very remarkable. Based on the metaphase cytogenetics (MC) method, prognostic significance of cytogenetics in MDS was clarified gradually. For example, people have known the prognostic significance of 12 p-, 11 q-, +21, t(11(q23)), although these genetic abnormalities are rare in the MDS. In addition, chromosome mutation emerged in the process of MDS may indicate the poor prognosis. On the other hand, with the use of SNP-A and aCGH in the study of genetics, MDS cytogenetic abnormality detection rate has been further improved and can reach to 78%. At the same time, some of MDS patients with the "normal karyotype" detected by MC have new hidden aberrations through the SNP or CGH detection, and these patients have a poorer prognosis. In this review, the advances of study on cytogenetic detection for MDS based on MC and SNP-A or aCGH methods are summarized.

  15. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  16. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  17. The Cerrado (Brazil) plant cytogenetics database.

    Science.gov (United States)

    Roa, Fernando; Telles, Mariana Pires de Campos

    2017-01-01

    Cerrado is a biodiversity hotspot that has lost ca. 50% of its original vegetation cover and hosts ca. 11,000 species belonging to 1,423 genera of phanerogams. For a fraction of those species some cytogenetic characteristics like chromosome numbers and C-value were available in databases, while other valuable information such as karyotype formula and banding patterns are missing. In order to integrate and share all cytogenetic information published for Cerrado species, including frequency of cytogenetic attributes and scientometrics aspects, Cerrado plant species were searched in bibliographic sources, including the 50 richest genera (with more than 45 taxa) and 273 genera with only one species in Cerrado. Determination of frequencies and the database website (http://cyto.shinyapps.io/cerrado) were developed in R. Studies were pooled by employed technique and decade, showing a rise in non-conventional cytogenetics since 2000. However, C-value estimation, heterochromatin staining and molecular cytogenetics are still not common for any family. For the richest and best sampled families, the following modal 2n counts were observed: Oxalidaceae 2n = 12, Lythraceae 2n = 30, Sapindaceae 2n = 24, Solanaceae 2n = 24, Cyperaceae 2n = 10, Poaceae 2n = 20, Asteraceae 2n = 18 and Fabaceae 2n = 26. Chromosome number information is available for only 16.1% of species, while there are genome size data for only 1.25%, being lower than the global percentages. In general, genome sizes were small, ranging from 2C = ca. 1.5 to ca. 3.5 pg. Intra-specific 2n number variation and higher 2n counts were mainly related to polyploidy, which relates to the prevalence of even haploid numbers above the mode of 2n in most major plant clades. Several orphan genera with almost no cytogenetic studies for Cerrado were identified. This effort represents a complete diagnosis for cytogenetic attributes of plants of Cerrado.

  18. Radiation and desiccation response motif mediates radiation induced gene expression in D. radiodurans

    International Nuclear Information System (INIS)

    Anaganti, Narasimha; Basu, Bhakti; Apte, Shree Kumar

    2015-01-01

    Deinococcus radiodurans is an extremophile that withstands lethal doses of several DNA damaging agents such as gamma irradiation, UV rays, desiccation and chemical mutagens. The organism responds to DNA damage by inducing expression of several DNA repair genes. At least 25 radiation inducible gene promoters harbour a 17 bp palindromic sequence known as radiation and desiccation response motif (RDRM) implicated in gamma radiation inducible gene expression. However, mechanistic details of gamma radiation-responsive up-regulation in gene expression remain enigmatic. The promoters of highly radiation induced genes ddrB (DR0070), gyrB (DR0906), gyrA (DR1913), a hypothetical gene (DR1143) and recA (DR2338) from D. radiodurans were cloned in a green fluorescence protein (GFP)-based promoter probe shuttle vector pKG and their promoter activity was assessed in both E. coli as well as in D. radiodurans. The gyrA, gyrB and DR1143 gene promoters were active in E. coli although ddrB and recA promoters showed very weak activity. In D. radiodurans, all the five promoters were induced several fold following 6 kGy gamma irradiation. Highest induction was observed for ddrB promoter (25 fold), followed by DR1143 promoter (15 fold). The induction in the activity of gyrB, gyrA and recA promoters was 5, 3 and 2 fold, respectively. To assess the role of RDRM, the 17 bp palindromic sequence was deleted from these promoters. The promoters devoid of RDRM sequence displayed increase in the basal expression activity, but the radiation-responsive induction in promoter activity was completely lost. The substitution of two conserved bases of RDRM sequence yielded decreased radiation induction of PDR0070 promoter. Deletion of 5 bases from 5'-end of PDR0070 RDRM increased basal promoter activity, but radiation induction was completely abolished. Replacement of RDRM with non specific sequence of PDR0070 resulted in loss of basal expression and radiation induction. The results demonstrate that

  19. Radiation induces aerobic glycolysis through reactive oxygen species

    International Nuclear Information System (INIS)

    Zhong, Jim; Rajaram, Narasimhan; Brizel, David M.; Frees, Amy E.; Ramanujam, Nirmala; Batinic-Haberle, Ines; Dewhirst, Mark W.

    2013-01-01

    Background and purpose: Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods: 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results: Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions: Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used

  20. Factories Act 1961, Ionizing Radiations (Unsealed Radioactive Substances) Regulations 1968, Certificate of Approval No.1 (General)

    International Nuclear Information System (INIS)

    1969-01-01

    Under the Ionising Radiations (Unsealed Radioactive Substances) Regulations No. 780 of 1968, the Chief Inspector of Factories has wide powers to ensure the protection of workers. By this Certificate he approved, for the purpose of measuring radiation doses, any radiation dosemeter, based on the phenomenon of radiation-induced thermoluminescence, supplied by an approved laboratory. (NEA) [fr

  1. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  2. Proteomic analysis of PC12 cell differentiation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Zhang Junquan; Gao Ronglian; Chen Xiaohua; Wang Zhidong; Dong Bo; Rao Yalan; Hou Lili; Zhang Hao; Mao Bingzhi

    2005-01-01

    Objective: To explore the molecular mechanism of PC12 cell differentiation induced by ionizing radiation and screen the molecular target of nervous system injured by irradiation. Methods: PC12 cells were irradiated with 16 Gy 60 Co γ ray. Total proteins of normal and irradiated cells were prepared 48 hours after irradiation and separated with two dimensional gel electrophoresis. Some differential expressed proteins were characterized with mass spectrometry. Results: 876 differential expressed proteins were observed. Up-regulated expression of ubiquitin carboxyl-terminal hydratase L1 was found. Down-regulated expression of new protein similar to HP1α was found. Conclusion: The characterization of some differential expressed proteins through proteomic analysis would benefit the research of molecular mechanism of PC12 cell differentiation induced by ionizing radiation. (authors)

  3. Long Term Storage of cytogenetic changes in liquidators of Chernobyl

    International Nuclear Information System (INIS)

    Karpov, V. B.

    2004-01-01

    At present chromosome aberration analysis in lymphocytes as well as micronucleus assay are most reliable methods of bio indication of radiation effects. The problem of persistent of cytogenetic changes during the long term after exposure is very important. The cytogenetic studies of liquidators residents of St. Petersburg and region revealed that the average chromosome aberration rate 4-5 years after the accident constitutes 4.94±0.38, number of aberrant cells was 4.82±0.36, dicentrics -0.23±0.10 per 100 cells, micronucleus number -46.1±2.1 per 100 cells that is significantly higher than in control group. dispersion analysis confirms the reported level of external exposure effects on chromosome aberration rate (?=0.04) in this group of liquidators. In 73 persons from the group of high risk participants of nuclear tests, nuclear submarine personnel 8-45 years after average number of chromosome aberrations was 6.5±0.32; dicentrics - 0.64±0.10, centric rings- 0.04±0.02 per 100 cells, for micronuclei -51.4±2.82 per thousand cells, that is significantly higher than in control group (p<0.01). In 45.2% cases the aberration markers (disentrics and centric rings) were found. The late cytogenetic effects were observed after decades and possibility to use these indicators for long term diagnosis is now under consideration. (Author)

  4. Cytogenetic study of a pineocytoma

    DEFF Research Database (Denmark)

    Rainho, C A; Rogatto, S R; de Moraes, L C

    1992-01-01

    The cytogenetic findings based on G-banding in a pineocytoma detected in a 29-year-old woman are reported. The chromosomal study showed numerical alterations involving chromosomes X, 5, 8, 11, 14, and 22, structural alterations of chromosomes 1, 3, 12, and 22, as well as various markers. Tumors...... of the pineal region are infrequent, and this is the first report of a pineocytoma studied cytogenetically....

  5. The Cerrado (Brazil plant cytogenetics database

    Directory of Open Access Journals (Sweden)

    Fernando Roa

    2017-04-01

    Full Text Available Cerrado is a biodiversity hotspot that has lost ca. 50% of its original vegetation cover and hosts ca. 11,000 species belonging to 1,423 genera of phanerogams. For a fraction of those species some cytogenetic characteristics like chromosome numbers and C-value were available in databases, while other valuable information such as karyotype formula and banding patterns are missing. In order to integrate and share all cytogenetic information published for Cerrado species, including frequency of cytogenetic attributes and scientometrics aspects, Cerrado plant species were searched in bibliographic sources, including the 50 richest genera (with more than 45 taxa and 273 genera with only one species in Cerrado. Determination of frequencies and the database website (http://cyto.shinyapps.io/cerrado were developed in R. Studies were pooled by employed technique and decade, showing a rise in non-conventional cytogenetics since 2000. However, C-value estimation, heterochromatin staining and molecular cytogenetics are still not common for any family. For the richest and best sampled families, the following modal 2n counts were observed: Oxalidaceae 2n = 12, Lythraceae 2n = 30, Sapindaceae 2n = 24, Solanaceae 2n = 24, Cyperaceae 2n = 10, Poaceae 2n = 20, Asteraceae 2n = 18 and Fabaceae 2n = 26. Chromosome number information is available for only 16.1% of species, while there are genome size data for only 1.25%, being lower than the global percentages. In general, genome sizes were small, ranging from 2C = ca. 1.5 to ca. 3.5 pg. Intra-specific 2n number variation and higher 2n counts were mainly related to polyploidy, which relates to the prevalence of even haploid numbers above the mode of 2n in most major plant clades. Several orphan genera with almost no cytogenetic studies for Cerrado were identified. This effort represents a complete diagnosis for cytogenetic attributes of plants of Cerrado.

  6. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  7. Identification of novel senescence-associated genes in ionizing radiation-induced senescent carcinoma cells

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Bong Cho; Han, Na Kyung; Hong, Mi Na; Park, Su Min; Yoo, Hee Jung; Chu, In Sun; Lee, Sun Hee

    2009-01-01

    Cellular senescence is considered as a defense mechanism to prevent tumorigenesis. Ionizing radiation (IR) induces stress-induced premature senescence as well as apoptosis in various cancer cells. Senescent cells undergo functional and morphological changes including large and flattened cell shape, senescence-associated β-galactosidase (SA-βGal) activity, and altered gene expressions. Even with the recent findings of several gene expression profiles and supporting functional data, it is obscure that mechanism of IR-induced premature senescence in cancer cells. We performed microarray analysis to identify the common regulated genes in ionizing radiation-induced prematurely senescent human carcinoma cell lines

  8. Cytogenetic effects of ionizing radiation in peripheral lymphocytes of ISS crew members

    Science.gov (United States)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra; Obe, Günter; Horstmann, Markus

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). The effect of the increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required.The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second sample was drawn within 3 days after return from their flights. From lymphocyte cultures metaphase plates were prepared on glass slides. Metaphases were Giemsa stained or hybridised using multicolour FISH probes. All types of chromosome changes were scored in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to cosmic radiation exposure. Overall significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed in long-term crew members. Our data indicate no elevation of mutation rates due to short-term stays on-board the ISS.

  9. ErbB2 regulates NHEJ repair pathway by affecting erbB1-triggered IR-induced Akt activity

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Peter Rodemann, H.

    2009-01-01

    We have already reported that erbBl-PI3K-AKT signaling is an important pathway in regulating radiation sensitivity and DNA double strand break repair of human tumor cells. In the present study using small interfering RNA and pharmacological inhibitors in non-small cell lung cancer cell lines we investigated the role of Aktl on radiation-induced DNA-PKcs activity and DNA-double strand break (DNA-DSB) repair. Likewise, the function of erbB2 as hetrodimerization partner of erbBl in radiation-induced Akt activity and regulation of DNA-dsb repair through DNA-PKcs was evaluated. In A549 and H460 transfected with AKTl-siRNA radiation-induced phosphorylation of DNA-PKcs the key enzyme regulating NHEJ repair pathway was markedly inhibited. In both cell lines downregulation of Aktl led to a significant enhancement of residual DNA-DSB, i.e. impaired DNA-DSB repair. Interestingly, in cells transfected with DNA-PKcs-siRNA a lack of effect of AKTl-siRNA on enhancement of residual DNA-DSBs was observed. This results indicate that Aktl regulates NHEJ repair in a DNA-PKcs dependent manner

  10. Results of cytogenetic surveillance of rural populations adjoining to Semipalatinsk test site

    International Nuclear Information System (INIS)

    Abdil'dinova, G.Zh.; Kundakbaeva, G.B.; Zhunusova, A.B.

    1997-01-01

    Purpose of the work is study of somatic cytogenetic effects with taking into consideration chromosomal aberration of population from Beskaragaj district of Semipalatinsk region exposed to influence of conducted nuclear tests on Semipalatinsk test site. Cultures of lymphocyates of peripheral flood were studied. Control group made up 15 man living in Akmola region locating out of radiation contaminated zone. It is determined, that common frequency of chromosomal aberration make up 3.6 on 100 cells. At that frequency of pair fragments made up 2.0 on 100 metaphases (0.2 in control group); dicentrics and center rings were revealed with summary frequency 0.6 on 100 metaphases and that is approximately in 15 fold greater than control index - 0.03 on 100 cells. Stable radiation markers (translocations, deletions) revealed with frequency 1.07 on 100 cells (control make up 0.4 on 100 cells). By results of of conducted cytogenetic analysis the attempt of mean group effective equivalent dose reconstruction received with inhabitants of Beskaragaj district is undertaken. It was calculated, that population of researched district have been got dose loading in 9.09 rem

  11. The process and promotion of radiation-induced cell death

    International Nuclear Information System (INIS)

    Sasaki, Hiroshi

    1998-01-01

    Radiation-induced cell death is divided into reproductive and interphase death, whose process can be revealed by time-lapse observations. Pedigree analyses of progenies derived from a surviving progenitor cell have shown that moribund cells appear in clusters among cells which are apparently undamaged (lethal sectoring). Sister cell fusion, which likely results from chromosome bridge, is the most frequently observed cell abnormality leading to reproductive death. While interphase death does not occur unless the dose exceeds 10 Gy for low LET radiation such as X-rays, high-LET radiation is very effective at inducing interphase death (RBE: ≅3 at 230 keV/μm). Expression or fixation of potentially lethal damage (PLD) is closely associated with cell cycle events and enhanced by inducing premature chromosome condensation (PCC) at a nonpermissive temperature in tsBN2 cells with a ts-defect in RCC1 protein (a regulator of chromatin condensation) which monitors the completion of DNA replication. Furthermore, higher-order structural changes in nuclear matrix such as induced by leptomycin B, an inhibitor of CRM1 (chromosome region maintenance) protein, also play an important role in the fixation of PLD. (author)

  12. Cytogenetic changes induced by aqueous ferrofluids in agricultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Racuciu, Mihaela [Faculty of Sciences, Lucian Blaga University, 10 Blvd. Victoriei, Sibiu 550012 (Romania)]. E-mail: mracuciu@yahoo.com; Creanga, Dorina [Faculty of Physics, Al. I. Cuza University, 11A Blvd.Copou, Iasi 700506 (Romania)

    2007-04-15

    In this paper, the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of agricultural plants when cultivated in the presence of different concentrations of aqueous ferrofluid, ranging between 10 and 250 {mu}L/L. The agricultural species (Zea mays) with a major role in the life of people was chosen for the experimental project. The water-based ferrofluid was prepared following the chemical co-precipitation method, using tetramethylammonium hydroxide as magnetite core stabilizer. Microscopic investigations (cytogenetic tests) resulted in the evaluation of the mitotic and chromosomal aberration index. They appeared to increase following ferrofluid addition.

  13. Radiation-induced thermoacoustic imaging

    International Nuclear Information System (INIS)

    Bowen, T.

    1984-01-01

    This invention provides a new technique for obtaining information non-invasively on the composition and structures of a material or body by detecting radiation-induced thermoacoustic image features. This is accomplished by utilizing the acoustic wave generated by sudden thermal stress. The sudden thermal stress is induced by a pulse of radiation which deposits energy causing a rapid, but very small, rise of temperature (typically, ΔT approximately 10sup(-6) - 10sup(-5) deg C). The radiation may be ionizing radiation, such as high energy electrons, photons (x-rays), neutrons, or other charged particles or it may be non-ionizing radiation, such as R.F. and microwave electromagnetic radiation and ultrasonic radiation. The choice of radiation depends on the nature of the body to be imaged and the type of information desired

  14. RHOEO SPATHACEA: A CYTOGENETICAL REVIEW

    OpenAIRE

    Datta Animesh K.; Mandal Aninda; Bhattacharya Arnab; Saha Aditi; Paul Rita

    2012-01-01

    A cytogenetical review is conducted on Rhoeo spathacea (Swartz) Stearn (monotypic genus of the family Commelinaceae) including conventional heterozygote (var. bicolor) form (2n=12) and a rare bivalent forming clone of var. concolor (2n=12) with an objective to provide cytological configurations explaining some of the important cytogenetical aspects, which is rather difficult in sexually propagated plant species due to sterility barriers. Cytological configurations documented may generate inte...

  15. Cytogenetic adaptive response induced by EMS or MMS in bone

    African Journals Online (AJOL)

    B.B. Dada Khalandar

    2016-01-14

    Jan 14, 2016 ... aberrations in both diabetic and non diabetic mice, but it is to be underlined that MMS is a ... nous agents and each cell receives about thousands of DNA ...... response to ionizing radiation induced by low doses of X rays to.

  16. Evaluation of cytogenetic effects in some occupational groups exposed to mutagenic action due to the Chernobyl accident

    International Nuclear Information System (INIS)

    Pilinskaya, M.A.; Pilinskij, V.V.

    1995-01-01

    12 persons, that live on territories contaminated by radionuclides and are exposed to additional irradiation due to their occupational activity, are cytogenetic ally examined. The most serious cytogenetic effect was in the group of tractor-drivers from the Polesskoe region of the Kyiv district (average frequency of unstable chromosome aberrations - 2.51 per 100 cells, stable chromosome aberrations - 1.44 per 100 cells), where the density of 137 Cs-contamination ran up to 26 Ci/km 2 . The received data confirm the importance of contribution of the occupational radiation component to genetic effects in the population of areas contaminated after the Chernobyl accident

  17. Ionising radiation: a guide to the Regulations

    International Nuclear Information System (INIS)

    Hughes, Donald.

    1986-01-01

    The author explains the basic requirements on health and safety personnel in relation to the Ionising Radiations Regulations 1985. The outline paper is presented under the following headings: Dose assessment, Interpretation and general regulations 1-5, Dose limitation regulations 6 and 7, Regulation of work - regulations 8-12, Dosimetry and medical surveillance - regulations 13-17, summary of records to be kept, entry to controlled areas, Control of radioactive substances -regulations 18-23, Monitoring of radiation regulation 24, Assessments and notifications - regulations 25-31, Safety of articles and equipment - regulations 32-34, Other guidance. (U.K.)

  18. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    1974-01-01

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene [fr

  19. Cytogenetic Resources and Information.

    Science.gov (United States)

    De Braekeleer, Etienne; Huret, Jean-Loup; Mossafa, Hossain; Dessen, Philippe

    2017-01-01

    The main databases devoted stricto sensu to cancer cytogenetics are the "Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer" ( http://cgap.nci.nih.gov/Chromosomes/Mitelman ), the "Atlas of Genetics and Cytogenetics in Oncology and Haematology" ( http://atlasgeneticsoncology.org ), and COSMIC ( http://cancer.sanger.ac.uk/cosmic ).However, being a complex multistep process, cancer cytogenetics are broadened to "cytogenomics," with complementary resources on: general databases (nucleic acid and protein sequences databases; cartography browsers: GenBank, RefSeq, UCSC, Ensembl, UniProtKB, and Entrez Gene), cancer genomic portals associated with recent international integrated programs, such as TCGA or ICGC, other fusion genes databases, array CGH databases, copy number variation databases, and mutation databases. Other resources such as the International System for Human Cytogenomic Nomenclature (ISCN), the International Classification of Diseases for Oncology (ICD-O), and the Human Gene Nomenclature Database (HGNC) allow a common language.Data within the scientific/medical community should be freely available. However, most of the institutional stakeholders are now gradually disengaging, and well-known databases are forced to beg or to disappear (which may happen!).

  20. Ionizing Radiation Induces Cellular Senescence of Articular Chondrocytes via Negative Regulation of SIRT1 by p38 Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Hee; Hwang, Sang Gu [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Senescent cells exhibit irreversible growth arrest, large flat morphology, and up-regulated senescence-associated {beta}-galactosidase activity at pH 6.0. Several conditions, including oncogenic stress, oxidative stress, and DNA damage are associated with cellular senescence. Massive acute DNA double-strand breaks occurring as a result of mechanical and chemical stress can be repaired, but some DNA damage persists, eventually triggering premature senescence. Since ionizing radiation directly induces DBS, it is possible that cellular senescence is activated under these conditions. The biological events in chondrocytes following irradiation are poorly understood, and limited information is available on the molecular signal transduction mechanisms of cellular senescence at present. In this study, we identify SIRT1 as a target molecule of p38 kinase and demonstrate that the interactions between p38 kinase and SIRT1 protein play an important role in the regulation of cellular senescence in response to IR.

  1. Assessment of radiation induced cytogenetic damage in human keratinocytes by comet assay

    International Nuclear Information System (INIS)

    Joseph, Praveen; Sanjeev Ganesh; Narayana, Y.; Puthali, Abhay; Bhat, N.N.

    2010-01-01

    In the present study the effect of gamma radiation on normal human keratinocytes (HaCaT) cells has been analyzed using alkaline comet assay and a comparative study over the sensitivity of different comet parameters such as tail length (TL), olive tail moment (OTM) and percentage tail DNA (TDNA) has also been made. Human keratinocytes (HaCaT) cells were grown in Dulbecco's modified essential medium (DMEM) (10% FCS) at 37 °C in a humidified atmosphere containing 5% CO 2 . Cultured cells were harvested with 0.025 % trypsin EDTA. The sample (2 X 10 cells/ml) was exposed to gamma radiation of different dose using a 60 Co gamma source at dose rate of 2 Gy min -1 and the dosimetry has been carried out using Fricke and FBX dosimeters. After irradiation, to quantify the DNA damage the comet assay (single cell gel electrophoresis) was carried out under alkaline conditions, by the methods outlined by Singh et al. The quantification of the DNA strand breaks in each cells were performed using CASP software. The DNA damage quantification can be accomplished by measuring those comet parameters which exhibit a linear dependence on the amount of DNA damage. In the present study, comet parameters such as OTM, TL and TDNA were recorded and the variation of these parameters and their correlation coefficients for different doses of gamma radiation is plotted. The OTM value is normalized with control value and control for TL and TDNA is adjusted to zero to avoid initial variations in different experiments

  2. Regulations in radiation protection

    International Nuclear Information System (INIS)

    1986-01-01

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  3. Radiation-induced centers in inorganic glasses

    International Nuclear Information System (INIS)

    Brekhovskikh, S.M.; Tyul'nin, V.A.

    1988-01-01

    The nature, structure and formation mechanisms of radiation-induced colour centers, EPR, luminescence, generated ionizing radiation in nonorganic oxide glasses are considered. Experimental material covering both fundamental aspects of radiation physics and glass chemistry, and aspects intimately connected with the creation of new materials with the given radiation-spectral characteristics, with possibilities to prepare radiation-stable and radiation-sensitive glasses is systematized and generalized. Considerable attention is paid to the detection of radiation-induced center binding with composition, glass structures redox conditions for their synthesis. Some new possibilities of practical application of glasses with radiation-induced centers, in particular, to record optical information are reflected in the paper

  4. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA) [fr

  5. Unmet needs in automated cytogenetics

    International Nuclear Information System (INIS)

    Bender, M.A.

    1976-01-01

    Though some, at least, of the goals of automation systems for analysis of clinical cytogenetic material seem either at hand, like automatic metaphase finding, or at least likely to be met in the near future, like operator-assisted semi-automatic analysis of banded metaphase spreads, important areas of cytogenetic analsis, most importantly the determination of chromosomal aberration frequencies in populations of cells or in samples of cells from people exposed to environmental mutagens, await practical methods of automation. Important as are the clinical diagnostic applications, it is apparent that increasing concern over the clastogenic effects of the multitude of potentially clastogenic chemical and physical agents to which human populations are being increasingly exposed, and the resulting emergence of extensive cytogenetic testing protocols, makes the development of automation not only economically feasible but almost mandatory. The nature of the problems involved, and acutal of possible approaches to their solution, are discussed

  6. Regulation on radiation protection health care of workers exposed to ionizing radiation. - Regulation on radiation protection health care - of the 25 Mar 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The present regulation will be in force on 1 July 1986 and supersedes a regulation from 29 September 1970. It regulates the medical surveillance with regard to radiation protection for all kinds of workers with an increased risk of being exposed to ionizing radiation such as e.g. reactor operators and miners. Examinations have to be performed according to directions of the SAAS including further measures if necessary regarding clinical occupational and radiation protection medicine. The task of the firms, the managers, the medical officers, and the SAAS are distinctly marked

  7. Impact of baseline cytogenetic findings and cytogenetic response on outcome of high-risk myelodysplastic syndromes and low blast count AML treated with azacitidine.

