WorldWideScience

Sample records for regulate multiple platelet

  1. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Eckly, Anita; Elvers, Margitta;

    2010-01-01

    formation and exocytosis in various cell types, but its exact function in platelets is not established. Here, we show that the megakaryocyte/platelet-specific loss of Cdc42 leads to mild thrombocytopenia and a small increase in platelet size in mice. Unexpectedly, Cdc42-deficient platelets were able to form...... reduced, suggesting increased clearing of the cells under physiologic conditions. These data point to novel multiple functions of Cdc42 in the regulation of platelet activation, granule organization, degranulation, and a specific role in GPIb signaling....

  2. Evidence of platelet activation in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Alexander J Steven

    2008-06-01

    Full Text Available Abstract Objective A fatality in one multiple sclerosis (MS patient due to acute idiopathic thrombocytopenic purpura (ITP and a near fatality in another stimulated our interest in platelet function abnormalities in MS. Previously, we presented evidence of platelet activation in a small cohort of treatment-naive MS patients. Methods In this report, 92 normal controls and 33 stable, untreated MS patients were studied. Platelet counts, measures of platelet activation [plasma platelet microparticles (PMP, P-selectin expression (CD62p, circulating platelet microaggragtes (PAg], as well as platelet-associated IgG/IgM, were carried out. In addition, plasma protein S activity was measured. Results Compared to controls, PMP were significantly elevated in MS (p Conclusion Platelets are significantly activated in MS patients. The mechanisms underlying this activation and its significance to MS are unknown. Additional study of platelet activation and function in MS patients is warranted.

  3. The Role of Inflammation in Regulating Platelet Production and Function: Toll-like Receptors in Platelets and Megakaryocytes

    OpenAIRE

    Beaulieu, Lea M.; Freedman, Jane E.

    2009-01-01

    Platelets have been extensively studied as hemostatic regulators, stopping uncontrolled flow of blood from an injured vessel and allowing for repair. However, multiple studies have shown that platelets can interact with bacterial proteins, particularly seen during sepsis and inflammation. Immune cells recognize pathogens through Toll-like Receptors (TLRs). These same receptors allow platelets to recognize bacterial proteins and regulate platelet immunity and function. This review examines the...

  4. Regulation of the genetic code in megakaryocytes and platelets.

    Science.gov (United States)

    Rondina, M T; Weyrich, A S

    2015-06-01

    Platelets are generated from nucleated precursors referred to as megakaryocytes. The formation of platelets is one of the most elegant and unique developmental processes in eukaryotes. Because they enter the circulation without nuclei, platelets are often considered simple, non-complex cells that have limited functions beyond halting blood flow. However, emerging evidence over the past decade demonstrates that platelets are more sophisticated than previously considered. Platelets carry a rich repertoire of messenger RNAs (mRNAs), microRNAs (miRNAs), and proteins that contribute to primary (adhesion, aggregation, secretion) and alternative (immune regulation, RNA transfer, translation) functions. It is also becoming increasingly clear that the 'genetic code' of platelets changes with race, genetic disorders, or disease. Changes in the 'genetic code' can occur at multiple points including megakaryocyte development, platelet formation, or in circulating platelets. This review focuses on regulation of the 'genetic code' in megakaryocytes and platelets and its potential contribution to health and disease. © 2015 International Society on Thrombosis and Haemostasis.

  5. Thrombopoietin the primary regulator of platelet production.

    Science.gov (United States)

    Kaushansky, K

    1997-03-01

    Although the term thrombopoietin was first used nearly 40 years ago to describe the humoral regulator of platelet production, doubts surrounding its existence remained until the molecule was cloned 3 years ago. Using the recombinant protein, several investigators have shown that thrombopoietin influences all aspects of megakaryocyte development, from the hematopoietic stem cell to the mature platelet. The present review focuses on the discovery and characterization of this hormone, the initial stages of its clinical development, and some important yet unanswered questions of its molecular and cellular physiology. (Trends Endocrinol Metab 1997;8:45-50). (c) 1997, Elsevier Science Inc.

  6. Evaluation of platelet function using multiple electrode platelet aggregometry in dogs with septic peritonitis.

    Science.gov (United States)

    Li, Ronald H L; Chan, Daniel L

    2016-09-01

    To assess platelet function via multiple electrode platelet aggregometry (MEPA) in dogs with septic peritonitis and in healthy dogs. The secondary aim was to determine if there is prognostic significance to changes in platelet function observed in septic dogs. Prospective, observational cohort study conducted from January 2012 to March 2014. University teaching hospital. Twenty dogs with septic peritonitis and 23 healthy dogs. None. MEPA using arachidonic acid, adenosine diphosphate, and collagen (COL) as agonists was measured within 24 hours of diagnosis of sepsis. Compared to healthy dogs, platelet aggregation was reduced in dogs with septic peritonitis for all agonists (P peritonitis. Circulating platelets from dogs with septic peritonitis have diminished aggregation in response to multiple platelet agonists. MEPA may serve as an assessment tool for illness severity in this patient population. © Veterinary Emergency and Critical Care Society 2016.

  7. Reference intervals for platelet aggregation assessed by multiple electrode platelet aggregometry

    DEFF Research Database (Denmark)

    Rubak, Peter; Villadsen, Kirsten; Hvas, Anne-Mette

    2012-01-01

    Abstract Introduction Analyses of platelet aggregation in hirudin whole blood using Multiplate® was validated. Reference intervals for the most commonly used agonists were established, and the association between platelet aggregation, age, gender and haematological values was analysed. Material...... and methods We included 121 healthy individuals to establish reference intervals and six healthy individuals for evaluation of the day-to-day variation. Platelet aggregation was evaluated on hirudin whole blood employing Multiplate® induced by arachidonic acid, ADP, collagen and ristocetin (RISTOlow...... reference interval is presented as 95% confidence interval suitable for any age and both sex. Day-to-day variation was

  8. The functional role of platelets in the regulation of angiogenesis.

    Science.gov (United States)

    Walsh, Tony G; Metharom, Pat; Berndt, Michael C

    2015-01-01

    Functionally, platelets are primarily recognized as key regulators of thrombosis and hemostasis. Upon vessel injury, the typically quiescent platelet interacts with subendothelial matrix to regulate platelet adhesion, activation and aggregation, with subsequent induction of the coagulation cascade forming a thrombus. Recently, however, newly described roles for platelets in the regulation of angiogenesis have emerged. Platelets possess an armory of pro- and anti-angiogenic proteins, which are actively sequestered and highly organized in α-granule populations. Platelet activation facilitates their release, eliciting potent angiogenic responses through mechanisms that appear to be tightly regulated. In conjunction, the release of platelet-derived phospholipids and microparticles has also earned merit as synergistic regulators of angiogenesis. Consequently, platelets have been functionally implicated in a range of angiogenesis-dependent processes, including physiological roles in wound healing, vascular development and blood/lymphatic vessel separation, whilst facilitating aberrant angiogenesis in a range of diseases including cancer, atherosclerosis and diabetic retinopathy. Whilst the underlying mechanisms are only starting to be elucidated, significant insights have been established, suggesting that platelets represent a promising therapeutic strategy in diseases requiring angiogenic modulation. Moreover, anti-platelet therapies targeting thrombotic complications also exert protective effects in disorders characterized by persistent angiogenesis.

  9. Platelet regulating properties of insulin revisited

    NARCIS (Netherlands)

    Andrade Ferreira, I. (Irlando)

    2005-01-01

    Disturbances in platelet responsiveness in diabetes mellitus (DM) lead to platelet-dependent complications in the vasculature. Our studies showed that insulin inhibits platelet activation by inhibiting ADP- and thrombin-induced Ca2+ levels. Ca2+ is under control of cAMP that is a potent endogenous p

  10. Unaltered Angiogenesis-Regulating Activities of Platelets in Mild Type 2 Diabetes Mellitus despite a Marked Platelet Hyperreactivity

    Science.gov (United States)

    Miao, Xinyan; Zhang, Wei; Huang, Zhangsen

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with platelet dysfunction and impaired angiogenesis. Aim of the study is to investigate if platelet dysfunction might hamper platelet angiogenic activities in T2DM patients. Sixteen T2DM patients and gender/age-matched non-diabetic controls were studied. Flow cytometry and endothelial colony forming cell (ECFC) tube formation on matrigel were used to assess platelet reactivity and angiogenic activity, respectively. Thrombin receptor PAR1-activating peptide (PAR1-AP) induced higher platelet P-selectin expression, and evoked more rapid and intense platelet annexin V binding in T2DM patients, seen as a more rapid increase of annexin V+ platelets (24.3±6.4% vs 12.6±3.8% in control at 2 min) and a higher elevation (30.9±5.1% vs 24.3±3.0% at 8 min). However, PAR1-AP and PAR4-AP induced similar releases of angiogenic regulators from platelets, and both stimuli evoked platelet release of platelet angiogenic regulators to similar extents in T2DM and control subjects. Thus, PAR1-stimulated platelet releasate (PAR1-PR) and PAR4-PR similarly enhanced capillary-like network/tube formation of ECFCs, and the enhancements did not differ between T2DM and control subjects. Direct supplementation of platelets to ECFCs at the ratio of 1:200 enhanced ECFC tube formation even more markedly, leading to approximately 100% increases of the total branch points of ECFC tube formation, for which the enhancements were also similar between patients and controls. In conclusion, platelets from T2DM subjects are hyperreactive. Platelet activation induced by high doses of PAR1-AP, however, results in similar releases of angiogenic regulators in mild T2DM and control subjects. Platelets from T2DM and control subjects also demonstrate similar enhancements on ECFC angiogenic activities. PMID:27612088

  11. The Influence of Low Platelet Count on Whole Blood Aggregometry Assessed by Multiplate

    DEFF Research Database (Denmark)

    Stissing, Trine; Dridi, Nadia P; Ostrowski, Sisse R;

    2011-01-01

    The Multiplate, a whole blood (WB) platelet function test, has shown promising results identifying patients on antiplatelet therapy at increased risk of rethrombosis. In the present study, the influence of low platelet count on platelet aggregation was analyzed and compared with aggregation results...... in an artificial matrix, platelet-rich plasma (PRP). Heparinized and citrated blood was diluted with autologous plasma to platelet concentrations 200 to 25 × 10(9)/L in WB samples (n = 10) and 200 to 100 × 10(9)/L in PRP samples (n = 7). The platelet aggregation was investigated by the ADP-, ASPI-, COL-, and TRAP...

  12. Platelets

    Science.gov (United States)

    ... tiny fraction of the blood volume. The principal function of platelets is to prevent bleeding. Red blood cells are ... forming a long string. This illustrates the basic function of platelets, to stick to any foreign surface and then ...

  13. Insights into Platelet Storage and the Need for Multiple Approaches.

    Science.gov (United States)

    Handigund, Mallikarjun; Cho, Yong Gon

    2015-01-01

    Upon accidental injury and the treatment of many diseases, patients may need a transfusion of blood components in order to achieve hemostasis. Platelets are small enucleated cells derived from bone marrow megakaryocytes that undergo change upon activation at sites of vascular injury and play a vital role in vascular repair and antimicrobial host defense, collectively contributing to hemostasis. They are the common blood components transfused whenever there is need, but supplies do not equal the demand as platelets are required in many medical and surgical procedures. In addition, surplus supplies of platelet concentrate are often discarded as they have a short shelf life. Currently, platelet concentrates are stored at room temperature for a maximum of 5 days from the date of collection; the temporal aspect is an added hurdle in the growing demand for platelet concentrates. Many investigations have been carried out in attempt to improve the quality and lengthen the shelf life of platelets, but the few that have succeeded are not commercially viable. Moreover, currently there is a declining trend in platelet research, quelling the hope of platelet storage improvement. Successful strategies would be a boon for medicine in particular and humanity in general. This review deals with past and current efforts toward improving the quality of platelet concentrates by reducing platelet storage lesions and increasing the viable storage period for platelets. Also presented are new perspectives based on past and current efforts, which should be investigated for platelet research in this decade.

  14. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    Science.gov (United States)

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis.

  15. Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation.

    Science.gov (United States)

    Rigg, Rachel A; Healy, Laura D; Nowak, Marie S; Mallet, Jérémy; Thierheimer, Marisa L D; Pang, Jiaqing; McCarty, Owen J T; Aslan, Joseph E

    2016-04-01

    Molecular chaperones that support protein quality control, including heat shock protein 70 (Hsp70), participate in diverse aspects of cellular and physiological function. Recent studies have reported roles for specific chaperone activities in blood platelets in maintaining hemostasis; however, the functions of Hsp70 in platelet physiology remain uninvestigated. Here we characterize roles for Hsp70 activity in platelet activation and function. In vitro biochemical, microscopy, flow cytometry, and aggregometry assays of platelet function, as well as ex vivo analyses of platelet aggregate formation in whole blood under shear, were carried out under Hsp70-inhibited conditions. Inhibition of platelet Hsp70 blocked platelet aggregation and granule secretion in response to collagen-related peptide (CRP), which engages the immunoreceptor tyrosine-based activation motif-bearing collagen receptor glycoprotein VI (GPVI)-Fc receptor-γ chain complex. Hsp70 inhibition also reduced platelet integrin-αIIbβ3 activation downstream of GPVI, as Hsp70-inhibited platelets showed reduced PAC-1 and fibrinogen binding. Ex vivo, pharmacological inhibition of Hsp70 in human whole blood prevented the formation of platelet aggregates on collagen under shear. Biochemical studies supported a role for Hsp70 in maintaining the assembly of the linker for activation of T cells signalosome, which couples GPVI-initiated signaling to integrin activation, secretion, and platelet function. Together, our results suggest that Hsp70 regulates platelet activation and function by supporting linker for activation of T cells-associated signaling events downstream of platelet GPVI engagement, suggesting a role for Hsp70 in the intracellular organization of signaling systems that mediate platelet secretion, "inside-out" activation of platelet integrin-αIIbβ3, platelet-platelet aggregation, and, ultimately, hemostatic plug and thrombus formation.

  16. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.

    Science.gov (United States)

    Yu, Changhui; Zhang, Songen; Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Thorlacius, Henrik

    2016-02-01

    Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis.

  17. Acquired platelet function defect

    Science.gov (United States)

    Acquired qualitative platelet disorders; Acquired disorders of platelet function ... blood clotting. Disorders that can cause problems in platelet function include: Idiopathic thrombocytopenic purpura Chronic myelogenous leukemia Multiple ...

  18. Regulation of fibrinogen receptor expression on human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Shattil, S.J.; Motulsky, H.J.; Insel, P.A.; Brass, L.F.

    1986-03-01

    Platelet aggregation requires the binding of fibrinogen to specific receptors on the plasma membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The authors have developed a monoclonal anti-IIb-IIIa antibody (PAC-1) that binds only to stimulated platelets and only in the presence of Ca. In order to better understand the steps leading to platelet aggregation, the authors used radiolabeled PAC-1 and fibrinogen to examine the effect of the ..cap alpha../sub 2/-adrenergic agonist, epinephrine, on the expression and function of the fibrinogen receptor. The addition of epinephrine to unstirred platelets caused and immediate increase in PAC-1 and fibrinogen binding that was associated with platelet aggregation once the platelets were stirred. Even after prolonged incubation of the platelets with epinephrine, fibrinogen receptor expression could be reversed by adding EGTA, PGl/sub 2/, or the ..cap alpha../sub 2/-adrenergic antagonist, phentolamine. When unstirred platelets were exposed to epinephrine for more than 10 min, the extent of aggregation caused by subsequent stirring was decreased by 70%. Surprisingly, these desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due to a decrease in fibrinogen receptor expression or function. These studies demonstrate that: (1) fibrinogen receptor expression is dependent on extracellular CA; (2) induction of the fibrinogen receptor by epinephrine requires the continued presence of the agonist; and (3) prolonged stimulation of the platelet by epinephrine can lead to a reduced aggregation response by a mechanism that does not involve a loss of either fibrinogen recepor expression or fibrinogen binding.

  19. Platelet senescence is regulated by an internal timer, not damage inflicted by hits.

    Science.gov (United States)

    Dowling, Mark R; Josefsson, Emma C; Henley, Katya J; Hodgkin, Philip D; Kile, Benjamin T

    2010-09-09

    The mechanisms responsible for the brief life span of blood platelets have been a subject of speculation since the 1950s. The most popular hypothesis to date has been the "multiple-hit" model, whereby damage inflicted by external "hits" triggers recognition and clearance by the reticuloendothelial system. Recently, it was demonstrated that platelets contain an apoptotic pathway that mediates their survival in vivo. Using a novel labeling technique to measure population and cohort survival in mice carrying mutations in this pathway, combined with mathematical modeling, we have studied the internal and external control of platelet fate. Our results cast doubt on the veracity of the multiple-hit model. An alternative model, under which platelets are born with an internal "timer," provides a more parsimonious interpretation of the data. Thus, at steady state, platelet senescence is probably the product of internal processes rather than external hits.

  20. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis.

    Science.gov (United States)

    Senis, Yotis A; Tomlinson, Michael G; Ellison, Stuart; Mazharian, Alexandra; Lim, Jenson; Zhao, Yan; Kornerup, Kristin N; Auger, Jocelyn M; Thomas, Steve G; Dhanjal, Tarvinder; Kalia, Neena; Zhu, Jing W; Weiss, Arthur; Watson, Steve P

    2009-05-14

    Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase-linked and G protein-coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein-coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug target.

  1. Rac1 regulates platelet shedding of CD40L in abdominal sepsis.

    Science.gov (United States)

    Hwaiz, Rundk; Rahman, Milladur; Zhang, Enming; Thorlacius, Henrik

    2014-09-01

    Matrix metalloproteinase-9 (MMP-9) regulates platelet shedding of CD40L in abdominal sepsis. However, the signaling mechanisms controlling sepsis-induced shedding of CD40L from activated platelets remain elusive. Rac1 has been reported to regulate diverse functions in platelets; we hypothesized herein that Rac1 might regulate platelet shedding of CD40L in sepsis. The specific Rac1 inhibitor NSC23766 (N6-[2-[[4-(diethylamino)-1-methylbutyl] amino]-6-methyl-4-pyrimidinyl]-2 methyl-4, 6-quinolinediamine trihydrochloride) was administered to mice undergoing cecal ligation and puncture (CLP). Levels of CD40L and MMP-9 in plasma, platelets, and neutrophils were determined by use of ELISA, western blot, and confocal microscopy. Platelet depletion abolished the CLP-induced increase in plasma levels of CD40L. Rac1 activity was significantly increased in platelets from septic animals. Administration of NSC23766 abolished the CLP-induced enhancement of soluble CD40L levels in the plasma. Moreover, Rac1 inhibition completely inhibited proteinase-activated receptor-4-induced surface mobilization and secretion of CD40L in isolated platelets. CLP significantly increased plasma levels of MMP-9 and Rac1 activity in neutrophils. Treatment with NSC23766 markedly attenuated MMP-9 levels in the plasma from septic mice. In addition, Rac1 inhibition abolished chemokine-induced secretion of MMP-9 from isolated neutrophils. Finally, platelet shedding of CD40L was significantly reduced in response to stimulation with supernatants from activated MMP-9-deficient neutrophils compared with supernatants from wild-type neutrophils, indicating a direct role of neutrophil-derived MMP-9 in regulating platelet shedding of CD40L. Our novel data suggest that sepsis-induced platelet shedding of CD40L is dependent on Rac1 signaling. Rac1 controls surface mobilization of CD40L on activated platelets and MMP-9 secretion from neutrophils. Thus, our findings indicate that targeting Rac1 signaling might be a

  2. The Small GTPase Rap1b: A Bidirectional Regulator of Platelet Adhesion Receptors

    Directory of Open Access Journals (Sweden)

    Gianni Francesco Guidetti

    2012-01-01

    Full Text Available Integrins and other families of cell adhesion receptors are responsible for platelet adhesion and aggregation, which are essential steps for physiological haemostasis, as well as for the development of thrombosis. The modulation of platelet adhesive properties is the result of a complex pattern of inside-out and outside-in signaling pathways, in which the members of the Rap family of small GTPases are bidirectionally involved. This paper focuses on the regulation of the main Rap GTPase expressed in circulating platelets, Rap1b, downstream of adhesion receptors, and summarizes the most recent achievements in the investigation of the function of this protein as regulator of platelet adhesion and thrombus formation.

  3. A critical role for the regulation of Syk from agglutination to aggregation in human platelets.

    Science.gov (United States)

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2014-01-10

    Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to

  4. PLATELET-LEUKOCYTE INTERACTIONS : MULTIPLE LINKS BETWEEN INFLAMMATION , BLOOD COAGULATION AND VASCULAR RISK

    Directory of Open Access Journals (Sweden)

    Chiara Cerletti

    2010-08-01

    Full Text Available The aim of this review is to summarize the contribution of platelets and leukocytes and their interactions in inflammation and blood coagulation and its possible relevance in the pathogenesis of  thrombosis. There is some evidence of an association between infection/inflammation and thrombosis. This is likely a bidirectional relationship. The presence of a thrombus may serve as a nidus of infection. Vascular injury indeed promotes platelet and leukocyte activation and thrombus formation and the thrombus and its components facilitate adherence of bacteria to the vessel wall. Alternatively, an infection and the associated inflammation can trigger platelet and leukocyte activation and thrombus formation. In either case platelets and leukocytes co-localize and interact in the area of vascular injury, at sites of inflammation and/or at sites of thrombosis. Following vascular injury, the subendothelial tissue, a thrombogenic surface, becomes available for interaction with these blood cells. Tissue factor, found not only in media and adventitia of the vascular wall, but also on activated platelets and leukocytes, triggers blood coagulation. Vascular-blood cell interactions, mediated by the release of preformed components of the endothelium, is modulated by both cell adhesion and production of soluble stimulatory or inhibitory molecules that alter cell function: adhesion molecules regulate cell-cell contact and facilitate the modulation of biochemical pathways relevant to inflammatory and/or thrombotic processes.

  5. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

    Directory of Open Access Journals (Sweden)

    Trevor P. Fidler

    2017-07-01

    Full Text Available Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT 1 and GLUT3 (double knockout [DKO] specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

  6. CEACAM1 regulates integrin αIIbβ3-mediated functions in platelets.

    Science.gov (United States)

    Yip, Jana; Alshahrani, Musaed; Beauchemin, Nicole; Jackson, Denise E

    2016-01-01

    Previous studies have implicated that the Ig-ITIM superfamily member, CEACAM1 may regulate integrin function. While CEACAM1 has been demonstrated to play a role as an inhibitory co-receptor of ITAM-associated GPVI/FcR γ-chain signaling pathways in platelets, its physiologic role in integrin αIIbβ3-mediated platelet function is unclear. In this study, we investigate the functional importance of Ceacam1 in murine platelets. We show that CEACAM1 is constitutively associated with integrin αIIbβ3 in resting human and mouse platelets as demonstrated by co-immunoprecipitation studies. Using Ceacam1-deficient mice, we show that they have prolonged tail bleeding times and volume of blood lost that is corrected by reconstitution with platelet Ceacam1. Ceacam1(-/-) platelets have moderate integrin αIIbβ3 mediated functional defects with impaired kinetics of platelet spreading on fibrinogen and failure to retract fibrin clots in vitro. This functional integrin αIIbβ3 defect could not be attributed to altered integrin αIIbβ3 expression. Ceacam1(-/-) platelets displayed normal "inside-out" signaling properties as demonstrated by normal agonist-induced binding of soluble (fluorescein isothiocyanate) FITC-fibrinogen, JON/A antibody binding, and increases in cytosolic free calcium levels. This study provides direct evidence that Ceacam1 is essential for normal integrin αIIbβ3-mediated platelet function and that disruption of mouse Ceacam1 induced moderate integrin αIIbβ3-mediated functional defects.

  7. Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo

    DEFF Research Database (Denmark)

    Grüner, Sabine; Prostredna, Miroslava; Schulte, Valerie

    2003-01-01

    and alphaIIbbeta3. These were identified to be alpha5beta1 and/or alpha6beta1 as alphaIIbbeta3 inhibition abrogated platelet adhesion in beta1-null mice. We conclude that shear-resistant platelet adhesion on the injured vessel wall in vivo is a highly integrated process involving multiple integrin......Damage to the integrity of the vessel wall results in exposure of the subendothelial extracellular matrix (ECM), which triggers integrin-dependent adhesion and aggregation of platelets. The role of platelet beta1 integrins in these processes remains mostly undefined. Here, we demonstrate...... integrin on platelets in wild-type mice blocked aggregate formation and reduced platelet adhesion by 60.0%. Strikingly, alphaIIbbeta3 inhibition had a comparable effect in alpha2-null mice, demonstrating that other receptors mediate shear-resistant adhesion in the absence of functional alpha2beta1...

  8. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    Science.gov (United States)

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  9. Intracellular matrix metalloproteinase-2 (MMP-2) regulates human platelet activation via hydrolysis of talin.

    Science.gov (United States)

    Soslau, Gerald; Mason, Christopher; Lynch, Stephen; Benjamin, James; Ashak, Dani; Prakash, Jamunabai M; Moore, Andrew; Bagsiyao, Pamela; Albert, Trevine; Mathew, Lynn M; Jost, Monika

    2014-01-01

    Matrix metalloproteinase (MMP) activity is generally associated with normal or pathological extracellular processes such as tissue remodelling in growth and development or in tumor metastasis and angiogenesis. Platelets contain at least three MMPs, 1, 2 and 9 that have been reported to stimulate or inhibit agonist-induced platelet aggregation via extracellular signals. The non-selective Zn+2 chelating MMP inhibitor, 1,10-phenanthroline, and the serine protease inhibitor, AEBSF, were found to inhibit all tested agonist-induced platelet aggregation reactions. In vitro analysis demonstrated that 1,10-phenanthroline completely inhibited MMP-1,2,and 9 but had little to no effect on calpain activity while the converse was true with AEBSF. We now demonstrate that MMP-2 functions intracellularly to regulate agonist-induced platelet aggregations via the hydrolytic activation of talin, the presumed final activating factor of glycoprotein (GP)IIb/IIIa integrin (the inside-out signal). Once activated GPIIb/IIIa binds the dimeric fibrinogen molecule required for platelet aggregation. The active intracellular MMP-2 molecule is complexed with JAK 2/STAT 3, as demonstrated by the fact that all three proteins are co-immunoprecipitated with either anti-JAK 2, or anti-STAT 3 antibodies and by immunofluorescence studies. The MMP-2 platelet activation pathway can be synergistically inhibited with the non-selective MMP inhibitor, 1,10-phenanthroline, plus a JAK 2 inhibitor. This activation pathway is distinct from the previously reported calpain-talin activating pathway. The identification of a new central pathway for platelet aggregation presents new potential targets for drug regulation and furthers our understanding of the complexity of platelet activation mechanisms.

  10. Multiple pathways regulate shoot branching

    Directory of Open Access Journals (Sweden)

    Catherine eRameau

    2015-01-01

    Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.

  11. A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma

    Science.gov (United States)

    Zhang, Peng; Zhang, Na; Deng, Yuefan; Bluestein, Danny

    2015-03-01

    We developed a multiple time-stepping (MTS) algorithm for multiscale modeling of the dynamics of platelets flowing in viscous blood plasma. This MTS algorithm improves considerably the computational efficiency without significant loss of accuracy. This study of the dynamic properties of flowing platelets employs a combination of the dissipative particle dynamics (DPD) and the coarse-grained molecular dynamics (CGMD) methods to describe the dynamic microstructures of deformable platelets in response to extracellular flow-induced stresses. The disparate spatial scales between the two methods are handled by a hybrid force field interface. However, the disparity in temporal scales between the DPD and CGMD that requires time stepping at microseconds and nanoseconds respectively, represents a computational challenge that may become prohibitive. Classical MTS algorithms manage to improve computing efficiency by multi-stepping within DPD or CGMD for up to one order of magnitude of scale differential. In order to handle 3-4 orders of magnitude disparity in the temporal scales between DPD and CGMD, we introduce a new MTS scheme hybridizing DPD and CGMD by utilizing four different time stepping sizes. We advance the fluid system at the largest time step, the fluid-platelet interface at a middle timestep size, and the nonbonded and bonded potentials of the platelet structural system at two smallest timestep sizes. Additionally, we introduce parameters to study the relationship of accuracy versus computational complexities. The numerical experiments demonstrated 3000x reduction in computing time over standard MTS methods for solving the multiscale model. This MTS algorithm establishes a computationally feasible approach for solving a particle-based system at multiple scales for performing efficient multiscale simulations.

  12. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released

    OpenAIRE

    Italiano, Joseph E.; Richardson, Jennifer L.; Patel-Hett, Sunita; Battinelli, Elisabeth; Zaslavsky, Alexander; Short, Sarah; Ryeom, Sandra; Folkman, Judah; Klement, Giannoula L.

    2008-01-01

    Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron micro...

  13. Multiple and Contemporary Coronary Thrombosis inspite of Low Platelet Function Response.

    Science.gov (United States)

    Stio, Rocco Edoardo; Calcagno, Simone; Lucisano, Luigi; Pennacchi, Mauro; Sardella, Gennaro

    2014-08-01

    We are reporting a clinical case of a 78-year-old male who had oppressive chest pain at rest, which regressed with the intake of sublingual nitrates. Coronary angiography showed a chronic total occlusion (CTO) of the left anterior descending (LAD) artery, a normal circumflex, a hypoplasic right coronary artery and a Cardiac Magnetic Resonance showing vital tissue in anterior wall. During the procedure of CTO-PCI on LAD, patient developed multiple and contemporary coronary thrombosis in spite of low platelet reactivity, which was assessed by using Multiplate. A manual thrombectomy was performed with a good final result only after drug eluting stents (DES) implantation.

  14. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels.

    Science.gov (United States)

    Ghosh, Somadri; Shukla, Dhananjay; Suman, Komjeti; Lakshmi, B Jyothi; Manorama, R; Kumar, Satish; Bhandari, Rashna

    2013-08-22

    Polyphosphate (polyP), a polymer of orthophosphate moieties released from the dense granules of activated platelets, is a procoagulant agent. Inositol pyrophosphates, another group of phosphate-rich molecules, consist of mono- and diphosphates substituted on an inositol ring. Diphosphoinositol pentakisphosphate (IP7), the most abundant inositol pyrophosphate, is synthesized on phosphorylation of inositol hexakisphosphate (IP6) by IP6 kinases, of which there are 3 mammalian isoforms (IP6K1/2/3) and a single yeast isoform. Yeast lacking IP6 kinase are devoid of polyP, suggesting a role for IP6 kinase in maintaining polyP levels. We theorized that the molecular link between IP6 kinase and polyP is conserved in mammals and investigated whether polyP-dependent platelet function is altered in IP6K1 knockout (Ip6k1(-/-)) mice. We observe a significant reduction in platelet polyP levels in Ip6k1(-/-) mice, along with slower platelet aggregation and lengthened plasma clotting time. Incorporation of polyP into fibrin clots was reduced in Ip6k1(-/-) mice, thereby altering clot ultrastructure, which was rescued on the addition of exogenous polyP. In vivo assays revealed longer tail bleeding time and resistance to thromboembolism in Ip6k1(-/-) mice. Taken together, our data suggest a novel role for IP6K1 in regulation of mammalian hemostasis via its control of platelet polyP levels.

  15. Down-regulation of stathmin expression is required for megakaryocyte maturation and platelet production.

    Science.gov (United States)

    Iancu-Rubin, Camelia; Gajzer, David; Tripodi, Joseph; Najfeld, Vesna; Gordon, Ronald E; Hoffman, Ronald; Atweh, George F

    2011-04-28

    The final stages of of megakaryocyte (MK) maturation involve a series of steps, including polyploidization and proplatelet formation. Although these processes are highly dependent on dynamic changes in the microtubule (MT) cytoskeleton, the mechanisms responsible for regulation of MTs in MKs remain poorly defined. Stathmin is a highly conserved MT-regulatory protein that has been suggested to play a role in MK differentiation of human leukemic cell lines. However, previous studies defining this relationship have reached contradictory conclusions. In this study, we addressed this controversy and investigated the role of stathmin in primary human MKs. To explore the importance of stathmin down-regulation during megakaryocytopoiesis, we used a lentiviral-mediated gene delivery system to prevent physiologic down-regulation of stathmin in primary MKs. We demonstrated that sustained expression of constitutively active stathmin delayed cytoplasmic maturation (ie, glycoprotein GPIb and platelet factor 4 expression) and reduced the ability of MKs to achieve high levels of ploidy. Moreover, platelet production was impaired in MKs in which down-regulation of stathmin expression was prevented. These studies indicate that suppression of stathmin is biologically important for MK maturation and platelet production and support the importance of MT regulation during the final stages of thrombopoiesis.

  16. Cyclophilin A is an important mediator of platelet function by regulating integrin αIIbβ3 bidirectional signalling.

    Science.gov (United States)

    Wang, Lian; Soe, Nwe Nwe; Sowden, Mark; Xu, Yingqian; Modjeski, Kristina; Baskaran, Padmamalini; Kim, Yeonghwan; Smolock, Elaine M; Morrell, Craig N; Berk, Bradford C

    2014-05-05

    Cyclophilin A (CyPA) is an important mediator in cardiovascular diseases. It possesses peptidyl-prolyl cis-trans isomerase activity (PPIase) and chaperone functions, which regulate protein folding, intracellular trafficking and reactive oxygen species (ROS) production. Platelet glycoprotein receptor αIIbβ3 integrin activation is the common pathway for platelet activation. It was our objective to understand the mechanism by which CyPA-regulates αIIbβ3 activation in platelets. Mice deficient for CyPA (CyPA-/-) had prolonged tail bleeding time compared to wild-type (WT) controls despite equivalent platelet numbers. In vitro studies revealed that CyPA-/- platelets exhibited dramatically decreased thrombin-induced platelet aggregation. In vivo, formation of occlusive thrombi following FeCl3 injury was also significantly impaired in CyPA-/- mice compared with WT-controls. Furthermore, CyPA deficiency inhibited flow-induced thrombus formation in vitro. Flow cytometry demonstrated that thrombin-induced ROS production and αIIbβ3 activation were reduced in CyPA-/- platelets. Coimmunoprecipitation studies showed ROS-dependent increased association of CyPA and αIIbβ3. This association was dependent upon the PPIase activity of CyPA. Significantly, fibrinogen-platelet binding, platelet spreading and cytoskeleton reorganisation were also altered in CyPA-/- platelets. Moreover, CyPA deficiency prevented thrombin-induced αIIbβ3 and cytoskeleton association. In conclusion, CyPA is an important mediator in platelet function by regulation of αIIbβ3 bidirectionalsignalling through increased ROS production and facilitating interaction between αIIbβ3 and the cell cytoskeleton.

  17. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    Science.gov (United States)

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS.

  18. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    LENUS (Irish Health Repository)

    Gegenbauer, Kristina

    2013-11-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.

  19. The Influence of Low Platelet Count on Whole Blood Aggregometry Assessed by Multiplate

    DEFF Research Database (Denmark)

    Stissing, Trine; Dridi, Nadia P; Ostrowski, Sisse R

    2011-01-01

    in an artificial matrix, platelet-rich plasma (PRP). Heparinized and citrated blood was diluted with autologous plasma to platelet concentrations 200 to 25 × 10(9)/L in WB samples (n = 10) and 200 to 100 × 10(9)/L in PRP samples (n = 7). The platelet aggregation was investigated by the ADP-, ASPI-, COL-, and TRAP...

  20. RhoA and Rac1 GTPases Differentially Regulate Agonist-Receptor Mediated Reactive Oxygen Species Generation in Platelets

    Science.gov (United States)

    Akbar, Huzoor; Duan, Xin; Saleem, Saima; Davis, Ashley K.; Zheng, Yi

    2016-01-01

    Agonist induced generation of reactive oxygen species (ROS) by NADPH oxidases (NOX) enhances platelet aggregation and hence the risk of thrombosis. RhoA and Rac1 GTPases are involved in ROS generation by NOX in a variety of cells, but their roles in platelet ROS production remain unclear. In this study we used platelets from RhoA and Rac1 conditional knockout mice as well as human platelets treated with Rhosin and NSC23767, rationally designed small molecule inhibitors of RhoA and Rac GTPases, respectively, to better define the contributions of RhoA and Rac1 signaling to ROS generation and platelet activation. Treatment of platelets with Rhosin inhibited: (a) U46619 induced activation of RhoA; (b) phosphorylation of p47phox, a critical component of NOX; (c) U46619 or thrombin induced ROS generation; (d) phosphorylation of myosin light chain (MLC); (e) platelet shape change; (f) platelet spreading on immobilized fibrinogen; and (g) release of P-selectin, secretion of ATP and aggregation. Conditional deletion of RhoA or Rac1 gene inhibited thrombin induced ROS generation in platelets. Addition of Y27632, a RhoA inhibitor, NSC23766 or Phox-I, an inhibitor of Rac1-p67phox interaction, to human platelets blocked thrombin induced ROS generation. These data suggest that: (a) RhoA/ROCK/p47phox signaling axis promotes ROS production that, at least in part, contributes to platelet activation in conjunction with or independent of the RhoA/ROCK mediated phosphorylation of MLC; and (b) RhoA and Rac1 differentially regulate ROS generation by inhibiting phosphorylation of p47phox and Rac1-p67phox interaction, respectively. PMID:27681226

  1. The catalytic subunit of protein phosphatase 1 gamma regulates thrombin-induced murine platelet alpha(IIbbeta(3 function.

    Directory of Open Access Journals (Sweden)

    Francisca C Gushiken

    Full Text Available Hemostasis and thrombosis are regulated by agonist-induced activation of platelet integrin alpha(IIbbeta(3. Integrin activation, in turn is mediated by cellular signaling via protein kinases and protein phosphatases. Although the catalytic subunit of protein phosphatase 1 (PP1c interacts with alpha(IIbbeta(3, the role of PP1c in platelet reactivity is unclear.Using gamma isoform of PP1c deficient mice (PP1cgamma(-/-, we show that the platelets have moderately decreased soluble fibrinogen binding and aggregation to low concentrations of thrombin or protease-activated receptor 4 (PAR4-activating peptide but not to adenosine diphosphate (ADP, collagen or collagen-related peptide (CRP. Thrombin-stimulated PP1cgamma(-/- platelets showed decreased alpha(IIbbeta(3 activation despite comparable levels of alpha(IIbbeta(3, PAR3, PAR4 expression and normal granule secretion. Functions regulated by outside-in integrin alpha(IIbbeta(3 signaling like adhesion to immobilized fibrinogen and clot retraction were not altered in PP1cgamma(-/- platelets. Thrombus formation induced by a light/dye injury in the cremaster muscle venules was significantly delayed in PP1cgamma(-/- mice. Phosphorylation of glycogen synthase kinase (GSK3beta-serine 9 that promotes platelet function, was reduced in thrombin-stimulated PP1cgamma(-/- platelets by an AKT independent mechanism. Inhibition of GSK3beta partially abolished the difference in fibrinogen binding between thrombin-stimulated wild type and PP1cgamma(-/- platelets.These studies illustrate a role for PP1cgamma in maintaining GSK3beta-serine9 phosphorylation downstream of thrombin signaling and promoting thrombus formation via fibrinogen binding and platelet aggregation.

  2. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules

    NARCIS (Netherlands)

    S. Patel-Hett (Sunita); J.L. Richardson (Jennifer); H. Schulze (Harald); K. Drabek (Ksenija); N.A. Isaac (Natasha); K. Hoffmeister (Karin); R.A. Shivdasani (Ramesh); J.C. Bulinski (J. Chloë); N.J. Galjart (Niels); J.H. Hartwig (John); J. Italiano (Joseph)

    2008-01-01

    textabstractThe marginal band of microtubules maintains the discoid shape of resting blood platelets. Although studies of platelet microtubule coil structure conclude that it is composed of a single microtubule, no investigations of its dynamics exist. In contrast to previous studies, permeabilized

  3. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Directory of Open Access Journals (Sweden)

    Katie L Lannan

    2015-02-01

    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  4. Up-Regulated Expression of Matrix Metalloproteinases in Endothelial Cells Mediates Platelet Microvesicle-Induced Angiogenesis

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2017-04-01

    Full Text Available Background/Aims: Platelet microvesicles (PMVs contribute to angiogenesis and vasculogenesis, but the mechanisms underlying these contributions have not been fully elucidated. In the present study, we investigated whether PMVs regulate the angiogenic properties of endothelial cells (ECs via mechanisms extending beyond the transport of angiogenic regulators from platelets. Methods: In vitro Matrigel tube formation assay and in vivo Matrigel plug assay were used to evaluate the pro-angiogenic activity of PMVs. The effects of PMVs on the migration of human umbilical vein endothelial cells (HUVECs were detected by transwell assay and wound-healing assay. Real-time PCR and western blot were conducted to examine mRNA and protein expression of pro-angiogenic factors in HUVECs. Matrix metalloproteinase (MMP activity was assayed by gelatin zymography. Moreover, the effects of specific MMP inhibitors were tested. Results: PMVs promoted HUVEC capillary-like network formation in a dose-dependent manner. Meanwhile, PMVs dose-dependently facilitated HUVEC migration. Levels of MMP-2 and MMP-9 expression and activity were up-regulated in HUVECs stimulated with PMVs. Inhibition of MMPs decreased their pro-angiogenic and pro-migratory effects on HUVECs. Moreover, we confirmed the pro-angiogenic activity of PMVs in vivo in mice with subcutaneous implantation of Matrigel, and demonstrated that blockade of MMPs attenuated PMV-induced angiogenesis. Conclusion: The findings of our study indicate that PMVs promote angiogenesis by up-regulating MMP expression in ECs via mechanism extending beyond the direct delivery of angiogenic factors.

  5. FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells.

    Science.gov (United States)

    López, Esther; Berna-Erro, Alejandro; Salido, Ginés M; Rosado, Juan A; Redondo, Pedro C

    2013-03-01

    Immunophilins are FK506-binding proteins that have been involved in the regulation of calcium homeostasis, either by modulating Ca(2+) channels located in the plasma membrane or in the rough endoplasmic reticulum (RE). We have investigated whether immunophilins would participate in the regulation of stored-operated Ca(2+) entry (SOCE) in human platelets and MEG 01. Both cell types were loaded with fura-2 for determining cytosolic calcium concentration changes ([Ca(2+)](c)), or stimulated and fixed to evaluate the protein interaction profile by performing immunoprecipitation and western blotting. We have found that incubation of platelets with FK506 increases Ca(2+) mobilization. Thapsigargin (TG)-evoked, Thr-evoked SOCE and TG-evoked Mn(2+) entry resulted in significant reduction by treatment of platelets with immunophilin antagonists. We confirmed by immunoprecipitation that immunophilins interact with transient receptor potential channel 1 (TRPC1) and Orai1 in human platelets. FK506 and rapamycin reduced the association between TRPC1 and Orai1 with FK506 binding protein (52) (FKBP52) in human platelets, and between TRPC1 and the type II IP(3)R, which association is known to be crucial for the maintenance of SOCE in human platelets. FKBP52 role in SOCE activation was confirmed by silencing FKBP52 using SiRNA FKBP52 in MEG 01 as demonstrated by single cell configuration imaging technique. TRPC1 silencing and depletion of cell of TRPC1 and FKBP52 simultaneously, impair activation of SOCE evoked by TG in MEG 01. Finally, in MEG 01 incubated with FK506 we observed a reduction in TRPC1/FKBP52 coupling, and similarly, FKBP52 silencing reduced the association between IP3R type II and TRPC1 during SOCE. All together, these results demonstrate that immunophilins participate in the regulation of SOCE in human platelets.

  6. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    Science.gov (United States)

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  7. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα.

    Science.gov (United States)

    Wang, Yunmei; Gao, Huiyun; Shi, Can; Erhardt, Paul W; Pavlovsky, Alexander; A Soloviev, Dmitry; Bledzka, Kamila; Ustinov, Valentin; Zhu, Liang; Qin, Jun; Munday, Adam D; Lopez, Jose; Plow, Edward; Simon, Daniel I

    2017-05-30

    Inflammation and thrombosis occur together in many diseases. The leukocyte integrin Mac-1 (also known as integrin αMβ2, or CD11b/CD18) is crucial for leukocyte recruitment to the endothelium, and Mac-1 engagement of platelet GPIbα is required for injury responses in diverse disease models. However, the role of Mac-1 in thrombosis is undefined. Here we report that mice with Mac-1 deficiency (Mac-1(-/-)) or mutation of the Mac-1-binding site for GPIbα have delayed thrombosis after carotid artery and cremaster microvascular injury without affecting parameters of haemostasis. Adoptive wild-type leukocyte transfer rescues the thrombosis defect in Mac-1(-/-) mice, and Mac-1-dependent regulation of the transcription factor Foxp1 contributes to thrombosis as evidenced by delayed thrombosis in mice with monocyte-/macrophage-specific overexpression of Foxp1. Antibody and small-molecule targeting of Mac-1:GPIbα inhibits thrombosis. Our data identify a new pathway of thrombosis involving leukocyte Mac-1 and platelet GPIbα, and suggest that targeting this interaction has anti-thrombotic therapeutic potential with reduced bleeding risk.

  8. [ROLE α2-ADRENERGIC RECEPTORS IN REGULATION PLATELET REACTIVITY IN THE ELDERLY AT CHRONIC OBSTRUCTIVE PYELONEPHRITIS].

    Science.gov (United States)

    Barinov, E F

    2016-01-01

    Objective of the research was to determine involvement of platelets and the role of adrenaline in chronic inflammation maintaining and the initiation of acute inflammatory response in elderly patients with chronic obstructive pyelonephritis against this background. The study includes 60 patients with chronic obstructive pyelonephritis (COPN), which are distributed into two groups: basic - 22 elderly patients (age 73±1,5 years) and the comparison group - 38 middle-aged patients (52,5±2,4 years). The study excluded patients who took antiplatelet drugs and non-selective blockers of α adrenergic receptors at least 1 week before the study. Analysis of platelets adrenoreactivity in vitro was carried out at the time of hospitalization before the start of conservative therapy. Platelet-rich plasma was isolated from peripheral blood by centrifuging. ADP and epinephrine were used in the effective (EC50) and sub-threshold (EC10) concentrations to stimulate platelets. The formation of platelet-leukocyte aggregates was reproduced in vitro upon incubation of stimulated platelets (at a concentration of adrenaline EC50) and intact leukocytes isolated from patient peripheral blood. The study of platelet reactivity revealed that in elderly patients acute inflammatory response realization (relapse of COPN) is against optimal functioning of platelets α2 adrenergic receptors. Significant increase in the number of platelet-leukocyte aggregates is possible. Remission of COPN (the presence of chronic inflammation) in the examined patients of various ages was associated with platelet hypoadrenoreactivity. Increased platelet adrenoreactivity during transition from remission to relapse of COPN in the elderly patients is possible if adequate synthesis of ADP in platelets and its secretion from dense granules are preserved. The observed interaction of adrenaline and ADP with stimulated platelet hyporesponsiveness probably ensures adaptive response aimed at acute inflammatory response in

  9. Identification of a functional genetic variant driving racially dimorphic platelet gene expression of the thrombin receptor regulator, PCTP.

    Science.gov (United States)

    Kong, Xianguo; Simon, Lukas M; Holinstat, Michael; Shaw, Chad A; Bray, Paul F; Edelstein, Leonard C

    2017-03-02

    Platelet activation in response to stimulation of the Protease Activated Receptor 4 (PAR4) receptor differs by race. One factor that contributes to this difference is the expression level of Phosphatidylcholine Transfer Protein (PCTP), a regulator of platelet PAR4 function. We have conducted an expression Quantitative Trait Locus (eQTL) analysis that identifies single nucleotide polymorphisms (SNPs) linked to the expression level of platelet genes. This analysis revealed 26 SNPs associated with the expression level of PCTP at genome-wide significance (p Electromobility shift assays, luciferase assays, and overexpression studies indicated a role for the megakaryocytic transcription factor GATA1. In summary, we have integrated multi-omic data to identify and functionalise an eQTL. This, along with the previously described relationship between PCTP and PAR4 function, allows us to characterise a genotype-phenotype relationship through the mechanism of gene expression.

  10. Transcription Factor RUNX1 Regulates Platelet PCTP (Phosphatidylcholine Transfer Protein): Implications for Cardiovascular Events: Differential Effects of RUNX1 Variants.

    Science.gov (United States)

    Mao, Guangfen; Songdej, Natthapol; Voora, Deepak; Goldfinger, Lawrence E; Del Carpio-Cano, Fabiola E; Myers, Rachel A; Rao, A Koneti

    2017-09-05

    PCTP (phosphatidylcholine transfer protein) regulates the intermembrane transfer of phosphatidylcholine. Higher platelet PCTP expression is associated with increased platelet responses on activation of protease-activated receptor 4 thrombin receptors noted in black subjects compared with white subjects. Little is known about the regulation of platelet PCTP. Haplodeficiency of RUNX1, a major hematopoietic transcription factor, is associated with thrombocytopenia and impaired platelet responses on activation. Platelet expression profiling of a patient with a RUNX1 loss-of-function mutation revealed a 10-fold downregulation of the PCTP gene compared with healthy controls. We pursued the hypothesis that PCTP is regulated by RUNX1 and that PCTP expression is correlated with cardiovascular events. We studied RUNX1 binding to the PCTP promoter using DNA-protein binding studies and human erythroleukemia cells and promoter activity using luciferase reporter studies. We assessed the relationship between RUNX1 and PCTP in peripheral blood RNA and PCTP and death or myocardial infarction in 2 separate patient cohorts (587 total patients) with cardiovascular disease. Platelet PCTP protein in the patient was reduced by ≈50%. DNA-protein binding studies showed RUNX1 binding to consensus sites in ≈1 kB of PCTP promoter. PCTP expression was increased with RUNX1 overexpression and reduced with RUNX1 knockdown in human erythroleukemia cells, indicating that PCTP is regulated by RUNX1. Studies in 2 cohorts of patients showed that RUNX1 expression in blood correlated with PCTP gene expression; PCTP expression was higher in black compared with white subjects and was associated with future death/myocardial infarction after adjustment for age, sex, and race (odds ratio, 2.05; 95% confidence interval 1.6-2.7; P<0.0001). RUNX1 expression is known to initiate at 2 alternative promoters, a distal P1 and a proximal P2 promoter. In patient cohorts, there were differential effects of RUNX1

  11. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  12. Association of thrombin generation potential with platelet PAR-1 regulation and P-selectin expression in patients on dual antiplatelet therapy.

    Science.gov (United States)

    Badr Eslam, Roza; Posch, Florian; Lang, Irene M; Gremmel, Thomas; Eichelberger, Beate; Ay, Cihan; Panzer, Simon

    2014-02-01

    We studied the association of thrombin generation potential with platelet protease activated receptor (PAR)-1 regulation and platelet activation in 52 stable coronary artery disease patients on continuous therapy with aspirin and clopidogrel (n = 42) or prasugrel (n = 10). Compared to controls, peak thrombin generation potential was elevated in only 11 patients (p > 0.05), while F1.2 was elevated in 26 patients (p P-selectin expression were significantly elevated in patients compared to controls (p P-selectin (p = 0.002), suggesting in vivo depletion of platelet alpha granules due to ongoing platelet activation.

  13. Thrombocytopenia-associated multiple organ failure or severe haemolysis, elevated liver enzymes, low platelet count in a postpartum case

    Directory of Open Access Journals (Sweden)

    Manish Jagia

    2013-01-01

    Full Text Available Thrombocytopenia-associated multiple organ failure (TAMOF is a thrombotic microangiopathic syndrome that includes thrombotic thrombocytopenic purpura, secondary thrombotic microangiopathy, and disseminated intravascular coagulation. We report a case of postpartum female who presented with TAMOF or severe Haemolysis, elevated liver enzymes, low platelet count (HELLP which was managed with plasma exchange. This case report is to make clinicians aware that TAMOF, severe HELLP, and other differential diagnosis in a postpartum case have a thin differentiating line and plasma exchange can be considered as one of the management options.

  14. Selective and rapid monitoring of dual platelet inhibition by aspirin and P2Y12 antagonists by using multiple electrode aggregometry

    Directory of Open Access Journals (Sweden)

    Lorenz Reinhard

    2010-05-01

    Full Text Available Abstract Background Poor platelet inhibition by aspirin or clopidogrel has been associated with adverse outcomes in patients with cardiovascular diseases. A reliable and facile assay to measure platelet inhibition after treatment with aspirin and a P2Y12 antagonist is lacking. Multiple electrode aggregometry (MEA, which is being increasingly used in clinical studies, is sensitive to platelet inhibition by aspirin and clopidogrel, but a critical evaluation of MEA monitoring of dual anti-platelet therapy with aspirin and P2Y12 antagonists is missing. Design and Methods By performing in vitro and ex vivo experiments, we evaluated in healthy subjects the feasibility of using MEA to monitor platelet inhibition of P2Y12 antagonists (clopidogrel in vivo, cangrelor in vitro and aspirin (100 mg per day in vivo, and 1 mM or 5.4 mM in vitro alone, and in combination. Statistical analyses were performed by the Mann-Whitney rank sum test, student' t-test, analysis of variance followed by the Holm-Sidak test, where appropriate. Results ADP-induced platelet aggregation in hirudin-anticoagulated blood was inhibited by 99.3 ± 1.4% by in vitro addition of cangrelor (100 nM; p 95% and 100 ± 3.2%, respectively (p in vitro or ex vivo. Oral intake of clopidogrel did not significantly reduce AA-induced aggregation, but P2Y12 blockade by cangrelor (100 nM in vitro diminished AA-stimulated aggregation by 53 ± 26% (p Conclusions Selective platelet inhibition by aspirin and P2Y12 antagonists alone and in combination can be rapidly measured by MEA. We suggest that dual anti-platelet therapy with these two types of anti-platelet drugs can be optimized individually by measuring platelet responsiveness to ADP and AA with MEA before and after drug intake.

  15. Relationship between the Increased Haemostatic Properties of Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage

    Directory of Open Access Journals (Sweden)

    Agnieszka Morel

    2015-01-01

    Full Text Available Multiple sclerosis (MS is the autoimmune disease of the central nervous system with complex pathogenesis, different clinical courses and recurrent neurological relapses and/or progression. Despite various scientific papers that focused on early stage of MS, our study targets selective group of late stage secondary progressive MS patients. The presented work is concerned with the reactivity of blood platelets in primary hemostasis in SP MS patients. 50 SP MS patients and 50 healthy volunteers (never diagnosed with MS or other chronic diseases were examined to evaluate the biological activity of blood platelets (adhesion, aggregation, especially their response to the most important physiological agonists (thrombin, ADP, and collagen and the effect of oxidative stress on platelet activity. We found that the blood platelets from SP MS patients were significantly more sensitive to all used agonists in comparison with control group. Moreover, the platelet hemostatic function was advanced in patients suffering from SP MS and positively correlated with increased production of O2-∙ in these cells, as well as with Expanded Disability Status Scale. We postulate that the increased oxidative stress in blood platelets in SP MS may be primarily responsible for the altered haemostatic properties of blood platelets.

  16. Intrinsic regulation of hemangioma involution by platelet-derived growth factor

    Science.gov (United States)

    Roach, E E; Chakrabarti, R; Park, N I; Keats, E C; Yip, J; Chan, N G; Khan, Z A

    2012-01-01

    Infantile hemangioma is a vascular tumor that exhibits a unique natural cycle of rapid growth followed by involution. Previously, we have shown that hemangiomas arise from CD133+ stem cells that differentiate into endothelial cells when implanted in immunodeficient mice. The same clonally expanded stem cells also produced adipocytes, thus recapitulating the involuting phase of hemangioma. In the present study, we have elucidated the intrinsic mechanisms of adipocyte differentiation using hemangioma-derived stem cells (hemSCs). We found that platelet-derived growth factor (PDGF) is elevated during the proliferating phase and may inhibit adipocyte differentiation. hemSCs expressed high levels of PDGF-B and showed sustained tyrosine phosphorylation of PDGF receptors under basal (unstimulated) conditions. Inhibition of PDGF receptor signaling caused enhanced adipogenesis in hemSCs. Furthermore, exposure of hemSCs to exogenous PDGF-BB reduced the fat content and the expression of adipocyte-specific transcription factors. We also show that these autogenous inhibitory effects are mediated by PDGF receptor-β signaling. In summary, this study identifies PDGF signaling as an intrinsic negative regulator of hemangioma involution and highlights the therapeutic potential of disrupting PDGF signaling for the treatment of hemangiomas. PMID:22717583

  17. Regulation of cAMP Intracellular Levels in Human Platelets Stimulated by 2-Arachidonoylglycerol.

    Science.gov (United States)

    Signorello, Maria Grazia; Leoncini, Giuliana

    2016-05-01

    We demonstrated that in human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) decreased dose- and time-dependently cAMP intracellular levels. No effect on cAMP decrease induced by 2-AG was observed in the presence of the adenylate cyclase inhibitor SQ22536 as well in platelets pretreated with the thromboxane A2 receptor antagonist, SQ29548 or with aspirin, inhibitor of arachidonic acid metabolism through the cyclooxygenase pathway. An almost complete recovering of cAMP level was measured in platelets pretreated with the specific inhibitor of phosphodiesterase (PDE) 3A, milrinone. In platelets pretreated with LY294002 or MK2206, inhibitors of PI3K/AKT pathway, and with U73122, inhibitor of phospholipase C pathway, only a partial prevention was shown. cAMP intracellular level depends on synthesis by adenylate cyclase and hydrolysis by PDEs. In 2-AG-stimulated platelets adenylate cyclase activity seems to be unchanged. In contrast PDEs appear to be involved. In particular PDE3A was specifically activated, as milrinone reversed cAMP reduction by 2-AG. 2-AG enhanced PDE3A activity through its phosphorylation. The PI3K/AKT pathway and PKC participate to this PDE3A phosphorylation/activation mechanism as it was greatly inhibited by platelet pretreatment with LY294002, MK2206, U73122, or the PKC specific inhibitor GF109203X. Taken together these data suggest that 2-AG potentiates its power of platelet agonist reducing cAMP intracellular level.

  18. Alloimmune refractoriness to platelet transfusions.

    Science.gov (United States)

    Sandler, S G

    1997-11-01

    Patients who are transfused on multiple occasions with red cells or platelets may develop platelet-reactive alloantibodies and experience decreased clinical responsiveness to platelet transfusion. This situation, conventionally described as "refractoriness to platelet transfusions," is defined by an unsatisfactory low post-transfusion platelet count increment. If antibodies to HLAs are detected, improved clinical outcomes may result from transfusions of HLA-matched or donor-recipient cross-matched platelets. Because refractoriness is an expected, frequently occurring phenomenon, prevention of HLA alloimmunization is an important management strategy. Prevention strategies include efforts to decrease the number of transfusions, filtration of cellular components to reduce the number of HLA-bearing leukocytes, or pretransfusion ultraviolet B irradiation of cellular components to decrease their immunogenicity. Other investigational approaches include reducing the expression of HLAs on transfused platelets, inducing a transient reticuloendothelial system blockade by infusions of specialized immunoglobulin products, or transfusing semisynthetic platelet substitutes (thromboerythrocytes, thrombospheres) or modified platelets (infusible platelet membranes, lyophilized platelets).

  19. High-on-Aspirin Residual Platelet Reactivity Evaluated Using the Multiplate® Point-of-Care Device

    Directory of Open Access Journals (Sweden)

    Mărginean Alina

    2016-03-01

    Full Text Available Objective: The aim of this study was to evaluate the prevalence of aspirin non-responsiveness using whole blood multiple electrode aggregometry and to investigate the role of different clinical and laboratory variables associated with the lack of response. Methods: The present study included 116 aspirin treated patients presented with acute coronary syndromes or stroke. Response to aspirin was assessed by impedance aggregometry using arachidonic acid as agonist, in a final concentration of 0.5 mM (ASPI test. Results: In our data set 81% (n=94 were responders and 19% (n=22 non-responders showing high-on-aspirin platelet reactivity. Correlation analysis showed that the ward of admittance, low-density lipoproteins (LDL, concomitant antibiotic treatment, beta-adrenergic receptor blockers, history of myocardial infarction as well as PCI performed on Cardiology patients have different degrees of association with aspirin response. Conclusion: Concomitant treatment with beta-adrenergic receptor inhibitors, history of myocardial infarction and Cardiology ward admittance significantly increased the chance of responding to aspirin treatment whereas antibiotic therapy and low-density lipoproteins cholesterol seemed to increase the risk of high-on-aspirin residual platelet reactivity.

  20. The NLRP3 inflammasome and bruton's tyrosine kinase in platelets co-regulate platelet activation, aggregation, and in vitro thrombus formation.

    Science.gov (United States)

    Murthy, Pranav; Durco, Filip; Miller-Ocuin, Jennifer L; Takedai, Teiko; Shankar, Shruthi; Liang, Xiaoyan; Liu, Xiao; Cui, Xiangdong; Sachdev, Ulka; Rath, Dominik; Lotze, Michael T; Zeh, Herbert J; Gawaz, Meinrad; Weber, Alexander N; Vogel, Sebastian

    2017-01-29

    Cleavage of interleukin-1β (IL-1β) is a key inflammatory event in immune cells and platelets, which is mediated by nucleotide-binding domain leucine rich repeat containing protein (NLRP3)-dependent activation of caspase-1. In immune cells, NLRP3 and caspase-1 form inflammasome complexes with the adaptor proteins apoptosis-associated speck-like protein containing a CARD (ASC) and bruton's tyrosine kinase (BTK). In platelets, however, the regulatory triggers and the functional effects of the NLRP3 inflammasome are unknown. Here, we show in vitro that the platelet NLRP3 inflammasome contributes to platelet activation, aggregation, and thrombus formation. NLRP3 activity, as monitored by caspase-1 activation and cleavage and secretion of IL-1β, was upregulated in activated platelets, which was dependent on platelet BTK. Pharmacological inhibition or genetic ablation of BTK in platelets led to decreased platelet activation, aggregation, and in vitro thrombus formation. We identify a functionally relevant link between BTK and NLRP3 in platelets, with potential implications in disease states associated with abnormal coagulation and inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Platelets and hemostasis

    Directory of Open Access Journals (Sweden)

    M. A. Panteleev

    2014-09-01

    Full Text Available Platelets are anuclear cell fragments playing important role in hemostasis, termination of bleeding after damage, as well as in pathological thrombus formation. The main action of platelets is the formation of aggregates, overlapping the injury. They obtained the ability to aggregate by the transition process called activation. Despite the relatively simple and definite function platelet structure is very difficult: they have almost a full set of organelles, including the endoplasmic reticulum, mitochondria and other entities. When activated platelets secrete various granules interact with plasma proteins and red blood cells and other tissues. Their activation is controlled by multiple receptors and complex signaling cascades. In this review platelet structure, mechanisms of its functioning in health and disease, diagnostic methods of platelet function and approaches to their correction were considered. Particular attention will be given to those areas of the science of platelets, which still lay hidden mysteries.

  2. Platelet-derived HMGB1 is a critical mediator of thrombosis.

    Science.gov (United States)

    Vogel, Sebastian; Bodenstein, Rebecca; Chen, Qiwei; Feil, Susanne; Feil, Robert; Rheinlaender, Johannes; Schäffer, Tilman E; Bohn, Erwin; Frick, Julia-Stefanie; Borst, Oliver; Münzer, Patrick; Walker, Britta; Markel, Justin; Csanyi, Gabor; Pagano, Patrick J; Loughran, Patricia; Jessup, Morgan E; Watkins, Simon C; Bullock, Grant C; Sperry, Jason L; Zuckerbraun, Brian S; Billiar, Timothy R; Lotze, Michael T; Gawaz, Meinrad; Neal, Matthew D

    2015-12-01

    Thrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis. Mice lacking HMGB1 in platelets exhibited increased bleeding times as well as reduced thrombus formation, platelet aggregation, inflammation, and organ damage during experimental trauma/hemorrhagic shock. Platelets were the major source of HMGB1 within thrombi. In trauma patients, HMGB1 expression on the surface of circulating platelets was markedly upregulated. Moreover, evaluation of isolated platelets revealed that HMGB1 is critical for regulating platelet activation, granule secretion, adhesion, and spreading. These effects were mediated via TLR4- and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the plasma membrane, followed by MyD88/GC complex formation and activation of the cGMP-dependent protein kinase I (cGKI). Thus, we establish platelet-derived HMGB1 as an important mediator of thrombosis and identify a HMGB1-driven link between MyD88 and GC/cGKI in platelets. Additionally, these findings suggest a potential therapeutic target for patients sustaining trauma and other inflammatory disorders associated with abnormal coagulation.

  3. Lymphocyte-mediated regulation of platelet activation during desensitization in patients with hymenoptera venom hypersensitivity.

    Science.gov (United States)

    Ledru, E; Pestel, J; Tsicopoulos, A; Joseph, M; Wallaert, B; Tonnel, A B; Capron, A

    1988-01-01

    T cells from peripheral blood of hymenoptera sensitive patients were studied before and after venom desensitization. Before treatment, T cells showed a variable but higher proliferative response to allergen than T cells of treated patients or controls. While before desensitization, T cell products, specifically released after in vitro allergen stimulation, were able to amplify the IgE-dependent platelet activity, we showed that after treatment of the same patients, T cell products strongly reduced platelet activation. Considering the modifications in platelet activation previously observed in patients treated by specific immunotherapy, the present results suggest that, through a modification of T cell reactivity to allergen, T cell functions are modulated by desensitization, and emphasize the involvement of T cell products in the desensitization mechanisms. PMID:3263227

  4. Cbl-b is a novel physiologic regulator of glycoprotein VI-dependent platelet activation.

    Science.gov (United States)

    Daniel, James L; Dangelmaier, Carol A; Mada, Sripal; Buitrago, Lorena; Jin, Jianguo; Langdon, Wallace Y; Tsygankov, Alexander Y; Kunapuli, Satya P; Sanjay, Archana

    2010-06-04

    Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cgamma2 (PLCgamma2) and Bruton's tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b(-/-)) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca(2+) mobilization. A parallel inhibition is found for activation of PLCgamma2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCgamma2. When Cbl-b(-/-) mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.

  5. Thrombin-induced lysosomal exocytosis in human platelets is dependent on secondary activation by ADP and regulated by endothelial-derived substances.

    Science.gov (United States)

    Södergren, Anna L; Svensson Holm, Ann-Charlotte B; Ramström, Sofia; Lindström, Eva G; Grenegård, Magnus; Öllinger, Karin

    2016-01-01

    Exocytosis of lysosomal contents from platelets has been speculated to participate in clearance of thrombi and vessel wall remodelling. The mechanisms that regulate lysosomal exocytosis in platelets are, however, still unclear. The aim of this study was to identify the pathways underlying platelet lysosomal secretion and elucidate how this process is controlled by platelet inhibitors. We found that high concentrations of thrombin induced partial lysosomal exocytosis as assessed by analysis of the activity of released N-acetyl-β-glucosaminidase (NAG) and by identifying the fraction of platelets exposing the lysosomal-associated membrane protein (LAMP)-1 on the cell surface by flow cytometry. Stimulation of thrombin receptors PAR1 or PAR4 with specific peptides was equally effective in inducing LAMP-1 surface expression. Notably, lysosomal exocytosis in response to thrombin was significantly reduced if the secondary activation by ADP was inhibited by the P2Y12 antagonist cangrelor, while inhibition of thromboxane A2 formation by treatment with acetylsalicylic acid was of minor importance in this regard. Moreover, the NO-releasing drug S-nitroso-N-acetyl penicillamine (SNAP) or the cyclic AMP-elevating eicosanoid prostaglandin I2 (PGI2) significantly suppressed lysosomal exocytosis. We conclude that platelet inhibitors that mimic functional endothelium such as PGI2 or NO efficiently counteract lysosomal exocytosis. Furthermore, we suggest that secondary release of ADP and concomitant signaling via PAR1/4- and P2Y12 receptors is important for efficient platelet lysosomal exocytosis by thrombin.

  6. Regulation of Signal Transduction and Role of Platelets in Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Takeshi Nowatari

    2012-01-01

    Full Text Available Among all organs, the liver has a unique regeneration capability after sustaining injury or the loss of tissue that occurs mainly due to mitosis in the hepatocytes that are quiescent under normal conditions. Liver regeneration is induced through a cascade of various cytokines and growth factors, such as, tumor necrosis factor alpha, interleukin-6, hepatocyte growth factor, and insulin-like growth factor, which activate nuclear factor κB, signal transducer and activator of transcription 3, and phosphatidyl inositol 3-kinase signaling pathways. We previously reported that platelets can play important roles in liver regeneration through a direct effect on hepatocytes and collaborative effects with the nonparenchymal cells of the liver, including Kupffer cells and liver sinusoidal endothelial cells, which participate in liver regeneration through the production of various growth factors and cytokines. In this paper, the roles of platelets and nonparenchymal cells in liver regeneration, including the associated cytokines, growth factors, and signaling pathways, are described.

  7. Regulation of murine megakaryocyte size and ploidy by non-platelet-dependent mechanisms in radiation-induced megakaryocytopenia

    Energy Technology Data Exchange (ETDEWEB)

    Ebbe, S. (Lawrence Berkeley Laboratory, Berkeley, CA (United States))

    1991-09-01

    Megakaryocytic macrocytosis was evaluated in mice after irradiation with 6.5 Gy 60Co gamma rays. During the second and third months after sublethal irradiation, one or more of the following abnormalities of thrombocytopoiesis was present: thrombocytopenia, megakaryocytopenia, macromegakaryocytosis, a shift to higher ploidies, and enlargement of cells within ploidy groups. After transfusion-induced thrombocytosis, reductions in megakaryocyte size were delayed or absent relative to non-irradiated mice, and there was more of a tendency to shift to lower values for megakaryocyte ploidy. Mice with radiation-induced megakaryocytopenia failed to show rebound thrombocytosis during recovery from immunothrombocytopenia, in spite of further increases in megakaryocyte size and ploidy. The findings support the hypotheses that numbers of megakaryocytes may influence the regulation of megakaryocytopoiesis even when there is an excess of platelets and that ploidy distribution is not the sole determinant of the average size of a population of megakaryocytes. After irradiation, persistent megakaryocytopenia may not severely affect platelet production under steady-state conditions, but the ability of the marrow to respond to homeostatic regulation is compromised.

  8. Analysis of aggregation of platelets in thrombosis

    Science.gov (United States)

    Ahuja, Suresh

    Platelets are key players in thrombus formation by first rolling over collagen bound von Willebrand factor followed by formation of a stable interaction with collagen. The first adhered platelets bind additional platelets until the whole injury is sealed off by a platelet aggregate. The coagulation system stabilizes the formed platelet plug by creating a tight fibrin network, and then wound contraction takes place because of morphological changes in platelets. Coagulation takes place by platelet activation and aggregation mainly through fibrinogen polymerization into fibrin fibers. The process includes multiple factors, such as thrombin, plasmin, and local shear-rate which regulate and control the process. Coagulation can be divided into two pathways: the intrinsic pathway and the extrinsic pathway. The intrinsic pathway is initiated by the exposure of a negatively charged. It is able to activate factor XII, using a complex reaction that includes prekallikrein and high-molecular-weight kininogen as cofactors.. Thrombin is the final enzyme that is needed to convert fibrinogen into fibrin. The extrinsic pathway starts with the exposure of tissue factor to the circulating blood, which is the major initiator of coagulation. There are several feedback loops that reinforce the coagulation cascade, resulting in large amounts of thrombin. It is dependent on the presence of pro-coagulant surfaces of cells expressing negatively charged phospholipids--which include phosphatidylserine (PS)--on their outer membrane. PS-bearing surfaces are able to increase the efficiency of the reactions by concentrating and co-localizing coagulation factors.. Aggregation of platelets are analyzed and compared to adhesion of platelet to erythrocyte and to endothelial cells. This abstract is replacing MAR16-2015-020003.

  9. Gasotransmitters and platelets.

    Science.gov (United States)

    Truss, Nicola J; Warner, Timothy D

    2011-11-01

    Platelets are essential to prevent blood loss and promote wound healing. Their activation comprises of several complex steps which are regulated by a range of mediators. Over the last few decades there has been intense interest in a group of gaseous mediators known as gasotransmitters; currently comprising nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H(2)S). Here we consider the action of gasotransmitters on platelet activity. NO is a well established platelet inhibitor which mediates its effects predominantly through activation of soluble guanylyl cyclase leading to a decrease in intraplatelet calcium. More recently CO has been identified as a gasotransmitter with inhibitory actions on platelets; CO acts through the same mechanism as NO but is less potent. The in vivo and platelet functions of the most recently identified gasotransmitter, H(2)S, are still the subject of investigations, but they appear generally inhibitory. Whilst there is evidence for the individual action of these mediators, it is also likely that combinations of these mediators are more relevant regulators of platelets. Furthermore, current evidence suggests that these mediators in combination alter the production of each other, and so modify the circulating levels of gasotransmitters. The use of gasotransmitters as therapeutic agents is also being explored for a range of indications. In conclusion, the importance of NO in the regulation of vascular tone and platelet activity has long been understood. Other gasotransmitters are now establishing themselves as mediators of vascular tone, and recent evidence suggests that these other gasotransmitters may also modulate platelet function.

  10. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    Full Text Available Abstract Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs, Vascular Endothelial Growth Factor (VEGF and Platelet Derived Growth Factor (PDGF, among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member, Wingless (a Wnt growth factor and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and

  11. Rho GTPases in platelet function.

    Science.gov (United States)

    Aslan, J E; McCarty, O J T

    2013-01-01

    The Rho family of GTP binding proteins, also commonly referred to as the Rho GTPases, are master regulators of the platelet cytoskeleton and platelet function. These low-molecular-weight or 'small' GTPases act as signaling switches in the spatial and temporal transduction, and amplification of signals from platelet cell surface receptors to the intracellular signaling pathways that drive platelet function. The Rho GTPase family members RhoA, Cdc42 and Rac1 have emerged as key regulators in the dynamics of the actin cytoskeleton in platelets and play key roles in platelet aggregation, secretion, spreading and thrombus formation. Rho GTPase regulators, including GEFs and GAPs and downstream effectors, such as the WASPs, formins and PAKs, may also regulate platelet activation and function. In this review, we provide an overview of Rho GTPase signaling in platelet physiology. Previous studies of Rho GTPases and platelets have had a shared history, as platelets have served as an ideal, non-transformed cellular model to characterize Rho function. Likewise, recent studies of the cell biology of Rho GTPase family members have helped to build an understanding of the molecular regulation of platelet function and will continue to do so through the further characterization of Rho GTPases as well as Rho GAPs, GEFs, RhoGDIs and Rho effectors in actin reorganization and other Rho-driven cellular processes. © 2012 International Society on Thrombosis and Haemostasis.

  12. Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets.

    Science.gov (United States)

    Dionisio, Natalia; Galán, Carmen; Jardín, Isaac; Salido, Ginés M; Rosado, Juan A

    2011-03-01

    STIM1 is a transmembrane protein essential for the activation of store-operated Ca²+ entry (SOCE), a major Ca²+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca²+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca²+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca²+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca²+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn²+ entry, which was inhibited by increasing concentrations of extracellular Ca²+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca²+ entry induced by extracellular Ca²+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca²+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca²+ mediated by the interaction between plasma membrane-located STIM1 and Orai1. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis.

    Directory of Open Access Journals (Sweden)

    Scott M Maddox

    Full Text Available Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity.

  14. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.

    Science.gov (United States)

    Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J

    2015-05-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response.

  15. 烧伤后血小板流变行为及其调节研究进展%Advances in the research of rheological behavior of platelets and its regulation after burn

    Institute of Scientific and Technical Information of China (English)

    张庆富

    2014-01-01

    Microcirculatory dysfunction of local wounds and distant tissues after burns results in ischemia and hypoxia of tissues and organs,thus affecting the course and prognosis of burns.Platelet is an important component of blood,and the changes in its rheological behavior influence the blood flow in the microcirculation,as well as the microvascular structure and function.The abnormality of platelet rheological behavior plays an important role in the occurrence and development of microcirculatory dysfunction after burn.Changes in rheological behavior of platelets are due to changes in platelet morphology,adhesion,aggregation,shrinkage functions,and release reaction.Investigation of platelet rheological behavior and its regulation after burn may be of significant implication in the analysis of patient's condition and instruction for treatment.This article reviews the changes in platelet rheological behavior and its regulation after burn in the aspects of morphology,adhesion,aggregation,shrinkage functions,and release reaction.

  16. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets.

    Science.gov (United States)

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2016-02-15

    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  17. Complement Component C3 Binds to Activated Normal Platelets without Preceding Proteolytic Activation and Promotes Binding to Complement Receptor 1

    NARCIS (Netherlands)

    O.A. Hamad; P.H. Nilsson; D. Wouters; J.D. Lambris; K.N. Ekdahl; B. Nilsson

    2010-01-01

    It has been reported that complement is activated on the surface of activated platelets, despite the presence of multiple regulators of complement activation. To reinvestigate the mechanisms by which activated platelets bind to complement components, the presence of complement proteins on the surfac

  18. Identification of a potent small molecule capable of regulating polyploidization, megakaryocyte maturation, and platelet production

    Directory of Open Access Journals (Sweden)

    Nick Huang

    2016-12-01

    Full Text Available Abstract Background Megakaryocytic cell maturation involves polyploidization, and megakaryocyte (MK ploidy correlates with their maturation and platelet production. Retardation of MK maturation is closely associated with poor MK engraftment after cord blood transplantation and neonatal thrombocytopenia. Despite the high prevalence of thrombocytopenia in a range of setting that affect infants to adults, there are still very limited modalities of treatment. Methods Human CD34+ cells were isolated from cord blood or bone marrow samples acquired from consenting patients. Cells were cultured and induced using 616452 and compared to current drugs on the market such as rominplostim or TPO. Ploidy analysis was completed using propidium iodide staining and flow cytometry analysis. Animal studies consisted of transplanting human CD34+ cells into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice followed by daily injections of 15 mg/kg of 616452. Results Within one week of culture, the chemical was able to induce polyploidization, the process required for megakaryocyte maturation with the accumulation of DNA content, to 64 N or greater to achieve a relative adult size. We observed fold increases as high as 200-fold in cells of 16 N or greater compared to un-induced cells with a dose-dependent manner. In addition, MK differentiated in the presence of 616452 demonstrated a more robust capacity of MK differentiation than that of MKs cultured with rominplostim used for adult idiopathic thrombocytopenic purpura (ITP patients. In mice transplanted with human cord blood, 616452 strikingly enhanced MK reconstitution in the marrow and human peripheral platelet production. The molecular therapeutic actions for this chemical may be through TPO-independent pathways. Conclusion Our studies may have an important impact on our fundamental understanding of fetal MK biology, the clinical management of thrombocytopenic neonates and leukemic differentiation therapy.

  19. Differences between mainstream and sidestream tobacco smoke extracts and nicotine in the activation and aggregation of platelets subjected to cardiovascular conditions in diabetes.

    Science.gov (United States)

    Yin, Wei; Rubenstein, David A

    2013-01-01

    Mainstream and sidestream tobacco smoke extracts have been shown to increase platelet activation directly. Furthermore, advanced glycation end products, which are present in the diabetic vasculature, have also been shown to enhance platelet activity. However, the combined effects of these two risk factors on platelet functions remain unclear. Platelets were exposed to tobacco extracts concurrently with advanced glycation end products. Timed samples were removed to assess the extent of platelet activity. The presence of smoke extracts enhanced platelet activity as compared to control conditions, this was especially prevalent for sidestream extracts. With the addition of irreversibly glycated albumin, there was an additive effect, further enhancing platelet responses. This was at least partially regulated by α-granule release and CD41 expression. The combination of cardiovascular risk factors can significantly enhance platelet activation and aggregation, and therefore it is possible to accelerate cardiovascular diseases through the interactions of multiple cardiovascular risk factors.

  20. Thrombopoietin potentiates the protein-kinase-C-mediated activation of mitogen-activated protein kinase/ERK kinases and extracellular signal-regulated kinases in human platelets.

    Science.gov (United States)

    Ezumi, Y; Uchiyama, T; Takayama, H

    1998-12-15

    The thrombopoietin (TPO) receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. We investigated the effect of TPO on the extracellular signal-regulated kinase (ERK) activation pathway in human platelets. TPO by itself did not activate ERK1, ERK2 and protein kinase C (PKC), whereas TPO directly enhanced the PKC-dependent activation of ERKs induced by other agonists including thrombin and phorbol esters, without affecting the PKC activation by those agonists. TPO did not activate the mitogen-activated protein kinase/ERK kinases, MEK1 and MEK2, but activated Raf-1 and directly augmented the PKC-mediated MEK activation, suggesting that TPO primarily potentiates the ERK pathway through regulating MEKs or upstream steps of MEKs including Raf-1. The MEK inhibitor PD098059 failed to affect not only thrombin-induced or phorbol ester-induced aggregation, but also potentiation of aggregation by TPO, denying the primary involvement of ERKs and MEKs in those events. ERKs and MEKs were located mainly in the detergent-soluble/non-cytoskeletal fractions. ERKs but not MEKs were relocated to the cytoskeleton following platelet aggregation and actin polymerization. These data indicate that TPO synergizes with other agonists in the ERK activation pathway of platelets and that this synergy might affect functions of the cytoskeleton possibly regulated by ERKs.

  1. Clinical evaluation of autologous platelet-rich fibrin in the treatment of multiple adjacent gingival recession defects: a 12-month study.

    Science.gov (United States)

    Tunalι, Mustafa; Özdemir, Hakan; Arabacι, Taner; Gürbüzer, Bahadir; Pikdöken, Levent; Firatli, Erhan

    2015-01-01

    Leukocyte- and platelet-rich fibrin (L-PRF) belongs to a new generation of platelet concentrates. There are limited numbers of studies focused on the use of L-PRF in gingival recession defects. This study evaluated the safety and effectiveness of using L-PRF membranes as a substitute for free connective tissue grafts (CTGs) as a treatment method for gingival recession defects. A total of 44 Miller Class I/II gingival recessions that were bilateral, adjacent, and greater than 3 mm in size were selected. Each recession site was randomly assigned to the test group (L-PRF) or the control group (CTG). After 12 months, root coverage was 76.63% and 77.36% in the L-PRF and CTG groups, respectively. It is suggested that L-PRF membrane may be an alternative graft material for treating multiple adjacent recessions greater than 3 mm in size without a requirement for additional surgery.

  2. Mechanisms of platelet-mediated liver regeneration.

    Science.gov (United States)

    Lisman, Ton; Porte, Robert J

    2016-08-04

    Platelets have multiple functions beyond their roles in thrombosis and hemostasis. Platelets support liver regeneration, which is required after partial hepatectomy and acute or chronic liver injury. Although it is widely assumed that platelets stimulate liver regeneration by local excretion of mitogens stored within platelet granules, definitive evidence for this is lacking, and alternative mechanisms deserve consideration. In-depth knowledge of mechanisms of platelet-mediated liver regeneration may lead to new therapeutic strategies to treat patients with failing regenerative responses.

  3. Protein kinase A regulates 3-phosphatidylinositide dynamics during platelet-derived growth factor-induced membrane ruffling and chemotaxis.

    Science.gov (United States)

    Deming, Paula B; Campbell, Shirley L; Baldor, Linda C; Howe, Alan K

    2008-12-12

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.

  4. Platelet mimicry

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Hunter, Alan Christy; Peer, Dan

    2016-01-01

    Here we critically examine whether coating of nanoparticles with platelet membranes can truly disguise them against recognition by elements of the innate immune system. We further assess whether the "cloaking technology" can sufficiently equip nanoparticles with platelet-mimicking functionalities...

  5. Platelet Count

    Science.gov (United States)

    ... their spleen removed surgically Use of birth control pills (oral contraceptives) Some conditions may cause a temporary (transitory) increased ... increased platelet counts include estrogen and birth control pills (oral contraceptives). Mildly decreased platelet counts may be seen in ...

  6. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  7. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan; Jin, Seo Yeon; Lee, Hye Sun [Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Song, Sang Heon [Department of Internal Medicine, Pusan National University Hospital, Busan (Korea, Republic of); Shin, Hwa Kyoung [Department of Anatomy, Pusan National University School of Korean Medicine, Yangsan (Korea, Republic of); Bae, Sun Sik, E-mail: sunsik@pusan.ac.kr [Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2015-08-14

    Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38 MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs.

  8. Regulation of rat mesangial cell migration by platelet-derived growth factor, angiotensin II, and adrenomedullin.

    Science.gov (United States)

    Kohno, M; Yasunari, K; Minami, M; Kano, H; Maeda, K; Mandal, A K; Inoki, K; Haneda, M; Yoshikawa, J

    1999-12-01

    This study sought to determine whether platelet-derived growth factor (PDGF) and angiotensin II (AngII) stimulate migration of cultured rat glomerular mesangial cells. After finding that this was so, the effects of adrenomedullin (ADM) and cAMP-elevating agents on basal and stimulated mesangial cell migration were examined. Two isoforms of PDGF, AB and BB, stimulated migration in a concentration-dependent manner between 1 and 50 ng/ml, while the AA isoform lacked significant effect. AngII modestly but significantly stimulated migration in a concentration-dependent manner between 10(-7) and 10(-6) mol/L. Rat ADM significantly inhibited the PDGF BB- and AngII-stimulated migration in a concentration-dependent manner between 10(-8) and 10(-7) mol/L. Inhibition by rat ADM was accompanied by an increase in cellular cAMP. cAMP agonists or inducers such as 8-bromo cAMP, forskolin, and prostaglandin I2 also significantly reduced the stimulated migration. H 89, a protein kinase A (PKA) inhibitor, attenuated the inhibitory effect of ADM, and a calcitonin gene-related peptide (CGRP) receptor antagonist, human CGRP (8-37), abolished the inhibitory effects of rat ADM. These results suggest that PDGF AB and BB as well as AngII stimulate rat mesangial cell migration and that ADM can inhibit PDGF BB- and AngII-stimulated migration, at least in part through cAMP-dependent mechanisms likely to involve specific ADM receptors with which CGRP interacts. The adenylate cyclase/cAMP/PKA system may be involved in the migration-inhibitory effect of ADM in these cells.

  9. Multiple-motor based transport and its regulation by Tau

    Science.gov (United States)

    Vershinin, Michael; Carter, Brian C.; Razafsky, David S.; King, Stephen J.; Gross, Steven P.

    2007-01-01

    Motor-based intracellular transport and its regulation are crucial to the functioning of a cell. Disruption of transport is linked to Alzheimer's and other neurodegenerative diseases. However, many fundamental aspects of transport are poorly understood. An important issue is how cells achieve and regulate efficient long-distance transport. Mounting evidence suggests that many in vivo cargoes are transported along microtubules by more than one motor, but we do not know how multiple motors work together or can be regulated. Here we first show that multiple kinesin motors, working in conjunction, can achieve very long distance transport and apply significantly larger forces without the need of additional factors. We then demonstrate in vitro that the important microtubule-associated protein, tau, regulates the number of engaged kinesin motors per cargo via its local concentration on microtubules. This function of tau provides a previously unappreciated mechanism to regulate transport. By reducing motor reattachment rates, tau affects cargo travel distance, motive force, and cargo dispersal. We also show that different isoforms of tau, at concentrations similar to those in cells, have dramatically different potency. These results provide a well defined mechanism for how altered tau isoform levels could impair transport and thereby lead to neurodegeneration without the need of any other pathway. PMID:17190808

  10. Coincident regulation of PKCdelta in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling.

    Science.gov (United States)

    Hall, Kellie J; Jones, Matthew L; Poole, Alastair W

    2007-09-15

    PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.

  11. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets.

    Science.gov (United States)

    Yu, Shifang; Huang, Huicong; Deng, Gang; Xie, Zuoting; Ye, Yincai; Guo, Ruide; Cai, Xuejiao; Hong, Junying; Qian, Dingliang; Zhou, Xiangjing; Tao, Zhihua; Chen, Bile; Li, Qiang

    2015-01-01

    Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.

  12. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets.

    Directory of Open Access Journals (Sweden)

    Shifang Yu

    Full Text Available Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.

  13. Differential regulation of protein-tyrosine phosphatases by integrin alpha IIb beta 3 through cytoskeletal reorganization and tyrosine phosphorylation in human platelets.

    Science.gov (United States)

    Ezumi, Y; Takayama, H; Okuma, M

    1995-05-19

    The major platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) has been implicated in the regulation of tyrosine phosphorylation and dephosphorylation in activated platelets. To investigate the mechanisms of the alpha IIb beta 3-dependent tyrosine dephosphorylation, normal platelets or thrombasthenic platelets lacking alpha IIb beta 3 were stimulated with thrombin and fractionated into Triton X-100-soluble or -insoluble subcellular matrices. We then examined the kinetics of the tyrosine-phosphorylated proteins and distribution of protein-tyrosine phosphatases in these fractions and whole cell lysates. First, alpha IIb beta 3-dependent tyrosine dephosphorylation was recovered mainly in the cytoskeleton with similar kinetics to the whole cell lysate. Second, protein-tyrosine phosphatase (PTP) 1B and its cleaved 42-kDa form were associated with the cytoskeleton in an aggregation-dependent manner, whereas association of PTP1C with the cytoskeleton was regulated differentially both by thrombin stimulation and by alpha IIb beta 3-mediated aggregation. Several calpain inhibitors did not affect either tyrosine phosphorylation and dephosphorylation or relocation of PTP1B, but they did inhibit cleavage of PTP1B. Cytochalasin D blocked relocation of both PTP1B and PTP1C but not PTP1B cleavage. SH-PTP2 was distributed in the other fractions than the cytoskeleton and showed no relocation on thrombin stimulation. Finally, the cytoskeleton-associated PTP1C became tyrosine-phosphorylated in an alpha IIb beta 3-mediated aggregation-dependent manner. Thus, integrin alpha IIb beta 3 was involved differentially in the regulation of PTP1B and PTP1C.

  14. Platelet proteomics.

    Science.gov (United States)

    Zufferey, Anne; Fontana, Pierre; Reny, Jean-Luc; Nolli, Severine; Sanchez, Jean-Charles

    2012-01-01

    Platelets are small cell fragments, produced by megakaryocytes, in the bone marrow. They play an important role in hemostasis and diverse thrombotic disorders. They are therefore primary targets of antithrombotic therapies. They are implicated in several pathophysiological pathways, such as inflammation or wound repair. In blood circulation, platelets are activated by several pathways including subendothelial matrix and thrombin, triggering the formation of the platelet plug. Studying their proteome is a powerful approach to understand their biology and function. However, particular attention must be paid to different experimental parameters, such as platelet quality and purity. Several technologies are involved during the platelet proteome processing, yielding information on protein identification, characterization, localization, and quantification. Recent technical improvements in proteomics combined with inter-disciplinary strategies, such as metabolomic, transcriptomics, and bioinformatics, will help to understand platelets biological mechanisms. Therefore, a comprehensive analysis of the platelet proteome under different environmental conditions may contribute to elucidate complex processes relevant to platelet function regarding bleeding disorders or platelet hyperreactivity and identify new targets for antiplatelet therapy.

  15. PREGNANCY WITH PLATELET FUNCTION DISORDER

    Directory of Open Access Journals (Sweden)

    Sheila K

    2014-01-01

    Full Text Available latelets play a vital role in haemostasis . Antenatal patients with platelet function disorders should be managed in tertiary care centres that are well equipped to tackle any obstetric haemorrhage that can ensue during labour and delivery . Primi gravida was admitted for safe confinement . She had been evaluated earlier for complaints of multiple episodes of mucosal bleeding . On evaluation she had nor mal platelet counts and coagulation factor assay was normal . Platelet aggregometry revealed mild disorder of platelet aggregation . She was planned for induction of labour after arranging enough blood and blood products . She got into active labour and was p ut on syntocinon augmentation . She had emergency Caesarean section for foetal distress . Oxytocics were given proactively . Intraoperatively platelet transfusions and tranexamic acid infusion were given . Complete haemostasis was achieved . She had an uneventf ul postoperative period . Patients with functional platelet disorders can be successfully managed with local application of antifibrinolytic agents like tranexamic acid , in case of minor bleeds . Platelet transfusions are very effective in tackling major ble eds , especially during surgeries and for obstetric indications . If a patient has the history of clinically significant bleeding suggestive of platelet dysfunction , appropriate platelet function tests should be obtained so that the risk of bleeding can be adequately assessed and therapy chosen more rationally . . In obstetric practice the response of such patients to platelet transfusions has been excellent

  16. The Multiple Roles of Microrna-223 in Regulating Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2015-10-01

    Full Text Available Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs are pivotal factors in regulating bone metabolism via post-transcriptional inhibition of target genes. Recent studies have revealed that miR-223 exerts multiple effects on bone metabolism, especially in the processes of osteoclast and osteoblasts differentiation. In this review, we highlight the roles of miR-223 during the processes of osteoclast and osteoblast differentiation, as well as the potential clinical applications of miR-223 in bone metabolism disorders.

  17. Reserpine induces vascular alpha 2-adrenergic supersensitivity and platelet alpha 2-adrenoceptor up-regulation in dog.

    Science.gov (United States)

    Estan, L.; Senard, J. M.; Tran, M. A.; Montastruc, J. L.; Berlan, M.

    1990-01-01

    1. The aim of the present study was to investigate the influence of catecholamine levels on the regulation of alpha 2-adrenoceptor sensitivity in dogs. 2. Blood pressure and heart rate values at rest, plasma catecholamine levels, platelet and adipocyte alpha 2-adrenoceptors as well as the alpha 2-mediated cardiovascular responses to clonidine (10 micrograms kg-1 i.v., after alpha 1-, beta-adrenoceptor plus muscarinic blockade) or noradrenaline (0.5, 1, 2 and 4 micrograms kg-1 i.v. after alpha 1- and beta-adrenoceptor blockade) were measured before and after reserpine treatment (0.1 mg kg-1 day-1 s.c. over 15 days). 3. Reserpine induced a significant decrease in resting systolic and diastolic blood pressures (213 +/- 2/87 +/- 6 mmHg before vs 158 +/- 5/59 +/- 3 mmHg after treatment) as well as in heart rate (91 +/- 2 beats min-1 before vs 76 +/- 3 beats min-1 after treatment). 4. A 5 min tilt test performed under chloralose anesthesia, failed to modify blood pressure before treatment whereas it induced a significant fall in the same animals after the 15 day treatment. Plasma levels of noradrenaline significantly decreased (262 +/- 58 vs 66 +/- 31 pg ml-1) whereas plasma adrenaline levels were unchanged. 5. The alpha 2-mediated pressor responses to noradrenaline were significantly increased after reserpine. Clonidine induced a marked pressor effect (+72 and +45% in systolic and diastolic blood pressures respectively) after reserpine treatment. This effect was suppressed by administration of RX-821002, a new specific alpha 2-adrenoceptor antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2175232

  18. Platelet lipidomic.

    Science.gov (United States)

    Dolegowska, B; Lubkowska, A; De Girolamo, L

    2012-01-01

    Lipids account for 16-19 percent dry platelet matter and includes 65 percent phospholipids, 25 percent neutral lipids and about 8 percent glycosphingolipids. The cell membrane that surrounds platelets is a bilayer that contains different types phospholipids symmetrically distributed in resting platelets, such as phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine, and sphingomyelin. The collapse of lipid asymmetry is exposure of phosphatidylserine in the external leaflet of the plasma bilayer, where it is known to serve at least two major functions: providing a platform for development of the blood coagulation cascade and presenting the signal that induces phagocytosis of apoptotic cells. During activation, this asymmetrical distribution becomes disrupted, and PS and PE become exposed on the cell surface. The transbilayer movement of phosphatidylserine is responsible for the platelet procoagulant activity. Exposure of phosphatidylserine is a flag for macrophage recognition and clearance from the circulation. Platelets, stored at room temperature for transfusion for more than 5 days, undergo changes collectively known as platelet storage lesions. Thus, the platelet lipid composition and its possible modifications over time are crucial for efficacy of platelet rich plasma therapy. Moreover, a number of substances derived from lipids are contained into platelets. Eicosanoids are lipid signaling mediators generated by the action of lipoxygenase and include prostaglandins, thromboxane A2, 12-hydroxyeicosatetraenoic acid. Isoprostanes have a chemical structure similar to this of prostanoids, but are differently produced into the particle, and are ligands for prostaglandins receptors, exhibiting biological activity like thromboxane A2. Endocannabinoids are derivatives from arachidonic acid which could reduce local pain. Phospholipids growth factors (sphingolipids, lysophosphatidic acid, platelet-activating factor) are involved in tissue

  19. Molecular Basis Linking Platelet to Inflammation

    Institute of Scientific and Technical Information of China (English)

    马丽萍

    2010-01-01

    @@ Introduction Blood platelets not only play an important role in hemostasis and thrombosis,but increasing evidence show that they participate in the induction of inflammation.Firstly,platelets contain and release cytokines and immune mediators.And platelets are able to modulate and regulate the function of surrounding cells by adhesion molecules or by the release of various factors.

  20. Regulation of multiple carbon monoxide consumption pathways in anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    2011-07-01

    Full Text Available Carbon monoxide (CO, well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH, the protein complex that enables anaerobic CO utilization has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extroraordinarily resistant to high CO concentrations, thiriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/Acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: One clade (CooA-1 is found in the majority of CooA containing bacteria, whereas the other clade (CooA-2 is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of

  1. Antiplatelet activity of L-sulforaphane by regulation of platelet activation factors, glycoprotein IIb/IIIa and thromboxane A2.

    Science.gov (United States)

    Oh, Chung-Hun; Shin, Jang-In; Mo, Sang Joon; Yun, Sung-Jo; Kim, Sung-Hoon; Rhee, Yun-Hee

    2013-07-01

    L-sulforaphane was identified as an anticarcinogen that could produce quinine reductase and a phase II detoxification enzyme. In recent decades, multi-effects of L-sulforaphane may have been investigated, but, to the authors' knowledge, the antiplatelet activation of L-sulforaphane has not been studied yet.In this study, 2 μg/ml of collagen, 50 μg/ml of ADP and 5 μg/ml of thrombin were used for platelet aggregations with or without L-sulforaphane. L-sulforaphane inhibited the platelet aggregation dose-dependently. Among these platelet activators, collagen was most inhibited by L-sulforaphane, which markedly decreased collagen-induced glycoprotein IIb/IIIa activation and thromboxane A2 (TxA2) formation in vitro. L-sulforaphane also reduced the collagen and epinephrine-induced pulmonary embolism, but did not affect prothrombin time (PT) in vivo. This finding demonstrated that L-sulforaphane inhibited the platelet activation through an intrinsic pathway.L-sulforaphane had a beneficial effect on various pathophysiological pathways of the collagen-induced platelet aggregation and thrombus formation as a selective inhibition of cyclooxygenase and glycoprotein IIb/IIIa antagonist. Thus, we recommend L-sulforaphane as a potential antithrombotic drug.

  2. Research Influence Biological Active Agents in the Course of Regulation of Functional Activity of Platelets and System of a Haemostasis

    Directory of Open Access Journals (Sweden)

    Nozim N. Khoshimov

    2015-06-01

    Full Text Available It is shown that the flavonoid pulikarin suppresses activity of an adenylate cyclase and reduces level intracellular [Ca2+], perhaps its effect is connected with inhibition of a gain of cytoplasmatic Ca2+ as at the expense of its entrance outside, and release from intracellular storages. Perhaps, oppression of fluorescence of membrane-bound Ca2+ is connected with inhibition of a pulikarin of release of calcium from intracellular depots. The inhibiting effect of a pulikarin on ADP-induced aggregation of platelets is connected with oppression of a gain of cytoplasmatic concentration of Ca2+ from depot of platelets.

  3. Trehalose lyophilized platelets for wound healing.

    Science.gov (United States)

    Pietramaggiori, Giorgio; Kaipainen, Arja; Ho, David; Orser, Cindy; Pebley, Walter; Rudolph, Alan; Orgill, Dennis P

    2007-01-01

    Fresh platelet preparations are utilized to treat a wide variety of wounds, although storage limitations and mixed results have hampered their clinical use. We hypothesized that concentrated lyophilized and reconstituted platelet preparations, preserved with trehalose, maintain and possibly enhance fresh platelets' ability to improve wound healing. We studied the ability of a single dose of trehalose lyophilized and reconstituted platelets to enhance wound healing when topically applied on full-thickness wounds in the genetically diabetic mouse. We compared these results with the application of multiple doses of fresh platelet preparations and trehalose lyophilized and reconstituted platelets as well as multiple doses of vascular endothelial growth factor (VEGF) and wounds left untreated. Trehalose lyophilized and reconstituted platelets, in single and multiple applications, multiple applications of fresh platelets and multiple applications of VEGF increased granulation tissue deposition, vascularity, and proliferation when compared with untreated wounds, as assessed by histology and immunohistochemistry. Wounds treated with multiple doses of VEGF and a single dose of freeze-dried platelets reached 90% closure faster than wounds left untreated. A single administration of trehalose lyophilized and reconstituted platelet preparations enhanced diabetic wound healing, therefore representing a promising strategy for the treatment of nonhealing wounds.

  4. The role of bone marrow microenvironment in platelet production and their implications for the treatment of thrombocytopenic diseases.

    Science.gov (United States)

    Wang, Jun-Ying; Ye, Shuang; Zhong, Hua

    2017-06-01

    Impaired platelet production has been found to be an important pathological mechanism of thrombocytopenia in many diseases. Platelet generation is a complex process that mainly occurs in the bone marrow, and thus is closely regulated by the bone marrow microenvironment. This review attempts to summarize the most current knowledge referring the role of bone marrow microenvironment in the regulation of platelet production. The effects of multiple microenvironment ingredients in regulating megakaryopoiesis and thrombocytopoiesis have been discussed. Abnormalities of these components in thrombocytopenic diseases are also described. Thrombocytopenia is a common clinical manifestation of a variety of diseases. The functional importance of platelets has driven the developments of a broad range of studies. Platelet generation mainly occurs within the bone marrow, where the cells, soluble factors, and extracellular matrix proteins collaboratively form a complex regulatory network, directing megakaryocytic proliferation and differentiation. Alteration in any part of the regulating network may result in defective platelet formation, and eventually lead to thrombocytopenia. A variety of thrombocytopenic diseases have been found to be related with the disregulated bone marrow microenvironment. Identification of the variations of these niche ingredients in certain diseases has facilitated the developments of multiple therapeutic regimes. Further studies that can combine these niche factors with their downstream regulatory factors will be beneficial for developing more effective therapies. Further definition of the role of bone marrow microenvironment in platelet generation may deepen our understanding of the underlying mechanisms as well as provide new therapeutic targets for thrombocytopenic diseases.

  5. Formyl-Peptide Receptor 2/3/Lipoxin A4 Receptor Regulates Neutrophil-Platelet Aggregation and Attenuates Cerebral Inflammation: Impact for Therapy in Cardiovascular Disease.

    Science.gov (United States)

    Vital, Shantel A; Becker, Felix; Holloway, Paul M; Russell, Janice; Perretti, Mauro; Granger, D Neil; Gavins, Felicity N E

    2016-05-31

    Platelet activation at sites of vascular injury is essential for hemostasis, but it is also a major pathomechanism underlying ischemic injury. Because anti-inflammatory therapies limit thrombosis and antithrombotic therapies reduce vascular inflammation, we tested the therapeutic potential of 2 proresolving endogenous mediators, annexin A1 N-terminal derived peptide (AnxA1Ac2-26) and aspirin-triggered lipoxin A4 (15-epi-lipoxin A4), on the cerebral microcirculation after ischemia/reperfusion injury. Furthermore, we tested whether the lipoxin A4 receptor formyl-peptide receptor 2/3 (Fpr2/3; ortholog to human FPR2/lipoxin A4 receptor) evoked neuroprotective functions after cerebral ischemia/reperfusion injury. Using intravital microscopy, we found that cerebral ischemia/reperfusion injury was accompanied by neutrophil and platelet activation and neutrophil-platelet aggregate formation within cerebral microvessels. Moreover, aspirin-triggered lipoxin A4 activation of neutrophil Fpr2/3 regulated neutrophil-platelet aggregate formation in the brain and inhibited the reactivity of the cerebral microvasculature. The same results were obtained with AnxA1Ac2-26 administration. Blocking Fpr2/lipoxin A4 receptor with the antagonist Boc2 reversed this effect, and treatments were ineffective in Fpr2/3 knockout mice, which displayed an exacerbated disease severity, evidenced by increased infarct area, blood-brain barrier dysfunction, increased neurological score, and elevated levels of cytokines. Furthermore, aspirin treatment significantly reduced cerebral leukocyte recruitment and increased endogenous levels of aspirin-triggered lipoxin A4, effects again mediated by Fpr2/3. Fpr2/lipoxin A4 receptor is a therapeutic target for initiating endogenous proresolving, anti-inflammatory pathways after cerebral ischemia/reperfusion injury. © 2016 American Heart Association, Inc.

  6. Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1.

    Science.gov (United States)

    Jardin, Isaac; Albarrán, Letizia; Bermejo, Nuria; Salido, Ginés M; Rosado, Juan A

    2012-07-01

    Homer is a family of cytoplasmic adaptor proteins that play different roles in cell function, including the regulation of G-protein-coupled receptors. These proteins contain an Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) homology 1 domain that binds to the PPXXF sequence motif, which is present in different Ca²⁺-handling proteins such as IP3 (inositol 1,4,5-trisphosphate) receptors and TRPC (transient receptor potential canonical) channels. In the present study we show evidence for a role of Homer proteins in the STIM1 (stromal interaction molecule 1)-Orai1 association, as well as in the TRPC1-IP3RII (type II IP3 receptor) interaction, which might be of relevance in platelet function. Treatment of human platelets with thapsigargin or thrombin results in a Ca²⁺-independent association of Homer1 with TRPC1 and IP3RII. In addition, thapsigargin and thrombin enhanced the association of Homer1 with STIM1 and Orai1 in a Ca²⁺-dependent manner. Interference with Homer function by introduction of the synthetic PPKKFR peptide into cells, which emulates the proline-rich sequences of the PPXXF motif, reduced STIM1-Orai1 and TRPC1- IP3RII associations, as compared with the introduction of the inactive PPKKRR peptide. The PPKKFR peptide attenuates thrombin-evoked Ca²⁺ entry and the maintenance of thapsigargin-induced store-operated Ca²⁺ entry. Finally, the PPKKFR peptide attenuated thrombin-induced platelet aggregation. The findings of the present study support an important role for Homer proteins in thrombin-stimulated platelet function, which is likely to be mediated by the support of agonist-induced Ca²⁺ entry.

  7. CYTOKINE REGULATION IN THE COURSE OF MULTIPLE MYELOMA PROGRESSION

    Directory of Open Access Journals (Sweden)

    O. V. Smirnova

    2015-01-01

    Full Text Available Cytokines are wide-range modifiers of biological reactions. Cytokine regulation provides proliferation, differentiation, cell function, cell-cell and inter-systemic interaction, direction and nature of immune response to invasion of infectious and non-infectious pathogens. There are several distinct groups of cytokines: pro-inflammatory, anti-inflammatory factors, regulators of cellular and humoral immunity etc. A distinct role of cytokines is not excluded for infectious complications accompanying multiple myeloma (MM. Cytokine regulatory effects on immune defense in the organism as a whole, and a balance between proand anti-inflammatory cytokines in blood of MM patients depend on the stage of multiple myeloma progression and possibility of infectious complications. Therefore, the aim of our study was to evaluate proand anti-inflammatory cytokines and cytokine regulation in patients with MM G-immunochemical option. Our study involved 101 patients with MM (IgG-variant, their age ranging between 40 and 76 years. The diagnosis was verified by clinical and laboratory examinations. The G-variant of MM was verified by immunofixation and electrophoresis. The definite diagnosis and disease staging was confirmed by a combination of diagnostic criteria. Heparinized blood samples were taken from the cubital vein in the morning (8 to 9 hours, in fasting state upon admission, prior to the starting a pathogenetic therapy. Dynamic monitoring of patients was carried out over the period of their staying in hospital. All patients were staged according to Durie and Salmon (1975 (stages II, III. At each stage, we discerned two sub-groups: A, without renal disease, B, with renal impairment. The control group consisted of 125 healthy volunteers matched for age and sex with the main group. IL-2, IL-4, IL-8, TNFα, and IFNγ levels in sera of the patients and healthy individuals were determined by enzyme immunoassay kits (JSC “Vector-Best”,Novosibirsk. In the

  8. Platelet Donation

    Science.gov (United States)

    ... of gratitude that washed over me when I saw those platelets going into my husband’s body. I ... Needles LGBTQ+ Donors Blood Donor Community SleevesUp Games Facebook Avatars and Badges Banners eCards Red Cross Information ...

  9. Human platelets as a model for the binding and degradation of thrombopoietin.

    Science.gov (United States)

    Fielder, P J; Hass, P; Nagel, M; Stefanich, E; Widmer, R; Bennett, G L; Keller, G A; de Sauvage, F J; Eaton, D

    1997-04-15

    Recent studies have shown that plasma thrombopoietin (TPO) levels appear to be directly regulated by platelet mass and that removal of plasma TPO by platelets via binding to the c-Mpl receptor is involved in the clearance of TPO in rodents. To help elucidate the role of platelets in the clearance of TPO in humans, we studied the in vitro specific binding of recombinant human TPO (rhTPO) to human platelet-rich plasma (PRP), washed platelets (WP), and cloned c-Mpl. Using a four-parameter fit and/or Scatchard analysis, the approximate affinity of rhTPO for its receptor, which was calculated from multiple experiments using different PRP preparations, was between 128 and 846 pmol/L, with approximately 25 to 224 receptors per platelet. WP preparations gave an affinity of 260 to 540 pmol/L, with approximately 25 to 35 receptors per platelet, and erythropoietin failed to compete with 125I-rhTPO for binding to WP. Binding and dissociation studies conducted with a BiaCore apparatus yielded an affinity of 350 pmol/L for rhTPO binding to cloned c-Mpl receptors. The ability of PRP to bind and degrade 125I-rhTPO was both time- and temperature-dependent and was blocked by the addition of excess cold rhTPO. Analysis of platelet pellets by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that 125I-rhTPO was degraded into a major fragment of approximately 45 to 50 kD. When 125I-rhTPO was incubated with a platelet homogenate at pH = 7.4, a degradation pattern similar to intact platelets was observed. Together, these data show that human platelets specifically bind rhTPO with high affinity, internalize, and then degrade the rhTPO.