    Science.gov (United States)

    Sébert, Marie; Komrokji, Rami S; Sekeres, Mikkael A; Prebet, Thomas; Cluzeau, Thomas; Santini, Valeria; Gyan, Emmanuel; Sanna, Alessandro; Ali, Najla HAl; Hobson, Sean; Eclache, Virginie; List, Alan; Fenaux, Pierre; Adès, Lionel

    2017-12-01

    Karyotype according to the revised IPSS is a strong independent prognostic factor for overall survival (OS) in myelodysplastic syndromes (MDS), however established in untreated patients. The prognostic impact of cytogenetics and cytogenetic response (CyR) in MDS patients receiving azacitidine (AZA) remains uncertain. We examined the prognostic value of baseline cytogenetics and CyR for overall response rate (ORR) and OS in 702 AZA-treated higher risk MDS and low blast count acute myeloid leukemia (AML), including 493 (70%) with abnormal karyotype. None of the cytogenetic abnormalities had significant impact on ORR (43.9%) or complete response (15.35%), except 3q abnormalities and complex karyotypes, which were associated with a lower ORR. OS differed significantly across all R-IPSS cytogenetic subgroups (pcytogenetics. CyR was achieved in 32% of the 281 evaluable patients with abnormal cytogenetics, was complete (CCyR) in 71 (25.3%) patients. We found no correlation between hematological response and cytogenetic response and 21% of the patients with CCyR did not achieve morphological response. In the 281 patients, we found no impact of CyR on survival, but when restricting to MDS (ie: <20% marrow blasts) achievement of CCyR was associated with better OS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hygienic regulation of ionizing radiations

    International Nuclear Information System (INIS)

    Saurov, M.M.

    1984-01-01

    Modern state of the problem on hygienic regulation of ionizing radiations is considered. Concepts and principles of the regulation based on risk concept are presented according to ICRP 26 and 27. Two types of risk are designated: ''absolute'' and ''relative'' ones. The concept of acceptable risk on the basis of cost - benefit ratio is substantiated. Special attention is paid to the principle of accounting the complex of health signs, when determining radiation hazard. To determine the level of permissible risk and permissible dose to population the concept of ''inadmissibility of s-tatistically significant risk'' has been developed. Standards, regulating population doses in the USSR, which are valid nowadays, are considered

  9. The NSW Radiation Control Act and regulation

    International Nuclear Information System (INIS)

    Towson, J.

    1994-01-01

    The legal control of radiation safety in New South Wales has undergone substantial change in recent years. The long-awaited Regulation to the 1990 Radiation Control Act came into effect on 1 September 1993 (of necessity, as the Regulation to the previous 1957 Radioactive Substances Act expired on that date). It has not met with unanimous acclaim. The Regulation addresses three broad areas, namely - (a) legal controls - licensing, registration, radiation 'experts'; (b) safety matters - workplace management, monitoring, research exposures, transport/disposal, accidents; and (c) miscellaneous -radiation safety officers, committees, penalties, records, This article offers a personal view of the implications for nuclear medicine practice in New South Wales

  10. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    Science.gov (United States)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  11. Federal radiation protection regulations: An industry viewpoint

    International Nuclear Information System (INIS)

    Harward, E.D.

    1987-01-01

    Regulations and standards to protect the public and workers from ionizing radiation have been in transition for a number of years, although most of the basic limits in use have remained essentially unchanged over the past 25 years or so. Legislation, political changes, new scientific data, advances in scientific concepts, and finally, public perception and resulting pressures have all been factors in the modifications that have been implemented or considered for radiation protection regulations in recent years. During this period, radiation exposures to both the public and the work force have been reduced through program management and improved technology. Based on activities of the AIF Subcommittee on Radiation Protection, this paper reviews pertinent NRC and EPA regulations, standards and guidance as well as NCRP recommendations and provide some analyses of these in terms of their potential effect on nuclear industry operations. Comments include suggestions where minor changes in Federal agency approaches to radiation regulation might be made for the public benefit

  12. Radiation-induced camptocormia and dropped head syndrome. Review and case report of radiation-induced movement disorders

    International Nuclear Information System (INIS)

    Seidel, Clemens; Kuhnt, Thomas; Kortmann, Rolf-Dieter; Hering, Kathrin

    2015-01-01

    In recent years, camptocormia and dropped head syndrome (DHS) have gained attention as particular forms of movement disorders. Camptocormia presents with involuntary forward flexion of the thoracolumbar spine that typically increases during walking or standing and may severely impede walking ability. DHS is characterized by weakness of the neck extensors and a consecutive inability to extend the neck; in severe cases the head is fixed in a ''chin to chest position.'' Many diseases may underlie these conditions, and there have been some reports about radiation-induced camptocormia and DHS. A PubMed search with the keywords ''camptocormia,'' ''dropped head syndrome,'' ''radiation-induced myopathy,'' ''radiation-induced neuropathy,'' and ''radiation-induced movement disorder'' was carried out to better characterize radiation-induced movement disorders and the radiation techniques involved. In addition, the case of a patient developing camptocormia 23 years after radiation therapy of a non-Hodgkin's lymphoma of the abdomen is described. In total, nine case series of radiation-induced DHS (n = 45 patients) and - including our case - three case reports (n = 3 patients) about radiogenic camptocormia were retrieved. Most cases (40/45 patients) occurred less than 15 years after radiotherapy involving extended fields for Hodgkin's disease. The use of wide radiation fields including many spinal segments with paraspinal muscles may lead to radiation-induced movement disorders. If paraspinal muscles and the thoracolumbar spine are involved, the clinical presentation can be that of camptocormia. DHS may result if there is involvement of the cervical spine. To prevent these disorders, sparing of the spine and paraspinal muscles is desirable. (orig.) [de

  13. Effects of an Amifostine analogue on radiation induced lung inflammation and fibrosis

    International Nuclear Information System (INIS)

    Arora, Aastha; Bhuria, Vikas; Soni, Ravi; Singh, Saurabh; Hazari, Puja Panwar; Bhatt, Anant Narayan; Dwarakanath, B.S.; Pathak, Uma; Mathur, Shweta; Sandhir, Rajat

    2014-01-01

    Radiation-induced pulmonary toxicity causes significant morbidity and mortality in patients irradiated for thoracic malignancies as well as in victims of accidental radiation exposure. We have recently established the efficacy of an analogue of Amifostine (DRDE-30) in reducing the mortality of whole body irradiated mice. The widely used radioprotector Amifostine has been found to reduce the incidence of radiation induced pneumonitis during radiation therapy for non small cell lung carcinoma. In the present study, we investigated the potential of DRDE-30 in ameliorating the radiation induced lung damage. Intra-peritoneal administration of DRDE-30 at 220 mg/kg b.wt 30 min. prior to 13.5 Gy thoracic radiation enhanced the 24-month survival of C57BL/6 mice to 80% compared to 0% with radiation alone. Reduced protein content and cell number in the broncheo-alveolar lavage fluid suggested reduction in radiation induced vascular permeability in DRDE-30 treated mice. Higher levels of MnSOD and Catalase observed under these conditions indicated that strengthening of the anti-oxidant defense system by DRDE-30 could also contribute to the protection against radiation induced lung damage. Reduced levels of p-p38 observed under these conditions suggested down-regulation of the p38/MAP kinase pathway as one of the plausible mechanisms underlying anti-inflammatory effects of DRDE-30, while lower levels of Vimentin seen, indicated inhibition of epithelial to mesenchymal transition revealing its anti-fibrotic effect as well. Structural analysis with X-ray CT indicated comparable lung architecture in control and drug treated mice in terms of reduced opacity, which correlated well with the lung morphology (H and E staining) and reduced collagen deposition (trichrome staining). These results demonstrate the potential of DRDE-30 in reducing radiation induced pulmonary toxicity by attenuating the inflammatory and fibrotic responses. (author)

  14. Regulation on Radiation Safety of Guatemala

    International Nuclear Information System (INIS)

    2001-03-01

    This regulation includes all the requirements administrative, radiation protection, that licensees must meet in order to obtain authorization from the competent authority to apply and use radiation sources, equipment emiting ionizing radiation in different practices authorized

  15. Radiation Protection Ordinance 1989. Supplement with Radiation Protection Register Ordinance, general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance, general administration regulation pursuant to Sect. 62 sub-sect. radiation passport

    International Nuclear Information System (INIS)

    Veith, H.M.

    1990-01-01

    The addendum contains regulations issued supplementary to the Radiation Protection Ordinance: The Radiation Protection Register as of April 3, 1990 including the law on the setting up of a Federal Office on Radiation Protection; the general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance as of February 21, 1990; the general administration regulation pursuant to Sect. 62 sub-sect. 2 Radiation Protection Ordinance as of May 3, 1990 (AVV Radiation passport). The volume contains, apart from the legal texts, the appropriate decision by the Bundesrat, the official explanation from the Bundestag Publications as well as a comprehensive introduction into the new legal matter. (orig.) [de

  16. MicroRNA-221 and -222 Regulate Radiation Sensitivity by Targeting the PTEN Pathway

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Wang Ping; Cao Yongzhen; Lv Zhonghong; Yu Shizhu; Wang Guangxiu; Zhang Anling; Jia Zhifan; Han Lei; Yang Chunying; Ishiyama, Hiromichi; Teh, Bin S.; Xu Bo; Pu Peiyu

    2011-01-01

    Purpose: MicroRNAs (miRNAs) are noncoding RNAs inhibiting expression of numerous target genes by posttranscriptional regulation. miRNA-221 and miRNA-222 (miRNA-221/-222) expression is elevated in radioresistant tumor cell lines; however, it is not known whether and how miRNAs control cellular responses to ionizing irradiation. Methods and Materials: We used bioinformatic analyses, luciferase reporter assay, and genetic knockdown and biochemical assays to characterize the regulation pathways of miRNA-221/-222 in response to radiation treatment. Results: We identified the PTEN gene as a target of miRNA-221/-222. Furthermore, we found that knocking down miRNA-221/-222 by antisense oligonucleotides upregulated PTEN expression. Upregulated PTEN expression suppressed AKT activity and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in tumor cells. Conclusions: miRNA-221/-222 control radiation sensitivity by regulating the PTEN/AKT pathway and can be explored as novel targets for radiosensitization.

  17. Radiation protection and the laws and regulations

    International Nuclear Information System (INIS)

    Takada, Takuo

    1980-01-01

    In hospitals and clinics, when cobalt remote irradiation apparatuses, betatrons and linear accelerators are installed, the provisions of medical and radiation injury prevention laws and other related laws and regulations must be observed. The following matters are described: the laws and regulations concerning the prevention of radiation injuries, the definitions of the therapeutical equipments, the radiation protection standards for such facilities, radiation exposure dose and permissible dose, the procedures concerning the application before usage, the responsibilities of hospitals and clinics for radiation measurement and management, and shielding and shield calculations. (J.P.N.)

  18. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    Science.gov (United States)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  19. Development and Application of Camelid Molecular Cytogenetic Tools

    Science.gov (United States)

    Avila, Felipe; Das, Pranab J.; Kutzler, Michelle; Owens, Elaine; Perelman, Polina; Rubes, Jiri; Hornak, Miroslav; Johnson, Warren E.

    2014-01-01

    Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human–camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly. PMID:23109720

  20. Regulations for ionizing radiation protection

    International Nuclear Information System (INIS)

    1999-01-01

    General regulations and principles of radiation protection and safety are presented. In addition, the regulations for licensing and occupational and medical exposure as well as for safe transport of radioactive materials and wastes are given

  1. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1.

    Directory of Open Access Journals (Sweden)

    Karine Z Oben

    Full Text Available An understanding of how each individual 5q chromosome critical deleted region (CDR gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs. Early Growth Response 1 (EGR1 is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell quiescence as well as the master regulator of apoptosis-p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies.

  2. Is ionizing radiation regulated more stringently than chemical carcinogens

    International Nuclear Information System (INIS)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-01-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals and ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens

  3. Mitigation of radiation induced hematopoietic injury via regulation of Nrf-2 and increasing hematopoietic stem cells

    International Nuclear Information System (INIS)

    Patwardhan, R.S.; Sharma, Deepak; Checker, Rahul; Santosh Kumar, S.

    2014-01-01

    Therapeutic doses of ionizing radiation (IR) that can be delivered to tumors are restricted due to radiation induced damage to surrounding normal tissues thereby limiting the effectiveness of radiotherapy. Strategies to develop agents that selectively protect normal cells yielded limited success in the past. There is pressing need to develop safe, syndrome specific and effective radiation countermeasures to prevent or mitigate the harmful consequences of radiation exposure. Survival of bone marrow stem cells (HSCs) play a key role in protecting against IR induced hematopoietic injury. Many studies have shown manipulation of HSC frequency and/or survival as principal mechanism of radioprotection. It is known that, Nrf-2 plays crucial role in HSC survival and maintenance under oxidative stress conditions. In the present study, we have investigated the radioprotective ability of a flavonoid baicalein (5,6,7-trihydroxyflavone), extracted from the root of Scutellaria baicalensis Georgi, a medicinal plant traditionally used in Oriental medicine. There are numerous reports showing anti-inflammatory, anti-apoptotic, anti-oxidant, anti-cancer, anti-microbial, anti-mutagenic and neuroprotective properties of baicalein. Based on these reports, we have investigated the ability of baicalein to protect against radiation induced hematopoietic injury. Baicalein administration to mice protected against WBI induced mortality. Interestingly, the stem cell frequency increased in bone marrow cells obtained from baicalein administered mice as compared to vehicle treated mice. Baicalein treatment led to increased phospho-Nrf-2 levels in lineage negative BM-MNC. Administration of mice with Nrf-2 inhibitor prior to baicalein treatment led to significant abrogation of radioprotective ability of baicalein. This result suggests that, Nrf-2 may be playing a key role in baicalein mediated radioprotection. Here, we have shown that baicalein administration augments stem cell frequency, induces

  4. Radiation-induced instability of human genome

    International Nuclear Information System (INIS)

    Ryabchenko, N.N.; Demina, Eh.A.

    2014-01-01

    A brief review is dedicated to the phenomenon of radiation-induced genomic instability where the increased level of genomic changes in the offspring of irradiated cells is characteristic. Particular attention is paid to the problems of genomic instability induced by the low-dose radiation, role of the bystander effect in formation of radiation-induced instability, and its relationship with individual radiosensitivity. We believe that in accordance with the paradigm of modern radiobiology the increased human individual radiosensitivity can be formed due to the genome instability onset and is a significant risk factor for radiation-induced cancer

  5. Cytogenetic damage in human blood lymphocytes exposed in vitro and in vivo to space-relevant HZE-particles

    Science.gov (United States)

    Lee, Ryonfa; Nasonova, Elena; Sommer, Sylvester; Hartel, Carola; Ritter, Sylvia

    During space missions astronauts are exposed to cosmic radiations which are different from natural background radiation on Earth in both quantity and quality. Dose rate in space environment is at least 100 times higher than that on Earth. In addition, the natural radiation on Earth consists mainly of X-, γ-rays and α-emitters, while in space charged particles from protons to iron ions are predominant. The composition of radiation environment of outer space is well understood, however, due to a lack of data on the biological effects of dose, dose-rate and especially HZE (high charge Z and energy E) particles, large uncertainties exist in estimating the health risks for long-term space mission. To contribute to this issue, we investigated cytogenetic damage induced by heavy charged particles in human lymphocytes, since chromosome aberration yield is a biomarker showing an association with cancer risk. Lymphocytes collected from a healthy donor were irradiated with carbon ions (C-ions) in vitro with various energies (11.4 to 400 MeV/u; LET values 11 to 175 keV/µm) at either UNILAC or SIS facility (GSI, Germany) or exposed to X-rays. Additionally, peripheral blood was obtained from prostate cancer patients, treated with intensity modulated radiation therapy (IMRT) or IMRT combined with C-ion boost. Samples were taken before, during and after the radiotherapy. Chromosome samples were stained with FPG-technique to enable aberration analysis in 1st cycle metaphases. After in vitro exposure to C-ions, RBE values for the induction of chromosome aberrations increased with sampling time. The effect was most pronounced in samples exposed to 175 keV/µm C-ions and can be attributed to a pronounced cell cycle delay of heavily damaged cells. Thus, for a reliable risk assessment, the effect of selective cell cycle delay following particle exposure should be taken into account. M-FISH analysis of selected samples to assess aberration quality revealed higher frequencies of

  6. Monitoring the genetic health of persons in Goiania accidentally exposed to ionizing radiation from caesium-137

    International Nuclear Information System (INIS)

    Da Cruz, A.D.; Glickman, B.W.

    1998-01-01

    This work describes the long term genetic monitoring of the Goiania population exposed to ionizing radiation from 137 Cs, using cytogenetic and molecular endpoints. Cytogenetically, micronucleus frequencies differentiated groups exposed to different levels of radiation. Two molecular methods were employed: 1) the hprt clonal assay, involving in vitro selection of 6-thioguanine-resistant hprt mutant clones which were characterized at the molecular level using RT-PCR and genomic analysis. Ionizing radiation exposure initially elevated hprt mutation frequency which gradually diminished, so that no significant increase was observed four and a half years after original exposure. The spectrum of hprt mutations recovered from ten individuals exposed to relatively high doses of radiation revealed a fourfold increase in the frequency of A:T → G:C transitions. The increase is consistent with the effects of ionizing radiation in prokaryotes and lower eukaryotes. Additionally, a twofold increase in the frequency of deletions was observed which may reflect radiation induced DNA strand breakage; 2) determination of microsatellite instability using fluorescent PCR and genomic DNA from mononuclear cells. The frequency distributions of somatic microsatellite alterations in exposed and non-exposed populations were not different. Our assay lacked sensitivity to discriminate between spontaneous and induced microsatellite instability and therefore, is not suitable for population monitoring. Finally, we estimated the risk associated with radiation exposure for the exposed Goiania population. The estimated genetic risk of dominant disorders in the first post-exposure generation was increased nearly twenty-fourfold. The risk of carcinogenesis was increased by a factor of 1.5. (author)

  7. Monitoring the genetic health of persons in Goiania accidentally exposed to ionizing radiation from caesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, A D; Glickman, B W [Centre for Environmental Health, Department of Biology, University of Victoria, Victoria, BC (Canada)

    1998-12-01

    This work describes the long term genetic monitoring of the Goiania population exposed to ionizing radiation from {sup 137}Cs, using cytogenetic and molecular endpoints. Cytogenetically, micronucleus frequencies differentiated groups exposed to different levels of radiation. Two molecular methods were employed: (1) the hprt clonal assay, involving in vitro selection of 6-thioguanine-resistant hprt mutant clones which were characterized at the molecular level using RT-PCR and genomic analysis. Ionizing radiation exposure initially elevated hprt mutation frequency which gradually diminished, so that no significant increase was observed four and a half years after original exposure. The spectrum of hprt mutations recovered from ten individuals exposed to relatively high doses of radiation revealed a fourfold increase in the frequency of A:T {yields} G:C transitions. The increase is consistent with the effects of ionizing radiation in prokaryotes and lower eukaryotes. Additionally, a twofold increase in the frequency of deletions was observed which may reflect radiation induced DNA strand breakage; (2) determination of microsatellite instability using fluorescent PCR and genomic DNA from mononuclear cells. The frequency distributions of somatic microsatellite alterations in exposed and non-exposed populations were not different. Our assay lacked sensitivity to discriminate between spontaneous and induced microsatellite instability and therefore, is not suitable for population monitoring. Finally, we estimated the risk associated with radiation exposure for the exposed Goiania population. The estimated genetic risk of dominant disorders in the first post-exposure generation was increased nearly twenty-fourfold. The risk of carcinogenesis was increased by a factor of 1.5. (author)

  8. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong-Jun; Kang, Hana [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Kim, Min Young [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Pyo, Suhkneung [College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do (Korea, Republic of); Yang, Kwang Hee, E-mail: kwangheey@khnp.co.kr [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of)

    2016-04-01

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a {sup 137}Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.

  9. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation.

    Science.gov (United States)

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee

    2016-04-01

    To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Splenocytes and IM-9 cells were uniformly irradiated with various doses of a (137)Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation

    International Nuclear Information System (INIS)

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee

    2016-01-01

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a "1"3"7Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.

  11. Molecular cytogenetics for acute megakaryocytic leukemia diagnosis

    Directory of Open Access Journals (Sweden)

    E. A. Matveeva

    2014-07-01

    Full Text Available Acute megakaryocytic leukemia (AML M7 – a rare disease characterized by poor treatment response, except for t(1;22 variant in infants. Cytogenetic abnormalities in AML M7 are highly heterogeneous. We collected samples from children with AML M7 to analyze the disease cytogenetic profile. During September 2009 to March 2012 20 AML M7 patients was studied using fluorescence in situ hybridization. Complex and heterogeneous chromosomal abnormalities were revealed. It was found that no recurring abnormalities and cytogenetic markers unique to each patients. Also, the 19p13 amplification described previously only in myeloid cell lines was detected.

  12. Molecular cytogenetics for acute megakaryocytic leukemia diagnosis

    Directory of Open Access Journals (Sweden)

    E. A. Matveeva

    2012-01-01

    Full Text Available Acute megakaryocytic leukemia (AML M7 – a rare disease characterized by poor treatment response, except for t(1;22 variant in infants. Cytogenetic abnormalities in AML M7 are highly heterogeneous. We collected samples from children with AML M7 to analyze the disease cytogenetic profile. During September 2009 to March 2012 20 AML M7 patients was studied using fluorescence in situ hybridization. Complex and heterogeneous chromosomal abnormalities were revealed. It was found that no recurring abnormalities and cytogenetic markers unique to each patients. Also, the 19p13 amplification described previously only in myeloid cell lines was detected.

  13. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview.

    Science.gov (United States)

    Manola, Kalliopi N

    2013-10-01

    Acute leukaemia of ambiguous lineage (ALAL) is a rare complex entity with heterogeneous clinical, immunophenotypic, cytogenetic and molecular genetic features and adverse outcome. According to World Health Organization 2008 classification, ALAL encompasses those leukaemias that show no clear evidence of differentiation along a single lineage. The rarity of ALAL and the lack of uniform diagnostic criteria have made it difficult to establish its cytogenetic features, although cytogenetic analysis reveals clonal chromosomal abnormalities in 59-91% of patients. This article focuses on the significance of cytogenetic analysis in ALAL supporting the importance of cytogenetic analysis in the pathogenesis, diagnosis, prognosis, follow up and treatment selection of ALAL. It reviews in detail the types of chromosomal aberrations, their molecular background, their correlation with immunophenotype and age distribution and their prognostic relevance. It also summarizes some novel chromosome aberrations that have been observed only once. Furthermore, it highlights the ongoing and future research on ALAL in the field of cytogenetics. © 2013 John Wiley & Sons Ltd.

  14. MiR-21 is involved in radiation-induced bystander effects

    Science.gov (United States)

    Xu, Shuai; Ding, Nan; Pei, Hailong; Hu, Wentao; Wei, Wenjun; Zhang, Xurui; Zhou, Guangming; Wang, Jufang

    2014-01-01

    Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication. PMID:25483031

  15. The new look for radiation regulation

    International Nuclear Information System (INIS)

    Loy, J.

    1999-01-01

    The Australian Radiation Protection and Nuclear Safety Act (1998) provides the CEO of the Australian Radiation Protection and Nuclear Safety Agency with responsibilities related to researching and advising on radiation protection and nuclear safety, and powers to regulate the Commonwealth's use of radiation and nuclear facilities. This regulation is new to Commonwealth departments and agencies. To support the CEO in meeting these responsibilities and exercising the regulatory powers, the Act also establishes a new advisory council and two advisory committees. Other novel aspects of the Act include a public consultation process for applications for licence related to nuclear facilities, and a regime of quarterly reporting by the CEO to Parliament, in addition to the usual requirements for annual reports

  16. Influence of reduced glutathione on end-joining of DNA double-strand breaks: Cytogenetical and molecular approach

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Nitin [Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022 (India); Sharma, Sheetal [Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 (India); Banerjee, Atanu; Kurkalang, Sillarine [Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022 (India); Raghavan, Sathees C. [Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 (India); Chatterjee, Anupam, E-mail: chatterjeeanupam@hotmail.com [Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022 (India)

    2017-01-15

    Highlights: • DNA lesions induced by Blem and radiation interact well and form higher frequency of exchange aberrations. • Cellular level of glutathione does influence such interaction of DNA lesions. • Oligomer-based cell-free assay system demonstrated better end-joining efficiency at higher level of endogenous GSH. - Abstract: Radiation induced DNA double-strand breaks (DSB) are the major initial lesions whose misrejoining may lead to exchange aberrations. However, the role of glutathione (GSH), a major cellular thiol, in regulating cell’s sensitivity to DNA damaging agents is not well understood. Influence of endogenous GSH on the efficiency of X-rays and bleomycin (Blem) induced DNA DSBs end-joining has been tested here cytogenetically, in human lymphocytes and Hct116 cells. In another approach, oligomeric DNA (75 bp) containing 5′-compatible and non-compatible overhangs mimicking the endogenous DSB were for rejoining in presence of cell-free extracts from cells having different endogenous GSH levels. Frequency of aberrations, particularly exchange aberrations, was significantly increased when Blem was combined with radiation. The exchange aberration frequency was further enhanced when combined treatment was given at 4 °C since DNA lesions are poorly repaired at 4 °C so that a higher number of DNA breaks persist and interact when shifted from 4 °C to 37 °C. The exchange aberrations increased further when the combined treatment was given to Glutathione-ester (GE) pre-treated cells, indicating more frequent rejoining of DNA lesions in presence of higher cellular GSH. This is further supported by the drastic reduction in frequency of exchange aberrations but significant increase in incidences of deletions when combined treatment was given to GSH-depleted cells. End-joining efficiency of DNA DSBs with compatible ends was better than for non-compatible ends. End-joining efficiency of testicular and MCF7 cell extracts was better than that of lungs and

  17. Bystander effect induced by ionizing radiation and its application

    International Nuclear Information System (INIS)

    Chen Feng; Tu Yu

    2009-01-01

    An indirect effect induced by ionizing radiation called bystander effect is being highly concentrated. Many domestic and foreign researchers have verified the existence of bystander effect and have got more understanding of the mechanism with advanced detection techniques and methods. So far, the research about it has expanded from a single cell to multiple cells, from the in vitro to the whole, and has extended to in vivo from in vitro, which provides powerful evidence to explain how bystander effects happen and the regulation mechanism and especially gives scientific evidence to clinical radiation oncology application in the future. (authors)

  18. Radiation cytogentics of the yellow-fever mosquito Aedes aegypti and the plant genus Collinsia. Final report, April 1967--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rai, K.S.