  10. [STRUCTURAL CHARACTERIZATION OF PLATELETS AND PLATELET-DERIVED MICROVESICLES].

    Science.gov (United States)

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Litvinov, R I

    2016-01-01

    Platelets are the anucleated blood cells, wich together with the fibrin stop bleeding (hemostasis). Cellular microvesicles are membrane-surrounded microparticles released into extracellular space upon activation and/or apoptosis of various cells. Platelet-derived macrovesicles from the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the pathophysiology of platelet-derived macrovesicles, mechanisms of their formation and structural details remain poorly understood. Here we investigated the ultrastructure of parental platelets and platelet-derived microvesicles formed in vitro by quiescent cells as well as by cells stimulated with one of the following activators: arachidonic acid, ADP, thrombin, calcium ionophore A23187. Using transmission electron microscopy of human platelets and isolated microvesicles, we analyzed the intracellular origin, steps of formation, structural diversity, and size distributions of the subcellular particles. We have revealed that thrombin, unlike other stimuli, not only induced vesiculation of the plasma membrane but also caused break-up of the cells followed by formation of microparticles that are comparable with microvesicles by size. A fraction of these microparticles contained cellular organelles surrounded by a thin membrane. The size of platelet-derived macrovesicles varied from 30 nm to 500 nm, however, the size distributions depended on the nature of a cell-activating stimulus. The results obtained provide new information about the formation of platelet-derived macrovesicles and their structural diversity, wich is important to understand their multiple functions in normal and disease states.

  11. Crosstalk between Protease-activated Receptor 1 and Platelet-activating Factor Receptor Regulates Melanoma Cell Adhesion Molecule (MCAM/MUC18) Expression and Melanoma Metastasis*

    Science.gov (United States)

    Melnikova, Vladislava O.; Balasubramanian, Krishnakumar; Villares, Gabriel J.; Dobroff, Andrey S.; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E.; Schroit, Alan; Prieto, Victor G.; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-01-01

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  12. Platelets, inflammation and tissue regeneration.

    Science.gov (United States)

    Nurden, Alan T

    2011-05-01

    Blood platelets have long been recognised to bring about primary haemostasis with deficiencies in platelet production and function manifesting in bleeding while upregulated function favourises arterial thrombosis. Yet increasing evidence indicates that platelets fulfil a much wider role in health and disease. First, they store and release a wide range of biologically active substances including the panoply of growth factors, chemokines and cytokines released from a-granules. Membrane budding gives rise to microparticles (MPs), another active participant within the blood stream. Platelets are essential for the innate immune response and combat infection (viruses, bacteria, micro-organisms). They help maintain and modulate inflammation and are a major source of pro-inflammatory molecules (e.g. P-selectin, tissue factor, CD40L, metalloproteinases). As well as promoting coagulation, they are active in fibrinolysis; wound healing, angiogenesis and bone formation as well as in maternal tissue and foetal vascular remodelling. Activated platelets and MPs intervene in the propagation of major diseases. They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth. They participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth. The above mentioned roles of platelets are now discussed.

  13. Multiple upstream modules regulate zebrafish myf5 expression

    Directory of Open Access Journals (Sweden)

    Weng Chih-Wei

    2007-01-01

    Full Text Available Abstract Background Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. Results We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1 the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2 the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3 the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4 the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5 the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. Conclusion We suggest

  14. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  15. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  16. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Science.gov (United States)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  17. Calpain Activity and Toll-Like Receptor 4 Expression in Platelet Regulate Haemostatic Situation in Patients Undergoing Cardiac Surgery and Coagulation in Mice

    Directory of Open Access Journals (Sweden)

    Jui-Chi Tsai

    2014-01-01

    Full Text Available Human platelets express Toll-like receptors (TLR 4. However, the mechanism by which TLR4 directly affects platelet aggregation and blood coagulation remains to be explored. Therefore, in this study, we evaluated the platelet TLR4 expression in patients who underwent CABG surgery; we explored the correlation between platelet TLR4 expression and the early outcomes in hospital of patients. Additionally, C57BL/6 and C57BL/6-TlrLPS−/− mice were used to explore the roles of platelet TLR4 in coagulation by platelet aggregometry and rotation thromboelastometry. In conclusion, our results highlight the important roles of TLR4 in blood coagulation and platelet function. Of clinical relevance, we also explored novel roles for platelet TLR4 that are associated with early outcomes in cardiac surgery.

  18. Platelet aggregation following trauma

    DEFF Research Database (Denmark)

    Windeløv, Nis A; Sørensen, Anne M; Perner, Anders

    2014-01-01

    We aimed to elucidate platelet function in trauma patients, as it is pivotal for hemostasis yet remains scarcely investigated in this population. We conducted a prospective observational study of platelet aggregation capacity in 213 adult trauma patients on admission to an emergency department (ED......). Inclusion criteria were trauma team activation and arterial cannula insertion on arrival. Blood samples were analyzed by multiple electrode aggregometry initiated by thrombin receptor agonist peptide 6 (TRAP) or collagen using a Multiplate device. Blood was sampled median 65 min after injury; median injury...... severity score (ISS) was 17; 14 (7%) patients received 10 or more units of red blood cells in the ED (massive transfusion); 24 (11%) patients died within 28 days of trauma: 17 due to cerebral injuries, four due to exsanguination, and three from other causes. No significant association was found between...

  19. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  20. Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of beta(1) and B-2 integrins

    NARCIS (Netherlands)

    P.A.D.C. Martins; J.M. van Gils; A. Mol; P.L. Hordijk; J.J. Zwaginga

    2006-01-01

    Human monocytes adhere to activated platelets, resulting in the formation of platelet-monocyte complexes (PMC). Complex formation depends on the interaction between platelet-displayed P-selectin and the specific ligand for P-selectin on leukocytes, P-selectin glycoprotein ligand-1 (PSGL-1). We have

  1. Platelet destruction in autoimmune thrombocytopenic purpura: kinetics and clearance of indium-111-labeled autologous platelets

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, J.R.; Ballem, P.J.; Gernsheimer, T.; Cerqueira, M.; Slichter, S.J.

    1989-05-01

    Using autologous /sup 111/In-labeled platelets, platelet kinetics and the sites of platelet destruction were assessed in 16 normal subjects (13 with and three without spleens), in 17 studies of patients with primary autoimmune thrombocytopenic purpura (AITP), in six studies of patients with secondary AITP, in ten studies of patients with AITP following splenectomy, and in five thrombocytopenic patients with myelodysplastic syndromes. In normal subjects, the spleen accounted for 24 +/- 4% of platelet destruction and the liver for 15 +/- 2%. Untreated patients with primary AITP had increased splenic destruction (40 +/- 14%, p less than 0.001) but not hepatic destruction (13 +/- 5%). Compared with untreated patients, prednisone treated patients did not have significantly different spleen and liver platelet sequestration. Patients with secondary AITP had similar platelet counts, platelet survivals, and increases in splenic destruction of platelets as did patients with primary AITP. In contrast, patients with myelodysplastic syndromes had a normal pattern of platelet destruction. In AITP patients following splenectomy, the five nonresponders all had a marked increase (greater than 45%) in liver destruction compared to five responders (all less than 40%). Among all patients with primary or secondary AITP, there was an inverse relationship between the percent of platelets destroyed in the liver plus spleen and both the platelet count (r = 0.75, p less than 0.001) and the platelet survival (r = 0.86, p less than 0.001). In a stepwise multiple linear regression analysis, total liver plus spleen platelet destruction, the platelet survival and the platelet turnover were all significant independent predictors of the platelet count. Thus platelet destruction is shifted to the spleen in primary and secondary AITP. Failure of splenectomy is associated with a marked elevation in liver destruction.

  2. cAMP signaling in blood platelets - old friends and new players.

    Directory of Open Access Journals (Sweden)

    Zaher eRaslan

    2015-11-01

    Full Text Available Atherothrombosis, the pathology underlying numerous cardiovascular diseases, is a major cause of death globally. Hyperactive blood platelets play a key role in the atherothrombotic process through the release of inflammatory mediators and formation of thrombi. In healthy blood vessels, excessive platelet activation is restricted by endothelial-derived prostacyclin (PGI2 through cyclic adenosine-5’-monophosphate (cAMP and protein kinase A (PKA-dependent mechanisms. Elevation in intracellular cAMP is associated with the control of a number of distinct platelet functions including actin polymerisation, granule secretion, calcium mobilisation and integrin activation. Unfortunately, in atherosclerotic disease the protective effects of cAMP are compromised, which may contribute to pathological thrombosis. The cAMP signalling network in platelets is highly complex with the presence of multiple isoforms of adenylyl cyclase (AC, PKA and phosphodiesterases (PDE. However, a precise understanding of the relationship between specific AC, PKA and PDE isoforms, and how individual signalling substrates are targeted to control distinct platelet functions is still lacking. In other cells types, compartmentalisation of cAMP signalling has emerged as a key mechanism to allow precise control of specific cell functions. A-kinase anchoring proteins (AKAPs play an important role in this spatiotemporal regulation of cAMP signalling networks. Evidence of AKAP-mediated compartmentalisation of cAMP signalling in blood platelets has begun to emerge and is providing new insights into the regulation of platelet function. Dissecting the mechanisms that allow cAMP to control excessive platelet activity without preventing effective haemostasis may unleash the possibility of therapeutic targeting of the pathway to control unwanted platelet activity.

  3. Platelets in inflammation and infection.

    Science.gov (United States)

    Jenne, Craig N; Kubes, Paul

    2015-01-01

    Although platelets are traditionally recognized for their central role in hemostasis, many lines of research clearly demonstrate these rather ubiquitous blood components are potent immune modulators and effectors. Platelets have been shown to directly recognize, sequester and kill pathogens, to activated and recruit leukocytes to sites of infection and inflammation, and to modulate leukocyte behavior, enhancing their ability to phagocytose and kill pathogens and inducing unique effector functions, such as the production of Neutrophil Extracellular Traps (NETs). This multifaceted response to infection and inflammation is due, in part, to the huge array of soluble mediators and cell surface molecules expressed by platelets. From their earliest origins as primordial hemocytes in invertebrates to their current form as megakaryocyte-derived cytoplasts, platelets have evolved to be one of the key regulators of host intravascular immunity and inflammation. In this review, we present the diverse roles platelets play in immunity and inflammation associated with autoimmune diseases and infection. Additionally, we highlight recent advances in our understanding of platelet behavior made possible through the use of advanced imaging techniques that allow us to visualize platelets and their interactions, in real-time, within the intact blood vessels of a living host.

  4. UCP2, a mitochondrial protein regulated at multiple levels.

    Science.gov (United States)

    Donadelli, Massimo; Dando, Ilaria; Fiorini, Claudia; Palmieri, Marta

    2014-04-01

    An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.

  5. Platelet function tests: a comparative review

    Directory of Open Access Journals (Sweden)

    Paniccia R

    2015-02-01

    Full Text Available Rita Paniccia,1,2 Raffaella Priora,1,2 Agatina Alessandrello Liotta,2 Rosanna Abbate1,2 1Department of Experimental and Clinical Medicine, Thrombosis Center, University of Florence, Florence, Italy; 2Department of Heart and Vessels, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy Abstract: In physiological hemostasis a prompt recruitment of platelets on the vessel damage prevents the bleeding by the rapid formation of a platelet plug. Qualitative and/or quantitative platelet defects promote bleeding, whereas the high residual reactivity of platelets in patients on antiplatelet therapies moves forward thromboembolic complications. The biochemical mechanisms of the different phases of platelet activation – adhesion, shape change, release reaction, and aggregation – have been well delineated, whereas their complete translation into laboratory assays has not been so fulfilled. Laboratory tests of platelet function, such as bleeding time, light transmission platelet aggregation, lumiaggregometry, impedance aggregometry on whole blood, and platelet activation investigated by flow cytometry, are traditionally utilized for diagnosing hemostatic disorders and managing patients with platelet and hemostatic defects, but their use is still limited to specialized laboratories. To date, a point-of-care testing (POCT dedicated to platelet function, using pertinent devices much simpler to use, has now become available (ie, PFA-100, VerifyNow System, Multiplate Electrode Aggregometry [MEA]. POCT includes new methodologies which may be used in critical clinical settings and also in general laboratories because they are rapid and easy to use, employing whole blood without the necessity of sample processing. Actually, these different platelet methodologies for the evaluation of inherited and acquired bleeding disorders and/or for monitoring antiplatelet therapies are spreading and the study of platelet function is strengthening. In this review, well

  6. Bone marrow myeloid cells in regulation of multiple myeloma progression.

    Science.gov (United States)

    Herlihy, Sarah E; Lin, Cindy; Nefedova, Yulia

    2017-08-01

    Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.

  7. Platelet cytoskeleton and its hemostatic role.

    Science.gov (United States)

    Cerecedo, Doris

    2013-12-01

    Upon vascular injury, platelets adhere to the exposed extracellular matrix, which triggers the platelet activation and aggregation to form a hemostatic plug to seal the wound. All of these events involve dramatic changes in shape because of the cytoskeleton reorganization. The versatility of the cytoskeleton's main elements depends on the biochemical nature of the elements, as well as on the associated proteins that confer multiple functions within the cell. The list of these associated proteins grows actively, increasing our knowledge concerning the complexity of platelet cytoskeleton machinery. The present review evidences the recently described platelet proteins that promote characteristic modifications in their cytoskeleton organization, with special focus on the dystrophin-glycoprotein complex.

  8. Plant Peroxisome Multiplication: Highly Regulated and Still Enigmatic

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Plant peroxisomes play a key role in numerous physiological processes and are able to adapt to environmental changes by altering their content, morphology, and abundance. Peroxisomes can multiply through elongation, constriction, and fission; this process requires the action of conserved, as well as species-specific proteins. Genetic and morphological analyses have been used with the model plant Arabidopsis thaliana to determine at the mechanistic level how plant peroxisomes increase their abundance. The five-member PEX11 family promotes early steps of peroxisome multiplication with an unknown mechanism and some subfamily specificities. The dynamin-related protein (DRP)3 subfamily of dynaminrelated large guanosine triphosphatases mediates late steps of both peroxisomal and mitochondrial multiplication. New genetic and biochemical tools will be needed to identify additional, especially plant-specific, constituents of the peroxisome multiplication pathways.

  9. Platelet Function Tests

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Platelet Function Tests Share this page: Was this page helpful? ... their patients by ordering one or more platelet function tests. Platelet function testing may include one or more of ...

  10. Congenital platelet function defects

    Science.gov (United States)

    ... storage pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... Congenital platelet function defects are bleeding disorders that ... function, even though there are normal platelet numbers. Most ...

  11. Platelet-rich plasma stimulates human dermal fibroblast proliferation via a Ras-dependent extracellular signal-regulated kinase 1/2 pathway.

    Science.gov (United States)

    Hara, Tomoya; Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Lai, Fangyuan; Kusumoto, Kenji

    2016-12-01

    Platelet-rich plasma (PRP) contains a high concentration of several growth factors and contributes to soft-tissue engineering and wound healing. However, the effect of PRP on human dermal fibroblast proliferation and responses is unknown. This was investigated in the present study using PRP prepared from the whole human blood using the double-spin method. Human dermal fibroblast cultures were established from skin samples collected during plastic surgery. Platelet concentration and growth factor levels in PRP were estimated, and a cell proliferation assay was carried out after PRP treatment. The role of Ras-dependent extracellular signal-regulated kinase (ERK)1/2 in the effects of PRP was investigated in human dermal fibroblasts by suppressing ERK1/2 expression with an inhibitor or by short interfering (si)RNA-mediated knockdown, and assessing ERK1/2 phosphorylation by western blotting as well as proliferation in PRP-treated cells. We found that PRP stimulated human dermal fibroblast proliferation, which was suppressed by ERK1/2 inhibitor treatment (P < 0.01). ERK1/2 phosphorylation was increased in the presence of PRP, while siRNA-mediated knockdown of ERK1/2 blocked cell proliferation normally induced by PRP treatment (P < 0.01). These results demonstrate that PRP induces human dermal fibroblast proliferation via activation of ERK1/2 signaling. Our findings provide a basis for the development of agents that can promote wound healing and can be applied to soft-tissue engineering.

  12. Protein Kinase A Regulates 3-Phosphatidylinositide Dynamics during Platelet-derived Growth Factor-induced Membrane Ruffling and Chemotaxis*S⃞

    Science.gov (United States)

    Deming, Paula B.; Campbell, Shirley L.; Baldor, Linda C.; Howe, Alan K.

    2008-01-01

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP3) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP3-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP3 following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP3 dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP3 marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP3 and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP3/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events. PMID:18936099

  13. Small RNAs as potential platelet therapeutics.

    Science.gov (United States)

    Edelstein, Leonard C; Bray, Paul F

    2012-01-01

    MicroRNAs (miRNAs) are 21-23 nucleotide RNAs that regulate more than 60% of mammalian protein coding genes. miRNAs play critical roles in hematopoiesis and megakaryocyte function and development. Platelets, in addition to possessing functional miRNA processing machinery, have miRNA levels that have been correlated with platelet reactivity, and these miRNAs have been shown to target mRNAs that encode proteins that alter platelet function. There are potential uses of platelet miRNA as biomarkers and therapeutic agents. Due to the ability of platelets to release miRNA-containing microparticles at sites of activation, including angiogenic regions, tumors, and atherosclerotic plaques, there is the possibility of engineering platelets to deliver miRNA-based therapies to these sites. Cellpreferential expression of miRNAs could be exploited to restrict transgene expression in hematopoietic stem cell gene therapy to the desired lineage, including megakaryocytes and platelets. Finally, manipulation of gene expression in stored platelets may allow more effective platelet storage. Although much work remains to be done, there is great potential in miRNA-based platelet therapies.

  14. Platelet MicroRNAs: An Overview.

    Science.gov (United States)

    Dahiya, Neetu; Sarachana, Tewarit; Vu, Long; Becker, Kevin G; Wood, William H; Zhang, Yongqing; Atreya, Chintamani D

    2015-10-01

    MicroRNAs (miRNAs) are short ~22-nucleotide noncoding RNA that have been found to influence the expression of many genes and cellular processes by either repressing translation or degrading messenger RNA transcripts. Platelet miRNA expression has been shown to be perturbed during ex vivo storage of platelets and in platelet-associated disorders. Although bioinformatics-based miRNA target predictions have been established, direct experimental validation of the role of miRNAs in platelet biology has been rather slow. Target prediction studies are, nonetheless, valuable in directing the design of appropriate experiments to test specific miRNA:messenger RNA interactions relevant to the underlying mechanisms of platelet function in general and in disease as well as in ex vivo storage-associated "storage lesions," a collective term used to include physiologic, biochemical, and morphologic changes that occur in stored platelets. This brief review will focus on emerging human platelet miRNA studies to emphasize their potential role relevant to transfusion medicine field in terms of regulating platelet signaling pathways, markers of platelet associated disorders, and remote impactors of gene expression (intercellular biomodulators) as well as potential platelet quality markers of storage and pathogen reduction treatments.

  15. Role of prolactin in B cell regulation in multiple sclerosis.

    Science.gov (United States)

    Correale, Jorge; Farez, Mauricio F; Ysrraelit, María Célica

    2014-04-15

    The role of prolactin in MS pathogenesis was investigated. Prolactin levels were higher in MS subjects both during remission and exacerbation compared to control subjects. Prolactin increased JAK2 expression and Stat phosphorylation on B cells, up-regulated anti-MOG antibody secreting cell numbers, BAFF levels, and Bcl-2expression, and down-regulated expression of Trp63. Prolactin levels correlated positively with anti-MOG secreting cell numbers, and negatively with induced apoptotic B cells. Additionally, prolactin decreased B cell receptor-mediated activation threshold, and induced CD40 expression in B cells. These findings suggest that prolactin promotes B cell autoreactivity in MS through different mechanisms.

  16. Regulation of Insulin Gene Transcription by Multiple Histone Acetyltransferases

    OpenAIRE

    2012-01-01

    Glucose-stimulated insulin gene transcription is mainly regulated by a 340-bp promoter region upstream of the transcription start site by beta-cell-enriched transcription factors Pdx-1, MafA, and NeuroD1. Previous studies have shown that histone H4 hyperacetylation is important for acute up-regulation of insulin gene transcription. Until now, only the histone acetyltransferase (HAT) protein p300 has been shown to be involved in this histone H4 acetylation event. In this report we investigated...

  17. Effect of Puumala hantavirus infection on Human Umbilical Vein Endothelial Cell hemostatic function: platelet interactions, increased tissue factor expression and fibrinolysis regulator release

    Directory of Open Access Journals (Sweden)

    Marco eGoeijenbier

    2015-03-01

    Full Text Available Puumala virus (PUUV infection causes over 5000 cases of hemorrhagic fever in Europe annually and can influence the hemostatic balance extensively. Infection might lead to hemorrhage, while a recent study showed an increased risk of myocardial infarction during or shortly after PUUV infection. The mechanism by which this hantavirus influences the coagulation system remains unknown. Therefore we aimed to elucidate mechanisms explaining alterations seen in primary and secondary hemostasis during PUUV infection. By using low passage PUUV isolates to infect primary human umbilical vein endothelial cells (HUVECs we were able to show alterations in the regulation of primary- and secondary hemostasis and in the release of fibrinolysis regulators. Our main finding was an activation of secondary hemostasis due to increased tissue factor expression leading to increased thrombin generation in a functional assay. Furthermore, we showed that during infection platelets adhered to HUVECs and subsequently specifically to PUUV virus particles. Infection of HUVECs with PUUV did not result in increased von Willebrand factor while they produced more plasminogen activator inhibitor type-1 (PAI-1 compared to controls. The PAI-1 produced in this model formed complexes with vitronectin. This is the first report that reveals a potential mechanism behind the pro-coagulant changes in PUUV patients, which could be the result of increased thrombin generation due to an increased tissue factor expression on endothelial cells during infection. Furthermore, we provide insight into the contribution of endothelial cell responses regarding hemostasis in PUUV pathogenesis.

  18. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-02-24

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Sestrin 2 protein regulates platelet-derived growth factor receptor β (Pdgfrβ) expression by modulating proteasomal and Nrf2 transcription factor functions.

    Science.gov (United States)

    Tomasovic, Ana; Kurrle, Nina; Sürün, Duran; Heidler, Juliana; Husnjak, Koraljka; Poser, Ina; Schnütgen, Frank; Scheibe, Susan; Seimetz, Michael; Jaksch, Peter; Hyman, Anthony; Weissmann, Norbert; von Melchner, Harald

    2015-04-10

    We recently identified the antioxidant protein Sestrin 2 (Sesn2) as a suppressor of platelet-derived growth factor receptor β (Pdgfrβ) signaling and Pdgfrβ signaling as an inducer of lung regeneration and injury repair. Here, we identified Sesn2 and the antioxidant gene inducer nuclear factor erythroid 2-related factor 2 (Nrf2) as positive regulators of proteasomal function. Inactivation of Sesn2 or Nrf2 induced reactive oxygen species-mediated proteasomal inhibition and Pdgfrβ accumulation. Using bacterial artificial chromosome (BAC) transgenic HeLa and mouse embryonic stem cells stably expressing enhanced green fluorescent protein-tagged Sesn2 at nearly endogenous levels, we also showed that Sesn2 physically interacts with 2-Cys peroxiredoxins and Nrf2 albeit under different reductive conditions. Overall, we characterized a novel, redox-sensitive Sesn2/Pdgfrβ suppressor pathway that negatively interferes with lung regeneration and is up-regulated in the emphysematous lungs of patients with chronic obstructive pulmonary disease (COPD).

  20. Culture and regulation of osteoblasts in multiple myeloma patients

    Institute of Scientific and Technical Information of China (English)

    高珊

    2014-01-01

    Objective To investigate the biological characteristics of osteoblasts cultured in vitro from bone marrow(BM)of multiple myeloma(MM)patients and to explore their generation and osteogenic potential.Effects of some factors such as bortezomib and MM patient serum on the osteoblasts were observed.Methods Twenty MM patients and 10 healthy donors as controls were enrolled in this study.Osteoblasts from MM patients’BM were cultured

  1. The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation.

    Directory of Open Access Journals (Sweden)

    Tae Hyuk Kang

    Full Text Available The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT cause the severe neurodevelopmental Lesch Nyhan Disease (LND are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer's and Huntington's disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.

  2. The multiple levels of regulation by p53 ubiquitination

    OpenAIRE

    Lee, JT; Gu, W

    2010-01-01

    p53 is a central integrator of a plethora of signals and outputs these signals in the form of tumor suppression. It is well accepted that ubiquitination plays a major part in p53 regulation. Nonetheless, the molecular mechanisms by which p53 activity is controlled by ubiquitination are complex. Mdm2, a RING oncoprotein, was once thought to be the sole E3 ubiquitin ligase for p53, however recent studies have shown that p53 is stabilized but still degraded in the cells of Mdm2-null mice. Althou...

  3. Multiple Catalase Genes Are Differentially Regulated in Aspergillus nidulans

    OpenAIRE

    Kawasaki, Laura; Aguirre, Jesús

    2001-01-01

    Detoxification of hydrogen peroxide is a fundamental aspect of the cellular antioxidant responses in which catalases play a major role. Two differentially regulated catalase genes, catA and catB, have been studied in Aspergillus nidulans. Here we have characterized a third catalase gene, designated catC, which predicts a 475-amino-acid polypeptide containing a peroxisome-targeting signal. With a molecular mass of 54 kDa, CatC shows high similarity to other small-subunit monofunctional catalas...

  4. Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus), Prevents Platelet Activation in Human Platelets

    OpenAIRE

    Ye-Ming Lee; Kuo-Hsien Hsieh; Wan-Jung Lu; Hsiu-Chu Chou; Duen-Suey Chou; Li-Ming Lien; Joen-Rong Sheu; Kuan-Hung Lin

    2012-01-01

    Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulus L.). Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation...

  5. A platelet monoclonal antibody inhibition assay for detection of glycoprotein IIb/IIIa-related platelet alloantibodies.

    Science.gov (United States)

    Reiner, A P; Teramura, G; Nelson, K A; Slichter, S J

    1995-08-18

    Post-transfusion purpura (PTP) and neonatal alloimmune thrombocytopenia (NAT) result from formation of alloantibodies to platelet membrane glycoprotein-associated antigens. The detection and identification of platelet-specific alloantibodies in patient sera is often complicated by the presence of co-existing HLA antibodies and/or more than one platelet specificity in the same serum. We describe a solid phase assay that specifically detects antibodies to platelet membrane associated alloantigens by measuring the ability of patient antisera to inhibit the binding of glycoprotein GPIIb or GPIIIa monoclonal antibodies to intact platelets. When tested in the GPIIIa assay against a panel of random platelet donors, the reactivities of two known PLAI antisera that also contained different HLA antibodies were highly correlated (r = 0.99) and allowed PLA phenotyping of the population. A standard direct binding platelet ELISA, on the other hand, was unable to accurately PLA phenotype the same population. The reactivities of two known Baka antisera (one containing additional anti-PLA2 and the other anti-Brb specificities) were highly correlated (r = 0.95) in the GPIIb assay, and Bak phenotype determination was similarly accomplished for a random platelet panel. Furthermore, a comparison of platelet phenotype results (using the monoclonal inhibition assay) and genotype results (using DNA analysis) for the PLA and Bak systems showed a concordance of 98% for 146 alleles tested. In conclusion, the platelet monoclonal antibody inhibition assay: (1) allows determination of platelet-specific alloantibodies in the presence of contaminating HLA antibodies and/or in sera containing multiple platelet alloantibodies; (2) allows accurate platelet phenotyping for the GPIIIa-associated PLA and GPIIb-associated Bak antigen systems; and (3) may be applicable to the detection of other known or even novel platelet glycoprotein-associated antigens.

  6. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones.

    Science.gov (United States)

    Lodish, Harvey; Flygare, Johan; Chou, Song

    2010-07-01

    This article reviews the regulation of production of red blood cells at several levels: (1) the ability of erythropoietin and adhesion to a fibronectin matrix to stimulate the rapid production of red cells by inducing terminal proliferation and differentiation of committed erythroid CFU-E progenitors; (2) the regulated expansion of the pool of earlier BFU-E erythroid progenitors by glucocorticoids and other factors that occurs during chronic anemia or inflammation; and (3) the expansion of thehematopoietic cell pool to produce more progenitors of all hematopoietic lineages.

  7. Regulation of human glia by multiple sclerosis disease modifying therapies.

    Science.gov (United States)

    Healy, Luke M; Michell-Robinson, Mackenzie A; Antel, Jack P

    2015-11-01

    This review focuses on the effects of the agents currently approved (or in late clinical trials) as therapies for multiple sclerosis (MS) on the glial cell populations of the central nervous system (CNS). These are comprised of astrocytes, microglia, and oligodendrocytes (OLs), and their progenitors (OPCs). Although the efficacy of these agents is to date established only for the relapsing component of the disease and linked to effects on the systemic immune system, each has been examined with regard to effects on the CNS compartment. The impact of therapies on glia would include modulating these cells immune reactivity, which is considered to underlie the tissue injury process in MS and to any subsequent repair process. As reviewed, these agents can exert their effects either indirectly by modulating the constituents of the systemic immune system or directly depending on their capacity to traverse the blood brain barrier (BBB). Most available data has been derived from administration of these agents in animal models or application to glial cells in vitro. The challenge remains of translating these observations into effective means to impact on the progressive course of disease and reverse existent disabilities.

  8. Involvement of p38 mitogen-activated protein kinase in the regulation of platelet-derived growth factor induced cell migration

    Institute of Scientific and Technical Information of China (English)

    GONG Xiaowei; WEI Jie; LI Yusheng; CHENG Weiwei; DENG Peng; JIANG Yong

    2007-01-01

    The aim of this study was to investigate the role of p38 mitogen-activated protein kinase(MAPK)in cell migration induced by platelet-derived growth factor (PDGF).Western blot was performed to detect the phosphorylation of p38 in NIH3T3 cells treated with PDGF.A Transwell cell migration system was used to determine the effects of PDGF treatment on the migration of NIH3T3 cells and the influence of p38 deficiency on this process in a p38 gene knockout (p38-/-)mouse embryonic fibroblast cell line.On the stimulation Of PDGF,the migration of NIH3T3 cells was significantly increased(P<0.001)compared to the control and p38 MAP kinase was simultaneously phosphorylated.Furthermore,the PDGF-induced cell migration was significantly blocked in p38 gene knockout(p38-/-)mouse embryonic fibroblasts (MEFs)(P<0.001) as compared with the wild type cells(p38+/+).p38 MAPK plays an important role in the regulation of cell migration induced by PDGF.

  9. Cdc42 and Rac family GTPases regulate mode and speed but not direction of primary fibroblast migration during platelet-derived growth factor-dependent chemotaxis.

    Science.gov (United States)

    Monypenny, James; Zicha, Daniel; Higashida, Chiharu; Oceguera-Yanez, Fabian; Narumiya, Shuh; Watanabe, Naoki

    2009-05-01

    Cdc42 and Rac family GTPases are important regulators of morphology, motility, and polarity in a variety of mammalian cell types. However, comprehensive analysis of their roles in the morphological and behavioral aspects of chemotaxis within a single experimental system is still lacking. Here we demonstrate using a direct viewing chemotaxis assay that of all of the Cdc42/Rac1-related GTPases expressed in primary fibroblasts, Cdc42, Rac1, and RhoG are required for efficient migration towards platelet-derived growth factor (PDGF). During migration, Cdc42-, Rac1-, and RhoG-deficient cells show aberrant morphology characterized as cell elongation and cell body rounding, loss of lamellipodia, and formation of thick membrane extensions, respectively. Analysis of individual cell trajectories reveals that cell speed is significantly reduced, as well as persistence, but to a smaller degree, while the directional response to the gradient of PDGF is not affected. Combined knockdown of Cdc42, Rac1, and RhoG results in greater inhibition of cell speed than when each protein is knocked down alone, but the cells are still capable of migrating toward PDGF. We conclude that, Cdc42, Rac1, and RhoG function cooperatively during cell migration and that, while each GTPase is implicated in the control of morphology and cell speed, these and other Cdc42/Rac-related GTPases are not essential for the directional response toward PDGF.

  10. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  11. Platelet concentrates, from whole blood or collected by apheresis?

    Science.gov (United States)

    van der Meer, Pieter F

    2013-04-01

    Platelet concentrates can be isolated from donated whole blood with the platelet-rich plasma-method or the buffy coat-method. Alternatively, platelets can be obtained by apheresis, harvesting the platelets but returning all other cells to the donor. The quality and characteristics of platelets during storage are affected by a number of factors, such as anticoagulant, centrifugation and processing after collection, and pre- or post storage pooling, but when comparing literature on the various methods, most differences balance out. To have sufficient platelets to treat an adult patient, whole-blood-derived platelet concentrates need pooling of multiple donations, thereby increasing the risk of infectious agent transmission at least two-fold as compared with apheresis units. Allo immunization rates, acute reaction rates, and transfusion related acute lung injury rates are not different. Apheresis donation procedures have fewer adverse events. All these factors need to be considered and weighed when selecting a method of platelet collection for a blood center.

  12. Platelet matching for alloimmunized patients

    Institute of Scientific and Technical Information of China (English)

    S H.Hsu

    2010-01-01

    @@ Platelets play an essential role in blood coagulation,hemostasis and maintenance of vascular integrity.Platelets are utilized primarily to prevent or treat bleeding in thrombocytopenic patients and patients with impaired platelet production in the bone marrow and/or with dysfunctional platelets.In current practice,platelet transfusion begins with randomly selected platelet products:either pooled platelets prepared from whole blood derived platelets; or single donor platelets prepared by apheresis procedures.

  13. [The synthesis of proteins in unnucleated blood platelets].

    Science.gov (United States)

    Bijak, Michał; Saluk, Joanna; Ponczek, Michał Błażej Ponczek; Nowak, Paweł; Wachowicz, Barbara

    2013-07-23

    Platelets are the smallest, unnucleated blood cells that play a key role in maintaining normal hemostasis. In the human body about 1x1011 platelets are formed every day, as a the result of complex processes of differentiation, maturation and fragmentation of megakaryocytes. Studies done over 4 decades ago demonstrated that circulating in blood mature platelets can synthesize proteins. Recent discoveries confirm protein synthesis by unnucleated platelets in response to activation. Moreover, protein synthesis alters the phenotype and function of platelets. Platelets synthesize several proteins involved in hemostasis (COX, αIIbβ3, TF PAI-1, Factor XI, protein C inhibitor) and in inflammatory process (IL-1β, CCL5/RANTES). In spite of lack of transcription platelets have a stable mRNA transcripts with a long life correlated with platelet life span. Platelets also show expression of two important key regulators of translation eIF4E and EIF-2α and have a variety of miRNA molecules responsible for translational regulation. This article describes the historical overview of research on protein synthesis by platelets and presents the molecular mechanisms of protein synthesis in activated platelets (and synthesis of the most important platelet proteins).

  14. Hereditary sideroblastic anemia with associated platelet abnormalities.

    Science.gov (United States)

    Soslau, G; Brodsky, I

    1989-12-01

    A 62 year old male (R.H.) presented with a mild anemia (Hb 11-12 gm%) and a history of multiple hemorrhagic episodes. The marrow had 40-50% sideroblasts. Marrow chromosomes were normal. His wife was hematologically normal, while one daughter, age 30 years, had a sideroblastic anemia (Hb 11-12 gm%) with 40-50% sideroblasts in the marrow. Her anemia was first noted at age 15 years. Administration of vitamin B6 did not correct the anemia in either the father or daughter. Platelet abnormalities inherited jointly with this disorder are described for the first time. Both R.H. and his daughter had prolonged bleeding times, with normal PTT, PT times, fVIII:C, fVIII:Ag levels, and vWF multimers, which may rule out a von Willebrand's disease. They have normal platelet numbers but abnormally low platelet adhesiveness and greatly depressed ADP, collagen, and epinephrine responsiveness. Response to ristocetin was in the low normal range, and aggregation with thrombin was normal. While desmopressin completely normalized R.H.'s bleeding time, none of these platelet parameters were improved. No differences in the SDS PAGE protein patterns of RH platelets could be detected in comparison to normal samples. His platelets took up and released serotonin (5HT) normally, and electron micrographs defined no morphological abnormalities. However, no ATP was released from platelets activated with collagen, and when followed by thrombin about fourfold greater ATP was released by control platelets as compared to RH platelets. The dense granule fraction derived from RH platelets contained about 20% the level of ATP, 40% the level of ADP, and 50% the level of 5HT detected in a normal sample. The results indicate that the bleeding disorder is related to a non-classical heritable storage pool defect. The connection between the inherited sideroblastic anemia and platelet defects is obscure.

  15. Characterization of human platelet binding of recombinant T cell receptor ligand

    Directory of Open Access Journals (Sweden)

    Meza-Romero Roberto

    2010-11-01

    Full Text Available Abstract Background Recombinant T cell receptor ligands (RTLs are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS. RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE. The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood. Methods We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function. Results Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen. Conclusions Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.

  16. Polydatin regulates proliferation, apoptosis and autophagy in multiple myeloma cells through mTOR/p70s6k pathway

    Science.gov (United States)

    Yang, Baojun; Zhao, Shunxin

    2017-01-01

    Background Polydatin (PD) plays an important role in suppressing platelet aggregation, reducing blood lipid, restoring microcirculation and protecting from myocardial ischemia/reperfusion injury and shock. In addition, PD possesses anticancer activity. However, the effect and the mechanism of PD in regulating multiple myeloma (MM) cell survival and death are still unknown. Methods Cell proliferation and apoptosis of RPMI 8226 cells, respectively, were analyzed by cell counting kit8 (CCK-8) assay and flow cytometry. The levels of caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, Bcl-2 and Bax were analyzed by Western blot. Autophagy induced by PD was investigated by detecting the levels of Beclin 1, Atg5, LC3I, LC3II, HSP70 and HSP27. The autophagy inhibitor 3-methyladenine (3-MA), mTOR/p70s6k inhibitor rapamycin, and mTOR activator MHY1485 were used to analyze the mechanism of cell proliferation, apoptosis and autophagy influenced by PD. The phosphorylations of mTOR and p70s6k were detected by Western blot. Results A gradual decrease in cell proliferation of RPMI 8226 cells was observed with an increase in PD concentrations (Pcell apoptosis and autophagy in a concentration-dependent manner. Both 3-MA and MHY1485 reversed the inhibitory effect of PD on cell proliferation and attenuated the positive effect of PD on cell apoptosis and autophagy. The phosphorylation of mTOR and p70s6k was significantly suppressed by PD (Pcell viability (Pcell proliferation and induced apoptosis and autophagy of MM cells via the mTOR/p70s6k signaling pathway in a concentration-dependent manner in vitro, indicating that PD could be a potential anticancer drug for MM therapy.

  17. Erythrocyte-platelet interaction in uncomplicated pregnancy.

    Science.gov (United States)

    Swanepoel, Albe C; Pretorius, Etheresia

    2014-12-01

    Maternal and fetal requirements during uncomplicated pregnancy are associated with changes in the hematopoietic system. Platelets and erythrocytes [red blood cells (RBCs)], and especially their membranes, are involved in coagulation, and their interactions may provide reasons for the changed hematopoietic system during uncomplicated pregnancy. We review literature regarding RBC and platelet membrane structure and interactions during hypercoagulability and hormonal changes. We then study interactions between RBCs and platelets in uncomplicated pregnancy, as their interactions may be one of the reasons for increased hypercoagulability during uncomplicated pregnancy. Scanning electron microscopy was used to study whole blood smears from 90 pregnant females in different phases of pregnancy. Pregnancy-specific interaction was seen between RBCs and platelets. Typically, one or more platelets interacted through platelet spreading and pseudopodia formation with a single RBC. However, multiple interactions with RBCs were also shown for a single platelet. Specific RBC-platelet interaction seen during uncomplicated pregnancy may be caused by increased estrogen and/or increased fibrinogen concentrations. This interaction may contribute to the hypercoagulable state associated with healthy and uncomplicated pregnancy and may also play a fundamental role in gestational thrombocytopenia.

  18. Relationship between platelet and urinary 8-Iso-PGF2α levels in subjects with different degrees of NOX2 regulation.

    Science.gov (United States)

    Carnevale, Roberto; Iuliano, Luigi; Nocella, Cristina; Bartimoccia, Simona; Trapè, Stefano; Russo, Roberta; Gentile, Maria Cristina; Cangemi, Roberto; Loffredo, Lorenzo; Pignatelli, Pasquale; Violi, Francesco

    2013-06-14

    Urinary 8-iso-PGF2α, a marker of oxidative stress, is influenced by the activation of NOX2. It is unclear if platelets 8-iso-PGF2α contribute to urinary 8-iso-PGF2α. In a cross-sectional study, platelet, urinary, and serum 8-iso-PGF2α were determined in subjects with downregulation (X-linked chronic granulomatous disease [X-CGD], n=25) and upregulation (type II diabetic patients [T2D], n=121) of NOX2 and 153 controls matched for sex and age. In diabetic patients (n=18), the above variables were repeated before and after 7 days treatment with 100 mg/day aspirin or 100 mg/day aspirin plus 40 mg/day atorvastatin. In vitro study was performed to see the contribution of blood cells to serum 8-iso-PGF2α. Compared with controls, X-CGD patients had lower platelet, serum, and urinary 8-iso-PGF2α values; conversely, diabetic patients had higher values of 8-iso-PGF2α compared with controls. Urinary 8-iso-PGF2α significantly correlated with both platelet and serum 8-iso-PGF2α in the 2 cohorts. A parallel increase of platelet, serum, and urinary 8-iso-PGF2α by aspirin and a parallel decrease by aspirin plus atorvastatin were detected in the interventional study. In vitro study demonstrated that platelets contribute to 37% of serum 8-iso-PGF2α and that only 13% of it is of extravascular origin. The study suggests that NOX2 contributes to the formation of 8-iso-PGF2α in both platelets and urine. The direct correlation between platelet and urinary 8-iso-PGF2α suggests that, at least partly, urinary 8-iso-PGF2α reflects platelet 8-iso-PGF2α production. Analysis of serum 8-iso-PGF2α may represent a novel tool to investigate the production of 8-iso-PGF2α by blood cells including platelets. URL: ClinicalTrials.gov. Unique Identifier: NCT01250340.

  19. Relationship Between Platelet and Urinary 8‐Iso‐PGF2α Levels in Subjects With Different Degrees of NOX2 Regulation

    Science.gov (United States)

    Carnevale, Roberto; Iuliano, Luigi; Nocella, Cristina; Bartimoccia, Simona; Trapè, Stefano; Russo, Roberta; Gentile, Maria Cristina; Cangemi, Roberto; Loffredo, Lorenzo; Pignatelli, Pasquale; Violi, Francesco

    2013-01-01

    Background Urinary 8‐iso‐PGF2α, a marker of oxidative stress, is influenced by the activation of NOX2. It is unclear if platelets 8‐iso‐PGF2α contribute to urinary 8‐iso‐PGF2α. Methods and Results In a cross‐sectional study, platelet, urinary, and serum 8‐iso‐PGF2α were determined in subjects with downregulation (X‐linked chronic granulomatous disease [X‐CGD], n=25) and upregulation (type II diabetic patients [T2D], n=121) of NOX2 and 153 controls matched for sex and age. In diabetic patients (n=18), the above variables were repeated before and after 7 days treatment with 100 mg/day aspirin or 100 mg/day aspirin plus 40 mg/day atorvastatin. In vitro study was performed to see the contribution of blood cells to serum 8‐iso‐PGF2α. Compared with controls, X‐CGD patients had lower platelet, serum, and urinary 8‐iso‐PGF2α values; conversely, diabetic patients had higher values of 8‐iso‐PGF2α compared with controls. Urinary 8‐iso‐PGF2α significantly correlated with both platelet and serum 8‐iso‐PGF2α in the 2 cohorts. A parallel increase of platelet, serum, and urinary 8‐iso‐PGF2α by aspirin and a parallel decrease by aspirin plus atorvastatin were detected in the interventional study. In vitro study demonstrated that platelets contribute to 37% of serum 8‐iso‐PGF2α and that only 13% of it is of extravascular origin. Conclusions The study suggests that NOX2 contributes to the formation of 8‐iso‐PGF2α in both platelets and urine. The direct correlation between platelet and urinary 8‐iso‐PGF2α suggests that, at least partly, urinary 8‐iso‐PGF2α reflects platelet 8‐iso‐PGF2α production. Analysis of serum 8‐iso‐PGF2α may represent a novel tool to investigate the production of 8‐iso‐PGF2α by blood cells including platelets. Clinical Trial Registration URL: ClinicalTrials.gov. Unique Identifier: NCT01250340. PMID:23770972

  20. Enhanced platelet adhesion in essential thrombocythemia after in vitro activation

    Directory of Open Access Journals (Sweden)

    Andreas C. Eriksson

    2010-06-01

    Full Text Available Objective: Essential thrombocythemia (ET is a chronic myeloproliferative disorder characterized by elevated platelet counts and increased risk of thrombosis. Ex vivo data suggest increased platelet reactivity in agreement with the increased thrombosis risk, while in vitro tests often detect decreased platelet activity. The present study aimed to investigate adhesion of ET-platelets in vitro, which is an aspect of platelet function that has been addressed in only a few studies on ET patients. Material and Methods: The study included 30 ET patients and 14 healthy controls. Platelet adhesion was measured with a static platelet adhesion assay. Results: The main finding was that ET-platelets were more readily activated by adhesion-inducing stimuli in vitro than control platelets. This was particularly evident in elderly patients and when using multiple stimuli, such as surfaces of collagen or fibrinogen combined with addition of adenosine 5’-diphosphate or ristocetin. Such multiple stimuli resulted in adhesion above the control mean +2 standard deviations for approximately 50% of the patients.Conclusion: The results are in accordance with the concept of increased platelet activity in ET, but opposite to most other in vitro studies. We suggest that the conditions in the adhesion assay might mimic the in vivo situation regarding the presence of chronic platelet activation.

  1. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    Science.gov (United States)

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  2. Platelets: at the nexus of antimicrobial defence.

    Science.gov (United States)

    Yeaman, Michael R

    2014-06-01

    Platelets have traditionally been viewed as fragmentary mediators of coagulation. However, recent molecular and cellular evidence suggests that they have multiple roles in host defence against infection. From first-responders that detect pathogens and rapidly deploy host-defence peptides, to beacons that recruit and enhance leukocyte functions in the context of infection, to liaisons that facilitate the T cell-B cell crosstalk that is required in adaptive immunity, platelets represent a nexus at the intersection of haemostasis and antimicrobial host defence. In this Review, I consider recent insights into the antimicrobial roles of platelets, which are mediated both directly and indirectly to integrate innate and adaptive immune responses to pathogens.

  3. Clinical application of radiolabelled platelets

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, C. (Medical Univ. Lubeck, Lubeck (DE))

    1990-01-01

    This book presents papers on the clinical applications of radiolabelled platelets. The papers are grouped into six sections on platelet labelling techniques, radiolabelled platelets in cardiology, monitoring of antiplatelet therapy, platelet scintigraphy in stroke patients, platelet scintigraphy in angiology, and platelet scintigraphy in hematology and other clinical applications, including renal transplant rejection.

  4. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    Science.gov (United States)

    Fuentes, Eduardo; Palomo, Iván

    2013-01-01

    Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists. PMID:24324520

  5. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    Directory of Open Access Journals (Sweden)

    Eduardo Fuentes

    2013-01-01

    Full Text Available Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.

  6. Emc, a negative HLH regulator with multiple functions in Drosophila development.

    Science.gov (United States)

    Campuzano, S

    2001-12-20

    Expression and functional analyses of Emc have demonstrated that it is a prototype for a protein required for multiple processes in development. Initially characterized as a negative regulator of sensory organ development, it was later found to regulate many other developmental processes and cell proliferation. Its ability to block the function of bHLH proteins by forming heterodimers, which are ineffective in DNA binding, accounts for the role of Emc in preventing the acquisition of several cell fates which are under the control of bHLH proteins. However, while maintaining this repressive molecular mechanism, emc also appears to act as a positive regulator of differentiation.

  7. Role of platelets in neuroinflammation: a wide-angle perspective

    Directory of Open Access Journals (Sweden)

    Etemadifar Masoud

    2010-02-01

    Full Text Available Abstract Objectives This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. Organization After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. Conclusion The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.

  8. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk.

    Science.gov (United States)

    Zhu, Weifei; Gregory, Jill C; Org, Elin; Buffa, Jennifer A; Gupta, Nilaksh; Wang, Zeneng; Li, Lin; Fu, Xiaoming; Wu, Yuping; Mehrabian, Margarete; Sartor, R Balfour; McIntyre, Thomas M; Silverstein, Roy L; Tang, W H Wilson; DiDonato, Joseph A; Brown, J Mark; Lusis, Aldons J; Hazen, Stanley L

    2016-03-24

    Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.

  9. C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells

    Science.gov (United States)

    Pal, Rekha; Janz, Martin; Galson, Deborah L.; Gries, Margarete; Li, Shirong; Jöhrens, Korinna; Anagnostopoulos, Ioannis; Dörken, Bernd; Mapara, Markus Y.; Borghesi, Lisa; Kardava, Lela; Roodman, G. David; Milcarek, Christine

    2009-01-01

    CCAAT/enhancer-binding protein β (C/EBPβ), also known as nuclear factor–interleukin-6 (NF-IL6), is a transcription factor that plays an important role in the regulation of growth and differentiation of myeloid and lymphoid cells. Mice deficient in C/EBPβ show impaired generation of B lymphocytes. We show that C/EBPβ regulates transcription factors critical for proliferation and survival in multiple myeloma. Multiple myeloma cell lines and primary multiple myeloma cells strongly expressed C/EBPβ, whereas normal B cells and plasma cells had little or no detectable levels of C/EBPβ. Silencing of C/EBPβ led to down-regulation of transcription factors such as IRF4, XBP1, and BLIMP1 accompanied by a strong inhibition of proliferation. Further, silencing of C/EBPβ led to a complete down-regulation of antiapoptotic B-cell lymphoma 2 (BCL2) expression. In chromatin immunoprecipitation assays, C/EBPβ directly bound to the promoter region of IRF4, BLIMP1, and BCL2. Our data indicate that C/EBPβ is involved in the regulatory network of transcription factors that are critical for plasma cell differentiation and survival. Targeting C/EBPβ may provide a novel therapeutic strategy in the treatment of multiple myeloma. PMID:19717648

  10. The expression levels of platelet adhesive receptors in PRP derived platelet concentrates during storage

    Directory of Open Access Journals (Sweden)

    Fatemeh Nassaji

    2016-04-01

    Full Text Available Background: Major platelet adhesive receptors that contribute significantly to thrombus formation include platelet receptor glycoprotein Ibα (GPIbα of the GPIb-IX-V complex and platelet glycoprotein VI (GPVI. GPIbα plays a crucial role in platelet tethering to sub-endothelial matrix, which initiates thrombus formation at arterial shear rates, whereas GPVI is critically involved in platelets firm adhesion to the site of injury regardless of shear condition. During storage, platelets experience some changes that deleteriously affect the expression levels of platelet receptors, which in turn can alter platelet functional behaviors. Considering the important roles of GPIbα and GPVI in platelet adhesion, it seems that any dramatic changes in the expression levels of these receptors can influence adhesive function of transfused platelets. Thereby examining GPIbα and GPVI expression during the storage of platelet concentrates may provide some useful information about the functional quality of these products after transfusion. Methods: In our experimental study, 5 PRP-platelet concentrates were randomly obtained from Iranian Blood Transfusion Organization (IBTO. All the platelet products met the standard quality assessment based on AABB (American Association of Blood Banks guidelines. Washed platelets were subjected to flowcytometry analysis for the evaluation of GPIbα and GPVI receptor expression in day 1, 3 and 5 after storage. Data were presented as mean fluorescence intensity (MFI and analyzed by Kruskal-Wallis test with Dunn’s multiple comparison test. Results: The GPIbα expression on first day (MFI=86±5.9 was reduced three days after storage (MFI= 69±6.9. The expression levels continued to reduce until day 5 in which GPIbα expression was markedly decreased to (MFI= 61±7.7 (P= 0.0094. GPVI expression on the days 1, 3 and 5 after storage were 20.6±3.3, 24±2.5 and 14±4.9, respectively. The results showed a significant decrease of

  11. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators.

    Science.gov (United States)

    Vicente, Cláudia M; Payero, Tamara D; Santos-Aberturas, Javier; Barreales, Eva G; de Pedro, Antonio; Aparicio, Jesús F

    2015-06-01

    PAS-LuxR regulators are highly conserved proteins devoted to the control of antifungal production by binding to operators located in given promoters of polyene biosynthetic genes. The canonical operator of PimM, archetype of this class of regulators, has been used here to search for putative targets of orthologous protein PteF in the genome of Streptomyces avermitilis, finding 97 putative operators outside the pentaene filipin gene cluster (pte). The processes putatively affected included genetic information processing; energy, carbohydrate, and lipid metabolism; DNA replication and repair; morphological differentiation; secondary metabolite biosynthesis; and transcriptional regulation, among others. Seventeen of these operators were selected, and their binding to PimM DNA-binding domain was assessed by electrophoretic mobility shift assays. Strikingly, the protein bound all predicted operators suggesting a direct control over targeted processes. As a proof of concept, we studied the biosynthesis of the ATP-synthase inhibitor oligomycin whose gene cluster included two operators. Regulator mutants showed a severe loss of oligomycin production, whereas gene complementation of the mutant restored phenotype, and gene duplication in the wild-type strain boosted oligomycin production. Comparative gene expression analyses in parental and mutant strains by reverse transcription-quantitative polymerase chain reaction of selected olm genes corroborated production results. These results demonstrate that PteF is able to cross-regulate the biosynthesis of two related secondary metabolites, filipin and oligomycin, but might be extended to all the processes indicated above. This study highlights the complexity of the network of interactions in which PAS-LuxR regulators are involved and opens new possibilities for the manipulation of metabolite production in Streptomycetes.

  12. Patients with previous definite stent thrombosis have a larger fraction of immature platelets and a reduced antiplatelet effect of aspirin

    DEFF Research Database (Denmark)

    Würtz, Morten; Grove, Erik; Wulff, Lise Nielsen;

    turnover. Key Words: aspirin; immature platelets; platelet aggregation; platelet function tests; stent thrombosis Abbreviations: ARU, aspirin reaction units; AU, aggregation units; BMS, bare-metal stent(s); DES, drug-eluting stent(s); IPF, immature platelet fraction; MEA, multiple electrode aggregometry...

  13. Detection of dengue virus in platelets isolated from dengue patients.

    Science.gov (United States)

    Noisakran, Sansanee; Gibbons, Robert V; Songprakhon, Pucharee; Jairungsri, Aroonroong; Ajariyakhajorn, Chuanpis; Nisalak, Ananda; Jarman, Richard G; Malasit, Prida; Chokephaibulkit, Kulkanya; Perng, Guey Chuen

    2009-03-01

    Though thrombocytopenia or dysfunction of platelets is common in dengue virus infection, the role of platelets has not been established. We enrolled 33 hospitalized children with serologically confirmed dengue virus infection. Blood specimens were collected during hospitalization. Platelets and plasma were isolated from the whole blood. Detection of dengue virus in plasma and platelets was carried out by RT-PCR with primers that can differentiate different dengue serotypes simultaneously, and by electron transmission microscopy (EM). Dengue viral RNA was detected in the platelets and plasma by conventional RT-PCR. A significantly higher percentage of dengue viral RNA was detected in platelets than in plasma (p = 0.03). Platelets isolated 5 days after onset of fever were most likely positive for viral RNA. Concurrent infection or co-circulation with multiple dengue serotypes was observed in 12% of patients. Infrequently, negative-stranded dengue viral RNA was detected in platelets and in plasma. Importantly, EM confirmed the presence of dengue viral-like particles inside platelets prepared from dengue patients. Our findings suggest the presence of dengue virus in platelets may be associated with the dysfunction of platelets observed in dengue patients.

  14. The influence of platelets, plasma and red blood cells on functional haemostatic assays.

    Science.gov (United States)

    Bochsen, Louise; Johansson, Pär I; Kristensen, Annemarie T; Daugaard, Gedske; Ostrowski, Sisse R

    2011-04-01

    Functional whole blood haemostatic assays are used increasingly to guide transfusion therapy and monitor medical treatment and are also applied for in-vitro evaluations of the haemostatic potential of stored platelets. We investigated how the cellular and plasmatic elements, both isolated and combined, influenced the two methodologically different assays, thrombelastography (TEG) and impedance aggregometry (Multiplate). Platelet-rich plasma (200 × 10/l) or pure plasma (0 platelets), with and without added red blood cells (RBCs), hematocrit 0, 0.15 or 0.29, were produced in vitro from platelet concentrates, fresh frozen plasma and stored RBC. Pure platelets were investigated by removing plasma components from platelet concentrates by diafiltration against the platelet storage solution Intersol. Plasma was readded by diafiltration against plasma in Intersol. Haemostatic function was evaluated by TEG and Multiplate. In the TEG, increasing amounts of RBC reduced clot strength and clot kinetics (α-angle), most markedly in plasma/RBC without platelets. In contrast, RBC in a platelet concentrate matrix enhanced Multiplate aggregation in response to weak agonists (ADP and arachidonic acid). Furthermore, removing plasma from platelet concentrates eliminated the TEG response and diminished the Multiplate aggregation response, but readding plasma to the pure platelet concentrates restored the response. Each of the elements in whole blood, plasma, platelets and RBC, affected the Multiplate and TEG results differently. The results emphasize that the concentrations of all cellular and plasmatic components in whole blood should be taken into account when interpreting results obtained by TEG and multiplate.

  15. miR-326 Targets Antiapoptotic Bcl-xL and Mediates Apoptosis in Human Platelets

    OpenAIRE

    Shifang Yu; Huicong Huang; Gang Deng; Zuoting Xie; Yincai Ye; Ruide Guo; Xuejiao Cai; Junying Hong; Dingliang Qian; Xiangjing Zhou; Zhihua Tao; Bile Chen; Qiang Li

    2015-01-01

    Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets we...

  16. The influence of platelets, plasma and red blood cells on functional haemostatic assays

    DEFF Research Database (Denmark)

    Bochsen, Louise; Johansson, Pär I.; Kristensen, Annemarie Thuri

    2011-01-01

    and combined, influenced the two methodologically different assays, thrombelastography (TEG) and impedance aggregometry (Multiplate). Platelet-rich plasma (200 × 10/l) or pure plasma (0 platelets), with and without added red blood cells (RBCs), hematocrit 0, 0.15 or 0.29, were produced in vitro from platelet...... concentrates, fresh frozen plasma and stored RBC. Pure platelets were investigated by removing plasma components from platelet concentrates by diafiltration against the platelet storage solution Intersol. Plasma was readded by diafiltration against plasma in Intersol. Haemostatic function was evaluated by TEG...... and Multiplate. In the TEG, increasing amounts of RBC reduced clot strength and clot kinetics (α-angle), most markedly in plasma/RBC without platelets. In contrast, RBC in a platelet concentrate matrix enhanced Multiplate aggregation in response to weak agonists (ADP and arachidonic acid). Furthermore, removing...

  17. Anti-platelet Therapy Resistance – Concept, Mechanisms and Platelet Function Tests in Intensive Care Facilities

    Directory of Open Access Journals (Sweden)

    Mărginean Alina

    2016-01-01

    Full Text Available It is well known that critically ill patients require special attention and additional consideration during their treatment and management. The multiple systems and organ dysfunctions, typical of the critical patient, often results in different patterns of enteral absorption in these patients. Anti-platelet drugs are the cornerstone in treating patients with coronary and cerebrovascular disease. Dual anti-platelet therapy with aspirin and clopidogrel is the treatment of choice in patients undergoing elective percutaneous coronary interventions and is still widely used in patients with acute coronary syndromes. However, despite the use of dual anti-platelet therapy, some patients continue to experience cardiovascular ischemic events. Recurrence of ischemic events is partly attributed to the fact that some patients have poor inhibition of platelet reactivity despite treatment. These patients are considered low- or nonresponders to therapy. The underlying mechanisms leading to resistance are not yet fully elucidated and are probably multifactorial, cellular, genetic and clinical factors being implicated. Several methods have been developed to asses platelet function and can be used to identify patients with persistent platelet reactivity, which have an increased risk of thrombosis. In this paper, the concept of anti-platelet therapy resistance, the underlying mechanisms and the methods used to identify patients with low responsiveness to anti-platelet therapy will be highlighted with a focus on aspirin and clopidogrel therapy and addressing especially critically ill patients.

  18. Advances in regulation of platelet receptors glycoprotein Ⅰb and Ⅳ%血小板特异性受体糖蛋白Ⅰb与Ⅳ的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘云

    2015-01-01

    血小板于机体止凝血过程中发挥至关重要作用.随着对出凝血疾病相关研究的逐步深入,大量相关研究结果证实,血小板特异性受体糖蛋白(GP)Ⅵ与GPⅠb-Ⅸ-Ⅴ复合物中的主要配体结合亚基GPⅠb,在血小板生理功能,如血栓与止凝血过程中起重要调节作用,其表达水平或功能异常与诸多出凝血疾病发生相关.深入研究血小板特异性受体GPⅠ b与GPⅥ的调节机制,有助于评估或预测相关疾病患者出凝血倾向,对指导临床治疗具有重要现实意义.笔者拟就血小板特异性受体GPⅠ b与GPⅥ结构、功能、调节机制及其在出凝血疾病中的临床意义进行综述.%Platelet has been known to play a critical role in thrombosis and hemostasis.Increasing evidence from studies on bleeding or coagulation disorders demonstrates that platelet specific membrane receptor glycoprotein (GP)Ⅵ and GP Ⅰ b subunit of GP Ⅰ b-Ⅸ-Ⅴ complex are the main receptors regulating platelets' function (thrombosis and hemostasis).And abnormal expression or function of GP Ⅰ b and GPⅥ are associated with many bleeding or coagulation disorders,suggesting the importance of these two receptors.Understanding the mechanisms of the regulation of GP Ⅰ b and GPⅥ will be beneficial in the evaluation or prediction of the risk of thrombosis or bleeding in patients,which might provide guidance on the clinical treatment.This article reviews literatures on the structure,function and regulation of platelet receptors GP Ⅰ b and GPⅥ,as well as their clinical significance in human diseases.

  19. Benchmark on Adaptive Regulation - Rejection ofunknown/time-varying multiple narrow band disturbances

    OpenAIRE

    Landau, Ioan Doré; Castellanos Silva, Abraham; Airimitoaie, Tudor-Bogdan; Buche, Gabriel; Noe, Mathieu

    2013-01-01

    International audience; The adaptive regulation is an important issue with a lot of potential for applications in active suspension, active vibration control, disc drives control and active noise control. One of the basic problems from the " control system " point of view is the rejection of multiple unknown and time varying narrow band disturbances without using an additional transducer for getting information upon the disturbances. An adaptive feedback approach has to be considered for this...

  20. Regulation of NF-kB in multiple myeloma: therapeutic implications.

    Science.gov (United States)

    Feinman, Rena; Siegel, David S; Berenson, James

    2004-03-01

    The nuclear factor kappa B (NF-kappaB) family of transcription factors plays a major role in inflammation, immune and stress responses, oncogenesis, cell migration, and angiogenesis. Aberrant activation of NF-kappaB has also been shown to contribute to intrinsic and inducible drug resistance in numerous cancers, including multiple myeloma. The expression of NF-kappaB-responsive targets will vary depending on the cellular context and type of inducer. The regulation of NF-kappaB activity occurs at multiple levels involving the IkappaB kinase (IKK) complex, members of the IkappaB family, recruitment of heterologous transcription factors and coactivators by NF-kappaB, and post-translational modifications of p65. This article highlights regulatory mechanisms responsible for constitutive NF-kappaB activation and provides justification for target-based therapy for NF-kappaB in multiple myeloma.

  1. Lin28 regulates HER2 and promotes malignancy through multiple mechanisms.

    Science.gov (United States)

    Feng, Chen; Neumeister, Veronique; Ma, Wei; Xu, Jie; Lu, Lingeng; Bordeaux, Jennifer; Maihle, Nita J; Rimm, David L; Huang, Yingqun

    2012-07-01

    The RNA binding protein Lin28 and its paralog Lin28B are associated with advanced human malignancies. Blocking the biogenesis of let-7 miRNA, a tumor suppressor, by Lin28/Lin28B has been thought to underlie their roles in cancer. Here we report that the mRNA for the human epidermal growth factor receptor 2 (HER2), a HER-family receptor tyrosine kinase known to play a critical role in cell proliferation and survival and also a major therapeutic target in breast cancer, is among several targets of Lin28 regulation. We show that Lin28 stimulates HER2 expression at the posttranscriptional level, and that enforced Lin28 expression promotes cancer cell growth via multiple mechanisms. Consistent with its pleiotropic role in regulating gene expression, Lin28 overexpression in primary breast tumors is a powerful predictor of poor prognosis, representing the first report on the impact of Lin28 expression on clinical outcome in human cancer. While revealing another layer of regulation of HER2 expression in addition to gene amplification, our studies also suggest novel mechanistic insights linking Lin28 expression to disease outcome and imply that targeting multiple pathways is a common mechanistic theme of Lin28-mediated regulation in cancer.

  2. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

    Science.gov (United States)

    Sample, Susannah J; Behan, Mary; Smith, Lesley; Oldenhoff, William E; Markel, Mark D; Kalscheur, Vicki L; Hao, Zhengling; Miletic, Vjekoslav; Muir, Peter

    2008-09-01

    Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague-Dawley rats (69 +/- 16 days of age). After a single period of loading at -760-, -2000-, or -3750-microepsilon initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.

  3. Preoperative elevated platelet count and thrombocytosis in gynecologic malignancies.

    Science.gov (United States)

    Menczer, Joseph

    2017-01-01

    Platelets have multiple functions and they also play an important role in malignancies. Elevated platelet count and thrombocytosis at the time of diagnosis in patients with many solid tumors correlates with prognosis and is associated with poor survival. The aim of the following report is to review the literature concerning elevated platelet count and thrombocytosis in gynecologic malignancies. A PubMed search of all English literature peer-reviewed publications was performed containing the terms elevated platelet count or thrombocytosis and vulvar cancer, cervical cancer, endometrial cancer, and ovarian cancer. All studies published until December 31, 2015, were included in the following review. A pretreatment elevated platelet count and thrombocytosis have been shown to be associated with a poor prognosis in many studies of gynecologic malignancies with the exception of vulvar carcinoma. Since elevated platelet count and thrombocytosis may be prevented by blocking thrombopoietic cytokines, their assessment may, in the future, be of therapeutic significance.

  4. Platelet function testing: methods of assessment and clinical utility.

    LENUS (Irish Health Repository)

    Mylotte, Darren

    2012-02-01

    Platelets play a central role in the regulation of both thrombosis and haemostasis yet tests of platelet function have, until recently, been exclusively used in the diagnosis and management of bleeding disorders. Recent advances have demonstrated the clinical utility of platelet function testing in patients with cardiovascular disease. The ex vivo measurement of response to antiplatelet therapies (aspirin and clopidogrel), by an ever-increasing array of platelet function tests, is with some assays, predictive of adverse clinical events and thus, represents an emerging area of interest for both the clinician and basic scientist. This review article will describe the advantages and disadvantages of the currently available methods of measuring platelet function and discuss both the limitations and emerging data supporting the role of platelet function studies in clinical practice.

  5. Platelet function testing: methods of assessment and clinical utility.

    LENUS (Irish Health Repository)

    Mylotte, Darren

    2011-01-01

    Platelets play a central role in the regulation of both thrombosis and haemostasis yet tests of platelet function have, until recently, been exclusively used in the diagnosis and management of bleeding disorders. Recent advances have demonstrated the clinical utility of platelet function testing in patients with cardiovascular disease. The ex vivo measurement of response to antiplatelet therapies (aspirin and clopidogrel), by an ever-increasing array of platelet function tests, is with some assays, predictive of adverse clinical events and thus, represents an emerging area of interest for both the clinician and basic scientist. This review article will describe the advantages and disadvantages of the currently available methods of measuring platelet function and discuss both the limitations and emerging data supporting the role of platelet function studies in clinical practice.

  6. A novel inflammatory role for platelets in sickle cell disease.

    Science.gov (United States)

    Davila, Jennifer; Manwani, Deepa; Vasovic, Ljiljana; Avanzi, Mauro; Uehlinger, Joan; Ireland, Karen; Mitchell, W Beau

    2015-01-01

    The severe pain, ischemia and organ damage that characterizes sickle cell disease (SCD) is caused by vaso-occlusion, which is the blockage of blood vessels by heterotypic aggregates of sickled erythrocytes and other cells. Vaso-occlusion is also a vasculopathy involving endothelial cell dysfunction, leukocyte activation, platelet activation and chronic inflammation resulting in the multiple adhesive interactions between cellular elements. Since platelets mediate inflammation as well as thrombosis via release of pro- and anti-inflammatory molecules, we hypothesized that platelets may play an active inflammatory role in SCD by secreting increased amounts of cytokines. Since platelets have been shown to contain mRNA and actively produce proteins, we also hypothesized that SCD platelets may contain increased cytokine mRNA. In this cross-sectional study, we sought to compare both the quantity of cytokines secreted and the cytokine mRNA content, between SCD and control platelets. We measured the secretion of Th1, Th2, and Th17-related cytokines from platelets in a cohort of SCD patients. We simultaneously measured platelet mRNA levels of those cytokines. Platelets from SCD patients secreted increased quantities of IL-1β, sCD40L, and IL-6 compared to controls. Secretion was increased in patients with alloantibodies. Additionally, mRNA of those cytokines was increased in SCD platelets. Platelets from sickle cell patients secrete increased amounts of inflammatory cytokines, and contain increased cytokine mRNA. These findings suggest a novel immunological role for platelets in SCD vasculopathy, in addition to their thrombotic role, and strengthen the rationale for the use of anti-platelet therapy in SCD.

  7. Platelet alloimmunization after transfusion

    DEFF Research Database (Denmark)

    Taaning, E; Simonsen, A C; Hjelms, E;

    1997-01-01

    BACKGROUND AND OBJECTIVES: The frequency of platelet-specific antibodies after one series of blood transfusions has not been reported, and in multiply transfused patients is controversial. MATERIALS AND METHODS: We studied the frequency of alloimmunization against platelet antigens in 117 patient...

  8. Flavanols and Platelet Reactivity

    Directory of Open Access Journals (Sweden)

    Debra A. Pearson

    2005-01-01

    Full Text Available Platelet activity and platelet-endothelial cell interactions are important in the acute development of thrombosis, as well as in the pathogenesis of cardiovascular disease. An increasing number of foods have been reported to have platelet-inhibitory actions, and research with a number of flavanol-rich foods, including, grape juice, cocoa and chocolate, suggests that these foods may provide some protection against thrombosis. In the present report, we review a series of in vivo studies on the effects of flavanol-rich cocoa and chocolate on platelet activation and platelet-dependent primary hemostasis. Consumption of flavanol-rich cocoa inhibited several measures of platelet activity including, epinephrine- and ADP-induced glycoprotein (GP IIb/IIIa and P-Selectin expression, platelet microparticle formation, and epinephrine-collagen and ADP-collagen induced primary hemostasis. The epinephrine-induced inhibitory effects on GP IIb/IIIa and primary hemostasis were similar to, though less robust than those associated with the use of low dose (81 mg aspirin. These data, coupled with information from other studies, support the concept that flavanols present in cocoa and chocolate can modulate platelet function through a multitude of pathways.

  9. Platelet activation and aggregation

    DEFF Research Database (Denmark)

    Jensen, Maria Sander; Larsen, O H; Christiansen, Kirsten

    2013-01-01

    This study introduces a new laboratory model of whole blood platelet aggregation stimulated by endogenously generated thrombin, and explores this aspect in haemophilia A in which impaired thrombin generation is a major hallmark. The method was established to measure platelet aggregation initiated...

  10. Platelet turnover in stable coronary artery disease - influence of thrombopoietin and low-grade inflammation.

    Directory of Open Access Journals (Sweden)

    Sanne Bøjet Larsen

    Full Text Available BACKGROUND: Newly formed platelets are associated with increased aggregation and adverse outcomes in patients with coronary artery disease (CAD. The mechanisms involved in the regulation of platelet turnover in patients with CAD are largely unknown. AIM: To investigate associations between platelet turnover parameters, thrombopoietin and markers of low-grade inflammation in patients with stable CAD. Furthermore, to explore the relationship between platelet turnover parameters and type 2 diabetes, prior myocardial infarction, smoking, age, gender and renal insufficiency. METHODS: We studied 581 stable CAD patients. Platelet turnover parameters (immature platelet fraction, immature platelet count, mean platelet volume, platelet distribution width and platelet large cell-ratio were determined using automated flow cytometry (Sysmex XE-2100. Furthermore, we measured thrombopoietin and evaluated low-grade inflammation by measurement of high-sensitive CRP and interleukin-6. RESULTS: We found strong associations between the immature platelet fraction, immature platelet count, mean platelet volume, platelet distribution width and platelet large cell ratio (r = 0.61-0.99, p<0.0001. Thrombopoietin levels were inversely related to all of the platelet turnover parameters (r = -0.17--0.25, p<0.0001. Moreover, thrombopoietin levels were significantly increased in patients with diabetes (p = 0.03 and in smokers (p = 0.003. Low-grade inflammation evaluated by high-sensitive CRP correlated significantly, yet weakly, with immature platelet count (r = 0.10, p = 0.03 and thrombopoietin (r = 0.16, p<0.001. Also interleukin-6 correlated with thrombopoietin (r = 0.10, p = 0.02. CONCLUSION: In stable CAD patients, thrombopoietin was inversely associated with platelet turnover parameters. Furthermore, thrombopoietin levels were increased in patients with diabetes and in smokers. However, low-grade inflammation did not seem to have a

  11. Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus), Prevents Platelet Activation in Human Platelets.

    Science.gov (United States)

    Lee, Ye-Ming; Hsieh, Kuo-Hsien; Lu, Wan-Jung; Chou, Hsiu-Chu; Chou, Duen-Suey; Lien, Li-Ming; Sheu, Joen-Rong; Lin, Kuan-Hung

    2012-01-01

    Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulus L.). Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation stimulated by collagen. Xanthohumol inhibited platelet activation accompanied by relative [Ca(2+)](i) mobilization, thromboxane A(2) formation, hydroxyl radical (OH(●)) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and Akt phosphorylation. Neither SQ22536, an inhibitor of adenylate cyclase, nor ODQ, an inhibitor of guanylate cyclase, reversed the xanthohumol-mediated inhibitory effect on platelet aggregation. Furthermore, xanthohumol did not significantly increase nitrate formation in platelets. This study demonstrates for the first time that xanthohumol possesses potent antiplatelet activity which may initially inhibit the PI3-kinase/Akt, p38 MAPK, and PLCγ2-PKC cascades, followed by inhibition of the thromboxane A(2) formation, thereby leading to inhibition of [Ca(2+)](i) and finally inhibition of platelet aggregation. Therefore, this novel role of xanthohumol may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.

  12. Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus, Prevents Platelet Activation in Human Platelets

    Directory of Open Access Journals (Sweden)

    Ye-Ming Lee

    2012-01-01

    Full Text Available Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulus L.. Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation stimulated by collagen. Xanthohumol inhibited platelet activation accompanied by relative [Ca2+]i mobilization, thromboxane A2 formation, hydroxyl radical (OH● formation, and phospholipase C (PLCγ2, protein kinase C (PKC, mitogen-activated protein kinase (MAPK, and Akt phosphorylation. Neither SQ22536, an inhibitor of adenylate cyclase, nor ODQ, an inhibitor of guanylate cyclase, reversed the xanthohumol-mediated inhibitory effect on platelet aggregation. Furthermore, xanthohumol did not significantly increase nitrate formation in platelets. This study demonstrates for the first time that xanthohumol possesses potent antiplatelet activity which may initially inhibit the PI3-kinase/Akt, p38 MAPK, and PLCγ2-PKC cascades, followed by inhibition of the thromboxane A2 formation, thereby leading to inhibition of [Ca2+]i and finally inhibition of platelet aggregation. Therefore, this novel role of xanthohumol may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.

  13. Platelet function in dogs

    DEFF Research Database (Denmark)

    Nielsen, Line A.; Zois, Nora Elisabeth; Pedersen, Henrik D.

    2007-01-01

    Cairn Terriers, 10 Boxers, and 11 Labrador Retrievers) were included in the study. Platelet function was assessed by whole-blood aggregation with ADP (1, 5, 10, and 20 µM) as agonist and by PFA-100 using collagen and epinephrine (Col + Epi) and Cpæ + ADP as agonists. Plasma thromboxane B2 concentration......Background: Clinical studies investigating platelet function in dogs have had conflicting results that may be caused by normal physiologic variation in platelet response to agonists. Objectives: The objective of this study was to investigate platelet function in clinically healthy dogs of 4...... different breeds by whole-blood aggregometry and with a point-of-care platelet function analyzer (PFA-100), and to evaluate the effect of acetylsalicylic acid (ASA) administration on the results from both methods. Methods: Forty-five clinically healthy dogs (12 Cavalier King Charles Spaniels [CKCS], 12...

  14. Cisplatin triggers platelet activation.

    Science.gov (United States)

    Togna, G I; Togna, A R; Franconi, M; Caprino, L

    2000-09-01

    Clinical observations suggest that anticancer drugs could contribute to the thrombotic complications of malignancy in treated patients. Thrombotic microangiopathy, myocardial infarction, and cerebrovascular thrombotic events have been reported for cisplatin, a drug widely used in the treatment of many solid tumours. The aim of this study is to explore in vitro cisplatin effect on human platelet reactivity in order to define the potentially active role of platelets in the pathogenesis of cisplatin-induced thrombotic complications. Our results demonstrate that cisplatin increases human platelet reactivity (onset of platelet aggregation wave and thromboxane production) to non-aggregating concentrations of the agonists involving arachidonic acid metabolism. Direct or indirect activation of platelet phospholipase A(2) appears to be implicated. This finding contributes to a better understanding of the pathogenesis of thrombotic complications occurring during cisplatin-based chemotherapy.

  15. Platelet function in dogs

    DEFF Research Database (Denmark)

    Nielsen, Line A.; Zois, Nora Elisabeth; Pedersen, Henrik D.

    2007-01-01

    Background: Clinical studies investigating platelet function in dogs have had conflicting results that may be caused by normal physiologic variation in platelet response to agonists. Objectives: The objective of this study was to investigate platelet function in clinically healthy dogs of 4...... different breeds by whole-blood aggregometry and with a point-of-care platelet function analyzer (PFA-100), and to evaluate the effect of acetylsalicylic acid (ASA) administration on the results from both methods. Methods: Forty-five clinically healthy dogs (12 Cavalier King Charles Spaniels [CKCS], 12...... applied. However, the importance of these breed differences remains to be investigated. The PFA-100 method with Col + Epi as agonists, and ADP-induced platelet aggregation appear to be sensitive to ASA in dogs....

  16. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Directory of Open Access Journals (Sweden)

    Damon Polioudakis

    Full Text Available miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  17. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Science.gov (United States)

    Polioudakis, Damon; Abell, Nathan S; Iyer, Vishwanath R

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  18. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    OpenAIRE

    Maurer-Spurej, Elisabeth; Chipperfield, Kate

    2016-01-01

    High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer's point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest ...

  19. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    OpenAIRE

    Elisabeth Maurer-Spurej; Kate Chipperfield

    2016-01-01

    High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer’s point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest ...

  20. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    OpenAIRE

    Elisabeth Maurer-Spurej; Kate Chipperfield

    2016-01-01

    High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer’s point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest ...

  1. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    Science.gov (United States)

    Chipperfield, Kate

    2016-01-01

    High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer's point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility. PMID:28053805

  2. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    Directory of Open Access Journals (Sweden)

    Elisabeth Maurer-Spurej

    2016-01-01

    Full Text Available High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer’s point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility.

  3. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    Science.gov (United States)

    Maurer-Spurej, Elisabeth; Chipperfield, Kate

    2016-01-01

    High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer's point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility.

  4. NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase

    Directory of Open Access Journals (Sweden)

    Zhimin Gu

    2017-01-01

    Full Text Available Abstract Background Aerobic glycolysis, a hallmark of cancer, is characterized by increased metabolism of glucose and production of lactate in normaxia. Recently, pyruvate kinase M2 (PKM2 has been identified as a key player for regulating aerobic glycolysis and promoting tumor cell proliferation and survival. Methods Tandem affinity purification followed up by mass spectrometry (TAP-MS and co-immunoprecipitation (Co-IP were used to study the interaction between NIMA (never in mitosis gene A-related kinase 2 (NEK2 and heterogeneous nuclear ribonucleoproteins (hnRNP A1/2. RNA immunoprecipitation (RIP was performed to identify NEK2 binding to PKM pre-mRNA sequence. Chromatin-immunoprecipitation (ChIP-PCR was performed to analyze a transcriptional regulation of NEK2 by c-Myc. Western blot and real-time PCR were executed to analyze the regulation of PKM2 by NEK2. Results NEK2 regulates the alternative splicing of PKM immature RNA in multiple myeloma cells by interacting with hnRNPA1/2. RIP shows that NEK2 binds to the intronic sequence flanking exon 9 of PKM pre-mRNA. Knockdown of NEK2 decreases the ratio of PKM2/PKM1 and also other aerobic glycolysis genes including GLUT4, HK2, ENO1, LDHA, and MCT4. Myeloma patients with high expression of NEK2 and PKM2 have lower event-free survival and overall survival. Our data indicate that NEK2 is transcriptionally regulated by c-Myc in myeloma cells. Ectopic expression of NEK2 partially rescues growth inhibition and cell death induced by silenced c-Myc. Conclusions Our studies demonstrate that NEK2 promotes aerobic glycolysis through regulating splicing of PKM and increasing the PKM2/PKM1 ratio in myeloma cells which contributes to its oncogenic activity.

  5. Multiple pathways for steel regulation suggested by genomic and sequence analysis of the murine Steel gene

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, M.A.; Copeland, N.G.; Jenkins, N.A. [NCI-Frederick Cancer Research and Development Center, Frederick, MD (United States)

    1996-03-01

    The Steel (Sl) locus encodes mast cell growth factor (Mgf) that is required for the development of germ cells, hematopoietic cells and melanocytes. Although the expression patterns of the Mgf gene are well characterized, little is known of the factors which regulate its expression. Here, we describe the cloning and sequence of the full-length transcription unit and the 5{prime} flanking region of the murine Mgf gene. The full-length Mgf mRNA consists of a short 5{prime} untranslated region (UTR), a 0.8-kb ORF and a long 3{prime} UTR. A single transcription initiation site is used in a number of mouse tissues and is located just downstream of binding sites for several known transcription factors. In the 5{prime} UTR, two ATGs were found upstream of the initiator methionine and are conserved among different species, suggesting that Mgf may be translationally regulated. At least two Mgf mRNAs are produced by alternative use of polyadenylation sites, but numerous other potential polyadenylation sites were found in the 3{prime} UTR. In addition, the 3{prime} UTR contains numerous sequence motifs that may regulate Mgf mRNA stability. These studies suggest multiple ways in which expression of Mgf may be regulated. 39 refs., 4 figs.

  6. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  7. Consistent Reduction in Periprocedural Myocardial Infarction With Cangrelor as Assessed by Multiple Definitions: Findings From CHAMPION PHOENIX (Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition).

    Science.gov (United States)

    Cavender, Matthew A; Bhatt, Deepak L; Stone, Gregg W; White, Harvey D; Steg, Ph Gabriel; Gibson, C Michael; Hamm, Christian W; Price, Matthew J; Leonardi, Sergio; Prats, Jayne; Deliargyris, Efthymios N; Mahaffey, Kenneth W; Harrington, Robert A

    2016-09-06

    Cangrelor is an intravenous P2Y12 inhibitor approved to reduce periprocedural ischemic events in patients undergoing percutaneous coronary intervention not pretreated with a P2Y12 inhibitor. A total of 11 145 patients were randomized to cangrelor or clopidogrel in the CHAMPION PHOENIX trial (Cangrelor versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition). We explored the effects of cangrelor on myocardial infarction (MI) using different definitions and performed sensitivity analyses on the primary end point of the trial. A total of 462 patients (4.2%) undergoing percutaneous coronary intervention had an MI as defined by the second universal definition. The majority of these MIs (n=433, 93.7%) were type 4a. Treatment with cangrelor reduced the incidence of MI at 48 hours (3.8% versus 4.7%; odds ratio [OR], 0.80; 95% confidence interval [CI], 0.67-0.97; P=0.02). When the Society of Coronary Angiography and Intervention definition of periprocedural MI was applied to potential ischemic events, there were fewer total MIs (n=134); however, the effects of cangrelor on MI remained significant (OR, 0.65; 95% CI, 0.46-0.92; P=0.01). Similar effects were seen in the evaluation of the effects of cangrelor on MIs with peak creatinine kinase-MB ≥10 times the upper limit of normal (OR, 0.64; 95% CI, 0.45-0.91) and those with peak creatinine kinase-MB ≥10 times the upper limit of normal, ischemic symptoms, or ECG changes (OR, 0.63; 95% CI, 0.48-0.84). MIs defined by any of these definitions were associated with increased risk of death at 30 days. Treatment with cangrelor reduced the composite end point of death, MI (Society of Coronary Angiography and Intervention definition), ischemia-driven revascularization, or Academic Research Consortium definite stent thrombosis (1.4% versus 2.1%; OR, 0.69; 95% CI, 0.51-0.92). MI in patients undergoing percutaneous coronary intervention, regardless of definition, remains associated with increased risk of death

  8. Measurement of platelet aggregation, independently of patient platelet count

    DEFF Research Database (Denmark)

    Vinholt, P. J.; Frederiksen, H.; Hvas, A.M.

    2017-01-01

    platelet aggregation ruled out bleeding tendency in thrombocytopenic patients. Summary: Background: Methods for testing platelet aggregation in thrombocytopenia are lacking. Objective: To establish a flow-cytometric test of in vitro platelet aggregation independently of the patient's platelet count......, and examine the association of aggregation with a bleeding history in thrombocytopenic patients. Patients/methods: We established a flow-cytometric assay of platelet aggregation, and measured samples from healthy individuals preincubated with antiplatelet drugs, and samples from two patients with inherited...... platelets at platelet counts of > 10 × 109 L-1; otherwise, platelet isolation was required. The platelet aggregation percentage decreased with increasing antiplatelet drug concentration. Platelet aggregation in patients was reduced as compared with healthy individuals: 42% (interquartile range [IQR] 27...

  9. Role of platelet plasma membrane Ca2+-ATPase in health and disease

    Institute of Scientific and Technical Information of China (English)

    William; L; Dean

    2010-01-01

    Platelets have essential roles in both health and disease. Normal platelet function is required for hemostasis.Inhibition of platelet function in disease or by pharmacological treatment results in bleeding disorders.On the other hand,hyperactive platelets lead to heart attack and stroke.Calcium is a major second messenger in platelet activation,and elevated intracellular calcium leads to hyperactive platelets.Elevated platelet calcium has been documented in hypertension and diabetes;both conditions increase the likelihood of heart attack and stroke. Thus,proper regulation of calcium metabolism in the platelet is extremely important.Plasma membrane Ca2+-ATPase(PMCA)is a major player in platelet calcium metabolism since it provides the only significant route for calcium efflux.In keeping with the important role of calcium in platelet function,PMCA is a highly regulated transporter.In human platelets,PMCA is activated by Ca2+/calmodulin,by cAMP-dependent phosphorylation and by calpain-dependent removal of the inhibitory peptide.It is inhibited by tyrosine phosphorylation and calpain-dependent proteolysis.In addition,the cellular location of PMCA is regulated by a PDZ-domain-dependent interaction with the cytoskeleton during platelet activation.Rapid regulation by phosphorylation results in changes in the rate of platelet activation,whereas calpain-dependent proteolysis and interaction with the cytoskeleton appears to regulate later events such as clot retraction.In hypertension and diabetes,PMCA expression is upregulated while activity is decreased, presumably due to tyrosine phosphorylation.Clearly,a more complete understanding of PMCA function in human platelets could result in the identification of new ways to control platelet function in disease states.

  10. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells

    DEFF Research Database (Denmark)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen

    2010-01-01

    Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co-cultivation of h......-life of osteoblastic PDGFR-alpha mRNA, but did not decrease its promoter activity. In summary, our data show that PDGFR-alpha is downregulated in hOBs by co-cultivation with human primary endothelial cells through a p38 MAPK-dependent post-transcriptional mechanism.......Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co-cultivation...... of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR...

  11. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    Energy Technology Data Exchange (ETDEWEB)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA) State Univ. of New York, Buffalo (USA))

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  12. In vitro model of platelet aggregation in stenotic arteries

    Energy Technology Data Exchange (ETDEWEB)

    Morley, D.; Santamore, W.P.

    1988-07-01

    Clinical and experimental evidence suggest a strong relationship between arterial stenosis, platelet aggregation, and subsequent thrombus formation. To facilitate the study of platelet accumulation in stenotic arteries, we developed an in vitro preparation. Arterial segments were perfused with whole citrated blood. A stenosis was created by applying an external plastic constrictor to the artery. Platelet accumulation within the stenosis was assessed by scanning electron microscopy and by radioactive counts from Indium-111 labeled platelets. Utilizing this preparation, 30 carotid arterial segments from 10 mongrel dogs were perfused at 100 mmHg for 15 min. In 10 arteries without a stenosis, scanning electron microscopy and radioactive counts demonstrated little platelet accumulation. In contrast, extensive platelet aggregation was observed in 10 arteries with stenoses. Moreover, in 10 stenotic arteries exposed to the thromboxane mimetic, U46619 (Upjohn Diagnostic Group), scanning electron microscopy and radioactive counts demonstrated a significant increase in platelet deposition. Conversely, we demonstrated a dimunition of platelet accumulation in stenosed arterial segments exposed to the prostacyclin analogue platelet inhibitor, Iloprost. The in vitro preparation allows precise control of hemodynamic variables and makes it possible to perform multiple tests on segments of the same vessel from the same animal.

  13. The detection of platelet isoantibodies by membrane immunofluorescence.

    Science.gov (United States)

    van der Schans, G S; Veenhoven, W A; Snijder, J A; Nieweg, H O

    1977-07-01

    A membrane ummunofluorescence test for the detection of platelet isoantibodies is described. Gel filtration of the incubation mixture was incorporated in the procedure and proved effective for the removal of serum proteins from the platelet suspension. With this technique isoantibodies were found in the serum of 13 out of a group of 16 patients who had received multiple transfusions. The results were checked by measuring the uptake of 125I-labeled anti-IgG fraction by gel-filtered platelets. Subsequently the membrane immunofluorescence method was also compared with established techniques described for the detection of isoantibodies such as the microtest for lymphocytotoxicity and a complement-fixation method and the procedures based on the release of labeled serotonin, the phagocytosis of chromium-tagged platelets, the increase of platelet factor 3 activity, and on platelet aggregation. We had the opportunity to investigate the serum of one patient for the presence of isoantibodies against platelets from HLA identical siblings both before and after the administration of their platelets. On the basis of this experience it is concluded that the membrane immunofluorescence test for platelet isoantibodies is a relatively simple method with a high degree of specificity and adequate sensitivity.

  14. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications.

    Science.gov (United States)

    Hattangadi, Shilpa M; Wong, Piu; Zhang, Lingbo; Flygare, Johan; Lodish, Harvey F

    2011-12-08

    This article reviews the regulation of production of RBCs at several levels. We focus on the regulated expansion of burst-forming unit-erythroid erythroid progenitors by glucocorticoids and other factors that occur during chronic anemia, inflammation, and other conditions of stress. We also highlight the rapid production of RBCs by the coordinated regulation of terminal proliferation and differentiation of committed erythroid colony-forming unit-erythroid progenitors by external signals, such as erythropoietin and adhesion to a fibronectin matrix. We discuss the complex intracellular networks of coordinated gene regulation by transcription factors, chromatin modifiers, and miRNAs that regulate the different stages of erythropoiesis.

  15. A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers.

    Directory of Open Access Journals (Sweden)

    Kun Yu

    Full Text Available Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270 compared to nonmalignant tissues (n = 71. Comprising genes linked to multiple cancer-related pathways, the restricted expression of this "Poised Gene Cassette" (PGC was robustly validated across 11 independent cohorts of approximately 1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP, which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.

  16. Cell-cycle regulation in green algae dividing by multiple fission.

    Science.gov (United States)

    Bišová, Kateřina; Zachleder, Vilém

    2014-06-01

    Green algae dividing by multiple fission comprise unrelated genera but are connected by one common feature: under optimal growth conditions, they can divide into more than two daughter cells. The number of daughter cells, also known as the division number, is relatively stable for most species and usually ranges from 4 to 16. The number of daughter cells is dictated by growth rate and is modulated by light and temperature. Green algae dividing by multiple fission can thus be used to study coordination of growth and progression of the cell cycle. Algal cultures can be synchronized naturally by alternating light/dark periods so that growth occurs in the light and DNA replication(s) and nuclear and cellular division(s) occur in the dark; synchrony in such cultures is almost 100% and can be maintained indefinitely. Moreover, the pattern of cell-cycle progression can be easily altered by differing growth conditions, allowing for detailed studies of coordination between individual cell-cycle events. Since the 1950s, green algae dividing by multiple fission have been studied as a unique model for cell-cycle regulation. Future sequencing of algal genomes will provide additional, high precision tools for physiological, taxonomic, structural, and molecular studies in these organisms.

  17. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  18. Integration of Multiple Nutrient Cues and Regulation of Lifespan by Ribosomal Transcription Factor Ifh1

    Directory of Open Access Journals (Sweden)

    Ling Cai

    2013-09-01

    Full Text Available Ribosome biogenesis requires an enormous commitment of energy and resources in growing cells. In budding yeast, the transcriptional coactivator Ifh1p is an essential regulator of ribosomal protein (RP gene transcription. Here, we report that Ifh1p is dynamically acetylated and phosphorylated as a function of the growth state of cells. Ifh1p is acetylated at numerous sites in its N-terminal region by Gcn5p and deacetylated by NAD+-dependent deacetylases of the sirtuin family. Acetylation of Ifh1p is responsive to intracellular acetyl-CoA levels and serves to regulate the stability of Ifh1p. The phosphorylation of Ifh1p is mediated by protein kinase A and is dependent on TORC1 signaling. Thus, multiple nutrient-sensing mechanisms converge on Ifh1p. However, instead of modulating overall rates of RP gene transcription or cell growth, the nutrient-responsive phosphorylation of Ifh1p plays a more prominent role in the regulation of cellular replicative lifespan.

  19. The neuropeptide PDF acts directly on evening pacemaker neurons to regulate multiple features of circadian behavior.

    Science.gov (United States)

    Lear, Bridget C; Zhang, Luoying; Allada, Ravi

    2009-07-01

    Discrete clusters of circadian clock neurons temporally organize daily behaviors such as sleep and wake. In Drosophila, a network of just 150 neurons drives two peaks of timed activity in the morning and evening. A subset of these neurons expresses the neuropeptide pigment dispersing factor (PDF), which is important for promoting morning behavior as well as maintaining robust free-running rhythmicity in constant conditions. Yet, how PDF acts on downstream circuits to mediate rhythmic behavior is unknown. Using circuit-directed rescue of PDF receptor mutants, we show that PDF targeting of just approximately 30 non-PDF evening circadian neurons is sufficient to drive morning behavior. This function is not accompanied by large changes in core molecular oscillators in light-dark, indicating that PDF RECEPTOR likely regulates the output of these cells under these conditions. We find that PDF also acts on this focused set of non-PDF neurons to regulate both evening activity phase and period length, consistent with modest resetting effects on core oscillators. PDF likely acts on more distributed pacemaker neuron targets, including the PDF neurons themselves, to regulate rhythmic strength. Here we reveal defining features of the circuit-diagram for PDF peptide function in circadian behavior, revealing the direct neuronal targets of PDF as well as its behavioral functions at those sites. These studies define a key direct output circuit sufficient for multiple PDF dependent behaviors.

  20. Mathematical modelling of fluid transport and its regulation at multiple scales.

    Science.gov (United States)

    Chara, Osvaldo; Brusch, Lutz

    2015-04-01

    Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms. We demonstrate the applicability of this framework for tissue lumen growth and suggest future experiments in zebrafish to test lumen size regulation mechanisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. No evidence of volatile chemicals regulating reproduction in a multiple queen ant

    Science.gov (United States)

    Coston, Duncan J.; Gill, Richard J.; Hammond, Robert L.

    2011-07-01

    Efficient cooperation in eusocial insect colonies requires effective communication, and there is abundant evidence of non-volatile chemicals playing a role in regulating reproduction within colonies. In contrast, there have been fewer studies investigating the role of volatile chemicals. This study investigated the potential role of volatile chemicals in regulating queen reproduction either by directly inhibiting queen reproduction or by honestly signalling queen fecundity to workers. We tested this using multiple queen colonies of the ant ( Leptothorax acervorum) from a functionally monogynous population where one queen monopolizes all reproduction. Nine colonies, each with an established laying queen, were split to produce two colony fragments—one containing the reproducing queen (group 1) and one containing only previously non-reproducing queens (group 2). Each group was separated by a fine wire mesh preventing physical contact, but allowing volatile chemical contact. In each group 2 fragment, we found that a single formerly non-reproductive queen commenced reproduction and that the rate of egg laying and maximum number of eggs recorded did not significantly differ between groups 1 and 2, results that do not support volatile chemicals as playing a role in regulating queen reproduction. Instead, our findings suggest that physical contact is necessary to maintain functional monogyny.

  2. Defining Platelet Function During Polytrauma

    Science.gov (United States)

    2013-02-01

    using calibrated automated thrombography ( CAT ). 3. Platelet-induced clot contraction and using viscoelastic measures such as TEG with Platelet Mapping...using calibrated automated thrombography ( CAT ) in platelet-rich plasma. 3. Platelet-induced clot contraction and effect on clot structure by platelet...if injury with stable vital signs on initial evaluation.  Pregnancy (confirmed with urine pregnancy testing)  Documented do not resuscitate order

  3. p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo.

    Science.gov (United States)

    Canault, Matthias; Duerschmied, Daniel; Brill, Alexander; Stefanini, Lucia; Schatzberg, Daphne; Cifuni, Stephen M; Bergmeier, Wolfgang; Wagner, Denisa D

    2010-03-01

    Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-alpha and GPV. We recently demonstrated that tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37 degrees C or 22 degrees C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.

  4. The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects.

    Science.gov (United States)

    Spinelli, S L; O'Brien, J J; Bancos, S; Lehmann, G M; Springer, D L; Blumberg, N; Francis, C W; Taubman, M B; Phipps, R P

    2008-01-01

    Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors (PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARbeta/delta and PPARgamma) were recently identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons. First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options.

  5. Epithelial SCAP/INSIG/SREBP signaling regulates multiple biological processes during perinatal lung maturation.

    Directory of Open Access Journals (Sweden)

    James P Bridges

    Full Text Available Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (Scap(Δ/Δ, resulting in inactivation of SREBP signaling or Insig1 and Insig2 (Insig1/2(Δ/Δ, resulting in activation of SREBP signaling was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/β-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.

  6. Platelet receptor expression and shedding: glycoprotein Ib-IX-V and glycoprotein VI.

    Science.gov (United States)

    Gardiner, Elizabeth E; Andrews, Robert K

    2014-04-01

    Quantity, quality, and lifespan are 3 important factors in the physiology, pathology, and transfusion of human blood platelets. The aim of this review is to discuss the proteolytic regulation of key platelet-specific receptors, glycoprotein(GP)Ib and GPVI, involved in the function of platelets in hemostasis and thrombosis, and nonimmune or immune thrombocytopenia. The scope of the review encompasses the basic science of platelet receptor shedding, practical aspects related to laboratory analysis of platelet receptor expression/shedding, and clinical implications of using the proteolytic fragments as platelet-specific biomarkers in vivo in terms of platelet function and clearance. These topics can be relevant to platelet transfusion regarding both changes in platelet receptor expression occurring ex vivo during platelet storage and/or clinical use of platelets for transfusion. In this regard, quantitative analysis of platelet receptor profiles on blood samples from individuals could ultimately enable stratification of bleeding risk, discrimination between causes of thrombocytopenia due to impaired production vs enhanced clearance, and monitoring of response to treatment prior to change in platelet count.

  7. Inherited platelet disorders: Insight from platelet genomics using next-generation sequencing.

    Science.gov (United States)

    Maclachlan, Annabel; Watson, Steve P; Morgan, Neil V

    2017-01-01

    Inherited platelet disorders (IPDs) are a heterogeneous group of disorders associated with normal or reduced platelet counts and bleeding diatheses of varying severities. The identification of the underlying cause of IPDs is clinically challenging due to the absence of a gold-standard platelet test, and is often based on a clinical presentation and normal values in other hematology assays. As a consequence, a DNA-based approach has a potentially important role in the investigation of these patients. Next-generation sequencing (NGS) technologies are allowing the rapid analysis of genes that have been previously implicated in IPDs or that are known to have a key role in platelet regulation, as well as novel genes that have not been previously implicated in platelet dysfunction. The potential limitations of NGS arise with the interpretation of the sheer volume of genetic information obtained from whole exome sequencing (WES) or whole genome sequencing (WGS) in order to identify function-disrupting variants. Following on from bioinformatic analysis, a number of candidate genetic variants usually remain, therefore adding to the difficulty of phenotype-genotype segregation verification. Linking genetic changes to an underlying bleeding disorder is an ongoing challenge and may not always be feasible due to the multifactorial nature of IPDs. Nevertheless, NGS will play a key role in our understanding of the mechanisms of platelet function and the genetics involved.

  8. Clinical application of radiolabelled platelets

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, C. (Medical University Luebeck (Federal Republic of Germany). Department of Neurology); Hardeman, M.R. (Amsterdam Univ. (Netherlands). Academisch Ziekenhuis); Henningsen, H. (Heidelberg Univ. (Germany, F.R.). Neurologische Klinik); Petrovici, J.-N. (Cologne-Merheim Hospital (Federal Republic of Germany). Department of Neurology) (eds.)

    1990-01-01

    The increasing number of therapeutic modalities available for the management of patients with thromboembolic complications, such as fibrinolytic treatment or vascular surgery, require the development of new imaging techniques to provide more information on the xtent, age and activity of the thromboembolic material causing clinical symptoms. Since the introduction of radiolabelling of platelets with indium-111, platelet scintigraphy (PSC) has been used as a tool in the diagnosis of various thromboembolic diseases. During the International Symposium on Radiolabelled Platelets scientists from a variety of medical backgrounds presented their results on the clinical applictions of radiolabelled platelets. The papers presented there have been updated to take account of the latest results before publication in this volume. The papers are grouped into six sections on platelet labelling techniques, radiolabelled platelets in cardiology, monitoring of antiplatelet therapy, platelet scintigraphy in stroke patients, platelet scintigraphy in angiology, and platelet scintigraphy in hematology and other clinical applications, including renal transplant rejection. refs.; figs.; tabs.

  9. Platelet preservation: agitation and containers.

    Science.gov (United States)

    van der Meer, Pieter F; de Korte, Dirk

    2011-06-01

    For platelets to maintain their in vitro quality and in vivo effectiveness, they need to be stored at room temperature with gentle agitation in gas-permeable containers. The mode of agitation affects the quality of the platelets, and a gentle method of agitation, either a circular or a flat bed movement, provides the best results. Tumblers or elliptical agitators induce platelet activation and subsequent damage. As long as the platelets remain in suspension, the agitation speed is not important. Agitation of the platelet concentrates ensures that the platelets are continuously oxygenated, that sufficient oxygen can enter the storage container and that excess carbon dioxide can be expelled. During transportation of platelet concentrates, nowadays over long distances where they are held without controlled agitation, platelets may tolerate a certain period without agitation. However, evidence is accumulating that during the time without agitation, local hypoxia surrounding the platelets may induce irreversible harm to the platelets. Over the decades, more gas-permeable plastics have been used to manufacture platelet containers. The use of different plastics and their influence on the platelet quality both in vitro and in vivo is discussed. The improved gas-permeability has allowed the extension of platelet storage from 3 days in the early 1980s, to currently at least 7 days. In the light of new developments, particularly the introduction of pathogen reduction techniques, the use of platelet additive solutions and the availability of improved automated separators, further (renewed) research in this area is warranted.

  10. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Pelletier, Dale A [ORNL; Lu, Tse-Yuan [ORNL; Brown, Steven D [ORNL

    2010-01-01

    Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. We have shown the utility of the pKNOCK suicide plasmid for mutant construction in Z. mobilis, and constructed a Gateway compatible expression plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.

  11. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets.

    Science.gov (United States)

    Etulain, Julia; Negrotto, Soledad; Carestia, Agostina; Pozner, Roberto Gabriel; Romaniuk, María Albertina; D'Atri, Lina Paola; Klement, Giannoula Lakka; Schattner, Mirta

    2012-01-01

    Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbβ3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.

  12. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton.

    Science.gov (United States)

    Lu, Qiuheng; Schafer, Dorothy A; Adler, Paul N

    2015-07-15

    The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.

  13. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing.

    Science.gov (United States)

    Royo, Hélène; Prosser, Haydn; Ruzankina, Yaroslava; Mahadevaiah, Shantha K; Cloutier, Jeffrey M; Baumann, Marek; Fukuda, Tomoyuki; Höög, Christer; Tóth, Attila; de Rooij, Dirk G; Bradley, Allan; Brown, Eric J; Turner, James M A

    2013-07-01

    In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism. The checkpoint protein ATM and Rad3-related (ATR) localizes to unsynapsed chromosomes, but its role in the initiation and maintenance of meiotic silencing is unknown. Here we show that ATR has multiple roles in silencing. ATR first regulates HORMA (Hop1, Rev7, and Mad2) domain protein HORMAD1/2 phosphorylation and localization of breast cancer I (BRCA1) and ATR cofactors ATR-interacting peptide (ATRIP)/topoisomerase 2-binding protein 1 (TOPBP1) at unsynapsed axes. Later, it acts as an adaptor, transducing signaling at unsynapsed axes into surrounding chromatin in a manner that requires interdependence with mediator of DNA damage checkpoint 1 (MDC1) and H2AFX. Finally, ATR catalyzes histone H2AFX phosphorylation, the epigenetic event leading to gene inactivation. Using a novel genetic strategy in which MSCI is used to silence a chosen gene in pachytene, we show that ATR depletion does not disrupt the maintenance of silencing and that silencing comprises two phases: The first is dynamic and reversible, and the second is stable and irreversible. Our work identifies a role for ATR in the epigenetic regulation of gene expression and presents a new technique for ablating gene function in the germline.

  14. Multiple nodulation genes are up-regulated during establishment of reniform nematode feeding sites in soybean.

    Science.gov (United States)

    Redding, Nathan Wayne; Agudelo, Paula; Wells, Christina E

    2017-09-15

    The semi-endoparastic reniform nematode (Rotylenchulus reniformis) infects over 300 plant species. Females penetrate host roots and induce formation of complex, multinucleate feeding sites called syncytia. While anatomical changes associated with reniform nematode infection are well documented, little is known about their molecular basis. We grew soybean (Glycine max) in a split-root growth system, inoculated half of each root system with R. reniformis, and quantified gene expression in infected and control root tissue at four dates after inoculation. Over 6,000 genes were differentially expressed between inoculated and control roots on at least one date (FDR = 0.01, |log2FC| ≥ 1), and 507 gene sets were significantly enriched or depleted in inoculated roots (FDR = 0.05). Numerous genes up-regulated during syncytium formation had previously been associated with rhizobia nodulation. These included the nodule-initiating transcription factors CYCLOPS, NSP1, NSP2, and NIN, as well as multiple nodulins associated with the plant-derived peribacteroid membrane. Nodulation-related NIP aquaporins and SWEET sugar transporters were induced, as were plant CLAVATA3/ESR-related (CLE) signaling proteins and cell cycle regulators such as CCS52A and E2F. Nodulins and nodule-associated genes may have ancestral functions in normal root development and mycorrhization that have been co-opted by both parasitic nematodes and rhizobial bacteria to promote feeding site and nodule formation.

  15. Platelet function in brown bear (Ursus arctos compared to man

    Directory of Open Access Journals (Sweden)

    Särndahl Eva

    2010-06-01

    Full Text Available Abstract Background Information on hemostasis and platelet function in brown bear (Ursus arctos is of importance for understanding the physiological, protective changes during hibernation. Objective The study objective was to document platelet activity values in brown bears shortly after leaving the den and compare them to platelet function in healthy humans. Methods Blood was drawn from immobilized wild brown bears 7-10 days after leaving the den in mid April. Blood samples from healthy human adults before and after clopidogrel and acetylsalicylic acid administration served as control. We analyzed blood samples by standard blood testing and platelet aggregation was quantified after stimulation with various agonists using multiple electrode aggregometry within 3 hours of sampling. Results Blood samples were collected from 6 bears (3 females between 1 and 16 years old and from 10 healthy humans. Results of adenosine diphosphate, aspirin, and thrombin receptor activating peptide tests in bears were all half or less of those in humans. Platelet and white blood cell counts did not differ between species but brown bears had more and smaller red blood cells compared with humans. Conclusion Using three different tests, we conclude that platelet function is lower in brown bears compared to humans. Our findings represent the first descriptive study on platelet function in brown bears and may contribute to explain how bears can endure denning without obvious thrombus building. However, the possibility that our findings reflect test-dependent and not true biological variations in platelet reactivity needs further studies.