    1977-01-01

    The major objectives of the project on Aedes aegypti, which is one of the most important disease vectors of man, were to study the cytogenetic effects of radiation and certain chemical mutagens, the genetics of radiation-induced chromosomal rearrangements with particular attention to reciprocal translocations, and the possibility of using translocations for genetic control of natural populations. Results reported on work done during the years 1967 and 1977 show these objectives have been mostly accomplished.

  19. Radiation-induced heart injury

    International Nuclear Information System (INIS)

    Suzuki, Yoshihiko; Niibe, Hideo

    1975-01-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the internal between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue. (Evans, G.)

  20. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    International Nuclear Information System (INIS)

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-01-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  1. Cytogenetics of jaw cysts - a pilot study.

    Science.gov (United States)

    Manor, Esther; Brennan, Peter A; Bodner, Lipa

    2012-07-01

    The pathogenesis of cysts that arise in the jaws is still not certain, and the underlying mechanisms of epithelial proliferation are not fully understood. Cysts of the jaw may involve a reactive, inflammatory, or neoplastic process. Cytogenetics, the study of the number and structure of chromosomes, has provided valuable information about the diagnosis, prognosis, and targeted treatment in many cancers, including oral squamous cell carcinoma. Cytogenetics can also provide information about the possible aetiology or neoplastic potential of a lesion, though to our knowledge no studies of this technique have been used for cysts in the jaws. In this pilot study we used cytogenetics in a series of 10 cysts (3 radicular, 4 dentigerous, 2 of the nasopalatine duct, and 1 dermoid). In all cases we found normal karyotypes. Further work and larger numbers are needed for a definitive study, but we can hypothesise from this pilot study that these cysts do not have cytogenetic aberrations and so have no neoplastic potential. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Radiation-induced desulfurization of Arabian crude oil and straight-run diesel

    International Nuclear Information System (INIS)

    Basfar, A.A.; Mohamed, K.A.

    2011-01-01

    Radiation-induced desulfurization of four types of Arabian crude oils (heavy, medium, light and extra light) and straight-run diesel (SRD) was investigated over the range of 10-200 kGy. Results show that gamma radiation processing at absorbed doses up to 200 kGy without further treatment is not sufficient for desulfurization. However, the combination of gamma-irradiation with other physical/chemical processes (i.e. L/L extraction, adsorption and oxidation) may be capable of removing considerable levels of sulfur compounds in the investigated products. Currently, this approach of combined radiation/physical/chemical processes is under investigation. The findings of these attempts will be reported in the future. - Highlights: → Irradiation effect on desulfurization in Arabian crude oils and straight-run diesel was investigated. → No noticeable changes in sulfur content after irradiation up to 200 kGy were observed. → Stricter regulations on sulfur levels in fuels motivate search for improved desulfurization processes. → Limited investigations on radiation-induced desulfurization of oil products are conducted.

  3. Cytogenetic characterization of Encyclia caximboensis cultivated in vitro (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Gizelly Mendes Silva

    2015-12-01

    Full Text Available Encyclia caximboensis is an Amazonian species endemic to the Serra do Cachimbo, which is located between the northern of the Mato Grosso state and the southern part of Para state. Studies reporting in vitro cultivation and cytogenetic characterization of this species are still scarce. Therefore, the objective of this work was to determine the cytogenetic characteristics and to identify the nucleolar organizer regions (NORs of the species E. Caximboensis, cultivated in vitro. Seeds of E. caximboensis were disinfected using a syringe and subsequently cultivated in MS medium without growth regulators. The germination started after 20 days of culture, with the development of protocorm and 40,500 seedlings were obtained after 90 days of culture. To perform the cytogenetic characterization, root tips of 180-day-old seedlings were submitted to blocking treatment using 3 µM trifiuralin and then fixed in methanol-acetic acid solution, 3:1 (v/v. The meristems were submitted to enzymatic digestion, fixed in methanol-acetic acid solution, 3:1 (v/v and the slides were stained using 5% Giemsa solution. Ag-NOR banding was carried out on 20-day-old slides by incubation in 50% silver nitrate solution (AgNO3 for 19 hours. The results indicated that E. caximboensis has 2n=2x=24 with all metacentric type chromosomes, ranging from 1.88 to 0.66 pm in length, with simple NORs in small blocks localized in the proximal region of the third chromosome pair.

  4. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals......-treated fibroblasts. Transcriptional differences in basal and radiation-induced gene expression profiles were investigated using 15K cDNA microarrays, and results analyzed by both SAM and PAM. RESULTS: Sixty differentially expressed genes were identified by applying SAM on 10 patients with the highest risk of RIF...

  5. Inter-laboratory comparison to validate the dicentric assay as a cytogenetic triage tool for medical management of radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    Beinke, Christina, E-mail: christinabeinke@bundeswehr.org [Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstrasse 11, 80937 Munich (Germany); Oestreicher, Ursula [Federal Office for Radiation Protection, Neuherberg (Germany); Riecke, Armin [Department for Internal Medicine, Federal Armed Forces Hospital, Ulm (Germany); Kulka, Ulrike [Federal Office for Radiation Protection, Neuherberg (Germany); Meineke, Viktor [Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstrasse 11, 80937 Munich (Germany); Romm, Horst [Federal Office for Radiation Protection, Neuherberg (Germany)

    2011-09-15

    Radiation accidents with exposure of human beings can assume huge dimensions concerning occurring health impairments and essential medical resources such as personnel, patient care management and appropriate medical facilities. Particularly in mass-casualty events, a rapid sorting and allocation of victims to treatment is needed and their classification in medical treatment groups has to be conducted as fast as possible. For triage purposes several approaches can be considered. Clinical signs and symptoms are extremely helpful in estimating radiation effects on an organ-based level, whereas the assessment of radiation effects based on cytogenetic biodosimetry tools is the alternative approach. For both systems there are pros and cons with respect to the usefulness for specific applications, such as individual cases versus mass-casualty screening or whole- versus partial-body exposures. Among the biodosimetry tools the dicentric chromosome assay (DCA) is considered as the 'gold standard' for biodosimetry after an acute radiation exposure. Recently, steady progress in standardization and harmonization of the DCA has occurred, in order to enable the validated performance of the DCA in the frame of cooperative response of biodosimetry networks during a large scale radiological scenario. Using the DCA in triage mode which allows the stratification of radiation exposed victims into broad 1.0 Gy categories only 20-50 metaphase cells per subject are scored instead of the 500-1000 scored for routine analysis. Our data show that there are significant differences between the dicentric yields after 1.0 Gy and 3.0 Gy {gamma}-ray ex vivo exposure of blood suggesting this assay as suitable for the distinction between high and low dosed exposed individuals. These preliminary findings indicate the usefulness of the DCA also for therapeutic decision making.

  6. Application of radiation-induced apoptosis in radiation oncology and radiation protection

    International Nuclear Information System (INIS)

    Crompton, N.E.A.; Emery, G.C.; Ozsahin, M.; Menz, R.; Knesplova, L.; Larsson, B.

    1997-01-01

    A rapid assay of the ability of lymphocytes to respond to radiation-induced damage is presented. Age and genetic dependence of radiation response have been quantified. The assay is sensitive to low doses of radiation. Its ability to assess the cytotoxic response of blood capillaries to radiation has been evaluated. (author)

  7. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Vijayalakshmi; Tripathi, Preeti [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Sharma, Sunil [Department of Radiation Oncology, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Moros, Eduardo G. [Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Zheng, Junying [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hauer-Jensen, Martin [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States); Boerma, Marjan, E-mail: mboerma@uams.edu [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

  8. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    International Nuclear Information System (INIS)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Moros, Eduardo G.; Zheng, Junying; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity

  9. Molecular and cytogenetic assessment of Dipterygium glaucum genotoxicity

    Directory of Open Access Journals (Sweden)

    NADA H. ALTWATY

    2016-01-01

    Full Text Available ABSTRACT The aim of the present study is to assess the genotoxicity of Dipterygium glaucum grows widely in Saudi Arabia desert to produce safety herbal products. This work is considered the first and pioneer report so far due to the lack and poor evaluated reports of the plant species for their mutagensity, genotoxicity and cytogenetics effects. Cytogenetic effects of D. glaucum on mitotic in roots of Vicia faba showed reduction in mitotic activity using three extracts; water, ethanol and ethyl acetate. Chromosomal abnormalities were recorded that included stickiness of chromosomes, chromatin bridge, fragments, lagging chromosome and micronuclei. Protein bands and RAPD analyses of V. faba treated with three D. glaucum extracts revealed some newly induced proteins and DNA fragments and other disappeared. Chemical constitution of the plant species should be identified with their biological activities against human and animal cells like HeLa cancer cell line. We are recommending using additional genotoxicity tests and other toxicity tests on animal culture with different concentrations and also utilizing several drought and heat tolerant genes of the plant species in gene cloning to develop and improve other economical crop plants instead of using the species as oral herbal remedy

  10. Application of mammalian cytogenetics to mutagenicity studies

    International Nuclear Information System (INIS)

    Brewen, J.G.

    1977-01-01

    Studies on induction of chromosome damage in germ cells by triethylene melamine (TEM) included determination of frequencies of chromosomal aberrations observed in human leukocytes after treating different stages of the cell cycle with TEM, frequencies of chromatid aberrations in metaphase I oocytes and the female pronuclear chromosomes following treatment of female mice with TEM, and frequencies of labeled diplotene-diakinesis figures and chromosome abberations at various intervals after treatment of primary spermatocytes with TEM and 3 H-thymidine. Studies on effects of low linear energy transfer radiation on mouse oocytes showed that the frequency of aberrations increased as a function of time and remained constant 8 to 9 days post-exposure. It was concluded that cytogenetic procedures were adequate to evaluate certain mutagenic end points

  11. Review of Cytogenetic analysis of restoration workers for Fukushima Daiichi nuclear power station accident

    International Nuclear Information System (INIS)

    Suto, Yumiko

    2016-01-01

    Japan faced with the nuclear accident of the Fukushima Daiichi Nuclear Power Station (NPS) caused by the combined disaster of the Great East Japan Earthquake and the subsequent tsunamis on 11 March 2011. National Institute of Radiological Sciences received all nuclear workers who were engaged in emergency response tasks at the NPS and suspected of being overexposed to acute radiation. Biological dosimetry by dicentric chromosome assay was helpful for medical triage and management of the workers. When an unplanned radiation exposure occurs, biological dosimetry based on cytogenetic assays has been used to estimate the absorbed dose in the exposed individual to get useful information for the medical management of radiological casualties with suspected acute radiation syndrome (ARS). Nowadays, more cytogenetic assays to measure chromosomal aberrations, such as micronuclei in bi-nucleated cells, prematurely condensed chromosomes (PCCs) and inter-chromosomal exchanges detected by fluorescence in situ hybridization (FISH) techniques, are available. However, the dicentric chromosome assay (DCA) using peripheral blood lymphocytes is still considered to be the 'gold standard' of biological dosimetry for the radiation emergency medicine. Experimental protocols of DCA has been standardized and shared among laboratories all over the world. In fact, DCA was useful in previous radiation accidents, e.g. the Chernobyl accident in 1986, the Goiania accident in 1987, the JCO criticality accident in 1999 and the Tokyo electric power company (TEPCO) Fukushima Daiichi Nuclear Power Station (NPS) accident in 2011. The recent development of microscopic image analysis system with automatic metaphase finding and capturing functions was helpful for rapid detection of dicentric chromosomes to perform DCA for the Fukushima NPS restoration workers. (author)

  12. Cytogenetic Low-Dose Hyperradiosensitivity Is Observed in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Isheeta [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States)

    2015-01-01

    Purpose: The shape of the ionizing radiation response curve at very low doses has been the subject of considerable debate. Linear-no-threshold (LNT) models are widely used to estimate risks associated with low-dose exposures. However, the low-dose hyperradiosensitivity (HRS) phenomenon, in which cells are especially sensitive at low doses but then show increased radioresistance at higher doses, provides evidence of nonlinearity in the low-dose region. HRS is more prominent in the G2 phase of the cell cycle than in the G0/G1 or S phases. Here we provide the first cytogenetic mechanistic evidence of low-dose HRS in human peripheral blood lymphocytes using structural chromosomal aberrations. Methods and Materials: Human peripheral blood lymphocytes from 2 normal healthy female donors were acutely exposed to cobalt 60 γ rays in either G0 or G2 using closely spaced doses ranging from 0 to 1.5 Gy. Structural chromosomal aberrations were enumerated, and the slopes of the regression lines at low doses (0-0.4 Gy) were compared with doses of 0.5 Gy and above. Results: HRS was clearly evident in both donors for cells irradiated in G2. No HRS was observed in cells irradiated in G0. The radiation effect per unit dose was 2.5- to 3.5-fold higher for doses ≤0.4 Gy than for doses >0.5 Gy. Conclusions: These data provide the first cytogenetic evidence for the existence of HRS in human cells irradiated in G2 and suggest that LNT models may not always be optimal for making radiation risk assessments at low doses.

  13. Cytogenetic Analysis for Research and Services

    Directory of Open Access Journals (Sweden)

    Sultana MH Faradz

    2017-02-01

    Full Text Available Abstract That the correct chromosome number in man is 46 was first recognized by Tjio and Levan in 1956. Perhaps few Indonesians know that Tjio was an Indonesian scientist studying in Sweden and then living in the US. Cytogenetic analyses are commonly performed to determine both structural and numerical chromosome aberration, whilst changes in chromosomes can lead to birth defects, syndromes, or even cancer.  Several chromosomal aneuploidy syndromes were identified after the establishment of various chromosome banding techniques in late 1960’s.  Specific cell culture media was found to express fragile site in the beginning of 1970’s and since then, inherited Fragile X Mental Retardation syndrome could be diagnosed.  However, some female permutation cases have been often misdiagnosed. Further molecular analysis has resolved this problem by revealing more CGG repeats in the promoter region FMR1 gene, which is related to the expression of fragile site and the severity of the diseases. In Disorder of Sex Development (DSD, early gender assignment and reconstruction surgery has been challenged because of the dilemma of gender identity development in later life. Cytogenetic analysis for the first-line gender assignment is important in newborn with DSD. Proper diagnosis with hormonal and mutation analysis should be elucidated to avoid medical, psychological, and social aspect in adult life. The most frequent genetic cases in our clinical experiences have been Androgen Insensitivity Syndrome and Congenital Adrenal Hyperplasia. Female Complete Androgen Insensitivity Syndrome (CAIS with main symptom primary amenorrhea without cytogenetic analysis has often been diagnosed as inguinal hernia because of testicle location and size. Diagnosis and treatment of several leukemias and lymphomas, as well as some solid tumors, depend on cytogenetic analyses to demonstrate consistent, specific chromosomal aberrations. Chromosome analysis in hematologic

  14. Cytogenetic prognostication within medulloblastoma subgroups.

    Science.gov (United States)

    Shih, David J H; Northcott, Paul A; Remke, Marc; Korshunov, Andrey; Ramaswamy, Vijay; Kool, Marcel; Luu, Betty; Yao, Yuan; Wang, Xin; Dubuc, Adrian M; Garzia, Livia; Peacock, John; Mack, Stephen C; Wu, Xiaochong; Rolider, Adi; Morrissy, A Sorana; Cavalli, Florence M G; Jones, David T W; Zitterbart, Karel; Faria, Claudia C; Schüller, Ulrich; Kren, Leos; Kumabe, Toshihiro; Tominaga, Teiji; Shin Ra, Young; Garami, Miklós; Hauser, Peter; Chan, Jennifer A; Robinson, Shenandoah; Bognár, László; Klekner, Almos; Saad, Ali G; Liau, Linda M; Albrecht, Steffen; Fontebasso, Adam; Cinalli, Giuseppe; De Antonellis, Pasqualino; Zollo, Massimo; Cooper, Michael K; Thompson, Reid C; Bailey, Simon; Lindsey, Janet C; Di Rocco, Concezio; Massimi, Luca; Michiels, Erna M C; Scherer, Stephen W; Phillips, Joanna J; Gupta, Nalin; Fan, Xing; Muraszko, Karin M; Vibhakar, Rajeev; Eberhart, Charles G; Fouladi, Maryam; Lach, Boleslaw; Jung, Shin; Wechsler-Reya, Robert J; Fèvre-Montange, Michelle; Jouvet, Anne; Jabado, Nada; Pollack, Ian F; Weiss, William A; Lee, Ji-Yeoun; Cho, Byung-Kyu; Kim, Seung-Ki; Wang, Kyu-Chang; Leonard, Jeffrey R; Rubin, Joshua B; de Torres, Carmen; Lavarino, Cinzia; Mora, Jaume; Cho, Yoon-Jae; Tabori, Uri; Olson, James M; Gajjar, Amar; Packer, Roger J; Rutkowski, Stefan; Pomeroy, Scott L; French, Pim J; Kloosterhof, Nanne K; Kros, Johan M; Van Meir, Erwin G; Clifford, Steven C; Bourdeaut, Franck; Delattre, Olivier; Doz, François F; Hawkins, Cynthia E; Malkin, David; Grajkowska, Wieslawa A; Perek-Polnik, Marta; Bouffet, Eric; Rutka, James T; Pfister, Stefan M; Taylor, Michael D

    2014-03-20

    Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.

  15. Radiation regulations - a UK/European perspective

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2000-01-01

    Full text: Basic standards for radiation protection in the European Union are laid down in Directives made under the EURATOM Treaty that must be implemented by Member States in national legislation. These Directives are presently based on the 1990 recommendations of the International Commission on Radiological Protection and include Basic Safety Standards (1996) for the protection of workers and the public, and the Medical Exposure Directive (1997) for the protection of patients. UK legislation has recently been revised to meet these new standards, principally through the Ionising Radiations Regulations 1999 and the Ionising Radiation (Medical Exposure) Regulations (IR(ME)R) 2000. A framework of formal and informal guidance supports these regulations. IR(ME)R 2000 clarifies and strengthens the roles and responsibilities of Employers, Practitioners, Operators and Referrers in relation to the justification and optimisation of protection for individual medical exposures. In particular, there is now a formal requirement for the adoption of diagnostic reference levels (DRLs) by employers as a practical tool for promoting patient protection during diagnostic exposures. The recent revision of regulations concerned with medical exposures in the UK is seen as an evolutionary rather than revolutionary process to strengthen the safe and effective use of radiation in medicine. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  16. Cytogenetic monitoring of children from regions with a different radioecological situation

    International Nuclear Information System (INIS)

    Amvrosiev, A.P.; Nikolaevich, L.N.

    1993-01-01

    The frequency of chromosome aberrations in blood lymphocytes of children from some districts of Gomel region of Belarus Republic with different radioecological situations has been studied by the cytogenetic examination for the population exposed to additional irradiation due to the Chernobyl disaster. Radiocontamination density in the territory of these settlements made up 20.0-40.0; 17.0; 6.0-9.0 Ci/Km 2 for Cs-137; 1.0-1.7; 2.1; 0.4-1.5 Ci/Km 2 for Sr-90; γ background being 0.130-0.16; 0.106-0.209; 0.90-0.250 mR/h. The results show that aberrant cell frequency in children of the first group is 1.5 times the control one. In a group of children from the settlement strelichevo the average level of aberrant cells is also 1.2 times the control one. In children from Sudkovo aberration frequency of the chromosome type is 1.6 times the control values. The specific for radiation action cytogenetic effect in the children examined increased with the rise in 137 Cs area contamination density

  17. The general principles of radiation protection and regulation

    International Nuclear Information System (INIS)

    Aurengo, A.; Cesarini, J.P.; Lecomte, J.F.; Barbier, G.; Crescini, D.; Biau, A.; Blain, A.; Bailloeuil, C.; Gonin, M.; Bergot, D.

    2003-01-01

    Seven articles constitute this chapter about the radiation protection and the regulation. Radiological risk, reduction of public exposure to ultraviolet radiations, regulation for the radon, evolution of the French legislation against the dangers of ionizing radiations, the medical follow up after the professional life, the information system to reproduce the dosimetric data of workers, proposition of a scale to classify the radiations incidents in function of their seriousness. (N.C.)

  18. Radiation-induced pneumothorax

    International Nuclear Information System (INIS)

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis

  19. Radiation induced sarcomas of bone following therapeutic radiation

    International Nuclear Information System (INIS)

    Kim, J.H.; Chu, F.C.H.; Woodward, H.Q.; Huvos, A.

    1983-01-01

    Because of new therapeutic trends of multi-modality and the importance of late effects, we have updated our series of radiation induced bone sarcomas seen at Memorial Sloan-Kettering Cancer Center over the past four decades. A total of 37 cases of bone sarcoma arising from normal bone in the irradiated field was analyzed. The median for latent period from irradiation to diagnosis of bone sarcoma was 11 years with a minimum latent period of four years. The median radiation dose for the bone sarcoma was 6000 rad in 6 weeks with a minimum total radiation dose of 3000 rad in 3 weeks. We have found nine patients who developed bone sarcomas in the radiation field after successful treatment of Hodgkin's disease. Criteria for radiation induced bone sarcomas and the magnitude of the risk of bone sarcomas are briefly discussed

  20. Radiation-induced bone neoplasma in facial cranium

    Energy Technology Data Exchange (ETDEWEB)

    Zomer-Drozda, J; Buraczewska-Lipinska, H; Buraczewski, J [Instytut Onkologii, Warsaw (Poland)

    1976-01-01

    Radiation-induced bone neoplasms in the region of facial cranium account for about 40% of all radiation-induced tumours of bones, although the number of cases with lesions irradiated in this area is proportionally much lower than the number of cases treated with radiotherapy in other parts of the body. Four personal cases of radiation-induced tumours with complicated course are reported. Attention is called to the value of radiological investigations in the diagnosis of bone diseases and in differential diagnosis of radiation-induced tumours of bones.

  1. Effect of chlorophyllin on frequency radiation-induced of sister chromatid exchanges (SCE) and other cytogenetic events in mice bone marrow cells In Vivo

    International Nuclear Information System (INIS)

    Garcia Rodriguez, M.C.

    1992-01-01

    The effect of chlorophyllin on gamma radiation induced Sister chromatid exchanges (SCE) and on the mitotic index (IM) and average generation time was determined. Groups of mice were treated in one of the following regimens: (1) untreated, (2) treated with chlorophyllin only, (3) irradiated and (4) treated with chlorophyllin and irradiated intraperitoneal administration of chlorophyllin preceding gamma radiation exposure protected again SCE induction and diminution of IM. However, radioprotection was not reflected in the average generation time for the chlorophyllin per se acceleration the average generation time. The results suggest that, under the experimental conditions of the study the SCE and IM are caused by free radicals produced by radiation and wat the action mechanics of chlorophyllin is scavenger free radicals. (Author)

  2. Cytogenetic and autoradiographic investigations in gonadal dysgenesis

    International Nuclear Information System (INIS)

    Baron, J.; Warenik-Szymankiewicz, A.; Medical Academy, Poznan

    1977-01-01

    Cytogenetic analysis in 23 patients with Turner's syndrome and in 33 women with pure gonadal dysgenesis consisted of sex chromatin determination and karyotype studies employing autoradiography in questionable cases. Here autoradiography is used as an indispensable complement to cytogenetic techniques. The labelling behaviour of aberrant chromosomes is described. After treatment of the autoradiographic films for more differentiation in results is employed

  3. Physical location of SSR regions and cytogenetic instabilities in ...

    Indian Academy of Sciences (India)

    2014-08-18

    Aug 18, 2014 ... RESEARCH NOTE. Physical location of SSR regions and cytogenetic instabilities in Pinus ... first cytogenetic study in Scots pine using SSRs in FISH experiments. ... Science, Mannheim, Germany) according to manufacturer's.

  4. Cytogenetic and morphological assessment of bone marrow in therapeutic irradiation

    International Nuclear Information System (INIS)

    Sharma, U.; Das, B.P.; Singhal, R.M.; Radhakrishnaiah, Y.; Rath, G.K.; Padmaraju, I.; Bhargava, V.L.