  16. Platelets and cardiac arrhythmia

    Directory of Open Access Journals (Sweden)

    Jonas S De Jong

    2010-12-01

    Full Text Available Sudden cardiac death remains one of the most prevalent modes of death in industrialized countries, and myocardial ischemia due to thrombotic coronary occlusion is its primary cause. The role of platelets in the occurrence of SCD extends beyond coronary flow impairment by clot formation. Here we review the substances released by platelets during clot formation and their arrhythmic properties. Platelet products are released from three types of platelet granules: dense core granules, alpha-granules, and platelet lysosomes. The physiologic properties of dense granule products are of special interest as a potential source of arrhythmic substances. They are released readily upon activation and contain high concentrations of serotonin, histamine, purines, pyrimidines, and ions such as calcium and magnesium. Potential arrhythmic mechanisms of these substances, e.g. serotonin and high energy phosphates, include induction of coronary constriction, calcium overloading, and induction of delayed after-depolarizations. Alpha-granules produce thromboxanes and other arachidonic acid products with many potential arrhythmic effects mediated by interference with cardiac sodium, calcium and potassium channels. Alpha-granules also contain hundreds of proteins that could potentially serve as ligands to receptors on cardiomyocytes. Lysosomal products probably do not have an important arrhythmic effect. Platelet products and ischemia can induce coronary permeability, thereby enhancing interaction with surrounding cardiomyocytes. Antiplatelet therapy is known to improve survival after myocardial infarction. Although an important part of this effect results from prevention of coronary clot formation, there is evidence to suggest that antiplatelet therapy also induces anti-arrhythmic effects during ischemia by preventing the release of platelet activation products.

  17. HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi.

    Science.gov (United States)

    Ahrens, Ingo; Chen, Yung-Chih; Topcic, Danijal; Bode, Michael; Haenel, David; Hagemeyer, Christoph E; Seeba, Hannah; Duerschmied, Daniel; Bassler, Nicole; Jandeleit-Dahm, Karin A; Sweet, Matthew J; Agrotis, Alex; Bobik, Alex; Peter, Karlheinz

    2015-11-01

    High mobility group box 1 (HMGB1) acts as both a nuclear protein that regulates gene expression, as well as a pro-inflammatory alarmin that is released from necrotic or activated cells. Recently, HMGB1-expression in human atherosclerotic plaques was identified. Therapeutic blockade of HMGB1 reduced the development of diet-induced atherosclerosis in ApoE knockout mice. Thus, we hypothesised an interaction between HMGB1 and activated platelets. Binding of recombinant HMGB1 to platelets was assessed by flow cytometry. HMGB1 bound to thrombin-activated human platelets (MFI 2.49 vs 25.01, p=0.0079). Blood from wild-type, TLR4 and RAGE knockout mice was used to determine potential HMGB1 receptors on platelets. HMGB1 bound to platelets from wild type C57Bl6 (MFI 2.64 vs 20.3, p 0.05). RAGE expression on human platelets was detected by RT-PCR with mRNA extracted from highly purified platelets and confirmed by Western blot and immunofluorescence microscopy. Platelet activation increased RAGE surface expression (MFI 4.85 vs 6.74, p< 0.05). Expression of HMGB1 in human coronary artery thrombi was demonstrated by immunohistochemistry and revealed high expression levels. Platelets bind HMGB1 upon thrombin-induced activation. Platelet specific expression of RAGE could be detected at the mRNA and protein level and is involved in the binding of HMGB1. Furthermore, platelet activation up-regulates platelet surface expression of RAGE. HMGB1 is highly expressed in platelet-rich human coronary artery thrombi pointing towards a central role for HMGB1 in atherothrombosis, thereby suggesting the possibility of platelet targeted anti-inflammatory therapies for atherothrombosis.

  18. The repertoire and features of human platelet microRNAs.

    Directory of Open Access Journals (Sweden)

    Hélène Plé

    Full Text Available Playing a central role in the maintenance of hemostasis as well as in thrombotic disorders, platelets contain a relatively diverse messenger RNA (mRNA transcriptome as well as functional mRNA-regulatory microRNAs, suggesting that platelet mRNAs may be regulated by microRNAs. Here, we elucidated the complete repertoire and features of human platelet microRNAs by high-throughput sequencing. More than 492 different mature microRNAs were detected in human platelets, whereas the list of known human microRNAs was expanded further by the discovery of 40 novel microRNA sequences. As in nucleated cells, platelet microRNAs bear signs of post-transcriptional modifications, mainly terminal adenylation and uridylation. In vitro enzymatic assays demonstrated the ability of human platelets to uridylate microRNAs, which correlated with the presence of the uridyltransferase enzyme TUT4. We also detected numerous microRNA isoforms (isomiRs resulting from imprecise Drosha and/or Dicer processing, in some cases more frequently than the reference microRNA sequence, including 5' shifted isomiRs with redirected mRNA targeting abilities. This study unveils the existence of a relatively diverse and complex microRNA repertoire in human platelets, and represents a mandatory step towards elucidating the intraplatelet and extraplatelet role, function and importance of platelet microRNAs.

  19. Role of reactive nitrogen species in blood platelet functions.

    Science.gov (United States)

    Olas, Beata; Wachowicz, Barbara

    2007-12-01

    Blood platelets, in analogy to other circulating blood cells, can generate reactive oxygen/nitrogen species (ROS/RNS) that may behave as second messengers and may regulate platelet functions. Accumulating evidence suggest a role of ROS/RNS in platelet activation. On the other hand, an increased production of ROS/RNS causes oxidative stress, and thus, may contribute to the development of different diseases, including vascular complications, inflammatory and psychiatric illnesses. Oxidative stress in platelets leads to chemical changes in a wide range of their components, and platelet proteins may be initial targets of ROS/RNS action. It has been demonstrated that reaction of proteins with ROS/RNS results in the oxidation and nitration of some amino acid residues, formation of aggregates or fragmentation of proteins. In oxidized proteins new carbonyl groups and protein hydroperoxides are also formed. In platelets, low molecular weight thiols such as glutathione (GSH), cysteine and cysteinylglycine and protein thiols may be also target for ROS/RNS action. This review describes the chemical structure and biological activities of reactive nitrogen species, mainly nitric oxide ((*)NO) and peroxynitrite (ONOO(-)) and their effects on blood platelet functions, and the mechanisms involved in their action on platelets.

  20. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2.

    Science.gov (United States)

    Lee, Hye-Rim; Park, Kyung Min; Joung, Yoon Ki; Park, Ki Dong; Do, Sun Hee

    2012-05-10

    Three-dimensional scaffolds like hydrogels can be used for cell and drug delivery and have become a major research focus in tissue engineering. Presently, we investigated the regenerative potency of platelet-rich plasma (PRP) combined with a chondrocyte/hydrogel composite scaffold in the repair of articular cartilage defects using a rabbit model. Primary isolated joint chondrocytes from the trachlear groove of rabbit were cultured in hydrogels as follows; hydrogel (2900 Pa or 5900 Pa)+chondrocytes and hydrogel+chondrocytes+PRP for in vitro analysis and in vivo implantation. The 5900 Pa hydrogel markedly increased cellular viability and development in a time-dependent manner. Furthermore, the hydrogels attenuated the expression of SOX-9, aggrecan, and type II collagen. PRP-containing hydrogels produced an immediate increase in mRNA levels of cannabinoid receptor (CB)1 and CB2, compared with control and PRP-free hydrogels. Osteochondral defects were enhanced recovery with formation of cartilage and perichondrium in the 5900 Pa hydrogel+chondrocytes+PRP. Hydrogel may provide a suitable environment for proliferation and maturation of joint chondrocytes in relation to the gelation density and bioactive sources like PRP resulting in improvement for cartilage regeneration.

  1. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact of therapies.

    Science.gov (United States)

    Sola-Visner, Martha

    2012-01-01

    Thrombocytopenia is a common problem among sick neonates admitted to the neonatal intensive care unit. Frequently, platelet transfusions are given to thrombocytopenic infants in an attempt to decrease the incidence or severity of hemorrhage, which is often intracranial. Whereas there is very limited evidence to guide platelet transfusion practices in this population, preterm infants in the first week of life (the highest risk period for bleeding) are nearly universally transfused at higher platelet counts than older infants or children. To a large extent, this practice has been influenced by the observation that neonatal platelets are hyporeactive in response to multiple agonists in vitro, although full-term infants exhibit normal to increased primary hemostasis. This apparently paradoxical finding is due to factors in the neonatal blood that enhance the platelet-vessel wall interaction and counteract the platelet hyporeactivity. Relatively few studies have evaluated the platelet function and primary hemostasis of preterm infants, the subset of neonates at highest risk of bleeding and those most frequently transfused. Current understanding of platelet production and function in preterm and full-term neonates, how these factors affect their response to thrombocytopenia and their primary hemostasis, and the implications of these developmental differences to transfusion medicine are reviewed herein.

  2. Platelets in leucocyte recruitment and function.

    Science.gov (United States)

    Rossaint, Jan; Zarbock, Alexander

    2015-08-01

    Platelets have a longstanding recognition as an essential cellular component of the coagulation system. However, substantial research over the last decade has added another important aspect to platelet function in that they are also an integral part of the innate immune system. Complex organisms are facing a constant threat of infections by invading pathogens, and they have developed a sophisticated and elegant measure to combat this threat, namely the immune system. Leucocyte recruitment to sites of infections is an essential step at the forefront of the immune response. Platelets have been shown to be involved in several steps of this process and they are an integrated connecting element among haemostasis, host defence, and additional immunological functions (e.g. neutrophil extracellular traps formation). However, the immune system also requires a tight regulation, as an overshooting immune response carries the risk of harming the host itself. This review aims at highlighting the unique features and molecular mechanisms that allow for the interactions of platelets and leucocytes and the regulation of this process. Furthermore, this article identifies the functional relevance of these events for the immune response.

  3. Assessment of the correlation of platelet morphology with in vivo recovery and survival.

    Science.gov (United States)

    Mintz, Paul D; Anderson, Garth; Avery, Nancy; Clark, Pamela; Bonner, Robert F

    2005-08-01

    There is continuing interest in the development of in vitro tests evaluating the in vivo function, recovery, and survival of platelets stored for transfusion. A recent forum concluded that no completely reliable test exists, although discoid morphology indicates a platelet's good health. We evaluated a novel device, the NAPSAC (Noninvasive Assessment of Platelet Shape and Concentration), designed to determine noninvasively the proportion of discoid platelets in a stored concentrate, as well as platelet concentration. Twenty-eight plateletapheresis concentrates stored 24 hours in PL-146 were evaluated. Percent discoid platelet results were correlated with radiolabeled autologous recovery and survival performed using 111Indium oxyquinoline and calculated using linear (L) and multiple-hit (M) models. pH of 8 concentrates was raised at the end of storage with 6N NaOH. Platelet concentration measured by NAPSAC and Coulter Thrombocounter C was compared in 256 plateletapheresis products. Percent discoid platelets at 24 hours did not correlate significantly with platelet recovery or survival (recovery L = 0.29, M = 0.28; survival L = 0.16, M = 0.03). Raising the pH (mean 6.38 to 6.94) resulted in a significant increase in percent discoid platelets (21% to 41%). Platelet concentration values for both methods studied were linearly correlated with a slope of 1.01 +/- 0.03, r = 0.81. Percent discoid platelets was not predictive of posttransfusion platelet recovery or survival. The results suggest that non-discoid platelets may survive posttransfusion and even revert to discoid shape, since raising the pH approximately doubled the percent of discoid platelets. The NAPSAC was shown to be a reliable instrument for noninvasively determining platelet concentration in PL-146 concentrates.

  4. The Platelet and Platelet Function Testing in Liver Disease

    NARCIS (Netherlands)

    Hugenholtz, Greg G. C.; Porte, Robert J.; Lisman, Ton

    2009-01-01

    Patients who have liver disease commonly present with alterations in platelet number and function. Recent data have questioned the contribution of these changes to bleeding complications in these patients. Modern tests of platelet function revealed compensatory mechanisms for the decreased platelet

  5. Investigation of platelet function and platelet disorders using flow cytometry.

    Science.gov (United States)

    Rubak, Peter; Nissen, Peter H; Kristensen, Steen D; Hvas, Anne-Mette

    2016-01-01

    Patients with thrombocytopenia or platelet disorders are at risk of severe bleeding. We report the development and validation of flow cytometry assays to diagnose platelet disorders and to assess platelet function independently of platelet count. The assays were developed to measure glycoprotein levels (panel 1) and platelet function (panel 2) in sodium citrated blood. Twenty healthy volunteers and five patients diagnosed with different platelet disorders were included. Glycoprotein expression levels of the receptors Ia, Ib, IIb, IIIa and IX were measured and normalised with forward scatter (FS) as a measurement of platelet size. Platelet function was assessed by CD63, P-selectin and bound fibrinogen in response to arachidonic acid, adenosine diphosphate (ADP), collagen-related peptide, ristocetin and thrombin receptor-activation peptide-6. All patients except one with suspected δ-granule defect showed aberrant levels of glycoproteins in panel 1. Glanzmann's thrombasthenia and genetically verified Bernard-Soulier syndrome could be diagnosed using panel 1. All patients showed reduced platelet function according to at least one agonist. Using panel 2 it was possible to diagnose Bernard-Soulier syndrome, δ-granule defect and GPVI disorder. By combining the two assays, we were able to diagnose different platelet disorders and investigate platelet function independent of platelet count.

  6. Reproducibility of Manual Platelet Estimation Following Automated Low Platelet Counts

    Directory of Open Access Journals (Sweden)

    Zainab S Al-Hosni

    2016-11-01

    Full Text Available Objectives: Manual platelet estimation is one of the methods used when automated platelet estimates are very low. However, the reproducibility of manual platelet estimation has not been adequately studied. We sought to assess the reproducibility of manual platelet estimation following automated low platelet counts and to evaluate the impact of the level of experience of the person counting on the reproducibility of manual platelet estimates. Methods: In this cross-sectional study, peripheral blood films of patients with platelet counts less than 100 × 109/L were retrieved and given to four raters to perform manual platelet estimation independently using a predefined method (average of platelet counts in 10 fields using 100× objective multiplied by 20. Data were analyzed using intraclass correlation coefficient (ICC as a method of reproducibility assessment. Results: The ICC across the four raters was 0.840, indicating excellent agreement. The median difference of the two most experienced raters was 0 (range: -64 to 78. The level of platelet estimate by the least-experienced rater predicted the disagreement (p = 0.037. When assessing the difference between pairs of raters, there was no significant difference in the ICC (p = 0.420. Conclusions: The agreement between different raters using manual platelet estimation was excellent. Further confirmation is necessary, with a prospective study using a gold standard method of platelet counts.

  7. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  8. Complex regulation and multiple developmental functions of misfire, the Drosophila melanogaster ferlin gene

    Directory of Open Access Journals (Sweden)

    Wakimoto Barbara T

    2007-03-01

    Full Text Available Abstract Background Ferlins are membrane proteins with multiple C2 domains and proposed functions in Ca2+ mediated membrane-membrane interactions in animals. Caenorhabditis elegans has two ferlin genes, one of which is required for sperm function. Mammals have several ferlin genes and mutations in the human dysferlin (DYSF and otoferlin (OTOF genes result in muscular dystrophy and hearing loss, respectively. Drosophila melanogaster has a single ferlin gene called misfire (mfr. A previous study showed that a mfr mutation caused male sterility because of defects in fertilization. Here we analyze the expression and structure of the mfr gene and the consequences of multiple mutations to better understand the developmental function of ferlins. Results We show that mfr is expressed in the testis and ovaries of adult flies, has tissue-specific promoters, and expresses alternatively spliced transcripts that are predicted to encode distinct protein isoforms. Studies of 11 male sterile mutations indicate that a predicted Mfr testis isoform with five C2 domains and a transmembrane (TM domain is required for sperm plasma membrane breakdown (PMBD and completion of sperm activation during fertilization. We demonstrate that Mfr is not required for localization of Sneaky, another membrane protein necessary for PMBD. The mfr mutations vary in their effects in females, with a subset disrupting egg patterning and causing a maternal effect delay in early embryonic development. Locations of these mutations indicate that a short Mfr protein isoform carries out ferlin activities during oogenesis. Conclusion The mfr gene exhibits complex transcriptional and post-transcriptional regulation and functions in three developmental processes: sperm activation, egg patterning, and early embryogenesis. These functions are in part due to the production of protein isoforms that vary in the number of C2 domains. These findings help establish D. melanogaster as model system for

  9. Dysfunction of microRNA-32 regulates ubiquitin ligase FBXW7 in multiple myeloma disease

    Directory of Open Access Journals (Sweden)

    Hua J

    2016-10-01

    Full Text Available Jingsheng Hua,1,* Tianling Ding,2,* Linjun Yang3 1Department of Hematology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 2Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 3Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, People’s Republic of China *These authors contributed equally to this work Abstract: Dysfunction of microRNA (miRNA expression has been associated with tumor occurrence, progression, and development. The aim of this work was to study the dysfunction of miR-32 – an miRNA that was abnormally regulated in different tumors – in clinical tissues from patients with multiple myeloma (MM. The tumor tissues in which we assessed miR-32 expression levels were collected during our 5 years of clinical practice. Our study found an increase in miR-32 expression in MM tissues. Assessment of F-box and WD repeat domain-containing 7 (FBXW7 in MM tissues showed an inverse relation between the expression of FBXW7 and miR-32. To further investigate the relation between miR-32 and FBXW7, cells were transfected with miR-32 or anti-miR-32. In vitro studies found that cells transfected with miR-32 showed a lower expression of FBXW7 and a higher expression of cancer-related proteins, c-Jun and c-Myc. In contrast, the cells transfected with anti-miR32 showed a relatively higher expression of FBXW7, but a lower expression of c-Jun and c-Myc. This study may offer perceptive insights into developing new strategies for MM cancer detection and therapy. Keywords: multiple myeloma, miR-32, F-box and WD repeat domain-containing 7, in vitro 

  10. THE ROLE OF PARASYMPATHETIC AUTONOMIC REGULATION IN ENSURING OF RATS’ RESISTANCE IN THE MODEL OF MULTIPLE ORGAN DYSFUNCTION SYNDROM

    Directory of Open Access Journals (Sweden)

    I. A. Khrypachenko

    2015-06-01

    Full Text Available To assess contribution of autonomic regulation in multiple organ dysfunction syndrome (MODS survival ensuring and to test hypothesis about possible correction of clinical course by modulating the activity of parasympathetic influences we performed experiments on rats’ model of the MODS. It was determined that nonresistant animals differentiated by less intensity of parasympathetic regulation response. It was revealed that stimulation of cholinergic system decrease lethality in rats, and inhibits the power of high frequency regulatory effects on the heart rate.

  11. Late multiple organ surge in interferon-regulated target genes characterizes staphylococcal enterotoxin B lethality.

    Directory of Open Access Journals (Sweden)

    Gabriela A Ferreyra

    Full Text Available BACKGROUND: Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB challenge was investigated in six tissues. RESULTS: The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC, spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. CONCLUSION: Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes.

  12. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells.

    Science.gov (United States)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen; Stark, G Björn

    2010-01-01

    Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co-cultivation of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR-alpha downregulation is dependent on time and cell number. This effect was specific to endothelial cells and was not observed when hOBs were co-cultured with human primary chondrocytes or fibroblasts. Likewise, HUVEC-mediated suppression of PDGFR-alpha expression was only seen in hOBs and mesenchymal stem cells but not in immortalized osteoblastic cell lines. Functional inhibition of gap junctional communication between HUVECs and hOBs by 18alpha-glycyrrhetinic acid had no effect on HUVEC-mediated PDGFR-alpha downregulation, whereas inhibition of p38 mitogen-activated protein kinase (MAPK) prevented the HUVEC-mediated reduction in osteoblastic PDGFR-alpha expression. To delineate the molecular mechanism underlying the PDGFR-alpha downregulation, we examined the effect of HUVEC co-cultivation on osteoblastic PDGFR-alpha promoter activity as well as mRNA stability. Co-cultivation of HUVECs with hOBs significantly shortened the half-life of osteoblastic PDGFR-alpha mRNA, but did not decrease its promoter activity. In summary, our data show that PDGFR-alpha is downregulated in hOBs by co-cultivation with human primary endothelial cells through a p38 MAPK-dependent post-transcriptional mechanism.

  13. Mean platelet volume and mean platelet volume/platelet count ratio ...

    African Journals Online (AJOL)

    Amira M. Elsayed

    2016-03-30

    Mar 30, 2016 ... Abstract The mean platelet volume (MPV) is a laboratory marker associated with platelet func- tion and activity. .... the first 24 h of presentation to the emergency department. Severity of ..... J Neurol Neurosurg Psychiatry.

  14. Carbon storage regulator A contributes to the virulence of Haemophilus ducreyi in humans by multiple mechanisms.

    Science.gov (United States)

    Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2013-02-01

    The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.

  15. Copper–zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Kelley Salem

    2015-04-01

    Full Text Available Multiple myeloma (MM is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper–zinc superoxide dismutase (CuZnSOD or SOD1 correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266 and the BTZ-resistant (BR lines (MM.1SBR, 8226BR were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1, and glutathione (GSH were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity.

  16. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma.

    Science.gov (United States)

    Salem, Kelley; McCormick, Michael L; Wendlandt, Erik; Zhan, Fenghuang; Goel, Apollina

    2015-01-01

    Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper-zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity.

  17. Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse.

    Science.gov (United States)

    Yue, Hai-Yuan; Xu, Jianhua

    2015-07-01

    Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non-specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl-β-cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca(2+) channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl-β-cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses.

  18. Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments.

    Science.gov (United States)

    Castiglioni, Sara; Pomati, Francesco; Miller, Kristin; Burns, Brendan P; Zuccato, Ettore; Calamari, Davide; Neilan, Brett A

    2008-10-01

    Antibiotics are commonly detected in the environment as contaminants. Exposure to antibiotics may induce antimicrobial-resistance, as well as the horizontal transfer of resistance genes in bacterial populations. We selected the resistance gene marA, mediating resistance to multiple antibiotics, and explored its distribution in sediment and water samples from surface and sewage treatment waters. Ciprofloxacin and ofloxacin (fluoroquinolones), sulphamethoxazole (sulphonamide), erythromycin, clarythromycin, and spiramycin (macrolides), lincomycin (lincosamide), and oxytetracycline (tetracycline) were measured in the same samples to determine antibiotic contamination. Bacterial populations from environmental samples were challenged with antibiotics to identify resistant isolates. The gene marA was found in almost all environmental samples and was confirmed by PCR amplification in antibiotic-resistant colonies. 16S rDNA sequencing revealed that the majority of resistant isolates belonged to the Gram-positive genus Bacillus, not previously known to possess the regulator marA. We assayed the incidence of marA in environmental bacterial populations of Escherichia coli and Bacillus by quantitative real-time PCR in correlation with the levels of antibiotics. Phylogenetic analysis indicated the possible lateral acquisition of marA by Bacillus from Gram-negative Enterobacteriaceae revealing a novel marA homolog in Bacillus. Quantitative PCR assays indicate that the frequency of this gene in antropised environments seems to be related to bacterial exposure to water-borne antibiotics.

  19. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Bin Xu

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPARγ is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA, Steroid receptor RNA Activator (SRA, associates with PPARγ and coactivates PPARγ-dependent reporter gene expression. Overexpression of SRA in ST2 mesenchymal precursor cells promotes their differentiation into adipocytes. Conversely, knockdown of endogenous SRA inhibits 3T3-L1 preadipocyte differentiation. Microarray analysis reveals hundreds of SRA-responsive genes in adipocytes, including genes involved in the cell cycle, and insulin and TNFα signaling pathways. Some functions of SRA may involve mechanisms other than coactivation of PPARγ. SRA in adipocytes increases both glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin. SRA promotes S-phase entry during mitotic clonal expansion, decreases expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, and increases phosphorylation of Cdk1/Cdc2. SRA also inhibits the expression of adipocyte-related inflammatory genes and TNFα-induced phosphorylation of c-Jun NH(2-terminal kinase. In conclusion, SRA enhances adipogenesis and adipocyte function through multiple pathways.

  20. Platelets stimulate fibroblast-mediated contraction of collagen gels

    Directory of Open Access Journals (Sweden)

    Lundahl Joachim

    2003-10-01

    Full Text Available Abstract Background Platelets are thought to play a role in a variety of inflammatory conditions in the lung, some of which may lead to fibrosis. In the current study we tested the hypothesis that whole platelets and platelet lysate can mediate remodelling of extracellular matrix in vitro by affecting fibroblast-mediated contraction of a collagen gel. We also sought to determine to what extent platelet-derived growth factor (PDGF and transforming growth factor-β (TGF-β contribute to this effect. Methods Washed platelets, isolated from healthy blood donors, and platelet lysate (freezing and thawing, were cast together with human lung fibroblasts in three-dimensional collagen gels. The gels were then released and cultured for four days. PDGF and TGF-β1 concentrations were measured in culture supernatants by ELISA. Results Both platelets and platelet lysate augmented fibroblast-mediated gel contraction in a time and concentration dependent manner (19.9% ± 0.1 (mean ± SEM of initial area vs. 48.0% ± 0.4 at 48 hours; P 1 and PDGF-AA/AB were released in co-culture. PDGF-AA/AB had a maximum release at 24 hours whereas TGF-β1 release increased with longer culture periods. Neutralising antibodies to these mediators partially inhibited platelet-induced gel contraction. Conclusion We conclude that platelets may promote remodelling of extracellular matrix in vitro and that PDGF and TGF-β partially mediate this effect, also indicating a role for other mediators. The findings may be an important mechanism in regulating repair processes after injury.

  1. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation

    Science.gov (United States)

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T.; Mundell, Stuart J.; Coxon, Carmen H.

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents. PMID:27716777

  2. A novel thrombopoietin signaling defect in polycythemia vera platelets.

    Science.gov (United States)

    Moliterno, A R; Siebel, K E; Sun, A Y; Hankins, W D; Spivak, J L

    1998-01-01

    The pathogenesis of polycythemia vera (PV), a disease involving a multipotent hematopoietic progenitor cell, is unknown. Thrombopoietin (TPO) is a newly characterized hematopoietic growth factor which regulates the production of multipotent hematopoietic progenitor cells as well as platelets. To evaluate the possibility that an abnormality in TPO-mediated signal transduction might be involved in the pathogenesis of PV, we examined TPO-induced protein tyrosine phosphorylation using platelets as a surrogate model system. Platelets were isolated from the blood of patients with PV as well as from patients with other chronic myeloproliferative disorders and control subjects. Impaired TPO-mediated platelet protein tyrosine phosphorylation was a consistent observation in patients with PV as well as those with idiopathic myelofibrosis (IMF), in contrast to patients with essential thrombocytosis, chronic myelogenous leukemia, secondary erythrocytosis, iron deficiency anemia, hemochromatosis, or normal volunteers. Thrombin-mediated platelet protein tyrosine phosphorylation was intact in PV platelets as was expression of the appropriate tyrosine kinases and their cognate substrates. However, expression of the platelet TPO receptor, Mpl, as determined by immunoblotting, chemical crosslinking or flow cytometry was markedly reduced or absent in 34 of 34 PV patients and also in 13 of 14 IMF patients. Impaired TPO-induced protein tyrosine phosphorylation in PV and IMF platelets was uniformly associated with markedly reduced or absent expression of Mpl. We conclude that reduced expression of Mpl is a phenotypic characteristic of platelets from patients with PV and IMF. The abnormality appears to distinguish PV from other forms of erythrocytosis and may be involved in the platelet function defect associated with PV.

  3. The critical roles of cyclic AMP/cyclic AMP-dependent protein kinase in platelet physiology

    Institute of Scientific and Technical Information of China (English)

    Rong YAN; Suping LI; Kesheng DAI

    2009-01-01

    Platelets are the primary players in both thrombosis and hemostasis.Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function,such as adhesion,aggregation,and secretion.Elevation of intracellular cAMP,which induces the activation of PKA,results in the inhibition of platelet function.Thus,tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy.In this review,we summarize the PKA substrates and their contributions to platelet function,especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology.In addition,we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.

  4. Self-Regulated Learning in a TELE at the Universite de Technologie de Compiegne: An Analysis from Multiple Perspectives

    Science.gov (United States)

    Trigano, Philippe

    2006-01-01

    Self-regulation has become a very important topic in the field of learning and instruction. At the same time, the introduction of new technologies in the field of Information and Communication Technologies (ICT) has made it possible to create rich Technology-Enhanced Learning Environments (TELEs) with multiple affordances for supporting…

  5. Prophylactic platelets in dengue

    DEFF Research Database (Denmark)

    Whitehorn, James; Rodriguez Roche, Rosmari; Guzman, Maria G

    2012-01-01

    of platelets in dengue. Respondents were all physicians involved with the treatment of patients with dengue. Respondents were asked that their answers reflected what they would do if they were the treating physician. We received responses from 306 physicians from 20 different countries. The heterogeneity...

  6. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors

    Directory of Open Access Journals (Sweden)

    Lu Tse-Yuan S

    2010-05-01

    mutant construction in Z. mobilis, and constructed a Gateway compatible expression plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.

  7. Ligustrazine attenuates the platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells by interrupting extracellular signal-regulated kinase and P38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yu, Lifei; Huang, Xiaojing; Huang, Kai; Gui, Chun; Huang, Qiaojuan; Wei, Bin

    2015-07-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) leads to intimal thickening of the aorta and is, therefore, important in the development of arteriosclerosis. As a result, the use of antiproliferative and antimigratory agents for VSMCs offers promise for the treatment of vascular disorders. Although several studies have demonstrated that ligustrazine may be used to treat heart and blood vessel diseases, the detailed mechanism underlying its actions remain to be elucidated. In the present study, the inhibitory effect of ligustrazine on platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation and migration, and the underlying mechanisms were investigated. The findings demonstrated that ligustrazine significantly inhibited PDGF-BB-stimulated VSMC proliferation. VSMCs dedifferentiated into a proliferative phenotype under PDGF-BB stimulation, which was effectively reversed by the administration of ligustrazine. In addition, ligustrazine also downregulated the production of nitric oxide and cyclic guanine monophosphate, induced by PDGF-BB. Additionally, ligustrazine significantly inhibited PDGF-BB-stimulated VSMC migration. Mechanistic investigation indicated that the upregulation of cell cycle-associated proteins and the activation of the extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB was suppressed by the administration of ligustrazine. In conclusion, the present study, demonstrated for the first time, to the best of our knowledge, that ligustrazine downregulated PDGF-BB-induced VSMC proliferation and migration partly, at least, through inhibiting the activation of the ERK and P38 MAPK signaling.

  8. Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies.

    Science.gov (United States)

    Gallagher, William M; Bergin, Orla E; Rafferty, Mairin; Kelly, Zoë D; Nolan, Ilse-Maria; Fox, Edward J P; Culhane, Aedin C; McArdle, Linda; Fraga, Mario F; Hughes, Linda; Currid, Caroline A; O'Mahony, Fiona; Byrne, Aileen; Murphy, Alison A; Moss, Catherine; McDonnell, Susan; Stallings, Raymond L; Plumb, Jane A; Esteller, Manel; Brown, Robert; Dervan, Peter A; Easty, David J

    2005-11-01

    The incidence of melanoma is increasing rapidly, with advanced lesions generally failing to respond to conventional chemotherapy. Here, we utilized DNA microarray-based gene expression profiling techniques to identify molecular determinants of melanoma progression within a unique panel of isogenic human melanoma cell lines. When a poorly tumorigenic cell line, derived from an early melanoma, was compared with two increasingly aggressive derivative cell lines, the expression of 66 genes was significantly changed. A similar pattern of differential gene expression was found with an independently derived metastatic cell line. We further examined these melanoma progression-associated genes via use of a tailored TaqMan Low Density Array (LDA), representing the majority of genes within our cohort of interest. Considerable concordance was seen between the transcriptomic profiles determined by DNA microarray and TaqMan LDA approaches. A range of novel markers were identified that correlated here with melanoma progression. Most notable was TSPY, a Y chromosome-specific gene that displayed extensive down-regulation in expression between the parental and derivative cell lines. Examination of a putative CpG island within the TSPY gene demonstrated that this region was hypermethylated in the derivative cell lines, as well as metastatic melanomas from male patients. Moreover, treatment of the derivative cell lines with the DNA methyltransferase inhibitor, 2'-deoxy-5-azacytidine (DAC), restored expression of the TSPY gene to levels comparable with that found in the parental cells. Additional DNA microarray studies uncovered a subset of 13 genes from the above-mentioned 66 gene cohort that displayed re-activation of expression following DAC treatment, including TSPY, CYBA and MT2A. DAC suppressed tumor cell growth in vitro. Moreover, systemic treatment of mice with DAC attenuated growth of melanoma xenografts, with consequent re-expression of TSPY mRNA. Overall, our data support

  9. IκB kinase phosphorylation of SNAP-23 controls platelet secretion.

    Science.gov (United States)

    Karim, Zubair A; Zhang, Jinchao; Banerjee, Meenakshi; Chicka, Michael C; Al Hawas, Rania; Hamilton, Tara R; Roche, Paul A; Whiteheart, Sidney W

    2013-05-30

    Platelet secretion plays a key role in thrombosis, thus the platelet secretory machinery offers a unique target to modulate hemostasis. We report the regulation of platelet secretion via phosphorylation of SNAP-23 at Ser95. Phosphorylation of this t-soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) occurs upon activation of known elements of the platelet signaling cascades (ie, phospholipase C, [Ca(2+)]i, protein kinase C) and requires IκB kinase (IKK)-β. Other elements of the nuclear factor κB/IκB cascade (ie, IKK-α,-β,-γ/NEMO and CARMA/MALT1/Bcl10 complex) are present in anucleate platelets and IκB is phosphorylated upon activation, suggesting that this pathway is active in platelets and implying a nongenomic role for IKK. Inhibition of IKK-β, either pharmacologically (with BMS-345541, BAY11-7082, or TPCA-1) or by genetic manipulation (platelet factor 4 Cre:IKK-β(flox/flox)), blocked SNAP-23 phosphorylation, platelet secretion, and SNARE complex formation; but, had no effect on platelet morphology or other metrics of platelet activation. Consistently, SNAP-23 phosphorylation enhanced membrane fusion of SNARE-containing proteoliposomes. In vivo studies with IKK inhibitors or platelet-specific IKK-β knockout mice showed that blocking IKK-β activity significantly prolonged tail bleeding times, suggesting that currently available IKK inhibitors may affect hemostasis.

  10. Mechanobiology of Platelets: Techniques to Study the Role of Fluid Flow and Platelet Retraction Forces at the Micro- and Nano-Scale

    Directory of Open Access Journals (Sweden)

    Nathan J. Sniadecki

    2011-12-01

    Full Text Available Coagulation involves a complex set of events that are important in maintaining hemostasis. Biochemical interactions are classically known to regulate the hemostatic process, but recent evidence has revealed that mechanical interactions between platelets and their surroundings can also play a substantial role. Investigations into platelet mechanobiology have been challenging however, due to the small dimensions of platelets and their glycoprotein receptors. Platelet researchers have recently turned to microfabricated devices to control these physical, nanometer-scale interactions with a higher degree of precision. These approaches have enabled exciting, new insights into the molecular and biomechanical factors that affect platelets in clot formation. In this review, we highlight the new tools used to understand platelet mechanobiology and the roles of adhesion, shear flow, and retraction forces in clot formation.

  11. Mechanobiology of platelets: techniques to study the role of fluid flow and platelet retraction forces at the micro- and nano-scale.

    Science.gov (United States)

    Feghhi, Shirin; Sniadecki, Nathan J

    2011-01-01

    Coagulation involves a complex set of events that are important in maintaining hemostasis. Biochemical interactions are classically known to regulate the hemostatic process, but recent evidence has revealed that mechanical interactions between platelets and their surroundings can also play a substantial role. Investigations into platelet mechanobiology have been challenging however, due to the small dimensions of platelets and their glycoprotein receptors. Platelet researchers have recently turned to microfabricated devices to control these physical, nanometer-scale interactions with a higher degree of precision. These approaches have enabled exciting, new insights into the molecular and biomechanical factors that affect platelets in clot formation. In this review, we highlight the new tools used to understand platelet mechanobiology and the roles of adhesion, shear flow, and retraction forces in clot formation.

  12. Diabetic Microvascular Disease and Pulmonary Fibrosis: The Contribution of Platelets and Systemic Inflammation

    Directory of Open Access Journals (Sweden)

    Rekha Jagadapillai

    2016-11-01

    Full Text Available Diabetes is strongly associated with systemic inflammation and oxidative stress, but its effect on pulmonary vascular disease and lung function has often been disregarded. Several studies identified restrictive lung disease and fibrotic changes in diabetic patients and in animal models of diabetes. While microvascular dysfunction is a well-known complication of diabetes, the mechanisms leading to diabetes-induced lung injury have largely been disregarded. We described the potential involvement of diabetes-induced platelet-endothelial interactions in perpetuating vascular inflammation and oxidative injury leading to fibrotic changes in the lung. Changes in nitric oxide synthase (NOS activation and decreased NO bioavailability in the diabetic lung increase platelet activation and vascular injury and may account for platelet hyperreactivity reported in diabetic patients. Additionally, the Janus kinase/signal transducer and activator of transcription (JAK/STAT pathway has been reported to mediate pancreatic islet damage, and is implicated in the onset of diabetes, inflammation and vascular injury. Many growth factors and diabetes-induced agonists act via the JAK/STAT pathway. Other studies reported the contribution of the JAK/STAT pathway to the regulation of the pulmonary fibrotic process but the role of this pathway in the development of diabetic lung fibrosis has not been considered. These observations may open new therapeutic perspectives for modulating multiple pathways to mitigate diabetes onset or its pulmonary consequences.

  13. Detection and identification of platelet-associated alloantibodies by a solid-phase modified antigen capture enzyme-linked immunosorbent assay method and its correlation to platelet refractoriness in multiplatelet concentrate-transfused patients.

    Science.gov (United States)

    Jain, Neelesh; Sarkar, Shankar; Philip, Joseph

    2014-01-01

    Platelets express a variety of polymorphic glycoproteins (GPs), such as GPIIb/IIIa, GPib/IX, GPla/Ila, GPIV, and class I human leukocyte antigen. In the platelet transfusion setting, alloimmunization involves the production of antibodies against these glycoproteins. Patients transfused with multiple units of platelet concentrates for longer periods are the main individuals with platelet alloimmunization. This study was performed to detect the development of platelet antibodies in patients who are transfused with multiple units of leukodepleted platelet concentrates, such as those with hemato-oncologic diseases and bone marrow failure syndromes. The method used was solid phase modified antigen capture enzyme-linked immunosorbent assay. Platelet refractoriness was assessed by measuring the corrected count increment at 1 and 24 hours after transfusion.

  14. Differential proteomic analysis of platelets suggested possible signal cascades network in platelets treated with salvianolic acid B.

    Directory of Open Access Journals (Sweden)

    Chao Ma

    Full Text Available BACKGROUND: Salvianolic acid B (SB is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a differential proteomic analysis (two-dimensional electrophoresis was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70, LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca²+ and reactive oxygen species (ROS were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets. CONCLUSIONS/SIGNIFICANCE: Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca²+ level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets.

  15. Differential Proteomic Analysis of Platelets Suggested Possible Signal Cascades Network in Platelets Treated with Salvianolic Acid B

    Science.gov (United States)

    Ma, Chao; Yao, Yan; Yue, Qing-Xi; Zhou, Xin-Wen; Yang, Peng-Yuan; Wu, Wan-Ying; Guan, Shu-Hong; Jiang, Bao-Hong; Yang, Min; Liu, Xuan; Guo, De-An

    2011-01-01

    Background Salvianolic acid B (SB) is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear. Methodology/Principal Findings In the present study, a differential proteomic analysis (two-dimensional electrophoresis) was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70), LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca(2+) and reactive oxygen species (ROS) were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets. Conclusions/Significance Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca(2+) level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets. PMID:21379382

  16. Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan

    OpenAIRE

    Liu, Zhi-Jian; Hoffmeister, Karin M.; Hu, Zhongbo; Mager, Donald E.; Ait-Oudhia, Sihem; Debrincat, Marlyse A.; Pleines, Irina; Josefsson, Emma C.; Benjamin T Kile; Italiano, Joseph; Ramsey, Haley; Grozovsky, Renata; Veng-Pedersen, Peter; Chavda, Chaitanya; Sola-Visner, Martha

    2014-01-01

    Rapid growth and rising platelet counts result in a significant expansion of platelet mass during neonatal life.The rise in platelet counts is mediated by a prolongation in the neonatal platelet lifespan.

  17. Platelet gel for healing cutaneous chronic wounds.

    Science.gov (United States)

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  18. Acupuncture combined with curcumin disrupts platelet-derived growth factor β receptor/extracellular signal-regulated kinase signalling and stimulates extracellular matrix degradation in carbon tetrachloride-induced hepatic fibrosis in rats.

    Science.gov (United States)

    Zhang, Xiao-Ping; Zhang, Feng; Zhang, Zi-Li; Ma, Jin; Kong, De-Song; Ni, Guang-Xia; Wang, Ai-Yun; Chen, Wen-Xing; Lu, Yin; Zheng, Shi-Zhong

    2012-12-01

    Acupuncture treatment has been increasingly used to treat chronic liver diseases. We previously reported that acupuncture combined with curcumin, a natural antifibrotic compound, could remarkably attenuate liver fibrosis in chemically intoxicated rats, but the underlying molecular mechanisms are poorly understood. The present study was aimed at investigating the effects of acupuncture combined with curcumin on platelet-derived growth factor (PDGF) signalling and extracellular matrix (ECM) regulation in the fibrotic liver. A total of 60 Sprague-Dawley male rats were randomly divided into control, model, sham, acupuncture, curcumin and combination treatment groups. During the establishment of fibrosis using carbon tetrachloride (CCl(4)), acupuncture at LR3, LR14, BL18 and ST36 and/or curcumin treatment by mouth were performed simultaneously. After treatment, serum PDGF levels were measured. Protein and mRNA expression of key effectors in PDGF pathway and fibrinolysis in the liver was determined. Acupuncture combined with curcumin potently reduced serum PDGF levels and selectively disrupted the PDGF-βR/extracellular signal-regulated kinase (ERK) cascade. Combination treatment also significantly repressed expression of connective tissue growth factor and upregulated expression of matrix metalloproteinase-9, promoting fibrinolysis in the fibrotic liver. The beneficial effects of acupuncture and its combination with curcumin could be attributed to the disruption of PDGF-βR/ERK pathway and stimulated ECM degradation in the fibrotic liver. Acupuncture treatment significantly enhanced curcumin effects at the molecular level. These findings may provide molecular insights into the potential of acupuncture combined with curcumin for prevention of hepatic fibrosis.

  19. Effects of hormones on platelet aggregation.

    Science.gov (United States)

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  20. Staphylococcus aureus α-toxin triggers the synthesis of B-cell lymphoma 3 by human platelets.

    Science.gov (United States)

    Schubert, Sebastian; Schwertz, Hansjörg; Weyrich, Andrew S; Franks, Zechariah G; Lindemann, Stephan; Otto, Monika; Behr, Hagen; Loppnow, Harald; Schlitt, Axel; Russ, Martin; Presek, Peter; Werdan, Karl; Buerke, Michael

    2011-02-01

    The frequency and severity of bacteremic infections has increased over the last decade and bacterial endovascular infections (i.e., sepsis or endocarditis) are associated with high morbidity and mortality. Bacteria or secreted bacterial products modulate platelet function and, as a result, affect platelet accumulation at sites of vascular infection and inflammation. However, whether bacterial products regulate synthetic events in platelets is not known. In the present study, we determined if prolonged contact with staphylococcal α-toxin signals platelets to synthesize B-cell lymphoma (Bcl-3), a protein that regulates clot retraction in murine and human platelets. We show that α-toxin induced α(IIb)β(3)-dependent aggregation (EC(50) 2.98 µg/mL ± 0.64 µg/mL) and, over time, significantly altered platelet morphology and stimulated de novo accumulation of Bcl-3 protein in platelets. Adherence to collagen or fibrinogen also increased the expression of Bcl-3 protein by platelets. α-toxin altered Bcl-3 protein expression patterns in platelets adherent to collagen, but not fibrinogen. Pretreatment of platelets with inhibitors of protein synthesis or the mammalian Target of Rapamycin (mTOR) decreased Bcl-3 protein expression in α-toxin stimulated platelets. In conclusion, Staphylococcusaureus-derived α-toxin, a pore forming exotoxin, exerts immediate (i.e., aggregation) and prolonged (i.e., protein synthesis) responses in platelets, which may contribute to increased thrombotic events associated with gram-positive sepsis or endocarditis.

  1. Sulfatides partition disabled-2 in response to platelet activation.

    Directory of Open Access Journals (Sweden)

    Karen E Drahos

    Full Text Available BACKGROUND: Platelets contact each other at the site of vascular injury to stop bleeding. One negative regulator of platelet aggregation is Disabled-2 (Dab2, which is released to the extracellular surface upon platelet activation. Dab2 inhibits platelet aggregation through its phosphotyrosine-binding (PTB domain by competing with fibrinogen for alphaIIbbeta3 integrin receptor binding by an unknown mechanism. METHODOLOGY/PRINCIPAL FINDINGS: Using protein-lipid overlay and liposome-binding assays, we identified that the N-terminal region of Dab2, including its PTB domain (N-PTB, specifically interacts with sulfatides. Moreover, we determined that such interaction is mediated by two conserved basic motifs with a dissociation constant (K(d of 0.6 microM as estimated by surface plasmon resonance (SPR analysis. In addition, liposome-binding assays combined with mass spectroscopy studies revealed that thrombin, a strong platelet agonist, cleaved N-PTB at a site located between the basic motifs, a region that becomes protected from thrombin cleavage when bound to sulfatides. Sulfatides on the platelet surface interact with coagulation proteins, playing a major role in haemostasis. Our results show that sulfatides recruit N-PTB to the platelet surface, sequestering it from integrin receptor binding during platelet activation. This is a transient recruitment that follows N-PTB internalization by an actin-dependent process. CONCLUSIONS/SIGNIFICANCE: Our experimental data support a model where two pools of Dab2 co-exist at the platelet surface, in both sulfatide- and integrin receptor-bound states, and their balance controls the extent of the clotting response.

  2. Pathogen sensing, subsequent signalling, and signalosome in human platelets.

    Science.gov (United States)

    Garraud, Olivier; Berthet, Julien; Hamzeh-Cognasse, Hind; Cognasse, Fabrice

    2011-04-01

    Beyond haemostasis, platelets exert a potent role in innate immunity and particularly in its inflammatory arm. The extent of this action remains however debatable, despite clear - and old - evidence of a link between platelets and infection. Platelets can sense infectious pathogens by pathogen recognition receptors and they can even discriminate between various types of infectious signatures. In reply, they can shape their capacity to respond by activating a signalosome and by producing different profiles of pro-inflammatory cytokines and related products. The links between pathogen sensing, signalosome activation and protein production, and their finely tuned regulation are still under investigation since platelets lack a nucleus and thus, canonical molecular biology and genomics apparati.

  3. Expression of Angiogenesis Regulatory Proteins and Epithelial-Mesenchymal Transition Factors in Platelets of the Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Hui Han

    2014-01-01

    Full Text Available Platelets play a role in tumor angiogenesis and growth and are the main transporters of several angiogenesis regulators. Here, we aimed to determine the levels of angiogenesis regulators and epithelial-mesenchymal transition factors sequestered by circulating platelets in breast cancer patients and age-matched healthy controls. Platelet pellets (PP and platelet-poor plasma (PPP were collected by routine protocols. Vascular endothelial growth factor (VEGF, platelet-derived growth factor BB (PDGF-BB, thrombospondin-1 (TSP-1, platelet factor 4 (PF4, and transforming growth factor-β1 (TGF-β1 were measured by enzyme-linked immunosorbent assay. Angiogenesis-associated expression of VEGF (2.1 pg/106 platelets versus 0.9 pg/106 platelets, P < 0.001, PF4 (21.2 ng/106 platelets versus 10.2 ng/106 platelets, P < 0.001, PDGF-BB (42.9 pg/106 platelets versus 19.1 pg/106 platelets, P < 0.001, and TGF-β1 (15.3 ng/106 platelets versus 4.3 ng/106 platelets, P < 0.001 differed in the PP samples of cancer and control subjects. In addition, protein concentrations were associated with clinical characteristics (P<0.05. Circulating platelets in breast cancer sequester higher levels of PF4, VEGF, PDGF-BB, and TGF-β1, suggesting a possible target for early diagnosis. VEGF, PDGF, and TGF-β1 concentrations in platelets may be associated with prognosis.

  4. Association of Adiposity Indices with Platelet Distribution Width and Mean Platelet Volume in Chinese Adults.

    Directory of Open Access Journals (Sweden)

    Jian Hou

    Full Text Available Hypoxia is a prominent characteristic of inflammatory tissue lesions. It can affect platelet function. While mean platelet volume (MPV and platelet distribution width (PDW are sample platelet indices, they may reflect subcinical platelet activation. To investigated associations between adiposity indices and platelet indices, 17327 eligible individuals (7677 males and 9650 females from the Dongfeng-Tongji Cohort Study (DFTJ-Cohort Study, n=27009 were included in this study, except for 9682 individuals with missing data on demographical, lifestyle, physical indicators and diseases relative to PDW and MPV. Associations between adiposity indices including waist circumstance (WC, waist-to-height ratio (WHtR, body mass index (BMI, and MPV or PDW in the participants were analyzed using multiple logistic regressions. There were significantly negative associations between abnormal PDW and WC or WHtR for both sexes (ptrend<0.001 for all, as well as abnormal MPV and WC or WHtR among female participants (ptrend<0.05 for all. In the highest BMI groups, only females with low MPV or PDW were at greater risk for having low MPV (OR=1.33, 95% CI=1.10, 1.62 ptrend<0.001 or PDW (OR=1.34, 95% CI=1.14, 1.58, ptrend<0.001 than those who had low MPV or PDW in the corresponding lowest BMI group. The change of PDW seems more sensitive than MPV to oxidative stress and hypoxia. Associations between reduced PDW and MPV values and WC, WHtR and BMI values in Chinese female adults may help us to further investigate early changes in human body.

  5. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4.

    Science.gov (United States)

    Walsh, Tony G; Harper, Matthew T; Poole, Alastair W

    2015-01-01

    Platelets store and secrete the chemokine stromal cell-derived factor (SDF)-1α upon platelet activation, but the ability of platelet-derived SDF-1α to signal in an autocrine/paracrine manner mediating functional platelet responses relevant to thrombosis and haemostasis is unknown. We sought to explore the role of platelet-derived SDF-1α and its receptors, CXCR4 and CXCR7 in facilitating platelet activation and determine the mechanism facilitating SDF-1α-mediated regulation of platelet function. Using human washed platelets, CXCR4 inhibition, but not CXCR7 blockade significantly abrogated collagen-mediated platelet aggregation, dense granule secretion and thromboxane (Tx) A2 production. Time-dependent release of SDF-1α from collagen-activated platelets supports a functional role for SDF-1α in this regard. Using an in vitro whole blood perfusion assay, collagen-induced thrombus formation was substantially reduced with CXCR4 inhibition. In washed platelets, recombinant SDF-1α in the range of 20-100 ng/mL(-1) could significantly enhance platelet aggregation responses to a threshold concentration of collagen. These enhancements were completely dependent on CXCR4, but not CXCR7, which triggered TxA2 production and dense granule secretion. Rises in cAMP were significantly blunted by SDF-1α, which could also enhance collagen-mediated Ca2+ mobilisation, both of which were mediated by CXCR4. This potentiating effect of SDF-1α primarily required TxA2 signalling acting upstream of dense granule secretion, whereas blockade of ADP signalling could only partially attenuate SDF-1α-induced platelet activation. Therefore, this study supports a potentially novel autocrine/paracrine role for platelet-derived SDF-1α during thrombosis and haemostasis, through a predominantly TxA2-dependent and ADP-independent pathway.

  6. Platelets possess functional TGF-beta receptors and Smad2 protein.

    Science.gov (United States)

    Lev, P R; Salim, J P; Marta, R F; Osorio, M J Mela; Goette, N P; Molinas, F C

    2007-02-01

    TGF-beta1 plays a main role in tissue repair by regulating extracellular matrix production and tissue granulation. Platelets are one of the main sources of this cytokine in the circulation. The aim of this study was to evaluate the presence of the TGF-beta receptors on platelets, the effect of TGF-beta1 on platelet aggregation and the underlying intracellular mechanisms. TGF-beta receptors on platelets were studied by flow cytometry and their mRNA by PCR. Platelet aggregation was assessed by turbidimetric methods and intracellular pathways by Western blot. TGF-beta receptor type II and mRNA codifying for TbetaRI and TbetaRII were found in platelets. We demonstrated that TGF-beta1 did not trigger platelet aggregation by itself but had a modulating effect on ADP-induced platelet aggregation. Either inhibition or increase in platelet aggregation, depending on the exposure time to TGF-beta1 and the ADP concentration used, were shown. We found that platelets possess Smad2 protein and that its phosphorylation state is increased after exposure to TGF-beta1. Besides, TGF-beta1 modified the pattern of ADP-induced tyrosine phosphorylation. Increased phosphorylation levels of 64-, 80- and 125-kDa proteins during short time incubation with TGF-beta1 and increased phosphorylation of 64- and 125-kDa proteins after longer incubation were observed. The modulating effect of TGF-beta1 on platelet aggregation could play a role during pathological states in which circulating TGF-beta1 levels are increased and intravascular platelet activation is present, such as myeloproliferative disorders. In vascular injury, in which platelet activation followed by granule release generates high local ADP concentrations, it could function as a physiological mechanism of platelet activation control.

  7. Characterization of human platelet glutathione reductase.

    Science.gov (United States)

    Moroff, G; Kosow, D P

    1978-12-08

    Glutathione reductase (NAD(P)h:oxidized glutathione oxidoreductase, EC 1.6.4.2) has been purified 1000-fold from the cytoplasmic fraction of human platelets. Salts, including the heretofore unreported effect of sodium citrate, activate the NADPH-dependent reduction of oxidized glutathione. Sodium citrate and monovalent salt activation appears to involve multiple sites having different binding affinities. At sub-saturating sodium phosphate, non-linear double reciprocal plots indicative of substrate activation by oxidized glutathione were observed. Initial velocity double reciprocal plots at sub-saturating and saturating concentrations of phosphate generate a family of converging lines. NADP+ is a partial inhibitor, indicating that the reduction of oxidized glutathione can proceed by more than one pathway. FMN, FAD, and riboflavin inhibit platelet glutathione reductase by influencing only the V while nitrofurantoin inhibition is associated with an increase Koxidized glutathione and a decreased V.

  8. Platelets in inflammation and immunity.

    Science.gov (United States)

    Herter, J M; Rossaint, J; Zarbock, A

    2014-11-01

    The paradigm of platelets as mere mediators of hemostasis has long since been replaced by a dual role: hemostasis and inflammation. Now recognized as key players in innate and adaptive immune responses, platelets have the capacity to interact with almost all known immune cells. These platelet-immune cell interactions represent a hallmark of immunity, as they can potently enhance immune cell functions and, in some cases, even constitute a prerequisite for host defense mechanisms such as NETosis. In addition, recent studies have revealed a new role for platelets in immunity: They are ubiquitous sentinels and rapid first-line immune responders, as platelet-pathogen interactions within the vasculature appear to precede all other host defense mechanisms. Here, we discuss recent advances in our understanding of platelets as inflammatory cells, and provide an exemplary review of their role in acute inflammation.

  9. Estrogen, inflammation, and platelet phenotype.

    Science.gov (United States)

    Miller, Virginia M; Jayachandran, Muthuvel; Hashimoto, Kazumori; Heit, John A; Owen, Whyte G

    2008-01-01

    Although exogenous estrogenic therapies increase the risk of thrombosis, the effects of estrogen on formed elements of blood are uncertain. This article examines the genomic and nongenomic actions of estrogen on platelet phenotype that may contribute to increased thrombotic risk. To determine aggregation, secretion, protein expression, and thrombin generation, platelets were collected from experimental animals of varying hormonal status and from women enrolled in the Kronos Early Estrogen Prevention Study. Estrogen receptor beta predominates in circulating platelets. Estrogenic treatment in ovariectomized animals decreased platelet aggregation and adenosine triphosphate (ATP) secretion. However, acute exposure to 17beta-estradiol did not reverse decreases in platelet ATP secretion invoked by lipopolysaccharide. Thrombin generation was positively correlated to the number of circulating microvesicles expressing phosphatidylserine. Assessing the effect of estrogen treatments on blood platelets may lead to new ways of identifying women at risk for adverse thrombotic events with such therapies.

  10. Complement Activation Alters Platelet Function

    Science.gov (United States)

    2015-12-01

    Award Number: W81XWH-12-1-0523 TITLE: Complement Activation Alters Platelet Function PRINCIPAL INVESTIGATOR: George Tsokos, M.D. CONTRACTING...Activation Alters Platelet Function 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0523 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) George Tsokos, M.D...a decreased level of disease. Further studies will expand upon these observations better outlining the function of platelets in the injury associated

  11. Identification of genes that regulate multiple cellular processes/responses in the context of lipotoxicity to hepatoma cells

    Directory of Open Access Journals (Sweden)

    Yedwabnick Matthew

    2007-10-01

    Full Text Available Abstract Background In order to devise efficient treatments for complex, multi-factorial diseases, it is important to identify the genes which regulate multiple cellular processes. Exposure to elevated levels of free fatty acids (FFAs and tumor necrosis factor alpha (TNF-α alters multiple cellular processes, causing lipotoxicity. Intracellular lipid accumulation has been shown to reduce the lipotoxicity of saturated FFA. We hypothesized that the genes which simultaneously regulate lipid accumulation as well as cytotoxicity may provide better targets to counter lipotoxicity of saturated FFA. Results As a model system to test this hypothesis, human hepatoblastoma cells (HepG2 were exposed to elevated physiological levels of FFAs and TNF-α. Triglyceride (TG accumulation, toxicity and the genomic responses to the treatments were measured. Here, we present a framework to identify such genes in the context of lipotoxicity. The aim of the current study is to identify the genes that could be altered to treat or ameliorate the cellular responses affected by a complex disease rather than to identify the causal genes. Genes that regulate the TG accumulation, cytotoxicity or both were identified by a modified genetic algorithm partial least squares (GA/PLS analysis. The analyses identified NADH dehydrogenase and mitogen activated protein kinases (MAPKs as important regulators of both cytotoxicity and lipid accumulation in response to FFA and TNF-α exposure. In agreement with the predictions, inhibiting NADH dehydrogenase and c-Jun N-terminal kinase (JNK reduced cytotoxicity significantly and increased intracellular TG accumulation. Inhibiting another MAPK pathway, the extracellular signal regulated kinase (ERK, on the other hand, improved the cytotoxicity without changing TG accumulation. Much greater reduction in the toxicity was observed upon inhibiting the NADH dehydrogenase and MAPK (which were identified by the dual-response analysis, than for the

  12. Platelet effects on ovarian cancer

    Science.gov (United States)

    Davis, Ashley; Afshar-Kharghan, Vahid; Sood, Anil K.

    2014-01-01

    Growing understanding of the role of thrombocytosis, high platelet turnover, and the presence of activated platelets in the circulation in cancer progression and metastasis has brought megakaryocytes into focus. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. However, before megakaryocyte/platelet-directed therapies can be considered for clinical use, understanding of the mechanism and biology of paraneoplastic thrombocytosis in malignancy is required. Here, we provide an overview of the clinical implications, biological significance, and mechanisms of paraneoplastic thrombocytosis in the context of ovarian cancer. PMID:25023353

  13. Novel aspects of platelet aggregation

    Directory of Open Access Journals (Sweden)

    Roka-Moya Y. M.

    2014-01-01

    Full Text Available The platelet aggregation is an important process, which is critical for the hemostatic plug formation and thrombosis. Recent studies have shown that the platelet aggregation is more complex and dynamic than it was previously thought. There are several mechanisms that can initiate the platelet aggregation and each of them operates under specific conditions in vivo. At the same time, the influence of certain plasma proteins on this process should be considered. This review intends to summarize the recent data concerning the adhesive molecules and their receptors, which provide the platelet aggregation under different conditions.

  14. Overview of platelet physiology and laboratory evaluation of platelet function.

    Science.gov (United States)

    Rodgers, G M

    1999-06-01

    Appropriate laboratory testing for the platelet-type bleeding disorders hinges on an adequate assessment in the history and physical examination. Patients with histories and screening laboratory results consistent with coagulation disorders (hemophilia, disseminated intravascular coagulation) are not appropriate candidates for platelet function testing. In contrast, patients with a lifelong history of platelet-type bleeding symptoms and perhaps a positive family history of bleeding would be appropriate for testing. Figure 6 depicts one strategy to evaluate these patients. Platelet morphology can easily be evaluated to screen for two uncommon qualitative platelet disorders: Bernard-Soulier syndrome (associated with giant platelets) and gray platelet syndrome, a subtype of storage pool disorder in which platelet granulation is morphologically abnormal by light microscopy. If the bleeding disorder occurred later in life (no bleeding with surgery or trauma early in life), the focus should be on acquired disorders of platelet function. For those patients thought to have an inherited disorder, testing for vWD should be done initially because approximately 1% of the population has vWD. The complete vWD panel (factor VIII coagulant activity, vWf antigen, ristocetin cofactor activity) should be performed because many patients will have abnormalities of only one particular panel component. Patients diagnosed with vWD should be classified using multimeric analysis to identify the type 1 vWD patients likely to respond to DDAVP. If vWD studies are normal, platelet aggregation testing should be performed, ensuring that no antiplatelet medications have been ingested at least 1 week before testing. If platelet aggregation tests are normal and if suspicion for an inherited disorder remains high, vWD testing should be repeated. The evaluation of thrombocytopenia may require bone marrow examination to exclude primary hematologic disorders. If future studies with thrombopoietin assays

  15. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries

    Directory of Open Access Journals (Sweden)

    Conglei Li

    2012-01-01

    Full Text Available Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc., which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs, such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1. Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions.

  16. Platelets Mediate Host Defense against Staphylococcus aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities.

    Science.gov (United States)

    Ali, Ramadan A; Wuescher, Leah M; Dona, Keith R; Worth, Randall G

    2017-01-01

    Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells.

    Science.gov (United States)

    Lee, G J; Jun, J W; Hyun, S

    2015-06-01

    Metabolic organs such as the liver and adipose tissue produce several peptide hormones that influence metabolic homeostasis. Fat bodies, the Drosophila counterpart of liver and adipose tissues, have been thought to analogously secrete several hormones that affect organismal physiology, but their identity and regulation remain poorly understood. Previous studies have indicated that microRNA miR-8, functions in the fat body to non-autonomously regulate organismal growth, suggesting that fat body-derived humoral factors are regulated by miR-8. Here, we found that several putative peptide hormones known to have mitogenic effects are regulated by miR-8 in the fat body. Most members of the imaginal disc growth factors and two members of the adenosine deaminase-related growth factors are up-regulated in the absence of miR-8. Drosophila insulin-like peptide 6 (Dilp6) and imaginal morphogenesis protein-late 2 (Imp-L2), a binding partner of Dilp, are also up-regulated in the fat body of miR-8 null mutant larvae. The fat body-specific reintroduction of miR-8 into the miR-8 null mutants revealed six peptides that showed fat-body organ-autonomous regulation by miR-8. Amongst them, only Imp-L2 was found to be regulated by U-shaped, the miR-8 target for body growth. However, a rescue experiment by knockdown of Imp-L2 indicated that Imp-L2 alone does not account for miR-8's control over the insect's growth. Our findings suggest that multiple peptide hormones regulated by miR-8 in the fat body may collectively contribute to Drosophila growth. © 2014 The Royal Entomological Society.

  18. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  19. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Ilya Sotnikov

    Full Text Available Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.

  20. Platelets miRNA as a Prediction Marker of Thrombotic Episodes

    Directory of Open Access Journals (Sweden)

    Michal Bijak

    2016-01-01

    Full Text Available The blood platelets are crucial for the coagulation physiology to maintain haemostatic balance and are involved in various pathologies such as atherosclerosis and thrombosis. The studies of recent years have shown that anucleated platelets are able to succeed protein synthesis. Additionally, mRNA translation in blood platelets is regulated by miRNA molecules. Recent works postulate the possibility of using miRNAs as biomarkers of atherosclerosis and ischemic episodes. This review article describes clinical studies that presented blood platelets miRNAs expression profile changes in different thrombotic states, which suggest use of these molecules as predictive biomarkers.

  1. Platelet Concentrates: Past, Present and Future

    OpenAIRE

    2011-01-01

    Platelets play a crucial role in hemostasis and wound healing, platelet growth factors are well known source of healing cytokines. Numerous techniques of autologous platelet concentrates have been developed and applied in oral and maxillofacial surgery. This review describes the evolution of the first and second generation of platelet concentrates (platelet rich plasma and platelet rich fibrin respectively) from their fore runner-fibrin sealants.

  2. Studies on megakaryopoiesis and platelet function

    OpenAIRE

    Meinders, M.

    2015-01-01

    Platelets are blood circulating specialized subcellular fragments, which are produced by megakaryocytes. Platelets are essential for hemostasis and wound healing but also play a role in non-hemostatic processes such as the immune response or cancer metastasis. Considering the immediate precursors of platelets, normal megakaryocyte development is essential for normal platelet function. Although much is known about platelet development, some aspects of platelet production remain poorly understo...

  3. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojun [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zhong, Xiaomin [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Tanyi, Janos L.; Shen, Jianfeng [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Xu, Congjian [Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Gao, Peng [Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zheng, Tim M. [Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); DeMichele, Angela [Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhang, Lin, E-mail: linzhang@mail.med.upenn.edu [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  4. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bisteau, Xavier [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); Caldez, Matias J.; Kaldis, Philipp, E-mail: kaldis@imcb.a-star.edu.sg [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); National University of Singapore (NUS), Department of Biochemistry, Singapore 117597 (Singapore)

    2014-01-13

    The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.

  5. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Directory of Open Access Journals (Sweden)

    Xavier Bisteau

    2014-01-01

    Full Text Available The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC. We also provide a brief summary of novel therapies connected to cell cycle regulation.

  6. P-selectin-mediated platelet adhesion promotes the metastasis of murine melanoma cells.

    Science.gov (United States)

    Qi, Cui-Ling; Wei, Bo; Ye, Jie; Yang, Yang; Li, Bin; Zhang, Qian-Qian; Li, Jiang-Chao; He, Xiao-Dong; Lan, Tian; Wang, Li-Jing

    2014-01-01

    Studies have indicated that the aggregation of activated platelets with cancer cells facilitates tumor metastasis; the adhesion molecule P-selectin may be an important mediator of this process, but the detailed mechanism is unclear. In the current study, we established a B16F10 (B16) cell metastatic model in P-selectin knockout (P-sel-/-) mice to determine the effect of P-selectin-mediated platelet adhesion on metastasis. Compared with C57 mice, P-sel-/- mice developed fewer metastatic foci, and cell proliferation within the metastatic tumors was inhibited by P-selectin deficiency. The platelet refusion assay demonstrated that mice with P-sel-/- platelets developed fewer lung metastatic foci (PP-selectin deficiency inhibited the metastasis of B16 cells and that wild-type platelet refusion reversed this inhibition. The P-selectin-mediated interaction between platelets and B16 cells promoted angiogenesis by up-regulating VEGF.

  7. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Directory of Open Access Journals (Sweden)

    Ian M Packham

    Full Text Available We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, P<0.001 that was abolished by platelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, P<0.01 was unaffected. Granulocyte/monocyte depletion showed this response was not immune-regulated. VEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration.

  8. Platelet aggregation measurement for assessment of hemostasis failure mechanisms in patients with gastroduodenal ulcer bleeding

    Science.gov (United States)

    Barinov, Edward; Sulaieva, Oksana; Lyakch, Yuriy; Guryanov, Vitaliy; Kondratenko, Petr; Radenko, Yevgeniy

    2013-01-01

    Background The purpose of this study was to identify factors associated with the risk of unsustainable hemostasis in patients with gastric and duodenal ulcer bleeding by in vitro assessment of platelet reactivity using artificial neural networks. Methods Patients with gastroduodenal ulcers complicated by bleeding were studied. Platelet aggregation was measured using aggregometry with adenosine diphosphate 5 μM, epinephrine 2.5 μM, 5-hydroxytryptophan 10 μM, collagen 1 μM, and thrombin 0.06 NIH Unit/mL as agonists. Multiple logistic regression was used to evaluate the independent relationship between demographic, clinical, endoscopic, and laboratory data and in vitro assessment of platelet reactivity and local parameters of hemostasis in patients with ulcer bleeding. Results Analysis of platelet aggregation in patients with gastroduodenal ulcer bleeding allowed the variability of platelet response to different agonists used in effective concentration which induces 50% platelet aggregation (EC50) to be established. The relationship between platelet aggregation and the spatial-temporal characteristics of ulcers complicated by bleeding was demonstrated. Adrenoreactivity of platelets was associated with time elapsed since the start of ulcer bleeding and degree of hemorrhage. The lowest platelet response to collagen and thrombin was detected in patients with active bleeding (P < 0.001) and unsustainable recent bleeding (P < 0.01). Decreased adenosine diphosphate-induced platelet aggregation in patients with ulcer bleeding was correlated with the platelet response to thrombin (r = 0.714, P < 0.001) and collagen (r = 0.584, P < 0.01). Conclusion Estimation of platelet reactivity in vitro indicates the key mechanisms of failure of hemostasis in patients with ulcer bleeding. In addition to gender, an important determinant of unsustainable hemostasis was a decreased platelet response to thrombin and adenosine diphosphate. PMID:23950655

  9. MULTIPLE STABLE PERIODIC SOLUTIONS IN A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    ABSTRACTThe pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the ovarian hormones, estradiol (E2), progesterone (P4), and inhibin (Ih), are five hormones important for the regulation and maintenance of the human menstrual cycle. The...

  10. MULTIPLE STABLE PERIODIC SOLUTIONS IN A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    ABSTRACTThe pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the ovarian hormones, estradiol (E2), progesterone (P4), and inhibin (Ih), are five hormones important for the regulation and maintenance of the human menstrual cycle. The...

  11. Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry

    Science.gov (United States)

    Santos-Martinez, Maria J; Tomaszewski, Krzysztof A; Medina, Carlos; Bazou, Despina; Gilmer, John F; Radomski, Marek W

    2015-01-01

    Background Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure platelet microaggregation. Therefore, in this study we investigated the pharmacological pathways and regulators of NP-induced platelet microaggregation under flow conditions at nanoscale using quartz crystal microbalance with dissipation (QCM-D) and compared the data thus obtained with those generated by light aggregometry. Methods Blood was collected from healthy volunteers, and platelet-rich plasma was obtained. Thrombin receptor-activating peptide, a potent stimulator of platelet function, and pharmacological inhibitors were used to modulate platelet microaggregation in the presence/absence of silica (10 nm and 50 nm) and polystyrene (23 nm) NPs. Light aggregometry was used to study platelet aggregation in macroscale. Optical, immunofluorescence, and scanning electron microscopy were also used to visualize platelet aggregates. Results Platelet microaggregation was enhanced by thrombin receptor-activating peptide, whereas prostacyclin, nitric oxide donors, acetylsalicylic acid, and phenanthroline, but not adenosine diphosphate (ADP) blockers, were able to inhibit platelet microaggregation. NPs caused platelet microaggregation, an effect not detectable by light aggregometry. NP-induced microaggregation was attenuated by platelet inhibitors. Conclusion NP-induced platelet microaggregation appears to involve classical proaggregatory pathways (thromboxane A2-mediated and matrix metalloproteinase-2-mediated) and can be regulated by endogenous (prostacyclin) and pharmacological (acetylsalicylic acid, phenanthroline, and nitric oxide donors) inhibitors of platelet function. Quartz crystal microbalance with dissipation, but not light aggregometry, is an appropriate method for

  12. Clopidogrel discontinuation and platelet reactivity following coronary stenting

    LENUS (Irish Health Repository)

    2011-01-01

    Summary. Aims: Antiplatelet therapy with aspirin and clopidogrel is recommended for 1 year after drug-eluting stent (DES) implantation or myocardial infarction. However, the discontinuation of antiplatelet therapy has become an important issue as recent studies have suggested a clustering of ischemic events within 90 days of clopidogrel withdrawal. The objective of this investigation was to explore the hypothesis that there is a transient ‘rebound’ increase in platelet reactivity within 3 months of clopidogrel discontinuation. Methods and Results: In this prospective study, platelet function was assessed in patients taking aspirin and clopidogrel for at least 1 year following DES implantation. Platelet aggregation was measured using a modification of light transmission aggregometry in response to multiple concentrations of adenosine diphosphate (ADP), epinephrine, arachidonic acid, thrombin receptor activating peptide and collagen. Clopidogrel was stopped and platelet function was reassessed 1 week, 1 month and 3 months later. Thirty-two patients on dual antiplatelet therapy were recruited. Discontinuation of clopidogrel increased platelet aggregation to all agonists, except arachidonic acid. Platelet aggregation in response to ADP (2.5, 5, 10, and 20 μm) and epinephrine (5 and 20 μm) was significantly increased at 1 month compared with 3 months following clopidogrel withdrawal. Thus, a transient period of increased platelet reactivity to both ADP and epinephrine was observed 1 month after clopidogrel discontinuation. Conclusions: This study demonstrates a transient increase in platelet reactivity 1 month after clopidogrel withdrawal. This phenomenon may, in part, explain the known clustering of thrombotic events observed after clopidogrel discontinuation. This observation requires confirmation in larger populations.

  13. Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function.

    Science.gov (United States)

    White, Michael J; Schoenwaelder, Simone M; Josefsson, Emma C; Jarman, Kate E; Henley, Katya J; James, Chloé; Debrincat, Marlyse A; Jackson, Shaun P; Huang, David C S; Kile, Benjamin T

    2012-05-03

    Apoptotic caspases, including caspase-9, are thought to facilitate platelet shedding by megakaryocytes. They are known to be activated during platelet apoptosis, and have also been implicated in platelet hemostatic responses. However, the precise requirement for, and the regulation of, apoptotic caspases have never been defined in either megakaryocytes or platelets. To establish the role of caspases in platelet production and function, we generated mice lacking caspase-9 in their hematopoietic system. We demonstrate that both megakaryocytes and platelets possess a functional apoptotic caspase cascade downstream of Bcl-2 family-mediated mitochondrial damage. Caspase-9 is the initiator caspase, and its loss blocks effector caspase activation. Surprisingly, steady-state thrombopoiesis is unperturbed in the absence of caspase-9, indicating that the apoptotic caspase cascade is not required for platelet production. In platelets, loss of caspase-9 confers resistance to the BH3 mimetic ABT-737, blocking phosphatidylserine (PS) exposure and delaying ABT-737-induced thrombocytopenia in vivo. Despite this, steady-state platelet lifespan is normal. Casp9(-/-) platelets are fully capable of physiologic hemostatic responses and functional regulation of adhesive integrins in response to agonist. These studies demonstrate that the apoptotic caspase cascade is required for the efficient death of megakaryocytes and platelets, but is dispensable for their generation and function.

  14. [Platelets "Toll-like receptor" engagement stimulates the release of immunomodulating molecules].

    Science.gov (United States)

    Cognasse, F; Hamzeh-Cognasse, H; Garraud, O

    2008-09-01

    Platelets are nonnucleated cellular elements that play a role in the process of haemostasis, and also in various ways in innate immunity and in inflammation. Platelets also contain numerous secretory products and can exert critical roles in several aspects of haemostasis. In addition, they house and secrete a variety of cytokines, chemokines and associated molecules which behave as ligands for receptors/counterparts displayed by endothelial cells lining tissue vessels and most leukocyte subsets. These latter studies show that platelets have an important role in innate as well as adaptive immunity; thus platelets can take part in an immune directive response. Moreover, platelets display receptors for several types of cytokines/chemokines along with FcgammaRII receptors. Finally, platelets not only express a variety of Toll-like receptors, with recently identified functions or not as-yet fully identified, but have also been demonstrated to express the key tandem pair of inflammatory and antigen presentation molecules (CD40 and CD40-ligand/CD154), this latter function making them the major purveyors of soluble CD40L in the plasma. It appears that platelets may be regarded as one of the neglected components of immune cell regulators, and platelets contribute to some interesting aspects in bridging innate and adaptive immunity. We propose that platelets discriminate danger signals and adapt the subsequent responses, with polarized cytokine secretion. Platelets may recognize several types of infectious pathogens and limit microbial colonization by sequestering these pathogens and releasing immunomodulatory factors. This review allows us to re-explore indications that platelets exert direct anti-infection immunity and we will present experimentally-driven arguments in favour of a role of platelet TLR in regulating certain immune activities.

  15. PGE2 decreases reactivity of human platelets by activating EP2 and EP4.

    Science.gov (United States)

    Smith, James P; Haddad, Elias V; Downey, Jason D; Breyer, Richard M; Boutaud, Olivier

    2010-07-01

    Platelet hyperreactivity associates with cardiovascular events in humans. Studies in mice and humans suggest that prostaglandin E2 (PGE2) regulates platelet activation. In mice, activation of the PGE2 receptor subtype 3 (EP3) promotes thrombosis, but the significance of EP3 in humans is less well understood. To characterize the regulation of thromboxane-dependent human platelet activation by PGE2. Platelets collected from nineteen healthy adults were studied using an agonist of the thromboxane receptor (U46,619), PGE2, and selective agonists and/or antagonists of the EP receptor subtypes. Platelet activation was assayed by (1) optical aggregometry, (2) measurement of dense granule release, and (3) single-platelet counting. Healthy volunteers demonstrated significant interindividual variation in platelet response to PGE2. PGE2 completely inhibited U46,619-induced platelet aggregation and ATP release in 26% of subjects; the remaining 74% had partial or no response to PGE2. Antagonism of EP4 abolished the inhibitory effect of PGE2. In all volunteers, a selective EP2 agonist inhibited U46,619-induced aggregation. Furthermore, the selective EP3 antagonist DG-041 converted all PGE2 nonresponders to full responders. There is significant interindividual variation of platelet response to PGE2 in humans. The balance between EP2, EP3, and EP4 activation determines its net effect. PGE2 can prevent thromboxane-induced platelet aggregation in an EP4-dependent manner. EP3 antagonism converts platelets of nonresponders to a PGE2-responsive phenotype. These data suggest that therapeutic targeting of EP pathways may have cardiovascular benefit by decreasing platelet reactivity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. The Percentage Variation of Platelets in Multiple Donator Apheresis Platelets in Peripheral Blood Reticulocytes%多次单采血小板献血者外周血网织血小板百分比水平的变化

    Institute of Scientific and Technical Information of China (English)

    周爱国; 李继红; 周宁; 孟德伍; 祝峰; 范恩勇

    2016-01-01

    目的:了解单采血小板献血者外周血网织血小板百分比水平的变化情况。方法按照单采血小板捐献情况分为2组,实验组为参加过单采血小板的献血者153例,对照组为以往无献血史,首次来血站献血且符合献血条件,共189例,利用全自动血球分析仪检测WBC、RBC、Hb、HCT、PLT、PDW、PCT、MPV及IPF比例等项目。结果与对照组相比,实验组中男性献血者WBC、PCT的差异均无统计学意义(P>0.05),RBC、Hb、HCT、PLT明显升高,有统计学意义(P<0.05),PDW、MPV、IPF下降,有统计学意义(P<0.05);实验组中女性献血者WBC、RBC、Hb、HCT、PLT、PCT、MPV的差异均无统计学意义(P>0.05),PDW、IPF明显升高,有统计学意义(P<0.05)。结论多次进行单采血小板捐献,对于男性献血者除加快RBC、PLT的骨髓造血功能外,并未加速IPF上升,相反促进PLT成熟。对于女性献血者则由于自身早期的生理性周期性失血,女性献血者的RBC、PLT等指标已受自身免疫负反馈调节而耐受,但对于多次捐献血小板的女性献血者,可能血小板生成能力较男性献血小板者增加有关。%Objective To understand reticulated platelet level changes in apheresis platelet donors. Methods The platelets donators were divided into experimental group (A) and control group(B). Group A comprised 153 cases of apheresis platelet donors and group B included 189 cases without the experience of blood donation. Automated blood analyzer was used for testing WBC,RBC,Hb,HCT,PLT,PDW,PCT,MPV and IPF proportions and other items. Results No significant difference was seen of WBC and PCT(P>0.05) in the male blood donors in Group A,whereas RBC,Hb,HCT,and PLT were obviously elavated(P0.05)whereas PDW and IPF were significantly increased(P<0.05). Conclusion Repeated apheresis platelet donations may accelerate RBC and PLT rather than IPF production in bone marrow

  17. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  18. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Obata, Toshihiro; Fernie, Alisdair R; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2013-10-01

    Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth.

  19. Preclinical efficacy of sepantronium bromide (YM155) in multiple myeloma is conferred by down regulation of Mcl-1.

    Science.gov (United States)

    Wagner, Verena; Hose, Dirk; Seckinger, Anja; Weiz, Ludmila; Meißner, Tobias; Rème, Thiery; Breitkreutz, Iris; Podar, Klaus; Ho, Anthony D; Goldschmidt, Hartmut; Krämer, Alwin; Klein, Bernard; Raab, Marc S

    2014-11-15

    The inhibitor-of-apoptosis family member survivin has been reported to inhibit apoptosis and regulate mitosis and cytokinesis. In multiple myeloma, survivin has been described to be involved in downstream sequelae of various therapeutic agents. We assessed 1093 samples from previously untreated patients, including two independent cohorts of 392 and 701 patients, respectively. Survivin expression was associated with cell proliferation, adverse prognostic markers, and inferior event-free and overall survival, supporting the evaluation of survivin as a therapeutic target in myeloma. The small molecule suppressant of survivin--YM155--is in clinical development for the treatment of solid tumors. YM155 potently inhibited proliferation and induced apoptosis in primary myeloma cells and cell lines. Gene expression and protein profiling revealed the critical roles of IL6/STAT3-signaling and the unfolded protein response in the efficacy of YM155. Both pathways converged to down regulate anti-apoptotic Mcl-1 in myeloma cells. Conversely, growth inhibition and apoptotic cell death by YM155 was rescued by ectopic expression of Mcl-1 but not survivin, identifying Mcl-1 as the pivotal downstream target of YM155 in multiple myeloma. Mcl-1 expression was likewise associated with adverse prognostic markers, and inferior survival. Our results strongly support the clinical evaluation of YM155 in patients with multiple myeloma.

  20. Haemostatic function and biomarkers of endothelial damage before and after platelet transfusion in patients with acute myeloid leukaemia

    DEFF Research Database (Denmark)

    Larsen, A M; Leinøe, E B; Johansson, P I

    2015-01-01

    and after platelet transfusion in patients with acute myeloid leukaemia. MATERIALS AND METHODS: Blood was sampled before, 1 and 24 h after platelet transfusion. Primary and secondary haemostasis was evaluated by whole blood aggregometry (Multiplate) and thromboelastography (TEG). Endothelial biomarkers (s......OBJECTIVES: The beneficial effect of platelet transfusion on haemostasis is well established, but there is emerging evidence that platelet transfusion induces an inflammatory response in vascular endothelial cells. BACKGROUND: We investigated haemostatic function and endothelial biomarkers before......ICAM-1, syndecan-1, sThrombomodulin, sVE-Cadherin) and platelet activation biomarkers (sCD40L, TGF-beta) were investigated along with haematology/biochemistry analyses. RESULTS: Twenty-two patients were included. Despite continued low platelet counts, platelet transfusion normalised the median values...

  1. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge.

  2. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates.

    Science.gov (United States)

    Ikebe, Tadayoshi; Ato, Manabu; Matsumura, Takayuki; Hasegawa, Hideki; Sata, Tetsutaro; Kobayashi, Kazuo; Watanabe, Haruo

    2010-04-01

    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors.

  3. MicroRNA-181b suppresses TAG via target IRS2 and regulating multiple genes in the Hippo pathway.

    Science.gov (United States)

    Chen, Zhi; Shi, HuaiPing; Sun, Shuang; Xu, HuiFen; Cao, DuoYao; Luo, Jun

    2016-10-15

    Milk fat metabolism is a complex procedure controlled by several factors. MiRNAs (microRNAs) regulate expression of genes and influence a series of biological procedures, such as fatty acid metabolism. Here we screened expression of goat mammary gland's miRNA during peak-lactation and late-lactation, and found that miR-181b expresses remarkably. Moreover, we illustrated that the over-expression of miR-181b impaired fat metabolism while the knockdown of miR-181b promoted fat metabolism in GMEC. These findings extend the discovery of miR-181b functioning in mediating adipocyte differentiation, by suggesting its role in impairing fat metabolism, which develops our cognition on the importance of miRNAs in milk fat metabolism and synthesis. In this study, we find that over expressed miR-181b impaired adipogenesis and inhibited miR-181b promoted adipogenesis in GMEC. Using Luciferase reporter assay and Western Blot, IRS2 was illustrated to be a miR-181b's potential target gene. What is interesting is that miR-181b regulates multiple key components in the Hippo pathway, such as LATS1 and YAP1 in GMECs. In conclusion, our findings indicated that miR-181b suppress fat metabolism by means of regulating multiple genes in the Hippo pathway and target IRS2, which promotes further study on the function of miRNAs in milk fat metabolism and synthesis.

  4. On the cause of multiple sclerosis : Molecular mechanisms regulating myelin biogenesis

    NARCIS (Netherlands)

    Bijlard, Marjolein

    2016-01-01

    Hoe myeline wordt gemaakt en hoe die kennis van nut kan zijn om een effectieve therapie voor MS te ontwikkelen. Myeline, de vette isolatielaag rondom zenuwcellen, raakt bij multiple sclerose (MS)-patiënten beschadigd door onder andere ontstekingsreacties. Die beschadigingen worden op den duur niet m

  5. CCR5 in Multiple Sclerosis : expression, regulation, and modulation by statins

    NARCIS (Netherlands)

    Kuipers, Hedwich Fardau

    2007-01-01

    Activation of microglia, the macrophages of the central nervous system, is a key element in multiple sclerosis (MS) lesion development and is characterized by enhanced expression of both classes of major histocompatibility complex (MHC) molecules. This enhanced expression results from increased leve

  6. 76 FR 14548 - Federal Acquisition Regulation; Requirements for Acquisitions Pursuant to Multiple-Award Contracts

    Science.gov (United States)

    2011-03-16

    ...- going competition, when deciding how many BPAs are appropriate and document the decision in the... GSA Advantage! on-line shopping service, by reviewing the catalogs or pricelists of at least three... requirement(s); (B) The benefits of on-going competition and the need to periodically compare multiple...

  7. Analyzing the platelet proteome.

    Science.gov (United States)

    García, Angel; Zitzmann, Nicole; Watson, Steve P

    2004-08-01

    During the last 10 years, mass spectrometry (MS) has become a key tool for protein analysis and has underpinned the emerging field of proteomics. Using high-throughput tandem MS/MS following protein separation, it is potentially possible to analyze hundreds to thousands of proteins in a sample at a time. This technology can be used to analyze the protein content (i.e., the proteome) of any cell or tissue and complements the powerful field of genomics. The technology is particularly suitable for platelets because of the absence of a nucleus. Cellular proteins can be separated by either gel-based methods such as two-dimensional gel electrophoresis or one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by liquid chromatography (LC) -MS/MS or by multidimensional LC-MS/MS. Prefractionation techniques, such as subcellular fractionations or immunoprecipitations, can be used to improve the analysis. Each method has particular advantages and disadvantages. Proteomics can be used to compare the proteome of basal and diseased platelets, helping to reveal information on the molecular basis of the disease.

  8. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates?

    Science.gov (United States)

    Dohan, David M; Choukroun, Joseph; Diss, Antoine; Dohan, Steve L; Dohan, Anthony J J; Mouhyi, Jaafar; Gogly, Bruno

    2006-03-01

    Platelet-rich fibrin (PRF) belongs to a new generation of platelet concentrates, with simplified processing and without biochemical blood handling. In this third article, we investigate the immune features of this biomaterial. During PRF processing, leucocytes could also secrete cytokines in reaction to the hemostatic and inflammatory phenomena artificially induced in the centrifuged tube. We therefore undertook to quantify 5 significant cell mediators within platelet poor plasma supernatant and PRF clot exudate serum: 3 proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha), an antiinflammatory cytokine (IL-4), and a key growth promoter of angiogenesis (VEGF). Our data are correlated with that obtained in plasma (nonactivated blood) and in sera (activated blood). These initial analyses revealed that PRF could be an immune regulation node with inflammation retrocontrol abilities. This concept could explain the reduction of postoperative infections when PRF is used as surgical additive.

  9. Prolactin does not affect human platelet aggregation or secretion

    NARCIS (Netherlands)

    Reuwer, A.Q.; Nieuwland, R.; Fernandez, I.; Goffin, V.; van Tiel, C.M.; Schaap, M.C.L.; Berckmans, R.J.; Kastelein, J.J.P.; Twickler, M.T.B.

    2009-01-01

    Platelets play an important role in the development of plaque formation and in the events after rupture of the atherosclerotic plaque, leading to atherothrombosis. Multiple hormones, either in excess or when deficient, are involved in the development of atherothrombotic disease, but, to which extent

  10. Evaluation of platelet function in dogs with cardiac disease using the PFA-100 platelet function analyzer.

    Science.gov (United States)

    Clancey, Noel; Burton, Shelley; Horney, Barbara; Mackenzie, Allan; Nicastro, Andrea; Côté, Etienne

    2009-09-01

    Cardiac disease has the potential to alter platelet function in dogs. Evaluation of platelet function using the PFA-100 analyzer in dogs of multiple breeds and with a broad range of cardiac conditions would help clarify the effect of cardiac disease on platelets. The objective of this study was to assess differences in closure time (CT) in dogs with cardiac disease associated with murmurs, when compared with that of healthy dogs. Thirty-nine dogs with cardiac murmurs and turbulent blood flow as determined echocardiographically were included in the study. The dogs represented 23 different breeds. Dogs with murmurs were further divided into those with atrioventricular valvular insufficiency (n=23) and subaortic stenosis (n=9). Fifty-eight clinically healthy dogs were used as controls. CTs were determined in duplicate on a PFA-100 analyzer using collagen/ADP cartridges. Compared with CTs in the control group (mean+/-SD, 57.6+/-5.9 seconds; median, 56.5 seconds; reference interval, 48.0-77.0 seconds), dogs with valvular insufficiency (mean+/-SD, 81.9+/-26.3 seconds; median, 78.0 seconds; range, 52.5-187 seconds), subaortic stenosis (71.4+/-16.5 seconds; median, 66.0 seconds; range, 51.5-95.0 seconds), and all dogs with murmurs combined (79.6+/-24.1 seconds; median, 74.0 seconds; range, 48.0-187 seconds) had significantly prolonged CTs (P<.01). The PFA-100 analyzer is useful in detecting platelet function defects in dogs with cardiac murmurs, most notably those caused by mitral and/or tricuspid valvular insufficiency or subaortic stenosis. The form of turbulent blood flow does not appear to be an important factor in platelet hypofunction in these forms of cardiac disease.

  11. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.; Gritsenko, Marina A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2011-06-28

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.

  12. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates

    DEFF Research Database (Denmark)

    Fernández-Pérez, Leandro; Guerra, Borja; Díaz-Chico, Juan C;

    2013-01-01

    -regulated endocrine and metabolic functions in the human liver by acting at the level of GHR-STAT5 signaling pathway. This crosstalk is relevant because the widespread exposition of estrogen or estrogen-related compounds in human. Therefore, GH or estrogen signaling deficiency as well as the influence of estrogens...

  13. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia.

    Directory of Open Access Journals (Sweden)

    Andrés Dekanty

    2010-06-01

    Full Text Available Hypoxia-inducible factors (HIFs are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1 gene, a central element of the microRNA (miRNA translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.

  14. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chen, Yicai; Yuan, Mingjun; Mohanty, Anee

    2015-01-01

    The nucleotide signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an essential role in regulating microbial virulence and biofilm formation. C-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. One intri...

  15. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia.

    Directory of Open Access Journals (Sweden)

    Andrés Dekanty

    2010-06-01

    Full Text Available Hypoxia-inducible factors (HIFs are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1 gene, a central element of the microRNA (miRNA translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.

  16. Subunits of the Drosophila actin-capping protein heterodimer regulate each other at multiple levels.

    Directory of Open Access Journals (Sweden)

    Ana Rita Amândio

    Full Text Available The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth.

  17. Subunits of the Drosophila actin-capping protein heterodimer regulate each other at multiple levels.

    Science.gov (United States)

    Amândio, Ana Rita; Gaspar, Pedro; Whited, Jessica L; Janody, Florence

    2014-01-01

    The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth.

  18. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    Directory of Open Access Journals (Sweden)

    Heffron Fred

    2011-06-01

    Full Text Available Abstract Background Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.

  19. Milestones in understanding platelet production: a historical overview.

    Science.gov (United States)

    Kuter, David J

    2014-04-01

    The discovery of thrombopoietin (TPO, also termed THPO) in 1994 was a major achievement in understanding the regulation of platelet production. In prior decades, physiological studies had demonstrated that platelets were produced from bone marrow megakaryocytes and that the megakaryocytes responded to thrombocytopenia by increasing their number, size and DNA ploidy. In 1958, it was proposed that a 'thrombopoietin' must exist that regulated this interaction between the circulating platelet mass and the bone marrow megakaryocytes. After over three decades of effort, TPO was finally purified by five independent laboratories. TPO stimulated megakaryocyte colony-forming cell growth and increased the number, size and ploidy of megakaryocytes. When the genes for TPO or TPO receptor were eliminated in mice, megakaryocytes grew and platelets were made, but at 15% of their normal number. A first generation of recombinant human (rh) TPO molecules [rhTPO and pegylated recombinant human megakaryocyte growth and development factor (PEG-rhMGDF)] rapidly entered clinical trials in 1995 and increased platelet counts in humans undergoing non-myeloablative chemotherapy but not in those undergoing stem cell transplantation. Antibodies developed against PEG-rhMGDF and development of these recombinant thrombopoietins ended. A second generation of TPO receptor agonists (romiplostim and eltrombopag) was then developed. Neither of these TPO receptor agonists demonstrated any significant untoward effects and both are now licensed in many countries for the treatment of immune thrombocytopenia. This review describes the significant experiments that have surrounded the discovery of TPO and its clinical development.

  20. Platelet granule exocytosis: A comparison with chromaffin cells

    Directory of Open Access Journals (Sweden)

    Jennifer eFitch-Tewfik

    2013-06-01

    Full Text Available The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli.

  1. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers.

    Science.gov (United States)

    Halberg, R B; Katzung, D S; Hoff, P D; Moser, A R; Cole, C E; Lubet, R A; Donehower, L A; Jacoby, R F; Dove, W F

    2000-03-28

    The interaction between mutations in the tumor-suppressor genes Apc and p53 was studied in congenic mouse strains to minimize the influence of polymorphic modifiers. The multiplicity and invasiveness of intestinal adenomas of Apc(Min/+) (Min) mice was enhanced by deficiency for p53. In addition, the occurrence of desmoid fibromas was strongly enhanced by p53 deficiency. The genetic modifier Mom1 and the pharmacological agents piroxicam and difluoromethylornithine each reduced intestinal adenoma multiplicity in the absence of p53 function. Mom1 showed no influence on the development of desmoid fibromas, whereas the combination of piroxicam and difluoromethylornithine exerted a moderate effect. The ensemble of tumor suppressors and modifiers of a neoplastic process can be usefully analyzed in respect to tissue specificity and synergy.

  2. Tumorigenesis in the multiple intestinal neoplasia mouse: Redundancy of negative regulators and specificity of modifiers

    OpenAIRE

    Halberg, Richard B.; Katzung, Darren S.; Hoff, Peter D.; Moser, Amy R.; Cole, Carolyn E.; Lubet, Ronald A; Donehower, Lawrence A.; Jacoby, Russell F.; Dove, William F.

    2000-01-01

    The interaction between mutations in the tumor-suppressor genes Apc and p53 was studied in congenic mouse strains to minimize the influence of polymorphic modifiers. The multiplicity and invasiveness of intestinal adenomas of ApcMin/+ (Min) mice was enhanced by deficiency for p53. In addition, the occurrence of desmoid fibromas was strongly enhanced by p53 deficiency. The genetic modifier Mom1 and the pharmacological agents piroxicam and difluoromethylornithine each reduced intestinal adenoma...

  3. On the cause of multiple sclerosis: Molecular mechanisms regulating myelin biogenesis

    OpenAIRE

    2016-01-01

    Hoe myeline wordt gemaakt en hoe die kennis van nut kan zijn om een effectieve therapie voor MS te ontwikkelen. Myeline, de vette isolatielaag rondom zenuwcellen, raakt bij multiple sclerose (MS)-patiënten beschadigd door onder andere ontstekingsreacties. Die beschadigingen worden op den duur niet meer hersteld. Om te begrijpen waarom dat niet meer gebeurt, is het belangrijk te weten hoe in normale situaties de myelinemembranen worden gevormd. Met die kennis verwachten we gereedschap in hande...

  4. Effect of growth regulators on the in vitro multiplication of Dendrocalamus Hamiltonii

    Directory of Open Access Journals (Sweden)

    Shatakshi Kapruwan,

    2014-11-01

    Full Text Available Bamboos are versatile multipurpose forest product, which are important economically and are often referred to as ‘GREEN GOLD’. Dendrocalamus hamiltonii is one of the economically important species of Bamboo in India. Government of India is running National Bamboo Mission to encourage the production of Bamboos in India. The present work was undertaken to study the effect of Auxins and Cytokinins on the in vitro multiplication of nodal cuttings with axillary buds Dendrocalamus hamiltonii a bamboo species growing in North east region of India and north western Himalayas. The growth medium used was MS (1962 basal medium supplemented with BAP, Kn and NAA at varying concentrations. The multiplication rate of shoots increased with increasing the concentration of NAA and Kn. However the optimum results were obtained on MS medium supplemented with a combination of 0.5 mg/l NAA, 0.5 mg/l Kn and 1 mg/l BAP. Effect of TDZ concentration was also observed, and the results revealed that 0.25 mg/l TDZ, 0.25 mg/l PGH with 1 mg/l BAP were found to be most suitable for in vitro multiplication of Dendrocalamus hamiltonii.

  5. The influence of conjugates isolated from Matricaria chamomilla L. on platelets activity and cytotoxicity.

    Science.gov (United States)

    Bijak, Michał; Saluk, Joanna; Tsirigotis-Maniecka, Marta; Komorowska, Halina; Wachowicz, Barbara; Zaczyńska, Ewa; Czarny, Anna; Czechowski, Franciszek; Nowak, Paweł; Pawlaczyk, Izabela

    2013-10-01

    Cardiovascular diseases (CVD) remain the principal cause of death in both advanced and developing countries of the world. Blood platelets are involved in the pathogenesis of atherosclerosis and thrombosis. Platelet adhesion and aggregation are critical events that occur in unstable coronary syndromes. The current research is focused on the role of polysaccharide-polyphenolic conjugates isolated from chamomile (Matricaria chamomilla L.) at concentrations of 10, 25, 50 and 100 μg/mL on blood platelets (obtained from healthy donors and from patients received combined anti-platelet therapy complex with clopidogrel and acetylsalicylic acid) aggregation and experimentally induced cell toxicity. The treatment of PRP obtained from healthy donors with polyphenolic-polysaccharide conjugates from M. chamomilla (L.) (MC) resulted in a dose-dependent, decrease of platelet aggregation induced by multiple agonists (ADP, collagen and arachidonic acid). In this study we also observed that the MC reduced platelet aggregation in PRP obtained from patients with cardiovascular disorders. The result of testing the MC on human blood platelets, mouse fibroblast cultures L929 and human lung cells A549 did not show any cytotoxicity effects. Compounds obtained from M. chamomilla L. are potential composite to the development of a new anti-platelet agent, which could be an alternative to the currently used anti-platelet drugs.

  6. Evaluation of elutriated single donor platelets collected and stored in a closed system.

    Science.gov (United States)

    Elias, M K; Blom, N; Rijskamp, L; Weggemans, M; Halie, M R; Das, P C; Smit Sibinga, C T

    1992-01-01

    Single donor platelets (SDPC) were collected by the elutriation technique in a closed-system integrated with large storage containers. Seven runs of SDPC were stored in a 1.5 liter polyvinyl-chloride trimellitate (PVC-TOTM) storage container, making the ratio of platelet concentrate volume to container volume 1:4.5. An equal volume of pooled multiple donor platelet concentrates (MDPC) was stored in parallel under the same conditions. All haematological data were comparable for both products, except for the degree of leukocyte contamination (5-fold increase in the pool). Under these conditions, the functional, morphological, and metabolic characteristics of elutriated platelets throughout 7-day storage were superior to those of pooled platelets. Although the platelet count was not significantly different in both types of concentrates, the mean pH of pooled MDPC fell to 6.0 on day 5 of storage. Leukocytes were shown to contribute to this pH fall. The extent of cell damage, however, as evidenced by LDH leakage (42.7 LDH units/10(11) platelets/day by differential centrifugation, compared to 5.3 units by elutriation) could not be explained solely on the basis of the leukocyte effect. This indicated that the processing method itself influences the platelet quality. By increasing the surface/volume ratio of SDPC, the initial pH of 7.1 was well maintained throughout storage, platelet metabolic rate was slowed, and the function and ultrastructure improved significantly.

  7. Multiple motifs regulate the trafficking of GABA(B) receptors at distinct checkpoints within the secretory pathway.

    Science.gov (United States)

    Restituito, Sophie; Couve, Andrés; Bawagan, Hinayana; Jourdain, Sabine; Pangalos, Menelas N; Calver, Andrew R; Freeman, Katie B; Moss, Stephen J

    2005-04-01

    gamma-Aminobutyric acid type B receptors (GABA(B)) are G-protein-coupled receptors that mediate GABAergic inhibition in the brain. Their functional expression is dependent upon the formation of heterodimers between GABA(B)R1 and GABA(B)R2 subunits, a process that occurs within the endoplasmic reticulum (ER). However, the mechanisms that regulate receptor surface expression remain largely unknown. Here, we demonstrate that access to the cell surface for GABA(B)R1 is sequentially controlled by an RSR(R) motif and a LL motif within its cytoplasmic domain. In addition, we reveal that msec7-1, a guanine-nucleotide-exchange factor (GEF) for the ADP-ribosylation factor (ARF) family of GTPases, critical regulators of vesicular membrane trafficking, interacts with GABA(B)R1 via the LL motif in this subunit. Finally, we establish that msec7-1 modulates the cell surface expression of GABA(B) receptors, a process that is dependent upon the integrity of the LL motif in GABA(B)R1. Together, our results demonstrate that the cell surface expression of the GABA(B)R1 subunit is regulated by multiple motifs, which act at distinct checkpoints in the secretory pathway, and also suggest a novel role for msec7-1 in regulating the membrane trafficking of GABA(B)R1 subunits.

  8. [Murine models of platelet diseases].

    Science.gov (United States)

    Lanza, F

    2007-05-01

    Platelet-related diseases correspond to functional defects or abnormal production (thrombopoiesis) of hereditary and immunological origins. Recent progress in the manipulation of the mouse genome (transgenesis, gene inactivation or insertion) has resulted in the generation of numerous strains exhibiting defective platelet function or production. Some strains reproduce known hereditary diseases affecting haemostasis (Glanzmann thrombasthenia, Bernard-Soulier syndrome (BSS) or thrombopoiesis (Wiscott-Aldrich or May-Hegglin syndrome). More often the mutated strains have no human equivalent and represent useful models to study: (i) the role of adhesive or signalling receptors or of signalling proteins in platelet-dependent haemostasis and thrombosis or; (ii) to study the poorly characterized mechanisms of thrombopoiesis, which implicate transcription factors (GATA, Fli1), growth factors and receptors (TPO, cMPL), and cytoskeletal or contractile proteins (tubulin, myosin). Additional mouse strains result from the selection of spontaneous mutants many of which affect intracellular platelet granules, representing models of storage pool diseases (SPD) such as the Gray platelet syndrome (alphaSPD) or Hermansky-Pudlack syndrome (deltaSPD). More recently, a systematic chemical mutagenesis approach has also identified genes involved in thrombopoiesis and platelet survival. Finally, mouse models of auto- or allo-immune thrombocytopenia have been developed to study the mechanisms of platelet destruction or removal.

  9. Platelet scintigraphy in atherothrombotic disease

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Yoshinari (Osaka National Hospital (Japan))

    1993-01-01

    Indium-111 platelet scintigraphy for the measurement of in vivo thrombogenicity is a useful noninvasive technique with a number of applications. From 1982 to 1989, we explored clinical relevance of this method for 576 consecutive patients with atherothrombotic disease. There was a disease-related difference in the percentage of positive platelet accumulation; 85% in patients with Dacron bifurcation graft, 75% in abdominal or thoracic aneurysm, 40% in intra-cardiac thrombi, 33% in arteriosclerosis obliterans and 25% in ischemic cerebrovascular disease. Labelled platelets accumulated frequently in the lesion with severe arteriographic abnormality. Aspirin clearly inhibited platelet accumulation on carotid atheroma but the effect of ticlopidine has been less conclusive. Short-term orally active PGI[sub 2] analogue had inhibitory effects on platelet accumulation in carotid atheroma and platelet aggregability, but did not cause significant reduction in plaque size. The results suggest the usefulness of platelet scintigraphy for monitoring the thrombogenicity in various atherothrombotic diseases. It will be necessary, however, to simplify the labelling procedures and to develop a new [sup 99m]Tc-labelled thrombus imaging agent, if thrombus imaging is to be considered for more generall use for patients with atherosclerosis. (author).

  10. Cyclosporine A enhances platelet aggregation.

    Science.gov (United States)

    Grace, A A; Barradas, M A; Mikhailidis, D P; Jeremy, J Y; Moorhead, J F; Sweny, P; Dandona, P

    1987-12-01

    In view of the reported increase in thromboembolic episodes following cyclosporine A (CyA) therapy, the effect of this drug on platelet aggregation and thromboxane A2 release was investigated. The addition of CyA, at therapeutic concentrations to platelet rich plasma from normal subjects in vitro was found to increase aggregation in response to adrenaline, collagen and ADP. Ingestion of CyA by healthy volunteers was also associated with enhanced platelet aggregation. The CyA-mediated enhancement of aggregation was further enhanced by the addition in vitro of therapeutic concentrations of heparin. Platelets from renal allograft recipients treated with CyA also showed hyperaggregability and increased thromboxane A2 release, which were most marked at "peak" plasma CyA concentration and less so at "trough" concentrations. Platelet hyperaggregability in renal allograft patients on long-term CyA therapy tended to revert towards normal following the replacement of CyA with azathioprine. Hypertensive patients with renal allografts on nifedipine therapy had normal platelet function and thromboxane release in spite of CyA therapy. These observations suggest that CyA-mediated platelet activation may contribute to the pathogenesis of the thromboembolic phenomena associated with the use of this drug. The increased release of thromboxane A2 (a vasoconstrictor) may also play a role in mediating CyA-related nephrotoxicity.

  11. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area.

    Science.gov (United States)

    Riegel, Arthur C; Lupica, Carl R

    2004-12-08

    Dopamine (DA) neurons in the ventral tegmental area have been implicated in psychiatric disorders and drug abuse. Understanding the mechanisms through which their activity is regulated via the modulation of afferent input is imperative to understanding their roles in these conditions. Here we demonstrate that endocannabinoids liberated from DA neurons activate cannabinoid CB1 receptors located on glutamatergic axons and on GABAergic terminals targeting GABA(B) receptors located on these cells. Endocannabinoid release was initiated by inhibiting either presynaptic type-III metabotropic glutamate receptors or postsynaptic calcium-activated potassium channels, two conditions that also promote enhanced DA neuron excitability and bursting. Thus, activity-dependent release of endocannabinoids may act as a regulatory feedback mechanism to inhibit synaptic inputs in response to DA neuron bursting, thereby regulating firing patterns that may fine-tune DA release from afferent terminals.

  12. Regulation of muscle growth by multiple ligands signaling through activin type II receptors

    Science.gov (United States)

    Lee, Se-Jin; Reed, Lori A.; Davies, Monique V.; Girgenrath, Stefan; Goad, Mary E. P.; Tomkinson, Kathy N.; Wright, Jill F.; Barker, Christopher; Ehrmantraut, Gregory; Holmstrom, James; Trowell, Betty; Gertz, Barry; Jiang, Man-Shiow; Sebald, Suzanne M.; Matzuk, Martin; Li, En; Liang, Li-fang; Quattlebaum, Edwin; Stotish, Ronald L.; Wolfman, Neil M.

    2005-01-01

    Myostatin is a secreted protein that normally functions as a negative regulator of muscle growth. Agents capable of blocking the myostatin signaling pathway could have important applications for treating human muscle degenerative diseases as well as for enhancing livestock production. Here we describe a potent myostatin inhibitor, a soluble form of the activin type IIB receptor (ACVR2B), which can cause dramatic increases in muscle mass (up to 60% in 2 weeks) when injected into wild-type mice. Furthermore, we show that the effect of the soluble receptor is attenuated but not eliminated in Mstn-/- mice, suggesting that at least one other ligand in addition to myostatin normally functions to limit muscle growth. Finally, we provide genetic evidence that these ligands signal through both activin type II receptors, ACVR2 and ACVR2B, to regulate muscle growth in vivo. PMID:16330774

  13. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing.

    Science.gov (United States)

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla; Millard, Tom H

    2015-08-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.