    1978-01-01

    Morphological and cytogenetic study from the irradiated bone marrow, in 59 cases of radically irradiated carcinoma cervix was done. Regeneration of a marrow adjudged on cellular morphology was after 12 months whereas cytogenetic studies revealed it at the end of three months. It is concluded that cytogenetic study is a more sensitive parameter in assessing the recovery of bone marrow. (author)

  5. Genomic instability in rat: Breakpoints induced by ionising radiation and interstitial telomeric-like sequences

    International Nuclear Information System (INIS)

    Camats, Nuria; Ruiz-Herrera, Aurora; Parrilla, Juan Jose; Acien, Maribel; Paya, Pilar; Giulotto, Elena; Egozcue, Josep; Garcia, Francisca; Garcia, Montserrat

    2006-01-01

    The Norwegian rat (Rattus norvegicus) is the most widely studied experimental species in biomedical research although little is known about its chromosomal structure. The characterisation of possible unstable regions of the karyotype of this species would contribute to the better understanding of its genomic architecture. The cytogenetic effects of ionising radiation have been widely used for the study of genomic instability, and the importance of interstitial telomeric-like sequences (ITSs) in instability of the genome has also been reported in previous studies in vertebrates. In order to describe the unstable chromosomal regions of R. norvegicus, the distribution of breakpoints induced by X-irradiation and ITSs in its karyotype were analysed in this work. For the X-irradiation analysis, 52 foetuses (from 14 irradiated rats) were studied, 4803 metaphases were analysed, and a total of 456 breakpoints induced by X-rays were detected, located in 114 chromosomal bands, with 25 of them significantly affected by X-irradiation (hot spots). For the analysis of ITSs, three foetuses (from three rats) were studied, 305 metaphases were analysed and 121 ITSs were detected, widely distributed in the karyotype of this species. Seventy-six percent of all hot spots analysed in this study were co-localised with ITSs

  6. Genomic instability in rat: Breakpoints induced by ionising radiation and interstitial telomeric-like sequences

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Ruiz-Herrera, Aurora [Departament de Biologia Cel.lular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, Ctra, Madrid-Cartagena, s/n, El Palmar, 30120 Murcia (Spain); Acien, Maribel [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, Ctra, Madrid-Cartagena, s/n, El Palmar, 30120 Murcia (Spain); Paya, Pilar [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, Ctra, Madrid-Cartagena, s/n, El Palmar, 30120 Murcia (Spain); Giulotto, Elena [Dipartimento di Genetica e Microbiologia Adriano Buzzati Traverso, Universita degli Studi di Pavia, 27100 Pavia (Italy); Egozcue, Josep [Departament de Biologia Cel.lular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Montserrat [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain) and Departament de Biologia Cellular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)]. E-mail: Montserrat.Garcia.Caldes@uab.es

    2006-03-20

    The Norwegian rat (Rattus norvegicus) is the most widely studied experimental species in biomedical research although little is known about its chromosomal structure. The characterisation of possible unstable regions of the karyotype of this species would contribute to the better understanding of its genomic architecture. The cytogenetic effects of ionising radiation have been widely used for the study of genomic instability, and the importance of interstitial telomeric-like sequences (ITSs) in instability of the genome has also been reported in previous studies in vertebrates. In order to describe the unstable chromosomal regions of R. norvegicus, the distribution of breakpoints induced by X-irradiation and ITSs in its karyotype were analysed in this work. For the X-irradiation analysis, 52 foetuses (from 14 irradiated rats) were studied, 4803 metaphases were analysed, and a total of 456 breakpoints induced by X-rays were detected, located in 114 chromosomal bands, with 25 of them significantly affected by X-irradiation (hot spots). For the analysis of ITSs, three foetuses (from three rats) were studied, 305 metaphases were analysed and 121 ITSs were detected, widely distributed in the karyotype of this species. Seventy-six percent of all hot spots analysed in this study were co-localised with ITSs.

  7. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  8. 3 cases of radiation-induced sarcoma

    International Nuclear Information System (INIS)

    Shiba, Keiichiro; Fukuma, Hisatoshi; Beppu, Yasuo; Hirota, Teruyuki; Shinohara, Norio.

    1982-01-01

    Criteria for the diagnosis of radiation-induced sarcoma have been previously described. All cases must have a history of irradiation and the second neoplasm must have arisen in the area of the radiation field. A latent period of several years must have elapsed after irradiation before clinical evidence of a second malignant neoplasm. Most important thing is that, all suspected cases must have been proved histologically. We have experienced 3 cases of radiation-induced sarcoma, they were 42-years-old man who developed an osteosarcoma of the lumbar spine at the field of postoperative irradiation for seminoma 7 years previously, 69-years-old woman who developed a malignant fibrous histiocytoma of the buttock at the field of radical radiation for uterine carcinoma 7 years previously and 59-years-old woman who developed an extraskeletal osteosarcoma of the abdominal wall at the field of postoperative irradiation for uterine sarcoma 7 years previously. The last case is very rare and only 8 cases of radiation-induced extraskeletal osteosarcoma have been reported. Since there has been a definite trend in the treatment of cancer toward employing radiation for more favorable cases, in addition to technical improvements in the administration of radiotherapy and more modern equipment, survival data may have been altered considerably in many malignant tumors. Accordingly, more radiation-induced tumors may be encountered in the future. The clinical presentation and histopathology of these radiation-induced sarcomas are presented with a review of the literature. (author)

  9. RBEs and cytogenetic hereditary effects induced by neutron beams in mice

    International Nuclear Information System (INIS)

    Du Zeji; Li Yanyi; Liu Degui

    1994-01-01

    The RBEs and cytogenetic hereditary effects of different dose of neutron beams on chromosome aberrations and micronuclei of bone marrow cells in mice were observed. The results indicated that micronuclei frequency of occurrence and chromosome aberration frequency caused by neutrons increased with doses. The relationship was feasible to Y aD n . The lower energy of neutrons had the smaller value of RBE. RBE determined by CSACR were larger than that by MNCF. RBEs decreased with increasing of neutron doses, especially within the low range of doses. There was a linear relationship between CSACR and MNCF caused by neutron beams and γ-ray

  10. Cytogenetic profile of aplastic anaemia in Indian children.

    Science.gov (United States)

    Gupta, Vineeta; Kumar, Akash; Saini, Isha; Saxena, Ajit Kumar

    2013-03-01

    Aplastic anaemia is a rare haematological disorder characterized by pancytopenia with a hypocellular bone marrow. It may be inherited/genetic or acquired. Acquired aplastic anaemia has been linked to many drugs, chemicals and viruses. Cytogenetic abnormalities have been reported infrequently with acquired aplastic anaemia. Majority of the studies are in adult patients from the West. We report here cytogenetic studies on paediatric patients with acquired aplastic anaemia seen in a tertiary care hospital in north India. Patients (n=71, age 4-14 yr) were diagnosed according to the guidelines of International Agranulocytosis and Aplastic Anaemia Study. Conventional cytogenetics with Giemsa Trypsin Giemsa (GTG) banding was performed. Karyotyping was done according to the International System for Human Cytogenetics Nomenclature (ISCN). Of the 71 patients, 42 had successful karyotyping where median age was 9 yr; of these 42, 27 (64.3%) patients had severe, nine (21.4%) had very severe and six (14.3%) had non severe aplastic anaemia. Five patients had karyotypic abnormalities with trisomy 12 (1), trisomy 8 (1) and monosomy 7 (1). Two patients had non numerical abnormalities with del 7 q - and t (5:12) in one each. Twenty nine patients had uninformative results. There was no difference in the clinical and haematological profile of patients with normal versus abnormal cytogenetics although the number of patients was small in the two groups. Five (11.9%) patients with acquired aplastic anaemia had chromosomal abnormalities. Trisomy was found to be the commonest abnormality. Cytogenetic abnormalities may be significant in acquired aplastic anaemia although further studies on a large sample are required to confirm the findings.

  11. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    1983-01-01

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA) [fr

  12. Molecular cytogenetic in the familial cancers

    International Nuclear Information System (INIS)

    Cermak, M.

    2015-01-01

    The development of cancer diseases is accompanied by number of genetic changes at different levels of the genome. Some of these changes are still subject of research but others are already known in such an extent that they are associated with a specific type of malignity, the development, or treatment possibilities. The cancer genetics dispose of wide range of techniques, with reliable detection of the causal changes. Starting the molecular cytogenetics has launched a new era in diagnostics of genetic aberrations. Fluorescence in situ hybridization (FISH) definitely changed cytogenetic world from black and white to color one and set the foundation of modern investigative methods such as M-FISH, CGH, array CGH and many others. Successively all these methodologies have become a part of routine cancer diagnostics thorough the world. Actually, when much attention is given mostly to submicroscopic changes in DNA supposed as predispositions to various malignancies, the molecular cytogenetics is trying to success in competition of modern highly sensitive molecular biology methods. (author)

  13. Regulation of protein translation initiation in response to ionizing radiation

    International Nuclear Information System (INIS)

    Trivigno, Donatella; Bornes, Laura; Huber, Stephan M; Rudner, Justine

    2013-01-01

    Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells

  14. Regulation of protein translation initiation in response to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Trivigno Donatella

    2013-02-01

    Full Text Available Abstract Background Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Methods Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. Results IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Conclusion Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.

  15. Adaptive response induced by low doses of ionizing radiation in human lymphocytes

    International Nuclear Information System (INIS)

    Frati, Diego Libkind; Bunge, Maria M.

    2001-01-01

    The term adaptive response (AR) applies to the phenomenon of protection or enhanced repair induced by a small dose of a mutagenic agent. In order to determine the existence of AR in human lymphocytes for two different irradiation schemes, microcultures of blood from 4 donors were irradiated. Samples were exposed 24 hours (hr) after phytohemagglutinin stimulation to an adapting dose of 0,01 Gy and to a challenging dose of 1,5 Gy either 6 or 24 hr later (irradiation scheme 24+30 or 24+48, respectively). Gamma radiation from a 2,5 MeV Linac was used in all experiments. A cytogenetic analysis of unstable chromosome aberrations was applied as the endpoint. High inter-individual variability was found for the first irradiation scheme: one expressed AR, two did not and the last showed an apparent synergistic response. For the second irradiation scheme, low mitotic indices (MI) were found, suggesting a G2 arrest. When a series of harvesting times were applied for the last donor, normal MI were obtained only harvesting after 58 hr. An AR was found when harvesting at 72 hr but not at 58 hr. (author)

  16. Radiation-induced radical ions in calcium sulfite

    Science.gov (United States)

    Bogushevich, S. E.

    2006-07-01

    We have used EPR to study the effect of γ radiation on calcium sulfite. We have observed and identified the radiation-induced radical ions SO 2 - (iso) with g = 2.0055 and SO 2 - (orth-1) with g1 = 2.0093, g2 = 2.0051, g3 = 2.0020, identical to the initial and thermally induced SO 2 - respectively, SO 3 - (iso) with g = 2.0031 and SO 3 - (axial) with g⊥ = 2.0040, g∥ = 2.0023, identical to mechanically induced SO 3 - . We have established the participation of radiation-induced radical ions SO 3 - in formation of post-radiation SO 2 - .

  17. Cytogenetic biological dosimetry in radiological protection: chromosome aberration analysis in human lymphocyties

    International Nuclear Information System (INIS)

    Campos, I.M.A. de.

    1988-01-01

    The effects of ionizing radiation on chromosomes have been know for several decades and dose effect relationships are also fairly well established for several doses and dose rates. Apart from its biological significance, the interpretation of chromosome aberration frequency associated with human exposure to radiation plays an important role in dose assessment, particularly in cases where exposure is though to have occurred but no physical dose monitoring system was present. Based on the cytogenetic data obtained from seven cases of exposure to radiation the aberration frequency have been fitted to the quadratic function Y= αD + βD 2 as the dose response curves from literature. The dose equivalent estimate by frequency of chromosomic aberration found here was compared with 60 Co and 192 Ir already published curves obtained at almost similar dose rate together with some hematological data. (author) [pt

  18. New legislative regulations for ensuring radiation protection using ionizing radiation sources in medicine

    International Nuclear Information System (INIS)

    Boehm, K.

    2018-01-01

    European Commission Directive No. 2013/59 / EURATOM laying down basic safety requirements for the provision of radiation protection regulates the provision of radiation protection for workers with radiation sources and residents in all areas of use of ionizing radiation sources. This Directive also addresses radiation protection in the use of ionizing radiation sources in medicine. The European Commission Directive regulates the requirements for radiation protection but also extends to its scope and provisions on the use of medical radiation sources (so-called m edical exposure ) in the scope of further legislation in the field of health care, which has to be amended and modified or possibly issued new. It was necessary in the preparation of the new act on radiation protection to amend simultaneously Act no. 576/2004 on the provision of health care and services related to provision of health care and Act no. 578/2004 on Health care Providers, Health care Professionals and Organizations in Health Care and to prepare a series of implementing regulations not only to the Law on Radiation Protection but also to the Laws governing the Provision of Health Care. The paper presents changes to existing legislation on radiation protection in medical radiation and new requirements for the construction and operation of health workplaces with radiation sources, the protection of the health of patients, the requirements for instrumentation used for medical radiation and radiological instrumentation tests. (authors)

  19. Cytogenetic effects in children born to participants in the cleanup of the Chernobyl accident consequences - Acute radiation syndrome survivors and children evacuated from Pripyat

    International Nuclear Information System (INIS)

    Stepanova, E.I.; Misharina, J.A.

    1997-01-01

    The cytogenetic study of 87 children was held. Age of involved kids ranged from 5 to 14 years old. The I-st study group was presented with 17 kids born in 1987-1988 from the Chernobyl accident consequences cleaning up participants (CACCP) who survived the Acute radiation syndrome (ARS) of I-II severity degree in 1986. The II-nd study group was consisted from the 45 children born in 1983-1985 resident in town Pripyat with thyroid exposure doses from 65 to 616 sZv and total irradiation doses from 0.2 to 13.2 sZv. The 25 children born in 1983-1988 and resident in radiation situation - favourable region of Ukraine constituted the Control (III-rd) group. The aberrant cells number and chromosomal aberrations amount mainly due to chromatide type ones confidential increase compared to that in control was revealed among the children born from CACCP - ARS survivors. In children exposed to ionizing radiation during infant and early childhood age the aberrant cells number and chromosomal aberrations quantity was elevated also but due to both chromosomal (dicentrics and rings) and chromatide types. (author)

  20. Radiation-induced camptocormia and dropped head syndrome. Review and case report of radiation-induced movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Clemens; Kuhnt, Thomas; Kortmann, Rolf-Dieter; Hering, Kathrin [Leipzig University, Department of Radiotherapy and Radiation Oncology, Leipzig (Germany)

    2015-10-15

    In recent years, camptocormia and dropped head syndrome (DHS) have gained attention as particular forms of movement disorders. Camptocormia presents with involuntary forward flexion of the thoracolumbar spine that typically increases during walking or standing and may severely impede walking ability. DHS is characterized by weakness of the neck extensors and a consecutive inability to extend the neck; in severe cases the head is fixed in a ''chin to chest position.'' Many diseases may underlie these conditions, and there have been some reports about radiation-induced camptocormia and DHS. A PubMed search with the keywords ''camptocormia,'' ''dropped head syndrome,'' ''radiation-induced myopathy,'' ''radiation-induced neuropathy,'' and ''radiation-induced movement disorder'' was carried out to better characterize radiation-induced movement disorders and the radiation techniques involved. In addition, the case of a patient developing camptocormia 23 years after radiation therapy of a non-Hodgkin's lymphoma of the abdomen is described. In total, nine case series of radiation-induced DHS (n = 45 patients) and - including our case - three case reports (n = 3 patients) about radiogenic camptocormia were retrieved. Most cases (40/45 patients) occurred less than 15 years after radiotherapy involving extended fields for Hodgkin's disease. The use of wide radiation fields including many spinal segments with paraspinal muscles may lead to radiation-induced movement disorders. If paraspinal muscles and the thoracolumbar spine are involved, the clinical presentation can be that of camptocormia. DHS may result if there is involvement of the cervical spine. To prevent these disorders, sparing of the spine and paraspinal muscles is desirable. (orig.) [German] In den letzten Jahren haben Bewegungsstoerungen von Wirbelsaeule und paraspinaler Muskulatur in

  1. Radiation Regulation Bodies in South Africa

    International Nuclear Information System (INIS)

    Mavunda, R.D.

    2010-01-01

    Tthere are two types Regulatory Bodies in South Africa: department of Health - Radiation Control (DoH) and National Nuclear Regulator (NNR). The function DoH include of Promotion and maintenance of health within the framework of National health plan, Protection against injury or disease caused by technological devises, Protection against injury or disease caused by radiation, Promote safe and legal use of such products. The National Nuclear Regulator authorizes Nuclear Installation License, Nuclear Vessel License, Certificate of Registration and Certificate of Exemption. Some of the Electronic Products include licensing electro-medical products, Import or manufactured License conditions, Radiation workers, Report forms, Use and Radio-nuclides. Nuclear Authorization is the process of granting, by the National Nuclear Regulator, a written approval to applicants or / and operating organizations to perform nuclear related activities as detailed in the scope of the authorization. International Trade Administration Commission of South Africa (ITAC) issue license for import and export of all products including electronic X-Ray products and Radio-nuclides

  2. Effect of salidroside on radiation-induced bone marrow adipogenesis

    International Nuclear Information System (INIS)

    Zhu Jincan; Chen Xiaoyu; Liu Chengcheng; Zhu Aizhen; Liu Shantao; Liu Gexiu

    2014-01-01

    Objective: To investigate the potential and underlying molecular mechanism of salidroside in ameliorating radiation-induced bone marrow adipogenesis and stimulating hematopoiesis. Methods: The female BALB/c mice aged 6-7 weeks were randomly divided into normal control group, radiation group and salidroside group. The radiation group and salidroside group were irradiated with 6.0 Gy of "6"0Co γ-rays. The salidroside group was intraperitoneally injected with 30 mg·kg"-"1·d"-"1 salidroside at 12 h and then every day until 8th d after radiation. The normal control group and radiation group were treated with equal volume of saline as control of salidroside. At 14 d after radiation, the mice weight, peripheral blood count, femur bone marrow histology, and the proportion of adipocyte area were measured, and the expressions of PPAR-γ and FABP4 were detected by q-PCR. Results: After irradiation, the numbers of white blood cells, hemoglobin and platelet in peripheral blood were reduced obviously, and the percentage of adipocyte area was increased significantly. Compared with mice in the radiation group, salidroside inhibited adipogenesis and reduced the proportion of adipocyte area (t = 13.31, P < 0.05) by reducing the expressions of PPAR-γ and FABP4 (t = 8.64, 13.19, P < 0.05). The number of white blood cells was partly recovered at 7 d after irradiation (t = 5.80, P < 0.05). Both white blood cells and hemoglobinin in peripheral blood of the salidroside group were higher than those in the radiation group at 14 d after irradiation. Conclusions: Salidroside could inhibit radiation-induced bone marrow adipogenesis and regulate bone marrow microenvironment, thereby promotes hematopoietic recovery in mice after radiation injury. (authors)

  3. Updating radiation protection regulations in Egypt

    International Nuclear Information System (INIS)

    Gomaa, M.A.; El-Naggar, A.M.

    1996-01-01

    The aim of this treatise is to present -the rational steps taken in the process of updating the Radiation Protection Regulations in Egypt. The contents of the review will include a historical synopsis, and the current state of art regarding competent authorities. Furthermore, the various committees formed with responsibilities for specific issues are indicated, including the role of the Ministry of Health (MOH), and that of the Atomic Energy Authority (AEA). Finally, the efforts made towards updating the radiation Protection Regulations in Egypt are highlighted. (author)

  4. Regulation of miR-21 expression in human melanoma via UV-ray-induced melanin pigmentation.

    Science.gov (United States)

    Lin, Kuan-Yu; Chen, Chien-Min; Lu, Cheng-You; Cheng, Chun-Yuan; Wu, Yu-Hsin

    2017-08-01

    Excessive environmental ultraviolet (UV) radiation produces genetic mutations that can lead to skin cancer. This study was designed to assess the potential inhibitory activity of microRNA-21 (miR-21) on the UV irradiation-stimulated melanogenesis signal pathway in melanoma cells. The molecular mechanism of miR-21-induced inhibitory activity on UV-ray-stimulated melanogenesis-regulating proteins was examined in A375.S2 human melanoma and B16F10 mouse melanoma cells. UV irradiation for 30 min induced melanogenesis signal pathway by increasing melanin production and the number of A375.S2 cells. Similarly, UV radiation increased the expression of α-melanocyte-stimulating hormone (α-MSH) protein and decreased the melanogenesis-regulating signal, such as EGFR and Akt phosphorylation. Notably, miR-21 overexpression in UV-ray-stimulated A375.S2 cells decreased α-MSH expression and increased EGFR and Akt phosphorylation levels. Furthermore, miR-21 on UV-ray- induced melanogenesis was down-regulated by the Akt inhibitor and the EGFR inhibitor (Gefitinib). Results suggest that the suppressive activity of miR-21 on UV-ray-stimulated melanogenesis may involve the down-regulation of α-MSH and the activation in both of EGFR and Akt. © 2017 Wiley Periodicals, Inc.

  5. Cytogenetic analysis after evaluation of 750 fetal deaths : proposal for diagnostic workup

    NARCIS (Netherlands)

    Korteweg, Fleurisca J.; Bouman, Katelijne; Erwich, Jan Jaap H. M.; Timmer, Albertus; Veeger, Nic J. G. M.; Ravise, Joke M.; Nijman, Thomas H.; Holm, Andjozien P.

    OBJECTIVE: To estimate success rates for cytogenetic analysis in different tissues after intrauterine fetal death, and study selection criteria and value of cytogenetic testing in determining cause of death. METHODS: Cytogenetic analyses and the value of this test in determining cause by a

  6. Radiation-induced myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gaenshirt, H [Heidelberg Univ. (F.R. Germany). Neurologische Klinik

    1975-10-01

    12 cases of radiation-induced myelopathy after /sup 60/Co teletherapy are reported on. Among these were 10 thoracal lesions, one cerviothoracal lesion, and one lesion of the medulla oblongata. In 9 cases, Hodgkin's disease had been the primary disease, tow patients had been irradiated because of suspected vertebral metastases of cancer of the breast, and one patient had suffered from a glomus tumour of the petrous bone. The spinal doses had exceeded the tolerance doses recommended in the relevant literature. There was no close correlation between the radiation dose and the course of the disease. The latency periods between the end of the radiotherapy and the onset of the neurological symptons varied from 6 to 16 mouths and were very constant in 7 cases with 6 to 9 months. The segmental height of the lesion corresponded to the level of irradiation. The presenting symptons of radiation-induced myelopathy are buruing dysaesthesias and Brown-Sequard's paralysis which may develop into transverse lesion of the cord with paraplegia still accompanied by dissociated perception disorders. The disease developed intermittently. Disturbances of the bladder function are frequent. The fluid is normal in most cases. Myelographic examinations were made in 8 cases. 3 cases developed into stationary cases exhibiting. Brown-Sequard syndrome, while 9 patients developed transverse lesion of the cord with paraplegia. 3 patients have died; antopsy findings are given for two of these. In the pathogenesis of radiation-induced myelopathy, the vascular factor is assumed to be of decisive importance.

  7. The protective effect of Transhinone II A in radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Li Guanghu; Li Zhiping; Xu Yong; Xu Feng; Wang Jin

    2006-01-01

    Objective: To investigate the protective effect and it's possible mechanism of Tanshinone II A in radiation-induced pulmonary fibrosis. Methods: Having the right hemithorax of female Wistar rats irradiated 30 Gy in 10 fractions within 14 days by 6 MV photons, the radiation-induced pulmonary fibrosis animal model was established. In the treatment group, sodium Tanshinone II A sulfonate (15 mg/kg) was given by intraperitoneal injection 1 hour before each fraction of irradiation. Five months after irradiation, the difference of the histopathological changes, the hyckoxyproline content and expression of TGF-β1 between the radiation alone group, tanshinone plus radiation and control group were analyzed by HE stain, Massion stain, immunohistochemical methor and reverse transcriptase polymerase chain reaction(RT-PCR) method. Results: The histopathological comparison revealed the protective effect of Tanshinone II A. The content of hydroxyproline was (21.99±3.96), (38.25± 7.18), (28.94±4.29) μg/g in the control group, radiation alone group and radiation plus Tanshinone II A. The expression of TGF-β1 (mRNA and protein) was reduced by Tanshinone II A. Pathological changes of the pulmonary fibrosis was reduced by Tanshinone II A yet. Conclusions: Our study shows that Tanshinone II A can inhibit radiation-induced pulmonary fibrosis, and the possible mechanism of its may be made possible through down-regulating the expression of TGF-β1 in the irritated lung tissue. (authors)

  8. Radiation protection technology. Specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). 2. rev. ed.

    International Nuclear Information System (INIS)

    Rahn, Hans-Joachim

    2012-01-01

    The specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). Covers the following issues: radiation protection - generally; licenses and notifications; scientific fundamentals; dosimetry, surveillance, control, documentation; technical radiation protection; radiation protection calculations.

  9. Assessment of radiation safety awareness and attitude toward biological effect of radiation for employees in nuclear workplace

    International Nuclear Information System (INIS)

    Youngchuay, U.; Jetawattana, S.; Toeypho, V.; Eso, J.

    2016-01-01

    This study demonstrated a potential relevance of data pertaining to the interaction of awareness in radiation biology and their attitude towards radiation hazards. The obtained information is useful in ascertaining the effectiveness of the ongoing radiation safety program and will be further used to determine the relationships between the radiation effective dose and cytogenetic approach in these groups of workers. (author)

  10. Radiation protection. Scientific fundamentals, legal regulations, practical applications. Compendium

    International Nuclear Information System (INIS)

    Buchert, Guido; Gay, Juergen; Kirchner, Gerald; Michel, Rolf; Niggemann, Guenter; Schumann, Joerg; Wust, Peter; Jaehnert, Susanne; Strilek, Ralf; Martini, Ekkehard

    2011-06-01

    The compendium on radiation protection, scientific fundamentals, legal regulations and practical applications includes contributions to the following issues: (1) Effects and risk of ionizing radiation: fundamentals on effects and risk of ionizing radiation, news in radiation biology, advantages and disadvantages of screening investigations; (2) trends and legal regulations concerning radiation protection: development of European and national radiation protection laws, new regulations concerning X-rays, culture and ethics of radiation protection; (3) dosimetry and radiation measuring techniques: personal scanning using GHz radiation, new ''dose characteristics'' in practice, measuring techniques for the nuclear danger prevention and emergency hazard control; (4) radiation exposure in medicine: radiation exposure of modern medical techniques, heavy ion radiotherapy, deterministic and stochastic risks of the high-conformal photon radiotherapy, STEMO project - mobile CT for apoplectic stroke patients; (5) radiation exposure in technology: legal control of high-level radioactive sources, technical and public safety using enclosed radioactive sources for materials testing, radiation exposure in aviation, radon in Bavaria, NPP Fukushima-Daiichi - a status report; (6) radiation exposure in nuclear engineering: The Chernobyl accident - historical experiences or sustaining problem? European standards for radioactive waste disposal, radioactive material disposal in Germany risk assessment of ionizing and non-ionizing radiation (7) Case studies.

  11. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    Science.gov (United States)

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  12. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  13. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  14. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-15

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy.