  14. Brd4 and HEXIM1: Multiple Roles in P-TEFb Regulation and Cancer

    Directory of Open Access Journals (Sweden)

    Ruichuan Chen

    2014-01-01

    Full Text Available Bromodomain-containing protein 4 (Brd4 and hexamethylene bisacetamide (HMBA inducible protein 1 (HEXIM1 are two opposing regulators of the positive transcription elongation factor b (P-TEFb, which is the master modulator of RNA polymerase II during transcriptional elongation. While Brd4 recruits P-TEFb to promoter-proximal chromatins to activate transcription, HEXIM1 sequesters P-TEFb into an inactive complex containing the 7SK small nuclear RNA. Besides regulating P-TEFb’s transcriptional activity, recent evidence demonstrates that both Brd4 and HEXIM1 also play novel roles in cell cycle progression and tumorigenesis. Here we will discuss the current knowledge on Brd4 and HEXIM1 and their implication as novel therapeutic options against cancer.

  15. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection

    OpenAIRE

    2014-01-01

    The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction ...

  16. Independent Presynaptic and Postsynaptic Mechanisms Regulate Endocannabinoid Signaling at Multiple Synapses in the Ventral Tegmental Area

    OpenAIRE

    2004-01-01

    Dopamine (DA) neurons in the ventral tegmental area have been implicated in psychiatric disorders and drug abuse. Understanding the mechanisms through which their activity is regulated via the modulation of afferent input is imperative to understanding their roles in these conditions. Here we demonstrate that endocannabinoids liberated from DA neurons activate cannabinoid CB1 receptors located on glutamatergic axons and on GABAergic terminals targeting GABAB receptors located on these cells. ...

  17. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1.

    Directory of Open Access Journals (Sweden)

    You-Ying Chau

    2011-12-01

    Full Text Available There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1 suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2 highlight the differences between foetal and adult tissue regulation; 3 point to the importance of adult mesenchyme in tissue turnover.

  18. Cystic fibrosis heterozygotes do not have increased platelet activation

    DEFF Research Database (Denmark)

    Tarnow, Inge; Michelson, Alan D.; Frelinger III, Andrew L.;

    2007-01-01

    Introduction: We have previously demonstrated platelet hyperreactivity in cystic fibrosis (CF) patients. Carriers of one CF m utation (heterozygotes) have been shown to have abnormalities related to the presence of only one-half the normal amount of CF transmembrane conductance regulator protein...

  19. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  20. An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development

    Science.gov (United States)

    Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.

    2014-01-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008

  1. Estrogens regulate the hepatic effects of Growth Hormone, a hormonal interplay with multiple fates

    Directory of Open Access Journals (Sweden)

    Leandro eFernandez-Perez

    2013-06-01

    Full Text Available The liver responds to estrogens and GH which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk with endocrine, metabolic, and sex-differentiated functions of GH. Most previous studies have been focused on the influence of estrogens on pituitary GH secretion, which has a great impact on hepatic transcriptional regulation. However, there is strong evidence that estrogens can influence the GH-regulated endocrine and metabolic functions in the human liver by acting at the level of GHR-STAT5 signaling pathway. This cross-talk is relevant because the widespread exposition of estrogen or estrogen-related compounds in human. Therefore, GH or estrogen signaling deficiency as well as the influence of estrogens on GH biology can cause a dramatic impact in liver physiology during mammalian development and in adulthood. In this review, we will summarize the current status of the influence of estrogen on GH actions in liver. A better understanding of estrogen-GH interplay in liver will lead to improved therapy of children with growth disorders and of adults with GH deficiency.

  2. Multiple Mobile mRNA Signals Regulate Tuber Development in Potato

    Directory of Open Access Journals (Sweden)

    David J. Hannapel

    2017-02-01

    Full Text Available Included among the many signals that traffic through the sieve element system are full-length mRNAs that function to respond to the environment and to regulate development. In potato, several mRNAs that encode transcription factors from the three-amino-loop-extension (TALE superfamily move from leaves to roots and stolons via the phloem to control growth and signal the onset of tuber formation. This RNA transport is enhanced by short-day conditions and is facilitated by RNA-binding proteins from the polypyrimidine tract-binding family of proteins. Regulation of growth is mediated by three mobile mRNAs that arise from vasculature in the leaf. One mRNA, StBEL5, functions to activate growth, whereas two other, sequence-related StBEL’s, StBEL11 and StBEL29, function antagonistically to repress StBEL5 target genes involved in promoting tuber development. This dynamic system utilizes closely-linked phloem-mobile mRNAs to control growth in developing potato tubers. In creating a complex signaling pathway, potato has evolved a long-distance transport system that regulates underground organ development through closely-associated, full-length mRNAs that function as either activators or repressors.

  3. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    Science.gov (United States)

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  4. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Science.gov (United States)

    Benitez, Cecil M; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H Efsun; Zhang, Jiajing; Dekker, Joseph D; Tucker, Haley O; Chang, Howard Y; Kim, Seung K

    2014-10-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  5. Patients with previous definite stent thrombosis have a larger fraction of immature platelets and a reduced antiplatelet effect of aspirin

    DEFF Research Database (Denmark)

    Würtz, Morten; Grove, Erik; Wulff, Lise Nielsen

    Objectives This study sought to evaluate the platelet response to aspirin and the immature platelet fraction in patients with previous stent thrombosis (ST). Background ST is a potentially fatal complication of coronary stenting. A reduced platelet response to aspirin increases the risk of cardio......Objectives This study sought to evaluate the platelet response to aspirin and the immature platelet fraction in patients with previous stent thrombosis (ST). Background ST is a potentially fatal complication of coronary stenting. A reduced platelet response to aspirin increases the risk...... were treated with aspirin 75 mg once daily. Platelet function was assessed by multiple electrode aggregometry in citrated and hirudinized blood and by VerifyNow Aspirin Assay (Accumetrics, San Diego, California). Flow cytometric determination of the immature platelet fraction was performed to evaluate...... platelet turnover. Platelet activation was evaluated by soluble serum P-selectin. Compliance was confirmed by serum thromboxane B2. Results All patients were fully compliant, which was confirmed by suppressed levels of serum thromboxane B2. Platelet aggregation was increased in patients with previous ST...

  6. Platelet-neutrophil complex formation-a detailed in vitro analysis of murine and human blood samples.

    Science.gov (United States)

    Mauler, Maximilian; Seyfert, Julia; Haenel, David; Seeba, Hannah; Guenther, Janine; Stallmann, Daniela; Schoenichen, Claudia; Hilgendorf, Ingo; Bode, Christoph; Ahrens, Ingo; Duerschmied, Daniel

    2016-05-01

    Platelets form complexes with neutrophils during inflammatory processes. These aggregates migrate into affected tissues and also circulate within the organism. Several studies have evaluated platelet-neutrophil complexes as a marker of cardiovascular diseases in human and mouse. Although multiple publications have reported platelet-neutrophil complex counts, we noticed that different methods were used to analyze platelet-neutrophil complex formation, resulting in significant differences, even in baseline values. We established a protocol for platelet-neutrophil complex measurement with flow cytometry in murine and human whole blood samples. In vitro platelet-neutrophil complex formation was stimulated with ADP or PMA. We tested the effect of different sample preparation steps and cytometer settings on platelet-neutrophil complex detection and noticed false-positive counts with increasing acquisition speed. Platelet-neutrophil complex formation depends on platelet P-selectin expression, and antibody blocking of P-selectin consequently prevented ADP-induced platelet-neutrophil complex formation. These findings may help generating more comparable data among different research groups that examine platelet-neutrophil complexes as a marker for cardiovascular disease and novel therapeutic interventions.

  7. Platelet enzyme abnormalities in leukemias

    Directory of Open Access Journals (Sweden)

    S Sharma

    2011-01-01

    Full Text Available Aim of the Study: The aim of this study was to evaluate platelet enzyme activity in cases of leukemia. Materials and Methods: Platelet enzymes glucose-6-phosphate dehydrogenase (G6PD, pyruvate kinase (PK and hexokinase (HK were studied in 47 patients of acute and chronic leukemia patients, 16 patients with acute myeloid leukemia (AML(13 relapse, three in remission, 12 patients with acute lymphocytic leukemia (ALL (five in relapse, seven in remission, 19 patients with chronic myeloid leukemia (CML. Results: The platelet G6PD activity was significantly low in cases of AML, ALL and also in CML. G6PD activity was normalized during AML remission. G6PD activity, although persistently low during ALL remission, increased significantly to near-normal during remission (P < 0.05 as compared with relapse (P < 0.01. Platelet PK activity was high during AML relapse (P < 0.05, which was normalized during remission. Platelet HK however was found to be decreased during all remission (P < 0.05. There was a significant positive correlation between G6PD and PK in cases of AML (P < 0.001 but not in ALL and CML. G6PD activity did not correlate with HK activity in any of the leukemic groups. A significant positive correlation was however seen between PK and HK activity in cases of ALL remission (P < 0.01 and CML (P < 0.05. Conclusions: Both red cell and platelet enzymes were studied in 36 leukemic patients and there was no statistically significant correlation between red cell and platelet enzymes. Platelet enzyme defect in leukemias suggests the inherent abnormality in megakaryopoiesis and would explain the functional platelet defects in leukemias.

  8. Platelet surface glutathione reductase-like activity.

    Science.gov (United States)

    Essex, David W; Li, Mengru; Feinman, Richard D; Miller, Anna

    2004-09-01

    We previously found that reduced glutathione (GSH) or a mixture of GSH/glutathione disulfide (GSSG) potentiated platelet aggregation. We here report that GSSG, when added to platelets alone, also potentiates platelet aggregation. Most of the GSSG was converted to GSH by a flavoprotein-dependent platelet surface mechanism. This provided an appropriate redox potential for platelet activation. The addition of GSSG to platelets generated sulfhydryls in the beta subunit of the alpha(IIb)beta(3) fibrinogen receptor, suggesting a mechanism for facilitation of agonist-induced platelet activation.

  9. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes.

    Science.gov (United States)

    Tokarev, A A; Butylin, A A; Ataullakhanov, F I

    2011-02-16

    The efficacy of platelet adhesion in shear flow is known to be substantially modulated by the physical presence of red blood cells (RBCs). The mechanisms of this regulation remain obscure due to the complicated character of platelet interactions with RBCs and vascular walls. To investigate this problem, we have created a mathematical model that takes into account shear-induced transport of platelets across the flow, platelet expulsion by the RBCs from the near-wall layer of the flow onto the wall, and reversible capture of platelets by the wall and their firm adhesion to it. This model analysis allowed us to obtain, for the first time to our knowledge, an analytical determination of the platelet adhesion rate constant as a function of the wall shear rate, hematocrit, and average sizes of platelets and RBCs. This formula provided a quantitative description of the results of previous in vitro adhesion experiments in perfusion chambers. The results of the simulations suggest that under a wide range of shear rates and hematocrit values, the rate of platelet adhesion from the blood flow is mainly limited by the frequency of their near-wall rebounding collisions with RBCs. This finding reveals the mechanism by which erythrocytes physically control platelet hemostasis.

  10. Arachidonic acid metabolism in the platelets and neutrophils of diabetic rabbit and human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Greco, N.J.

    1985-01-01

    An alteration of arachidonic acid metabolism to prostaglandins and leukotrienes from platelets and polymorphonuclear leukocytes respectively is evident in subjects with diabetes mellitus. There is evidence of altered platelet/vascular wall interactions in diabetes mellitus and evidence that polymorphonuclear leukocytes influence the vascular walls. Theories on the pathogenesis of atherosclerosis include both blood cells. Platelet hypersensitivity is evident in those platelets from the alloxan-induced diabetic rabbit either suspended in plasma or buffer. Arachidonic acid- and collagen-induced platelet aggregation, release of /sup 14/serotonin, and T x B/sub 2/ and 12-HETE production is enhanced when responses of diabetic platelets are compared to control platelets. Control rabbit neutrophils produce more LTB/sub 4/, LTB/sub 4/ isomers and 5-HETE than diabetic rabbits neutrophils. Decreased synthesis from diabetic rabbit neutrophils is not explained by increased catabolism of LTB/sub 4/, reesterification of 5-HETE, or increased eicosanoid formation. These experiments demonstrate both platelet and neutrophil dysfunction in diabetic subjects. Because of the involvement of these cells in regulating circulatory homeostatis, abnormal behavior could aggravate the atherosclerotic process. Platelet and neutrophil dysfunctions are noted before macroscopic vascular lesions are apparent suggesting an important role in the pathogenesis of atherosclerosis.

  11. Functional display of platelet-binding VWF fragments on filamentous bacteriophage.

    Directory of Open Access Journals (Sweden)

    Andrew Yee

    Full Text Available von Willebrand factor (VWF tethers platelets to sites of vascular injury via interaction with the platelet surface receptor, GPIb. To further define the VWF sequences required for VWF-platelet interaction, a phage library displaying random VWF protein fragments was screened against formalin-fixed platelets. After 3 rounds of affinity selection, DNA sequencing of platelet-bound clones identified VWF peptides mapping exclusively to the A1 domain. Aligning these sequences defined a minimal, overlapping segment spanning P1254-A1461, which encompasses the C1272-C1458 cystine loop. Analysis of phage carrying a mutated A1 segment (C1272/1458A confirmed the requirement of the cystine loop for optimal binding. Four rounds of affinity maturation of a randomly mutagenized A1 phage library identified 10 and 14 unique mutants associated with enhanced platelet binding in the presence and absence of botrocetin, respectively, with 2 mutants (S1370G and I1372V common to both conditions. These results demonstrate the utility of filamentous phage for studying VWF protein structure-function and identify a minimal, contiguous peptide that bind to formalin-fixed platelets, confirming the importance of the VWF A1 domain with no evidence for another independently platelet-binding segment within VWF. These findings also point to key structural elements within the A1 domain that regulate VWF-platelet adhesion.

  12. P-selectin-mediated platelet adhesion promotes the metastasis of murine melanoma cells.

    Directory of Open Access Journals (Sweden)

    Cui-Ling Qi

    Full Text Available Studies have indicated that the aggregation of activated platelets with cancer cells facilitates tumor metastasis; the adhesion molecule P-selectin may be an important mediator of this process, but the detailed mechanism is unclear. In the current study, we established a B16F10 (B16 cell metastatic model in P-selectin knockout (P-sel-/- mice to determine the effect of P-selectin-mediated platelet adhesion on metastasis. Compared with C57 mice, P-sel-/- mice developed fewer metastatic foci, and cell proliferation within the metastatic tumors was inhibited by P-selectin deficiency. The platelet refusion assay demonstrated that mice with P-sel-/- platelets developed fewer lung metastatic foci (P<0.01 with a lower microvascular density (MVD than mice with wild-type platelets. A co-culture model of platelets and B16 cells was utilized to determine the difference in VEGF concentration in the supernatants. The results demonstrated that the supernatant from the P-sel-/- platelet/B16 co-culture had a lower concentration of VEGF. Therefore, our findings indicated that P-selectin deficiency inhibited the metastasis of B16 cells and that wild-type platelet refusion reversed this inhibition. The P-selectin-mediated interaction between platelets and B16 cells promoted angiogenesis by up-regulating VEGF.

  13. Homocysteine and its thiolactone may promote apoptotic events in blood platelets in vitro.

    Science.gov (United States)

    Olas, Beata; Malinowska, Joanna; Rywaniak, Joanna

    2010-01-01

    The actions of homocysteine and its major metabolite, cyclic thioester, homocysteine thiolactone on endothelial cells, blood platelets, plasmatic fibrinogen and plasminogen--the important major components of haemostasis, regulating the flowing properties of blood--are complex and sometimes controversial. Homocysteine (Hcys) can promote apoptosis in endothelial cells, but the role of Hcys and its thiolactone in the apoptotic process in blood platelets is unknown. In order to study the appearance of apoptosis in platelets after treatment with the reduced form of Hcys or its thiolactone different markers were chosen: annexin V binding (phosphatidylserine exposure), platelet microparticle formation, mitochondrial membrane depolarization and αIIbβ3 expression in vitro. Apoptotic events and platelet activation were measured by a flow cytometer. In gel-filtered platelets treated with different concentrations of the reduced form of Hcys (25, 50 and 100 µM, 10 min) a significant increase of phosphatidylserine exposure (about 37% at the highest concentration, p < 0.001) and platelet microparticle formation were observed. Homocysteine caused also a dose-dependent depolarization of mitochondrial potential. The same apoptotic markers appeared in HTL-treated platelets (0.2 and 1 µM). Moreover, resveratrol (25 µM), a well known antioxidant, distinctly reduced the level of apoptotic markers. The obtained results indicate that Hcys and its thiolactone may promote in vitro apoptotic events in human gel-filtered platelets.

  14. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma

    Science.gov (United States)

    Xu, Peipei; Zuo, Huaqin; Chen, Bing; Wang, Ruju; Ahmed, Arsalan; Hu, Yong; Ouyang, Jian

    2017-01-01

    Chemotherapy is majorly used for the treatment of many cancers, including lymphoma. However, cytotoxic drugs, utilized in chemotherapy, can induce various side effects on normal tissues because of their non-specific distribution in the body. Natural platelets are used as drug carriers because of their biocompatibility and specific targeting to vascular disorders, such as cancer, inflammation, and thrombosis. In this work, doxorubicin (DOX) was loaded in natural platelets for treatment of lymphoma. Results showed that DOX was loaded into platelets with high drug loading and encapsulation efficiency. DOX did not significantly induce morphological and functional changes in platelets. DOX-platelet facilitated intracellular drug accumulation through “tumor cell-induced platelet aggregation” and released DOX into the medium in a pH-controlled manner. This phenomenon reduced the adverse effects and enhanced the therapeutic efficacy. The growth inhibition of lymphoma Raji cells was enhanced, and the cardiotoxicity of DOX was reduced when DOX was loaded in platelets. DOX-platelet improved the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Thus, platelets can serve as potential drug carriers to deliver DOX for clinical treatment of lymphoma. PMID:28198453

  15. Longitudinal effects of menopausal hormone treatments on platelet characteristics and cell-derived microvesicles.

    Science.gov (United States)

    Miller, Virginia M; Lahr, Brian D; Bailey, Kent R; Heit, John A; Harman, S Mitchell; Jayachandran, Muthuvel

    2016-01-01

    Activated platelets serve as a catalyst for thrombin generation and a source of vasoactive and mitogenic factors affecting vascular remodeling. Oral menopausal hormone treatments (MHT) may carry greater thrombotic risk than transdermal products. This study compared effects of oral and transdermal MHT on platelet characteristics, platelet proteins, and platelet-derived microvesicles (MV) in recently menopausal women. Platelets and MV were prepared from blood of a subset of women (n = 117) enrolled in the Kronos Early Estrogen Prevention Study prior to and after 48 months of treatment with either oral conjugated equine estrogen (0.45 mg/day), transdermal 17β-estradiol (50 µg/day), each with intermittent progesterone (200 mg/day for 12 days a month), or placebo pills and patch. Platelet count and expression of platelet P-selectin and fibrinogen receptors were similar across groups. An aggregate measure of 4-year change in vasoactive and mitogenic factors in platelet lysate, by principle component analysis, indicated significantly lower values in both MHT groups compared to placebo. Increases in numbers of tissue factor positive and platelet-derived MV were significantly greater in the transdermal compared to placebo group. MHT was associated with significantly reduced platelet content of vasoactive and mitogenic factors representing a potential mechanism by which MHT may affect vascular remodeling. Various hormonal compositions and doses of MHT could differentially regulate nuclear transcription in bone marrow megakaryocytes and non-genomic pathways in circulating platelets thus determining numbers and characteristics of circulating MV. Thrombotic risk associated with oral MHT most likely involves liver-derived inflammatory/coagulation proteins rather than circulating platelets per se.

  16. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    Science.gov (United States)

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y12 receptor expression in megakaryocytes. Platelet P2Y12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y12 expression correlates with ADP-induced platelet aggregation (r=0.89, Pdiabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, Pdiabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, Pdiabetes mellitus. Platelet P2Y12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus. © 2017 American Heart Association, Inc.

  17. Regulation of latency to lytic life cycle:multiple tricks by KSHV RTA

    Institute of Scientific and Technical Information of China (English)

    Jiemin Wong

    2010-01-01

    @@ Higher Education Press and Springer-Verlag Berlin Heidelberg 2010The herpesviruses are large enveloped DNA viruses that infect a wide spectrum hosts including human being. A key characteristic of all herpesviruses is their ability to establish life-time latency within the infected host and to periodically reactivate and enter the iytic replication to produce infectious virus progeny. During latency the 120-300 kb double-stranded DNA genomes of these viruses are maintained as multiple copies of circular episomes within the nuclei of the host cells. Lytic replication is marked by an increase in viral gene expression and the production of infectious virus progeny.

  18. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells.

    Science.gov (United States)

    Guardia, M J; Gambhir, A; Europa, A F; Ramkrishna, D; Hu, W S

    2000-01-01

    Hybridoma cells utilize a pair of complementary and partially substitutable substrates, glucose and glutamine, for growth. It has been shown that cellular metabolism shifts under different culture conditions. When those cultures at different metabolic states are switched to a continuous mode, they reach different steady states under the same operating conditions. A cybernetic model was constructed to describe the complementary and partial substitutable nature of substrate utilization. The model successfully predicted the metabolic shift and multiple steady-state behavior. The results are consistent with the experimental observation that the history of the culture affects the resulting steady state.

  19. Platelets as delivery systems for disease treatments

    OpenAIRE

    Shi, Qizhen; Montgomery, Robert R.

    2010-01-01

    Platelets are small, anucleate, discoid shaped blood cells that play a fundamental role in hemostasis. Platelets contain a large number of biologically active molecules within cytoplasmic granules that are critical to normal platelet function. Because platelets circulate in blood through out the body, release biological molecules and mediators on demand, and participate in hemostasis as well as many other pathophysiologic processes, targeting expression of proteins of interest to platelets an...

  20. Ants regulate colony spatial organization using multiple chemical road-signs

    Science.gov (United States)

    Heyman, Yael; Shental, Noam; Brandis, Alexander; Hefetz, Abraham; Feinerman, Ofer

    2017-01-01

    Communication provides the basis for social life. In ant colonies, the prevalence of local, often chemically mediated, interactions introduces strong links between communication networks and the spatial distribution of ants. It is, however, unknown how ants identify and maintain nest chambers with distinct functions. Here, we combine individual tracking, chemical analysis and machine learning to decipher the chemical signatures present on multiple nest surfaces. We present evidence for several distinct chemical ‘road-signs' that guide the ants' movements within the dark nest. These chemical signatures can be used to classify nest chambers with different functional roles. Using behavioural manipulations, we demonstrate that at least three of these chemical signatures are functionally meaningful and allow ants from different task groups to identify their specific nest destinations, thus facilitating colony coordination and stabilization. The use of multiple chemicals that assist spatiotemporal guidance, segregation and pattern formation is abundant in multi-cellular organisms. Here, we provide a rare example for the use of these principles in the ant colony. PMID:28569746

  1. Vitamin D receptor gene is epigenetically altered and transcriptionally up-regulated in multiple sclerosis

    Science.gov (United States)

    Soriano, Luis; Olaskoaga, Ander; Roldán, Miren; Otano, María; Ajuria, Iratxe; Soriano, Gerardo; Lacruz, Francisco

    2017-01-01

    Objective Vitamin D deficiency has been linked to increased risk of multiple sclerosis (MS) and poor outcome. However, the specific role that vitamin D plays in MS still remains unknown. In order to identify potential mechanisms underlying vitamin D effects in MS, we profiled epigenetic changes in vitamin D receptor (VDR) gene to identify genomic regulatory elements relevant to MS pathogenesis. Methods Human T cells derived from whole blood by negative selection were isolated in a set of 23 relapsing-remitting MS (RRMS) patients and 12 controls matched by age and gender. DNA methylation levels were assessed by bisulfite cloning sequencing in two regulatory elements of VDR. mRNA levels were measured by RT-qPCR to assess changes in VDR expression between patients and controls. Results An alternative VDR promoter placed at exon 1c showed increased DNA methylation levels in RRMS patients (median 30.08%, interquartile range 19.2%) compared to controls (18.75%, 9.5%), p-value<0.05. Moreover, a 6.5-fold increase in VDR mRNA levels was found in RRMS patients compared to controls (p-value<0.001). Conclusions An alternative promoter of the VDR gene shows altered DNA methylation levels in patients with multiple sclerosis, and it is associated with VDR mRNA upregulation. This locus may represent a candidate regulatory element in the genome relevant to MS pathogenesis. PMID:28355272

  2. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  3. Multiple conductances cooperatively regulate spontaneous bursting in mouse olfactory bulb external tufted cells.

    Science.gov (United States)

    Liu, Shaolin; Shipley, Michael T

    2008-02-13

    External tufted (ET) cells are juxtaglomerular neurons that spontaneously generate bursts of action potentials, which persist when fast synaptic transmission is blocked. The intrinsic mechanism of this autonomous bursting is unknown. We identified a set of voltage-dependent conductances that cooperatively regulate spontaneous bursting: hyperpolarization-activated inward current (I(h)), persistent Na+ current (I(NaP)), low-voltage-activated calcium current (I(L/T)) mediated by T- and/or L-type Ca2+ channels, and large-conductance Ca2+-dependent K+ current (I(BK)). I(h) is important in setting membrane potential and depolarizes the cell toward the threshold of I(NaP) and I(T/L), which are essential to generate the depolarizing envelope that is crowned by a burst of action potentials. Action potentials depolarize the membrane and induce Ca2+ influx via high-voltage-activated Ca2+ channels (I(HVA)). The combined depolarization and increased intracellular Ca2+ activates I(BK), which terminates the burst by hyperpolarizing the membrane. Hyperpolarization activates I(h) and the cycle is regenerated. A novel finding is the role of L-type Ca2+ channels in autonomous ET cells bursting. A second novel feature is the role of BK channels, which regulate burst duration. I(L) and I(BK) may go hand-in-hand, the slow inactivation of I(L) requiring I(BK)-dependent hyperpolarization to deactivate inward conductances and terminate the burst. ET cells receive monosynaptic olfactory nerve input and drive the major inhibitory interneurons of the glomerular circuit. Modulation of the conductances identified here can regulate burst frequency, duration, and spikes per burst in ET cells and thus significantly shape the impact of glomerular circuits on mitral and tufted cells, the output channels of the olfactory bulb.

  4. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha.

    Science.gov (United States)

    Flores-Sandoval, Eduardo; Eklund, D Magnus; Bowman, John L

    2015-05-01

    In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT inhibitor response 1 auxin receptor, single orthologs of each class of auxin response factor (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator auxin/indole-3-acetic acid (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway--chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors.

  5. NF-κB (p65) negatively regulates myocardin-induced cardiomyocyte hypertrophy through multiple mechanisms.

    Science.gov (United States)

    Liao, Xing-Hua; Wang, Nan; Zhao, Dong-Wei; Zheng, De-Liang; Zheng, Li; Xing, Wen-Jing; Zhou, Hao; Cao, Dong-Sun; Zhang, Tong-Cun

    2014-12-01

    Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Notch Ligand Delta-Like 4 Regulates Multiple Stages of Early Hemato-Vascular Development

    Science.gov (United States)

    Neves, Hélia; Gomes, Andreia C.; Saavedra, Pedro; Carvalho, Catarina C.; Duarte, António; Cidadão, António; Parreira, Leonor

    2012-01-01

    Background In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis. Methodology/Principal Findings Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis. Conclusions/Significance This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis. PMID:22514637

  7. RhoGDI: multiple functions in the regulation of Rho family GTPase activities

    DEFF Research Database (Denmark)

    Dovas, Athanassios; Couchman, John R

    2005-01-01

    insight as to how RhoGDI exerts its effects on nucleotide binding, the membrane association-dissociation cycling of the GTPase and how these activities are controlled. Despite the initial negative roles attributed to RhoGDI, recent evidence has come to suggest that it may also act as a positive regulator...... and the importance of the particular membrane microenvironment that represents the site of action for GTPases. All these results point to a wider role for RhoGDI than initially perceived, making it a binding partner that can tightly control Rho GTPases, but which also allows them to reach their full spectrum...

  8. The influence of platelet- derived products on angiogenesis and tissue repair: a concise update

    Directory of Open Access Journals (Sweden)

    Constanza E Martínez

    2015-10-01

    Full Text Available Platelet degranulation allows the release of a large amount of soluble mediators, is an essential step for wound healing initiation, and stimulates clotting and angiogenesis. The latter process is one of the most critical biological events observed during tissue repair,increasing the growth of blood vessels in the maturing wound. Angiogenesis requires the action of a variety of growth factors that act in an appropriate physiological ratio to assure functional blood vessel restoration. Platelets release main regulators of angiogenesis: Vascular Endothelial Growth Factors (VEGFs, basic fibroblast growth factor (FGF-2, and Platelet derived growth factors (PDGFs, among others. In order to stimulate tissue repair, platelet derived fractions have been used as an autologous source of growth factors and biomolecules, namely Platelet Rich Plasma (PRP, Platelet Poor Plasma (PPP and Platelet Rich Fibrin(PRF. The continuous release of these growth factors has been proposed to promote angiogenesis both in vitro and in vivo. Considering the existence of clinical trials currently evaluating the efficacy of autologous PRP, the present review analyses fundamental questions regarding the putative role of platelet derived fractions as regulators of angiogenesis and evaluates the possible clinical implications of these formulations.

  9. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update

    Science.gov (United States)

    Martínez, Constanza E.; Smith, Patricio C.; Palma Alvarado, Verónica A.

    2015-01-01

    Platelet degranulation allows the release of a large amount of soluble mediators, is an essential step for wound healing initiation, and stimulates clotting, and angiogenesis. The latter process is one of the most critical biological events observed during tissue repair, increasing the growth of blood vessels in the maturing wound. Angiogenesis requires the action of a variety of growth factors that act in an appropriate physiological ratio to assure functional blood vessel restoration. Platelets release main regulators of angiogenesis: Vascular Endothelial Growth Factors (VEGFs), basic fibroblast growth factor (FGF-2), and Platelet derived growth factors (PDGFs), among others. In order to stimulate tissue repair, platelet derived fractions have been used as an autologous source of growth factors and biomolecules, namely Platelet Rich Plasma (PRP), Platelet Poor Plasma (PPP), and Platelet Rich Fibrin (PRF). The continuous release of these growth factors has been proposed to promote angiogenesis both in vitro and in vivo. Considering the existence of clinical trials currently evaluating the efficacy of autologous PRP, the present review analyses fundamental questions regarding the putative role of platelet derived fractions as regulators of angiogenesis and evaluates the possible clinical implications of these formulations. PMID:26539125

  10. Imbalanced expression of Bcl-xL and Bax in platelets treated with plasma from immune thrombocytopenia.

    Science.gov (United States)

    Qiao, Jianlin; Liu, Yun; Li, Depeng; Wu, Yulu; Li, Xiaoqian; Yao, Yao; Niu, Mingshan; Fu, Chunling; Li, Hongchun; Ma, Ping; Li, Zhenyu; Xu, Kailin; Zeng, Lingyu

    2016-04-01

    Immune thrombocytopenia is a heterogeneous autoimmune disease, characterized by accelerated platelet destruction and impaired platelet production. Bcl-xL and Bax play an opposite role in the regulation of apoptotic process with Bcl-xL for cell survival and Bax for cell apoptosis. Given the critical roles in the regulation of platelet apoptosis, whether Bcl-xL or Bax was involved in the pathogenesis of ITP remains unknown. The aim of this study is to evaluate the expression profile of Bcl-xL and Bax in platelets treated with ITP plasma. Normal washed platelets were treated with plasma from 20 active ITP patients or 10 age and gender-matched control to mimic the ITP in vivo environment. Mitochondrial depolarization, platelet apoptosis and activation were measured by flow cytometry. Expression of Bcl-xL, Bax and caspase-3 were also measured by quantitative real-time PCR and western blot. Our results demonstrated increased mitochondrial depolarization, platelet apoptosis and activation in platelets after treated with ITP plasma in comparison to control. In addition, decreased expression of Bcl-xL, increased expression of Bax and activity of caspase-3 were also observed. Furthermore, a negative correlation of Bcl-xL with Bax was found in platelets treated with ITP plasma. In conclusion, imbalanced expression of Bcl-xL and Bax might be associated with platelet apoptosis in ITP and therapeutically targeting them might be a novel approach in the treatment of ITP.

  11. Contribution of blood platelets to vascular pathology in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Zhang W

    2013-11-01

    Full Text Available Wei Zhang,1,2 Wei Huang,1 Fang Jing11Department of Pharmacology, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China; 2Shanghai Engineering Research Center of Molecular Therapy and Pharmaceutical Innovation, Shanghai, People's Republic of ChinaAbstract: Cerebral amyloid angiopathy (CAA is a critical factor in the pathogenesis of Alzheimer's disease (AD. In the clinical setting, nearly 98% AD patients have CAA, and 75% of these patients are rated as severe CAA. It is characterized by the deposition of the β-amyloid peptide (mainly Aβ40 in the walls of cerebral vessels, which induces the degeneration of vessel wall components, reduces cerebral blood flow, and aggravates cognitive decline. Platelets are anuclear cell fragments from bone marrow megakaryocytes and their function in hemostasis and thrombosis has long been recognized. Recently, increasing evidence suggests that platelet activation can also mediate the onset and development of CAA. First, platelet activation and adhesion to a vessel wall is the initial step of vascular injury. Activated platelets contribute to more than 90% circulating Aß (mainly Aβ1-40, which in turn activates platelets and results in the vicious cycle of Aβ overproduction in damaged vessel. Second, the uncontrolled activation of platelets leads to a chronic inflammatory reaction by secretion of chemokines (eg, platelet factor 4 [PF4], regulated upon activation normal T-cell expressed and presumably secreted [RANTES], and macrophage inflammatory protein [MIP-1α], interleukins (IL-1 β, IL-7, and IL-8, prostaglandins, and CD40 ligand (CD40L. The interaction of these biological response modulators with platelets, endothelial cells, and leukocytes establishes a localized inflammatory response that contributes to CAA formation. Finally, activated platelets are the upholder of fibrin clots, which are structurally abnormal and resistant to degradation

  12. Complement and platelets: Mutual interference in the immune network.

    Science.gov (United States)

    Speth, Cornelia; Rambach, Günter; Würzner, Reinhard; Lass-Flörl, Cornelia; Kozarcanin, Huda; Hamad, Osama A; Nilsson, Bo; Ekdahl, Kristina N

    2015-09-01

    In recent years, the view of platelets has changed from mere elements of hemostasis to immunological multitaskers. They are connected in manifold ways to other cellular and humoral components of the immune network, one of which is the complement system, a potent player in soluble innate immunity. Our article reviews the crucial and complex interplay between platelets and complement, focusing on mutual regulation of these two interaction partners by their respective molecular mechanisms. Furthermore, the putative relevance of these processes to infectious diseases, inflammatory conditions, and autoimmune disorders, as well as the treatment of patients with biomaterials is highlighted.

  13. Inherited platelet disorders and oral health.

    Science.gov (United States)

    Valera, Marie-Cécile; Kemoun, Philippe; Cousty, Sarah; Sie, Pierre; Payrastre, Bernard

    2013-02-01

    Platelets play a key role in thrombosis and hemostasis. Accumulation of platelets at the site of vascular injury is the first step in the formation of hemostatic plugs, which play a pivotal role in preventing blood loss after injury. Platelet adhesion at sites of injury results in spreading, secretion, recruitment of additional platelets, and formation of platelet aggregates. Inherited platelet disorders are rare causes of bleeding syndromes, ranging from mild bruising to severe hemorrhage. The defects can reflect deficiency or dysfunction of platelet surface glycoproteins, granule contents, cytoskeletal proteins, platelet pro-coagulant function, and signaling pathways. For instance, Bernard-Soulier syndrome and Glanzmann thrombasthenia are attributed to deficiencies of glycoprotein Ib/IX/V and GPIIb/IIIa, respectively, and are rare but severe platelet disorders. Inherited defects that impair platelet secretion and/or signal transduction are among the most common forms of mild platelet disorders and include gray platelet syndrome, Hermansky-Pudlak syndrome, and Chediak-Higashi syndrome. When necessary, desmopressin, antifibrinolytic agents, and transfusion of platelets remain the most common treatment of inherited platelet disorders. Alternative therapies such as recombinant activated factor VII are also available for a limited number of situations. In this review, we will discuss the management of patients with inherited platelet disorders in various clinical situations related to dental cares, including surgical intervention. © 2012 John Wiley & Sons A/S.

  14. Platelet-rich-fibrin: A novel root coverage approach

    Directory of Open Access Journals (Sweden)

    Anilkumar K

    2009-01-01

    Full Text Available Treatment of gingival recession has become an important therapeutic issue due to increasing cosmetic demand. Multiple surgical procedures have been developed to obtain predictable esthetic root coverage. More specifically, after periodontal regenerative surgery, the aim is to achieve complete wound healing and regeneration of the periodontal unit. A recent innovation in dentistry is the preparation and use of platelet-rich plasma (PRP, a concentrated suspension of the growth factors, found in platelets. These growth factors are involved in wound healing and postulated as promoters of tissue regeneration. This paper reports the use of PRF membrane for root coverage on the labial surfaces of the mandibular anterior teeth. This was accomplished using laterally displaced flap technique with platelet rich fibrin (PRF membrane at the recipient site.

  15. Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102.

    Science.gov (United States)

    Schöpf, Lotte; Mautz, Jürgen; Sandmann, Gerhard

    2013-05-01

    In the genome of Nostoc punctiforme PCC 73102, three functional β-carotene ketolase genes exist, one of the crtO and two of the crtW type. They were all expressed and their corresponding enzymes were functional inserting 4-keto groups into β-carotene as shown by functional pathway complementation in Escherichia coli. They all synthesized canthaxanthin but with different efficiencies. Canthaxanthin is the photoprotective carotenoid of N. punctiforme PCC 73102. Under high-light stress, its synthesis was enhanced. This was caused by up-regulation of the transcripts of two genes in combination. The first crtB-encoding phytoene synthase is the gate way enzyme of carotenogenesis resulting in an increased inflow into the pathway. The second was the ketolase gene crtW148 which in high light takes over β-carotene conversion into canthaxanthin from the other ketolases. The other ketolases were down-regulated under high-light conditions. CrtW148 was also exclusively responsible for the last step in 4-keto-myxoxanthophyll synthesis.

  16. Identification and Characterization of Multiple Intermediate Alleles of the Key Genes Regulating Brassinosteroid Biosynthesis Pathways

    Science.gov (United States)

    Du, Junbo; Zhao, Baolin; Sun, Xin; Sun, Mengyuan; Zhang, Dongzhi; Zhang, Shasha; Yang, Wenyu

    2017-01-01

    Most of the early identified brassinosteroid signaling and biosynthetic mutants are null mutants, exhibiting extremely dwarfed phenotypes and male sterility. These null mutants are usually unable to be directly transformed via a routinely used Agrobacterium-mediated gene transformation system and therefore are less useful for genetic characterization of the brassinosteroid (BR)-related pathways. Identification of intermediate signaling mutants such as bri1–5 and bri1–9 has contributed drastically to the elucidation of BR signaling pathway using both genetic and biochemical approaches. However, intermediate mutants of key genes regulating BR biosynthesis have seldom been reported. Here we report identification of several intermediate BR biosynthesis mutants mainly resulted from leaky transcriptions due to the insertions of T-DNAs in the introns. These mutants are semi-dwarfed and fertile and capable to be transformed. These intermediate mutants could be useful tools for future discovery and analyses of novel components regulating BR biosynthesis and catabolism via genetic modifier screen. PMID:28138331

  17. Current Role of Platelet Glycoprotein Ⅱ b/Ⅲ a Receptor Inhibitors in Clinic-al Trials of Cardiovascular Diseases

    Institute of Scientific and Technical Information of China (English)

    SHEN Di

    2001-01-01

    @@Thrombosis formation on disrupted atherosclerotic plaque is the most common acuse of cardiovascular dis eases, in the pathophysiology, increased platelet reactiv ity is a descriptor of the risk of cardiovascular events in healthy persons and in patients with overt coronary artery disease. Regardless of the stimulus for activation platelet-platelet interation and thrombus formation is ul timately regulated through the GP Ⅱ b/Ⅲ a receptor complex

  18. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates.

    Directory of Open Access Journals (Sweden)

    Tadayoshi Ikebe

    2010-04-01

    Full Text Available Streptococcal toxic shock syndrome (STSS is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates and non-invasive infections (59 isolates, 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%. The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors.

  19. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Science.gov (United States)

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and

  20. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features.

    Science.gov (United States)

    Dohan, David M; Choukroun, Joseph; Diss, Antoine; Dohan, Steve L; Dohan, Anthony J J; Mouhyi, Jaafar; Gogly, Bruno

    2006-03-01

    Platelet-rich fibrin (PRF) belongs to a new generation of platelet concentrates, with simplified processing and without biochemical blood handling. In this second article, we investigate the platelet-associated features of this biomaterial. During PRF processing by centrifugation, platelets are activated and their massive degranulation implies a very significant cytokine release. Concentrated platelet-rich plasma platelet cytokines have already been quantified in many technologic configurations. To carry out a comparative study, we therefore undertook to quantify PDGF-BB, TGFbeta-1, and IGF-I within PPP (platelet-poor plasma) supernatant and PRF clot exudate serum. These initial analyses revealed that slow fibrin polymerization during PRF processing leads to the intrinsic incorporation of platelet cytokines and glycanic chains in the fibrin meshes. This result would imply that PRF, unlike the other platelet concentrates, would be able to progressively release cytokines during fibrin matrix remodeling; such a mechanism might explain the clinically observed healing properties of PRF.

  1. Platelet-containing tantalum powders

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, E.K.

    1988-04-26

    A method of forming platelet tantalum powders is described comprising the steps of: (a) providing an ingot-derived precursor tantalum powder, and (b) ball-milling the precursor powder for a time sufficient to form a platelet powder having an average FSSS of less than about 2 micrometers, a Scott density not greater than about 30 g/in/sup 3/ and a BET surface area of at least about 0.7 in/sup 2//g.

  2. Multiple Enhancers Regulate Hoxd Genes and the Hotdog LncRNA during Cecum Budding

    Directory of Open Access Journals (Sweden)

    Saskia Delpretti

    2013-10-01

    Full Text Available Hox genes are required for the development of the intestinal cecum, a major organ of plant-eating species. We have analyzed the transcriptional regulation of Hoxd genes in cecal buds and show that they are controlled by a series of enhancers located in a gene desert flanking the HoxD cluster. The start site of two opposite long noncoding RNAs (lncRNAs, Hotdog and Twin of Hotdog, selectively contacts the expressed Hoxd genes in the framework of a topological domain, coinciding with robust transcription of these genes during cecum budding. Both lncRNAs are specifically transcribed in the cecum, albeit bearing no detectable function in trans. Hedgehogs have kept this regulatory potential despite the absence of the cecum, suggesting that these mechanisms are used in other developmental situations. In this context, we discuss the implementation of a common “budding toolkit” between the cecum and the limbs.

  3. The multiple functions of the endocannabinoid system: a focus on the regulation of food intake

    Directory of Open Access Journals (Sweden)

    Tibiriça Eduardo

    2010-01-01

    Full Text Available Abstract Background Cannabis sativa (also known as marijuana has been cultivated by man for more than 5,000 years. However, there was a rise in its use in the 20th century for recreational, religious or spiritual, and medicinal purposes. The main psychoactive constituent of cannabis, whose structure was identified in the 1960's, is Δ9-tetrahydrocannabinol. On the other hand, the discovery of cannabinoid receptors and their endogenous agonists took place only very recently. In fact, the first cannabinoid receptor (CB1 was cloned in 1990, followed 3 years later by the characterization of a second cannabinoid receptor (CB2. Since the 19th century, the use of cannabis has been reported to stimulate appetite and increase the consumption of sweet and tasty food, sometimes resulting in significant weight gain. The recent description of the endocannabinoid system, not only in the central nervous system but also in peripheral tissues, points to its involvement in the regulation of appetite, food intake and energy metabolism. Consequently, the pharmacological modulation of the over-activity of this system could be useful in the treatment of the metabolic syndrome. Conclusions The endocannabinoid system has important physiological functions not only in the central nervous system but also in peripheral tissues. The activation of central CB1 receptors, particularly in hypothalamic nuclei and in the limbic system, is involved in the regulation of feeding behavior, and especially in the control of the intake of palatable food. In the periphery, cannabinoid receptors are present in adipocytes, skeletal muscle, gastrointestinal tract and liver, modulating energy metabolism.

  4. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  5. Exit from competence for genetic transformation in Streptococcus pneumoniae is regulated at multiple levels.

    Directory of Open Access Journals (Sweden)

    Liming Weng

    Full Text Available Development of natural competence in S. pneumoniae entails coordinated expression of two sets of genes. Early gene expression depends on ComE, a response regulator activated by the pheromone CSP (Competence-Stimulating-Peptide. Subsequently, an early gene product (the alternative sigma factor ComX activates expression of late genes, establishing the competent state. Expression of both sets of genes is transient, rapidly shut off by a mechanism that depends on the late gene, dprA. It has been thought that the rapid shutoff of late gene expression is the combined result of auto-inhibition of ComE and the instability of ComX. However, this explanation seems incomplete, because of evidence for ComX-dependent repressor(s that might also be important for shutting off the response to CSP and identifying dprA as such a gene. We screened individual late gene mutants to investigate further the roles of ComX-dependent genes in competence termination. A ΔdprA mutant displayed a prolonged late gene expression pattern, whereas mutants lacking cbpD, cibABC, cglEFG, coiA, ssbB, celAB, cclA, cglABCD, cflAB, or radA, exhibited a wild-type temporal expression pattern. Thus, no other gene than dprA was found to be involved in shutoff. DprA limits the amounts of ComX and another early gene product, ComW, by restriction of early gene expression rather than by promoting proteolysis. To ask if DprA also affects late gene expression, we decoupled late gene expression from early gene regulation. Because DprA did not limit ComX activity under these conditions, we also conclude that ComX activity is limited by another mechanism not involving DprA.

  6. The role of platelets in the pathogenesis of systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Giuseppe A. eRamirez

    2012-06-01

    Full Text Available Systemic sclerosis (SSc is an inflammatory disease of unknown etiology characterized by widespread organ dysfunction due to fibrosis and ischemia. Its nebulous pathogenic background and the consequent absence of an etiological therapy prevent the adoption of satisfying treatment strategies, able to improve patients' quality of life and survival and stimulate researchers to identify a unifying pathogenic target. Platelets show a unique biological behavior, lying at the crossroads between vascular function, innate and adaptive immunity and regulation of cell proliferation. Consequently they are also emerging players in the pathogenesis of many inflammatory diseases, including systemic sclerosis. In the setting of SSc platelets are detectable in a persistent activated state, which is intimately linked to the concomitant presence of an injured endothelium and to the widespread activation of the innate and adaptive immune system. As a consistent circulating source of bioactive compounds platelets contribute to the development of many characteristic phenomena of SSc, such as fibrosis and impaired vascular tone.

  7. Clinical Applications of Platelet-Rich Plasma in Patellar Tendinopathy

    Science.gov (United States)

    Jeong, D. U.; Lee, C.-R.; Lee, J. H.; Pak, J.; Kang, L.-W.; Jeong, B. C.

    2014-01-01

    Platelet-rich plasma (PRP), a blood derivative with high concentrations of platelets, has been found to have high levels of autologous growth factors (GFs), such as transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), fibroblastic growth factor (FGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). These GFs and other biological active proteins of PRP can promote tissue healing through the regulation of fibrosis and angiogenesis. Moreover, PRP is considered to be safe due to its autologous nature and long-term usage without any reported major complications. Therefore, PRP therapy could be an option in treating overused tendon damage such as chronic tendinopathy. Here, we present a systematic review highlighting the clinical effectiveness of PRP injection therapy in patellar tendinopathy, which is a major cause of athletes to retire from their respective careers. PMID:25136568

  8. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    Directory of Open Access Journals (Sweden)

    Yoko Kimata-Ariga

    Full Text Available Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT, nitrite reductase (NiR and glutamine synthetase (GS, separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE. GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa and multiple sizes (>120 kDa, respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  9. Platelet rich fibrin: a new paradigm in periodontal regeneration.

    Science.gov (United States)

    Kumar, R Vinaya; Shubhashini, N

    2013-09-01

    Among the great challenges facing clinical research is the development of bioactive surgical additives regulating inflammation and increasing healing. Although the use of fibrin adhesives and platelet-rich plasma (PRP) is well documented, they have their own limitations. Hence, reconstructive dental surgeons are looking for an "edge" that jump starts the healing process to maximize predictability as well as the volume of regenerated bone. Overcoming the restrictions related to the reimplantation of blood-derived products, a new family of platelet concentrate, which is neither a fibrin glue nor a classical platelet concentrate, was developed in France. This second generation platelet concentrate called platelet-rich fibrin (PRF), has been widely used to accelerate soft and hard tissue healing. Its advantages over the better known PRP include ease of preparation/application, minimal expense, and lack of biochemical modification (no bovine thrombin or anticoagulant is required). This article serves as an introduction to the PRF "concept" and its potential clinical applications with emphasis on periodontal regeneration.

  10. Antiplatelet Agents Inhibit the Generation of Platelet-Derived Microparticles

    Science.gov (United States)

    Giacomazzi, Alice; Degan, Maurizio; Calabria, Stefano; Meneguzzi, Alessandra; Minuz, Pietro

    2016-01-01

    Platelet microparticles (PMPs) contribute to thrombogenesis but the effects of antiplatelet drugs on PMPs generation is undefined. The present study investigated the cellular events regulating PMPs shedding, testing in vitro platelet agonists and inhibitors. Platelet-rich plasma from healthy subjects was stimulated with arachidonic acid (AA), U46619, collagen type-I (10 and 1.5 μg/mL), epinephrine, ADP or TRAP-6 and pre-incubated with acetylsalicylic acid (ASA, 100 and 10 μmol/L), SQ-29,548, apyrase, PSB-0739, or eptifibatide. PMPs were detected by flow-cytometry using CD61 and annexin-V as fluorescent markers. Platelet agonists induced annexin V-positive PMPs shedding. The strongest response was to high concentration collagen. ADP-triggered PMPs shedding was dose-independent. ASA reduced PMPs induced by AA- (645, 347–2946 vs. 3061, 446–4901 PMPs/μL; median ad range, n = 9, P PMP shedding. The crucial role of the fibrinogen receptor and the collagen receptor in PMPs generation, independently of platelet aggregation, was identified. PMID:27695417

  11. In vitro function of random donor platelets stored for 7 days in composol platelet additive solution

    Directory of Open Access Journals (Sweden)

    Gupta Ashish

    2011-01-01

    Full Text Available Background and Aim: Platelets are routinely isolated from whole blood and stored in plasma for 5 days. The present study was done to assess the in vitro function of random donor platelets stored for 7 days in composol platelet additive solution at 22°C. Materials and Methods: The study sample included 30 blood donors of both sex in State Blood Bank, CSM Medical University, Lucknow. Random donor platelets were prepared by platelet rich plasma method. Whole blood (350 ml was collected in anticoagulant Citrate Phosphate Dextrose Adenine triple blood bags. Random donor platelets were stored for 7 days at 22°C in platelet incubators and agitators, with and without additive solution. Results: Platelet swirling was present in all the units at 22°C on day 7, with no evidence of bacterial contamination. Comparison of the mean values of platelet count, platelet factor 3, lactate dehydrogenase, pH, glucose and platelet aggregation showed no significant difference in additive solution, whereas platelet factor 3, glucose and platelet aggregation showed significant difference (P < 0.001 on day 7 without additive solution at 22°C. Conclusion: Our study infers that platelet viability and aggregation were best maintained within normal levels on day 7 of storage in platelet additive solution at 22°C. Thus, we may conclude that in vitro storage of random donor platelets with an extended shelf life of 7 days using platelet additive solution may be advocated to improve the inventory of platelets.

  12. Regulation of an Autoimmune Model for Multiple Sclerosis in Th2-Biased GATA3 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Viromi Fernando

    2014-01-01

    Full Text Available T helper (Th2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS. This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE, using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses (“gain-of-function” approach could alter EAE, the approach of novel GATA binding protein 3 (GATA3-transgenic (tg mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG35−55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.

  13. Chloride channels of platelets%血小板氯通道

    Institute of Scientific and Technical Information of China (English)

    陈晓琳; 尹松梅

    2004-01-01

    Chloride channels distribute widely in the body, and participate in many physiological actions and regulatory processes. Based on their physiological roles and molecular structures, six kinds of chloride channels have been identified: (1) The chloride channels family; (2) Cystic fibrosis transmembrane conductance regulator; (3) Swelling-activated chloride channels; (4) Calcium-activated chloride channels; (5) The p64 (CLIC) gene family; (6) γ-aminobutyric acid and glycine receptors. The chloride channels do exist in platelets, and their appearances are dependent on the presence of intracellular calcium. Blocking agents of chloride channels inhibit the thrombin-activated platelet aggregation and the elevation of the intracellular calcium concentration in a dose-dependent manner. It is suggested that chloride channels play a role in the activation of platelets. In addition, chloride channels act on both the cell volume regulation and the intracellular pH regulation in platelets.

  14. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis and viral infection

    Directory of Open Access Journals (Sweden)

    YASUO eARIUMI

    2014-12-01

    Full Text Available The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-ß-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon regulatory factor (IRF 3 and type I interferon (IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus (HIV-1, hepatitis C virus (HCV, hepatitis B virus (HBV, and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.

  15. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection.

    Science.gov (United States)

    Ariumi, Yasuo

    2014-01-01

    The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.

  16. Multiple Signaling Pathways Regulate Yeast Cell Death during the Response to Mating Pheromones

    Science.gov (United States)

    Zhang, Nan-Nan; Dudgeon, Drew D.; Paliwal, Saurabh; Levchenko, Andre; Grote, Eric

    2006-01-01

    Mating pheromones promote cellular differentiation and fusion of yeast cells with those of the opposite mating type. In the absence of a suitable partner, high concentrations of mating pheromones induced rapid cell death in ∼25% of the population of clonal cultures independent of cell age. Rapid cell death required Fig1, a transmembrane protein homologous to PMP-22/EMP/MP20/Claudin proteins, but did not require its Ca2+ influx activity. Rapid cell death also required cell wall degradation, which was inhibited in some surviving cells by the activation of a negative feedback loop involving the MAP kinase Slt2/Mpk1. Mutants lacking Slt2/Mpk1 or its upstream regulators also underwent a second slower wave of cell death that was independent of Fig1 and dependent on much lower concentrations of pheromones. A third wave of cell death that was independent of Fig1 and Slt2/Mpk1 was observed in mutants and conditions that eliminate calcineurin signaling. All three waves of cell death appeared independent of the caspase-like protein Mca1 and lacked certain “hallmarks” of apoptosis. Though all three waves of cell death were preceded by accumulation of reactive oxygen species, mitochondrial respiration was only required for the slowest wave in calcineurin-deficient cells. These findings suggest that yeast cells can die by necrosis-like mechanisms during the response to mating pheromones if essential response pathways are lacking or if mating is attempted in the absence of a partner. PMID:16738305

  17. Dynamic regulation of ARGONAUTE4 within multiple nuclear bodies in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Carey F Li

    2008-02-01

    Full Text Available DNA methylation directed by 24-nucleotide small RNAs involves the small RNA-binding protein ARGONAUTE4 (AGO4, and it was previously shown that AGO4 localizes to nucleolus-adjacent Cajal bodies, sites of snRNP complex maturation. Here we demonstrate that AGO4 also localizes to a second class of nuclear bodies, called AB-bodies, which are found immediately adjacent to condensed 45S ribosomal DNA (rDNA sequences. AB-bodies also contain other proteins involved in RNA-directed DNA methylation including NRPD1b (a subunit of the RNA Polymerase IV complex, RNA PolIV, NRPD2 (a second subunit of this complex, and the DNA methyltransferase DRM2. These two classes of AGO4 bodies are structurally independent--disruption of one class does not affect the other--suggesting a dynamic regulation of AGO4 within two distinct nuclear compartments in Arabidopsis. Abolishing Cajal body formation in a coilin mutant reduced overall AGO4 protein levels, and coilin dicer-like3 double mutants showed a small decrease in DNA methylation beyond that seen in dicer-like3 single mutants, suggesting that Cajal bodies are required for a fully functioning DNA methylation system in Arabidopsis.

  18. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.

    Science.gov (United States)

    Srikumar, Tharan; Lewicki, Megan C; Costanzo, Michael; Tkach, Johnny M; van Bakel, Harm; Tsui, Kyle; Johnson, Erica S; Brown, Grant W; Andrews, Brenda J; Boone, Charles; Giaever, Guri; Nislow, Corey; Raught, Brian

    2013-04-01

    Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form oligomeric "chains," but the biological functions of these superstructures are not well understood. Here, we created mutant yeast strains unable to synthesize SUMO chains (smt3(allR)) and subjected them to high-content microscopic screening, synthetic genetic array (SGA) analysis, and high-density transcript profiling to perform the first global analysis of SUMO chain function. This comprehensive assessment identified 144 proteins with altered localization or intensity in smt3(allR) cells, 149 synthetic genetic interactions, and 225 mRNA transcripts (primarily consisting of stress- and nutrient-response genes) that displayed a >1.5-fold increase in expression levels. This information-rich resource strongly implicates SUMO chains in the regulation of chromatin. Indeed, using several different approaches, we demonstrate that SUMO chains are required for the maintenance of normal higher-order chromatin structure and transcriptional repression of environmental stress response genes in budding yeast.

  19. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    Science.gov (United States)

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.

  20. Transcriptional repressor HipB regulates the multiple promoters in Escherichia coli.

    Science.gov (United States)

    Lin, Chun-Yi; Awano, Naoki; Masuda, Hisako; Park, Jung-Ho; Inouye, Masayori

    2013-01-01

    HipB is a DNA-binding protein in Escherichia coli and negatively regulates its own promoter by binding to the palindromic sequences [TATCCN8GGATA (N represents any nucleotides)] on the hipBA promoter. For such sequences, bioinformatic analysis revealed that there are a total of 39 palindromic sequences (TATCCN(x)GGATA: N is any nucleotides and x is the number of nucleotides from 1 to 30) in the promoter regions of 33 genes on the E. coli genome. Notably, eutH and fadH have two and three TATCCN(x)GGATA palindromic sequences located in their promoters, respectively. Another significant finding was that a palindromic sequence was also identified in the promoter region of hipAB locus, known to be involved in the RelA-dependent persister cell formation in bacteria. Here, we demonstrated that HipB binds to the palindromic structures in the eutH, fadH, as well as the relA promoter regions and represses their expressions. We further demonstrated that HipA enhances the repression of the relA promoter activity by HipB. This effect was not observed with D291A HipA mutant which was previously shown to lack an ability to interact with HipB, indicating that HipA enhances the HipB's repressor activity through direct interaction with HipB.

  1. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Ting-Lin Yen

    2014-01-01

    Full Text Available Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (MAPKs. It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.

  2. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Directory of Open Access Journals (Sweden)

    Colpo Anna

    2010-10-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK-3 α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM. Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i play distinct roles in cell survival and ii modulate the sensitivity to proteasome inhibitors.

  3. Gender, Race, and Diet Affect Platelet Function Tests in Normal Subjects Contributing to a High Rate of Abnormal Results

    OpenAIRE

    Miller, Connie H.; Rice, Anne S.; Garrett, Katherine; Stein, Sidney F.

    2014-01-01

    To assess sources of variability in platelet function tests in normal subjects, 64 healthy young adults were tested on 2–6 occasions at 2 week intervals using 4 methods: platelet aggregation (AGG) in platelet-rich plasma (PRP) in the Bio/Data PAP-4 Aggregometer (BD) and Chrono-Log Lumi-Aggregometer (CL); and AGG in whole blood (WB) in the CL and Multiplate Platelet Function Analyzer (MP), with ATP release (REL) in CL-PRP and CL-WB. Food and medication exposures were recorded prospectively for...

  4. MALT1-ubiquitination triggers non-genomic NF-κB/IKK signaling upon platelet activation.

    Science.gov (United States)

    Karim, Zubair A; Vemana, Hari Priya; Khasawneh, Fadi T

    2015-01-01

    We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM) complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium). It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.

  5. MALT1-ubiquitination triggers non-genomic NF-κB/IKK signaling upon platelet activation.

    Directory of Open Access Journals (Sweden)

    Zubair A Karim

    Full Text Available We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium. It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.

  6. Beyond hemostasis: the role of platelets in inflammation, malignancy and infection.

    Science.gov (United States)

    McNicol, Archibald; Israels, Sara J

    2008-06-01

    Platelets play a complex role in hemostasis and thrombosis. The expression of multiple membrane receptors, both constitutive and activation-dependent, mediates platelet adhesion and aggregation at sites of vascular lesion. Platelet activation leads to exocytosis of granular constituents, release of newly synthesized mediators, and discharge of membrane-bound transcellular signaling molecules. Many of the same mechanisms that play a role in hemostasis and thrombosis facilitate platelet participation in other physiological or pathological processes including inflammation, malignancy and the immune response. Platelet receptors such as GPIb/IX/V, P-selectin, P-selectin glycoprotein ligand 1, CD40 and the alphaIIbbeta3 integrin, crucial to hemostasis, have been implicated in the progression of such inflammatory conditions as atherosclerosis, rheumatoid arthritis and inflammatory bowel disease, in the progression and metastatic spread of malignancies, and in the immune response to bacterial challenge. The release of platelet granular contents, including adhesive proteins, growth factors and chemokines/cytokines, that serve to facilitate hemostasis and wound repair, also function in acute and chronic inflammatory disease and in tumor cell activation and growth. Platelets contribute to host defence as they recognise bacteria, recruit traditional immune cells to the site of infection and secrete bactericidal mediators. The primary focus of this review is the "non-haemostatic" functions of platelets in physiological and pathological states.

  7. Development of a New Method for Platelet Function Test and Its Shearing Condition in Microfludic System

    Science.gov (United States)

    Lee, Hoyoon; Kim, Gyehyu; Choi, Seawhan; Shin, Sehyun; Korea University Department of Mechanical Engineering Team

    2015-11-01

    Platelet is a crucial blood cell on hemostasis. As platelet exposed to high shear stress, it can be activated showing morphological and functional changes to stop bleeding. When platelet is abnormal, there is high risk of cardiovascular diseases. Thus, quick and precise assay for platelet function is important in clinical treatment. In this study, we design a microfluidic system, which can test platelet function exposed with the stimulation of shear and agonists. The microfluidic system consists of three parts: 1) a shear mechanism with rotating stirrer; 2) multiple microchannels to flow samples and to stop; 3) camera-interfaced migration distance(MD) analyzing system. When sheared blood is driven by pressure through the microchannel, shear-activated platelets adhere to a collagen-coated surface, causing blood flow to significantly slow and eventually stop. As the micro-stirrer speed increases, MD decreases exponentially at first, but it increases beyond a critical rpm after all. These results are coincident with data measured by FACS flowcytometry. These results imply that the present system could quantitatively measure the degree of activation, aggregation and adhesion of platelets and that blood MD is potent index for measuring the shear-dependence of platelet function.

  8. Betulinic acid regulates generation of neuroinflammatory mediators responsible for tissue destruction in multiple sclerosis in vitro

    Institute of Scientific and Technical Information of China (English)

    Jana BLA(Z)EVSKI; Filip PETKOVI(C); Miljana MOM(C)ILOVI(C); Reinhard PASCHKE; Goran N KALUDEROVI(C); Marija MOSTARICA STOJKOVI(C); Djordje MILJKOVI(C)

    2013-01-01

    Aim:To investigate the influences of betulinic acid (BA),a triterpenoid isolated from birch bark,on neuroinflammatory mediators involved in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis in vitro.Methods:Encephalitogenic T cells were prepared from draining lymph nodes and spinal cords of Dark Agouti rats 8 to 10 d after immunization with myelin basic protein (MBP) and complete Freund's adjuvant.Macrophages were isolated from the peritoneal cavity of adult untreated rats.Astrocytes were isolated from neonatal rat brains.The cells were cultured and then treated with different agents.IFN-y,IL-17,iNOS and CXCL12 mRNA levels in the cells were analyzed with RT-PCR.iNOS and CXCL12 protein levels were detected using immunoblot.NO and ROS generation was measured using Griess reaction and flow cytometry,respectively.Results:In encephalitogenic T cells stimulated with MBP (10 μg/mL),addition of BA inhibited IL-17 and IFN-γ production in a dosedependent manner.The estimated IC50 values for IL-17 and IFN y were 11.2 and 63.8 μmol/L,respectively.When the macrophages were stimulated with LPS (10 ng/mL),addition of BA (50 μmol/L) significantly increased ROS generation,and suppressed NO generation.The astrocytes were stimulated with ConASn containing numerous inflammatory mediators,which mimicked the inflammatory milieu within CNS; addition of BA (50 μmol/L) significantly increased ROS generation,and blocked ConASn-induced increases in iNOS and CXCL12 mRNA levels,but did not affect iNOS and CXCL12 protein levels.Importantly,in both the macrophages and astrocytes,addition of BA (50 μmol/L) inhibited lipid peroxidation.Conclusion:Besides inhibiting encephalitogenic T cell cytokines and reducing NO generation,BA induces tissue-damaging ROS generation within CNS.

  9. Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins.

    Science.gov (United States)

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meenakshisundaram; Suchy, Frederick J

    2016-04-15

    In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in

  10. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Torrealdea Javier

    2011-07-01

    Full Text Available Abstract Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS. Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus, T-cell activation, T-cell memory, cross-regulation (negative feedback between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS

  11. Impact of reticulated platelets on antiplatelet response to thienopyridines is independent of platelet turnover.

    Science.gov (United States)

    Stratz, Christian; Nührenberg, Thomas; Amann, Michael; Cederqvist, Marco; Kleiner, Pascal; Valina, Christian M; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald

    2016-10-28

    Reticulated platelets are associated with impaired antiplatelet response to thienopyridines. It is uncertain whether this interaction is caused by a decreased drug exposure due to high platelet turnover reflected by elevated levels of reticulated platelets or by intrinsic properties of reticulated platelets. This study sought to investigate if the impact of reticulated platelets on early antiplatelet response to thienopyridines is mainly caused by platelet turnover as previously suggested. Elective patients undergoing coronary intervention were randomised to loading with clopidogrel 600 mg or prasugrel 60 mg (n=200). Adenosine diphosphate (ADP)-induced platelet reactivity was determined by impedance aggregometry before, at 30, 60, 90, and 120 minutes and at day 1 after loading. Immature platelet count was assessed as marker of reticulated platelets by flow cytometry. Platelet reactivity increased with rising levels of immature platelet count in both groups. This effect was more distinctive in patients on clopidogrel as compared to patients on prasugrel. Overall, immature platelet count correlated well with on-treatment platelet reactivity at all time-points (p < 0.001). These correlations did not change over time in the entire cohort as well as in patients treated with clopidogrel or prasugrel indicating an effect independent of platelet turnover (comparison of correlations 120 minutes/day 1: p = 0.64). In conclusion, the association of immature platelet count with impaired antiplatelet response to thienopyridines is similar early and late after loading. This finding suggests as main underlying mechanism another effect of reticulated platelets on thienopyridines than platelet turnover.

  12. Blood mean platelet volume and platelet lymphocyte ratio as new predictors of hip osteoarthritis severity.

    Science.gov (United States)

    Taşoğlu, Özlem; Şahin, Ali; Karataş, Gülşah; Koyuncu, Engin; Taşoğlu, İrfan; Tecimel, Osman; Özgirgin, Neşe

    2017-02-01

    Osteoarthritis (OA) is a low grade systemic inflammatory disease in which many inflammatory mediators are known to be elevated in the peripheric blood. Blood platelet lymphocyte ratio (PLR) and mean platelet volume (MPV) are accepted as novel markers in many of the systemic inflammatory disorders, but have not been investigated in synovitis-free radiographic OA yet.The aim of this study was to evaluate the levels of blood PLR and MPV in radiographic hip OA. A total of 880 patients were evaluated retrospectively and after certain exclusion criteria, 237 of them who have primary hip OA were included. Age, sex, height, weight, body mass index, neutrophil, lymphocyte and platelet counts, erythrocyte sedimentation rate (ESR), PLR, and MPV levels were recorded, Kellgren-Lawrence (KL) grading of the hip joints were performed. Patients were then divided into 2 groups as KL grades 1 to 2 (mild-moderate) and KL grades 3 to 4 (severe) hip OA.Mean age, mean neutrophil, lymphocyte and platelet counts, mean MPV, mean PLR, and mean ESR were statistically significantly different between mild/moderate hip OA group and severe hip OA group. In univariate analysis, older age and higher MPV, PLR, and ESR were severely associated with severe hip OA. In multiple logistic regression analysis, MPV, PLR, and ESR emerged as independent predictors of severe hip OA.The results of the present study, for the first time in the literature, suggest blood PLR and MPV as novel inflammatory markers predicting the radiographic severity of hip OA in the daily practice.

  13. Technical considerations in the study of /sup 111/In-oxine labelled platelet survival patterns in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Sharefkin, J.; Rich, N.M.

    1982-04-01

    A detailed technique for labelling canine platelets with /sup 111/In-oxine for the study of platelet survival patterns in four to six dogs at a time was developed. Useful modifications of earlier methods included splitting of the platelet rich plasma into multiple aliquots to improve pelleting efficiency at low gravity forces, use of saved platelet poor plasma to flush out injection syringes, and prompt use of commercial /sup 111/In-oxine sources 3 to 5 minutes after mixing with Ringer's Citrate Dextrose. Avoidable pitfalls of the method included excessive lengths of incubation time in plasma free medium and loss of labelling efficacy by exposure of the chelate to iron or other metal contaminants in glassware. The method was used to study changes in platelet survival time in dogs with large synthetic arterial prostheses, and gave results in good agreement with earlier studies using /sup 51/Cr labelled platelets.

  14. Platelets and infection — an emerging role of platelets in viral infection

    Directory of Open Access Journals (Sweden)

    Alice eAssinger

    2014-12-01

    Full Text Available Platelets are anucleate blood cells that play a crucial role in the maintenance of hemostasis. While platelet activation and elevated platelet counts (thrombocytosis are associated with increased risk of thrombotic complications, low platelet counts (thrombocytopenia and several platelet function disorders increase the risk of bleeding. Over the last years more and more evidence has emerged that platelets and their activation state can also modulate innate and adaptive immune responses and low platelet counts have been identified as a surrogate marker for poor prognosis in septic patients.Viral infections often coincide with platelet activation. Host inflammatory responses result in the release of platelet activating mediators and a pro-oxidative and pro-coagulant environment, which favours platelet activation. However, viruses can also directly interact with platelets and megakaryocytes and modulate their function. Furthermore, platelets can be activated by viral antigen-antibody complexes and in response to some viruses B-lymphocytes also generate anti-platelet antibodies.All these processes contributing to platelet activation result in increased platelet consumption and removal and often lead to thrombocytopenia, which is frequently observed during viral infection. However, virus-induced platelet activation does not only modulate platelet count, but also shapes immune responses. Platelets and their released products have been reported to directly and indirectly suppress infection and to support virus persistence in response to certain viruses, making platelets a double-edged sword during viral infections. This review aims to summarize the current knowledge on platelet interaction with different types of viruses, the viral impact on platelet activation and platelet-mediated modulations of innate and adaptive immune responses.

  15. Platelets and infection - an emerging role of platelets in viral infection.

    Science.gov (United States)

    Assinger, Alice

    2014-01-01

    Platelets are anucleate blood cells that play a crucial role in the maintenance of hemostasis. While platelet activation and elevated platelet counts (thrombocytosis) are associated with increased risk of thrombotic complications, low platelet counts (thrombocytopenia) and several platelet function disorders increase the risk of bleeding. Over the last years, more and more evidence has emerged that platelets and their activation state can also modulate innate and adaptive immune responses and low platelet counts have been identified as a surrogate marker for poor prognosis in septic patients. Viral infections often coincide with platelet activation. Host inflammatory responses result in the release of platelet activating mediators and a pro-oxidative and pro-coagulant environment, which favors platelet activation. However, viruses can also directly interact with platelets and megakaryocytes and modulate their function. Furthermore, platelets can be activated by viral antigen-antibody complexes and in response to some viruses B-lymphocytes also generate anti-platelet antibodies. All these processes contributing to platelet activation result in increased platelet consumption and removal and often lead to thrombocytopenia, which is frequently observed during viral infection. However, virus-induced platelet activation does not only modulate platelet count but also shape immune responses. Platelets and their released products have been reported to directly and indirectly suppress infection and to support virus persistence in response to certain viruses, making platelets a double-edged sword during viral infections. This review aims to summarize the current knowledge on platelet interaction with different types of viruses, the viral impact on platelet activation, and platelet-mediated modulations of innate and adaptive immune responses.

  16. IVF policy and global/local politics: the making of multiple-embryo transfer regulation in Taiwan.

    Science.gov (United States)

    Wu, Chia-Ling

    2012-08-01

    This paper analyzes the regulatory trajectory of multiple-embryo transfer in in-vitro fertilization (IVF) in Taiwan. Taking a latecomer to policy-making as the case, it argues the importance of conceptualizing the global/local dynamics in policy-making for assisted reproductive technology (ART). The conceptual framework is built upon recent literature on standardization, science policy, and global assemblage. I propose three interrelated features that reveal the "global in the local": (1) the power relationships among stakeholders, (2) the selected global form that involved actors drew upon, and (3) the re-contextualized assemblage made of local networks. Data included archives, interviews, and participant observation. In different historical periods the specific stakeholders selected different preferred global forms for Taiwan, such as Britain's code of ethics in the 1990s, the American guideline in the early 2000s, and the European trend in the mid-2000s. The global is heterogeneous. The failure to transfer the British regulation, the revision of the American guideline by adding one more embryo than it specified, and the gap between the cited European trend and the "no more than four" in Taiwan's 2007 Human Reproduction Law all show that the local network further transforms the selected global form, confining it to rhetoric only or tailoring it to local needs. Overall, Taiwanese practitioners successfully maintained their medical autonomy to build a 'flexible standardization'. Multiple pregnancy remains the most common health risk of IVF in Taiwan. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Signal Transduction of Platelet-Induced Liver Regeneration and Decrease of Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Soichiro Murata

    2014-03-01

    Full Text Available Platelets contain three types of granules: alpha granules, dense granules, and lysosomal granules. Each granule contains various growth factors, cytokines, and other physiological substances. Platelets trigger many kinds of biological responses, such as hemostasis, wound healing, and tissue regeneration. This review presents experimental evidence of platelets in accelerating liver regeneration and improving liver fibrosis. The regenerative effect of liver by platelets consists of three mechanisms; i.e., the direct effect on hepatocytes, the cooperative effect with liver sinusoidal endothelial cells, and the collaborative effect with Kupffer cells. Many signal transduction pathways are involved in hepatocyte proliferation. One is activation of Akt and extracellular signal-regulated kinase (ERK1/2, which are derived from direct stimulation from growth factors in platelets. The other is signal transducer and activator of transcription-3 (STAT3 activation by interleukin (IL-6 derived from liver sinusoidal endothelial cells and Kupffer cells, which are stimulated by contact with platelets during liver regeneration. Platelets also improve liver fibrosis in rodent models by inactivating hepatic stellate cells to decrease collagen production. The level of intracellular cyclic adenosine monophosphate (cyclic AMP is increased by adenosine through its receptors on hepatic stellate cells, resulting in inactivation of these cells. Adenosine is produced by the degradation of adenine nucleotides such as adenosine diphosphate (ADP and adenosine tri-phosphate (ATP, which are stored in abundance within the dense granules of platelets.

  18. SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues.

    Science.gov (United States)

    Tang, Xia; Wadsworth, William G

    2014-01-01

    Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to guidance cues can be modeled as a random walk, i.e., a succession of randomly directed movement. Guidance cues dictate the probability of axon outgrowth activity occurring in each direction, which over time creates a directional bias. Here we provide further evidence for this model. We describe the effects that the UNC-40 (DCC) and SAX-3 (Robo) receptors and the UNC-6, EGL-20, UNC-52, and SLT-1 extracellular cues have on the directional bias of the axon outgrowth activity for the HSN and AVM neurons. We find that the directional bias created by the cues depend on UNC-40 or SAX-3. UNC-6 and EGL-20 affect the directional bias for both neurons, whereas UNC-52 and SLT-1 only affect the directional bias for HSN and AVM, respectively. The direction of the bias created by the loss of a cue can vary and the direction depends on the other cues. The random walk model predicts this combinatorial regulation. In a random walk a probability is assigned for each direction of outgrowth, thus creating a probability distribution. The probability distribution for each neuron is determined by the collective effect of all the cues. Since the sum of the probabilities must equal one, each cue affects the probability of outgrowth in multiple directions.

  19. The Structure, Expression, and Function Prediction of DAZAP2, A Down-Regulated Gene in Multiple Myeloma

    Institute of Scientific and Technical Information of China (English)

    Yiwu Shi; Saiqun Luo; Jianbin Peng; Chenghan Huang; Daren Tan; Weixin Hu

    2004-01-01

    In our previous studies, DAZAP2 gene expression was down-regulated in untreated patients of multiple myeloma (MM). For better studying the structure and function of DAZAP2, a full-length Cdna was isolated from mononuclear cells of a normal human bone marrow, sequenced and deposited to Genbank (AY430097). This sequence has an identical ORF (open reading frame) as the NM_014764 from human testis and the D31767 from human cell line KG-1. Phylogenetic analysis and structure prediction reveal that DAZAP2 homologues are highly conserved throughout evolution and share a polyproline region and several potential SH2/SH3 binding sites. DAZAP2 occurs as a single-copy gene with a four-exon organization. We further noticed that the functional DAZAP2 gene is located on Chromosome 12 and its pseudogene gene is on Chromosome 2 with electronic location of human chromosome in Genbank, though no genetic abnormalities of MM have been reported on Chromosome 12. The ORF of human DAZAP2 encodes a 17-kDa protein, which is highly similar to mouse Prtb. The DAZAP2 protein is mainly localized in cytoplasm with a discrete pattern of punctuated distribution. DAZAP2 may associate with carcinogenesis of MM and participate in yet-to-be identified signaling pathways to regulate proliferation and differentiation of plasma cells.

  20. 植物MEP途径的代谢调控机制%Multiple Regulation Mechanisms of MEP Pathway in Plant

    Institute of Scientific and Technical Information of China (English)

    张松涛; 陈红丽; 崔红; 杨惠娟; 刘国顺

    2012-01-01

    Terpenoids metabolism is one of the most important pathways of secondary metabolism in plant. The regulatory mechanisms that modulate this metabolic route will determine plant growth and development, resistance, quality and other aspects. The terpene precursors are synthesized by the 2-C-Methyl-D-E-rythritol-4-Phosphate (MEP) pathway in plant plastids. Recent studies have shown that, many genes involved in MEP pathway are not only regulated by multiple genes encoding and the transcript level,but also by post-transcriptional mechanism. Post-transcriptional regulation is a novel regulation mechanism described recently for this way and the mechanism is not clear. We review here various regulatory mechanisms of MEP pathway in plant, especially the mechanism and signal molecular that may be involved in post-transcriptional regulation,which may provide the theory basis for the research of regulation in this pathway.%萜类代谢途径是植物中最重要的次生代谢途径之一,对其有效的调控决定着植物的生长发育、抗性及品质等各个方面.植物中类萜合成的前体物在质体中是由2-C-甲基-D-赤藓糖醇-4-磷酸(2-C-Methyl-D-Erythritol-4-Phosphate,MEP)途径合成的,MEP途径中的许多基因除了受到多基因编码和转录水平的调节外,还受到转录后调节机制的调节,而转录后调节是一种新发现的调节方式,其机制还不是很清楚.该文重点对近年来国内外有关植物MEP途径的多种调节方式,尤其是转录后调节的调节机制及其可能参与的信号分子方面的研究进展进行综述,为植物的MEP途径的代谢调控提供参考.

  1. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins.

    Directory of Open Access Journals (Sweden)

    Andree Hubber

    2014-07-01

    Full Text Available The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P-binding domain first described in the effector DrrA (SidM. This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV, and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM and the endoplasmic reticulum (ER modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.

  2. Cochinchina momordica seed suppresses proliferation and metastasis in human lung cancer cells by regulating multiple molecular targets.

    Science.gov (United States)

    Shen, Yang; Meng, Linyi; Sun, Huajun; Zhu, Yizhun; Liu, Hongrui

    2015-01-01

    Cochinchina Momordica Seed, which is the dried ripe seed of Momordica cochinchinensis (Lour.) Spreng, has been used as a mainly anticancer ingredient for many years in China. This study aims at investigating the roles of an ethanol-soluble extract of Cochinchina Momordica Seed (ECMS) in suppressing the proliferation and metastasis of human lung cancer cells, and further elucidating underlying molecular mechanisms. Our researches suggest that ECMS dose-dependently decreased the survival rates of A549 and H1299 cells, and inhibited the migration and invasion in A549 cells. ECMS-induced apoptosis was accompanied by up-regulation of p53, Bax and the down-regulation of Bcl-2, PI-3K/Akt signal pathway, and resulted in the dissipation of mitochondrial membrane potential (ΔΨm) and sequentially activated caspase-3 cascade. Pre-treated with specific inhibitors, LY294002 (PI-3K inhibitor) and BAY11-7082 (NF-κB inhibitor) could enhance the anti-proliferation effects of ECMS on A549 cells. Furthermore, ECMS could increase the level of E-cadherin and decrease of the level of STAT-3 and MMP-2, and scarcely affected the expression of VEGF, and resulted in the inhibition of migration and invasion. Pre-treated with specific inhibitors, WP1066 (STAT-3 inhibitor) and TIMP-2 (MMP-2 inhibitor) could enhance the inhibitory effects of ECMS on migration. In conclusion, the current data demonstrated ECMS inhibited the proliferation of A549 cells by inducing apoptosis, at least partly through the activation of p53 and inactivation of PI-3K/Akt signaling. STAT-3 and MMP-2 pathways may be partly involved in anti-metastasis activities of ECMS. Hence, ECMS might be a promising candidate for the therapy of the non-small cell lung cancer by regulating multiple molecular targets.

  3. New gene functions in megakaryopoiesis and platelet formation

    Science.gov (United States)

    Gieger, Christian; Radhakrishnan, Aparna; Cvejic, Ana; Tang, Weihong; Porcu, Eleonora; Pistis, Giorgio; Serbanovic-Canic, Jovana; Elling, Ulrich; Goodall, Alison H.; Labrune, Yann; Lopez, Lorna M.; Mägi, Reedik; Meacham, Stuart; Okada, Yukinori; Pirastu, Nicola; Sorice, Rossella; Teumer, Alexander; Voss, Katrin; Zhang, Weihua; Ramirez-Solis, Ramiro; Bis, Joshua C.; Ellinghaus, David; Gögele, Martin; Hottenga, Jouke-Jan; Langenberg, Claudia; Kovacs, Peter; O’Reilly, Paul F.; Shin, So-Youn; Esko, Tõnu; Hartiala, Jaana; Kanoni, Stavroula; Murgia, Federico; Parsa, Afshin; Stephens, Jonathan; van der Harst, Pim; van der Schoot, C. Ellen; Allayee, Hooman; Attwood, Antony; Balkau, Beverley; Bastardot, François; Basu, Saonli; Baumeister, Sebastian E.; Biino, Ginevra; Bomba, Lorenzo; Bonnefond, Amélie; Cambien, François; Chambers, John C.; Cucca, Francesco; D’Adamo, Pio; Davies, Gail; de Boer, Rudolf A.; de Geus, Eco J. C.; Döring, Angela; Elliott, Paul; Erdmann, Jeanette; Evans, David M.; Falchi, Mario; Feng, Wei; Folsom, Aaron R.; Frazer, Ian H.; Gibson, Quince D.; Glazer, Nicole L.; Hammond, Chris; Hartikainen, Anna-Liisa; Heckbert, Susan R.; Hengstenberg, Christian; Hersch, Micha; Illig, Thomas; Loos, Ruth J. F.; Jolley, Jennifer; Khaw, Kay Tee; Kühnel, Brigitte; Kyrtsonis, Marie-Christine; Lagou, Vasiliki; Lloyd-Jones, Heather; Lumley, Thomas; Mangino, Massimo; Maschio, Andrea; Leach, Irene Mateo; McKnight, Barbara; Memari, Yasin; Mitchell, Braxton D.; Montgomery, Grant W.; Nakamura, Yusuke; Nauck, Matthias; Navis, Gerjan; Nöthlings, Ute; Nolte, Ilja M.; Porteous, David J.; Pouta, Anneli; Pramstaller, Peter P.; Pullat, Janne; Ring, Susan M.; Rotter, Jerome I.; Ruggiero, Daniela; Ruokonen, Aimo; Sala, Cinzia; Samani, Nilesh J.; Sambrook, Jennifer; Schlessinger, David; Schreiber, Stefan; Schunkert, Heribert; Scott, James; Smith, Nicholas L.; Snieder, Harold; Starr, John M.; Stumvoll, Michael; Takahashi, Atsushi; Tang, W. H. Wilson; Taylor, Kent; Tenesa, Albert; Thein, Swee Lay; Tönjes, Anke; Uda, Manuela; Ulivi, Sheila; van Veldhuisen, Dirk J.; Visscher, Peter M.; Völker, Uwe; Wichmann, H.-Erich; Wiggins, Kerri L.; Willemsen, Gonneke; Yang, Tsun-Po; Zhao, Jing Hua; Zitting, Paavo; Bradley, John R.; Dedoussis, George V.; Gasparini, Paolo; Hazen, Stanley L.; Metspalu, Andres; Pirastu, Mario; Shuldiner, Alan R.; van Pelt, L. Joost; Zwaginga, Jaap-Jan; Boomsma, Dorret I.; Deary, Ian J.; Franke, Andre; Froguel, Philippe; Ganesh, Santhi K.; Jarvelin, Marjo-Riitta; Martin, Nicholas G.; Meisinger, Christa; Psaty, Bruce M.; Spector, Timothy D.; Wareham, Nicholas J.; Akkerman, Jan-Willem N.; Ciullo, Marina; Deloukas, Panos; Greinacher, Andreas; Jupe, Steve; Kamatani, Naoyuki; Khadake, Jyoti; Kooner, Jaspal S.; Penninger, Josef; Prokopenko, Inga; Stemple, Derek; Toniolo, Daniela; Wernisch, Lorenz; Sanna, Serena; Hicks, Andrew A.; Rendon, Augusto; Ferreira, Manuel A.; Ouwehand, Willem H.; Soranzo, Nicole

    2012-01-01

    Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function. PMID:22139419

  4. Platelet satellitism in infectious disease?

    Science.gov (United States)

    Laskaj, Renata; Sikiric, Dubravka; Skerk, Visnja

    2015-01-01

    Background Platelet satellitism is a phenomenon of unknown etiology of aggregating platelets around polymorphonuclear neutrophils and other blood cells which causes pseudothrombocytopenia, visible by microscopic examination of blood smears. It has been observed so far in about a hundred cases in the world. Case subject and methods Our case involves a 73-year-old female patient with a urinary infection. Biochemical serum analysis (CRP, glucose, AST, ALT, ALP, GGT, bilirubin, sodium, potassium, chloride, urea, creatinine) and blood cell count were performed with standard methods on autoanalyzers. Serum protein fractions were examined by electrophoresis and urinalysis with standard methods on autoanalyzer together with microscopic examination of urine sediment. Erythrocyte sedimentation rate, blood culture and urine culture tests were performed with standard methods. Results Due to typical pathological values for bacterial urinary infection, the patient was admitted to the hospital. Blood smear examination revealed phenomenon, which has persisted for three weeks after the disease has been cured. Blood smears with EDTA as an anticoagulant had platelet satellitism whereas the phenomenon was not observed in tubes with different anticoagulants (Na, Li-heparin) and capillary blood. Discussion We hypothesize that satellitism was induced by some immunological mechanism through formation of antibodies which have mediated platelets binding to neutrophil membranes and vice versa. Unfortunately we were unable to determine the putative trigger for this phenomenon. To our knowledge this is the second case of platelet satellitism ever described in Croatia. PMID:26110042

  5. The association of thromboxane A2 receptor with lipid rafts is a determinant for platelet functional responses.

    Science.gov (United States)

    Moscardó, A; Vallés, J; Latorre, A; Santos, M T

    2014-08-25

    We have investigated the presence of thromboxane A2 (TXA2) receptor associated with lipid rafts in human platelets and the regulation of platelet function in response to TXA2 receptor agonists when lipid rafts are disrupted by cholesterol extraction. Platelet aggregation with TXA2 analogs U46619 and IBOP was almost blunted in cholesterol-depleted platelets, as well as αIIbβ3 integrin activation and P-selectin exposure. Raft disruption also inhibited TXA2-induced cytosolic calcium increase and nucleotide release, ruling out an implication of P2Y12 receptor. An important proportion of TXA2 receptor (40%) was colocalized at lipid rafts. The presence of the TXA2 receptor associated with lipid rafts in platelets is important for functional platelet responses to TXA2.

  6. Evaluation of platelet aggregation in platelet concentrates: storage implications

    Directory of Open Access Journals (Sweden)

    Neiva Teresinha J.C.

    2003-01-01

    Full Text Available The use of hemo-derivatives is nowadays a fundamentally important therapeutic modality in the exercise of medicine. Among the various hemo-components employed, we have the platelet concentrate (PC, indicated in cases of hemorrhagic disturbances. We previously showed that platelet function in blood donors is reduced in their screening phase and after the separation process of PCs. Currently, we are providing evidence for the existence of biochemical and functional changes in PC preparations stored for three days at temperatures of 20 ± 2 ºC. Platelet concentrates from 40 healthy donors, collected in CPD anticoagulant and PL-146 polyvinylchloride containers, were examined in order to determine the pH value, pCO2 ,pO2 and lactate concentrations. In addition, the aggregation of platelets with thrombin and collagen were examined to evaluate platelet function. A pH increase from 7.07 ± 0.04 to 7.36 ± 0.07 (p < 0.01 was observed. The pCO2 concentration decreased progressively from 69.2 ± 7.7 mmHg to 28.8 ± 6.2 mmHg (p < 0.001 during the storage period. In contrast, pO2 value increase from 103.4 ± 30.6 to 152.3 ± 24.6 mmHg (p < 0.001 was evidenced during the 48 hours of storage. The lactate concentration increased from 17.97 ± 5.2 to 57.21 ± 5.7 mg/dl (p < 0.001. Platelet aggregation using 0.25 U/ml-thrombin and 2.0 µg/ml-collagen showed significant hypofunction from 61.8 ± 2.7% to 24.8 ± 9.8% and 62.7±5.0 to 33.4± 6.2 (p < 0.001, respectively. We concluded that the evaluated biochemical parameters and the platelet function changed significantly when the platelets were kept under routine storage conditions.

  7. Cordycepin Down-Regulates Multiple Drug Resistant (MDR/HIF-1α through Regulating AMPK/mTORC1 Signaling in GBC-SD Gallbladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei-Ding Wu

    2014-07-01

    Full Text Available Gallbladder cancer is the most common malignancy of the bile duct, with low 5-year survival rate and poor prognosis. Novel effective treatments are urgently needed for the therapy of this disease. Here, we showed that cordycepin, the bioactive compound in genus Cordyceps, induced growth inhibition and apoptosis in cultured gallbladder cancer cells (Mz-ChA-1, QBC939 and GBC-SD lines. We found that cordycepin inhibited mTOR complex 1 (mTORC1 activation and down-regulated multiple drug resistant (MDR/hypoxia-inducible factor 1α (HIF-1α expression through activating of AMP-activated protein kinase (AMPK signaling in gallbladder cancer GBC-SD cells. Contrarily, AMPKα1-shRNA depletion dramatically inhibited cordycepin-induced molecular changes as well as GBC-SD cell apoptosis. Further, our results showed that co-treatment with a low concentration cordycepin could remarkably enhance the chemosensitivity of GBC-SD cells to gemcitabine and 5-fluorouracil (5-FU, and the mechanism may be attributed to AMPK activation and MDR degradation. In summary, cordycepin induces growth inhibition and apoptosis in gallbladder cancer cells via activating AMPK signaling. Cordycepin could be a promising new drug or chemo-adjuvant for gallbladder cancer.

  8. CD8+ T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia

    Science.gov (United States)

    Qiu, Jihua; Liu, Xuena; Li, Xiaoqing; Zhang, Xu; Han, Panpan; Zhou, Hai; Shao, Linlin; Hou, Yu; Min, Yanan; Kong, Zhangyuan; Wang, Yawen; Wei, Yu; Liu, Xinguang; Ni, Heyu; Peng, Jun; Hou, Ming

    2016-01-01

    In addition to antiplatelet autoantibodies, CD8+ cytotoxic T lymphocytes (CTLs) play an important role in the increased platelet destruction in immune thrombocytopenia (ITP). Recent studies have highlighted that platelet desialylation leads to platelet clearance via hepatocyte asialoglycoprotein receptors (ASGPRs). Whether CD8+ T cells induce platelet desialylation in ITP remains unclear. Here, we investigated the cytotoxicity of CD8+ T cells towards platelets and platelet desialylation in ITP. We found that the desialylation of fresh platelets was significantly higher in ITP patients with positive cytotoxicity of CD8+ T cells than those without cytotoxicity and controls. In vitro, CD8+ T cells from ITP patients with positive cytotoxicity induced significant platelet desialylation, neuraminidase-1 expression on the platelet surface, and platelet phagocytosis by hepatocytes. To study platelet survival and clearance in vivo, CD61 knockout mice were immunized and their CD8+ splenocytes were used. Platelets co-cultured with these CD8+ splenocytes demonstrated decreased survival in the circulation and increased phagocytosis in the liver. Both neuraminidase inhibitor and ASGPRs competitor significantly improved platelet survival and abrogated platelet clearance caused by CD8+ splenocytes. These findings suggest that CD8+ T cells induce platelet desialylation and platelet clearance in the liver in ITP, which may be a novel mechanism of ITP. PMID:27321376

  9. An overview of platelet indices and methods for evaluating platelet function in thrombocytopenic patients

    DEFF Research Database (Denmark)

    Vinholt, Pernille Just; Hvas, Anne-Mette; Nybo, Mads

    2014-01-01

    in thrombocytopenia. Flow cytometry, platelet aggregometry and platelet secretion tests are used to diagnose specific platelet function defects. The flow cytometric activation marker P-selectin and surface coverage by the Cone and Plate[let] analyser™ predict bleeding in selected thrombocytopenic populations...

  10. Platelet antigens and antibodies. Literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2013-01-01

    Full Text Available Platelet antigens structure, role of platelet antibodies in the pathogenesis of various clinical conditions, characteristic of modern antibodies detection methods are presented in this article.

  11. Platelet antigens and antibodies. Literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2014-07-01

    Full Text Available Platelet antigens structure, role of platelet antibodies in the pathogenesis of various clinical conditions, characteristic of modern antibodies detection methods are presented in this article.

  12. Effect of photodynamic therapy on mouse platelets

    Science.gov (United States)

    Zhou, Chuannong; Chi, Shunji; Deng, Jinsheng; Zhang, Hua; Liang, Junlin; Ha, Xian-wen

    1993-06-01

    Normal mice received hematoporphyrin derivative (HpD) i.v. prior to red light irradiation and the platelet-rich plasma was prepared and irradiated by red light. The platelets were processed for EM examination and stereological analysis. It was shown the 16 hrs after irradiation almost all platelets were necrotized; 8 hours after irradiation about one fourth of the platelets were necrotized and the remaining were considerably damaged. Immediately after irradiation a small number of platelets became necrotic and most other platelets were swollen and deformated, showing significantly increased mean area, perimeter and short axis, and mean cell volume and cell surface area. The findings indicate that platelets are highly sensitive to PDT action and can be directly and rapidly damaged by PDT even in the absence of vascular endothelial cells. The early platelet photoactivation may play an important role in the initiation of early vascular damage and microcirculatory alterations induced by PDT in vivo.

  13. Platelet Disorders: MedlinePlus Health Topic

    Science.gov (United States)

    ... Article: Erythropoietin and thrombopoietin mimetics: Natural alternatives to erythrocyte and platelet... Article: Detection of CALR Mutation in Clonal and Nonclonal Hematologic Diseases... Platelet Disorders -- see more articles Thrombocytopenias -- see more ...

  14. Isolation and characterization of platelet-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Maria T. Aatonen

    2014-08-01

    Full Text Available Background: Platelet-derived extracellular vesicles (EVs participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Methods: Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS or Ca2+ ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. Results: The main EV populations were 100–250 nm and over 90% were <500 nm irrespective of the activation. However, activation pathways differentially regulated the quantity and the quality of EVs, which also formed constitutively. Thrombogenic activation was the most potent physiological EV-generator. LPS was a weak inducer of EVs, which had a selective protein content from the thrombogenic EVs. Ca2+ ionophore generated a large population of protein-poor and unselectively packed EVs. By proteomic analysis, EVs were highly heterogeneous after the different activations and between the vesicle subpopulations. Conclusions: Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100–250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As

  15. Effect of platelet age on adhesiveness to collagen and platelet surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Castellan, R.M.; Steiner, M.

    1976-11-30

    Adhesion to collagen was investigated as a function of platelet age in rat platelets. Platelet adherence was measured using EDTA-containing platelet- rich plasma which was added to preparations of collagen fibers clamped between magnetic stirrers by recording changes in light transmission. The plot of light transmission versus logarithm of time was linear and allowed calculation of a slope factor which related to the rate of adherence. Neither the amount of collagen nor the platelet count were limiting in the test. Young platelet populations (less than or equal to 1 day old) were obtained during the recovery phase from immune induced thrombocytopenia. Old platelet populations were prepared by blocking thrombopoiesis with cyclophosphamide. Young platelets did not differ significantly from randomly aged platelets in this function. The electrophoretic mobility of platelets was not affected by their age.

  16. Dengue platelets meet Sir Arthur Conan Doyle.

    Science.gov (United States)

    Bray, Paul F

    2013-11-14

    In this issue of Blood, Hottz et al provide compelling evidence that dengue virus (DV) induces (1) platelet synthesis of interleukin-1b (IL-1b); (2) platelet-derived IL-1b–containing microvesicles (MVs) that increase vascular permeability; and (3) DV-triggered inflammasome activation in platelets.

  17. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    Science.gov (United States)

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  18. Image analysis of blood platelets adhesion.

    Science.gov (United States)

    Krízová, P; Rysavá, J; Vanícková, M; Cieslar, P; Dyr, J E

    2003-01-01

    Adhesion of blood platelets is one of the major events in haemostatic and thrombotic processes. We studied adhesion of blood platelets on fibrinogen and fibrin dimer sorbed on solid support material (glass, polystyrene). Adhesion was carried on under static and dynamic conditions and measured as percentage of the surface covered with platelets. Within a range of platelet counts in normal and in thrombocytopenic blood we observed a very significant decrease in platelet adhesion on fibrin dimer with bounded active thrombin with decreasing platelet count. Our results show the imperative use of platelet poor blood preparations as control samples in experiments with thrombocytopenic blood. Experiments carried on adhesive surfaces sorbed on polystyrene showed lower relative inaccuracy than on glass. Markedly different behaviour of platelets adhered on the same adhesive surface, which differed only in support material (glass or polystyrene) suggest that adhesion and mainly spreading of platelets depends on physical quality of the surface. While on polystyrene there were no significant differences between fibrin dimer and fibrinogen, adhesion measured on glass support material markedly differed between fibrin dimer and fibrinogen. We compared two methods of thresholding in image analysis of adhered platelets. Results obtained by image analysis of spreaded platelets showed higher relative inaccuracy than results obtained by image analysis of platelets centres and aggregates.

  19. N-octanoyl-dopamine is a potent inhibitor of platelet function.

    Science.gov (United States)

    Ait-Hsiko, Lamia; Kraaij, Tineke; Wedel, Johannes; Theisinger, Bastian; Theisinger, Sonja; Yard, Benito; Bugert, Peter; Schedel, Angelika

    2013-01-01

    Dopamine (DA) is a co-agonist for platelet activation; yet, donor DA treatment is associated with improved transplantation outcome in renal and heart recipients. Recently, N-octanoyl-dopamine (NOD) was developed which displays superior effects compared to DA in terms of graft protecting properties. Whereas DA is a known platelet co-agonist, the effect of NOD on platelet function is unknown. This is a hypothesis generating study with the aim to assess the effects and molecular mechanisms of NOD and NOD-like compounds on platelet function. The influence of DA, NOD, and NOD-like compounds on platelet responses to classical agonists (adenosine 5'-diphosphate (ADP), U46619) was investigated in six healthy donors by applying whole blood aggregometry (Multiplate®) and flow cytometry for Pac-1, CD62P, and CD63 expression. Changes in platelet cAMP concentrations were assessed by ELISA. While DA showed synergy in platelet activation by ADP and U46619, NOD caused significant inhibition of platelet function both in whole blood aggregometry and flow cytometry. The inhibitory effect of NOD was not mediated via cAMP levels. The nonredox-active NOD-analog N-octanoyl-tyramine had no effects on platelet function. Acetylated NOD conferred to NOD by intracellular esterases showed similar inhibitory effects as NOD. In contrast to DA, NOD is a potent inhibitor of platelet function most likely through intracellular redox-active processes. This adds to the overall protective effect of NOD on pre-transplantation injury and makes NOD an attractive candidate compound for donor or organ conditioning prior to transplantation.

  20. Inhibitory effect of GBH on platelet aggregation through inhibition of intracellular Ca2+ mobilization in activated human platelets.

    Science.gov (United States)

    Park, Won-Hwan; Kim, Han-Kyu; Nam, Kyung-Soo; Shon, Yun-Hee; Jeon, Byung Hun; Moon, Sung-Kwon; Kim, Min-Gon; Kim, Cheorl-Ho

    2004-11-05

    Geiji-Bokryung-Hwan (GBH) was studied on antiplatelet activity in human platelet suspensions. GBH consists of the 5 herbs Cinnamomi Ramulus, Poria Cocos, Mountan Cortex Radicis, Paeoniae Radix, and Persicae Semen, which have been used in herbal medicine for thousands of years for atherosclerosis. The mechanism involved in the antiplatelet activity of GBH in human platelet suspensions was investigated. GBH inhibited platelet aggregation and Ca2+ mobilization in a concentration-dependent manner without increasing intracellular cyclic AMP and cyclic GMP. GBH had no inhibitory effect on thromboxane B2 (TXB2) production in cell-free systems. Collagen-related peptide (CRP)-induced Ca2+ mobilization is regulated by phospholipase C-2 (PLC-gamma2) activation. We evaluated the effect of GBH on tyrosine phosphorylation of PLC-gamma2 and the production of inositol-1,4,5-trisphosphate (IP3). GBH at concentrations that inhibited platelet aggregation and Ca2+ mobilization had no effects on tyrosine phosphorylation of PLC-gamma2 or on the formation of IP3 induced by CRP. Similar results were obtained with thrombin-induced platelet activation. GBH inhibited platelet aggregation and Ca2+ mobilization induced by thrombin without affecting the production of IP3. We then evaluated the effect of GBH on the binding of IP3 to its receptor. GBH at high concentrations partially blocked the binding of IP3 to its receptor. Therefore, the results suggested that GBH suppresses Ca2+ mobilization at a step distal to IP3 formation. GBH may provide a good tool for investigating Ca2+ mobilization.

  1. Platelet aggregation measurement for assessment of hemostasis failure mechanisms in patients with gastroduodenal ulcer bleeding

    Directory of Open Access Journals (Sweden)

    Barinov E

    2013-08-01

    Full Text Available Edward Barinov,1 Oksana Sulaieva,1 Yuriy Lyakch,2 Vitaliy Guryanov,2 Petr Kondratenko,3 Yevgeniy Radenko3 1Department of Histology, Cytology, and Embryology, 2Department of Medical, Biological Physics, Medical Informatics, and Biostatistics, 3Department of Surgery and Endoscopy, M Gorky Donetsk National Medical University, Donetsk, Ukraine Background: The purpose of this study was to identify factors associated with the risk of unsustainable hemostasis in patients with gastric and duodenal ulcer bleeding by in vitro assessment of platelet reactivity using artificial neural networks. Methods: Patients with gastroduodenal ulcers complicated by bleeding were studied. Platelet aggregation was measured using aggregometry with adenosine diphosphate 5 µM, epinephrine 2.5 µM, 5-hydroxytryptophan 10 µM, collagen 1 µM, and thrombin 0.06 NIH Unit/mL as agonists. Multiple logistic regression was used to evaluate the independent relationship between demographic, clinical, endoscopic, and laboratory data and in vitro assessment of platelet reactivity and local parameters of hemostasis in patients with ulcer bleeding. Results: Analysis of platelet aggregation in patients with gastroduodenal ulcer bleeding allowed the variability of platelet response to different agonists used in effective concentration which induces 50% platelet aggregation (EC50 to be established. The relationship between platelet aggregation and the spatial-temporal characteristics of ulcers complicated by bleeding was demonstrated. Adrenoreactivity of platelets was associated with time elapsed since the start of ulcer bleeding and degree of hemorrhage. The lowest platelet response to collagen and thrombin was detected in patients with active bleeding (P< 0.001 and unsustainable recent bleeding (P < 0.01. Decreased adenosine diphosphate-induced platelet aggregation in patients with ulcer bleeding was correlated with the platelet response to thrombin (r = 0.714, P < 0.001 and collagen (r

  2. The role of platelet microvesicles in intercellular communication.

    Science.gov (United States)

    Edelstein, Leonard C

    2017-05-01

    In recent years, there has been exponential growth in the interest in microvesicles, which is reflected by the number of publications. Initially referred to as "platelet dust" by Peter Wolf in 1967, platelet microvesicles (PMV) are now recognized as important mediators of intercellular communication. There are examples of PMV exerting physiological effects on almost all hematological and vascular cell types, including monocytes, macrophages, neutrophils, T-cells, endothelium cells, and smooth muscle cells (SMCs). PMV can exert these effects by multiple methods: extracellular signaling through receptors, transfer of surface molecules, and delivery of intracellular contents including miRNA. Recent work suggests a complex environment in which cellular contents are being shared multi-directionally between multiple cell types. This review will focus on the communicative properties of PMV.

  3. Human platelet antigen genotyping of platelet donors in southern Brazil.

    Science.gov (United States)

    Merzoni, J; Fagundes, I S; Lunardi, L W; Lindenau, J D-R; Gil, B C; Jobim, M; Dias, V G; Merzoni, L; Sekine, L; Onsten, T G H; Jobim, L F

    2015-10-01

    Human platelet antigens (HPA) are immunogenic structures that result from single nucleotide polymorphisms (SNPs) leading to single amino acid substitutions. This study sought to determine the allele and genotype frequencies of HPA-1, HPA-2, HPA-3, HPA-4, HPA-5 and HPA-15 in platelet donors from the state of Rio Grande do Sul (RS), Brazil, and compare their allele frequencies to those observed in other populations. HPA genotyping was performed by PCR-SSP method. The study sample comprised 201 platelet donors (167 Caucasians and 34 non-Caucasians). Allele 'a' was that most commonly found for HPA-1 to 5 in both groups. The HPA-15ab genotype predominated over homozygous genotypes of this system. Fisher's exact test revealed statistically significant differences for the HPA-5 system, with a greater prevalence of the HPA-5b allele in non-Caucasians. The neighbour-joining method and principal components analysis revealed genetic proximity between our Caucasian group and European populations. We conclude that the allele frequencies of HPA-1 to 5 and HPA-15 found in our Caucasian sample are similar to those reported for European populations. These findings corroborate the ethnic makeup of the population of RS. The higher frequency of the HPA-5b allele found in the non-Caucasian group of our sample suggests the possibility of allosensitization in patients who receive platelet transfusions from genetically incompatible donors.

  4. Platelet count and platelet indices in women with preeclampsia

    Directory of Open Access Journals (Sweden)

    AlSheeha MA

    2016-11-01

    Full Text Available Muneera A AlSheeha,1 Rafi S Alaboudi,1 Mohammad A Alghasham,1 Javed Iqbal,2 Ishag Adam1 1Department of Obstetrics and Gynaecology, College of Medicine, Qassim University, Buriadah, 2Department of Obstetrics and Gynecology, Maternity and Children’s Hospital, Qassim, Kingdom of Saudi Arabia Background: Although the exact pathophysiology of preeclampsia is not completely understood, the utility of different platelets indices can be utilized to predict preeclampsia.Objective: To compare platelet indices, namely platelet count (PC, mean platelet volume (MPV, platelet distribution width (PDW, and PC to MPV ratio in women with preeclampsia compared with healthy controls.Setting: Qassim Hospital, Kingdom of Saudi Arabia.Design: A case–control study. Sixty preeclamptic women were the cases and an equal number of healthy pregnant women were the controls.Results: There was no significant difference in age, parity, and body mass index between the study groups. Sixteen and 44 of the cases were severe and mild preeclampsia, respectively. There was no significant difference in PDW and MPV between the preeclamptic and control women. Both PC and PC to MPV ratios were significantly lower in the women with preeclampsia compared with the controls. There was no significant difference in the PC, PDW, MPV, and PC to MPV ratio when women with mild and severe preeclampsia were compared. Using receiver operating characteristic (ROC curves, the PC cutoff was 248.0×103/µL for diagnosis of preeclampsia (P=0.019; the area under the ROC curve was 62.4%. Binary regression suggests that women with PC <248.010×103/µL were at higher risk of preeclampsia (odds ratio =2.2, 95% confidence interval =1.08–4.6, P=0.03. The PC/MPV cutoff was 31.2 for diagnosis of preeclampsia (P=0.035, the area under the ROC curve was 62.2%.Conclusion: PC <248.010×103/µL and PC to MPV ratio 31.2 are valid predictors of preeclampsia. Keywords: preeclampsia, platelets, PDW, mean platelet

  5. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. I