  15. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-01

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy

  16. Radiation-induced cancers in man

    International Nuclear Information System (INIS)

    Hirose, Fumio

    1978-01-01

    Radiation-induced cancers in man were divided into three groups, a group in which cancers occurred after atomic bomb exposure, a group in which cancers occurred in radiologists and other medical specialists, and a group in which cancers occurred after exposure to diagnostic radiation, and they were summarized. In atomic bomb survivors leukemia, thyroid cancer, salivary gland cancer, lung cancer, and breast cancer occurred so frequently. In addition to them, mortality ratios by malignant lymphoma, stomach cancer, esophageal cancer, and by cancer of urinary tract were increased. The incidence of leukemia was decreased in those who treated radiation owing to the development of the protection of occupational exposure, and the incidence of radiation-induced cancers was decreased in patients owing to the improvement of therapy. However, a new problem has arisen as to the occurrence of cancers after medical exposure, such as various histological types of cancers after the treatment of skin diseases on the head, and breast cancer after the treatment of pneumothorax. Dose-to-effect relation, hereditary factors, effect of age, immunological influences and endocrine actions were also studied in each radiation-induced cancer. (Ichikawa, K.)

  17. Radiation-induced cancers in man

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, F [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1978-07-01

    Radiation-induced cancers in man were divided into three groups, a group in which cancers occurred after atomic bomb exposure, a group in which cancers occurred in radiologists and other medical specialists, and a group in which cancers occurred after exposure to diagnostic radiation, and they were summarized. In atomic bomb survivors leukemia, thyroid cancer, salivary gland cancer, lung cancer, and breast cancer occurred so frequently. In addition to them, mortality ratios by malignant lymphoma, stomach cancer, esophageal cancer, and by cancer of urinary tract were increased. The incidence of leukemia was decreased in those who treated radiation owing to the development of the protection of occupational exposure, and the incidence of radiation-induced cancers was decreased in patients owing to the improvement of therapy. However, a new problem has arisen as to the occurrence of cancers after medical exposure, such as various histological types of cancers after the treatment of skin diseases on the head, and breast cancer after the treatment of pneumothorax. Dose-to-effect relation, hereditary factors, effect of age, immunological influences and endocrine actions were also studied in each radiation-induced cancer.

  18. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  19. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  20. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    International Nuclear Information System (INIS)

    Clement, Christopher H.

    2008-01-01

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and

  1. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  2. Ionizing radiation induced malignancies in man

    International Nuclear Information System (INIS)

    Dutrillaux, B.

    1997-01-01

    Using data on gene and chromosome alterations in human cancers, it is proposed that most radiation induced cancers are a consequence of recessive mutations of tumor suppressor genes. This explains the long delay between radiation exposure and the cancer onset. As a consequence, radiation induced cancers belong to groups of tumors where no specific translocations (forming or activating oncogenes) but multiple unbalanced chromosome rearrangements (deletions unmasking recessive mutations) exist. This explains why osteosarcomas, malignant fibrous histiocytoma, chondrosarcomas are frequently induced, but not liposarcoma, Ewing sarcomas and rhabdomyosarcomas, among others. A single exception confirms this rule: papillary thyroid cancer, frequently induced in exposed children, in which structural rearrangements frequently form a RET/PTC3 fusion gene. This fusion gene is the results of the inversion of a short segment of chromosome 10, and it is assumed that such rearrangement (small para-centric inversion) can easily occur after exposure to radiations, at contrast with translocations between to genes belonging to different chromosomes. (author)

  3. Three cases of radiation-induced cancer in oral regions

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Shinoki, Kunihiko; Endo, Yoshitaka; Fujita, Yasushi; Hayashi, Susumu

    1985-01-01

    Three cases of radiation-induced cancer in the oral regions were reported with relation to radiation therapy. One was the general radiation-induced cancer following radiotherapy for the hemangioma. The other two cases, which belonged in the B-1 group of Sakai and his coworker's diagnostic criteria for radiation-induced cancer, were those occurring after radiotherapy for the malignant tumors. Due to the relatively high dosage exposure by the patient in the radiotherapy it is necessary to look out the latency of the radiation-induced cancer. After radiotherapy, careful and periodical observation is important for immediate treatment in an early stage for the radiation-induced cancer to have a favorable prognosis. In addition careful observation of the changes after radiotherapy helps in discovering the precancerous lesions from the therapy. For the radiation-induced cancer, surgical treatment would be the best, however, radiation therapy is also effective in certain cases. (author)

  4. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    International Nuclear Information System (INIS)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  5. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    Science.gov (United States)

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in cytogenetic networks.

  6. Radiation protection for nurses. Regulations and guidelines

    International Nuclear Information System (INIS)

    Jankowski, C.B.

    1992-01-01

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education

  7. The nature and principles of the radiation-induced cancerogenesis

    International Nuclear Information System (INIS)

    Lips'ka, A.YI.; Serkyiz, Ya.Yi.

    2004-01-01

    The paper represents the analysis of the authors and literary data concerning the nature and principles of the radiation-induced neoplasms. The mechanisms of the radiation-induced cancerogenesis development are not clear understood. The experimental data altogether do not allow developing the mathematical model of the radiation-induced cancerogenesis at the molecular level. This model has to take into account all necessary indices including radiation factor and the state of the organism. The general principles of the radiation-induced cancerogenesis have been formulated in the present review. It is possible to use these principles in order to predict and calculate the risks of the radiation-induced neoplasms

  8. Implication of prostaglandins and histamine H1 and H2 receptors in radiation-induced temperature responses of rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.; Mickley, G.A.

    1988-01-01

    Exposure of rats to 1-15 Gy gamma radiation ( 60 Co) induced hyperthermia, whereas 20-200 Gy induced hypothermia. Exposure either to the head or to the whole body to 10 Gy induced hyperthermia, while body-only exposure produced hypothermia. This observation indicates that radiation-induced fever is a result of a direct effect on the brain. The hyperthermia due to 10 Gy was significantly attenuated by the pre- or post-treatment with a cyclooxygenase inhibitor, indomethacin. Hyperthermia was also altered by the central administration of a mu-receptor antagonist naloxone but only at low doses of radiation. These findings suggest that radiation-induced hyperthermia may be mediated through the synthesis and release of prostaglandins in the brain and to a lesser extent to the release of endogenous opioid peptides. The release of histamine acting on H1 and H2 receptors may be involved in radiation-induced hypothermia, since both the H1 receptor antagonist, mepyramine, and H2 receptor antagonist, cimetidine, antagonized the hypothermia. The results of these studies suggest that the release of neurohumoral substances induced by exposure to ionizing radiation is dose dependent and has different consequences on physiological processes such as the regulation of body temperature. Furthermore, the antagonism of radiation-induced hyperthermia by indomethacin may have potential therapeutic implications in the treatment of fever resulting from accidental irradiations

  9. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  10. Radiation induced changes in proteome of mice jejunum: an in vivo 2DE study

    International Nuclear Information System (INIS)

    Bajaj, Sania; Dutta, Ajaswrata; Gupta, Manju L.

    2014-01-01

    Radiation exposure results in severe damage to biological system, by affecting cellular macromolecules of an individual. Damage to bio-molecules may lead to up/down-regulation of proteins, leading to dysfunction of organs. Gastrointestinal tract a key organ for digestion, absorption and barrier to the luminal bacteria and toxins, is one of the highly sensitive radiosensitive organ. Current study is focused on differential proteomic approach to understand the effect of radiation on intestinal (jejunum) proteins in a time dependent manner. Experiments were carried out initially to determine the appropriate conditions for separation of proteins in GI tissue of non irradiated control male C57BL6/J mice. 8-10 weeks old animals were exposed to 9 Gy (lethal) dose of gamma radiation. Differential expression of gastrointestinal tissue (jejunum) proteome was studied by 2DE at different time intervals. The intensity of protein spots of different treatment groups and control was measured by PD Quest software and the differential expression of respective proteins was calculated manually. Comparison of 2-DE gel images of irradiated jejunum tissue samples showed differential expression of various proteins when compared with untreated samples. A significant upregulation of total protein spots was observed within 1 hr group of 9 Gy radiation exposed sample and maximum down-regulation was evident at 72 hr. Out of 24 spots identified in the irradiated samples, 15 spots were down-regulated, and 3 spots were found missing in 72 hr group of irradiated samples respectively. Time dependent regulation of protein expression in irradiated jejunum was thus prominently evident. The data obtained from the present study has revealed differential radio sensitivity of some of the proteins which certainly have a definite role in inducing major cellular changes after radiation exposure. The finding also suggests that proteomic approach could be a potential tool to access the role of specific

  11. Radiation-induced linking reactions in polyethylene

    International Nuclear Information System (INIS)

    Zoepfl, F.J.

    1983-01-01

    Three types of measurements are reported relating to chemical reactions in polyethylene induced by ionizing radiation: 1) viscometric and low-angle laser light scattering measurements to determine the effect of a radical scavenger on the yield of links; 2) calorimetric measurements to determine the effect of radiation-induced linking on the melting behavior of polyethylene; and 3) high-resolution solution carbon 13 nuclear magnetic resonance (NMR) spectrometry measurements to determine the nature of the links and the method of their formation. The NMR results present the first direct detection of radiation-induced long-chain branching (Y links) in polyethylene, and place an apparent upper limit on the yield of H-shaped crosslinks that are formed when polyethylene is irradiated to low absorbed doses. The effect of radiation-induced linking on the melting behavior of polyethylene was examined using differential scanning calorimetry (DSC). It was found that radiation-induced links do not change the heat of fusion of polythylene crystals, but decrease the melt entropy and increase the fold surface free energy per unit area of the crystals. The carbon 13 NMR results demonstrate that long-chain branches (Y links) are formed much more frequently than H-shaped crosslinks at low absorbed doses. The Y links are produced by reactions of alkyl free radicals with terminal vinyl groups in polyethylene

  12. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  13. Radiation security regulation. 1st revision

    International Nuclear Information System (INIS)

    1984-01-01

    Established are allowable maximum levels for personnel occupationally exposed to ionizing radiation in the ININ and for the public, in accordance with the international standards; defined are categories of radiation facilities, requirements and operating conditions that must be met. Demarcated are the kinds of placards to be posted in controlled and restricted areas and the signs, symbols and tags to be used, defined and established is environmental dosimetric and medical radiation monitoring. Regulated are methods for handling sealed and unsealed sources of radiation, work clothes, closing of radiation installations, storage, transfer and transport of radioactive material; classified are types of possible radiation accidents, action to be taken upon the occurrence and subsequent clean up. (corporate author)

  14. Genetic alterations during radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Kodama, Seiji

    1995-01-01

    This paper reviews radiation-induced genetic alterations and its carcinogenesis, focusing on the previous in vitro assay outcome. A colony formation assay using Syrian hamster fetal cells and focus formation assay using mouse C3H10T1/2 cells are currently available to find malignant transformation of cells. Such in vitro assays has proposed the hypothesis that radiation-induced carcinogenesis arises from at least two-stage processes; i.e., that an early step induced by irradiation plays an important role in promoting the potential to cause the subsequent mutation. A type of genetic instability induced by radiation results in a persistently elevated frequency of spontaneous mutations, so-called the phenomenon of delayed reproductive death. One possible mechanism by which genetic instability arises has been shown to be due to the development of abnormality in the gene group involved in the maintenance mechanism of genome stability. Another possibility has also been shown to stem from the loss of telomere (the extremities of a chromosome). The importance of search for radiation-induced genetic instability is emphasized in view of the elucidation of carcinogenesis. (N.K.)

  15. Mobile phone radiation as an inducer of human disease - a hypothesis

    International Nuclear Information System (INIS)

    French, P.; Penny, R.

    2001-01-01

    There are several reports which indicate that electromagnetic radiation (such as from mobile phones) at non-thermal levels may elicit a biological effect in target cells or tissues. Whether or not these biological effects lead to adverse health effects, including cancer, is unclear. To date there is limited scientific evidence of health issues, and no mechanism by which mobile phone radiation could influence cancer development. In this paper, we develop a theoretical mechanism by which radiofrequency radiation from mobile phones could induce cancer, via the chronic activation of the heat shock response. Upregulation of heat shock proteins (Hsps) is a normal defence response to a cellular stress. However, chronic expression of Hsps is known to induce or promote oncogenesis, metastasis and/ or resistance to anti-cancer drugs. We propose that repeated exposure to mobile phone radiation acts as a repetitive stress leading to continuous expression of Hsps in exposed cells and tissues, which in turn affects their normal regulation, and cancer results. This hypothesis provides the possibility of a direct association between mobile phone use and cancer as well as other diseases of protein unfolding, and thus provides an important focus for future experimentation. Copyright (2001) Australasian Radiation Protection Society Inc

  16. Treatment With JAK Inhibitors in Myelofibrosis Patients Nullifies the Prognostic Impact of Unfavorable Cytogenetics.

    Science.gov (United States)

    Ma, Vincent T; Boonstra, Philip S; Menghrajani, Kamal; Perkins, Cecelia; Gowin, Krisstina L; Mesa, Ruben A; Gotlib, Jason R; Talpaz, Moshe

    2018-05-01

    In the era before Janus kinase (JAK) inhibitors, cytogenetic information was used to predict survival in myelofibrosis patients. However, the prognostic value of cytogenetics in the setting of JAK inhibitor therapy remains unknown. We performed a retrospective analysis of 180 patients with bone marrow biopsy-proven myelofibrosis from 3 US academic medical centers. We fit Cox proportional hazards models for overall survival and transformation-free survival on the bases of 3 factors: JAK inhibitor therapy as a time-dependent covariate, dichotomized cytogenetic status (favorable vs. unfavorable), and statistical interaction between the two. The median follow-up time was 37.1 months. Among patients treated with best available therapy, unfavorable cytogenetic status was associated with decreased survival (hazard ratio = 2.31; P = .025). At initiation of JAK inhibitor therapy, unfavorable cytogenetics was (nonsignificantly) associated with increased survival compared to favorable cytogenetics (hazard ratio = 0.292; P = .172). The ratio of hazard ratios was 0.126 (P = .034). These findings were similar after adjusting for standard clinical prognostic factors as well as when measured against transformation-free survival. The initiation of JAK inhibitor therapy appears to change the association between cytogenetics and overall survival. There was little difference in survival between treatment types in patients with favorable cytogenetics. However, the use of JAK inhibitor therapy among patients with unfavorable cytogenetics was not associated with worse survival compared to favorable cytogenetics. Our analyses suggest that initiation of JAK inhibitor therapy nullifies the negative prognostic implication of unfavorable cytogenetics established in the pre-JAK inhibitor therapy era. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  18. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  19. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas.

    Science.gov (United States)

    Showler, Kaye; Nishimura, Mayumi; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro; Shimada, Yoshiya

    2017-03-01

    The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Philipp J. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Faculty of Medicine, University of Heidelberg, Heidelberg (Germany); Park, Henry S. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Knisely, Jonathan P.S. [Department of Radiation Medicine, North Shore University Hospital, Manhasset, New York (United States); Chiang, Veronica L. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Vortmeyer, Alexander O., E-mail: alexander.vortmeyer@yale.edu [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States)

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  1. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes

    International Nuclear Information System (INIS)

    Sherman, M.L.; Datta, R.; Hallahan, D.E.; Weichselbaum, R.R.; Kufe, D.W.

    1991-01-01

    Previous studies have demonstrated that ionizing radiation induces the expression of certain cytokines, such as TNF alpha/cachectin. However, there is presently no available information regarding the molecular mechanisms responsible for the regulation of cytokine gene expression by ionizing radiation. In this report, we describe the regulation of the TNF gene by ionizing radiation in human myeloid leukemia cells. The increase in TNF transcripts by x rays was both time- and dose-dependent as determined by Northern blot analysis. Similar findings were obtained in human peripheral blood monocytes. Transcriptional run-on analyses have demonstrated that ionizing radiation stimulates the rate of TNF gene transcription. Furthermore, induction of TNF mRNA was increased in the absence of protein synthesis. In contrast, ionizing radiation had little effect on the half-life of TNF transcripts. These findings indicate that the increase in TNF mRNA observed after irradiation is regulated by transcriptional mechanisms and suggest that production of this cytokine by myeloid cells may play a role in the pathophysiologic effects of ionizing radiation

  2. Occurrence and prognostic significance of cytogenetic evolution in patients with multiple myeloma

    Science.gov (United States)

    Binder, M; Rajkumar, S V; Ketterling, R P; Dispenzieri, A; Lacy, M Q; Gertz, M A; Buadi, F K; Hayman, S R; Hwa, Y L; Zeldenrust, S R; Lust, J A; Russell, S J; Leung, N; Kapoor, P; Go, R S; Gonsalves, W I; Kyle, R A; Kumar, S K

    2016-01-01

    Cytogenetic evaluation at the time of diagnosis is essential for risk stratification in multiple myeloma, however little is known about the occurrence and prognostic significance of cytogenetic evolution during follow-up. We studied 989 patients with multiple myeloma, including 304 patients with at least two cytogenetic evaluations. Multivariable-adjusted regression models were used to assess the associations between the parameters of interest and cytogenetic evolution as well as overall survival. The prognostic significance of baseline cytogenetic abnormalities was most pronounced at the time of diagnosis and attenuated over time. In the patients with serial cytogenetic evaluations, the presence of t(11;14) at the time of diagnosis was associated with decreased odds of cytogenetic evolution during follow-up (odds ratio (OR)=0.22, 95% confidence interval (CI)=0.09–0.56, P=0.001), while the presence of at least one trisomy or tetrasomy was associated with increased odds (OR=2.96, 95% CI=1.37–6.42, P=0.006). The development of additional abnormalities during the 3 years following diagnosis was associated with increased subsequent mortality (hazard ratio=3.31, 95% CI=1.73–6.30, P<0.001). These findings emphasize the importance of the underlying clonal disease process for risk assessment and suggest that selected patients may benefit from repeated risk stratification. PMID:26967818

  3. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Ah [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok [Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Seon Young [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Oh, Keunhee; Lee, Dong-Sup [Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Transplantation Research Institute, Seoul National University College of Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Min Kyung; Kim, Seong Who [Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jang, Mi; Lee, Gene [Lab of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Oh, Yeon-Mok; Lee, Sang Do [Department of Pulmonary and Critical Care Medicine, Asthma Center and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Dong Soon, E-mail: soonlee@snu.ac.kr [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-07-15

    Highlights: • We evaluated cytogenetic aberrations of MSC during culture using G-banding and FISH. • We tracked the quantitative changes of each clone among heterogeneity upon passages. • The changes of cytogenetic profile upon passages were similar to cancer stem cell. - Abstract: To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging. We passaged MSCs serially while monitoring quantitative changes for each aberrant clone among heterogeneous MSCs. To investigate the cytogenetic status of interphase cells, which represent the main population, we also performed interphase FISH analysis, in combination with G-banding and telomere length determination. In human adipose tissue-derived MSCs, 4 types of chromosomal aberrations were found during culturing, and in umbilical cord MSCs, 2 types of chromosomal aberrations were observed. Sequential dynamic changes among heterogeneous aberrant clones during passaging were similar to the dynamic changes observed in cancer stem cells during disease progression. Throughout all passages, the quantitative G-banding results were inconsistent with those of the interphase FISH analysis. Interphase FISH revealed hidden aberrations in stem cell populations with normal karyotypes by G-banding analysis. We found that telomere length gradually decreased during passaging until the point at which cytogenetic aberrations appeared. The present study demonstrates that rare aberrant clones at earlier passages can become predominant clones during

  4. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kim, Jung-Ah; Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok; Kim, Seon Young; Oh, Keunhee; Lee, Dong-Sup; Kim, Min Kyung; Kim, Seong Who; Jang, Mi; Lee, Gene; Oh, Yeon-Mok; Lee, Sang Do; Lee, Dong Soon

    2015-01-01

    Highlights: • We evaluated cytogenetic aberrations of MSC during culture using G-banding and FISH. • We tracked the quantitative changes of each clone among heterogeneity upon passages. • The changes of cytogenetic profile upon passages were similar to cancer stem cell. - Abstract: To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging. We passaged MSCs serially while monitoring quantitative changes for each aberrant clone among heterogeneous MSCs. To investigate the cytogenetic status of interphase cells, which represent the main population, we also performed interphase FISH analysis, in combination with G-banding and telomere length determination. In human adipose tissue-derived MSCs, 4 types of chromosomal aberrations were found during culturing, and in umbilical cord MSCs, 2 types of chromosomal aberrations were observed. Sequential dynamic changes among heterogeneous aberrant clones during passaging were similar to the dynamic changes observed in cancer stem cells during disease progression. Throughout all passages, the quantitative G-banding results were inconsistent with those of the interphase FISH analysis. Interphase FISH revealed hidden aberrations in stem cell populations with normal karyotypes by G-banding analysis. We found that telomere length gradually decreased during passaging until the point at which cytogenetic aberrations appeared. The present study demonstrates that rare aberrant clones at earlier passages can become predominant clones during

  5. Computer modelling of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  6. Flow cytogenetics and chromosome sorting.

    Science.gov (United States)

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  7. Health effects assessment of staff involved in medical practices of radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, I.A.; Lacob, O. [Institute of Public Health Iasi, Radiation Hygiene Lab. (Romania); Roman, I.; Havarneanu, D. [Institute of Public Health Iasi, Occupational Medicine Dept. (Romania)

    2006-07-01

    This study aimed, starting from new national recommendation appearance, to detect health effects of medical staff from six counties of Moldavia region involved in radiation practices and to create a national register data for radiation-induce cancer. Staff involved in medical ionizing radiation uses in Romania - health care level I are monitored on recent new recommendations for three years. The micro nuclei high levels and morphological lymphocytes changes vs. clinical diagnostic can be considered as early possible malignant signs. The micro nuclei test, although unspecific, as a new exam in our legislation can bring useful information on staff exposure and provides a guidance to occupational physician in making his medical recommendations. This cytogenetic test does not seem to correlate with smoking habit or length of exposure. Micro nuclei test both in oral mucous epithelial cells and peripheral culture lymphocytes can be considered of much specificity and correlates with a recent acute exposure level. The conclusions of individual health status surveillance and assessment of personal dose equivalent are very useful data for recording in the radiation cancer-induced register.

  8. Health effects assessment of staff involved in medical practices of radiation exposures

    International Nuclear Information System (INIS)

    Popescu, I.A.; Lacob, O.; Roman, I.; Havarneanu, D.

    2006-01-01

    This study aimed, starting from new national recommendation appearance, to detect health effects of medical staff from six counties of Moldavia region involved in radiation practices and to create a national register data for radiation-induce cancer. Staff involved in medical ionizing radiation uses in Romania - health care level I are monitored on recent new recommendations for three years. The micro nuclei high levels and morphological lymphocytes changes vs. clinical diagnostic can be considered as early possible malignant signs. The micro nuclei test, although unspecific, as a new exam in our legislation can bring useful information on staff exposure and provides a guidance to occupational physician in making his medical recommendations. This cytogenetic test does not seem to correlate with smoking habit or length of exposure. Micro nuclei test both in oral mucous epithelial cells and peripheral culture lymphocytes can be considered of much specificity and correlates with a recent acute exposure level. The conclusions of individual health status surveillance and assessment of personal dose equivalent are very useful data for recording in the radiation cancer-induced register

  9. The development of radiation protection regulations in Malaysia

    International Nuclear Information System (INIS)

    Yusoff Ismail

    1995-01-01

    The paper begins by mentioning the established policy of the Government of Malaysia vis-a-vis protection against ionizing radiations as embodied in the Radioactive Substances Act 1968 and, later, the atomic Energy Licensing Act 1984. Then it turns to on the major events that influences the past, the present and the future development of the radiation protection regulations in Malaysia. it concludes with a vision where future Malaysia is seen drifting towards a consensus effort in radiation protection rendering self regulation the order of the day. (author)

  10. [Cytogenetic Abnormalities and Outcomes of 117 Patients with Multiple Myeloma Detected by FISH].

    Science.gov (United States)

    Zhai, Bing; Zou, Dan-Dan; Yan, Jian-Jun; Wang, Nan; Wang, Li-Li; Zhu, Hong-Li; Huang, Wen-Rong; Yu, Li

    2016-02-01

    To analyze the cytogenetic abnormalities and prognostic outcomes of patients with multiple myeloma (MM) detected by fluorescence in situ hybridization (FISH). The clinical record of 117 newly-diagnosed patients with MM treated in department of hematology and geriatric hematology of our hospital for 7 years were collected, and their molecular cytogenetic abnormalities detected by FISH and the clinical outcome were analyzed retrospectively. The detected rate of cytogenetic abnormality was 76.9%(90/117), the most common abnormality deteted by FISH was 1q21+ (71.1%), followed by 13q- (56.6%). The cross comparison method showed that 13q- and 17p13-, t(11;14) and t(4;14) were related respectively. All the patients with cytogenetic abnormalities showed no significant difference in the overall survival from cytogenetic normal patients. The positive rate of molecular cytogenetic abnormalities detected by FISH in MM patients is high, but data from larger and longer studies are needed to evaluate the prognostic outcomes.

  11. A comprehensive cytogenetic classification of 1466 Chinese patients with de novo acute lymphoblastic leukemia.

    Science.gov (United States)

    Li, Xin; Li, Juan; Hu, Yanjie; Xie, Wei; Du, Wen; Liu, Wei; Li, Xiaoqing; Chen, Xiangjun; Li, Hongrui; Wang, Junfeng; Zhang, Lannan; Huang, Shiang

    2012-06-01

    Cytogenetics and molecular cytogenetics of 1466 Chinese patients with de novo acute lymphoblastic leukemia (ALL) were studied. Cytogenetic results were available in 1175 patients. Cross-correlations of 23 subclasses of cytogenetic abnormalities were described. Childhood cases had higher incidences of normal karyotype, t(1;19), +8, 12q-, +21, +22 and high hyperdiploidy with 51-65 chromosomes, and lower incidences of t(9;22) and -5/5q- than adult ones (all pcytogenetic subclasses with immunophenotyping subgroups of ALL were studied. Our study presents the cytogenetic characteristics of a large series of Chinese ALL patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A note on Poisson goodness-of-fit tests for ionizing radiation induced chromosomal aberration samples.

    Science.gov (United States)

    Higueras, Manuel; González, J E; Di Giorgio, Marina; Barquinero, J F

    2018-05-18

    To present Poisson exact goodness-of-fit tests as alternatives and complements to the asymptotic u-test, which is the most widely used in cytogenetic biodosimetry, to decide whether a sample of chromosomal aberrations in blood cells comes from an homogeneous or inhomogeneous exposure. Three Poisson exact goodness-of-fit test from the literature are introduced and implemented in the R environment. A Shiny R Studio application, named GOF Poisson, has been updated for the purpose of giving support to this work. The three exact tests and the u-test are applied in chromosomal aberration data from clinical and accidental radiation exposure patients. It is observed how the u-test is not an appropriate approximation in small samples with small yield of chromosomal aberrations. Tools are provided to compute the three exact tests, which is not as trivial as the implementation of the u-test. Poisson exact goodness-of-fit tests should be considered jointly to the u-test for detecting inhomogeneous exposures in the cytogenetic biodosimetry practice.

  13. Radiation-induced chromosomal instability

    International Nuclear Information System (INIS)

    Ritter, S.

    1999-01-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/μm) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  14. Cytogenetic Monitoring of Mammals of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Zhapbasov, R.Zh.; Tusupbaev, V.I.; Karimbaeva, K.S.; Seisebaev, A.T.; Nurgalieva, K.G.; Chenal, C.

    1998-01-01

    The cytogenetic monitoring of the natural populations of mammals living under conditions of environment radioactive contamination is the simplest method to study the genetic consequences of nuclear tests. This work presents the preliminary results of the cytogenetic monitoring of the natural populations of rodents (Allactaga maior Kerr., Allactaga saltafor Eversm., Citellus erytrogenus Brandt) and domestic sheep (Ovis aries). The exposure of gonads is considered to be the most hazardous among the consequences of the chronic ionizing exposure since the exposure of gonads can cause not only somatic damages but also hereditary ones transferring to the farther generations, The genetic damage assessment of rodent reproductive cells was performed using the morphological test for abnormal form of the sperm head. It is generally accepted, that spermatogenesis disorders, which result in abnormal spermatozoa, are bound to the genetic disturbances during mitotic and meiotic division stages of male sex cells. The analysis of data obtained shows that the rodent males living on the radioactive contaminated sites (Balapan, Degelen) have the higher numbers of abnormal spermatozoa. So, the Allactaga maior taken from the sites with the gamma background of 250 μr/h showed the frequency of abnormal spermatozoa within 48.27 - 62.73 %. This value for the control animals from the gamma background of 11 - 16 μr/h did not exceed 5.8 %. The most objective and sensitive method for assessment of environmental contamination genetic consequences for the natural populations is to determine the damages of the cell genetic apparatus, e. g. the frequency of the visible changes in chromosome number and structure. The cytogenetic study of animals showed that the significant number of marrow cells of rodents and sheep living on the technical fields of the Test Site are the metaphase cells with polyploid (0.98 - 3.50 %) and aneuploidy (11.03 -19.72 %) chromosomal sets. There were also found the

  15. Prognostic implications of genetic aberrations in acute myelogenous leukemia with normal cytogenetics.

    Science.gov (United States)

    Ghanem, Hady; Tank, Niki; Tabbara, Imad A

    2012-01-01

    Acute myelogenous leukemia (AML) is a genetically heterogeneous disease in which somatic mutations, that disturb cellular growth, proliferation, and differentiation, accumulate in hematopoietic progenitor cells. Cytogenetic findings, at diagnosis, have been proven to be one of the most important prognostic indicators in AML. About half of the patients with AML are found to have "normal" cytogenetic analysis by standard culture techniques. These patients are considered as an intermediate risk group. Cytogenetically normal AML (CN-AML) is the largest cytogenetic risk group, and the variation in clinical outcome of patients in this group is greater than in any other cytogenetic group. Besides mutation testing, age and presenting white blood cell count are important predictors of overall survival, suggesting that other factors independent of cytogenetic abnormalities, contribute to the outcome of patients with AML. The expanding knowledge at the genetic and molecular levels is helping define several subgroups of patients with CN-AML with variable prognosis. In this review, we describe the clinical and prognostic characteristics of CN-AML patients as a group, as well as the various molecular and genetic aberrations detected in these patients and their clinical and prognostic implications. Copyright © 2011 Wiley Periodicals, Inc.

  16. Regulation for radiation protection in applications of radiation sources

    International Nuclear Information System (INIS)

    Sonawane, Avinash U.

    2016-01-01

    Applications of ionising radiation in multifarious field are increasing in the country for the societal benefits. The national regulatory body ensures safety and security of radiation sources by enforcing provisions in the national law and other relevant rules issued under the principle law. In addition, the enforcement of detailed requirements contained in practice specific safety codes and standard and issuance of safety directives brings effectiveness in ensuring safe handling and secure management of radiation sources. The regulatory requirements for control over radiation sources throughout their life-cycle have evolved over the years from experience gained. Nevertheless, some of the regulatory activities which require special attention have been identified such as the development of regulation to deal with advance emerging radiation technology in applications of radiation in medicine and industry; sustaining continuity in ensuring human resource development programme; inspections of category 3 and 4 disused sources and their safe disposal; measures for controlling transboundary movement of radiation sources. The regulatory measures have been contemplated and are being enforced to deal with the above issues in an effective manner. The complete involvement of the management of radiation facilities, radiation workers and their commitment in establishing and maintaining safety and security culture is essential to handle the radiation sources safely and efficiently at all times

  17. Role of neurotensin in radiation-induced hypothermia in rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H.

    1991-01-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin

  18. UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi

    NARCIS (Netherlands)

    van Rijssel, M; Buma, A.G.J.

    2002-01-01

    A possible coupling between UV radiation (UVR; 280 to 400 nm) induced stress and the production of dimethylsulfoniopropionate (DMSP), the precursor of the climate-regulating gas dimethylsulfide (DMS), was investigated in the marine prymnesiophyte Emiliania huxleyi. To this end, axenic cultures of E.

  19. Regulation of autophagy via PERK-eIF2α effectively relieve the radiation myelitis induced by iodine-125.

    Directory of Open Access Journals (Sweden)

    Zuozhang Yang

    Full Text Available Radiation myelitis is the most serious complication in clinical radiotherapy for spinal metastases. We previously showed that (125I brachytherapy induced apoptosis of spinal cord neurons accompanied by autophagy. In this study, we further investigated the mechanism by which (125I radiation triggered autophagy in neural cells. We found that autophagy induced by (125I radiation was involved in endoplasmic reticulum (ER stress and mainly dependent on PERK-eIF2α pathway. The expressions of LC3II, ATG12 and PI3K were significantly suppressed in PERK knockout neural cells. Meanwhile, the expressions of phosphorylated-Akt s473 and caspase3/8 all significantly increased in neural cells transfected with a PERK siRNA and which enhanced apoptosis of neurons after (125I radiation. The results were consistent with that by MTT and Annexin-FITC/PT staining. In animal model of banna pigs with radiation myelitis caused by (125I brachytherapy, we have successfully decreased PERK expression by intrathecal administration of the lentivirus vector. The apoptosis rate was significantly higher than that in control group and which deteriorated radiation myelitis of banna pigs. Thus, autophagy caused by (125I radiation was mainly as an attempt of cell survival at an early stage, but it would be a self-destructive process and promoted the process of apoptosis and necrosis radiated by (125I for more than 72 hours. The study would be useful and helpful to maximize efficiency of radiation therapy in clinical therapy.

  20. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  1. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Spanish Edition); Dosimetría citogenética: Aplicaciones en materia de preparación y respuesta a las emergencias radiológicas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual’s working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade.

  2. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  3. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-15

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis.

  4. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-01

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis

  5. Regulation on protection against ionizing radiations

    International Nuclear Information System (INIS)

    1995-01-01

    This regulation has as the objective to establish the criteria tending toward protecting the health of the population of the radiologic risks that can be derive from the employment of the ionizing radiations and similar activities. It establishes the requirements to comply with the radiactive installations, equipment transmitters of ionizing radiations, personal that works in them, operate the equipment and carry out any another similar activity such as: production, importation, exportation, transportation, transference of radioactive material or equipment generators of radiations ionizing. (S. Grainger) [es

  6. Mechanisms of radiation oncogenesis and their implications for radiological protection

    International Nuclear Information System (INIS)

    Cox, R.

    1992-01-01

    Studies on the genetics, cytogenetics, biochemistry and molecular biology of neoplasia are now beginning to provide us with an increasingly coherent picture of cancer induction and development. Some of the genes involved in this complex multi-step cellular process have been isolated and characterized and in a few instances it is possible to identify target genes for the initiation of specific neoplasms and how these genes are mutated by environmental carcinogens. Knowledge of molecular mechanisms of mammalian DNA repair and mutagenesis has similarly increased and, together with limited studies of molecular mechanisms of radiation oncogenesis in animal systems, allows specific comment on the molecular nature of radiation-induced initiating events for neoplasia. These data are discussed with an emphasis on their possible implications for radiological protection. (author)

  7. Cytogenetic and dosimetric effects of {sup 131}I in patients with differentiated thyroid carcinoma: comparison between stimulation with rhTSH and thyroid hormone withdrawal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcia Augusta da; Gomes Silva Valgode, Flavia; Carvalho Pinto Ribela, Maria Teresa; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Comissao Nacional de Energia Nuclear (CNEN), IPEN-CNEN/SP, Centro de Biotecnologia, Sao Paulo (Brazil); Armiliato Gonzalez, Julia; Calil Cury Guimaraes, Maria Ines; Buchpiguel, Carlos Alberto [Faculdade de Medicina da Universidade de Sao Paulo, Centro de Medicina Nuclear, Sao Paulo (Brazil); Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Centro de Engenharia Nuclear, Sao Paulo (Brazil)

    2016-08-15

    A study directed to the cytogenetic and dosimetric aspects of radionuclides of medical interest is very valuable, both for an accurate evaluation of the dose received by the patients, and consequently of the genetic damage, and for the optimization of therapeutic strategies. Cytogenetic and dosimetric effects of {sup 131}I in lymphocytes of thyroidectomized differentiated thyroid cancer (DTC) patients were evaluated through chromosome aberration (CA) technique: Euthyroid patients submitted to recombinant human thyroid-stimulating hormone (rhTSH) therapy (group A) were compared with hypothyroid patients left without levothyroxine treatment (group B). CA analysis was carried out prior to and 24 h, 1 week, 1 month and 1 year after radioiodine administration (4995-7030 MBq) in both groups. An activity-response curve of {sup 131}I (0.074-0.740 MBq/mL) was elaborated, comparing dicentric chromosomes in vivo and in vitro in order to estimate the absorbed dose through Monte Carlo simulations. In general, radioiodine therapy induced a higher total CA rate in hypothyroid patients as compared to euthyroid patients. The frequencies of dicentrics obtained in DTC patients 24 h after treatment were equivalent to those induced in vitro (0.2903 ± 0.1005 MBq/mL in group A and 0.2391 ± 0.1019 MBq/mL in group B), corresponding to absorbed doses of 0.65 ± 0.23 Gy and 0.53 ± 0.23 Gy, respectively. The effect on lymphocytes of internal radiation induced by {sup 131}I therapy is minimal when based on the frequencies of CA 1 year after the treatment, maintaining a higher quality of life for DTC patients receiving rhTSH-aided therapy. (orig.)

  8. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    Full Text Available Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated

  9. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  10. Mathematical operations in cytogenetic dosimetry: Dosgen

    International Nuclear Information System (INIS)

    Garcia L, O.; Zequera J, T.

    1996-01-01

    Handling of formulas and mathematical procedures for fitting and using of dose-response relationships in cytogenetic dosimetry is often difficulted by the absence of collaborators specialized in mathematics and computation. DOSGEN program contains the main mathematical operations which are used in cytogenetic dosimetry. It is able to run in IBM compatible Pc's by non-specialized personnel.The program possibilities are: Poisson distribution fitting test for the number of aberration per cell, dose assessment for whole body irradiation, dose assessment for partial irradiation and determination of irradiated fraction. The program allows on screen visualization and printing of results. DOSGEN has been developed in turbo pascal and is 33Kb of size. (authors). 4 refs

  11. Regulated control of practices and radiation sources

    International Nuclear Information System (INIS)

    1992-01-01

    Excepting the radiation caused by the natural background radiation, the Executive Secretariat for Nuclear Affairs (SEAN) does not authorize any source no practice within the national territory that may imply exposure of a person to ionizing radiation unless this use is ruled. This document establishes the basic criteria to set up such system as well as to exclude or exempt practices and sources from this regulated control

  12. Proliferation, differentiation, and possible radiation-induced chromosome abnormalities in circulating hemopoietic stem cells

    International Nuclear Information System (INIS)

    Amenomori, Tatsuhiko; Honda, Takeo; Matsuo, Tatsuki; Otake, Masanori; Hazama, Ryuji; Tomonaga, Yu; Tomonaga, Masao; Ichimaru, Michito.

    1986-07-01

    The effects of atomic bomb radiation on hemopoietic stem cells were studied cytogenetically and from the aspect of differentiation and proliferation, using single colonies derived from human hemopoietic stem cells. The subjects studied were A-bomb survivors in the high dose exposure group (T65D 100 + rad) with a high incidence (10 % or more) of radiation-induced chromosome abnormalities in their peripheral lymphocytes, and their controls. Examinations were performed on 21 A-bomb survivors (10 males and 11 females) and 11 controls (5 males and 6 females). Colony formation of hemopoietic stem cells (granulocyte/monocyte-colony-forming cells, GM-CFC and burst-forming unit-erythrocytes, BFU-E) was made by the methylcellulose method patterned after the methods of Iscove et al and Ogawa et al using 5 - 10 ml of peripheral blood. Chromosome specimens were prepared from single colonies by the micromethod which we have reported elsewhere. The total number of colonies analyzed in the exposed group was 131 GM-CFC and 75 BFU-E. Chromosome abnormalities were observed in 15 (11.5 %) and 9 (12.0 %) colonies, respectively. In the control group, the total number of colonies analyzed was 61 GM-CFC and 41 BFU-E, but none of the colonies showed chromosome abnormalities. A highly significant difference in chromosome abnormalities was demonstrated by an exact test with a probability of 0.3 % for GM-CFC and 1.7 % for BFU-E. The karyotypes of chromosome abnormalities obtained from the colonies of hemopoietic stem cells in the exposed group were mostly translocations, but deletion and marker chromosomes were also observed. In two individuals, such karyotypic abnormalities as observed in the peripheral lymphocytes were seen also in the hemopoietic precursor cells. This finding suggests that radiation may produce an effect even on relatively undifferentiated hemopoietic stem cells. (author)

  13. Cytogenetics And Its Relevance to the Practice of Modern Medicine ...

    African Journals Online (AJOL)

    This review outlines the importance of cytogenetics in modern medicine, the need to develop the application to the level of a full discipline in Nigeria to prevent and control these disorders and reawaken the interest of scientists and postgraduate students in this all-important discipline. Keywords: Human cytogenetics ...

  14. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  15. Cytogenetic study is not essential in patients with aplastic anemia

    Science.gov (United States)

    Dutta, Atreyee; De, Rajib; Dolai, Tuphan K; Mitra, Pradip K; Halder, Ajanta

    2017-01-01

    Depending on contemporary treatment approach of aggressive immunosuppression, Aplastic Anemia (AA) is caused by immunological destruction of otherwise normal hematopoietic stem cells. The aim was to summarize the cytogenetic abnormalities in AA patients and the frequency of Fanconi Anemia (FA) in morphologically normal AA patients in eastern India. Ethical clearances were obtained from both institutions involved in this study. Out of 72800 patients attending the outpatient department, 520 pancytopenia patients were screened for AA after Bone marrow (BM) aspiration and biopsy. Samples were collected from 117 cases in 3 phases. 51 peripheral venous blood (PVB) samples in the first phase, 19 BM & PVB paired samples in the second phase and 47 BM samples in third phase were collected followed by leukocyte and/or BM stem cell culture. Next GTG banding and karyotyping were performed. PVB was collected from 63 (< 50 years) AA patients and stress cytogenetics was done to diagnose FA. In the first phase of the study, out of 51 PVB samples, 1 (1.96%) showed a unique chromosomal abnormality, i.e. 45,XY,rob(14:21)(p10:q10)[20]. In the second phase of study, among 19 BM & PVB paired samples, 1 (5.26%) showed abnormal karyotype i.e. 45,X,-Y[3]/46,XY[47]. In the third phase of the study, 47 BM samples showed normal karyotype. Only 6 (9.52%) cases were found positive for stress cytogenetics. A negligible percentage showing cytogenetic abnormality in such a considerable number of AA cases indicates that routine cytogenetic analysis of AA patient is not essential. A significant percentage was positive for stress cytogenetics; suggestive for FA, even the patients were morphologically normal. PMID:29181263

  16. Cytogenetic profile in 1,921 cases of trisomy 21 syndrome.

    Science.gov (United States)

    Flores-Ramírez, Francisco; Palacios-Guerrero, Claudia; García-Delgado, Constanza; Morales-Jiménez, Ariadna Berenice; Arias-Villegas, Christian Martín; Cervantes, Alicia; Morán-Barroso, Verónica Fabiola

    2015-08-01

    Trisomy 21 is the most frequent genetic cause of intellectual disability. It is caused by different cytogenetic aberrations: free trisomy, Robertsonian translocations, mosaicism, duplication of the critical region and other structural rearrangements of chromosome 21. The aim of the study was to identify in Mexican trisomy 21 patients who attended Hospital Infantil de México Federico Gómez from 1992-2011 the type and frequency of the cytogenetic aberration and to evaluate the effect of maternal age. A retrospective analysis of epidemiological data and karyotype reports were carried out; type and frequency of the cytogenetic variants were determined. We identified 2,018 cases referred with a clinical diagnosis of trisomy 21. In 1,921 analyses (95.2%) a cytogenetic variant of trisomy 21 was identified: free trisomy 21 in 1,787 cases (93.02%), four cases (0.21%) had an additional non-contributory aberration; Robertsonian translocations in 92 cases (4.79%); mosaicism in 31 cases (1.61%) and seven cases (0.36%) had other chromosomal abnormalities, five (0.26%) had other contributory structural rearrangements and two corresponded to double aneuploidies (0.10%). Gender distribution was 1,048 (54.56%) males and 873 (45.44%) females. A maternal age effect was observed in patients with free trisomy 21 with mothers >36 years of age. The present work reports the experience of a Mexican referral center regarding the karyotype diagnosis of patients with trisomy 21 and is one of the most extensive studies published so far. Percentages of the cytogenetic abnormalities present in our population reflect the ones previously reported for these cytogenetic alterations worldwide. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  17. Cytogenetic study is not essential in patients with aplastic anemia.

    Science.gov (United States)

    Dutta, Atreyee; De, Rajib; Dolai, Tuphan K; Mitra, Pradip K; Halder, Ajanta

    2017-01-01

    Depending on contemporary treatment approach of aggressive immunosuppression, Aplastic Anemia (AA) is caused by immunological destruction of otherwise normal hematopoietic stem cells. The aim was to summarize the cytogenetic abnormalities in AA patients and the frequency of Fanconi Anemia (FA) in morphologically normal AA patients in eastern India. Ethical clearances were obtained from both institutions involved in this study. Out of 72800 patients attending the outpatient department, 520 pancytopenia patients were screened for AA after Bone marrow (BM) aspiration and biopsy. Samples were collected from 117 cases in 3 phases. 51 peripheral venous blood (PVB) samples in the first phase, 19 BM & PVB paired samples in the second phase and 47 BM samples in third phase were collected followed by leukocyte and/or BM stem cell culture. Next GTG banding and karyotyping were performed. PVB was collected from 63 (cytogenetics was done to diagnose FA. In the first phase of the study, out of 51 PVB samples, 1 (1.96%) showed a unique chromosomal abnormality, i.e. 45,XY,rob(14:21)(p10:q10)[20]. In the second phase of study, among 19 BM & PVB paired samples, 1 (5.26%) showed abnormal karyotype i.e. 45,X,-Y[3]/46,XY[47]. In the third phase of the study, 47 BM samples showed normal karyotype. Only 6 (9.52%) cases were found positive for stress cytogenetics. A negligible percentage showing cytogenetic abnormality in such a considerable number of AA cases indicates that routine cytogenetic analysis of AA patient is not essential. A significant percentage was positive for stress cytogenetics; suggestive for FA, even the patients were morphologically normal.

  18. Cytogenetics of Festulolium (Festuca x Lolium hybrids).

    Science.gov (United States)

    Kopecký, D; Lukaszewski, A J; Dolezel, J

    2008-01-01

    Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca x Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium-Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination. 2008 S. Karger AG, Basel

  19. A study of radiation-induced cerebral vascular injury in nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis.

    Directory of Open Access Journals (Sweden)

    Jianhong Ye

    Full Text Available To investigate radiation-induced carotid and cerebral vascular injury and its relationship with radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma (NPC patients.Fifty eight NPC patients with radiation-induced temporal lobe necrosis (TLN were recruited in the study. Duplex ultrasonography was used to scan bilateral carotid arterials to evaluate the intima-media thickness (IMT and occurrence of plaque formation. Flow velocities of bilateral middle cerebral arteries (MCAs, internal carotid arteries (ICAs and basal artery (BA were estimated through Transcranial Color Doppler (TCD. The results were compared with data from 33 patients who were free from radiation-induced temporal lobe necrosis after radiotherapy and 29 healthy individuals.Significant differences in IMT, occurrence of plaques of ICAs and flow velocities of both MCAs and ICAs were found between patients after radiotherapy and healthy individuals (p<0.05. IMT had positive correlation with post radiation interval (p = 0.049. Compared with results from patients without radiation-induced TLN, the mean IMT was significantly thicker in patients with TLN (p<0.001. Plaques were more common in patients with TLN than patients without TLN (p = 0.038. In addition, flow velocities of MCAs and ICAs in patients with TLN were much faster (p<0.001, p<0.001. Among patients with unilateral TLN, flow velocity of MCAs was significantly different between ipsilateral and contralateral sides to the lesion (p = 0.001.Thickening of IMT, occurrence of plaque formation and hemodynamic abnormality are more common in patients after radiotherapy, especially in those with TLN, compared with healthy individuals.

  20. Radiation-induced heart injury. Radiopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Niibe, H [Gunma Univ., Maebashi (Japan). School of Medicine

    1975-11-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the interval between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue.

  1. Some problems and errors in cytogenetic biodosimetry

    International Nuclear Information System (INIS)

    Mosse, Irma; Kilchevsky, Alexander; Nikolova, Nevena; Zhelev, Nikolai

    2017-01-01

    Human radiosensitivity is a quantitative trait that is generally subject to binomial distribution. Individual radiosensitivity, however, may deviate significantly from the mean (by 2–3 standard deviations). Thus, the same dose of radiation may result in different levels of genotoxic damage (commonly measured as chromosome aberration rates) in different individuals. There is significant genetic component in individual radiosensitivity. It is related to carrier ship of variant alleles of various single-nucleotide polymorphisms (most of these in genes coding for proteins functioning in DNA damage identification and repair); carrier ship of a different number of alleles producing cumulative effects; amplification of gene copies coding for proteins responsible for radioresistance, mobile genetic elements and others. Among the other factors influencing individual radioresistance are: the radio adaptive response; the bystander effect; the levels of endogenous substances with radioprotective and antimutagenic properties and environmental factors such as lifestyle and diet, physical activity, psycho emotional state, hormonal state, certain drugs, infections and others. These factors may have radioprotective or sensitizing effects. Apparently, there are too many factors that may significantly modulate the biological effects of ionizing radiation. Thus, conventional methodologies for biodosimetry (specifically, cytogenetic methods) may produce significant errors if personal traits that may affect radioresistance are not accounted for

  2. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Sardi, M.; Busto, E.; Roth, B.; Menendez, P.; Bonomi, M.; Mairal, L.

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro gel electrophoresis (comet) assays could be suitable approaches to evaluate individual radiosensitivity in vitro. The MN assay is an established cytogenetic technique to evaluate intrinsic cell radiosensitivity in tumor cells and lymphocytes; comet assay is a sensitive and rapid method for measuring DNA damage and repair in individual cells. The aims of this study were: 1) To assess the in vitro radiosensitivity of peripheral blood lymphocytes from two groups of cancer patients (retrospectively and prospectively studied), using MN and comet assays, in comparison with the observed clinical response; and 2) To test the predictive potential of both techniques. Materials and methods: 38 cancer patients receiving radiation therapy were enrolled in this study. The tumor sites were: head and neck (n 25) and cervix (n = 13). Nineteen patients were evaluated about 6-18 month after radiotherapy (retrospective group) and 19 patients were evaluated prior, mid-way and on

  3. [Study of cytogenetic and cytotoxic effect of non-contact electrochemically-activated waters in the five organs of rats].

    Science.gov (United States)

    Sycheva, L P; Mikhaĭlova, R I; Beliaeva, N N; Zhurkov, V S; Iurchenko, V V; Savostikova, O N; Alekseeva, A V; Kribtsova, E K; Kovalenko, M A; Akhal'tseva, L V; Sheremet'eva, S M; Iurtseva, N A; Murav'eva, L V; Kamenetskaia, D B

    2014-01-01

    For the first time the multiorgan karyological analysis of five organs of rats was applied for the study of the cytogenetic and cytotoxic action of the four types of non-contact electrochemically activated water in the 30-days in vivo experiment. The effects of investigated waters were not detected in bone marrow polychromatic erythrocytes. "Anolyte" (ORP = -362 mV) did not have a negative effect on rats. "Catholyte-5" (ORP = +22 mV) and "Catholyte-25" (ORP = -60 mV) induced cytogenetic abnormalities in the bladder and fore stomach. The same catholytes and "Catholyte-40" (ORP = -10 mV) changed the proliferation indices: increased the mitotic index in the fore stomach epithelium and reduced the frequency of binucleated cells in the fore stomach, bladder and lungs. The increase in the rate of cells with cytogenetic abnormalities on the background of the promotion of mitotic activity can be considered as a manifestation of the negative effect, typical for catolytes, but the effect of each out of them has its own features.

  4. Radiation-induced degradation of pollutants

    International Nuclear Information System (INIS)

    Proksch, E.

    1988-01-01

    This article outlines the fundamentals of radiation-induced degradation of noxious substances in drinking water and waste water and discusses the relevant literature. Radiation methods present a number of advantages and disadvantages, which should carefully be considered in each case. In many cases, there seems to be merit in combining the radiation method with other techniques, as e.g. ozone treatement and biodegradation. 30 refs., 3 figs. (Author)

  5. Cytogenetic biomonitoring carried out in a village (Dolon) adjacent to the Semipalatinsk nuclear weapon test site.

    Science.gov (United States)

    Testa, A; Stronati, L; Ranaldi, R; Spanò, M; Steinhäusler, F; Gastberger, M; Hubmer, A; Ptitskaya, L; Akhmetov, M

    2001-06-01

    The Semipalatinsk region (Kazakhstan Republic) has been affected by extensive radioactive contamination due to more than 450 nuclear tests of which almost 100 were exploded in the atmosphere. The present results refer to cytogenetic assessments in a study cohort of the population of Dolon, a settlement located on the NE boundary of the nuclear weapon test site, which was exposed to elevated doses of ionising radiation primarily due to the first Soviet nuclear test in 1949. Conventional cytogenetic analyses were carried out on 21 blood samples from individuals (more than 50 years old) living in Dolon since the very beginning of nuclear testing. A matched control group included 20 individuals living in non-contaminated areas. Higher frequencies of chromosome aberrations were found in the Dolon cohort compared to the control group, even though they remain within the range of the background levels reported for large normal human population studies on elderly individuals.

  6. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael I. Carr

    2016-09-01

    Full Text Available ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2S394A knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2S394A mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2S394A mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.

  7. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young [Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2017-04-15

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  8. Lack of effect of inhibitors of DNA synthesis/repair on the ionizing radiation-induced chromosomal damage in G[sub 2] stage of ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Antoccia, A. (Univ. ' La Sapienza' , Rome (Italy). Dipt. di Genetica e Biologia Molecolare); Palitti, F.; Raggi, T. (Univ. del Tuscia, Viterbo (Italy). Dipt. di Agrobiologia ed Agrochimica); Catena, C. (ENEA, Casaccia (Italy). Centro Ricerche Energia); Tanzarella, C. (Rome Univ. 3 (Italy). Dipt. di Biologia)

    1994-09-01

    The relationship between the repair processes occurring at the G[sub 2] phase of the cell cycle and cytogenetic damage in ataxia telangiectasia (AT) cells was studied. Lymphoblastoid cells derived from normal, heterozygote AT (HzAT) and three AT patients were exposed to X-rays or fission neutrons and post-treated with inhibitors of DNA synthesis/repair, such as inhibitors of DNA polymerases [alpha], [sigma] and [epsilon] (cytosine arabinoside, ara-C; aphidicolin, APC; buthylphenyl-guanine, BuPdG) or ribonucleotide reductase (hydroxyurea HU). A strong increase of radiation-induced chromosomal aberrations was observed in normal and HzAT cells post-treated with ara-C, APC and HU, but not in the presence of BuPdG. No enhancing effect was observed in cells derived from AT patients, except for HU post-irradiation treatment. These results suggest that the enzymes that can be inhibited by these agents are not directly involved in the repair of radiation damage induced in G[sub 2] cells from AT patients, indicating that probably the AT cells that we used lack the capability to transform the primary DNA lesions into reparable products, or that AT cells might contain a mutated form of DNA polymerase resistant to the inhibitors. (author).

  9. Challenges in Regulating Radiation Sources and Radioactive Waste in Nigeria

    International Nuclear Information System (INIS)

    Ngwakwe, C.

    2016-01-01

    Identifying challenges that hamper the efficiency and efficacy of Regulatory Infrastructure (People and Processes) as regards ensuring safety & security of radiation sources and radioactive waste is a major step towards planning for improvement. In a world constantly motivated by technological advancements, there has been considerable increase in the use of new technologies incorporating radioactive sources in both medical and industrial applications due to its perceived benefits, hence changing the dynamics of regulation. This paper brings to the fore, contemporary challenges experienced by regulators in the course of regulating radiation sources and radioactive waste in Nigeria. These challenges encountered in the business of regulating radiation sources and radioactive waste in Nigeria amongst others include; knowledge gap in the use of novel technologies for industrial applications (e.g. radiotracers in oil & gas and wastewater management), inadequate collaboration with operators to ensure transparency in their operations, inadequate cooperation from other government agencies using ionizing radiation sources, lack of synergy between relevant government agencies, difficulty in establishing standard radioactive waste management facility for orphan & disused sources, and inadequate control of NORMS encountered in industrial activities (e.g. well logging, mining). Nigerian Nuclear Regulatory Authority (NNRA), the body saddled with the responsibility of regulating the use of ionizing radiation sources in Nigeria is empowered by the Nuclear Safety and Radiation Protection Act to ensure the protection of life, property, and the environment from the harmful effects of ionizing radiation, hence are not immune to the aforementioned challenges. (author)

  10. Radiation-induced Genomic Instability and Radiation Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  11. Basic reactions induced by radiation

    International Nuclear Information System (INIS)

    Charlesby, A.

    1980-01-01

    This paper summarises some of the basic reactions resulting from exposure to high energy radiation. In the initial stages energy is absorbed, but not necessarily at random, giving radical and ion species which may then react to promote the final chemical change. However, it is possible to intervene at intermediate stages to modify or reduce the radiation effect. Under certain conditions enhanced reactions are also possible. Several expressions are given to calculate radiation yield in terms of energy absorbed. Some analogies between radiation-induced reactions in polymers, and those studied in radiobiology are outlined. (author)

  12. Experience with the 1985 UK ionizing radiation regulations: the regulators' viewpoint

    International Nuclear Information System (INIS)

    Bines, W.P.; Beaver, P.F.

    1991-01-01

    The Ionising Radiations Regulations 1985 achieved UK implementation of the Euratom Basic Safety Standards Directive; interim action has taken account of recent revisions of risk estimates and the regulations will not be revised in advance of renegotiation of the Euratom Directive. Wide ranging consultation, central to the development of health and safety legislation in the UK, leads to greater co-operation between regulators and regulated and more acceptable legislation. Examples of co-operation, also of methods of enforcement and the use made of them, are given. The authors conclude that the regulations have stood the test of experience well. (Author)

  13. Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  14. 75 FR 32484 - Array-Based Cytogenetic Tests: Questions on Performance Evaluation, Result Reporting and...

    Science.gov (United States)

    2010-06-08

    ...] Array-Based Cytogenetic Tests: Questions on Performance Evaluation, Result Reporting and Interpretation... public meeting: Array-Based Cytogenetic Tests: Questions on Performance Evaluation, Result Reporting and... cytogenetic tests. Date and Time: The meeting will be held on June 30, 2010, from 1:30 p.m. to 5 p.m. Location...

  15. The USA prepares to change its radiation protection regulations

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The US Nuclear Regulatory Commission (NRC) is preparing to revise its basic regulation on protection of people from ionizing radiation. The current regulation, ''Standards for protection against radiation'' -commonly referred to as ''Part 20'' - was originally published for comment in 1955. The regulation was based on early recommendations from the International Commission on Radiological Protection (ICRP). In 1977, the ICRP made major changes in its recommendations, known as ICRP-26. In 1990, the NRC Commissioners approved a new Part 20 reflecting ICRP-26, but improvements are to be specified and considered before a new regulation is published. (author)

  16. Radiation protection - Performance criteria for service laboratories performing biological dosimetry by cytogenetics

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard provides criteria for quality assurance and quality control, evaluation of the performance and the accreditation of biological dosimetry by cytogenetic service laboratories. This International Standard addresses: a) the confidentiality of personal information, for the customer and the service laboratory, b) the laboratory safety requirements, c) the calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels, d) the scoring procedure for unstable chromosome aberrations used for biological dosimetry, e) the criteria for converting a measured aberration frequency into an estimate of absorbed dose, f) the reporting of results, g) the quality assurance and quality control, h) informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations and a sample report

  17. Radiation-Induced Alopecia after Endovascular Embolization under Fluoroscopy

    Directory of Open Access Journals (Sweden)

    Vipawee Ounsakul

    2016-01-01

    Full Text Available Radiation-induced alopecia after fluoroscopically guided procedures is becoming more common due to an increasing use of endovascular procedures. It is characterized by geometric shapes of nonscarring alopecia related to the area of radiation. We report a case of a 46-year-old man presenting with asymptomatic, sharply demarcated rectangular, nonscarring alopecic patch on the occipital scalp following cerebral angiography with fistula embolization under fluoroscopy. His presentations were compatible with radiation-induced alopecia. Herein, we also report a novel scalp dermoscopic finding of blue-grey dots in a target pattern around yellow dots and follicles, which we detected in the lesion of radiation-induced alopecia.

  18. Quick cytogenetic screening of breeding bulls using flow cytometric sperm DNA histogram analysis.

    Science.gov (United States)

    Nagy, Szabolcs; Polgár, Péter J; Andersson, Magnus; Kovács, András

    2016-09-01

    The aim of the present study was to test the FXCycle PI/RNase kit for routine DNA analyses in order to detect breeding bulls and/or insemination doses carrying cytogenetic aberrations. In a series of experiments we first established basic DNA histogram parameters of cytogenetically healthy breeding bulls by measuring the intraspecific genome size variation of three animals, then we compared the histogram profiles of bulls carrying cytogenetic defects to the baseline values. With the exception of one case the test was able to identify bulls with cytogenetic defects. Therefore, we conclude that the assay could be incorporated into the laboratory routine where flow cytometry is applied for semen quality control.

  19. Comprehensive 5-Year Study of Cytogenetic Aberrations in 668 Infertile Men

    Science.gov (United States)

    Yatsenko, Alexander N.; Yatsenko, Svetlana A.; Weedin, John W.; Lawrence, Amy E.; Patel, Ankita; Peacock, Sandra; Matzuk, Martin M.; Lamb, Dolores J.; Cheung, Sau Wai; Lipshultz, Larry I.

    2010-01-01

    Purpose The causes of male infertility are heterogeneous but more than 50% of cases have a genetic basis. Specific genetic defects have been identified in less than 20% of infertile males and, thus, most causes remain to be elucidated. The most common cytogenetic defects associated with nonobstructive azoospermia are numerical and structural chromosome abnormalities, including Klinefelter syndrome (47,XXY) and Y chromosome microdeletions. To refine the incidence and nature of chromosomal aberrations in males with infertility we reviewed cytogenetic results in 668 infertile men with oligozoospermia and azoospermia. Materials and Methods High resolution Giemsa banding chromosome analysis and/or fluorescence in situ hybridization were done in 668 infertile males referred for routine cytogenetic analysis between January 2004 and March 2009. Results The overall incidence of chromosomal abnormalities was about 8.2%. Of the 55 patients with abnormal cytogenetic findings sex chromosome aneuploidies were observed in 29 (53%), including Klinefelter syndrome in 27 (49%). Structural chromosome abnormalities involving autosomes (29%) and sex chromosomes (18%) were detected in 26 infertile men. Abnormal cytogenetic findings were observed in 35 of 264 patients (13.3%) with azoospermia and 19 of 365 (5.2%) with oligozoospermia. Conclusions Structural chromosomal defects and low level sex chromosome mosaicism are common in oligozoospermia cases. Extensive cytogenetic assessment and fluorescence in situ hybridization may improve the detection rate in males with oligozoospermia. These findings highlight the need for efficient genetic testing in infertile men so that couples may make informed decisions on assisted reproductive technologies to achieve parenthood. PMID:20172548

  20. Omitting cytogenetic assessment from routine treatment response monitoring in chronic myeloid leukemia is safe.

    Science.gov (United States)

    Geelen, Inge G P; Thielen, Noortje; Janssen, Jeroen J W M; Hoogendoorn, Mels; Roosma, Tanja J A; Valk, Peter J M; Visser, Otto; Cornelissen, Jan J; Westerweel, Peter E

    2018-04-01

    The monitoring of response in chronic myeloid leukemia (CML) is of great importance to identify patients failing their treatment in order to adjust TKI choice and thereby prevent progression to advanced stage disease. Cytogenetic monitoring has a lower sensitivity, is expensive, and requires invasive bone marrow sampling. Nevertheless, chronic myeloid leukemia guidelines continue to recommend performing routine cytogenetic response assessments, even when adequate molecular diagnostics are available. In a population-based registry of newly diagnosed CML patients in the Netherlands, all simultaneous cytogenetic and molecular assessments performed at 3, 6, and 12 months were identified and response of these matched assessments was classified according to European Leukemia Net (ELN) recommendations. The impact of discrepant cytogenetic and molecular response classifications and course of patients with additional chromosomal abnormalities were evaluated. The overall agreement of 200 matched assessments was 78%. In case of discordant responses, response at 24 months was consistently better predicted by the molecular outcome. Cytogenetic response assessments provided relevant additional clinical information only in some cases of molecular "warning." The development of additional cytogenetic abnormalities was always accompanied with molecular failure. We conclude that it is safe to omit routine cytogenetics for response assessment during treatment and to only use molecular monitoring, in order to prevent ambiguous classifications, reduce costs, and reduce the need for invasive bone marrow sampling. Cytogenetic re-assessment should still be performed when molecular response is suboptimal. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  2. In vivo synergistic cytogenetic effects of aminophylline on lymphocyte cultures from patients with lung cancer undergoing chemotherapy

    International Nuclear Information System (INIS)

    Mylonaki, Effie; Manika, Katerina; Zarogoulidis, Paul; Domvri, Kalliopi; Voutsas, Vasilis; Zarogoulidis, Kostas; Mourelatos, Dionysios

    2012-01-01

    Highlights: ► SCEs in vivo, a possible predictor of tumor chemoresponse. ► In vivo exposure to combined treatment, applying the SCE assay. ► Aminophylline enhances DNA instability induced by chemotherapy in vivo. ► In vivo synergistic effect of Aminophylline with the chemotherapeutic agents. - Abstract: Background: The anti-cancer and cytogenetic effects of aminophylline (AM) have been demonstrated in several clinical trials. The aim of the present study was to investigate the in vivo cytogenetic effects of AM in newly diagnosed patients with small cell (SCLC) and non-small cell lung cancer (NSCLC), receiving chemotherapy for the first time. Methods: Sister chromatid exchanges (SCEs) and proliferation rate index (PRI) were evaluated in peripheral blood lymphocyte cultures from six patients with SCLC and six patients with NSCLC after the in vitro addition of AM and after the in vivo administration of AM in patients receiving chemotherapy. Results: The in vitro addition of AM significantly increased SCEs only in SCLC patients (p 0.05). Conclusions: These observations suggest that AM enhances the results of concurrently administered chemotherapy by synergistically increasing its cytogenetic effects in patients with lung cancer

  3. Cytogenetic evaluation of chromosomal disorders in Down Syndrome

    International Nuclear Information System (INIS)

    Shafik, H.M.

    1987-01-01

    Down Syndrome (DS) patients are at high risk to develop leukemia. They are also highly sensitive to the induction of chromosomal aberrations when their GO lymphocytes are irradiated in vitro. The objective of this study was to further investigate the differential radiosensitivity of DS lymphocytes at the different stages of the cell cycle, as damage to proliferating cells is more relevant to health problems than damage to non-dividing cells. In addition, the proliferation kinetics and stage of differentiation of circulating DS lymphocytes was studied in an attempt to understand the mechanism for the enhanced chromosomal radiosensitivity. Moreover, the x-ray induced specific chromosomal breakpoints were identified and correlated with the locations of oncogene and fragile sites in order to investigate cytogenetically the early stages of leukemogenesis

  4. Radiation-induced neuropathies: collateral damage of improved cancer prognosis

    International Nuclear Information System (INIS)

    Pradat, Pierre-Francois; Maisonobe, Thierry; Psimaras, Dimitri; Lenglet, Timothee; Porcher, Raphael; Lefaix, J.L.; Delenian, S.

    2012-01-01

    Because of the improvement of cancer prognosis, long-term damages of treatments become a medical and public health problem. Among the iatrogenic complications, neurological impairment is crucial to consider since motor disability and pain have a considerable impact on quality of life of long cancer survivors. However, radiation-induced neuropathies have not been the focus of great attention. The objective of this paper is to provide an updated review about the radiation-induced lesions of the peripheral nerve system. Radiation-induced neuropathies are characterized by their heterogeneity in both symptoms and disease course. Signs and symptoms depend on the affected structures of the peripheral nerve system (nerve roots, nerve plexus or nerve trunks). Early-onset complications are often transient and late complications are usually progressive and associated with a poor prognosis. The most frequent and well known is delayed radiation-induced brachial plexopathy, which may follow breast cancer irradiation. Radiation-induced lumbosacral radiculoplexopathy is characterized by pure or predominant lower motor neuron signs. They can be misdiagnosed, confused with amyotrophic lateral sclerosis (ALS) or with leptomeningeal metastases since nodular MRI enhancement of the nerve roots of the cauda equina and increased cerebrospinal fluid protein content can be observed. In the absence of specific markers of the link with radiotherapy, the diagnosis of post-radiation neuropathy may be difficult. Recently, a posteriori conformal radiotherapy with 3D dosimetric reconstitution has been developed to link a precise anatomical site to unexpected excess irradiation. The importance of early diagnosis of radiation-induced neuropathies is underscored by the emergence of new disease-modifying treatments. Although the pathophysiology is not fully understood, it is already possible to target radiation-induced fibrosis but also associated factors such as ischemia, oxidative stress and

  5. The radiation exposure regulation for XXI century

    International Nuclear Information System (INIS)

    Keirim-Markus, I.B.

    2000-01-01

    The regulation of the people radiation exposure by the ICRP and IAEA is subject to well-founded criticism for the excessive severity and complexity. In Russia these shortcomings adversely affected at the removal of consequences of the Chernobyl accident. The future regulation system must be better coordinated with the other sources of human life risks. In the advanced countries the death probability from the all reasons is equal 1-2·10 -2 year -1 with the age variation from 5·10 -4 to 2·10 -1 . Therefore it is reasonable to consider that death risk from radiation less than 1·10 -5 - 1·10 -3 depending on age, as an insignificant, but not 1·10 -6 as it is accepted now. Whatever heritable effects of human irradiation are not revealed by the observation during a half on century. Therefore, there is no any reason to account them. As concern the dose dependence of the stochastic effects of radiation the new information is already demonstrating that more than an a half of the whole human's radiation cancers are submitted to dependence with the threshold from 0.3 to tens of sievert at the low dose rate. Therefore, the linear nonthreshold dependence is not true. This fact is undermining the modern system of irradiation regulation institution. One can't use the effective dose. One hasn't to fear of the radiation exposure in small doses. There isn't the necessity in optimization of such exposure all the more the balance detriment-benefit depends on not only dose but even not so much on dose. It is reasonable to base the future system regulation of radiation exposure with the only one principle: one mustn't exceed the limit of the personal life-span dose, which must be set at the level 2.5 Sv for the staff. The limit equal to 0.5 Sv during every 10 consecutive years will ensure that. For the population, the limit as 50-70 mSv during every 10 consecutive years will ensure the level 0.35-05 Sv for life-span. Equally, with the half century dose it is necessary to regulate

  6. Flow cytogenetic studies in chromosomes and whole cells for the detection of clastogenic effects

    International Nuclear Information System (INIS)

    Otto, F.J.; Oldiges, H.

    1980-01-01

    Flow cytometric measurements of the chromosomal DNA content have been used to develop a screening method for the detection of chemically- or physically-induced cytogenetic damage. The reproducibility of this flow cytogenetic assay was shown in a series of subcultures of a Chinese hamster cell clone. The accuracy and sensitivity was tested in cultures treated with chemical mutagens and x-rays. The clastogenic effectiveness was quantified and the dose-effect relationship was established by the increase of the coefficient of variation of the peak of the largest chromosome type in the flow histograms. Since structural chromosome aberrations cause an unequal division of the DNA at mitosis, it is expected that clastogenic effects can be detected also in whole cells of growing populations as an increased dispersion of the cellular DNA content. In order to test this feature, high resolution flow cytometric measurements were performed in x-irradiated hamster cells in vitro and mouse bone marrow cells in vivo

  7. Radiation induced mitotic delay and stimulation of growth

    International Nuclear Information System (INIS)

    Feldmann, A.

    1974-01-01

    The mechanisms responsible for the radiation induced mitotic delay and stimulation of growth are discussed in connection with the results of studies in Lemna minor and Lepidium sativum. The action of temperature seems to be of major importance. As many authors suggest that various chemical agents and slight intoxications also affect mitosis in a way similar to that induced by ionizing radiation, the radiation induced stimulation has lost its specific character and approaches might be found for further investigations of this phenomenon. (MG) [de

  8. Radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Palayoor, S.T.; Coleman, C.N.; Bump, E.A.

    1994-01-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author)

  9. Radiation-induced apoptosis in F9 teratocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R E; Palayoor, S T; Coleman, C N; Bump, E A [Joint Center for Radiation Therapy and Dana Farber Cancer Inst., Boston (United States)

    1994-05-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-[beta]-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author).

  10. Radiation induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Otsuhata, Kazushige; Kudoh, Hisaaki; Seguchi, Tadao.

    1995-01-01

    The Irradiation temperature effect on polytetrafluoroethylene (PTFE) from room temperature to 380degC was investigated by tensile test and thermal analysis. The behavior of tensile properties and changes of crystallinity on irradiation indicated the formation of a network structure in PTFE by radiation induced crosslinking in inert gas in the molten state just above the melting temperature of PTFE (327degC). The crosslinked PTFE showed a much improved radiation resistance in an atmospheric radiation field. (author)

  11. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  12. Modulation of interferon-gamma-induced HLA-DR expression on the human keratinocyte cell line SCC-13 by ultraviolet radiation

    International Nuclear Information System (INIS)

    Khan, I.U.; Boehm, K.D.; Elmets, C.A.

    1993-01-01

    Cell surface expression of major histocompatibility determinants on epidermal keratinocytes is a characteristic feature of a number of inflammatory dermatoses and in all likelihood is caused by diffusion of human leukocyte antigen (HLA)-DR-inducing cytokines from cells present in the dermal mononuclear cell infiltrate. Many of these same disorders respond to ultraviolet (UV) radiation phototherapy. Using the human SCC-13 keratinocyte cell line as a model, UV radiation was found to inhibit interferon-gamma-induced HLA-DR expression. Inhibition correlated closely with decreased steady-state levels of HLA-DR mRNA. These findings provide evidence that the therapeutic effect of UV radiation phototherapy may be mediated by its capacity to down-regulate cytokine-induced keratinocyte HLA-DR expression. (Author)

  13. Control of radiation-induced diarrhea with cholestyramine

    International Nuclear Information System (INIS)

    Heusinkveld, R.S.; Manning, M.R.; Aristizabal, S.A.

    1978-01-01

    Cholestyramine is a non-absorbable ion-exchange resin which specifically binds bile salts. We have treated seven patients with acute or chronic radiation-induced diarrhea that was refractory to the usual methods of control with cholestyramine. In each case, the diarrhea was controlled with cholestyramine. This observation supports previous experimental work with animals which indicated that bile salts contribute to the genesis of radiation-induced diarrhea. Cholestyramine is well-tolerated, but should not be administered with certain oral medications. The results of this small series are preliminary, but point the way toward a more extensive clinical trial to define the usefulness of cholestyramine in the treatment of refractory acute or chronic radiation-induced diarrhea

  14. Shortening of culture time in conventional cytogenetic dosimetry

    International Nuclear Information System (INIS)

    Lamadrid, Ana I.; Gonzalez, Jorge E.; Romero, Ivonne; Garcia, Omar; Roy, Laurence

    2008-01-01

    Conventional cytogenetic dosimetry based on chromosome aberration in metaphases is a 'gold standard' of bio-dosimetry techniques for radiation dose assessment. This method is laborious and time consuming, the culturing process requires about 48 hours to obtain a satisfactory number of lymphocytes in mitosis. The current approach to reduce the dose estimation time by cytogenetic dosimetry is the preliminary estimation of dose counting only 50 metaphases. Another possibility is to reduce the culture time. The possibility of reduce the culture time under 48 hours adding Calyculin A has been suggested recently. In the present study we tested shorter times using Calyculin A and considering the G2/M-PCC index as culture quality indicator. Peripheral blood from healthy individuals was irradiated and then maintained at 37 C degrees for 2 hours allowing to act the cellular reparation mechanisms, lymphocytes were culture in RPMI 1640 supplemented with foetal calf serum and phytohemagglutinin. Colcemid was added 24 hours after cultures started and Calyculin A was added for the last hour. The cells were collected by centrifugation between 30 to 48 hours. The cells were treated with a hypotonic solution and the fixed cells dropped onto slides. The slides were stained with Giemsa. The incidence of metaphases with chromosomes well defined was scored. Two operators participated to the scoring according the same criteria. The results were analyzed to comparing the G2/M-PCC index relatives to achieve the shortest culture duration. The culture time reduction to 40 hours gives enough G2/M-PCC cells for dose estimation analysis. Lower culture times produced very low G2/M-PCC index. (author)

  15. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine

  16. Molecular epidemiology of radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Trosko, J.E.

    1996-01-01

    The role of ionizing radiation in carcinogenesis is discussed. Every cell contains proto-oncogenes, which if damaged may lead to cell transformation. Every cell also contains tumor suppressor genes, which guard against transformation. Thus, transformation would seem to require a double injury to the DNA in a cell. Ionizing radiation is known to be a relatively weak mutagen, but a good clastogen (inducer of chromosome breaks, deletions and rearrangements). Ionizing radiation may therefore be a 'promoter' of cancer, i.e. a stimulant of the clonal expansion of transformed cells, if it kills enough cells to induce compensatory hyperplasia - i.e. rapid growth of cells. Ionizing radiation may be a 'progressor', if it deactivates tumor suppressor genes tending to suppress the growth of existing clones of transformed cells resulting from any of numerous causes. It may therefore be an oversimplification to say that radiation causes cancer; rather, it seems to be a weak initiator, an indirect promoter, and a late-stage progressor. 2 figs

  17. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    Science.gov (United States)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  18. Safety Regulations for Ionizing Radiations. Vietnam Standard (TCVN 4397-87)

    International Nuclear Information System (INIS)

    1987-01-01

    The regulations were prepared for purpose of providing basic requirements of ionizing radiation protection and giving guide for design criteria of radiation installations in Vietnam. The allowable maximum levels for personnel categories are established. Regulated are methods for handling sealed and unsealed sources of radiation, transfer and transport of radioactive materials. Defined requirements and operating conditions that must be met. Determined are procedures and actions of decontamination. (N.H.A)

  19. Proposed Regulations for Medical Examination of the Radiation Worker

    International Nuclear Information System (INIS)

    Shabon, M.H.

    2015-01-01

    Owing to the widespread use of ionising radiation and radioactive isotopes and their well recognized adverse effects on human health. General requirements for workers to grant license to use ionizing radiation in Egypt was reported in the executive of Egyptian ionizing radiation regulation in 1962 following ionizing radiation law no. 59 for the year 1960. Egyptian Nuclear and Radiological Regulatory Authority (ENRRA) has enforced law no. 7 in 2010 and its executive regulation in 2011 through requesting certificates of medical examination as a requirement to grant Egyptian license to ionizing radiation worker. A deficiency in medical examination and special investigations for pre-placement and follow up of the radiation worker has been noticed. This paper provides practical guidance to the employers and the appointed doctors about health surveillance and medical examinations of the radiation worker. Past history, present history, clinical examination and investigations are presented. Illnesses and conditions that prevent the person to be classified are also mentioned.

  20. Characterization of radiation-induced Apoptosis in rodent cell lines

    International Nuclear Information System (INIS)

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  1. Interaction of alpha radiation with thermally-induced defects in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Majid, Abdul

    2008-01-01

    The interaction of radiation-induced defects created by energetic alpha particles and thermally-induced defects in silicon has been studied using a Deep Level Transient Spectroscopy (DLTS) technique. Two thermally-induced defects at energy positions E c -0.48 eV and E c -0.25 eV and three radiation-induced defects E2, E3 and E5 have been observed. The concentration of both of the thermally-induced defects has been observed to increase on irradiation. It has been noted that production rates of the radiation-induced defects are suppressed in the presence of thermally-induced defects. A significant difference in annealing characteristics of thermally-induced defects in the presence of radiation-induced defects has been observed compared to the characteristics measured in pre-irradiated samples

  2. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.

    Science.gov (United States)

    Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria

    2017-08-01

    The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects

  3. Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias

    Science.gov (United States)

    Dawson, A.J.; Yanofsky, R.; Vallente, R.; Bal, S.; Schroedter, I.; Liang, L.; Mai, S.

    2011-01-01

    Most patients with acute lymphocytic leukemia (all) are reported to have acquired chromosomal abnormalities in their leukemic bone marrow cells. Many established chromosome rearrangements have been described, and their associations with specific clinical, biologic, and prognostic features are well defined. However, approximately 30% of pediatric and 50% of adult patients with all do not have cytogenetic abnormalities of clinical significance. Despite significant improvements in outcome for pediatric all, therapy fails in approximately 25% of patients, and these failures often occur unpredictably in patients with a favorable prognosis and “good” cytogenetics at diagnosis. It is well known that karyotype analysis in hematologic malignancies, although genome-wide, is limited because of altered cell kinetics (mitotic rate), a propensity of leukemic blasts to undergo apoptosis in culture, overgrowth by normal cells, and chromosomes of poor quality in the abnormal clone. Array comparative genomic hybridization (acgh—“microarray”) has a greatly increased genomic resolution over classical cytogenetics. Cytogenetic microarray, which uses genomic dna, is a powerful tool in the analysis of unbalanced chromosome rearrangements, such as copy number gains and losses, and it is the method of choice when the mitotic index is low and the quality of metaphases is suboptimal. The copy number profile obtained by microarray is often called a “molecular karyotype.” In the present study, microarray was applied to 9 retrospective cases of pediatric all either with initial high-risk features or with at least 1 relapse. The conventional karyotype was compared to the “molecular karyotype” to assess abnormalities as interpreted by classical cytogenetics. Not only were previously undetected chromosome losses and gains identified by microarray, but several karyotypes interpreted by classical cytogenetics were shown to be discordant with the microarray results. The

  4. A new analysis of radiation-induced cytogenetic damage in human lymphocytes using the PCC technique, and its implications for biological dosimetry and the understanding of cell-cycle-dependent radiosensitivity fluctuations

    International Nuclear Information System (INIS)

    Zannos, A.; Pantelias, G.E.

    1993-01-01

    The objectives of the project are: to develop a sensitive biological dosemeter, based on the analysis of C-banded peripheral blood lymphocyte prematurely condensed chromosomes (PCCs), for the early assessment of radiation injury and the establishment of absorbed dose estimates in accidental overexposures; and to elucidate the mechanisms of radiation action at the molecular, chromosomal and cellular levels by the study of the effects of DNA repair inhibitors on the repair of radiation damage, effects of BrdUrd incorporation on radiation damage, effects of hyperthermia on the induction and repair of radiation-induced damage, and induction and repair of radiation damage in an X-ray sensitive CHO mutant cell line. (authors) 16 refs., 1 fig

  5. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  6. Radiation up-regulated the expression of VEGF in a canine oral melanoma cell line

    International Nuclear Information System (INIS)

    Flickinger, I.; Rütgen, B.C.; Gerner, W.; Tichy, A.; Saalmüller, A.; Kleiter, M.; Calice, I.

    2013-01-01

    To evaluate radiosensitivity and the effects of radiation on the expression of vascular endothelial growth factor (VEGF) and VEGF receptors in the canine oral melanoma cell line, TLM 1, cells were irradiated with doses of 0, 2, 4, 6, 8 and 10 Gray (Gy). Survival rates were then determined by a MTT assay, while vascular endothelial growth factor receptor (VEGFR)-1 and -2 expression was measured by flow cytometry and apoptotic cell death rates were investigated using an Annexin assay. Additionally, a commercially available canine VEGF ELISA kit was used to measure VEGF. Radiosensitivity was detected in TLM 1 cells, and mitotic and apoptotic cell death was found to occur in a radiation dose dependent manner. VEGF was secreted constitutively and significant up-regulation was observed in the 8 and 10 Gy irradiated cells. In addition, a minor portion of TLM 1 cells expressed vascular endothelial growth factor receptor (VEGFR)-1 intracellularly. VEGFR-2 was detected in the cytoplasm and was down-regulated following radiation with increasing dosages. In TLM 1 cells, apoptosis plays an important role in radiation induced cell death. It has also been suggested that the significantly higher VEGF production in the 8 and 10 Gy group could lead to tumour resistance. (author)

  7. Current state and trend of radiation regulation system in Japan

    International Nuclear Information System (INIS)

    Yonehara, Hidenori

    2004-01-01

    Japanese regulation system for safety against radiation essentially started from 'Atomic Energy Basic Law' enacted in 1955 and 'Law Concerning Prevention of Radiation Hazards due to Radioisotopes, etc' enacted in 1957, has been regarded as a central rule for radiation protection and safety. Related laws and regulations have been enacted together with their revision. Radiation Council, established in the Science and Technology Agency in 1962 and now belonging to the Ministry of Education, Culture, Sports, Science and Technology, has deliberated basically on International Commission of Radiological Protection (ICRP) statements for legal revision and has set up working groups for current problems. Activities of the groups have concerned ICRP Publication 60 (1990) and later related publications for incorporating the principle into laws as to concepts of dose limits, effective dose, and then of exemption and exclusion. International status of the Japanese regulation, problems and tasks in the regulation are also commented. (N.I.)

  8. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    International Nuclear Information System (INIS)

    Inouye, Minoru; Yamamura, Hideki; Nakano, Atsuhiro.

    1995-01-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 μmol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 μg/g at the time of irradiation and remaining at more than 40 μg/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author)

  9. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum.

    Science.gov (United States)

    Inouye, M; Yamamura, H; Nakano, A

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 mumol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 micrograms/g at the time of irradiation and remaining at more than 40 micrograms/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositidemediated signaling systems regulate radiation-induced apoptosis.

  10. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru; Yamamura, Hideki [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine; Nakano, Atsuhiro

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 {mu}mol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 {mu}g/g at the time of irradiation and remaining at more than 40 {mu}g/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author).

  11. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  12. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  13. Protection against radiation-induced performance decrement in mice

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Pant, Kanchan; Goel, H.C.; Jain, Viney

    1997-01-01

    Recognizing that there is lack of information on the effects of low-level ionizing radiations and the modifying role of radioprotectors, an attempt has been made in this study to explore the relationship between impairment of spatial learning and low level of radiation exposure. A radial arm maze was utilised to evaluate radiation-induced behavioural alterations and performance decrement in mice. Immediately after whole body exposure to gamma radiation (absorbed dose, 1 Gy) significant perturbations in the learned behaviour of the animals were observed. The regular control movement became irregular and the food consumption time was reduced appreciably (40%). Recovery took place in four days. If diltiazem (7 mg/kg b.w.), a Ca 2+ channel blocker and a radioprotector, was administered i.p. 20-30 min prior to irradiation, radiation-induced behavioural abnormalities were reduced. Mechanisms underlying protection by diltiazem against radiation-induced performance decrement observed in the present study need to be investigated. (author). 23 refs., 2 figs

  14. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  15. Impact of the track structure of heavy charged particles on cytogenetic damage in human blood lymphocytes

    Science.gov (United States)

    Lee, Ryonfa; Nasonova, Elena; Sommer, Sylwetster; Hartel, Carola; Durante, Marco; Ritter, Sylvia

    In space, astronauts are unavoidably exposed to charged particles from protons to irons. For a better estimate of the health risks of astronauts, further knowledge on the biological effects of charged particles, in particular the induction of cytogenetic damage is required. One im-portant factor that determines the biological response is the track structure of particles, i.e. their microscopic dose deposition in cells. The aim of the present study was to assess the influence of track structure of heavy ions on the yield and the quality of cytogenetic damage in human peripheral blood lymphocytes representing normal tissue. Cells were irradiated with 9.5 MeV/u C-ions or 990 MeV/u Fe-ions which have a comparable LET (175 keV/µm and 155 keV/µm, respectively) but a different track radius (2.3 and 6200 µm, respectively). When aberrations were analyzed in first cycle metaphases collected at different post-irradiation times (48-84 h) following fluorescence plus Giemsa staining, an increase in the aberration yield with sampling time was observed for both radiation qualities reflecting a damage dependent cell cycle progression delay to mitosis. The pronounced differences in the aberration frequency per cell are attributable to the stochastic distribution of particle traversals per cell nucleus (radius: 2.8 µm). Following C-ion exposure we found a high fraction of non-aberrant cells in samples collected at 48 h which represent cells not directly hit by a particle and slightly damaged cells that successfully repaired the induced lesions. In addition, at higher C-ion fluences the aberra-tion yield saturated, suggesting that a fraction of lymphocytes receiving multiple particle hits is not able to reach mitosis. On the other hand, at 48 h after Fe-ion exposure the proportion of non-aberrant cells is lower than after C-ion irradiation clearly reflecting the track structure of high energy particles (i.e. more homogeneous dose deposition compared to low energy C

  16. A new body for the regulation of radiation usage in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Lokan, K.H. [Australian Radiation Laboratory, Yallambie, VIC, (Australia)

    1997-12-31

    The Australian government announced recently that it will establish an Australian Radiation and Nuclear Safety Agency ( ARPANSA ) by merging the activities of the Australian Radiation Laboratory and the Nuclear Safety Bureau and providing for the regulation of the Commonwealth`s own activities in the use of radiation and in nuclear activities. The new body will provide the nation with advice on all matters concerned with the safety of radiation and nuclear activities and will promote the development of uniform national regulatory approaches in which Commonwealth and the States and Territories would operate the control of radiation-related activities. To achieve this purpose, the new regulatory regime should aims to establish: a system of licensing of persons and organisations to possess, use, or sell sources of radiation; a system of registration of radiation and premises where radiation sources may be used; regulations which require compliance by those possessing, using or selling radiation sources; and exemptions from regulations and enforcement procedures where the hazard is so small as to be negligible.

  17. A new body for the regulation of radiation usage in Australia

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1997-01-01

    The Australian government announced recently that it will establish an Australian Radiation and Nuclear Safety Agency ( ARPANSA ) by merging the activities of the Australian Radiation Laboratory and the Nuclear Safety Bureau and providing for the regulation of the Commonwealth's own activities in the use of radiation and in nuclear activities. The new body will provide the nation with advice on all matters concerned with the safety of radiation and nuclear activities and will promote the development of uniform national regulatory approaches in which Commonwealth and the States and Territories would operate the control of radiation-related activities. To achieve this purpose, the new regulatory regime should aims to establish: a system of licensing of persons and organisations to possess, use, or sell sources of radiation; a system of registration of radiation and premises where radiation sources may be used; regulations which require compliance by those possessing, using or selling radiation sources; and exemptions from regulations and enforcement procedures where the hazard is so small as to be negligible

  18. Studies on chromosome aberrations in workers occupationally exposed to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyung; Oh, Hyeon Joo; Shim, Sun Bo; Roh, Hye Won; Lee, Hai Yong [Korea Food and Drug Administration, Seoul (Korea, Republic of); Kang, Soon Ja [Ewha Womens Univ., Seoul (Korea, Republic of)

    1998-06-01

    Cytogenetic assays for unstable chromosomes were performed on 54 medical radiation workers who are occupationally exposed to radiation and 42 controls. A total of 15,577 metaphase cells were scored. The frequencies of dicentrics and acentric chromosomes on controls were 0.52*10{sup -3} and 0.82*10{sup -2}, respectively. On radiation workers those were 2.28*10{sup -3} and 1.34*10{sup -2}, respectively. Though the frequencies of all types of chromosome aberrations in the workers were higher than those in the controls, the only significant difference was found in the case of dicentrics (P < 0.01). When we considered exposure dose of recent one year, duration of employment and smoking habit in radiation worker, a slight increase was shown in frequency of unstable chromosome aberrations on these workers, but no statistical differences were observed (P > 0.05) except exposure dose of recent one year (P < 0.05). These results could indicate that low level exposure to ionizing radiation can induce unstable chromosome aberrations in blood lymphocytes.

  19. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks

    International Nuclear Information System (INIS)

    Turney, Benjamin W.; Kerr, Martin; Chitnis, Meenali M.; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S.; Brewster, Simon F.; Macaulay, Valentine M.

    2012-01-01

    Background and purpose: IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. Methods: We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. Results: We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30–40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. Conclusions: These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments.

  20. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks.

    Science.gov (United States)

    Turney, Benjamin W; Kerr, Martin; Chitnis, Meenali M; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S; Brewster, Simon F; Macaulay, Valentine M

    2012-06-01

    IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30-40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  2. New cytogenetically visible copy number variant in region 8q21.2

    Directory of Open Access Journals (Sweden)

    Ewers Elisabeth

    2011-01-01

    Full Text Available Abstract Background Cytogenetically visible unbalanced chromosomal abnormalities (UBCA, reported for >50 euchromatic regions of almost all human autosomes, are comprised of a few megabases of DNA, and carriers are in many cases clinically healthy. It may be speculated, that some of the UBCA may be similar or identical to copy number variants (CNV of the human genome. Results Here we report on a yet unreported cytogenetically visible copy number variant (CNV in the long arm of chromosome 8, region 8q21.2, detected in three unrelated clinically healthy carriers. Conclusion The first description of a cytogenetically visible CNV/UBCA in 8q21.2 shows that banding cytogenetics is far from being outdated. It is a cost efficient, up-to-date method for a single cell specific overview on the whole genome, still prepared to deliver unexpected findings.

  3. Cytogenetic abnormalities in Tunisian women with premature ovarian failure.

    Science.gov (United States)

    Ayed, Wiem; Amouri, Ahlem; Hammami, Wajih; Kilani, Olfa; Turki, Zinet; Harzallah, Fatma; Bouayed-Abdelmoula, Nouha; Chemkhi, Imen; Zhioua, Fethi; Slama, Claude Ben

    2014-12-01

    To identify the distribution of chromosome abnormalities among Tunisian women with premature ovarian failure (POF) referred to the department of Cytogenetic at the Pasteur Institute of Tunis (Tunisia), standard cytogenetic analysis was carried out in a total of 100 women younger than 40 affected with premature ovarian failure. We identified 18 chromosomal abnormalities, including seven X-numerical anomalies in mosaic and non-mosaic state (45,X; 47,XXX), four sex reversal, three X-structural abnormalities (terminal deletion and isochromosomes), one autosomal translocation and one supernumerary marker. The overall prevalence of chromosomal abnormalities was 18% in our cohort. X chromosome aneuploidy was the most frequent aberration. This finding confirms the essential role of X chromosome in ovarian function and underlies the importance of cytogenetic investigations in the routine management of POF. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  4. Prenatal cytogenetic diagnosis after transabdominal chorionic villus sampling in the first trimester

    DEFF Research Database (Denmark)

    Therkelsen, A J; Jensen, P K; Hertz, Jens Michael

    1988-01-01

    First trimester prenatal cytogenetic diagnosis was attempted in 350 pregnancies after transabdominal chorionic villus sampling. The cytogenetic investigation was performed using both a short-term method (24 h incubation) and cell culture. Adequate samples were obtained in 99.1 per cent and in all...... of 181 cases where the 24 h incubation revealed a male karyotype. Studies of culture morphology showed that colonies of convoluted cells may serve as a marker for contamination with maternal cells in culture. For the present, we recommend using a short-term method as well as cell culture for cytogenetic...

  5. Federal interagency radiation policy coordination

    International Nuclear Information System (INIS)

    Young, A.L.

    1984-01-01

    The author discusses Federal interagency radiation policy coordination. The Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) is explained as being dedicated to the success and forward motion of enhanced radiation research and policy coordination. Both CIRRPC and the Science Panel are staffed with Federal employees. Their expertise includes many and various radiation disciplines including cytogenetics, dosimetry, epidemiology, genetics, health physics, nuclear medicine, radiology, radiation carcinogenesis, and risk assessment. Ten scientific and technical issues in their preliminary order are presented: radioepidemiological tables; de minimis radiation levels; radon progeny health effects; occupational exposure registry; measurement, recording, and control of radiation; food irradiation; use of radiation in science, industry, and medicine; nonionizing radiation; and remedial actions

  6. Experimental study of the protective effects of Zhongfei decoction on radiation-induced pneumonia in rats

    International Nuclear Information System (INIS)

    Wang Yuezhen; Ma Shenglin; Zhang Aiqin; Feng Jianguo; Fang Xianhua; Sun Xiaojiang; Bao Yejiang

    2007-01-01

    Objective: To investigate the protective effect and its possible mechanism of ZhongFei Decoction on radiation-induced pneumonia in rats. Methods: Single irradiation was given at two thorax of female Wistar rats with 30 Gy of 6 MV X irradiation. Sixty rats were randomly divided into the control group, radiation group, radiation plus DXM and ZhongFei Decoction plus radiation group. On days 14 and 28 after treatment, 5 rats of each group were sacrificed, and their lungs were harvested for measurement of the lung index, the difference of the histopathology change, the concentration of hydroxyproline (hyp), and expression of transforming growth factor-β1 in lungs were analyzed by HE stain, biochemical method and immunohistochemical method, respectively. Results: The pathological study showed marked lung injury in the radiation group while only slight hyperemia hemorrhage, exudation and thickness of alveolar walls in the lungs of ZhongFei Decoction plus radiation group, the concentration of hydroxyproline and expression of TGF-β1 in the radiation lungs increased compared with that in the control group and reduced in the ZhongFei Decoction plus radiation group compared with that in the radiation group. Conclusions: ZhongFei Decoction could have protective effects on the radiation-induced pneumonia and the mechanism of its may be related with down-regulating the expression of TGF-β1 in the irritated lung tissue. (authors)

  7. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  8. Conventional radiation-biological dosimetry using frequencies of unstable chromosome aberrations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.

    1998-01-01

    Frequency of chromosome aberrations detected by conventional cytogenetics is a very useful parameter in biological radiodosimetry. It can be used for estimating absorbed doses in individuals working with radioactive sources and individuals accidentally exposed to radiation. In the first case subjects wear physical dosimeters as a routine safety habit. The laboratory at the Institute of Radioprotection and Dosimetry (IRD, Brazil) has been using conventional cytogenetic analysis to complement data obtained by physical dosimetry since 1983. Until now, more than one hundred cases were investigated where individual physical dosimeters detected occupational exposure (above the safety limits allowed). In total, only 34% of these cases were confirmed by conventional cytogenetic dosimetry. Also, conventional cytogenetic analysis following the radiation accident of Goiania (Brazil) in 1987 have been used. Peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequencies of unstable chromosomal aberrations (dicentrics, centric rings and acentrics fragments) to estimate absorbed radiation doses. During the emergency period, doses were estimated to help immediate medical treatment using in vitro calibration curves produced before the accident. Later on, doses were assessed once more using new in vitro calibration curves. A drawback of this technique is that unstable aberrations are lost after exposure. To investigate the mean lifespan of lymphocytes containing dicentric and ring aberrations, we have followed 15 victims of the Goiania accident over all these years. Results suggest that the disappearance of unstable aberrations is dose-dependent. This could explain the variation in the results found among studies in this field

  9. Conventional radiation-biological dosimetry using frequencies of unstable chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S. [Institute of Radioprotection and Dosimetry (IRD), National Commission of Nuclear Energy (CNEN), Av. Salvador Allende, Cx. P. 37750, Rio de Janeiro 22.780-160 (Brazil)

    1998-08-03

    Frequency of chromosome aberrations detected by conventional cytogenetics is a very useful parameter in biological radiodosimetry. It can be used for estimating absorbed doses in individuals working with radioactive sources and individuals accidentally exposed to radiation. In the first case subjects wear physical dosimeters as a routine safety habit. The laboratory at the Institute of Radioprotection and Dosimetry (IRD, Brazil) has been using conventional cytogenetic analysis to complement data obtained by physical dosimetry since 1983. Until now, more than one hundred cases were investigated where individual physical dosimeters detected occupational exposure (above the safety limits allowed). In total, only 34% of these cases were confirmed by conventional cytogenetic dosimetry. Also, conventional cytogenetic analysis following the radiation accident of Goiania (Brazil) in 1987 have been used. Peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequencies of unstable chromosomal aberrations (dicentrics, centric rings and acentrics fragments) to estimate absorbed radiation doses. During the emergency period, doses were estimated to help immediate medical treatment using in vitro calibration curves produced before the accident. Later on, doses were assessed once more using new in vitro calibration curves. A drawback of this technique is that unstable aberrations are lost after exposure. To investigate the mean lifespan of lymphocytes containing dicentric and ring aberrations, we have followed 15 victims of the Goiania accident over all these years. Results suggest that the disappearance of unstable aberrations is dose-dependent. This could explain the variation in the results found among studies in this field

  10. Radiation induced changes in the airway - anaesthetic implications ...

    African Journals Online (AJOL)

    Radiation induced changes in the airway - anaesthetic implications: case report. Mallika Balakrishnan, Renju Kuriakose, Rachel Cherian Koshy. Abstract. Radiation induces a variety of changes in the airway that can potentially lead to difficult intubation. Osteoradionecrosis (ORN) of the mandible, a severe consequence of ...

  11. MOLECULAR CYTOGENETICS OF LYMPHOMA. WHERE DO WE STAND IN 2010?

    OpenAIRE

    2011-01-01

    Abstract Since approximately 20 years most malignant lymphomas are classified by the recognition of clinico-pathologic entities, each with its own combination of clinical, morphologic, immunophenotypic and molecular genetic characteristics. Obviously, in many instances molecular cytogenetics is of great help for classification and in some lymphomas it is even a prerequisite. Molecular cytogenetic alterations can be detected by a large variety of techniques, ranging from conventiona...

  12. Poor outcome in radiation-induced constrictive pericarditis

    International Nuclear Information System (INIS)

    Karram, T.; Rinkevitch, D.; Markiewicz, W.

    1993-01-01

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 ± 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage

  13. Poor outcome in radiation-induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Karram, T.; Rinkevitch, D.; Markiewicz, W. (Technion Medical School, Haifa (Israel))

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  14. Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jinsil; Oh, Hae Jin; Kim, Jiyoung; An, Jeung Hee; Kim, Wonwoo [Dept. of Radiation Oncology, Yonsei Univ. Medical College, Seoul (Korea, Republic of)

    2007-09-15

    In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and >80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1{+-}0.6% in OCa-I and 0.2{+-}0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity. (author)

  15. Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53

    International Nuclear Information System (INIS)

    Seong, Jinsil; Oh, Hae Jin; Kim, Jiyoung; An, Jeung Hee; Kim, Wonwoo

    2007-01-01

    In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and >80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1±0.6% in OCa-I and 0.2±0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity. (author)

  16. The Improvement Plan on Unifying from Law and Regulations Related to Radiation

    International Nuclear Information System (INIS)

    Jeong, Dong Kyong; Lee, Jong Back; Park, Myung Hwan

    2006-01-01

    This is for the purpose to help the bill related to technologists be systematic and unitary by carefully analyzing a legislation, an enforcement ordinance, and enforcement regulations in the connection with the radiological worker and the radiation workers from the law and regulations related to technologists. Concerning technologists, a legislation, an enforcement ordinance, and enforcement regulations for a sort of medical technician, regarding the radiological worker, the rules of diagnosis radiation equipment safety management, and concerning the radiation workers, atomic energy law, an enforcement ordinance and enforcement regulations were gathered, compared with one another, and analyzed. Among technologists, in the case of working in the department of diagnosis radiation, the title 'Radiological Worker' is used by the Medical Service Law, and in the case of working in the department of radiation tumors or the one of nucleus medicine, the title 'Radiation Workers' is used by the Atomic Energy Law. Besides the technical term that is used by characteristic tasks, unification of the terms that can be used in common is necessary for sure. And when a legislation, an enforcement ordinance, enforcement regulations, and notification, things like that in the radiation field are amended, certainly they should be done by mutual agreement through negotiation between the organization related to radiation and the governmental organization.

  17. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  18. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes