WorldWideScience

Sample records for regulate mrna translation

  1. Regulation of mRNA translation during mitosis.

    Science.gov (United States)

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  2. Regulation of mRNA translation influences hypoxia tolerance

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia is a heterogenous but common characteristic of human tumours and poor oxygenation is associated with poor prognosis. We believe that the presence of viable hypoxic tumor cells reflects in part an adaptation and tolerance of these cells to oxygen deficiency. Since oxidative phosphorylation is compromized during hypoxia, adaptation may involve both the upregulation of glycolysis as well as downregulation of energy consumption. mRNA translation is one of the most energy costly cellular processes, and we and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, including those coding for HIF-1 α and VEGF, remain efficiently translated during hypoxia. Clearly, the mechanisms responsible for the overall inhibition of translation during hypoxia does not compromize the translation of certain hypoxia-induced mRNA species. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We have recently identified two pathways that are responsible for the global inhibition of translation during hypoxia. The phosphorylation of the eukaryotic initiation factor eIF2 α by the ER resident kinase PERK results in down-regulation of protein synthesis shortly after the onset of hypoxia. In addition, the initiation complex eIF4F is disrupted during long lasting hypoxic conditions. The identification of the molecular pathways responsible for the inhibition of overall translation during hypoxia has rendered it possible to investigate their importance for hypoxia tolerance. We have found that mouse embryo fibroblasts that are knockout for PERK and therefore not able to inhibit protein synthesis efficiently during oxygen deficiency are significantly less tolerant to hypoxia than their wildtype counterparts. We are currently also investigating the functional significance

  3. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity.

    Directory of Open Access Journals (Sweden)

    Jun Ling

    Full Text Available Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T, BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl phthalate (MEHP as a major metabolite of another important phthalate di (2-ethylhexyl phthalate (DEHP inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29 growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities.

  4. Translational profiling in childhood acute lymphoblastic leukemia: no evidence for glucocorticoid regulation of mRNA translation.

    Science.gov (United States)

    Aneichyk, Tatsiana; Bindreither, Daniel; Mantinger, Christine; Grazio, Daniela; Goetsch, Katrin; Kofler, Reinhard; Rainer, Johannes

    2013-12-01

    Glucocorticoids (GCs) are natural stress induced steroid hormones causing cell cycle arrest and cell death in lymphoid tissues. Therefore they are the central component in the treatment of lymphoid malignancies, in particular childhood acute lymphoblastic leukemia (chALL). GCs act mainly via regulating gene transcription, which has been intensively studied by us and others. GC control of mRNA translation has also been reported but has never been assessed systematically. In this study we investigate the effect of GCs on mRNA translation on a genome-wide scale. Childhood T- (CCRF-CEM) and precursor B-ALL (NALM6) cells were exposed to GCs and subjected to "translational profiling", a technique combining sucrose-gradient fractionation followed by Affymetrix Exon microarray analysis of mRNA from different fractions, to assess the translational efficiency of the expressed genes. Analysis of GC regulation in ribosome-bound fractions versus transcriptional regulation revealed no significant differences, i.e., GC did not entail a significant shift between ribosomal bound and unbound mRNAs. In the present study we analyzed for the first time possible effects of GC on the translational efficiency of expressed genes in two chALL model systems employing whole genome polysome profiling. Our results did not reveal significant differences in translational efficiency of expressed genes thereby arguing against a potential widespread regulatory effect of GCs on translation at least in the investigated in vitro systems.

  5. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation

    Science.gov (United States)

    2016-02-11

    unlimited. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation The views, opinions and...into Dynamics and Regulation of Yeast Translation Report Title Ribosome-footprint profiling provides genome-wide snapshots of translation, but...tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was

  6. The hypoxic proteome is influenced by gene-specific changes in mRNA translation

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne; Seigneuric, Renaud; Magagnin, Michael G.; Beucken, Twan van den; Lambin, Philippe; Wouters, Bradly G.

    2005-01-01

    Background and purpose: Hypoxia causes a rapid reduction in mRNA translation efficiency. This inhibition does not affect all mRNA species to the same extent and can therefore contribute significantly to hypoxia-induced differential protein expression. Our aim in this study was to characterize changes in gene expression during acute hypoxia and evaluate the contribution of regulation via mRNA translation on these changes. For each gene, the contribution of changes in mRNA abundance versus mRNA translation was determined. Materials and methods: DU145 prostate carcinoma cells were exposed to 4 h of hypoxia ( 2 ). Efficiently translated mRNAs were isolated by sedimentation through a sucrose gradient. Affymetrix microarray technology was used to evaluate both the transcriptional and translational contribution to gene expression. Results were validated by quantitative PCR. Results: One hundred and twenty genes were more than 4-fold upregulated by hypoxia in the efficiently translated fraction of mRNA, in comparison to only 76 genes at the level of transcription. Of the 50 genes demonstrating the largest changes in translation, 11 were found to be more than 2-fold over represented in the translated fraction in comparison to their overall transcriptional level. The gene with the highest translational contribution to its induction was CITED-2, which is a negative regulator of HIF-1 transcriptional activity. Conclusions: Gene-specific regulation of mRNA translation contributes significantly to differential gene expression during hypoxia

  7. A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons.

    Science.gov (United States)

    Vidaki, Marina; Drees, Frauke; Saxena, Tanvi; Lanslots, Erwin; Taliaferro, Matthew J; Tatarakis, Antonios; Burge, Christopher B; Wang, Eric T; Gertler, Frank B

    2017-08-02

    During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. An investigation of nutrient-dependent mRNA translation in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Sabarish Nagarajan

    2014-10-01

    Full Text Available The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.

  9. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    Science.gov (United States)

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  10. Control of PNG kinase, a key regulator of mRNA translation, is coupled to meiosis completion at egg activation.

    Science.gov (United States)

    Hara, Masatoshi; Petrova, Boryana; Orr-Weaver, Terry L

    2017-05-30

    The oocyte-to-embryo transition involves extensive changes in mRNA translation, regulated in Drosophila by the PNG kinase complex whose activity we show here to be under precise developmental control. Despite presence of the catalytic PNG subunit and the PLU and GNU activating subunits in the mature oocyte, GNU is phosphorylated at Cyclin B/CDK1sites and unable to bind PNG and PLU. In vitro phosphorylation of GNU by CyclinB/CDK1 blocks activation of PNG. Meiotic completion promotes GNU dephosphorylation and PNG kinase activation to regulate translation. The critical regulatory effect of phosphorylation is shown by replacement in the oocyte with a phosphorylation-resistant form of GNU, which promotes PNG-GNU complex formation, elevation of Cyclin B, and meiotic defects consistent with premature PNG activation. After PNG activation GNU is destabilized, thus inactivating PNG. This short-lived burst in kinase activity links development with maternal mRNA translation and ensures irreversibility of the oocyte-to-embryo transition.

  11. Cup regulates oskar mRNA stability during oogenesis.

    Science.gov (United States)

    Broyer, Risa M; Monfort, Elena; Wilhelm, James E

    2017-01-01

    The proper regulation of the localization, translation, and stability of maternally deposited transcripts is essential for embryonic development in many organisms. These different forms of regulation are mediated by the various protein subunits of the ribonucleoprotein (RNP) complexes that assemble on maternal mRNAs. However, while many of the subunits that regulate the localization and translation of maternal transcripts have been identified, relatively little is known about how maternal mRNAs are stockpiled and stored in a stable form to support early development. One of the best characterized regulators of maternal transcripts is Cup - a broadly conserved component of the maternal RNP complex that in Drosophila acts as a translational repressor of the localized message oskar. In this study, we have found that loss of cup disrupts the localization of both the oskar mRNA and its associated proteins to the posterior pole of the developing oocyte. This defect is not due to a failure to specify the oocyte or to disruption of RNP transport. Rather, the localization defects are due to a drop in oskar mRNA levels in cup mutant egg chambers. Thus, in addition to its role in regulating oskar mRNA translation, Cup also plays a critical role in controlling the stability of the oskar transcript. This suggests that Cup is ideally positioned to coordinate the translational control function of the maternal RNP complex with its role in storing maternal transcripts in a stable form. Published by Elsevier Inc.

  12. The significance of translation regulation in the stress response

    Science.gov (United States)

    2013-01-01

    Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although mRNA

  13. Cytoplasmic protein binding to highly conserved sequences in the 3' untranslated region of mouse protamine 2 mRNA, a translationally regulated transcript of male germ cells

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Hecht, N.B.

    1991-01-01

    The expression of the protamines, the predominant nuclear proteins of mammalian spermatozoa, is regulated translationally during male germ-cell development. The 3' untranslated region (UTR) of protamine 1 mRNA has been reported to control its time of translation. To understand the mechanisms controlling translation of the protamine mRNAs, we have sought to identify cis elements of the 3' UTR of protamine 2 mRNA that are recognized by cytoplasmic factors. From gel retardation assays, two sequence elements are shown to form specific RNA-protein complexes. Protein binding sites of the two complexes were determined by RNase T1 mapping, by blocking the putative binding sites with antisense oligonucleotides, and by competition assays. The sequences of these elements, located between nucleotides + 537 and + 572 in protamine 2 mRNA, are highly conserved among postmeiotic translationally regulated nuclear proteins of the mammalian testis. Two closely linked protein binding sites were detected. UV-crosslinking studies revealed that a protein of about 18 kDa binds to one of the conserved sequences. These data demonstrate specific protein binding to a highly conserved 3' UTR of translationally regulated testicular mRNA

  14. Imaging translation dynamics of single mRNA molecules in live cells

    NARCIS (Netherlands)

    Ruijtenberg, Suzan; Hoek, Tim A.; Yan, Xiaowei; Tanenbaum, Marvin E.

    2018-01-01

    mRNA translation is a key step in decoding the genetic information stored in DNA. Regulation of translation efficiency contributes to gene expression control and is therefore important for cell fate and function. Here, we describe a recently developed microscopy-based method that allows for

  15. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them.

    Science.gov (United States)

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2018-03-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.

  16. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  17. Selective translation of the measles virus nucleocapsid mRNA by La protein

    Directory of Open Access Journals (Sweden)

    Yoshihisa eInoue

    2011-08-01

    Full Text Available Measles, caused by measles virus (MeV infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as "shutoff" and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5 untranslated region (UTR of nucleocapsid (N mRNA. The La/SSB autoantigen (La was found to specifically bind to an N-5UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5UTR (N-fLuc, and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.

  18. The upstream open reading frame of cyclin-dependent kinase inhibitor 1A mRNA negatively regulates translation of the downstream main open reading frame

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Mi; Cho, Hana [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Yoon Ki, E-mail: yk-kim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CDKN1A mRNA is a bona fide NMD substrate. Black-Right-Pointing-Pointer The uORF of CDKN1A mRNA is efficiently translated. Black-Right-Pointing-Pointer Translation of downstream main ORF is negatively regulated by translation of uORF in CDKN1A mRNA. -- Abstract: The first round of translation occurs on mRNAs bound by nuclear cap-binding complex (CBC), which is composed of nuclear cap-binding protein 80 and 20 (CBP80/20). During this round of translation, aberrant mRNAs are recognized and downregulated in abundance by nonsense-mediated mRNA decay (NMD), which is one of the mRNA quality control mechanisms. Here, our microarray analysis reveals that the level of cyclin-dependent kinase inhibitor 1A (CDKN1A; also known as Waf1/p21) mRNAs increases in cells depleted of cellular NMD factors. Intriguingly, CDKN1A mRNA contains an upstream open reading frame (uORF), which is a NMD-inducing feature. Using chimeric reporter constructs, we find that the uORF of CDKN1A mRNA negatively modulates translation of the main downstream ORF. These findings provide biological insights into the possible role of NMD in diverse biological pathways mediated by CDKN1A.

  19. Extensive translational regulation during seed germination revealed by polysomal profiling

    NARCIS (Netherlands)

    Bai, Bing; Peviani, Alessia; Horst, van der Sjors; Gamm, Magdalena; Snel, Berend; Bentsink, Leónie; Hanson, Johannes

    2017-01-01

    This work investigates the extent of translational regulation during seed germination. The polysome occupancy of each gene is determined by genome-wide profiling of total mRNA and polysome-associated mRNA. This reveals extensive translational regulation during Arabidopsis thaliana seed

  20. Eukaryotic initiation factor 3 (eIF3) and 5’ mRNA leader sequences as agents of translational regulation in Arabidopsis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    von Arnim, Albrecht G. [Univ. of Tennessee, Knoxville, TN (United States)

    2015-02-04

    Protein synthesis, or translation, consumes a sizable fraction of the cell’s energy budget, estimated at 5% and up to 50% in differentiated and growing cells, respectively. Plants also invest significant energy and biomass to construct and maintain the translation apparatus. Translation is regulated by a variety of external stimuli. Compared to transcriptional control, attributes of translational control include reduced sensitivity to stochastic fluctuation, a finer gauge of control, and more rapid responsiveness to environmental stimuli. Yet, our murky understanding of translational control allows few generalizations. Consequently, translational regulation is underutilized in the context of transgene regulation, although synthetic biologists are now beginning to appropriate RNA-level gene regulation into their regulatory circuits. We also know little about how translational control contributes to the diversity of plant form and function. This project explored how an emerging regulatory mRNA sequence element, upstream open reading frames (uORFs), is integrated with the general translation initiation machinery to permit translational regulation on specific mRNAs.

  1. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them

    Science.gov (United States)

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2017-01-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5′ untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5′ UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms. PMID:29165424

  2. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    Science.gov (United States)

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein.

    Science.gov (United States)

    Lyabin, D N; Ovchinnikov, L P

    2016-03-02

    The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.

  4. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Directory of Open Access Journals (Sweden)

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  5. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    International Nuclear Information System (INIS)

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-01-01

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  6. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation.

    Directory of Open Access Journals (Sweden)

    Guangzhen Hu

    Full Text Available Long noncoding RNAs (lncRNAs are important regulators of transcription; however, their involvement in protein translation is not well known. Here we explored whether the lncRNA GAS5 is associated with translation initiation machinery and regulates translation. GAS5 was enriched with eukaryotic translation initiation factor-4E (eIF4E in an RNA-immunoprecipitation assay using lymphoma cell lines. We identified two RNA binding motifs within eIF4E protein and the deletion of each motif inhibited the binding of GAS5 with eIF4E. To confirm the role of GAS5 in translation regulation, GAS5 siRNA and in vitro transcribed GAS5 RNA were used to knock down or overexpress GAS5, respectively. GAS5 siRNA had no effect on global protein translation but did specifically increase c-Myc protein level without an effect on c-Myc mRNA. The mechanism of this increase in c-Myc protein was enhanced association of c-Myc mRNA with the polysome without any effect on protein stability. In contrast, overexpression of in vitro transcribed GAS5 RNA suppressed c-Myc protein without affecting c-Myc mRNA. Interestingly, GAS5 was found to be bound with c-Myc mRNA, suggesting that GAS5 regulates c-Myc translation through lncRNA-mRNA interaction. Our findings have uncovered a role of GAS5 lncRNA in translation regulation through its interactions with eIF4E and c-Myc mRNA.

  7. One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator.

    Science.gov (United States)

    Di Martino, Maria Letizia; Romilly, Cédric; Wagner, E Gerhart H; Colonna, Bianca; Prosseda, Gianni

    2016-11-08

    VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF 30 (30 kDa), and the shorter VirF 21 (21 kDa), lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF 30 and VirF 21 and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF 21 is also translated from a leaderless mRNA (llmRNA) whose 5' end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF 21 The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis revealed that while VirF 30 is responsible for activation of the virulence system, VirF 21 negatively autoregulates virF expression itself. Since VirF 21 modulates the intracellular VirF levels, this suggests that transcription of the llmRNA might occur when the onset of the virulence program is not required. We speculate that environmental cues, like stress conditions, may promote changes in virF mRNA transcription and preferential translation of llmRNA. Shigella spp. are a major cause of dysentery in humans. In bacteria of this genus, the activation of the invasive program involves a multitude of signals that act on all layers of the gene regulatory hierarchy. By controlling the essential genes for host cell invasion, VirF is the key regulator of the switch from the noninvasive to the invasive phenotype. Here, we show that the Shigella virF gene encodes two proteins of different sizes, VirF 30 and VirF 21 , that are functionally distinct. The major form, VirF 30 , activates the genes

  8. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    Science.gov (United States)

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  9. Phosphorylation of eIF2α is required for mRNA translation inhibition and survival during moderate hypoxia

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne; Rouschop, Kasper M.A.; Beucken, Twan van den; Magagnin, Michael G.; Savelkouls, Kim; Lambin, Philippe; Wouters, Bradly G.

    2007-01-01

    Abstracts: Background and purpose: Human tumors are characterized by temporal fluctuations in oxygen tension. The biological pathways that respond to the dynamic tumor microenvironment represent potential molecular targets for cancer therapy. Anoxic conditions result in eIF2α dependent inhibition of overall mRNA translation, differential gene expression, hypoxia tolerance and tumor growth. The signaling pathway which governs eIF2α phosphorylation has therefore emerged as a potential molecular target. In this study, we investigated the role of eIF2α in regulating mRNA translation and hypoxia tolerance during moderate hypoxia. Since other molecular pathways that regulate protein synthesis are frequently mutated in cancer, we also assessed mRNA translation in a panel of cell lines from different origins. Materials and methods: Immortalized human fibroblast, transformed mouse embryo fibroblasts (MEFs) and cells from six cancer cell lines were exposed to 0.2% or 0.0% oxygen. We assayed global mRNA translation efficiency by polysome analysis, as well as proliferation and clonogenic survival. The role of eIF2α was assessed in MEFs harboring a homozygous inactivating mutation (S51A) as well as in U373-MG cells overexpressing GADD34 (C-term) under a tetracycline-dependent promoter. The involvement of eIF4E regulation was investigated in HeLa cells stably expressing a short hairpin RNA (shRNA) targeting 4E-BP1. Results: All cells investigated inhibited mRNA translation severely in response to anoxia and modestly in response to hypoxia. Two independent genetic cell models demonstrated that inhibition of mRNA translation in response to moderate hypoxia was dependent on eIF2α phosphorylation. Disruption of eIF2α phosphorylation caused sensitivity to hypoxia and anoxia. Conclusions: Disruption of eIF2α phosphorylation is a potential target for hypoxia-directed molecular cancer therapy

  10. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    Science.gov (United States)

    Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu

    2018-04-02

    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

  11. The role of mRNA translation in the adaptation to hypoxia

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia commonly occurs in human tumours and is associated with a poor prognosis. We and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, such as those coding for HIF-1 α and VEGF, remain efficiently translated. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We are investigating the mechanisms responsible for the down regulation of protein synthesis during hypoxia, and how specific mRNAs maintain their ability to be translated under such conditions. Our goal is to understand the significance of these regulatory mechanisms for hypoxia tolerance in vitro and tumor growth in vivo. We have previously shown that one mechanism responsible for inhibiting protein synthesis during hypoxia is the activation of PERK, which inhibits the essential translation factor eIF2 α . Here we show that PERK-/- MEFs are not able to inhibit protein synthesis efficiently during hypoxia and are significantly less tolerant to hypoxia than wt cells. We also show that other mechanisms are important for sustained low protein synthesis during chronic hypoxia. We demonstrate that the eIF4F complex is disrupted during prolonged hypoxia, and that this is mediated by 4E-BP1 and 4E-T. eIF4F is essential for translation which is dependent upon the 5'mRNA cap-structure. These studies therefore indicate a switch from the inhibition of all translation through eIF2 α during acute hypoxia, to the inhibition of only cap-dependent translation during chronic hypoxia. This model predicts the differential induction of genes that can be translated cap-independently during chronic hypoxia, which is consistent with the observed differential translation of HIF-1 α and VEGF. The functional significance of the disruption of the eIF4F complex during hypoxia is currently being addressed

  12. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation

    NARCIS (Netherlands)

    Fernandez, James; Yaman, Ibrahim; Huang, Charles; Liu, Haiyan; Lopez, Alex B.; Komar, Anton A.; Caprara, Mark G.; Merrick, William C.; Snider, Martin D.; Kaufman, Randal J.; Lamers, Wouter H.; Hatzoglou, Maria

    2005-01-01

    It was previously shown that the mRNA for the cat-1 Arg/Lys transporter is translated from an internal ribosome entry site (IRES) that is regulated by cellular stress. Amino acid starvation stimulated cat-1 translation via a mechanism that requires translation of an ORF in the mRNA leader and

  13. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    Science.gov (United States)

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus. IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  14. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability

    NARCIS (Netherlands)

    Fernandez, J.; Yaman, I.; Mishra, R.; Merrick, W. C.; Snider, M. D.; Lamers, W. H.; Hatzoglou, M.

    2001-01-01

    The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA

  15. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis

    Science.gov (United States)

    Onouchi, Hitoshi; Nagami, Yoko; Haraguchi, Yuhi; Nakamoto, Mari; Nishimura, Yoshiko; Sakurai, Ryoko; Nagao, Nobuhiro; Kawasaki, Daisuke; Kadokura, Yoshitomo; Naito, Satoshi

    2005-01-01

    Expression of the Arabidopsis CGS1 gene that codes for cystathionine γ-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5′ end points near the 5′ edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer. PMID:16027170

  16. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER).

    Science.gov (United States)

    Paix, Alexandre; Le Nguyen, Phuong Ngan; Sardet, Christian

    2011-09-01

    Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  18. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    Science.gov (United States)

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  20. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA

    Science.gov (United States)

    Andreeva, Irena

    2018-01-01

    During translation, consecutive ribosomes load on an mRNA and form a polysome. The first ribosome binds to a single-stranded mRNA region and moves toward the start codon, unwinding potential mRNA structures on the way. In contrast, the following ribosomes can dock at the start codon only when the first ribosome has vacated the initiation site. Here we show that loading of the second ribosome on a natural 38-nt-long 5′ untranslated region of lpp mRNA, which codes for the outer membrane lipoprotein from Escherichia coli, takes place before the leading ribosome has moved away from the start codon. The rapid formation of this standby complex depends on the presence of ribosomal proteins S1/S2 in the leading ribosome. The early recruitment of the second ribosome to the standby site before translation by the leading ribosome and the tight coupling between translation elongation by the first ribosome and the accommodation of the second ribosome can contribute to high translational efficiency of the lpp mRNA. PMID:29632209

  1. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  2. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo.

    Science.gov (United States)

    Wharton, Tammy H; Nomie, Krystle J; Wharton, Robin P

    2018-01-01

    Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3'-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described-repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3'-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.

  3. Regulation of Cited2 expression provides a functional link between translational and transcriptional responses during hypoxia

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Savelkouls, Kim; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2007-01-01

    Background and purpose: Protein synthesis rates are greatly reduced under hypoxic conditions as a consequence of an overall inhibition of mRNA translation. Certain specific mRNA species have the ability to escape this general translational repression. At the cellular level this results in differential protein expression during hypoxic conditions. The objective of this study was to characterize the translational regulation of the postulated HIF-1α antagonist Cited2. Materials and methods: DU145 prostate carcinoma cells and mouse embryonic fibroblasts with a homozygous knock-in mutation for eIF2α (S51A) or wild-type eIF2α were exposed to severe hypoxia after which both total mRNA and efficiently translated mRNA were isolated. Quantitative RT-PCR was used to measure and compare changes in transcription (total mRNA) with changes in translation (efficiently translated mRNA fraction). Results: We show using HIF-1α null MEF cells that transcriptional induction of Cited2 during hypoxia is dependent on HIF-1α. Although global mRNA translation is inhibited during hypoxia Cited2 mRNA remains efficiently translated. An evolutionary conserved upstream open reading frame (uORF) in the 5'UTR of Cited2 did not stimulate translation in an eIF2α dependent manner during hypoxia. Conclusions: Selective translation Cited2 by an eIF2α independent mechanism establishes a link between translation and HIF-1 dependent transcription during hypoxia

  4. Skeletal muscle protein synthesis and the abundance of the mRNA translation initiation repressor PDCD4 are inversely regulated by fasting and refeeding in rats.

    Science.gov (United States)

    Zargar, Sana; Moreira, Tracy S; Samimi-Seisan, Helena; Jeganathan, Senthure; Kakade, Dhanshri; Islam, Nushaba; Campbell, Jonathan; Adegoke, Olasunkanmi A J

    2011-06-01

    Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.

  5. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    Science.gov (United States)

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  6. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Wanjun Gu

    2010-02-01

    Full Text Available Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.

  7. One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator

    Directory of Open Access Journals (Sweden)

    Maria Letizia Di Martino

    2016-11-01

    Full Text Available VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF30 (30 kDa, and the shorter VirF21 (21 kDa, lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF30 and VirF21 and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF21 is also translated from a leaderless mRNA (llmRNA whose 5′ end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF21. The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis revealed that while VirF30 is responsible for activation of the virulence system, VirF21 negatively autoregulates virF expression itself. Since VirF21 modulates the intracellular VirF levels, this suggests that transcription of the llmRNA might occur when the onset of the virulence program is not required. We speculate that environmental cues, like stress conditions, may promote changes in virF mRNA transcription and preferential translation of llmRNA.

  8. Binding of DEAD-box helicase Dhh1 to the 5'-untranslated region of ASH1 mRNA represses localized translation of ASH1 in yeast cells.

    Science.gov (United States)

    Zhang, Qianjun; Meng, Xiuhua; Li, Delin; Chen, Shaoyin; Luo, Jianmin; Zhu, Linjie; Singer, Robert H; Gu, Wei

    2017-06-09

    Local translation of specific mRNAs is regulated by dynamic changes in their subcellular localization, and these changes are due to complex mechanisms controlling cytoplasmic mRNA transport. The budding yeast Saccharomyces cerevisiae is well suited to studying these mechanisms because many of its transcripts are transported from the mother cell to the budding daughter cell. Here, we investigated the translational control of ASH1 mRNA after transport and localization. We show that although ASH1 transcripts were translated after they reached the bud tip, some mRNAs were bound by the RNA-binding protein Puf6 and were non-polysomal. We also found that the DEAD-box helicase Dhh1 complexed with the untranslated ASH1 mRNA and Puf6. Loss of Dhh1 affected local translation of ASH1 mRNA and resulted in delocalization of ASH1 transcript in the bud. Forcibly shifting the non-polysomal ASH1 mRNA into polysomes was associated with Dhh1 dissociation. We further demonstrated that Dhh1 is not recruited to ASH1 mRNA co-transcriptionally, suggesting that it could bind to ASH1 mRNA within the cytoplasm. Of note, Dhh1 bound to the 5'-UTR of ASH1 mRNA and inhibited its translation in vitro These results suggest that after localization to the bud tip, a portion of the localized ASH1 mRNA becomes translationally inactive because of binding of Dhh1 and Puf6 to the 5'- and 3'-UTRs of ASH1 mRNA. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards.

    Science.gov (United States)

    Cui, Yuchao; Rao, Shaofei; Chang, Beibei; Wang, Xiaoshuang; Zhang, Kaidian; Hou, Xueliang; Zhu, Xueyi; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong; Yang, Chengwei; Huang, Tao

    2015-10-01

    Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein. © 2015 John Wiley & Sons Ltd.

  10. The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system.

    Science.gov (United States)

    Kuzin, Alexander; Kundu, Mukta; Brody, Thomas; Odenwald, Ward F

    2007-10-01

    The mRNA encoding the Drosophila Zn-finger transcription factor Nerfin-1, required for CNS axon pathfinding events, is subject to post-transcriptional silencing. Although nerfin-1 mRNA is expressed in many neural precursor cells including all early delaminating CNS neuroblasts, the encoded Nerfin-1 protein is detected only in the nuclei of neural precursors that divide just once to generate neurons and then only transiently in nascent neurons. Using a nerfin-1 promoter-controlled reporter transgene, replacement of the nerfin-1 3' UTR with the viral SV-40 3' UTR releases the neuroblast translational block and prolongs reporter protein expression in neurons. Comparative genomics analysis reveals that the nerfin-1 mRNA 3' UTR contains multiple highly conserved sequence blocks that either harbor and/or overlap 21 predicted binding sites for 18 different microRNAs. To determine the functional significance of these microRNA-binding sites and less conserved microRNA target sites, we have studied their ability to block or limit the expression of reporter protein in nerfin-1-expressing cells during embryonic development. Our results indicate that no single microRNA is sufficient to fully inhibit protein expression but rather multiple microRNAs that target different binding sites are required to block ectopic protein expression in neural precursor cells and temporally restrict expression in neurons. Taken together, these results suggest that multiple microRNAs play a cooperative role in the post-transcriptional regulation of nerfin-1 mRNA, and the high degree of microRNA-binding site evolutionary conservation indicates that all members of the Drosophila genus employ a similar strategy to regulate the onset and extinction dynamics of Nerfin-1 expression.

  11. Protein Translation and Signaling in Human Eosinophils

    Directory of Open Access Journals (Sweden)

    Stephane Esnault

    2017-09-01

    Full Text Available We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1 the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2 the mechanisms regulating mRNA binding proteins activity in EOS, and (3 the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases.

  12. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  13. Potyviral VPg enhances viral RNA Translation and inhibits reporter mRNA translation in planta.

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I; Mäkinen, Kristiina

    2011-09-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.

  14. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta▿

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I.; Mäkinen, Kristiina

    2011-01-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5′ untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation. PMID:21697470

  15. Translational control by the DEAD Box RNA helicase belle regulates ecdysone-triggered transcriptional cascades.

    Directory of Open Access Journals (Sweden)

    Robert J Ihry

    Full Text Available Steroid hormones act, through their respective nuclear receptors, to regulate target gene expression. Despite their critical role in development, physiology, and disease, however, it is still unclear how these systemic cues are refined into tissue-specific responses. We identified a mutation in the evolutionarily conserved DEAD box RNA helicase belle/DDX3 that disrupts a subset of responses to the steroid hormone ecdysone during Drosophila melanogaster metamorphosis. We demonstrate that belle directly regulates translation of E74A, an ets transcription factor and critical component of the ecdysone-induced transcriptional cascade. Although E74A mRNA accumulates to abnormally high levels in belle mutant tissues, no E74A protein is detectable, resulting in misregulation of E74A-dependent ecdysone response genes. The accumulation of E74A mRNA in belle mutant salivary glands is a result of auto-regulation, fulfilling a prediction made by Ashburner nearly 40 years ago. In this model, Ashburner postulates that, in addition to regulating secondary response genes, protein products of primary response genes like E74A also inhibit their own ecdysone-induced transcription. Moreover, although ecdysone-triggered transcription of E74A appears to be ubiquitous during metamorphosis, belle-dependent translation of E74A mRNA is spatially restricted. These results demonstrate that translational control plays a critical, and previously unknown, role in refining transcriptional responses to the steroid hormone ecdysone.

  16. Fidelity in the translation of reovirus mRNA in oocytes of Xenopus laevis

    International Nuclear Information System (INIS)

    Opperman, D.P.J.; Van der Walt, M.P.K.; Reinecke, C.J.

    1988-01-01

    The translation products formed from reovirus mRNA micro-injected into oocytes of Xenopus laevis were compared with authentic reovirus proteins by polyacrylamide gel electrophoresis, immunoprecipition, isolation of immune complexes by affinity chromatography and peptide mapping using proteolytic digestion with Staphylococcus aureus V8 protease. Products from the s-, m- and l-class mRNAs were detectable in quantities comparable to those synthesized in vivo, confirming that the differences in the translational efficiencies in the oocyte system resemble those found in vivo. The experimental procedures during this study, include the labelling of these translation products with [ 35 S]methionine. Protein μ1C was formed in the oocytes by post-translational cleavage of its precursor, protein μ1. The V8 protease peptide profile of the translation product with the same electrophoretic mobility as protein, σ3, is identical to that of the authentic reovirus protein. All these observations indicate a high degree of fidelity in the translation of reovirus mRNA in the oocyte system. The fidelity in translation, ratios of the various translation products, as well as post-translational modification suggest that the oocyte system might provide a means for studying the mechanism of reovirus morphogenesis

  17. Human cytomegalovirus TRS1 protein associates with the 7-methylguanosine mRNA cap and facilitates translation.

    Science.gov (United States)

    Ziehr, Benjamin; Lenarcic, Erik; Vincent, Heather A; Cecil, Chad; Garcia, Benjamin; Shenk, Thomas; Moorman, Nathaniel J

    2015-06-01

    Viruses rely on the host translation machinery for the synthesis of viral proteins. Human cells have evolved sensors that recognize viral RNAs and inhibit mRNA translation in order to limit virus replication. Understanding how viruses manipulate the host translation machinery to gain access to ribosomes and disable the antiviral response is therefore a critical aspect of the host/pathogen interface. In this study, we used a proteomics approach to identify human cytomegalovirus (HCMV) proteins that might contribute to viral mRNA translation. The HCMV TRS1 protein (pTRS1) associated with the 7-methylguanosine mRNA cap, increased the total level of protein synthesis, and colocalized with mRNAs undergoing translation initiation during infection. pTRS1 stimulated translation of a nonviral reporter gene and increased the translation of a reporter containing an HCMV 5' untranslated region (5'UTR) to a greater extent. The preferential effect of pTRS1 on translation of an mRNA containing a viral 5'UTR required the pTRS1 RNA and double-stranded RNA-dependent protein kinase (PKR)-binding domains, and was likely the result of PKR inhibition. However, pTRS1 also stimulated the total level of protein synthesis and translation directed by an HCMV 5'UTR in cells lacking PKR. Thus our results demonstrate that pTRS1 stimulates translation through both PKR-dependent and PKR-independent mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Li, Long; Pintel, David J., E-mail: pinteld@missouri.edu

    2012-04-25

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  19. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    International Nuclear Information System (INIS)

    Li, Long; Pintel, David J.

    2012-01-01

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  20. A UV-induced mutation in neurospora that affects translational regulation in response to arginine

    International Nuclear Information System (INIS)

    Freitag, M.; Dighde, N.; Sachs, M.S.

    1996-01-01

    The Neurospora crassa arg-2 gene encodes the small subunit of arginine-specific carbamoyl phosphate synthetase. The levels of arg-2 mRNA and mRNA translation are negatively regulated by arginine. An upstream open reading frame (uORF) in the transcript's 5' region has been implicated in arginine-specific control. An arg-2-hph fusion gene encoding hygromycin phosphotransferase conferred arginine-regulated resistance to hygromycin when introduced into N. crassa. We used an arg-2-hph strain to select for UV-induced mutants that grew in the presence of hygromycin and arginine, and we isolated 46 mutants that had either of two phenotypes. One phenotype indicated altered expression of both arg-2-hph and arg-2 genes; the other, altered expression of arg-2-hph but not arg-2. One of the latter mutations, which was genetically closely linked to arg-2-hph, was recovered from the 5' region of the arg-2-hph gene using PCR Sequence analyses and transformation experiments revealed a mutation at uORF codon 12 (Asp to Asn) that abrogated negative regulation. Examination of the distribution of ribosomes on arg-2-hph transcripts showed that loss of regulation had a translational component, indicating the uORF sequence was important for Arg-specific translational control. Comparisons with other uORFs suggest common elements in translational control mechanisms

  1. An in vitro system from Plasmodium falciparum active in endogenous mRNA translation

    Directory of Open Access Journals (Sweden)

    Ferreras Ana

    2000-01-01

    Full Text Available An in vitro translation system has been prepared from Plasmodium falciparum by saponin lysis of infected-erythrocytes to free parasites which were homogeneized with glass beads, centrifuged to obtain a S-30 fraction followed by Sephadex G-25 gel filtration. This treatment produced a system with very low contamination of host proteins (<1%. The system, optimized for Mg2+ and K+, translates endogenous mRNA and is active for 80 min which suggests that their protein factors and mRNA are quite stable.

  2. Selection of mRNA 5'-untranslated region sequence with high translation efficiency through ribosome display

    International Nuclear Information System (INIS)

    Mie, Masayasu; Shimizu, Shun; Takahashi, Fumio; Kobatake, Eiry

    2008-01-01

    The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library

  3. The Drosophila PNG kinase complex regulates the translation of cyclin B.

    Science.gov (United States)

    Vardy, Leah; Orr-Weaver, Terry L

    2007-01-01

    The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.

  4. Analysis and prediction of translation rate based on sequence and functional features of the mRNA.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate. Prediction of mRNA's translation rate would provide valuable information for in-depth understanding of the translation mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate, featured by (1 integrating various sequence-derived and functional features, (2 applying the maximum relevance & minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and (3 being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was found that the following features were correlated with translation rate: codon usage frequency, some gene ontology enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein abundance and 5'UTR free energy. These findings might provide useful information for understanding the mechanisms of translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for annotating the translation rate of mRNAs in large-scale.

  5. Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.

    Science.gov (United States)

    Mallik, Saurav; Basu, Sudipto; Hait, Suman; Kundu, Sudip

    2018-04-21

    Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. © 2018 Wiley Periodicals, Inc.

  6. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    Science.gov (United States)

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  7. T box riboswitches in Actinobacteria: Translational regulation via novel tRNA interactions

    Science.gov (United States)

    Sherwood, Anna V.; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5′ untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine–Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNAIle and tRNAIle-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch. PMID:25583497

  8. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.

    Science.gov (United States)

    Corduan, Aurélie; Plé, Hélène; Laffont, Benoit; Wallon, Thérèse; Plante, Isabelle; Landry, Patricia; Provost, Patrick

    2015-05-01

    Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.

  9. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.

  10. PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1

    Science.gov (United States)

    Gao, Guozhen; Dhar, Surbhi

    2017-01-01

    Abstract The type II arginine methyltransferase PRMT5 is responsible for the symmetric dimethylation of histone to generate the H3R8me2s and H4R3me2s marks, which correlate with the repression of transcription. However, the protein level of a number of genes (MEP50, CCND1, MYC, HIF1a, MTIF and CDKN1B) are reported to be downregulated by the loss of PRMT5, while their mRNA levels remain unchanged, which is counterintuitive for PRMT5's proposed role as a transcription repressor. We noticed that the majority of the genes regulated by PRMT5, at the posttranscriptional level, express mRNA containing an internal ribosome entry site (IRES). Using an IRES-dependent reporter system, we established that PRMT5 facilitates the translation of a subset of IRES-containing genes. The heterogeneous nuclear ribonucleoprotein, hnRNP A1, is an IRES transacting factor (ITAF) that regulates the IRES-dependent translation of Cyclin D1 and c-Myc. We showed that hnRNP A1 is methylated by PRMT5 on two residues, R218 and R225, and that this methylation facilitates the interaction of hnRNP A1 with IRES RNA to promote IRES-dependent translation. This study defines a new role for PRMT5 regulation of cellular protein levels, which goes beyond the known functions of PRMT5 as a transcription and splicing regulator. PMID:28115626

  11. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism.

    Science.gov (United States)

    Rodríguez, Andrea E; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.

  12. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.

    Science.gov (United States)

    Aviner, Ranen; Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo; Elroy-Stein, Orna

    2017-06-02

    Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1

    Directory of Open Access Journals (Sweden)

    Ehrlich S Dusko

    2009-01-01

    Full Text Available Abstract Background Abortive infection (Abi mechanisms comprise numerous strategies developed by bacteria to avoid being killed by bacteriophage (phage. Escherichia coli Abis are considered as mediators of programmed cell death, which is induced by infecting phage. Abis were also proposed to be stress response elements, but no environmental activation signals have yet been identified. Abis are widespread in Lactococcus lactis, but regulation of their expression remains an open question. We previously showed that development of AbiD1 abortive infection against phage bIL66 depends on orf1, which is expressed in mid-infection. However, molecular basis for this activation remains unclear. Results In non-infected AbiD1+ cells, specific abiD1 mRNA is unstable and present in low amounts. It does not increase during abortive infection of sensitive phage. Protein synthesis directed by the abiD1 translation initiation region is also inefficient. The presence of the phage orf1 gene, but not its mutant AbiD1R allele, strongly increases abiD1 translation efficiency. Interestingly, cell growth at low temperature also activates translation of abiD1 mRNA and consequently the AbiD1 phenotype, and occurs independently of phage infection. There is no synergism between the two abiD1 inducers. Purified Orf1 protein binds mRNAs containing a secondary structure motif, identified within the translation initiation regions of abiD1, the mid-infection phage bIL66 M-operon, and the L. lactis osmC gene. Conclusion Expression of the abiD1 gene and consequently AbiD1 phenotype is specifically translationally activated by the phage Orf1 protein. The loss of ability to activate translation of abiD1 mRNA determines the molecular basis for phage resistance to AbiD1. We show for the first time that temperature downshift also activates abortive infection by activation of abiD1 mRNA translation.

  14. Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5' untranslated leader.

    Science.gov (United States)

    Wu, C J; Janssen, G R

    1996-10-01

    The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.

  15. Regulation of translation during cancer progression

    International Nuclear Information System (INIS)

    Petz, M.

    2012-01-01

    Laminin B1 (LamB1) is a main component of the extracellular matrix and is involved in the regulation of tumor cell migration and invasion of during carcinogenesis. Metastasis of carcinoma cells is crucially linked to the process of epithelial to mesenchymal transition (EMT), which allows tumor cells to acquire a more motile phenotype and to dissociate from the epithelial cell cluster of the tumor. Expression profiling of polysome-associated mRNA revealed LamB1 to be translationally upregulated upon EMT of malignant hepatocytes. The enhanced translation of LamB1 in metastatic hepatocytes proved to be regulated by an internal ribosome entry site (IRES) located within the 5’-untranslated region (UTR) of the LamB1 transcript. IRES activity was detected by employing two independent reporter systems and verified by stringent assays for the presence of cryptic promoter or splice sites. The minimal cis-acting IRES sequence of 293 nucleotides that is required for cap-independent translation was localized directly upstream of the start codon. Notably, the IRES trans-acting factor (ITAF) La was identified by RNA affinity purification as regulatory factor that interacts with LamB1 5’-UTR. This interaction was verified by RNA-immunoprecipitation in vivo, which revealed enhanced binding of La to the minimal IRES motif of LamB1 after EMT. Consistently, cytoplasmic levels of La were elevated in EMT-transformed cells and correlated with increased LamB1 protein expression. Furthermore, IRES-driven translation of LamB1 was elevated in the presence of La in vitro. Importantly, the EMT-induced cytoplasmic translocation of La was found to be triggered by platelet derived growth factor (PDGF) that is downstream of transforming growth factor (TGF)-β signaling. Together, these data demonstrate that La interacts with the LamB1 IRES in the cytoplasm, resulting in enhanced cap-independent translation of LamB1 in malignant hepatocytes that have undergone EMT. (author) [de

  16. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jamie K. Moy

    2018-02-01

    Full Text Available Plasticity in dorsal root ganglion (DRG neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.

  17. Regulation of Translational Efficiency by Disparate 5′-UTRs of PPARγ Splice Variants

    Directory of Open Access Journals (Sweden)

    Shawn McClelland

    2009-01-01

    Full Text Available The PPAR-γ gene encodes for at least 7 unique transcripts due to alternative splicing of five exons in the 5′-untranslated region (UTR. The translated region is encoded by exons 1–6, which are identical in all isoforms. This study investigated the role of the 5′-UTR in regulating the efficiency with which the message is translated to protein. A coupled in vitro transcription-translation assay demonstrated that PPAR-γ1, -γ2, and -γ5 are efficiently translated, whereas PPAR-γ4 and -γ7 are poorly translated. An in vivo reporter gene assay using each 5′-UTR upstream of the firefly luciferase gene showed that the 5′-UTRs for PPAR-γ1, -γ2, and -γ4 enhanced translation, whereas the 5′-UTRs for PPAR-γ5 and -γ7 inhibited translation. Models of RNA secondary structure, obtained by the mfold software, were used to explain the mechanism of regulation by each 5′-UTR. In general, it was found that the translational efficiency was inversely correlated with the stability of the mRNA secondary structure, the presence of base-pairing in the consensus Kozak sequence, the number of start codons in the 5′-UTR, and the length of the 5′-UTR. A better understanding of posttranscriptional regulation of translation will allow modulation of protein levels without altering transcription.

  18. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    Science.gov (United States)

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (Pknowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  19. Cloning of cDNA sequences of a progestin-regulated mRNA from MCF7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalbos, D; Westley, B; Alibert, C; Rochefort, H

    1986-01-24

    A cDNA clone corresponding to an mRNA regulated by the progestin R5020, has been isolated by differential screening of a cDNA library from the MCF7 breast cancer cell line, which contains estrogen and progesterone receptors. This probe hybridized with a single species of poly A + RNA of 8-kb molecular weight as shown by Northern blot analysis and could also be used to total RNA preparation. This recombinant cone hybridized specifically to an mRNA coding for a 250,000 daltons protein when translated in vitro. This protein was identical to the 250 kDa progestin-regulated protein that the authors previously described as shown by immunoprecipitation with specific rabbit polyclonal antibodies. Dose-response curve and specificity studies show that the accumulation of the Pg8 mRNA and that of the 250-kDa protein was increased by 5 to 30-fold following progestin treatment and that this effect was mediated by the progesterone receptor. Time course of induction indicated that the accumulation of mRNA was rapid and preceded that of the protein. This is the first report on a cloned cDNA probe of progestin-regulated mRNA in human cell lines.

  20. Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes

    Directory of Open Access Journals (Sweden)

    Christos G. Gkogkas

    2014-12-01

    Full Text Available Summary: Fragile X syndrome (FXS is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1−/y, we show that phosphorylation of the mRNA 5′ cap binding protein, eukaryotic initiation factor 4E (eIF4E, is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9 protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1−/y mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS. : Fragile X syndrome (FXS is caused by dysregulation of translation in the brain. Gkogkas et al. show that phosphorylation of eukaryotic translation initiation factor 4E (eIF4E is increased in FXS postmortem brains and Fmr1−/y mice. Downregulation of eIF4E phosphorylation in Fmr1−/y mice rescues defects in dendritic spine morphology, synaptic plasticity, and social interaction via normalization of MMP-9 expression.

  1. Regulation of elastin synthesis in developing sheep nuchal ligament by elastin mRNA levels

    International Nuclear Information System (INIS)

    Davidson, J.M.; Smith, K.; Shibahara, S.; Tolstoshev, P.; Crystal, R.G.

    1982-01-01

    Levels of elastin production in explant culture of fetal sheep nuchal ligament and corresponding levels of translatable elastin mRNA were determined in parallel studies during a period of rapid growth of the embryo. The identity of the explant culture and cell-free proucts was confirmed by peptide mapping, immunoprecipitation, and the characteristic lack of histidine and methionine. Elastin production was quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and radioimmune precipitation. The translation products could be labeled with methionine only when NH 2 -terminally donated as f-Met-tRNA/sup Met//sub f/. Explant cultures showed a large rise in elastin production from 70 days after conception to 150 days after conception. Cell free translation of RNA demonstrated a parallel in elastin mRNA levels and in elastin mRNA per cell. It appears, therefore, that the marked emphasis the differentiating muchal ligament places on elastin production is modulated, at least in part, by the quantities of available elastin in mRNA

  2. Translational control of human acetyl-CoA carboxylase 1 mRNA is mediated by an internal ribosome entry site in response to ER stress, serum deprivation or hypoxia mimetic CoCl2.

    Science.gov (United States)

    Damiano, Fabrizio; Testini, Mariangela; Tocci, Romina; Gnoni, Gabriele V; Siculella, Luisa

    2018-04-01

    Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5' untranslated region (5' UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5' UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl 2 , up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5' UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. New insights into the interplay between the translation machinery and nonsense-mediated mRNA decay factors.

    Science.gov (United States)

    Raimondeau, Etienne; Bufton, Joshua C; Schaffitzel, Christiane

    2018-06-19

    Faulty mRNAs with a premature stop codon (PTC) are recognized and degraded by nonsense-mediated mRNA decay (NMD). Recognition of a nonsense mRNA depends on translation and on the presence of NMD-enhancing or the absence of NMD-inhibiting factors in the 3'-untranslated region. Our review summarizes our current understanding of the molecular function of the conserved NMD factors UPF3B and UPF1, and of the anti-NMD factor Poly(A)-binding protein, and their interactions with ribosomes translating PTC-containing mRNAs. Our recent discovery that UPF3B interferes with human translation termination and enhances ribosome dissociation in vitro , whereas UPF1 is inactive in these assays, suggests a re-interpretation of previous experiments and modification of prevalent NMD models. Moreover, we discuss recent work suggesting new functions of the key NMD factor UPF1 in ribosome recycling, inhibition of translation re-initiation and nascent chain ubiquitylation. These new findings suggest that the interplay of UPF proteins with the translation machinery is more intricate than previously appreciated, and that this interplay quality-controls the efficiency of termination, ribosome recycling and translation re-initiation. © 2018 The Author(s).

  4. Translation initiation factor AteIF(iso4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings.

    Directory of Open Access Journals (Sweden)

    Ana Valeria Martínez-Silva

    Full Text Available One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5'end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso4F complexes proposed to mediate selective translation. Using a microarray analysis of polyribosome- and non-polyribosome-purified mRNAs from 15 day-old Arabidopsis thaliana wild type [WT] and eIF(iso4E knockout mutant [(iso4E-1] seedlings we found 79 transcripts shifted from polyribosomes toward non-polyribosomes, and 47 mRNAs with the opposite behavior in the knockout mutant. The translationally decreased mRNAs were overrepresented in root-preferentially expressed genes and proteins from the endomembrane system, including several transporters such as the phosphate transporter PHOSPHATE1 (PHO1, Sucrose transporter 3 (SUC3, ABC transporter-like with ATPase activity (MRP11 and five electron transporters, as well as signal transduction-, protein modification- and transcription-related proteins. Under normal growth conditions, eIF(iso4E expression under the constitutive promoter 35 S enhanced the polyribosomal recruitment of PHO1 supporting its translational preference for eIF(iso4E. Furthermore, under phosphate deficiency, the PHO1 protein increased in the eIF(iso4E overexpressing plants and decreased in the knockout mutant as compared to wild type. In addition, the knockout mutant had larger root, whereas the 35 S directed expression of eIF(iso4E caused shorter root under normal growth conditions, but not under phosphate deficiency. These results indicate that selective translation mediated by eIF(iso4E is relevant for Arabidopsis root development under normal growth conditions.

  5. Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution

    Science.gov (United States)

    Zur, Hadas; Tuller, Tamir

    2016-01-01

    mRNA translation is the fundamental process of decoding the information encoded in mRNA molecules by the ribosome for the synthesis of proteins. The centrality of this process in various biomedical disciplines such as cell biology, evolution and biotechnology, encouraged the development of dozens of mathematical and computational models of translation in recent years. These models aimed at capturing various biophysical aspects of the process. The objective of this review is to survey these models, focusing on those based and/or validated on real large-scale genomic data. We consider aspects such as the complexity of the models, the biophysical aspects they regard and the predictions they may provide. Furthermore, we survey the central systems biology discoveries reported on their basis. This review demonstrates the fundamental advantages of employing computational biophysical translation models in general, and discusses the relative advantages of the different approaches and the challenges in the field. PMID:27591251

  6. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Detection of specific antibody producing cells in porcine colostrum by in ovo translation of their mRNA

    International Nuclear Information System (INIS)

    Kortbeek-Jacobs, N.; Donk, H. van der

    1978-01-01

    An improved method is described for the determination of antibody producing cells in sows colostrum. The test system comprises in ovo translation of mRNA from swine colostral cells and analysis of the translation products by radioimmunoassay with specific antibodies and antigen. (C.F.)

  8. Post-translational regulation enables robust p53 regulation.

    Science.gov (United States)

    Shin, Yong-Jun; Chen, Kai-Yuan; Sayed, Ali H; Hencey, Brandon; Shen, Xiling

    2013-08-30

    The tumor suppressor protein p53 plays important roles in DNA damage repair, cell cycle arrest and apoptosis. Due to its critical functions, the level of p53 is tightly regulated by a negative feedback mechanism to increase its tolerance towards fluctuations and disturbances. Interestingly, the p53 level is controlled by post-translational regulation rather than transcriptional regulation in this feedback mechanism. We analyzed the dynamics of this feedback to understand whether post-translational regulation provides any advantages over transcriptional regulation in regard to disturbance rejection. When a disturbance happens, even though negative feedback reduces the steady-state error, it can cause a system to become less stable and transiently overshoots, which may erroneously trigger downstream reactions. Therefore, the system needs to balance the trade-off between steady-state and transient errors. Feedback control and adaptive estimation theories revealed that post-translational regulation achieves a better trade-off than transcriptional regulation, contributing to a more steady level of p53 under the influence of noise and disturbances. Furthermore, post-translational regulation enables cells to respond more promptly to stress conditions with consistent amplitude. However, for better disturbance rejection, the p53- Mdm2 negative feedback has to pay a price of higher stochastic noise. Our analyses suggest that the p53-Mdm2 feedback favors regulatory mechanisms that provide the optimal trade-offs for dynamic control.

  9. A glimpse at mRNA dynamics reveals cellular domains and rapid trafficking through granules

    NARCIS (Netherlands)

    Gemert, Alice Myriam Christi van

    2011-01-01

    mRNA transport and targeting are essential to gene expression regulation. Specific mRNA sequences can bind several proteins and together form RiboNucleoProtein particles (RNP). The various proteins within the RNP determine mRNA fate: translation, transport or decay. RNP composition varies with

  10. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  11. Eigenvectors determination of the ribosome dynamics model during mRNA translation using the Kleene Star algorithm

    Science.gov (United States)

    Ernawati; Carnia, E.; Supriatna, A. K.

    2018-03-01

    Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.

  12. Programmed cell death 4 protein (Pdcd4) and homeodomain-interacting protein kinase 2 (Hipk2) antagonistically control translation of Hipk2 mRNA.

    Science.gov (United States)

    Ohnheiser, Johanna; Ferlemann, Eva; Haas, Astrid; Müller, Jan P; Werwein, Eugen; Fehler, Olesja; Biyanee, Abhiruchi; Klempnauer, Karl-Heinz

    2015-07-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Amyloid Precursor Protein Translation Is Regulated by a 3'UTR Guanine Quadruplex.

    Directory of Open Access Journals (Sweden)

    Ezekiel Crenshaw

    Full Text Available A central event in Alzheimer's disease is the accumulation of amyloid β (Aβ peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP. APP overexpression leads to increased Aβ generation and Alzheimer's disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes, non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3'UTR (untranslated region at residues 3008-3027 (NM_201414.2. This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3'UTR G-quadruplex as a novel mechanism regulating APP expression.

  14. The 5'-poly(A leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation.

    Directory of Open Access Journals (Sweden)

    Pragyesh Dhungel

    2017-08-01

    Full Text Available The poly(A leader at the 5'-untranslated region (5'-UTR is an unusually striking feature of all poxvirus mRNAs transcribed after viral DNA replication (post-replicative mRNAs. These poly(A leaders are non-templated and of heterogeneous lengths; and their function during poxvirus infection remains a long-standing question. Here, we discovered that a 5'-poly(A leader conferred a selective translational advantage to mRNA in poxvirus-infected cells. A constitutive and uninterrupted 5'-poly(A leader with 12 residues was optimal. Because the most frequent lengths of the 5'-poly(A leaders are 8-12 residues, the result suggests that the poly(A leader has been evolutionarily optimized to boost poxvirus protein production. A 5'-poly(A leader also could increase protein production in the bacteriophage T7 promoter-based expression system of vaccinia virus, the prototypic member of poxviruses. Interestingly, although vaccinia virus post-replicative mRNAs do have 5'- methylated guanosine caps and can use cap-dependent translation, in vaccinia virus-infected cells, mRNA with a 5'-poly(A leader could also be efficiently translated in cells with impaired cap-dependent translation. However, the translation was not mediated through an internal ribosome entry site (IRES. These results point to a fundamental mechanism poxvirus uses to efficiently translate its post-replicative mRNAs.

  15. Dengue virus-induced regulation of the host cell translational machinery

    Directory of Open Access Journals (Sweden)

    C.S.A. Villas-Bôas

    2009-11-01

    Full Text Available Dengue virus (DV-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0. Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors, eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.

  16. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement*

    Science.gov (United States)

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951

  17. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement.

    Science.gov (United States)

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-04-15

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Trans-acting translational regulatory RNA binding proteins.

    Science.gov (United States)

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  19. Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements.

    Directory of Open Access Journals (Sweden)

    Pegine Walrad

    2009-02-01

    Full Text Available The genome of Trypanosoma brucei is unusual in being regulated almost entirely at the post-transcriptional level. In terms of regulation, the best-studied genes are procyclins, which encode a family of major surface GPI-anchored glycoproteins (EP1, EP2, EP3, GPEET that show differential expression in the parasite's tsetse-fly vector. Although procyclin mRNA cis-regulatory sequences have provided the paradigm for post-transcriptional control in kinetoplastid parasites, trans-acting regulators of procyclin mRNAs are unidentified, despite intensive effort over 15 years. Here we identify the developmental regulator, TbZFP3, a CCCH-class predicted RNA binding protein, as an isoform-specific regulator of Procyclin surface coat expression in trypanosomes. We demonstrate (i that endogenous TbZFP3 shows sequence-specific co-precipitation of EP1 and GPEET, but not EP2 and EP3, procyclin mRNA isoforms, (ii that ectopic overexpression of TbZFP3 does not perturb the mRNA abundance of procyclin transcripts, but rather that (iii their protein expression is regulated in an isoform-specific manner, as evidenced by mass spectrometric analysis of the Procyclin expression signature in the transgenic cell lines. The TbZFP3 mRNA-protein complex (TbZFP3mRNP is identified as a trans-regulator of differential surface protein expression in trypanosomes. Moreover, its sequence-specific interactions with procyclin mRNAs are compatible with long-established predictions for Procyclin regulation. Combined with the known association of TbZFP3 with the translational apparatus, this study provides a long-sought missing link between surface protein cis-regulatory signals and the gene expression machinery in trypanosomes.

  20. Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity

    Directory of Open Access Journals (Sweden)

    Ivaylo P. Ivanov

    2017-06-01

    Full Text Available Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs in its >700-nucleotide (nt 5′ leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5′ region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5′ conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro. In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression.

  1. Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2 mRNA and protein in tobacco

    Directory of Open Access Journals (Sweden)

    Roberto eToscano-Morales

    2014-12-01

    Full Text Available TCTP (Translationally Controlled Tumor Protein is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein to translocate long distance through tobacco heterografts (Transgenic/WT and WT/Transgenic. The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock with a tendency for movement from source to sink tissue (stock to scion. Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and appearance of aerial adventitious roots. More detailed analysis showed that these adventitious aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF.

  2. Identifying intrinsic and extrinsic determinants that regulate internal initiation of translation mediated by the FMR1 5' leader

    Directory of Open Access Journals (Sweden)

    Timmerman Stephanie

    2008-10-01

    Full Text Available Abstract Background Regulating synthesis of the Fragile X gene (FMR1 product, FMRP alters neural plasticity potentially through its role in the microRNA pathway. Cap-dependent translation of the FMR1 mRNA, a process requiring ribosomal scanning through the 5' leader, is likely impeded by the extensive secondary structure generated by the high guanosine/cytosine nucleotide content including the CGG triplet nucleotide repeats in the 5' leader. An alternative mechanism to initiate translation – internal initiation often utilizes secondary structure to recruit the translational machinery. Consequently, studies were undertaken to confirm and extend a previous observation that the FMR1 5' leader contains an internal ribosomal entry site (IRES. Results Cellular transfection of a dicistronic DNA construct containing the FMR1 5' leader inserted into the intercistronic region yielded significant translation of the second cistron, but the FMR1 5' leader was also found to contain a cryptic promoter possibly confounding interpretation of these results. However, transfection of dicistronic and monocistronic RNA ex vivo or in vitro confirmed that the FMR1 5' leader contains an IRES. Moreover, inhibiting cap-dependent translation ex vivo did not affect the expression level of endogenous FMRP indicating a role for IRES-dependent translation of FMR1 mRNA. Analysis of the FMR1 5' leader revealed that the CGG repeats and the 5' end of the leader were vital for internal initiation. Functionally, exposure to potassium chloride or intracellular acidification and addition of polyinosinic:polycytidylic acid as mimics of neural activity and double stranded RNA, respectively, differentially affected FMR1 IRES activity. Conclusion Our results indicate that multiple stimuli influence IRES-dependent translation of the FMR1 mRNA and suggest a functional role for the CGG nucleotide repeats.

  3. Predicted RNA Binding Proteins Pes4 and Mip6 Regulate mRNA Levels, Translation, and Localization during Sporulation in Budding Yeast.

    Science.gov (United States)

    Jin, Liang; Zhang, Kai; Sternglanz, Rolf; Neiman, Aaron M

    2017-05-01

    In response to starvation, diploid cells of Saccharomyces cerevisiae undergo meiosis and form haploid spores, a process collectively referred to as sporulation. The differentiation into spores requires extensive changes in gene expression. The transcriptional activator Ndt80 is a central regulator of this process, which controls many genes essential for sporulation. Ndt80 induces ∼300 genes coordinately during meiotic prophase, but different mRNAs within the NDT80 regulon are translated at different times during sporulation. The protein kinase Ime2 and RNA binding protein Rim4 are general regulators of meiotic translational delay, but how differential timing of individual transcripts is achieved was not known. This report describes the characterization of two related NDT80 -induced genes, PES4 and MIP6 , encoding predicted RNA binding proteins. These genes are necessary to regulate the steady-state expression, translational timing, and localization of a set of mRNAs that are transcribed by NDT80 but not translated until the end of meiosis II. Mutations in the predicted RNA binding domains within PES4 alter the stability of target mRNAs. PES4 and MIP6 affect only a small portion of the NDT80 regulon, indicating that they act as modulators of the general Ime2/Rim4 pathway for specific transcripts. Copyright © 2017 American Society for Microbiology.

  4. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    Science.gov (United States)

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  5. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.

  6. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    Science.gov (United States)

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  7. Mitochondrial Cytochrome c Oxidase Biogenesis Is Regulated by the Redox State of a Heme-Binding Translational Activator.

    Science.gov (United States)

    Soto, Iliana C; Barrientos, Antoni

    2016-02-20

    Mitochondrial cytochrome c oxidase (COX), the last enzyme of the respiratory chain, catalyzes the reduction of oxygen to water and therefore is essential for cell function and viability. COX is a multimeric complex, whose biogenesis is extensively regulated. One type of control targets cytochrome c oxidase subunit 1 (Cox1), a key COX enzymatic core subunit translated on mitochondrial ribosomes. In Saccharomyces cerevisiae, Cox1 synthesis and COX assembly are coordinated through a negative feedback regulatory loop. This coordination is mediated by Mss51, a heme-sensing COX1 mRNA-specific processing factor and translational activator that is also a Cox1 chaperone. In this study, we investigated whether Mss51 hemylation and Mss51-mediated Cox1 synthesis are both modulated by the reduction-oxidation (redox) environment. We report that Cox1 synthesis is attenuated under oxidative stress conditions and have identified one of the underlying mechanisms. We show that in vitro and in vivo exposure to hydrogen peroxide induces the formation of a disulfide bond in Mss51 involving CPX motif heme-coordinating cysteines. Mss51 oxidation results in a heme ligand switch, thereby lowering heme-binding affinity and promoting its release. We demonstrate that in addition to affecting Mss51-dependent heme sensing, oxidative stress compromises Mss51 roles in COX1 mRNA processing and translation. H2O2-induced downregulation of mitochondrial translation has so far not been reported. We show that high H2O2 concentrations induce a global attenuation effect, but milder concentrations specifically affect COX1 mRNA processing and translation in an Mss51-dependent manner. The redox environment modulates Mss51 functions, which are essential for regulation of COX biogenesis and aerobic energy production.

  8. Detection of a high-molecular-weight LHRH precursor by cell-free translation of mRNA from human, rat, and mouse hypothalamus

    International Nuclear Information System (INIS)

    Curtis, A.; Szelke, M.; Fink, G.

    1986-01-01

    Large precursors have also been predicted using the immunoprecipitation technique which relies upon the identification of large immunoreactive molecules following in vitro translation of mRNA. The mRNA is presumed to represent the largest form of a nascent precursor polypeptide molecule irrespective of the number of biosynthetic cleavage steps which are necessary to liberate the active peptide. However, as has been shown for somatostatin, nonprotein modifications may be made which apparently increase molecular weight, such as glycosylation or phosphorylation of the molecule. The authors employed the immunoprecipitation technique to confirm earlier chromatographic studies that the hypothalamic decapeptide, luteinizing hormone releasing hormone (LHRH) is also synthesized by way of a large precursor form. The authors' finding show that the translation of hypothalamic mRNA produces a primary translation product with an apparent molecule weight of 28,000 which contains an amino acid sequence immunologically similar to that of biologically active LHRH. The procedure involved the incorporation of a radioactive amino acid into polypeptides synthesized by in vitro translation of hypothalamic messenger RNA. The resulting complex protein mixture was immunoprecipitated with a specific anti-LHRH serum, and the immunoprecipitate was identified by polyacrylamide gel electrophoresis and autoradiography

  9. The Р60-S6K1 isoform of ribosomal protein S6 kinase 1 is a product of alternative mRNA translation

    Directory of Open Access Journals (Sweden)

    I. V. Zaiets

    2018-07-01

    Full Text Available Ribosomal protein S6 kinase 1 (S6K1 is a well-known downstream effector of mTORC1 (mechanistic target of rapamycin complex 1 participating primarily in the regulation of cell growth and metabolism. Deregulation of mTOR/S6K1 signaling can promote numerous human pathologies, including cancer, neurodegeneration, cardiovascular disease, and metabolic disorders. As existing data suggest, the S6K1 gene encodes several protein isoforms, including p85-S6K1, p70-S6K1, and p60-S6K1. The two of these isoforms, p85-S6K1 and p70-S6K1, were extensively studied to date. The origin and functional significance of the p60-S6K1 isoform remains a mystery, however, it was suggested that the isoform could be a product of alternative S6K1 mRNA translation. Herein we report the generation of HEK-293 cells exclusively expressing p60-S6K1 as a result of CRISPR/Cas9-mediated inactivation of p85/p70-S6K1 translation. Moreover, the generated modified cells displayed the elevated level of p60-S6K1 expression compared to that in wild-type HEK-293 cells. Our data confirm an assumption that p60-S6K1 is alternatively translated, most probably, from the common for both p70- and p85-S6K1 mRNA transcript and reveal a link between p60-S6K1 expression and such cellular processes as cell proliferation and motility. In addition, our findings indicate that the p60-S6K1 isoform of S6K1 may undergo a mode of regulation distinct from p70- and p85-S6K1 due to the absence of mTOR-regulated p60-S6K1 phosphorylation at T389 that is important for S6K1 activation.

  10. Local translation in primary afferent fibers regulates nociception.

    Directory of Open Access Journals (Sweden)

    Lydia Jiménez-Díaz

    2008-04-01

    Full Text Available Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage--a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states.

  11. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    -ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2 , the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription from the HIS4...... promoter, a traditional Gcn4p target.......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4...

  12. Translational control of Nrf2 within the open reading frame

    International Nuclear Information System (INIS)

    Perez-Leal, Oscar; Barrero, Carlos A.; Merali, Salim

    2013-01-01

    Highlights: •Identification of a novel Nrf2 translational repression mechanism. •The repressor is within the 3′ portion of the Nrf2 ORF. •The translation of Nrf2 or eGFP is reduced by the regulatory element. •The translational repression can be reversed with synonymous codon substitutions. •The molecular mechanism requires the mRNA sequence, but not the encoded amino acids. -- Abstract: Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stress conditions, new synthesis of Nrf2 is required – a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3′ portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state

  13. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Cedric S Wesley

    Full Text Available Polypyrimidine Tract Binding (PTB protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1 the Notch mRNA is a potential target of PTB, (2 PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3 the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions.

  14. Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Science.gov (United States)

    Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.

    2011-01-01

    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738

  15. Detailed characterisation of STC-1 cells and the pGIP/Neo sub-clone suggests the incretin hormones are translationally regulated.

    Science.gov (United States)

    Gillespie, Anna L; Pan, Xiaobei; Marco-Ramell, Anna; Meharg, Caroline; Green, Brian D

    2017-10-01

    STC-1 is a heterogeneous plurihormonal cell line producing several prominent gut peptide hormones. pGIP/Neo is a genetically selected sub-clone of STC-1 with augmented levels of glucose-dependent insulinotropic peptide (GIP). Morphometric parameters, hormone concentrations, mRNA transcripts, hormone immunocytochemistry and nutrient utilisation/production of these two cell lines were compared. Proglucagon-derived peptides (Glucagon-like peptide-1 (GLP-1) and - 2(GLP-2)) were lower in sub-clone cells than progenitor cells. High Content Analysis found altered intracellular GLP-1, GIP, cholecystokinin (CCK) and peptide YY (PYY) levels and differing hormone co-localisation. The proportion pGIP/Neo cells containing GIP immunoreactivity (82%) was greater than STC-1 (65%), as were the proportion with 'GIP only', 'GLP-1+GIP' or 'GIP+PYY' immunoreactivity. Most surprisingly mRNA transcripts of the proglucagon and GIP genes were inversely correlated to the levels of their translated peptides. This strongly suggests that proglucagon and GIP are encoded on 'translationally regulated genes' - a characteristic possessed by other endocrine hormones. Metabolomic profiling revealed differences in cellular nutrient utilisation/production and that under normal culture conditions both cell lines exhibit signs of overflow metabolism. These studies provide an insight into the metabolism and properties of these valuable cells, suggesting for the first time that incretin hormone genes are translationally regulated. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A small RNA activates CFA synthase by isoform-specific mRNA stabilization.

    Science.gov (United States)

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-11-13

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.

  17. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Franzellitti

    Full Text Available BACKGROUND: The multixenobiotic resistance system (MXR allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp. In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. METHODOLOGY/PRINCIPAL FINDINGS: cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX alone or in combination with 0.3 ng/L propranolol (PROP. FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin and pharmacological modulators (PROP, forskolin, dbcAMP, and H89 of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. CONCLUSIONS: This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.

  18. Upstream ORF affects MYCN translation depending on exon 1b alternative splicing

    International Nuclear Information System (INIS)

    Besançon, Roger; Puisieux, Alain; Valsesia-Wittmann, Sandrine; Locher, Clara; Delloye-Bourgeois, Céline; Furhman, Lydie; Tutrone, Giovani; Bertrand, Christophe; Jallas, Anne-Catherine; Garin, Elisabeth

    2009-01-01

    The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN) and one exon 1b-spliced (MYCN Δ1b ) mRNA. But nothing is known about their respective ability to translate the MYCN protein. Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCN Δ1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein. Both are translated, but higher levels of protein were seen with MYCN Δ1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCN Δ1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCN Δ1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCN Δ1b mRNA. Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction

  19. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  20. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.

    Science.gov (United States)

    Branco-Price, Cristina; Kaiser, Kayla A; Jang, Charles J H; Larive, Cynthia K; Bailey-Serres, Julia

    2008-12-01

    Cellular oxygen deprivation (hypoxia/anoxia) requires an acclimation response that enables survival during an energy crisis. To gain new insights into the processes that facilitate the endurance of transient oxygen deprivation, the dynamics of the mRNA translation state and metabolites were quantitatively monitored in Arabidopsis thaliana seedlings exposed to a short (2 h) or prolonged (9 h) period of oxygen and carbon dioxide deprivation and following 1 h of re-aeration. Hypoxia stress and reoxygenation promoted adjustments in the levels of polyribosomes (polysomes) that were highly coordinated with cellular ATP content. A quantitative comparison of steady-state and polysomal mRNA populations revealed that over half of the cellular mRNAs were restricted from polysome complexes during the stress, with little or no change in abundance. This selective repression of translation was rapidly reversed upon reoxygenation. Comparison of the adjustment in gene transcripts and metabolites demonstrated that profiling of polysomal mRNAs strongly augments the prediction of cellular processes that are altered during cellular oxygen deprivation. The selective translation of a subset of mRNAs promotes the conservation of ATP and facilitates the transition to anaerobic metabolism during low-oxygen stress.

  1. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

    Science.gov (United States)

    Burgos, Hector L; O'Connor, Kevin; Sanchez-Vazquez, Patricia; Gourse, Richard L

    2017-11-01

    Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In

  2. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  3. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  4. The yeast PNC1 longevity gene is up-regulated by mRNA mistranslation.

    Directory of Open Access Journals (Sweden)

    Raquel M Silva

    Full Text Available Translation fidelity is critical for protein synthesis and to ensure correct cell functioning. Mutations in the protein synthesis machinery or environmental factors that increase synthesis of mistranslated proteins result in cell death and degeneration and are associated with neurodegenerative diseases, cancer and with an increasing number of mitochondrial disorders. Remarkably, mRNA mistranslation plays critical roles in the evolution of the genetic code, can be beneficial under stress conditions in yeast and in Escherichia coli and is an important source of peptides for MHC class I complex in dendritic cells. Despite this, its biology has been overlooked over the years due to technical difficulties in its detection and quantification. In order to shed new light on the biological relevance of mistranslation we have generated codon misreading in Saccharomyces cerevisiae using drugs and tRNA engineering methodologies. Surprisingly, such mistranslation up-regulated the longevity gene PNC1. Similar results were also obtained in cells grown in the presence of amino acid analogues that promote protein misfolding. The overall data showed that PNC1 is a biomarker of mRNA mistranslation and protein misfolding and that PNC1-GFP fusions can be used to monitor these two important biological phenomena in vivo in an easy manner, thus opening new avenues to understand their biological relevance.

  5. The in vitro transcription and translation of bluetongue virus mRNA

    International Nuclear Information System (INIS)

    Van Dijk, A.A.

    1985-12-01

    The review of the literature on BTV and related viruses indicates that a detailed knowledge of the in vitro synthesis of BTV proteins is still lacking. A primary objective of this investigation was therefore to study this process. In order to achieve this objective, the in vitro transcription reaction also had to be investigated, since BTV mRNAs were required for the translational studies. Sulfur 35 and phosphorus 32 were used in this study. It was considered of particular importance to investigate factors that influence the efficiency of the in vitro transcription reaction, such as core concentration and incubation temperature. Knowledge of the in vitro translation of BTV mRNAs opens the possibility to obtain further detailed information on BTV as such, and BTV related aspects. The aim of the in vitro translation study of BTV was to identify all the proteins that are encoded by the 10 BTV mRNA species, and prove the viral origin of the non-structural proteins, as well as determinig the coding assignments of the 10 dsRNA genome segments. The last aspect of the study was to investigate whether in vitro synthesised NS2 differed from its in vivo synthesised counterpart with respect to phosphorylation and affinity for ssRNA, and to carry out experiments in order to identify the kinase phosphorylating NS2. The significance of the results obtained for each of these objectives is discussed in detail at the end of the relevent chapter. Finally, some concluding remarks are presented relating the overall findings of this investigation, as well as suggestions for future investigations

  6. Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g.

    Science.gov (United States)

    Choe, Junho; Oh, Nara; Park, Sungjin; Lee, Ye Kyung; Song, Ok-Kyu; Locker, Nicolas; Chi, Sung-Gil; Kim, Yoon Ki

    2012-05-25

    In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.

  7. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells.

    Science.gov (United States)

    Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V

    2013-08-01

    Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.

  8. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria

    DEFF Research Database (Denmark)

    Amulic, Borko; Salanti, Ali; Lavstsen, Thomas

    2009-01-01

    contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus...

  9. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    Science.gov (United States)

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A molecular doorstop ensures a trickle through translational repression.

    Science.gov (United States)

    Brook, Matthew; Smith, Richard W P; Gray, Nicola K

    2012-03-30

    Switching mRNA translation off and on is central to regulated gene expression, but what mechanisms moderate the extent of switch-off? Yao et al. describe how basal expression from interferon-gamma-induced transcripts is maintained during mRNA-specific translational repression. This antagonistic mechanism utilizes a truncated RNA-binding factor generated by a unique alternative polyadenylation event. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Synaptic control of local translation: the plot thickens with new characters.

    Science.gov (United States)

    Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia

    2014-06-01

    The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.

  12. Regulation of protein translation initiation in response to ionizing radiation

    International Nuclear Information System (INIS)

    Trivigno, Donatella; Bornes, Laura; Huber, Stephan M; Rudner, Justine

    2013-01-01

    Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells

  13. Regulation of protein translation initiation in response to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Trivigno Donatella

    2013-02-01

    Full Text Available Abstract Background Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Methods Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. Results IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Conclusion Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.

  14. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    Science.gov (United States)

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  15. Translation of Polioviral mRNA Is Inhibited by Cleavage of Polypyrimidine Tract-Binding Proteins Executed by Polioviral 3Cpro

    Science.gov (United States)

    Back, Sung Hoon; Kim, Yoon Ki; Kim, Woo Jae; Cho, Sungchan; Oh, Hoe Rang; Kim, Jung-Eun; Jang, Sung Key

    2002-01-01

    The translation of polioviral mRNA occurs through an internal ribosomal entry site (IRES). Several RNA-binding proteins, such as polypyrimidine tract-binding protein (PTB) and poly(rC)-binding protein (PCBP), are required for the poliovirus IRES-dependent translation. Here we report that a poliovirus protein, 3Cpro (and/or 3CDpro), cleaves PTB isoforms (PTB1, PTB2, and PTB4). Three 3Cpro target sites (one major target site and two minor target sites) exist in PTBs. PTB fragments generated by poliovirus infection are redistributed to the cytoplasm from the nucleus, where most of the intact PTBs are localized. Moreover, these PTB fragments inhibit polioviral IRES-dependent translation in a cell-based assay system. We speculate that the proteolytic cleavage of PTBs may contribute to the molecular switching from translation to replication of polioviral RNA. PMID:11836431

  16. Translation in cell-free systems

    International Nuclear Information System (INIS)

    Jagus, R.

    1987-01-01

    The simplest, unambiguous identification of a particular mRNA is the identification of its protein product. This can be established by translation of the mRNA of interest in a cell-free protein-synthesizing system. Messenger RNA protein product identification is important in the isolation of a particular mRNA species for cDNA cloning and in the identification of positive cDNA clones. The two high-activity translation systems in common use are those prepared from rabbit reticulocytes and from wheat germ. Both systems are easy to prepare, and both are available commercially. Each has advantages and disadvantages over the other and a choice between the two will depend on the type of mRNAs to be translated, the prejudices of experience, and availability. The main disadvantage of the reticulocyte system is that it requires removal of endogenous mRNA. However, this is a relatively simple procedure. The wheat germ system does not require removal of endogenous mRNA and may translate weakly initiating mRNAs more efficiently. However, ionic optima for translation in the wheat germ system are more sensitive to the nature and concentration of mRNA and may need to be determined for each template. The biggest problem with the use of the wheat germ system is its tendency to produce incomplete translation products due to premature termination

  17. Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network.

    Science.gov (United States)

    Bellé, Robert; Prigent, Sylvain; Siegel, Anne; Cormier, Patrick

    2010-03-01

    The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.

  18. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR.

    Science.gov (United States)

    McAninch, Damian S; Heinaman, Ashley M; Lang, Cara N; Moss, Kathryn R; Bassell, Gary J; Rita Mihailescu, Mihaela; Evans, Timothy L

    2017-07-25

    G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.

  19. Nitric oxide signaling pathway regulates potassium chloride cotransporter-1 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, M; Lauf, P K; Adragna, N C

    2001-11-30

    Rat vascular smooth muscle cells (VSMCs) express at least two mRNAs for K-Cl cotransporters (KCC): KCC1 and KCC3. cGMP-dependent protein kinase I regulates KCC3 mRNA expression in these cells. Here, we show evidence implicating the nitric oxide (NO)/cGMP signaling pathway in the expression of KCC1 mRNA, considered to be the major cell volume regulator. VSMCs, expressing soluble guanylyl cyclase (sGC) and PKG-I isoforms showed a time- and concentration-dependent increase in KCC1 mRNA levels after treatment with sodium nitroprusside as demonstrated by semiquantitative RT-PCR. sGC-dependent regulation of KCC1 mRNA expression was confirmed using YC-1, a NO-independent sGC stimulator. The sGC inhibitor LY83583 blocked the effects of sodium nitroprusside and YC-1. Moreover, 8-Br-cGMP increased KCC1 mRNA expression in a concentration- and time-dependent fashion. The 8-Br-cGMP effect was partially blocked by KT5823 but not by actinomycin D. However, actinomycin D and cycloheximide increased basal KCC1 mRNA in an additive manner, suggesting different mechanisms of action for both drugs. These findings suggest that in VSMCs, the NO/cGMP-signaling pathway participates in KCC1 mRNA regulation at the post-transcriptional level.

  20. Principles of mRNA transport in yeast.

    Science.gov (United States)

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  1. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation[OPEN

    Science.gov (United States)

    2018-01-01

    Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems. PMID:29610211

  2. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts via Activation of the AKT-mTOR Pathway.

    NARCIS (Netherlands)

    Bakker, A.D.; Gakes, T.; Hogervorst, J.M.; de Wit, G.M.J.; Klein-Nulend, J.; Jaspers, R.T.

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether

  3. Mechanical stimulation and IGF-1 enhance mRNA translation rate in osteoblasts via activation of the AKT-mTOR pathway

    NARCIS (Netherlands)

    Bakker, A.D.; Gakes, T.; Hogervorst, J.M.A.; de Wit, G.M.J.; Klein-Nulend, J.; Jaspers, R.T.

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether

  4. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    Energy Technology Data Exchange (ETDEWEB)

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  5. Analyzing the temporal regulation of translation efficiency in mouse liver

    Directory of Open Access Journals (Sweden)

    Peggy Janich

    2016-06-01

    Full Text Available Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013 [1]. We have recently reported on the use of ribosome profiling (RPF-seq, a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore the temporal regulation of translation efficiency (Janich et al., 2015 [2]. Through the comparison of around-the-clock RPF-seq and matching RNA-seq data we were able to identify 150 genes, involved in ribosome biogenesis, iron metabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthesis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE67305. Here we provide additional information on the experimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse liver and to data analysis.

  6. Post-transcriptional trafficking and regulation of neuronal gene expression.

    Science.gov (United States)

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  7. Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms.

    Directory of Open Access Journals (Sweden)

    Roshan Mascarenhas

    Full Text Available mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs, and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs in lymphoblast cell lines (LCL and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T in ABCB1 (MDR1 on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.

  8. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  9. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    Science.gov (United States)

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  11. Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation

    Science.gov (United States)

    Dao Duc, Khanh; Saleem, Zain H.; Song, Yun S.

    2018-01-01

    The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.

  12. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  13. 4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma.

    Science.gov (United States)

    De, Arpita; Jacobson, Blake A; Peterson, Mark S; Jay-Dixon, Joe; Kratzke, Marian G; Sadiq, Ahad A; Patel, Manish R; Kratzke, Robert A

    2018-04-01

    Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E-binding protein 1 (4E-BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.

  14. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    Science.gov (United States)

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  15. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Calpurnia Jayakumar

    Full Text Available BACKGROUND: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS to determine the signaling pathways that regulate netrin-1 production in response to injury. METHODS AND PRINCIPAL FINDINGS: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. CONCLUSION: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.

  16. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)

    Energy Technology Data Exchange (ETDEWEB)

    Hannas, Bethany R.; Wang, Ying H.; Thomson, Susanne; Kwon, Gwijun; Hong, Li [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 (United States); LeBlanc, Gerald A., E-mail: Gerald_LeBlanc@ncsu.edu [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 (United States)

    2011-01-25

    The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity.

  17. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)

    International Nuclear Information System (INIS)

    Hannas, Bethany R.; Wang, Ying H.; Thomson, Susanne; Kwon, Gwijun; Li Hong; LeBlanc, Gerald A.

    2011-01-01

    The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity.

  18. PKA- and PKC-dependent regulation of angiopoietin 2 mRNA in human granulosa lutein cells.

    Science.gov (United States)

    Witt, P S; Pietrowski, D; Keck, C

    2004-02-01

    New blood vessels develop from preexisting vessels in response to growth factors or hypoxic conditions. Recent studies have shown that angiopoietin 2 (ANGPT-2) plays an important role in the modulation of angiogenesis and vasculogenesis in humans and mice. The signaling pathways that lead to the regulation of ANGPT-2 are largely unclear. Here, we report that protein kinase C and protein kinase A activators (ADMB, 8-Cl-cAMP) increased the mRNA levels of ANGPT-2 in human Granulosa cells, whereas PKC and PKA Inhibitors (Rp-cAMP, GO 6983) decreased markedly the level of ANGPT-2 mRNA. Due to varying specificity of the modulators for certain protein kinases subunits, we conclude that the conventional PKCs, but not PKC alpha and beta1, the atypical PKCs and the PKA I, are involved in the regulation of ANGPT-2. These findings may help to explain the role of both PKA and PKC dependent signaling cascades in the regulation of ANGPT-2 mRNA.

  19. Translational control of aberrant stress responses as a hallmark of cancer.

    Science.gov (United States)

    El-Naggar, Amal M; Sorensen, Poul H

    2018-04-01

    Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland

  20. Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Celestino; Cheng, Erdong; Shuda, Masahiro; Lee-Oesterreich, Paula J.; Pogge von Strandmann, Lisa; Gritsenko, Marina A.; Jacobs, Jon M.; Moore, Patrick S.; Chang, Yuan

    2016-07-11

    mTOR-directed 4E-BP1 phosphorylation promotes cap-dependent translation and tumorigen-esis. During mitosis, CDK1 substitutes for mTOR and fully phosphorylates 4E-BP1 at canoni-cal as well a non-canonical S83 site resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. While S83 phosphorylation of 4E-BP1 does not affect in vitro cap-dependent translation, nor eIF4G/4E-BP1 cap-binding, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus (MCV) small T (sT) antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain-of-function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.

  1. Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination.

    Science.gov (United States)

    Zhan, Shuqin; Cai, Guo-Qiang; Zheng, Anni; Wang, Yuping; Jia, Jianping; Fang, Haotian; Yang, Youfeng; Hu, Meng; Ding, Qiang

    2011-04-01

    Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Determinants of RNA binding and translational repression by the Bicaudal-C regulatory protein.

    Science.gov (United States)

    Zhang, Yan; Park, Sookhee; Blaser, Susanne; Sheets, Michael D

    2014-03-14

    Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.

  3. The significance of translation regulation in the stress response

    OpenAIRE

    Picard, Flora; Loubière, Pascal; Girbal, Laurence; Bousquet, Muriel

    2013-01-01

    Background: The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results: A genome-scale study of the translational response to nutritional limitation was performed in t...

  4. RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation.

    Science.gov (United States)

    Nakayama, Kei; Ohashi, Rie; Shinoda, Yo; Yamazaki, Maya; Abe, Manabu; Fujikawa, Akihiro; Shigenobu, Shuji; Futatsugi, Akira; Noda, Masaharu; Mikoshiba, Katsuhiko; Furuichi, Teiichi; Sakimura, Kenji; Shiina, Nobuyuki

    2017-11-21

    Local regulation of synaptic efficacy is thought to be important for proper networking of neurons and memory formation. Dysregulation of global translation influences long-term memory in mice, but the relevance of the regulation specific for local translation by RNA granules remains elusive. Here, we demonstrate roles of RNG105/caprin1 in long-term memory formation. RNG105 deletion in mice impaired synaptic strength and structural plasticity in hippocampal neurons. Furthermore, RNG105-deficient mice displayed unprecedentedly severe defects in long-term memory formation in spatial and contextual learning tasks. Genome-wide profiling of mRNA distribution in the hippocampus revealed an underlying mechanism: RNG105 deficiency impaired the asymmetric somato-dendritic localization of mRNAs. Particularly, RNG105 deficiency reduced the dendritic localization of mRNAs encoding regulators of AMPAR surface expression, which was consistent with attenuated homeostatic AMPAR scaling in dendrites and reduced synaptic strength. Thus, RNG105 has an essential role, as a key regulator of dendritic mRNA localization, in long-term memory formation.

  5. Involvement of hGLD-2 in cytoplasmic polyadenylation of human p53 mRNA

    DEFF Research Database (Denmark)

    Glahder, Jacob-Andreas Harald; Norrild, Bodil

    2011-01-01

    Cytoplasmic polyadenylation is a post-transcriptional mechanism regulating mRNA stability and translation. The human p53 3'-untranslated region (3'-UTR) contains two regions similar to cytoplasmic polyadenylation elements (CPEs) just upstream of the poly(A) hexanucleotide. Evaluation of the p53 CPE......-like elements was performed by luciferase reporter assays, qPCR, and poly(A) assays. Herein, we report the down regulation of a luciferase reporter fused to the p53 3'-UTR, when human CPE-binding protein 1 (hCPEB1) is overexpressed. This inhibition is partially rescued when hCPEB1fused to hGLD-2 [a human...... cytoplasmic poly(A) polymerase] is overexpressed instead. The stability of a luciferase mRNA containing the p53 3'-UTR downstream, is decreased when hCPEB1 is overexpressed as seen by qPCR. Expression of hGLD-2 restores the mRNA stability. This is due to elongation of the poly(A) tail as seen by a PCR...

  6. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-01-01

    DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P correlation (R T4  > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.

  7. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; Jusko, William J; DuBois, Debra C

    2015-06-01

    Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  9. Engineering bacterial translation initiation - Do we have all the tools we need?

    Science.gov (United States)

    Vigar, Justin R J; Wieden, Hans-Joachim

    2017-11-01

    Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier

  10. Translation regulation in plants: an interesting past, an exciting present and a promising future.

    Science.gov (United States)

    Merchante, Catharina; Stepanova, Anna N; Alonso, Jose M

    2017-05-01

    Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus.

    Science.gov (United States)

    Risbud, Rashmi M; Lee, Carolyn; Porter, Brenda E

    2011-11-18

    Status epilepticus induces a cascade of protein expression changes contributing to the subsequent development of epilepsy. By identifying the cascade of molecular changes that contribute to the development of epilepsy we hope to be able to design therapeutics for preventing epilepsy. MicroRNAs influence gene expression by altering mRNA stability and/or translation and have been implicated in the pathology of multiple diseases. MiR21 and its co-transcript miR21, microRNAs produced from either the 5' or 3' ends of the same precursor RNA strand, are increased in the hippocampus following status epilepticus. We have identified a miR21 binding site, in the 3' UTR of neurotrophin-3 that inhibits translation. Neurotrophin-3 mRNA levels decrease in the hippocampus following SE concurrent with the increase in miR21. MiR21 levels in cultured hippocampal neurons inversely correlate with neurotrophin-3 mRNA levels. Treatment of hippocampal neuronal cultures with excess K(+)Cl(-), a depolarizing agent mimicking the episode of status epilepticus, also results in an increase in miR21 and a decrease in neurotrophin-3 mRNA. MiR21 is a candidate for regulating neurotrophin-3 signaling in the hippocampus following status epilepticus. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Patricia L Graham

    2011-07-01

    Full Text Available In female fruit flies, Sex-lethal (Sxl turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2 mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors--the U1/U2 snRNP protein Sans-fils (Snf, the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2d--that have been directly implicated in Sxl splicing regulation.

  13. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Nakai, Naoya; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-01-01

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  14. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Fromm-Dornieden Carolin

    2012-03-01

    Full Text Available Abstract Background Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. Results We identified 43 genes that shifted towards the polysomal fraction (up-regulated and 2 genes that shifted towards free mRNA fraction (down-regulated. Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3, form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, act on the regulation of translation (eIF4B or transcription (HSF1, IRF6, MYC, TSC22d3. Others act as chaperones (BAG3, HSPA8, HSP90ab1 or in other metabolic or signals transducing processes. Conclusions We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.

  15. Human apolipoprotein B (apoB) mRNA: Identification of two distinct apoB mRNAs, an mRNA with the apoB-100 sequence and an apoB mRNA containing a premature in-frame translational stop codon, in both liver and intestine

    International Nuclear Information System (INIS)

    Higuchi, K.; Hospattankar, A.V.; Law, S.W.; Meglin, N.; Cortright, J.; Brewer, H.B. Jr.

    1988-01-01

    Human apolipoprotein B (apoB) is present in plasma as two separate isoproteins, designated apoB-100 (512 kDa) and apoB-48 (250 kDa). ApoB is encoded by a single gene on chromosome 2, and a single nuclear mRNA is edited and processed into two separate apoB mRNAs. A 14.1-kilobase apoB mRNA codes for apoB-100, and the second mRNA, which codes for apoB-48, contains a premature stop codon generated by a single base substitution of cytosine to uracil at nucleotide 6,538, which converts the translated CAA codon coding for the amino acid glutamine at residue 2,153 in apoB-100 to a premature in-frame stop codon (UAA). Two 30-base synthetic oligonucleotides, designated apoB-Stop and apoB-Gln, were synthesized containing the complementary sequence to the stop codon (UAA) and glutamine codon (CAA), respectively. The combined results from these studies establish that both human intestine and liver contain the two distinct apoB mRNAs, an mRNA that codes for apoB-100 and an apoB mRNA that contains the premature stop codon, which codes for apoB-48. The premature in-frame stop codon is not tissue specific and is present in both human liver and intestine

  16. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway.

    Science.gov (United States)

    Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K

    2001-12-21

    Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.

  17. A Bivalent Securinine Compound SN3-L6 Induces Neuronal Differentiation via Translational Upregulation of Neurogenic Transcription Factors

    Directory of Open Access Journals (Sweden)

    Yumei Liao

    2018-04-01

    Full Text Available Developing therapeutic approaches that target neuronal differentiation will be greatly beneficial for the regeneration of neurons and synaptic networks in neurological diseases. Protein synthesis (mRNA translation has recently been shown to regulate neurogenesis of neural stem/progenitor cells (NSPCs. However, it has remained unknown whether engineering translational machinery is a valid approach for manipulating neuronal differentiation. The present study identifies that a bivalent securinine compound SN3-L6, previously designed and synthesized by our group, induces potent neuronal differentiation through a novel translation-dependent mechanism. An isobaric tag for relative and absolute quantitation (iTRAQ-based proteomic analysis in Neuro-2a progenitor cells revealed that SN3-L6 upregulated a group of neurogenic transcription regulators, and also upregulated proteins involved in RNA processing, translation, and protein metabolism. Notably, puromycylation and metabolic labeling of newly synthesized proteins demonstrated that SN3-L6 induced rapid and robust activation of general mRNA translation. Importantly, mRNAs of the proneural transcription factors Foxp1, Foxp4, Hsf1, and Erf were among the targets that were translationally upregulated by SN3-L6. Either inhibition of translation or knockdown of these transcription factors blocked SN3-L6 activity. We finally confirmed that protein synthesis of a same set of transcription factors was upregulated in primary cortical NPCs. These findings together identify a new compound for translational activation and neuronal differentiation, and provide compelling evidence that reprogramming transcriptional regulation network at translational levels is a promising strategy for engineering NSPCs.

  18. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    Science.gov (United States)

    Ray, Swagat; Anderson, Emma C

    2016-03-03

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.

  19. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  20. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  1. Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p.

    Directory of Open Access Journals (Sweden)

    Marc Chatenay-Lapointe

    Full Text Available Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3'-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.

  2. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal

    Science.gov (United States)

    Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng

    2014-01-01

    mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251

  3. Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA

    Directory of Open Access Journals (Sweden)

    Raúl Ortiz

    2017-07-01

    Full Text Available Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs.

  4. Translation initiation mediated by nuclear cap-binding protein complex.

    Science.gov (United States)

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  5. Role of a redox-based methylation switch in mRNA life cycle ( pre- & post- transcriptional maturation and protein turnover : Implications in neurological disorders

    Directory of Open Access Journals (Sweden)

    MALAV SUCHIN TRIVEDI

    2012-06-01

    Full Text Available Homeostatic synaptic scaling in response to neuronal stimulus or activation, as well as due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions. Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic. This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition and behavior. Thus a regulatory switch, controlling the lifespan, maturation and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at 1.The pre-transcription level, by regulating precursor-RNA (pre-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and 2. the post-transcription level by modulating the regulatory functions of ribonucleoproteins (RNP and RNA binding proteins (RNABP in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione antioxidant levels, the redox status of neurons might be the central regulatory switch for methylation

  6. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1)

    DEFF Research Database (Denmark)

    Fonseca, Bruno; Zakaria, Chadi; Jia, J J

    2015-01-01

    is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif...

  7. CUP promotes deadenylation and inhibits decapping of mRNA targets

    Science.gov (United States)

    Igreja, Catia; Izaurralde, Elisa

    2011-01-01

    CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from further degradation. Translational repression and deadenylation are independent of eIF4E binding and require both the middle and C-terminal regions of CUP, which collectively we termed the effector domain. This domain associates with the deadenylase complex CAF1–CCR4–NOT and decapping activators. Accordingly, in isolation, the effector domain is a potent trigger of mRNA degradation and promotes deadenylation, decapping and decay. However, in the context of the full-length CUP protein, the decapping and decay mediated by the effector domain are inhibited, and target mRNAs are maintained in a deadenylated, repressed form. Remarkably, an N-terminal regulatory domain containing a noncanonical eIF4E-binding motif is required to protect CUP-associated mRNAs from decapping and further degradation, suggesting that this domain counteracts the activity of the effector domain. Our findings indicate that the mode of action of CUP is more complex than previously thought and provide mechanistic insight into the regulation of mRNA expression by 4E-BPs. PMID:21937713

  8. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  9. Conserved CPEs in the p53 3' untranslated region influence mRNA stability and protein synthesis

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken W; Vinther, Jeppe; Mittler, Gerhard

    2008-01-01

    CaT skin and MCF-7 breast cancer cell lines were established. Quantitative PCR and an enzymatic assay were used to quantify the reporter mRNA and protein levels, respectively. Proteins binding to the CPEs were identified by RNA-immunoprecipitation (IP) and quantitative mass spectroscopy. RESULTS: The wild...... irradiation. Several proteins (including GAPDH, heterogeneous nuclear ribonucleoprotein (hnRNP) D and A/B) were identified from the MCF-7 cytoplasmic extracts that bound specifically to the CPEs. CONCLUSION: Two conserved CPEs in the p53 3'UTR regulate stability and translation of a reporter mRNA in non...

  10. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Grunnet, Louise G; Nilsson, Emma; Ling, Charlotte

    2009-01-01

    Objective. Common variants in FTO (the fat-mass and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and non-genetic regulation of FTO mRNA in skeletal muscle...... and adipose tissue, and their influence on in vivo glucose and fat metabolism. Research Design and Methods. The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years......) and elderly (58-66 years) non-diabetic twins examined by a hyperinsulinemic euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n=226) and skeletal muscle biopsies (n=158). Results. Heritability of FTO expression in both tissues was low, and FTO...

  11. RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation

    DEFF Research Database (Denmark)

    Fabre, Odile Martine Julie; Salehzada, T; Lambert, K

    2012-01-01

    Adipose tissue structure is altered during obesity, leading to deregulation of whole-body metabolism. Its function depends on its structure, in particular adipocytes number and differentiation stage. To better understand the mechanisms regulating adipogenesis, we have investigated the role...... is associated with CHOP10 mRNA and regulates its stability. CHOP10 expression is conserved in RNase L(-/-)-MEFs, maintaining preadipocyte state while impairing their terminal differentiation. RNase L(-/-)-MEFs have decreased lipids storage capacity, insulin sensitivity and glucose uptake. Expression of ectopic...... RNase L in RNase L(-/-)-MEFs triggers CHOP10 mRNA instability, allowing increased lipids storage, insulin response and glucose uptake. Similarly, downregulation of CHOP10 mRNA with CHOP10 siRNA in RNase L(-/-)-MEFs improves their differentiation in adipocyte. In vivo, aged RNase L(-)/(-) mice present...

  12. Changes in Translational Efficiency is a Dominant Regulatory Mechanism in the Environmental Response of Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Webb-Robertson, Bobbie-Jo M.; Markillie, Lye Meng; Serres, Margrethe H.; Linggi, Bryan E.; Aldrich, Joshua T.; Hill, Eric A.; Romine, Margaret F.; Lipton, Mary S.; Wiley, H. S.

    2013-09-23

    To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either aerobic or suboxic conditions. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily caused by differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Altered transcription levels appeared responsible for 26% of the protein changes, altered translational efficiency appeared responsible for 46% and a combination of both were responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part caused by altered tRNA pools, is a major determinant of regulated protein expression in bacteria.

  13. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    Science.gov (United States)

    Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A

    2015-01-01

    Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  14. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  15. Deficiency in mTORC1-controlled C/EBP beta-mRNA translation improves metabolic health in mice

    NARCIS (Netherlands)

    Zidek, Laura M.; Ackermann, Tobias; Hartleben, Goetz; Eichwald, Sabrina; Kortman, Gertrud; Kiehntopf, Michael; Leutz, Achim; Sonenberg, Nahum; Wang, Zhao-Qi; von Maltzahn, Julia; Mueller, Christine; Calkhoven, Cornelis F.

    The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding

  16. Consequences of metaphase II oocyte cryopreservation on mRNA content.

    Science.gov (United States)

    Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L

    2011-04-01

    We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Computational Approaches to Understand Transcriptional Regulation and Alternative Promoter Usage in Mammals

    DEFF Research Database (Denmark)

    Jørgensen, Mette

    erent aspects of transcriptional regulation. In the rst study we develop a machine learning framework to predict mRNA production, stalling and elongation of RNA polymerase II using publicly available histone modi cation data. The study reveals new pieces of information about the histone code. Besides...... into proteins. All cells need di erent proteins in di erent amounts to function properly. The transcription and translation are therefore highly regulated and the regulation is not fully understood. It is important to learn as much as possible about both transcriptional and translational regulation to better...

  18. Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana.

    Science.gov (United States)

    Hu, Qiwen; Merchante, Catharina; Stepanova, Anna N; Alonso, Jose M; Heber, Steffen

    2016-03-01

    Upstream open reading frames (uORFs) are open reading frames that occur within the 5' UTR of an mRNA. uORFs have been found in many organisms. They play an important role in gene regulation, cell development, and in various metabolic processes. It is believed that translated uORFs reduce the translational efficiency of the main coding region. However, only few uORFs are experimentally characterized. In this paper, we use ribosome footprinting together with a semi-supervised approach based on stacking classification models to identify translated uORFs in Arabidopsis thaliana. Our approach identified 5360 potentially translated uORFs in 2051 genes. GO terms enriched in genes with translated uORFs include catalytic activity, binding, transferase activity, phosphotransferase activity, kinase activity, and transcription regulator activity. The reported uORFs occur with a higher frequency in multi-isoform genes, and some uORFs are affected by alternative transcript start sites or alternative splicing events. Association rule mining revealed sequence features associated with the translation status of the uORFs. We hypothesize that uORF translation is a complex process that might be regulated by multiple factors. The identified uORFs are available online at:https://www.dropbox.com/sh/zdutupedxafhly8/AABFsdNR5zDfiozB7B4igFcja?dl=0. This paper is the extended version of our research presented at ISBRA 2015.

  19. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  20. Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA.

    Science.gov (United States)

    Rehage, Nina; Davydova, Elena; Conrad, Christine; Behrens, Gesine; Maiser, Andreas; Stehklein, Jenny E; Brenner, Sven; Klein, Juliane; Jeridi, Aicha; Hoffmann, Anne; Lee, Eunhae; Dianzani, Umberto; Willemsen, Rob; Feederle, Regina; Reiche, Kristin; Hackermüller, Jörg; Leonhardt, Heinrich; Sharma, Sonia; Niessing, Dierk; Heissmeyer, Vigo

    2018-01-19

    The ubiquitously expressed RNA-binding proteins Roquin-1 and Roquin-2 are essential for appropriate immune cell function and postnatal survival of mice. Roquin proteins repress target mRNAs by recognizing secondary structures in their 3'-UTRs and by inducing mRNA decay. However, it is unknown if other cellular proteins contribute to target control. To identify cofactors of Roquin, we used RNA interference to screen ~1500 genes involved in RNA-binding or mRNA degradation, and identified NUFIP2 as a cofactor of Roquin-induced mRNA decay. NUFIP2 binds directly and with high affinity to Roquin, which stabilizes NUFIP2 in cells. Post-transcriptional repression of human ICOS by endogenous Roquin proteins requires two neighboring non-canonical stem-loops in the ICOS 3'-UTR. This unconventional cis-element as well as another tandem loop known to confer Roquin-mediated regulation of the Ox40 3'-UTR, are bound cooperatively by Roquin and NUFIP2. NUFIP2 therefore emerges as a cofactor that contributes to mRNA target recognition by Roquin.

  1. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study

    DEFF Research Database (Denmark)

    Lajer, C B; Nielsen, F C; Friis-Hansen, L

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which regulate mRNA translation/decay, and may serve as biomarkers. We characterised the expression of miRNAs in clinically sampled oral and pharyngeal squamous cell carcinoma (OSCC and PSCC) and described the influence of human papilloma virus (HPV)....

  2. The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Adragna, Norma C

    2003-11-01

    Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.

  3. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  4. Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex

    Directory of Open Access Journals (Sweden)

    Ishaan Gupta

    2016-05-01

    Full Text Available The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.

  5. Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Wang

    Full Text Available The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1, which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1, which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.

  6. Translational coregulation of 5′TOP mRNAs by TIA-1 and TIAR

    Science.gov (United States)

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2011-01-01

    The response of cells to changes in their environment often requires coregulation of gene networks, but little is known about how this can occur at the post-transcriptional level. An important example of post-transcriptional coregulation is the selective translational regulation in response to growth conditions of mammalian mRNAs that encode protein biosynthesis factors and contain hallmark 5′-terminal oligopyrimidine tracts (5′TOP). However, the responsible trans-factors and the mechanism by which they coregulate 5′TOP mRNAs have remained elusive. Here we identify stress granule-associated TIA-1 and TIAR proteins as key factors in human 5′TOP mRNA regulation, which upon amino acid starvation assemble onto the 5′ end of 5′TOP mRNAs and arrest translation at the initiation step, as evidenced by TIA-1/TIAR-dependent 5′TOP mRNA translation repression, polysome release, and accumulation in stress granules. This requires starvation-mediated activation of the GCN2 (general control nonderepressible 2) kinase and inactivation of the mTOR (mammalian target of rapamycin) signaling pathway. Our findings provide a mechanistic explanation to the long-standing question of how the network of 5′TOP mRNAs are coregulated according to amino acid availability, thereby allowing redirection of limited resources to mount a nutrient deprivation response. This presents a fundamental example of how a group of mRNAs can be translationally coregulated in response to changes in the cellular environment. PMID:21979918

  7. Translational control of ceruloplasmin gene expression: Beyond the IRE

    Directory of Open Access Journals (Sweden)

    BARSANJIT MAZUMDER

    2006-01-01

    Full Text Available Translational control is a common regulatory mechanism for the expression of iron-related proteins. For example, three enzymes involved in erythrocyte development are regulated by three different control mechanisms: globin synthesis is modulated by heme-regulated translational inhibitor; erythroid 5-aminolevulinate synthase translation is inhibited by binding of the iron regulatory protein to the iron response element in the 5'-untranslated region (UTR; and 15-lipoxygenase is regulated by specific proteins binding to the 3'-UTR. Ceruloplasmin (Cp is a multi-functional, copper protein made primarily by the liver and by activated macrophages. Cp has important roles in iron homeostasis and in inflammation. Its role in iron metabolism was originally proposed because of its ferroxidase activity and because of its ability to stimulate iron loading into apo-transferrin and iron efflux from liver. We have shown that Cp mRNA is induced by interferon (IFN-γ in U937 monocytic cells, but synthesis of Cp protein is halted by translational silencing. The silencing mechanism requires binding of a cytosolic inhibitor complex, IFN-Gamma-Activated Inhibitor of Translation (GAIT, to a specific GAIT element in the Cp 3'-UTR. Here, we describe our studies that define and characterize the GAIT element and elucidate the specific trans-acting proteins that bind the GAIT element. Our experiments describe a new mechanism of translational control of an iron-related protein and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.

  8. Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation.

    Directory of Open Access Journals (Sweden)

    Jamie G Bates

    Full Text Available To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML and Acute Lymphoblastic Leukemia (ALL. Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.

  9. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  10. mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas

    International Nuclear Information System (INIS)

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    Highlights: •Genes regulating lipid metabolism were studied in ringed seals. •We compared highly contaminated Baltic seals and less contaminated Svalbard seals. •mRNA expression of hepatic PPARγ was higher in the Baltic seals. •mRNA expression of adipose PPARγ target genes was higher in the Baltic seals. •Contaminant exposure may affect lipid metabolism in the Baltic ringed seals. -- Abstract: There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes

  11. mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Martina Galatea [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway); University of Bergen, Department of Biology, 5020 Bergen (Norway); Rusten, Marte; Goksøyr, Anders [University of Bergen, Department of Biology, 5020 Bergen (Norway); Routti, Heli, E-mail: heli.routti@npolar.no [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway)

    2014-01-15

    Highlights: •Genes regulating lipid metabolism were studied in ringed seals. •We compared highly contaminated Baltic seals and less contaminated Svalbard seals. •mRNA expression of hepatic PPARγ was higher in the Baltic seals. •mRNA expression of adipose PPARγ target genes was higher in the Baltic seals. •Contaminant exposure may affect lipid metabolism in the Baltic ringed seals. -- Abstract: There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes

  12. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication

    Directory of Open Access Journals (Sweden)

    Michael Niepmann

    2018-03-01

    Full Text Available Hepatitis C virus (HCV preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES in the 5′ untranslated region (5′ UTR, while also downstream elements like the cis-replication element (CRE in the coding region and the 3′ UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5′- and 3′-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA–RNA interactions (LRIs are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122 binds to two target sites at the 5′ end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3′ UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in

  13. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication.

    Science.gov (United States)

    Niepmann, Michael; Shalamova, Lyudmila A; Gerresheim, Gesche K; Rossbach, Oliver

    2018-01-01

    Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis -replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis -elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis -elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis -elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis -element in question acts on HCV

  14. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  15. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    International Nuclear Information System (INIS)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping; Ye, Lihong; Zhang, Xiaodong

    2015-01-01

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro

  16. Regulation by nitrate of protein synthesis and translation of RNA in maize roots

    International Nuclear Information System (INIS)

    McClure, P.R.; Bouthyette, P.Y.

    1986-01-01

    Roots of maize seedlings were exposed to 35 S-methionine in the presence or absence of nitrate. Using SDS-PAGE, nitrate-induced changes in labeled polypeptides were noted in the soluble (at 92, 63 and 21kD) and organellar(at 14kD) fractions, as well as in a membrane fraction of putative tonoplast origin (at 31kD). No nitrate-induced changes were noted in a plasmamembrane-enriched fraction or in a membrane fraction of mixed origin. Total RNA from nitrate-treated and control roots was translated in a rabbit reticulocyte system. Five translation products (94, 63, 41, 39 and 21kD) were identified as nitrate-inducible by comparative gel electrophoresis. Changes in protein synthesis and translation of mRNA were apparent within 2-3 h after introduction of nitrate. Within 4-6 h after removal of nitrate, the level of nitrate-inducible translation products diminished to that of control roots. In contrast, the 31kD tonoplast polypeptide was still labeled 26 h after removal of external nitrate and 35 S-methionine. The results will be discussed in relation to the nitrate induction of nitrate reductase, nitrite reductase, and the nitrate uptake system

  17. Alternative Polyadenylation and Nonsense-Mediated Decay Coordinately Regulate the Human HFE mRNA Levels

    Science.gov (United States)

    Martins, Rute; Proença, Daniela; Silva, Bruno; Barbosa, Cristina; Silva, Ana Luísa; Faustino, Paula; Romão, Luísa

    2012-01-01

    Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its

  18. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    Science.gov (United States)

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs.

    Science.gov (United States)

    Hong, Sungki; Freeberg, Mallory A; Han, Ting; Kamath, Avani; Yao, Yao; Fukuda, Tomoko; Suzuki, Tsukasa; Kim, John K; Inoki, Ken

    2017-06-26

    The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.

  20. Sequences within the 5' untranslated region regulate the levels of a kinetoplast DNA topoisomerase mRNA during the cell cycle.

    Science.gov (United States)

    Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S

    1996-12-01

    Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA.

  1. Rasputin functions as a positive regulator of orb in Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Alexandre Costa

    Full Text Available The determination of cell fate and the establishment of polarity axes during Drosophila oogenesis depend upon pathways that localize mRNAs within the egg chamber and control their on-site translation. One factor that plays a central role in regulating on-site translation of mRNAs is Orb. Orb is a founding member of the conserved CPEB family of RNA-binding proteins. These proteins bind to target sequences in 3' UTRs and regulate mRNA translation by modulating poly(A tail length. In addition to controlling the translation of axis-determining mRNAs like grk, fs(1K10, and osk, Orb protein autoregulates its own synthesis by binding to orb mRNA and activating its translation. We have previously shown that Rasputin (Rin, the Drosophila homologue of Ras-GAP SH3 Binding Protein (G3BP, associates with Orb in a messenger ribonucleoprotein (mRNP complex. Rin is an evolutionarily conserved RNA-binding protein believed to function as a link between Ras signaling and RNA metabolism. Here we show that Orb and Rin form a complex in the female germline. Characterization of a new rin allele shows that rin is essential for oogenesis. Co-localization studies suggest that Orb and Rin form a complex in the oocyte at different stages of oogenesis. This is supported by genetic and biochemical analyses showing that rin functions as a positive regulator in the orb autoregulatory pathway by increasing Orb protein expression. Tandem Mass Spectrometry analysis shows that several canonical stress granule proteins are associated with the Orb-Rin complex suggesting that a conserved mRNP complex regulates localized translation during oogenesis in Drosophila.

  2. Rasputin functions as a positive regulator of orb in Drosophila oogenesis.

    Science.gov (United States)

    Costa, Alexandre; Pazman, Cecilia; Sinsimer, Kristina S; Wong, Li Chin; McLeod, Ian; Yates, John; Haynes, Susan; Schedl, Paul

    2013-01-01

    The determination of cell fate and the establishment of polarity axes during Drosophila oogenesis depend upon pathways that localize mRNAs within the egg chamber and control their on-site translation. One factor that plays a central role in regulating on-site translation of mRNAs is Orb. Orb is a founding member of the conserved CPEB family of RNA-binding proteins. These proteins bind to target sequences in 3' UTRs and regulate mRNA translation by modulating poly(A) tail length. In addition to controlling the translation of axis-determining mRNAs like grk, fs(1)K10, and osk, Orb protein autoregulates its own synthesis by binding to orb mRNA and activating its translation. We have previously shown that Rasputin (Rin), the Drosophila homologue of Ras-GAP SH3 Binding Protein (G3BP), associates with Orb in a messenger ribonucleoprotein (mRNP) complex. Rin is an evolutionarily conserved RNA-binding protein believed to function as a link between Ras signaling and RNA metabolism. Here we show that Orb and Rin form a complex in the female germline. Characterization of a new rin allele shows that rin is essential for oogenesis. Co-localization studies suggest that Orb and Rin form a complex in the oocyte at different stages of oogenesis. This is supported by genetic and biochemical analyses showing that rin functions as a positive regulator in the orb autoregulatory pathway by increasing Orb protein expression. Tandem Mass Spectrometry analysis shows that several canonical stress granule proteins are associated with the Orb-Rin complex suggesting that a conserved mRNP complex regulates localized translation during oogenesis in Drosophila.

  3. Salinity Regulates Claudin mRNA and Protein Expression in the Teleost Gill

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Baltzegar, David A; Ozden, Ozkan

    2008-01-01

    The teleost gill carries out NaCl uptake in fresh water (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight junctional claudins during salinity...... was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer and staining appears more intense in gill of FW versus SW fish. Additionally, tilapia claudin 28a and 30 genes were characterized......, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated...

  4. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    International Nuclear Information System (INIS)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven

    2015-01-01

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma

  5. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    Energy Technology Data Exchange (ETDEWEB)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven, E-mail: sven.pahlman@med.lu.se

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.

  6. miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA.

    Science.gov (United States)

    Jasińska, Magdalena; Miłek, Jacek; Cymerman, Iwona A; Łęski, Szymon; Kaczmarek, Leszek; Dziembowska, Magdalena

    2016-09-01

    Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.

  7. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    Directory of Open Access Journals (Sweden)

    Fan Qiuling

    2012-05-01

    Full Text Available Abstract Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV-like cap-independent translation elements (BTEs. The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  8. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Peter S Yoo; Abby L Mulkeen; Charles H Cha

    2006-01-01

    Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization,translation, and differential cellular localization of various isoforms. Recent advances in our understanding of posttranscriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi)technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit.

  9. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    Science.gov (United States)

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-09-15

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron.

  10. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin.

    Directory of Open Access Journals (Sweden)

    Sayaka Aizawa

    Full Text Available The pars tuberalis (PT is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD, such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2 mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.

  11. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2.

    Directory of Open Access Journals (Sweden)

    Ryan F Overcash

    Full Text Available The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2, is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs in the 5'-untranslated region (5'-UTR of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR, we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5'-UTR of TMEFF2.

  12. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis

    International Nuclear Information System (INIS)

    Tsuchiya, Naoto; Nakagama, Hitoshi

    2010-01-01

    Post-transcriptional regulation of gene expression by microRNA (miRNA) has recently attracted major interest in relation to its involvement in cancer development. miRNA is a member of small non-coding RNA, consists of 22-24 nucleotides and regulates expression of target mRNA species in a post-transcriptional manner by being incorporated with RNA-induced silencing complex (RISC). Staphylococcal nuclease homology domain containing 1 (SND1), a component of RISC, is frequently up-regulated in human colon cancers and also chemically induced colon cancers in animals. We here showed that SDN1 is involved in miRNA-mediated gene suppression and overexpression of SND1 in colon cancer cells causes down-regulation of APC without altering APC mRNA levels. As for the miRNA expression profile in human colon cancer, miR-34a was among the list of down-regulated miRNA. Expression of miR-34a is tightly regulated by p53, and ectopic expression of miR-34a in colon cancer cells causes remarkable reduction of cell proliferation and induces senescence-like phenotypes. MiR-34a also participates in the positive feedback loop of the p53 tumor suppressor network. This circuitry mechanism for p53 activation is of interest in understanding the tumor suppressive function of miR-34a in colon carcinogenesis. miRNA should also be considered as novel anti-cancer agents in tumor suppressive therapeutic applications.

  13. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  14. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    Science.gov (United States)

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    NARCIS (Netherlands)

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  16. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    Science.gov (United States)

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  17. Opposite responses of rabbit and human globin mRNAs to translational inhibition by cap analogues

    International Nuclear Information System (INIS)

    Shakin, S.H.; Liebhaber, S.A.

    1987-01-01

    The translational efficiency of an mRNA may be determined at the step of translational initiation by the efficiency of its interaction with the cap binding protein complex. To further investigate the role of these interactions in translational control, the authors compare in vitro the relative sensitivities of rabbit and human α- and β-globin mRNAs to translational inhibition by cap analogues. They find that rabbit β-globin mRNA is more resistant to translational inhibition by cap analogues than rabbit α-globin mRNA, while in contrast, human β-globin mRNA is more sensitive to cap analogue inhibition than human α- and β-globin mRNAs is unexpected as direct in vivo and in vitro comparisons of polysome profiles reveal parallel translational handling of the α- and β-globin mRNAs from these two species. This discordance between the relative translational sensitivities of these mRNAs to cap analogues and their relative ribosome loading activities suggests that cap-dependent events may not be rate limiting in steady-state globin translation

  18. PPARg mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2015-09-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARg is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARg signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARg-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARg mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARg mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis, and the subfornical organ. Within the hypothalamus, PPARg was present at moderate levels in the suprachiasmatic nucleus and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARg was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARg mRNA expression was upregulated in the suprachiasmatic nucleus in response to fasting. Double in situ hybridization further demonstrated that PPARg was primarily expressed in neurons. Collectively, our observations provide a comprehensive map of PPARg distribution and regulation in the intact adult mouse hypothalamus.

  19. Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK

    Directory of Open Access Journals (Sweden)

    Debabrata Panja

    2014-11-01

    Full Text Available BDNF signaling contributes to protein-synthesis-dependent synaptic plasticity, but the dynamics of TrkB signaling and mechanisms of translation have not been defined. Here, we show that long-term potentiation (LTP consolidation in the dentate gyrus of live rodents requires sustained (hours BDNF-TrkB signaling. Surprisingly, this sustained activation maintains an otherwise labile signaling pathway from TrkB to MAP-kinase-interacting kinase (MNK. MNK activity promotes eIF4F translation initiation complex formation and protein synthesis in mechanistically distinct early and late stages. In early-stage translation, MNK triggers release of the CYFIP1/FMRP repressor complex from the 5′-mRNA cap. In late-stage translation, MNK regulates the canonical translational repressor 4E-BP2 in a synapse-compartment-specific manner. This late stage is coupled to MNK-dependent enhanced dendritic mRNA translation. We conclude that LTP consolidation in the dentate gyrus is mediated by sustained BDNF signaling to MNK and MNK-dependent regulation of translation in two functionally and mechanistically distinct stages.

  20. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

    Science.gov (United States)

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-11-10

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA comprising codon-optimized firefly luciferase into stable LNPs. Mice were injected with 0.005-0.250mg/kg doses of mRNA-LNPs by 6 different routes and high levels of protein translation could be measured using in vivo imaging. Subcutaneous, intramuscular and intradermal injection of the LNP-encapsulated mRNA translated locally at the site of injection for up to 10days. For several days, high levels of protein production could be achieved in the lung from the intratracheal administration of mRNA. Intravenous and intraperitoneal and to a lesser extent intramuscular and intratracheal deliveries led to trafficking of mRNA-LNPs systemically resulting in active translation of the mRNA in the liver for 1-4 days. Our results demonstrate that LNPs are appropriate carriers for mRNA in vivo and have the potential to become valuable tools for delivering mRNA encoding therapeutic proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs.

    Science.gov (United States)

    Wallace, Adam; Filbin, Megan E; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E

    2010-04-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.

  2. Ddx19 links mRNA nuclear export with progression of transcription and replication and suppresses genomic instability upon DNA damage in proliferating cells.

    Science.gov (United States)

    Hodroj, Dana; Serhal, Kamar; Maiorano, Domenico

    2017-09-03

    The DEAD-box Helicase 19 (Ddx19) gene codes for an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. In unperturbed cells, Ddx19 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore. Here we review recent findings related to an additional Ddx19 function in the nucleus in resolving RNA:DNA hybrids (R-loops) generated during collision between transcription and replication, and upon DNA damage. Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of the Ddx19 protein from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops, and down regulation of Ddx19 expression induces DNA double strand breaks only in proliferating cells. Overall these observations put forward Ddx19 as an important novel mediator of the crosstalk between transcription and replication.

  3. Characterization of in vitro translation products

    International Nuclear Information System (INIS)

    Jagus, R.

    1987-01-01

    This chapter describes the characterization of in vitro translation products by the most commonly used techniques. The methods include SDS-polyacrylamide gel electrophoresis (SDS-PAGE), combined with immunoprecipitation and/or fluorography of [ 35 S]methionine-labeled translation products. The other frequently used characterization tool, translation of hybrid-selected mRNA or hybrid-arrested translation, is treated separately in this volume. Methods are also given for the recognition of mRNAs coding for secreted or membrane proteins

  4. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Science.gov (United States)

    2010-10-01

    ... power television and television translator stations. 74.789 Section 74.789 Telecommunication FEDERAL... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.789 Broadcast regulations applicable to digital low power television and television translator...

  5. IRES-dependent translational control during virus-induced endoplasmic reticulum stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Paul eHanson

    2012-03-01

    Full Text Available Many virus infections and stresses can induce endoplasmic reticulum (ER stress response, a host self defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to IRES (internal ribosome entry sites-dependent. This switching is largely dependent on the mRNA structure of the 5’untranslated region (5’UTR and on the particular stress stimuli. Picornviruses and some other viruses contain an IRES within their 5’UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5’UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation of host factors for translation initiation, over-production of homologous proteins of cap-binding protein eIF4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.

  6. Monitoring substrate enables real-time regulation of a protein localization pathway.

    Science.gov (United States)

    Ito, Koreaki; Mori, Hiroyuki; Chiba, Shinobu

    2018-06-01

    Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.

  7. Lariat capping as a tool to manipulate the 5' end of individual yeast mRNA species in vivo

    DEFF Research Database (Denmark)

    Krogh, Nicolai; Pietschmann, Max; Schmid, Manfred

    2017-01-01

    The 5' cap structure of eukaryotic mRNA is critical for its processing, transport, translation, and stability. The many functions of the cap and the fact that most, if not all, mRNA carries the same type of cap makes it difficult to analyze cap function in vivo at individual steps of gene...... in the budding yeast Saccharomyces cerevisiae presumably without cofactors and that lariat capping occurs cotranscriptionally. The lariat-capped reporter mRNA is efficiently exported to the cytoplasm where it is found to be oligoadenylated and evenly distributed. Both the oligoadenylated form and a lariat......-capped mRNA with a templated poly(A) tail translates poorly, underlining the critical importance of the m(7)G cap in translation. Finally, the lariat-capped RNA exhibits a threefold longer half-life compared to its m(7)G-capped counterpart, consistent with a key role for the m(7)G cap in mRNA turnover. Our...

  8. Temporal Translational Control by a Metastable RNA Structure

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Franch, Thomas; Gerdes, Kenn

    2001-01-01

    Programmed cell death by the hok/sok locus of plasmid R1 relies on a complex translational control mechanism. The highly stable hok mRNA is activated by 3'-end exonucleolytical processing. Removal of the mRNA 3' end releases a 5'-end sequence that triggers refolding of the mRNA. The refolded hok m......-transcriptional control mechanism....

  9. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  10. mRNA localization mechanisms in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Lysangela R Alves

    Full Text Available Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.

  11. Predicting Translation Initiation Rates for Designing Synthetic Biology

    International Nuclear Information System (INIS)

    Reeve, Benjamin; Hargest, Thomas; Gilbert, Charlie; Ellis, Tom

    2014-01-01

    In synthetic biology, precise control over protein expression is required in order to construct functional biological systems. A core principle of the synthetic biology approach is a model-guided design and based on the biological understanding of the process, models of prokaryotic protein production have been described. Translation initiation rate is a rate-limiting step in protein production from mRNA and is dependent on the sequence of the 5′-untranslated region and the start of the coding sequence. Translation rate calculators are programs that estimate protein translation rates based on the sequence of these regions of an mRNA, and as protein expression is proportional to the rate of translation initiation, such calculators have been shown to give good approximations of protein expression levels. In this review, three currently available translation rate calculators developed for synthetic biology are considered, with limitations and possible future progress discussed.

  12. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.

    Science.gov (United States)

    Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T

    2016-06-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts. © 2015 Wiley Periodicals, Inc.

  13. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  14. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a trans-Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs ▿ †

    Science.gov (United States)

    Wallace, Adam; Filbin, Megan E.; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E.

    2010-01-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs. PMID:20154140

  16. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: g.muscat@imb.uq.edu.au [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  17. Translational co-regulation of a ligand and inhibitor by a conserved RNA element

    DEFF Research Database (Denmark)

    Zaucker, Andreas; Nagorska, Agnieszka; Kumari, Pooja

    2018-01-01

    In many organisms, transcriptional and post-transcriptional regulation of components of pathways or processes has been reported. However, to date, there are few reports of translational co-regulation of multiple components of a developmental signaling pathway. Here, we show that an RNA element wh...

  18. The function of the inner nuclear envelope protein SUN1 in mRNA export is regulated by phosphorylation.

    Science.gov (United States)

    Li, Ping; Stumpf, Maria; Müller, Rolf; Eichinger, Ludwig; Glöckner, Gernot; Noegel, Angelika A

    2017-08-22

    SUN1, a component of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, functions in mammalian mRNA export through the NXF1-dependent pathway. It associates with mRNP complexes by direct interaction with NXF1. It also binds to the NPC through association with the nuclear pore component Nup153, which is involved in mRNA export. The SUN1-NXF1 association is at least partly regulated by a protein kinase C (PKC) which phosphorylates serine 113 (S113) in the N-terminal domain leading to reduced interaction. The phosphorylation appears to be important for the SUN1 function in nuclear mRNA export since GFP-SUN1 carrying a S113A mutation was less efficient in restoring mRNA export after SUN1 knockdown as compared to the wild type protein. By contrast, GFP-SUN1-S113D resembling the phosphorylated state allowed very efficient export of poly(A)+RNA. Furthermore, probing a possible role of the LINC complex component Nesprin-2 in this process we observed impaired mRNA export in Nesprin-2 knockdown cells. This effect might be independent of SUN1 as expression of a GFP tagged SUN-domain deficient SUN1, which no longer can interact with Nesprin-2, did not affect mRNA export.

  19. A Study of Translation Students' Self-Regulation and Metacognitive Awareness in Association with their Gender and Educational Level

    Directory of Open Access Journals (Sweden)

    Mona Hashempour

    2015-07-01

    Full Text Available The present study sought to investigate the probable link between Iranian English translation studies students’ metacognitive awareness, self-regulation, and gender. Furthermore, the role of educational level of translation students in metacognitive awareness and self-regulation was explored. For the purpose of the study, a sample of 230 M.A and B.A senior English translation students comprised the participants of the research. They were asked to complete two questionnaires of Metacognitive Awareness Inventory (MAI and Self-regulation Trait (SRT.The Metacognitive Awareness Inventory (MAI was developed by Schraw and Dennison (1994 and consists of 52 statements. It measures two components of metacognition: metacognitive knowledge and metacognitive regulation. Metacognitive knowledge comprises three subscales: Declarative knowledge, Procedural knowledge, and Conditional knowledge. Metacognitive regulation consists of five subscales: Planning, Information management, Monitoring, Debugging, and Evaluation. The self-regulation trait (SRT questionnaire was designed by O'Neil and Herl (1998. It was developed based on Zimmerman's self –regulation model. It consists of 32 Likert-scale questions. The scale seeks to measure metacognition and motivation dimensions.  Each dimension comprises two sub-scales. Meta-cognition covers the constructs of planning and self-monitoring, and motivation contains effort and self-efficacy. Independent samples t-tests were run to investigate the role of gender and educational level in the level of translation students’ metacognitive awareness and self-regulation. The results of t-test demonstrated that there are not any differences between male and female translation students regarding metacognitive awareness and self-regulation. It was also found that there is a negative significant impact of educational level on total metacognitive awareness, and some components of metacognitive awareness: declarative knowledge

  20. Isolation and characterization of human glycophorin A cDNAs using a synthetic oligonucleotide approach: nucleotide sequence, mRNA structure and regulation by 12-O-tetradecanoylphorbol 13-acetate (TPA)

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1986-01-01

    The authors have previously shown that treatment of human erythroleukemic K562 cells with the tumor-promoting phorbol ester, TPA, results in a diminished expression of glycophorin A at the level of protein biosynthesis and in vitro mRNA translation activity. To further examine the structure, relationships and expression of human glycophorins they have successfully isolated and sequenced several glycophorin A specific cDNA clones derived from K562 cells, by making extensive use of mixed and exact synthetic oligonucleotides as primers and radioactively labeled probes. The nucleotide sequence obtained from the largest glycophorin A cDNA suggests the presence of a hydrophobic leader-like peptide of at least 19 amino acids. Northern gel analysis using both whole cDNA-plasmid and synthetic oligonucleotide probes revealed the existence of multiple mRNAs, three of which they believe to be glycophorin A-specific, whereas a fourth and smaller mRNA appears to be glycophorin B-specific. Furthermore, the abundance of all four glycophorin mRNAs were found to be extensively reduced following treatment of K562 cells with TPA suggesting coordinate regulation, possibly at the level of gene transcription

  1. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation

    Energy Technology Data Exchange (ETDEWEB)

    Lobanov, Alexei V.; Heaphy, Stephen M.; Turanov, Anton A.; Gerashchenko, Maxim V.; Pucciarelli, Sandra; Devaraj, Raghul R.; Xie, Fang; Petyuk, Vladislav A.; Smith, Richard D.; Klobutcher, Lawrence A.; Atkins, John F.; Miceli, Cristina; Hatfield, Dolph L.; Baranov, Pavel V.; Gladyshev, Vadim N.

    2016-11-21

    The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a ‘stop codon’ is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.

  2. Translational regulation shapes the molecular landscape of complex disease phenotypes

    Czech Academy of Sciences Publication Activity Database

    Schafer, S.; Adami, E.; Heinig, M.; Rodrigues, K. E. C.; Kreuchwig, F.; Šilhavý, Jan; van Heesch, S.; Simaite, D.; Rajewsky, N.; Cuppen, E.; Pravenec, Michal; Vingron, M.; Cook, S. A.; Hubner, N.

    2015-01-01

    Roč. 6, May 2015 (2015), s. 7200 ISSN 2041-1723 R&D Projects: GA ČR(CZ) GB14-36804G; GA MŠk(CZ) LL1204; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : translational regulation * RNA sequencing * ribosome profiling * rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.329, year: 2015

  3. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  4. Differential regulation of glutathione peroxidase by selenomethionine and hyperoxia in endothelial cells.

    Science.gov (United States)

    Jornot, L; Junod, A F

    1995-01-01

    We have studied the effect of selenomethionine (SeMet) and hyperoxia on the expression of glutathione peroxidase (GP) in human umbilical vein endothelial cells. Incubation of HUVEC with 1 x 10(-6) M SeMet for 24 h and 48 h caused a 65% and 86% increase in GP activity respectively. The same treatment did not result in significant changes in GP gene transcription and mRNA levels. Pactamycin, a specific inhibitor of the initiation step of translation, prevented the rise in GP activity induced by SeMet and caused an increase in GP mRNA in both cells grown in normal and SeMet-supplemented medium. Interestingly, SeMet supplementation stimulated the recruitment of GP mRNA from an untranslatable pool on to polyribosomes, so that the concentration of GP mRNA in polyribosomal translatable pools was 50% higher in cells grown in SeMet-supplemented medium than in cells grown in normal medium. On the other hand, cells exposed to 95% O2 for 3 days in normal medium showed a 60%, 394% and 81% increase in GP gene transcription rate, mRNA levels and activity respectively. Hyperoxia also stabilized GP mRNA. Hyperoxic cells grown in SeMet-supplemented medium did not show any change in GP gene transcription and mRNA levels, but expressed an 81% and 100% increase in GP activity and amount of GP mRNA associated with polyribosomes respectively, when compared with hyperoxic cells maintained in normal medium. Thus, GP appeared to be regulated post-transcriptionally, most probably co-translationally, in response to selenium availability, and transcriptionally and post-transcriptionally in response to oxygen. Images Figure 1 Figure 2 Figure 4 Figure 7 Figure 8 PMID:7887914

  5. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease.

    Science.gov (United States)

    Molle, Céline; Zhang, Tong; Ysebrant de Lendonck, Laure; Gueydan, Cyril; Andrianne, Mathieu; Sherer, Félicie; Van Simaeys, Gaetan; Blackshear, Perry J; Leo, Oberdan; Goriely, Stanislas

    2013-08-26

    Interleukin (IL) 12 and IL23 are two related heterodimeric cytokines produced by antigen-presenting cells. The balance between these two cytokines plays a crucial role in the control of Th1/Th17 responses and autoimmune inflammation. Most studies focused on their transcriptional regulation. Herein, we explored the role of the adenine and uridine-rich element (ARE)-binding protein tristetraprolin (TTP) in influencing mRNA stability of IL12p35, IL12/23p40, and IL23p19 subunits. LPS-stimulated bone marrow-derived dendritic cells (BMDCs) from TTP(-/-) mice produced normal levels of IL12/23p40. Production of IL12p70 was modestly increased in these conditions. In contrast, we observed a strong impact of TTP on IL23 production and IL23p19 mRNA stability through several AREs in the 3' untranslated region. TTP(-/-) mice spontaneously develop an inflammatory syndrome characterized by cachexia, myeloid hyperplasia, dermatitis, and erosive arthritis. We observed IL23p19 expression within skin lesions associated with exacerbated IL17A and IL22 production by infiltrating γδ T cells and draining lymph node CD4 T cells. We demonstrate that the clinical and immunological parameters associated with TTP deficiency were completely dependent on the IL23-IL17A axis. We conclude that tight control of IL23 mRNA stability by TTP is critical to avoid severe inflammation.

  6. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.

    Science.gov (United States)

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-11-14

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.

  7. Co-and post-translational events in the biogenesis of pig small intestinal aminopeptidase N

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1982-01-01

    The biogenesis of pig small intestinal aminopeptidase N (EC 3. 4. 11. 2) was studied by cell-free translation of intestinal mRNA and by labelling of organ cultured intestinal explants. In cell-free translation, the primary mRNA translation product of aminopeptidase N was a polypeptide of Mr 115......,000. When translation was performed in the presence of dog pancreatic microsomes, a Mr 140,000 polypeptide was also observed. A polypeptide of Mr 115,000 was seen for the enzyme, purified from tunicamycin exposed explants. This result suggests that aminopeptidase N is co-translationally inserted...

  8. Chilled in Translation: Adapting to Bacterial Climate Change.

    Science.gov (United States)

    Gottesman, Susan

    2018-04-19

    Cold-shocked bacteria transiently shut down protein translation, but the mechanisms whereby they adaptively restore translation were incompletely understood. Zhang et al. (2018) demonstrate a global increase in mRNA structure after cold shock and that, as structured RNA decreases, translation returns, dependent upon ribonuclease RNase R and cold shock protein CspA and its homologs. Published by Elsevier Inc.

  9. Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP.

    Science.gov (United States)

    Hinojosa-Moya, J Jesús; Xoconostle-Cázares, Beatriz; Toscano-Morales, Roberto; Ramírez-Ortega, Francisco; Cabrera-Ponce, José Luis; Ruiz-Medrano, Roberto

    2013-01-01

    In higher plants, the phloem plays a central role in the delivery of nutrients and signals from source to sink tissues. These signals likely coordinate different aspects of plant development, as well as its response to environmental cues. Although some phloem-transported proteins and RNAs may function as signaling molecules in plants, their mode of action remains poorly understood. Previous analysis of transcripts from CMV-infected pumpkin (Cucurbita maxima cv Big Max) identified a Translationally-Controlled Tumor Protein (TCTP) mRNA homolog, designated CmTCTP. In the present work this transcript was analyzed in terms of its expression pattern. This RNA accumulates, both in healthy and CMV-infected plants, in developing and mature phloem in petiole and roots, as well as in apices at high levels. The protein was present at lower levels in most cell types, and almost no signal was detected in apices, suggesting translational regulation of this RNA. Additionally, CmTCTP harbored by Agrobacterium rhizogenes is capable of inducing whole plant regeneration. These data suggest a role for CmTCTP in growth regulation, possibly through long-distance signaling.

  10. Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP

    Science.gov (United States)

    Hinojosa-Moya, J Jesús; Xoconostle-Cázares, Beatriz; Toscano-Morales, Roberto; Ramírez-Ortega, Francisco; Luis Cabrera-Ponce, José; Ruiz-Medrano, Roberto

    2013-01-01

    In higher plants, the phloem plays a central role in the delivery of nutrients and signals from source to sink tissues. These signals likely coordinate different aspects of plant development, as well as its response to environmental cues. Although some phloem-transported proteins and RNAs may function as signaling molecules in plants, their mode of action remains poorly understood. Previous analysis of transcripts from CMV-infected pumpkin (Cucurbita maxima cv Big Max) identified a Translationally-Controlled Tumor Protein (TCTP) mRNA homolog, designated CmTCTP. In the present work this transcript was analyzed in terms of its expression pattern. This RNA accumulates, both in healthy and CMV-infected plants, in developing and mature phloem in petiole and roots, as well as in apices at high levels. The protein was present at lower levels in most cell types, and almost no signal was detected in apices, suggesting translational regulation of this RNA. Additionally, CmTCTP harbored by Agrobacterium rhizogenes is capable of inducing whole plant regeneration. These data suggest a role for CmTCTP in growth regulation, possibly through long-distance signaling. PMID:24065051

  11. DAG1, no gene for RNA regulation?

    Science.gov (United States)

    Brancaccio, Andrea

    2012-04-10

    DAG1 encodes for a precursor protein that liberates the two subunits featured by the dystroglycan (DG) adhesion complex that are involved in an increasing number of cellular functions in a wide variety of cells and tissues. Aside from the proteolytic events producing the α and β subunits, especially the former undergoes extensive "post-production" modifications taking place within the ER/Golgi where its core protein is both N- and O-decorated with sugars. These post-translational events, that are mainly orchestrated by a plethora of certified, or putative, glycosyltransferases, prelude to the excocytosis-mediated trafficking and targeting of the DG complex to the plasma membrane. Extensive genetic and biochemical evidences have been accumulated so far on α-DG glycosylation, while little is know on possible regulatory events underlying the chromatine activation, transcription or post-transcription (splicing and escape from the nucleus) of DAG1 or of its mRNA. A scenario is envisaged in which cells would use a sort of preferential, and scarcely regulated, route for DAG1 activation, that would imply fast mRNA transcription, maturation and export to the cytosol, and would prelude to the multiple time-consuming enzymatic post-translational activities needed for its glycosylation. Such a provocative view might be helpful to trigger future work aiming at disclosing the complete molecular mechanisms underlying DAG1 activation and at improving our knowledge of any pre-translational step that is involved in dystroglycan regulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.

    Science.gov (United States)

    Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M

    1994-12-01

    We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.

  13. Deregulation of cap-dependent mRNA translation increases tumour radiosensitivity through reduction of the hypoxic fraction

    International Nuclear Information System (INIS)

    Rouschop, Kasper M.A.; Dubois, Ludwig; Schaaf, Marco B.E.; Beucken, Twan van den; Lieuwes, Natasja; Keulers, Tom G.H.; Savelkouls, Kim G.M.; Bussink, Johan; Kogel, Albert J. van der; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Tumour hypoxia is an important limiting factor in the successful treatment of cancer. Adaptation to hypoxia includes inhibition of mTOR, causing scavenging of eukaryotic initiation factor 4E (eIF4E), the rate-limiting factor for cap-dependent translation. The aim of this study was to determine the effect of preventing mTOR-dependent translation inhibition on hypoxic cell survival and tumour sensitivity towards irradiation. Material and methods: The effect of eIF4E-overexpression on cell proliferation, hypoxia-tolerance, and radiation sensitivity was assessed using isogenic, inducible U373 and HCT116 cells. Results: We found that eIF4E-overexpression significantly enhanced proliferation of cells under normal conditions, but not during hypoxia, caused by increased cell death during hypoxia. Furthermore, eIF4E-overexpression stimulated overall rates of tumour growth, but resulted in selective loss of hypoxic cells in established tumours and increased levels of necrosis. This markedly increased overall tumour sensitivity to irradiation. Conclusions: Our results demonstrate that hypoxia induced inhibition of translational control through regulation of eIF4E is an important mediator of hypoxia tolerance and radioresistance of tumours. These data also demonstrate that deregulation of metabolic pathways such as mTOR can influence the proliferation and survival of tumour cells experiencing metabolic stress in opposite ways of nutrient replete cells.

  14. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  15. Expression of the VP2 protein of murine norovirus by a translation termination-reinitiation strategy.

    Directory of Open Access Journals (Sweden)

    Sawsan Napthine

    2009-12-01

    Full Text Available Expression of the minor virion structural protein VP2 of the calicivirus murine norovirus (MNV is believed to occur by the unusual mechanism of termination codon-dependent reinitiation of translation. In this process, following translation of an upstream open reading frame (ORF and termination at the stop codon, a proportion of 40S subunits remain associated with the mRNA and reinitiate at the AUG of a downstream ORF, which is typically in close proximity. Consistent with this, the VP2 start codon (AUG of MNV overlaps the stop codon of the upstream VP1 ORF (UAA in the pentanucleotide UAAUG.Here, we confirm that MNV VP2 expression is regulated by termination-reinitiation and define the mRNA sequence requirements. Efficient reintiation is dependent upon 43 nt of RNA immediately upstream of the UAAUG site. Chemical and enzymatic probing revealed that the RNA in this region is not highly structured and includes an essential stretch of bases complementary to 18S rRNA helix 26 (Motif 1. The relative position of Motif 1 with respect to the UAAUG site impacts upon the efficiency of the process. Termination-reinitiation in MNV was also found to be relatively insensitive to the initiation inhibitor edeine.The termination-reinitiation signal of MNV most closely resembles that of influenza BM2. Similar to other viruses that use this strategy, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the VP1 stop codon. Our data also indicate that accurate recognition of the VP2 ORF AUG is not a pre-requisite for efficient reinitiation of translation in this system.

  16. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein

    OpenAIRE

    Pinder, Benjamin D; Smibert, Craig A

    2012-01-01

    Argonaute 1 directly interacts with the RNA binding protein Smaug in Drosophila, is thereby recruited to the Smaug target nanos mRNA and is required for Smaug-mediated translational repression of the nanos mRNA.

  17. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs.

    Directory of Open Access Journals (Sweden)

    Ilona Patursky-Polischuk

    Full Text Available TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.

  18. Neural Network Prediction of Translation Initiation Sites in Eukaryotes: Perspectives for EST and Genome analysis

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Nielsen, Henrik

    1997-01-01

    Translation in eukaryotes does not always start at the first AUG in an mRNA, implying that context information also plays a role.This makes prediction of translation initiation sites a non-trivial task, especially when analysing EST and genome data where the entire mature mRNA sequence is not known...

  19. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle.

    Science.gov (United States)

    Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L

    2007-01-01

    The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.

  20. Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis.

    Science.gov (United States)

    Godfrey, Charlotte L; Mead, Emma J; Daramola, Olalekan; Dunn, Sarah; Hatton, Diane; Field, Ray; Pettman, Gary; Smales, C Mark

    2017-08-01

    mRNA translation is a key process determining growth, proliferation and duration of a Chinese hamster ovary (CHO) cell culture and influences recombinant protein synthesis rate. During bioprocessing, CHO cells can experience stresses leading to reprogramming of translation and decreased global protein synthesis. Here we apply polysome profiling to determine reprogramming and translational capabilities in host and recombinant monoclonal antibody-producing (mAb) CHO cell lines during batch culture. Recombinant cell lines with the fastest cell specific growth rates were those with the highest global translational efficiency. However, total ribosomal capacity, determined from polysome profiles, did not relate to the fastest growing or highest producing mAb cell line, suggesting it is the ability to utilise available machinery that determines protein synthetic capacity. Cell lines with higher cell specific productivities tended to have elevated recombinant heavy chain transcript copy numbers, localised to the translationally active heavy polysomes. The highest titre cell line was that which sustained recombinant protein synthesis and maintained high recombinant transcript copy numbers in polysomes. Investigation of specific endogenous transcripts revealed a number that maintained or reprogrammed into heavy polysomes, identifying targets for potential cell engineering or those with 5' untranslated regions that might be utilised to enhance recombinant transcript translation. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells.

    Science.gov (United States)

    Park, Jungyun; Ahn, Seyoung; Jayabalan, Aravinth K; Ohn, Takbum; Koh, Hyun Chul; Hwang, Jungwook

    2016-07-01

    Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    Science.gov (United States)

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  3. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    Science.gov (United States)

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Crystal structure of a minimal eIF4E–Cup complex reveals a general mechanism of eIF4E regulation in translational repression

    Science.gov (United States)

    Kinkelin, Kerstin; Veith, Katharina; Grünwald, Marlene; Bono, Fulvia

    2012-01-01

    Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation. PMID:22832024

  5. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

    Directory of Open Access Journals (Sweden)

    Donald B Bloch

    Full Text Available The mRNA processing body (P-body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB, the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.

  6. Up-regulation of Slc39A2(Zip2) mRNA in peripheral blood mononuclear cells from patients with pulmonary tuberculosis.

    Science.gov (United States)

    Tao, Yan-ting; Huang, Qing; Jiang, Ya-li; Wang, Xiao-lei; Sun, Ping; Tian, Yuanyuan; Wu, Hai-liang; Zhang, Min; Meng, Si-bo; Wang, Yu-shu; Sun, Qing; Zhang, Lian-ying

    2013-08-01

    Zinc is the most common trace mineral after iron in the human body. In organisms, zinc transporters help zinc influx and efflux from cells. A previous study has reported that Zip2 was up-regulated over 27-fold in human monocytic THP-1 cells, when intracellular zinc was depleted by TPEN. Our study found Zip2 was over-expressed in leukocytes of asthmatic infants, especially those in which the serum zinc level was lower than those in healthy infants. Pulmonary tuberculosis (PTB) patients have significantly low serum zinc levels. Here we investigated whether Zip2 level was changed in the patients with PTB. Zip2 mRNA and protein levels in peripheral blood mononuclear cells (PBMC) from PTB (n1=23) and healthy controls (n2=42) were detected by quantitative real-time PCR and western blot, respectively. mRNA expression levels of another four zinc transporters, Zip1, Zip6, Zip8 and ZnT1, were detected by quantitative real-time PCR. Zip2 mRNA level was significantly up-regulated in PTB patients (P=0.001), and Zip8 mRNA level was significantly down-regulated compared with control individuals (Plevels of Zip1, Zip6 and ZnT1 in either group (P>0.05). Zip2 protein expression levels increased in PTB patients compared with control individuals. Our study found that knockdown of ZIP2 with siRNA caused a decrease in Zip2 levels in PBMC of PTB patients, while reducing the expression of INF-γ (Pinitial infection control of the human body, by promoting and maintaining the immune response of adaptive T cells.

  7. Identification of the base-pairing requirements for repression of hctA translation by the small RNA IhtA leads to the discovery of a new mRNA target in Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Nicole A Grieshaber

    Full Text Available The non-coding small RNA, IhtA expressed by the obligate intracellular human pathogen Chlamydia trachomatis modulates the translation of HctA, a key protein involved in replicative to infectious cell type differentiation. Using a combination of bioinformatics and mutagenesis we sought to identify the base pairing requirement for functional repression of HctA protein expression, with an eye to applying our findings towards the identification of additional targets. IhtA is predicted to fold into a three stem:loop structure. We found that loop 1 occludes the initiation codon of hctA, while loop 2 and 3 are not required for function. This 7 nucleotide region forms G/C rich interactions surrounding the AUG of hctA. Two additional genes in the chlamydial genome, CTL0322 and CTL0097, contained some elements of the hctA:IhtA recognition sequence. The mRNA of both CTL0322and CTL0097 interacted with IhtA in vitro as measured by biolayer interferometry. However, using a CheZ reporter expression system, IhtA only inhibited the translation of CTL0322. The proposed IhtA recognition site in the CTL0322 message contains significant G/C base pairing on either side of the initiation codon while CTL0097 only contains G/C base pairing 3' to the AUG initiation codon. These data suggest that as the functional interacting region is only 6-7nt in length that full translation repression is dependent on the degree of G/C base pairing. Additionally our results indicate that IhtA may regulate multiple mRNAs involved in the chlamydial infectious cycle.

  8. Ectopic expression of eIF4E-transporter triggers the movement of eIF4E into P-bodies, inhibiting steady-state translation but not the pioneer round of translation

    International Nuclear Information System (INIS)

    Lee, Hyung Chul; Cho, Hana; Kim, Yoon Ki

    2008-01-01

    Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism; this process removes faulty mRNAs harboring premature termination codons (PTCs). NMD targets newly synthesized mRNAs bound by nuclear cap-binding proteins 80/20 (CBP80/20) and exon junction complex (EJC), the former of which is thought to recruit the ribosome to initiate the pioneer round of translation. After completion of the pioneer round of translation, CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E, which mediates steady-state translation in the cytoplasm. Here, we show that overexpression of eIF4E-T preferentially inhibits cap-dependent steady-state translation, but not the pioneer round of translation. We also demonstrate that overexpression of eIF4E-T or Dcp1a triggers the movement of eIF4E into the processing bodies. These results suggest that the pioneer round of translation differs from steady-state translation in terms of ribosome recruitment

  9. Fragile X protein mitigates TDP-43 toxicity by remodeling RNA granules and restoring translation.

    Science.gov (United States)

    Coyne, Alyssa N; Yamada, Shizuka B; Siddegowda, Bhavani Bagevalu; Estes, Patricia S; Zaepfel, Benjamin L; Johannesmeyer, Jeffrey S; Lockwood, Donovan B; Pham, Linh T; Hart, Michael P; Cassel, Joel A; Freibaum, Brian; Boehringer, Ashley V; Taylor, J Paul; Reitz, Allen B; Gitler, Aaron D; Zarnescu, Daniela C

    2015-12-15

    RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.

    Science.gov (United States)

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2015-01-15

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents. ©2014 American Association for Cancer Research.

  11. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    Directory of Open Access Journals (Sweden)

    Mariana Serpeloni

    Full Text Available In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II, but not RNA polymerase I (RNA pol I or Spliced Leader (SL transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and

  12. Differential regulation of renal cyclooxygenase mRNA by dietary salt intake

    DEFF Research Database (Denmark)

    Jensen, B L; Kurtz, A

    1997-01-01

    RNA correlated directly with salt intake. We conclude that dietary salt intake influences renal cyclooxygenase mRNAs zone-specifically with opposite responses between cortex and medulla. Cortical COX II-mediated prostaglandin formation is probably important in low salt states whereas medullary COX I......Experiments were done to investigate the influence of dietary salt intake on renal cyclooxygenase (COX) I and II mRNA levels. To this end rats were fed either a low NaCl diet (LS; 0.02% NaCl wt/wt) or a high NaCl diet (HS diet; 4% NaCl wt/wt) for 5, 10 and 20 days. After 10 days Na excretion...... differed 760-fold, plasma renin activity and renin mRNA were increased eight- and threefold in LS compared to HS animals. Total renal COX I mRNA decreased 50% following the LS diet and did not change after the HS diet. Conversely, COX II mRNA declined after HS intake and transiently increased after salt...

  13. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  14. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  15. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Science.gov (United States)

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  16. Applying the breaks on gene expression - mRNA deadenylation by Pop2p

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Jonstrup, Anette Thyssen; Van, Lan Bich

    When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems to be the ......When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems...... to be the shortening of the poly(A) tail (deadenylation), as this step is slower than the subsequent decapping and degradation of the mRNA body. The Mega-Dalton Ccr4-Not complex contains two exonucleases, Ccr4p and Pop2p, responsible for this process. It is not known at present why two conserved nucleases are needed...

  17. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value

    OpenAIRE

    BOLDRINI, LAURA; GIORDANO, MIRELLA; ALÌ, GRETA; MELFI, FRANCA; ROMANO, GAETANO; LUCCHI, MARCO; FONTANINI, GABRIELLA

    2014-01-01

    The human P2X7 receptor is significant and exhibits several functions in neoplasia. At present, little is known with regard to its regulation. P2X7 expression may be regulated post-transcriptionally and putative microRNA (miRNA) binding sites are considered to be involved. The aim of this study was to determine whether miRNAs (miR-21, let-7 g and miR-205) regulate P2X7 mRNA stability. In addition, the impact of P2X7 expression in patients with non-small cell lung cancer (NSCLC) was investigat...

  18. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Liou Louis S

    2010-04-01

    Full Text Available Abstract Background MicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence matches are available in many databases. However, such matches have a high false positive rate and cannot identify tissue specificity of regulation. Results We describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict sense to: a represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b the seed sequence match is strictly conserved across mouse, human, rat and dog genomes, c the mRNA and microRNA expression levels can distinguish tumor from normal with high significance and d the microRNA/mRNA expression levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method using clear cell Renal Cell Carcinoma (ccRCC and matched normal kidney samples, limiting our analysis to mRNA targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX, VEGFA and SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of tumor suppressors LRRC2, PTPN13, SFRP1

  19. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    Science.gov (United States)

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  20. Protein Structure and the Sequential Structure of mRNA

    DEFF Research Database (Denmark)

    Brunak, Søren; Engelbrecht, Jacob

    1996-01-01

    entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment, By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets, These signals do not originate from......A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed, We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting...... protein, The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain, A complete search for GenBank nucleotide sequences coding for structural...

  1. Fluence dependence of the ultraviolet-light-induced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley

    International Nuclear Information System (INIS)

    Bruns, B.; Hahlbrock, K.; Schäfer, E.

    1986-01-01

    The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system

  2. The pokeweed leaf mRNA transcriptome and its regulation by jasmonic acid.

    Directory of Open Access Journals (Sweden)

    Kira C.M. Neller

    2016-03-01

    Full Text Available The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP, a ribosome inactivating protein (RIP that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA, a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141.

  3. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  5. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  6. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8.

    Directory of Open Access Journals (Sweden)

    Archana Shenoy

    2009-09-01

    Full Text Available The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript.To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8.We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.

  7. Regulation of multispanning membrane protein topology via post-translational annealing.

    Science.gov (United States)

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  8. Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2.

    Science.gov (United States)

    Aguilar-Valles, Argel; Matta-Camacho, Edna; Khoutorsky, Arkady; Gkogkas, Christos; Nader, Karim; Lacaille, Jean-Claude; Sonenberg, Nahum

    2015-08-05

    Exacerbated mRNA translation during brain development has been linked to autism spectrum disorders (ASDs). Deletion of the eukaryotic initiation factor 4E (eIF4E)-binding protein 2 gene (Eif4ebp2), encoding the suppressor of mRNA translation initiation 4E-BP2, leads to an imbalance in excitatory-to-inhibitory neurotransmission and ASD-like behaviors. Inhibition of group I metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 reverses the autistic phenotypes in several ASD mouse models. Importantly, these receptors control synaptic physiology via activation of mRNA translation. We investigated the potential reversal of autistic-like phenotypes in Eif4ebp2(-/-) mice by using antagonists of mGluR1 (JNJ16259685) or mGluR5 (fenobam). Augmented hippocampal mGluR-induced long-term depression (LTD; or chemically induced mGluR-LTD) in Eif4ebp2(-/-) mice was rescued by mGluR1 or mGluR5 antagonists. While rescue by mGluR5 inhibition occurs through the blockade of a protein synthesis-dependent component of LTD, normalization by mGluR1 antagonists requires the activation of protein synthesis. Synaptically induced LTD was deficient in Eif4ebp2(-/-) mice, and this deficit was not rescued by group I mGluR antagonists. Furthermore, a single dose of mGluR1 (0.3 mg/kg) or mGluR5 (3 mg/kg) antagonists in vivo reversed the deficits in social interaction and repetitive behaviors (marble burying) in Eif4ebp2(-/-) mice. Our results demonstrate that Eif4ebp2(-/-) mice serve as a relevant model to test potential therapies for ASD symptoms. In addition, we provide substantive evidence that the inhibition of mGluR1/mGluR5 is an effective treatment for physiological and behavioral alterations caused by exacerbated mRNA translation initiation. Exacerbated mRNA translation during brain development is associated with several autism spectrum disorders (ASDs). We recently demonstrated that the deletion of a negative regulator of mRNA translation initiation, the eukaryotic initiation factor 4E

  9. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  10. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    International Nuclear Information System (INIS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Jernigan, Robert L; Sen, Taner Z; Kloczkowski, Andrzej

    2008-01-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine–Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit

  11. Modifications to the translational apparatus which affect the regulation of protein synthesis in sea urchin embryos

    International Nuclear Information System (INIS)

    Scalise, F.W.

    1988-01-01

    Protein synthesis can be regulated at a number of cellular levels. I have examined how modifications to specific components of the protein synthetic machinery are involved in regulating the efficiency of initiation of translation during early sea urchin embryogenesis. It is demonstrated that Ca 2+ concentrations exceeding 500 uM cause the inhibition of protein synthesis in cell-free translation lysates prepared from sea urchin embryos. Specific changes in the state of phosphorylation of at least 8 proteins occur during this Ca 2+ -mediated repression of translation. Analysis of these proteins has indicated that, unlike mammalian systems, there is no detectable level of Ca 2+ -dependent phosphorylation of the αsubunit eIF-2. Two of the proteins which do become phosphorylated in response to Ca 2+ are calmodulin and an isoelectric form of sea urchin eIF-4D. In addition, 2 proteins which share similarities with kinases involved in the regulation of protein synthesis in mammalian cells, also become phosphorylated. I have investigated the consequences of changes in eIF-4D during sea urchin embryogenesis because it has been proposed that a polyamine-mediated conversion of lysine to hypusine in this factor may enhance translational activity. It is demonstrated that [ 3 H] spermidine-derived radioactivity is incorporated into a number of proteins when sea urchin embryos are labeled in vivo, and that the pattern of individual proteins that become labeled changes over the course of the first 30 hr of development

  12. Definition of the complete Schistosoma mansoni hemoglobinase mRNA sequence and gene expression in developing parasites.

    Science.gov (United States)

    el Meanawy, M A; Aji, T; Phillips, N F; Davis, R E; Salata, R A; Malhotra, I; McClain, D; Aikawa, M; Davis, A H

    1990-07-01

    Schistosoma mansoni uses a variety of proteases termed hemoglobinases to obtain nutrition from host globin. Previous reports have characterized cDNAs encoding 1 of these enzymes. However, these sequences did not define the primary structures of the mRNA and protein. The complete sequence of the 1390 base mRNA has now been determined. It encodes a 50 kDa primary translation product. In vitro translations coupled with immunoprecipitations and Western blots of parasite lysates allowed visualization of the 50 kDa form. Production of the 31 kDa mature hemoglobinase from the 50 kDa species involves removal of both NH2 and COOH terminal residues from the primary translation product. Expression of hemoglobinase mRNA and protein was examined during larval parasite development. Low levels were observed in young schistosomula. After 6-9 days in culture, high hemoglobinase levels were seen which correlated with the onset of red blood cell feeding. Immunoelectron microscopy was employed to examine hemoglobinase location and function. In adult worms the enzyme was associated with the gut lumen and gut epithelium. In cercariae, the protease was observed in the head gland, suggesting new roles for the protease.

  13. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking.

    Directory of Open Access Journals (Sweden)

    Jing Jin

    Full Text Available Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV post-transcriptional regulatory element (PRE mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.

  14. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Directory of Open Access Journals (Sweden)

    Prakitchai Chotewutmontri

    2016-07-01

    Full Text Available Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery

  15. Transcription and translation of phloem protein (PP2) during phloem differentiation in Cucurbita maxima.

    Science.gov (United States)

    Sham, M H; Northcote, D H

    1987-03-01

    The synthesis of a major phloem protein, PP2, was investigated by measurement of the mRNA at various stages of phloem development in Cucurbita. Quantitative assays with immuno-electrophoresis showed that the amounts of PP2 in hypocotyls of Cucurbita seedlings increased with the age of seedlings. An increase in mRNA for PP2 during the early stages of seedling growth was also observed by immunoprecipitation of the invitro translation products of hypocotyl polyadenylated RNA. There was close timing in the variations of PP2 synthesised in vivo and in the changes in amounts of translatable PP2-mRNA during the course of seedling growth. A complementary-DNA (cDNA) library to polyadenylated RNA from hypocotyls of 3-d-old Cucurbita seedlings has been constructed. Two cDNA clones, A and B, have been identified by hybrid-release translation to be complementary to the mRNA coding for PP2. The levels of total mRNA for PP2 measured with clone A were found to increase in the first 4 d of seedling growth but decreased to lower levels in older seedlings. Regulatory controls on both transcription and modification of transcripts appeared to occur during the synthesis of PP2.

  16. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells

    Directory of Open Access Journals (Sweden)

    John M Morrison

    2012-03-01

    Full Text Available The modulation of mRNA turnover is gaining recognition as a mechanism by which Staphylococcus aureus regulates gene expression, but the factors that orchestrate alterations in transcript degradation are poorly understood. In that regard, we previously found that 138 mRNA species, including the virulence factors protein A (spa and collagen binding protein (cna, are stabilized in a sarA-dependent manner during exponential phase growth, suggesting that SarA protein may directly or indirectly effect the RNA turnover properties of these transcripts. Herein, we expanded our characterization of the effects of sarA on mRNA turnover during late exponential and stationary phases of growth. Results revealed that the locus affects the RNA degradation properties of cells during both growth phases. Further, using gel mobility shift assays and RIP-ChIP, it was found that SarA protein is capable of binding mRNA species that it stabilizes both in vitro and within bacterial cells. Taken together, these results suggest that SarA post-transcriptionally regulates S. aureus gene expression in a manner that involves binding to and consequently altering the mRNA turnover properties of target transcripts.

  17. Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Gerdes, Kenn

    2008-01-01

    Prokaryotic toxin-antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro bu...

  18. Thyroid hormone deiodinase type 2 mRNA levels in sea lamprey (Petromyzon marinus) are regulated during metamorphosis and in response to a thyroid challenge.

    Science.gov (United States)

    Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G

    2013-03-01

    Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Myosin Va associates with mRNA in ribonucleoprotein particles present in myelinated peripheral axons and in the central nervous system.

    Science.gov (United States)

    Calliari, Aldo; Farías, Joaquina; Puppo, Agostina; Canclini, Lucía; Mercer, John A; Munroe, David; Sotelo, José R; Sotelo-Silveira, José R

    2014-03-01

    Sorting of specific mRNAs to particular cellular locations and regulation of their translation is an essential mechanism underlying cell polarization. The transport of RNAs by kinesins and dyneins has been clearly established in several cell models, including neurons in culture. A similar role appears to exist in higher eukaryotes for the myosins. Myosin Va (Myo5a) has been described as a component of ribonucleoprotein particles (RNPs) in the adult rat nervous system and associated to ZBP1 and ribosomes in ribosomal periaxoplasmic plaques (PARPs), making it a likely candidate for mediating some aspects of RNA transport in neurons. To test this hypothesis, we have characterized RNPs containing Myo5a in adult brains of rats and mice. Microarray analysis of RNAs co-immunoprecipitated with Myo5a indicates that this motor may associate with a specific subpopulation of neuronal mRNAs. We found mRNAs encoding α-synuclein and several proteins with functions in translation in these RNPs. Immunofluorescence analyses of RNPs showed apparent co-localization of Myo5a with ribosomes, mRNA and RNA-binding proteins in discrete structures present both in axons of neurons in culture and in myelinated fibers of medullary roots. Our data suggest that PARPs include RNPs bearing the mRNA coding for Myo5a and are equipped with kinesin and Myo5a molecular motors. In conclusion, we suggest that Myo5a is involved in mRNA trafficking both in the central and peripheral nervous systems. Copyright © 2013 Wiley Periodicals, Inc.

  20. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    Energy Technology Data Exchange (ETDEWEB)

    Racle, Julien; Hatzimanikatis, Vassily, E-mail: vassily.hatzimanikatis@epfl.ch [Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne (Switzerland); Stefaniuk, Adam Jan [Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-07-28

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  1. The CPT1C 5'UTR contains a repressing upstream open reading frame that is regulated by cellular energy availability and AMPK.

    Directory of Open Access Journals (Sweden)

    Ines Lohse

    Full Text Available BACKGROUND: Translational control is utilized as a means of regulating gene expression in many species. In most cases, posttranscriptional regulatory mechanisms play an important role in stress response pathways and can lead to dysfunctional physiology if blocked by mutations. Carnitine Palmitoyltransferase 1 C (CPT1C, the brain-specific member of the CPT 1 family, has previously been shown to be involved in regulating metabolism in situations of energy surplus. PRINCIPAL FINDINGS: Sequence analysis of the CPT1C mRNA revealed that it contains an upstream open reading frame (uORF in the 5' UTR of its mRNA. Using CPT1C 5' UTR/luciferase constructs, we investigated the role of the uORF in translational regulation. The results presented here show that translation from the CPT1C main open reading frame (mORF is repressed by the presence of the uORF, that this repression is relieved in response to specific stress stimuli, namely glucose deprivation and palmitate-BSA treatment, and that AMPK inhibition can relieve this uORF-dependent repression. SIGNIFICANCE: The fact that the mORF regulation is relieved in response to a specific set of stress stimuli rather than general stress response, hints at an involvement of CPT1C in cellular energy-sensing pathways and provides further evidence for a role of CPT1C in hypothalamic regulation of energy homeostasis.

  2. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels.

    Science.gov (United States)

    Horton, J D; Cuthbert, J A; Spady, D K

    1993-01-01

    The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814

  3. 1,25 dihydroxyvitamin D3 (1,25) regulation of c-myc mRNA in HL-60 leukemia cells

    International Nuclear Information System (INIS)

    Simpson, R.U.; Bresnick, E.H.; Begley, D.A.

    1986-01-01

    Recently, 1,25 was shown to induce differentiation and decrease c-myc levels in HL-60 cells. The authors have confirmed these observations by RNA dot blot analysis. Cells treated with 50 nM 1,25 for 4, 24 and 48 hr showed c-myc mRNA levels of 26, 17 and 15% of control respectively. β-Actin mRNA levels were not altered. To ascertain whether 1, 25 regulated c-myc transcriptionally, an HL-60 nuclear RNA runoff assay was developed. Assay of total nuclei transcriptional activity revealed that 50% of RNA elongation was α-amanitin (0.8 μg/ml) sensitive and was linear with nuclei concentration (0.1-1 x 10 7 nuclei). 1,25 (50 nM) treated (45-96 hr) cells had decreased (approx.40%) total transcription rate relative to control. Decreased total RNA synthesis occurred concomitant with NBT reducing activity. 32 P-RNA runoff transcripts from HL-60 nuclei were hybridized to excess (5 μg DNA was excess) Pst I linearized c-myc and β-actin clones (in pBR322) immobilized on nitrocellulose filter. 32 P-RNA input from 2 x 10 6 to 2 x 10 7 cpm yielded linear hybridization signal. Analysis of blot dot intensity revealed no difference in transcription of c-myc in nuclei from 1,25 dosed or control cells. (myc/actin ratios: 1,25 (50 nM, 72 hr) =1.1 +/- 0.3 and control (72 hr) = 1.0, N=3 or 2 or 3 dots ea). These preliminary data suggest 1,25 does not affect c-myc transcription in HL-60 nuclei and may regulate c-myc mRNA post-transcriptionally

  4. Altered expression of asparagine synthetase mRNA in human leukemic and carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.O.; Guzowski, D.E.; Millan, C.A. [North Shore Univ. Hospital/Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine. Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.

  5. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver.

    Science.gov (United States)

    Odbayar, Tseye-Oidov; Kimura, Toshinori; Tsushida, Tojiro; Ide, Takashi

    2009-05-01

    The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague-Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

  6. Cell-specific differences in the requirements for translation quality control

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Ling, Jiqiang; Roy, Hervé

    2010-01-01

    Protein synthesis has an overall error rate of approximately 10(-4) for each mRNA codon translated. The fidelity of translation is mainly determined by two events: synthesis of cognate amino acid:tRNA pairs by aminoacyl-tRNA synthetases (aaRSs) and accurate selection of aminoacyl-tRNAs (aa-tRNAs)...... divergent requirements for quality control in different cell compartments and suggest that the limits of translational accuracy may be largely determined by cellular physiology....

  7. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs.

    Science.gov (United States)

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-04-07

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27(kip1)and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27(kip1)mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. © The Author(s) 2016. Published by Oxford

  8. Oxygen-dependent regulation of aquaporin-3 expression

    Directory of Open Access Journals (Sweden)

    Hoogewijs D

    2016-04-01

    Full Text Available David Hoogewijs,1,2 Melanie Vogler,3 Eveline Zwenger,3 Sabine Krull,3 Anke Zieseniss3 1Institute of Physiology, University of Duisburg-Essen, Essen, Germany; 2Institute of Physiology, University of Zürich, Zürich, Switzerland; 3Institute of Cardiovascular Physiology, University Medical Center Göttingen, University of Göttingen, Göttingen, GermanyAbstract: The purpose of this study was to investigate whether aquaporin-3 (AQP3 expression is altered in hypoxia and whether hypoxia-inducible transcription factor (HIF-1 regulates the hypoxic expression. AQP3 mRNA expression was studied in L929 fibrosarcoma cells and in several tissues derived from mice that were subjected to hypoxia. Computational analysis of the AQP3 promoter revealed conserved HIF binding sites within close proximity to the translational start site, and chromatin immunoprecipitation assays confirmed binding of HIF-1 to the endogenous hypoxia response elements. Furthermore, hypoxia resulted in increased expression of AQP3 mRNA in L929 fibrosarcoma cells. Consistently, shRNA-mediated knockdown of HIF-1 greatly reduced the hypoxic induction of AQP3. In addition, mRNA analysis of organs from mice exposed to inspiratory hypoxia demonstrated pronounced hypoxia-inducible expression of AQP3 in the kidney. Overall, our findings suggest that AQP3 expression can be regulated at the transcriptional level and that AQP3 represents a novel HIF-1 target gene. Keywords: transcriptional regulation, oxygen, hypoxia-inducible factor, hypoxia response element

  9. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    Science.gov (United States)

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  10. 5'-3' RNA-RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mrna: a potential common mechanism for tombusviridae.

    Science.gov (United States)

    Fabian, Marc R; White, K Andrew

    2004-07-09

    Tomato bushy stunt virus (TBSV) is the prototypical member of the genus Tombusvirus in the family Tombusviridae. The (+)-strand RNA genome of TBSV lacks both a 5' cap and a 3' poly(A) tail and instead contains a 3'-terminal RNA sequence that acts as a cap-independent translational enhancer (3' CITE). In this study, we have determined the RNA secondary structure of the translation-specific central segment of the 3' CITE, termed region 3.5 (R3.5). MFOLD structural modeling combined with solution structure mapping and comparative sequence analysis indicate that R3.5 adopts a branched structure that contains three major helices. Deletion and substitution studies revealed that two of these extended stem-loop (SL) structures are essential for 3' CITE activity in vivo. In particular, the terminal loop of one of these SLs, SL-B, was found to be critical for translation. Compensatory mutational analysis showed that SL-B functions by base pairing with another SL, SL3, in the 5' untranslated region of the TBSV genome. Thus, efficient translation of TBSV mRNA in vivo requires a 5'-3' RNA-RNA interaction that effectively circularizes the message. Similar types of interactions are also predicted to occur in TBSV subgenomic mRNAs between their 5' untranslated regions and the 3' CITE, and both genomic and subgenomic 5'-3' interactions are well conserved in all members of the genus Tombusvirus. In addition, a survey of other genera in Tombusviridae revealed the potential for similar 5'-3' RNA-RNA-based interactions in their viral mRNAs, suggesting that this mechanism extends throughout this large virus family.

  11. Apoptosis Triggers Specific, Rapid, and Global mRNA Decay with 3′ Uridylated Intermediates Degraded by DIS3L2

    Directory of Open Access Journals (Sweden)

    Marshall P. Thomas

    2015-05-01

    Full Text Available Apoptosis is a tightly coordinated cell death program that damages mitochondria, DNA, proteins, and membrane lipids. Little is known about the fate of RNA as cells die. Here, we show that mRNAs, but not noncoding RNAs, are rapidly and globally degraded during apoptosis. mRNA decay is triggered early in apoptosis, preceding membrane lipid scrambling, genomic DNA fragmentation, and apoptotic changes to translation initiation factors. mRNA decay depends on mitochondrial outer membrane permeabilization and is amplified by caspase activation. 3′ truncated mRNA decay intermediates with nontemplated uridylate-rich tails are generated during apoptosis. These tails are added by the terminal uridylyl transferases (TUTases ZCCHC6 and ZCCHC11, and the uridylated transcript intermediates are degraded by the 3′ to 5′ exonuclease DIS3L2. Knockdown of DIS3L2 or the TUTases inhibits apoptotic mRNA decay, translation arrest, and cell death, whereas DIS3L2 overexpression enhances cell death. Our results suggest that global mRNA decay is an overlooked hallmark of apoptosis.

  12. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Han, Mingyuan; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan

    2017-01-01

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of 126 -LQxxLxxxGL- 135 . In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine arteritis virus.

  13. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mingyuan, E-mail: hanming@umich.edu; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2017-05-15

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of {sub 126}-LQxxLxxxGL-{sub 135}. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine

  14. Nucleolin is regulated both at the level of transcription and translation

    International Nuclear Information System (INIS)

    Bicknell, Katrina; Brooks, Gavin; Kaiser, Pete; Chen Hongying; Dove, Brian K.; Hiscox, Julian A.

    2005-01-01

    Nucleolin is a multi-functional protein that is located to the nucleolus. In tissue culture cells, the stability of nucleolin is related to the proliferation status of the cell. During development, rat cardiomyocytes proliferate actively with increases in the mass of the heart being due to both hyperplasia and hypertrophy. The timing of this shift in the phenotype of the myocyte from one capable of undergoing hyperplasia to one that can grow only by hypertrophy occurs within 4 days of post-natal development. Thus, cardiomyocytes are an ideal model system in which to study the regulation of nucleolin during growth in vivo. Using Western blot and quantitative RT-PCR (TaqMan) we found that the amount of nucleolin is regulated both at the level of transcription and translation during the development of the cardiomyocyte. However, in cells which had exited the cell cycle and were subsequently given a hypertrophic stimulus, nucleolin was regulated post-transcriptionally

  15. HuR binds to a single site on the C/EBPβ mRNA of 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Jones, Heath; Carver, Melinda; Pekala, Phillip H.

    2007-01-01

    HuR is a ligand for nuclear mRNAs containing adenylate-uridylate rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins which then facilitate nuclear export of the complex. In the cytosol HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However within 30 min of exposure to the differentiation stimulus, the HuR content in the cytosol increases consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the C/EBPβ message is a ligand for HuR and that the single binding site is an adenylate-uridylate rich element in the 3'-untranslated region

  16. Building the Future: Post-transcriptional Regulation of Cell Fate Decisions Prior to the Xenopus Midblastula Transition.

    Science.gov (United States)

    Sheets, Michael D

    2015-01-01

    In all animals, a critical period in early development is when embryonic cells switch from relying solely upon maternally deposited RNAs and proteins to relying upon molecules encoded by the zygotic genome. Xenopus embryos have served as a model for examining this switch, as well as the maternally controlled stages that prepare for it. In Xenopus, the robust activation of zygotic transcription occurs at the 12th cleavage division and is referred to as the midblastula transition (MBT). Prior to MBT, gene expression is regulated by post-transcriptional events including mRNA and protein localization, protein post-translational modification, and mRNA translation. After the MBT, appropriate transcriptional regulation of the zygotic genome becomes critical and predominates. However, it is important to realize that the first key cell fate decisions that have profound impacts on development occur prior to the MBT and these are governed by regulating the expression of maternally deposited regulatory mRNAs and proteins. In this chapter, I will discuss post-transcriptional mechanisms that function during the maternal stages of Xenopus development with an emphasis on mechanisms known to directly modulate cell fate decisions. Emerging approaches and technologies that will help better understand this phase of development will also be discussed. © 2015 Elsevier Inc. All rights reserved.

  17. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  18. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    Directory of Open Access Journals (Sweden)

    Cornelia Kilchert

    2015-12-01

    Full Text Available In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  19. Quantitative analysis of ribosome–mRNA complexes at different translation stages

    Science.gov (United States)

    Shirokikh, Nikolay E.; Alkalaeva, Elena Z.; Vassilenko, Konstantin S.; Afonina, Zhanna A.; Alekhina, Olga M.; Kisselev, Lev L.; Spirin, Alexander S.

    2010-01-01

    Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture. PMID:19910372

  20. ZMS regulation of M2 muscarinic receptor mRNA stability requires protein factor

    International Nuclear Information System (INIS)

    Zhang Yongfang; Xia Zongqin; Hu Ya'er

    2010-01-01

    Aim The aim of this work is to study the elevation mechanism of ZMS on muscarinic M2 receptor mRNA expression. Methods Actinomycin D was added to cultured CHOm2 cells to stop the de novo synthesis of M2 receptor mRNA and samples were taken at various times to determine the time course of mRNA of M2 receptor with real-time quantitative RT-PCR. Half-life of M2 receptor mRNA and the effect of ZMS on the half-life was obtained from the slope of the exponential curves. Cycloheximide was added at 4 h prior to and 24 h after the addition of ZMS to examine the effect of de novo protein synthesis on the action of ZMS. Results The half-life of m2 mRNA was prolonged by ZMS treatment without cycloheximide (4.75±0.54 h and 2.13 h±0.23 h for ZMS and vehicle treated groups, respectively, P<0.05). When cycloheximide was added to the culture medium 4h prior to the addition of ZMS, the effect of ZMS in prolonging the half-life of m2 mRNA disappeared (3.06 h±0.23 h and 3.00 h±l.20 h for cells with and without ZMS, respectively). However, when the ZMS was added to the medium 24h prior to the addition of cycloheximide, the action of ZMS was not abolished by cycloheximide (half-life was 5.43 h±1.13 h and 2.46 h±0.09 h for cells with and without ZMS, respectively). Conclusion These data suggest that de novo protein synthesis was required for the increase in M2 mRNA stability induced by ZMS. (authors)

  1. The functional half-life of an mRNA depends on the ribosome spacing in an early coding region

    DEFF Research Database (Denmark)

    Pedersen, Margit; Nissen, Søren; Mitarai, Namiko

    2011-01-01

    Bacterial mRNAs are translated by closely spaced ribosomes and degraded from the 5'-end, with half-lives of around 2 min at 37 °C in most cases. Ribosome-free or "naked" mRNA is known to be readily degraded, but the initial event that inactivates the mRNA functionally has not been fully described...

  2. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Yuki; Nakajima, Miki; Mohri, Takuya [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Takamiya, Masataka; Aoki, Yasuhiro [Department of Legal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Fukami, Tatsuki [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@kenroku.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2012-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. -- Highlights: ► Overexpression of miR-24 into human cell lines decreased the ARNT protein level. ► miR-24-dependent down-regulation of ARNT affected the expression of CYP1A1 and CA IX. ► Luciferase assay was performed to identify functional MREs for miR-24 in ARNT mRNA. ► The miR-24 levels inversely correlated with the ARNT protein levels in human liver.

  3. MECHANISM AND REGULATION OF NONSENSE-MEDIATED MRNA DECAY (NMD, AN ESSENTIAL QUALITY CONTROL SYSTEM OF PLANTS

    Directory of Open Access Journals (Sweden)

    D. Silhavy

    2008-09-01

    Full Text Available In eukaryotic cell, various quality control mechanisms have evolved to ensure that only perfect mRNAs could be translated. Nonsense-mediated mRNA decay (NMD is a quality control system that identifies and eliminates mRNAs containing premature termination codons, thereby preventing the accumulation of potentially harmful truncated proteins. While NMD is well-characterized in yeast, in invertebrates and in mammals, plant NMD is poorly understood. In yeast and in invertebrates unusually long 3'untranslated regions (3'UTRs render an mRNA subject to NMD, while in mammals' 3'UTR located introns trigger NMD. UPF1, 2 and 3 are the key trans-acting NMD factors in yeast as well as in animals. However, in mammals, the core components of the Exon Junction Complex (Mago, Y14, eIF4A3 and MLN51 are also required for NMD. It was proposed that long 3’UTR-induced NMD is the ancient type and that it was changed to a more complex intron-based NMD in mammals. To better understand the evolution of eukaryotic NMD systems, we have studied the NMD machinery of plants, as plants are outgroup relative to fungi and animals. We have elaborated various transient assays to analyze plant NMD. Using these assays we defined the cis elements of plant NMD and characterized several trans-acting plant NMD factors. We demonstrated that two plant NMD pathways co-exist, one pathway, as yeast or invertebrate NMD systems, eliminates mRNAs with long 3'UTRs, while a distinct pathway, like mammalian NMD, degrades mRNAs harbouring 3'UTR-located introns. We showed that UPF1, UPF2, and SMG-7 are involved in both plant NMD pathways, whereas Mago and Y14 are required only for intron-based NMD. We also provide evidence that the molecular mechanism of long 3'UTR-based plant NMD resembles yeast NMD, while the intron-based NMD is similar to mammalian NMD. Moreover we have found that the SMG-7 component of plant NMD is targeted by NMD suggesting that plant NMD is autoregulated. We propose that in

  4. Dis3- and exosome subunit-responsive 3′ mRNA instability elements

    International Nuclear Information System (INIS)

    Kiss, Daniel L.; Hou, Dezhi; Gross, Robert H.; Andrulis, Erik D.

    2012-01-01

    Highlights: ► Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. ► Identified novel 3′ UTR cis-acting element that destabilizes a reporter mRNA. ► Show exosome subunits are required for cis-acting element-mediated mRNA instability. ► Define precise sequence requirements of novel cis-acting element. ► Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3′–5′ exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3′ untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette—harboring four elements—destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA

  5. Conceptual modeling in systems biology fosters empirical findings: the mRNA lifecycle.

    Directory of Open Access Journals (Sweden)

    Dov Dori

    Full Text Available One of the main obstacles to understanding complex biological systems is the extent and rapid evolution of information, way beyond the capacity individuals to manage and comprehend. Current modeling approaches and tools lack adequate capacity to model concurrently structure and behavior of biological systems. Here we propose Object-Process Methodology (OPM, a holistic conceptual modeling paradigm, as a means to model both diagrammatically and textually biological systems formally and intuitively at any desired number of levels of detail. OPM combines objects, e.g., proteins, and processes, e.g., transcription, in a way that is simple and easily comprehensible to researchers and scholars. As a case in point, we modeled the yeast mRNA lifecycle. The mRNA lifecycle involves mRNA synthesis in the nucleus, mRNA transport to the cytoplasm, and its subsequent translation and degradation therein. Recent studies have identified specific cytoplasmic foci, termed processing bodies that contain large complexes of mRNAs and decay factors. Our OPM model of this cellular subsystem, presented here, led to the discovery of a new constituent of these complexes, the translation termination factor eRF3. Association of eRF3 with processing bodies is observed after a long-term starvation period. We suggest that OPM can eventually serve as a comprehensive evolvable model of the entire living cell system. The model would serve as a research and communication platform, highlighting unknown and uncertain aspects that can be addressed empirically and updated consequently while maintaining consistency.

  6. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  7. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.

    Science.gov (United States)

    Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.

  8. Pioneer round of translation occurs during serum starvation

    International Nuclear Information System (INIS)

    Oh, Nara; Kim, Kyoung Mi; Cho, Hana; Choe, Junho; Kim, Yoon Ki

    2007-01-01

    The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E. Steady-state translation directed by eIF4E allows for an immediate and rapid response to changes in physiological conditions. Here, we show that nonsense-mediated mRNA decay (NMD), which restricts only to the pioneer round of translation but not to steady-state translation, efficiently occurs even during serum starvation, in which steady-state translation is drastically abolished. Accordingly, CBP80 remains in the nucleus and processing bodies are unaffected in their abundance and number in serum-starved conditions. These results suggest that mRNAs enter the pioneer round of translation during serum starvation and are targeted for NMD if they contain premature termination codons

  9. The translation factors of Drosophila melanogaster.

    Science.gov (United States)

    Marygold, Steven J; Attrill, Helen; Lasko, Paul

    2017-01-02

    Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical 'translation factors'. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.

  10. 1200 nt rat liver mRNA identified by differential hybridization exhibits coordinate regulation with 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase

    International Nuclear Information System (INIS)

    Tanaka, R.D.; Clarke, C.F.; Fogelman, A.M.; Edwards, P.A.

    1986-01-01

    Differential hybridization has been used to identify genes in rat liver that encode transcripts which are increased by the drugs cholestyramine and mevinolin and are decreased by dietary cholesterol. This approach should prove useful in isolating and identifying coordinately regulated genes involved in the isoprene biosynthetic pathway. Rat liver poly (A) + RNA was isolated from animals fed diets supplemented with either cholestyramine and mevinolin or with cholesterol. Radiolabeled cDNAs generated from these two RNA preparations were used to screen a rat cDNAs library. A preliminary screen of 10,000 recombinants has led to the identification of a clone with an insert of 1200 bp that hybridizes to a mRNA species of about 1200 nt. The level of this RNA species in rat liver is elevated by the drugs cholestyramine and mevinolin and is decreased by cholesterol feeding. This RNA species is also decreased by mevalonate administration to rats. The regulation of this 1200 nt mRNA species mirrors that of HMG CoA reductase and HMG CoA synthase. It seems very likely that this 1200 nt mRNA encodes a polypeptide which is involved in the isoprene biosynthetic pathway

  11. Regulation of cyclooxygenase expression in cultured vascular cells

    International Nuclear Information System (INIS)

    Pash, J.M.

    1988-01-01

    Arachidonic acid metabolism in vascular tissue results in synthesis of prostacylin. The key enzyme in this synthesis pathway, cyclooxygenase, is down-regulated through self-inactivation. An analogous refractory state is produced by aspirin which irreversibly acetylates the enzyme. To further understand this phenomenon, the inactivation and recovery of cyclooxygenase activity was assayed in cultured ray vascular smooth muscle cells using exogenously added arachidonic acid. Self-inactivation of cyclooxygenase was observed following treatment with micromolar amounts of arachidonic acid. The recovery of cyclooxygenase activity following self-inactivation was analogous to that observed following aspirin-inactivation in that it depended on protein synthesis and required either serum or EGF. Two additional factors, TGF-β and uric acid, were found to enhance the stimulation of cyclooxygenase recovery by EGF. A defined medium containing 10 ng/mL EGF, 1 ng/mL TGFβ and 0.1 mM uric acid duplicated the cyclooxygenase recovery activity of 10% serum. Stimulation of cyclooxygenase activity by EGF and TGF-β was inhibited by cycloheximide but not by actinomycin-D, indicating a link to increased translation of pre-existing mRNA. A lack of significant effect on overall protein synthesis by EGF and TGF-β, measured by [ 35 S]-methionine incorporation under conditions where a multi-fold increase in cyclooxygenase activity was seen, indicates that the translational regulation of a small fraction of total mRNA and possibly cyclooxygenase is occurring

  12. An upstream open reading frame modulates ebola virus polymerase translation and virus replication.

    Directory of Open Access Journals (Sweden)

    Reed S Shabman

    2013-01-01

    Full Text Available Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand RNA viruses due in part to long 5' and 3' untranslated regions (UTRs present in the seven viral transcriptional units. To date, specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus (EBOV 5'-UTRs lack internal ribosomal entry site function. However, the 5'-UTRs do differentially regulate cap-dependent translation when placed upstream of a GFP reporter gene. Most dramatically, the 5'-UTR derived from the viral polymerase (L mRNA strongly suppressed translation of GFP compared to a β-actin 5'-UTR. The L 5'-UTR is one of four viral genes to possess upstream AUGs (uAUGs, and ablation of each uAUG enhanced translation of the primary ORF (pORF, most dramatically in the case of the L 5'-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a "weak" Kozak sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2α was phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10-100-fold lower than a wild-type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential therapeutic target.

  13. A mild form of SLC29A3 disorder: a frameshift deletion leads to the paradoxical translation of an otherwise noncoding mRNA splice variant.

    Directory of Open Access Journals (Sweden)

    Alexandre Bolze

    Full Text Available We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3. Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the 'rescue' role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic.

  14. The emerging role of microRNA in regulation of endotoxin tolerance.

    LENUS (Irish Health Repository)

    Quinn, Edel M

    2012-05-01

    Endotoxin tolerance is a phenomenon where cells show reduced responsiveness toward repeated endotoxin stimulation. Regulation of tolerance occurs at multiple levels of the cell signaling cascade, and many of these levels are potentially regulated by miRNA, which are a class of small RNA that bind to mRNA to down-regulate gene expression at the post-transcriptional level. Roles have been identified for miR-146a, miR-221, miR-579, miR-125b, miR-155, let-7e, and miR-98 in regulating the TLR4 signaling pathway during the development of endotoxin tolerance at receptor, signaling pathway, and gene transcription and translational levels. miRNA represent exciting, new potential targets in attempts to exogenously modulate development of endotoxin tolerance.

  15. In silico analysis of miRNA-mediated gene regulation in OCA and OA genes.

    Science.gov (United States)

    Kamaraj, Balu; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj

    2014-12-01

    Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3'UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3'UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3'UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3'UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.

  16. Differential conserted activity induced regulation of Nogo receptors (1-3, LOTUS and Nogo mRNA in mouse brain.

    Directory of Open Access Journals (Sweden)

    Tobias E Karlsson

    Full Text Available Nogo Receptor 1 (NgR1 mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity.

  17. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  18. Applications of Recombinant DNA Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part C: Protein Synthesis and Post-Translational Processing in Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Gary E Wild

    2000-01-01

    Full Text Available The translation of mRNA constitutes the first step in the synthesis of a functional protein. The polypeptide chain is subsequently folded into the appropriate three-dimensional configuration and undergoes a variety of processing steps before being converted into its active form. These processing steps are intimately related to the cellular events that occur in the endoplasmic reticulum and Golgi compartments, and determine the sorting and transport of different proteins to their appropriate destinations within the cell. While the regulation of gene expression occurs primarily at the level of transcription, the expression of many genes can also be controlled at the level of translation. Most proteins can be regulated in response to extracellular signals. In addition, intracellular protein levels can be controlled by differential rates of protein degradation. Thus, the regulation of both the amounts and activities of intracellular proteins ultimately determines all aspects of cell behaviour.

  19. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Marti, Andrea R; Patil, Sudarshan; Mrdalj, Jelena; Meerlo, Peter; Skrede, Silje; Pallesen, Ståle; Pedersen, Torhild T; Bramham, Clive R; Grønli, Janne

    2017-01-01

    Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats ( n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m 7 GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC

  20. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Andrea R. Marti

    2017-10-01

    Full Text Available Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1 has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40 were exposed to forced activity, either in their rest phase (simulated night shift work or in their active phase (simulated day shift work for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0. Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus implicated in cognition and sleep loss, were analyzed with m7GTP (cap pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1 was significantly reduced in

  1. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  2. Regulation of the tumor suppressor PML by sequential post-translational modifications

    International Nuclear Information System (INIS)

    Schmitz, M. Lienhard; Grishina, Inna

    2012-01-01

    Post-translational modifications (PTMs) regulate multiple biological functions of the promyelocytic leukemia (PML) protein and also the fission, disassembly, and rebuilding of PML nuclear bodies (PML-NBs) during the cell cycle. Pathway-specific PML modification patterns ensure proper signal output from PML-NBs that suit the specific functional requirements. Here we comprehensively review the signaling pathways and enzymes that modify PML and also the oncogenic PML-RARα fusion protein. Many PTMs occur in a hierarchical and timely organized fashion. Phosphorylation or acetylation constitutes typical starting points for many PML modifying events, while degradative ubiquitination is an irreversible end point of the modification cascade. As this hierarchical organization of PTMs frequently turns phosphorylation events as primordial events, kinases or phosphatases regulating PML phosphorylation may be interesting drug targets to manipulate the downstream modifications and thus the stability and function of PML or PML-RARα.

  3. Analysis of the 3’ untranslated regions of α-tubulin and S-crystallin mRNA and the identification of CPEB in dark- and light-adapted octopus retinas

    Science.gov (United States)

    Kelly, Shannan; Yamamoto, Hideki

    2008-01-01

    Purpose We previously reported the differential expression and translation of mRNA and protein in dark- and light-adapted octopus retinas, which may result from cytoplasmic polyadenylation element (CPE)–dependent mRNA masking and unmasking. Here we investigate the presence of CPEs in α-tubulin and S-crystallin mRNA and report the identification of cytoplasmic polyadenylation element binding protein (CPEB) in light- and dark-adapted octopus retinas. Methods 3’-RACE and sequencing were used to isolate and analyze the 3’-UTRs of α-tubulin and S-crystallin mRNA. Total retinal protein isolated from light- and dark-adapted octopus retinas was subjected to western blot analysis followed by CPEB antibody detection, PEP-171 inhibition of CPEB, and dephosphorylation of CPEB. Results The following CPE-like sequence was detected in the 3’-UTR of isolated long S-crystallin mRNA variants: UUUAACA. No CPE or CPE-like sequences were detected in the 3’-UTRs of α-tubulin mRNA or of the short S-crystallin mRNA variants. Western blot analysis detected CPEB as two putative bands migrating between 60-80 kDa, while a third band migrated below 30 kDa in dark- and light-adapted retinas. Conclusions The detection of CPEB and the identification of the putative CPE-like sequences in the S-crystallin 3’-UTR suggest that CPEB may be involved in the activation of masked S-crystallin mRNA, but not in the regulation of α-tubulin mRNA, resulting in increased S-crystallin protein synthesis in dark-adapted octopus retinas. PMID:18682811

  4. Atomistic mechanism of microRNA translation upregulation via molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Wei Ye

    Full Text Available MicroRNAs are endogenous 23-25 nt RNAs that play important gene-regulatory roles in animals and plants. Recently, miR369-3 was found to upregulate translation of TNFα mRNA in quiescent (G0 mammalian cell lines. Knock down and immunofluorescence experiments suggest that microRNA-protein complexes (with FXR1 and AGO2 are necessary for the translation upregulation. However the molecular mechanism of microRNA translation activation is poorly understood. In this study we constructed the microRNA-mRNA-AGO2-FXR1 quadruple complex by bioinformatics and molecular modeling, followed with all atom molecular dynamics simulations in explicit solvent to investigate the interaction mechanisms for the complex. A combined analysis of experimental and computational data suggests that AGO2-FXR1 complex relocalize microRNA:mRNA duplex to polysomes in G0. The two strands of dsRNA are then separated upon binding of AGO2 and FXR1. Finally, polysomes may improve the translation efficiency of mRNA. The mutation research confirms the stability of microRNA-mRNA-FXR1 and illustrates importance of key residue of Ile304. This possible mechanism can shed more light on the microRNA-dependent upregulation of translation.

  5. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons.

    Science.gov (United States)

    Diaz de Arce, Alexander J; Noderer, William L; Wang, Clifford L

    2018-01-25

    The initiation of mRNA translation from start codons other than AUG was previously believed to be rare and of relatively low impact. More recently, evidence has suggested that as much as half of all translation initiation utilizes non-AUG start codons, codons that deviate from AUG by a single base. Furthermore, non-AUG start codons have been shown to be involved in regulation of expression and disease etiology. Yet the ability to gauge expression based on the sequence of a translation initiation site (start codon and its flanking bases) has been limited. Here we have performed a comprehensive analysis of translation initiation sites that utilize non-AUG start codons. By combining genetic-reporter, cell-sorting, and high-throughput sequencing technologies, we have analyzed the expression associated with all possible variants of the -4 to +4 positions of non-AUG translation initiation site motifs. This complete motif analysis revealed that 1) with the right sequence context, certain non-AUG start codons can generate expression comparable to that of AUG start codons, 2) sequence context affects each non-AUG start codon differently, and 3) initiation at non-AUG start codons is highly sensitive to changes in the flanking sequences. Complete motif analysis has the potential to be a key tool for experimental and diagnostic genomics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Primary induction of vitellogenin mRNA in the rooster by 17beta-estradiol.

    Science.gov (United States)

    Burns, A T; Deeley, R G; Gordon, J I; Udell, D S; Mullinix, K P; Goldberger, R F

    1978-01-01

    We have studied the kinetics of vitellogenin mRNA accumulation in rooster liver after a primary injection of 17beta-estradiol. The levels of vitellogenin mRNA have been determined both by hybridization of total cellular RNA to vitellogenin cDNA and by translation of vitellogenin mRNA in a wheat germ cell-free system. The results obtained by both methods of analysis are in good agreement and indicate that vitellogenin mRNA is present in the liver of normal roosters at a level of 0-5 molecules per liver cell and increases in amount during the 3 days following injection of estrogen, reaching a level of almost 6000 molecules per cell at the peak of the response. The level of vitellogenin mRNA declined exponentially during the next 14 days with a half-life of 29 hr, reaching a level of less than 10 molecules per cell at 17 days after injection of the hormone. The levels of vitellogenin mRNA after stimulation with estrogen have been correlated with the in vivo rate of synthesis of the vitellogenin polypeptide. The results indicate that the rate of vitellogenin synthesis is closely correlated with the level of vitellogenin mRNA. On the basis of these findings, we conclude that vitellogenin mRNA does not exist in the liver in an untranslated form after withdrawal from estrogen. PMID:273910

  7. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  8. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    Science.gov (United States)

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.

  9. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress.

    Directory of Open Access Journals (Sweden)

    Stacey L Lehman

    2015-06-01

    Full Text Available Multiple transcripts encode for the cell cycle inhibitor p21(Cip1. These transcripts produce identical proteins but differ in their 5' untranslated regions (UTRs. Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through (35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5' upstream open reading frames (uORFs through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress.

  10. A pea chloroplast translation elongation factor that is regulated by abiotic factors

    International Nuclear Information System (INIS)

    Singh, B.N.; Mishra, R.N.; Agarwal, Pradeep K.; Goswami, Mamta; Nair, Suresh; Sopory, S.K.; Reddy, M.K.

    2004-01-01

    We report the cloning and characterization of both the cDNA (tufA) and genomic clones encoding for a chloroplast translation elongation factor (EF-Tu) from pea. The analysis of the deduced amino acids of the cDNA clone reveals the presence of putative transit peptide sequence and four GTP binding domains and two EF-Tu signature motifs in the mature polypeptide region. Using in vivo immunostaining followed by confocal microscopy pea EF-Tu was localized to chloroplast. The steady state transcript level of pea tufA was high in leaves and not detectable in roots. The expression of this gene is stimulated by light. The differential expression of this gene in response to various abiotic stresses showed that it is down-regulated in response to salinity and ABA and up-regulated in response to low temperature and salicylic acid treatment. These results indicate that regulation of pea tufA may have an important role in plant adaptation to environmental stresses

  11. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition

    Directory of Open Access Journals (Sweden)

    Takashi Onikubo

    2015-03-01

    Full Text Available Nucleoplasmin (Npm is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

  12. Translational control in plant antiviral immunity

    Directory of Open Access Journals (Sweden)

    João Paulo B. Machado

    Full Text Available Abstract Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP-Interacting Kinase1, is discussed in this review.

  13. (Meta-)genome mining for new ribo-regulators

    DEFF Research Database (Denmark)

    Sommer, Morten Otto Alexander; Suess, Beatrix

    2016-01-01

    Riboswitches are small structural elements within messenger RNA (mRNA) that can change their conformation in response to specific environmental exposures. These changes can alter mRNA transcription or translation. Such riboregulators are emerging as a substantial contributor to bacterial gene...

  14. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  15. Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland.

    Science.gov (United States)

    Nogami, H; Hoshino, R; Ogasawara, K; Miyamoto, S; Hisano, S

    2007-08-01

    Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.

  16. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christian Gu

    Full Text Available RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation.

  17. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  18. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro; Isai, Shiori; Sakai, Akira; Mineta, Katsuhiko; Hirai, Masami Yokota; Suzuki, Yuya; Kanaya, Shigehiko; Yamaguchi, Junji; Naito, Satoshi; Chiba, Yukako

    2017-01-01

    stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were

  19. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Krystyna Mazan-Mamczarz

    2014-01-01

    Full Text Available Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.

  20. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice.

    Science.gov (United States)

    Rasmussen, Martin Krøyer; Bertholdt, Lærke; Gudiksen, Anders; Pilegaard, Henriette; Knudsen, Jakob G

    2018-01-05

    The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Steven J. Schnell

    2014-11-01

    Full Text Available The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE. Plenty of nuclear pore complexes (NPCs embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.

  3. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.

    Science.gov (United States)

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-08-15

    Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.

  4. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  5. Codon usage determines translation rate in Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Michael Askvad; Kurland, C G; Pedersen, Steen

    1989-01-01

    We wish to determine whether differences in translation rate are correlated with differences in codon usage or with differences in mRNA secondary structure. We therefore inserted a small DNA fragment in the lacZ gene either directly or flanked by a few frame-shifting bases, leaving the reading fr...

  6. Degradation of YRA1 Pre-mRNA in the cytoplasm requires translational repression, multiple modular intronic elements, Edc3p, and Mex67p.

    Directory of Open Access Journals (Sweden)

    Shuyun Dong

    2010-04-01

    Full Text Available Intron-containing pre-mRNAs are normally retained and processed in the nucleus but are sometimes exported to the cytoplasm and degraded by the nonsense-mediated mRNA decay (NMD pathway as a consequence of their inclusion of intronic in-frame termination codons. When shunted to the cytoplasm by autoregulated nuclear export, the intron-containing yeast YRA1 pre-mRNA evades NMD and is targeted by a cytoplasmic decay pathway mediated by the decapping activator Edc3p. Here, we have elucidated this transcript-specific decay mechanism, showing that Edc3p-mediated YRA1 pre-mRNA degradation occurs independently of translation and is controlled through five structurally distinct but functionally interdependent modular elements in the YRA1 intron. Two of these elements target the pre-mRNA as an Edc3p substrate and the other three mediate transcript-specific translational repression. Translational repression of YRA1 pre-mRNA also requires the heterodimeric Mex67p/Mtr2p general mRNA export receptor, but not Edc3p, and serves to enhance Edc3p substrate specificity by inhibiting the susceptibility of this pre-mRNA to NMD. Collectively, our data indicate that YRA1 pre-mRNA degradation is a highly regulated process that proceeds through translational repression, substrate recognition by Edc3p, recruitment of the Dcp1p/Dcp2p decapping enzyme, and activation of decapping.

  7. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  8. Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hans Prochnow

    Full Text Available Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU, which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.

  9. Differential regulation of proopiomelanocortin (POMC mRNA expression in hypothalamus and anterior pituitary following repeated cyanamide with ethanol administration

    Directory of Open Access Journals (Sweden)

    Kinoshita Hiroshi

    2005-01-01

    Full Text Available Background/Aim. We have investigated proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of the hypothalamus (ARC and the anterior lobe of the pituitary (AL following repeated cyanamide-ethanol reaction (CER. Methods. Adult male Sprague -Dawley rats (250 −290 gr were housed in a temperature and humidity controlled environment with free access to food and water. Four experimental groups were used as follows: saline (as control, cyanamide alone, ethanol alone and ethanol with cyanamide. The animals received daily intraperitoneal injections (i.p. of cyanamide (10mg/kg, 60 min before ethanol dosing with or without ethanol (1g/kg for 5 consecutive days, and were sacrificed 60 min after the last dosing of ethanol. The results were presented as the mean ± SEM for each group. All groups within each data set were compared by one-way ANOVA followed by Fisher PLSD test for multiple comparisons. A value of p<0.05 was considered significant. Results. The POMC mRNA levels in ARC were significantly decreased with cyanamide compared to the control and ethanol alone (p<0.05 and p<0.05 respectively, but increased in AL following repeated CER. Conclusion. We speculate that this differential regulation of POMC mRNA expression may be partially involved in the preventive effects on alcohol intake in response to CER.

  10. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes.

    Directory of Open Access Journals (Sweden)

    Travis S D'Cruz

    Full Text Available Synaptophysin, is an abundant presynaptic protein involved in synaptic vesicle recycling and neurotransmitter release. Previous work shows that its content is significantly reduced in the rat retina by streptozotocin (STZ-diabetes. This study tested the hypothesis that STZ-diabetes alters synaptophysin protein turnover and glycosylation in the rat retina. Whole explant retinas from male Sprague-Dawley rats were used in this study. Rats were made diabetic by a single intraperitoneal STZ injection (65 mg/kg body weight in 10 mM sodium citrate, pH 4.5. mRNA translation was measured using a (35S-methionine labeling assay followed by synaptophysin immunoprecipitation and autoradiography. A pulse-chase study was used to determine the depletion of newly synthesized synaptophysin. Depletion of total synaptophysin was determined after treatment with cycloheximide. Mannose rich N-glycosylated synaptophysin was detected by treating retinal lysates with endoglycosidase H followed by immunoblot analysis. Synaptophysin mRNA translation was significantly increased after 1 month (p<0.001 and 2 months (p<0.05 of STZ-diabetes, compared to age-matched controls. Newly synthesized synaptophysin degradation was significantly accelerated in the retina after 1 and 2 months of diabetes compared to controls (p<0.05. Mannose rich glycosylated synaptophysin was significantly increased after 1 month of STZ-diabetes compared to controls (p<0.05.These data suggest that diabetes increases mRNA translation of synaptophysin in the retina, resulting in an accumulation of mannose rich glycosylated synaptophysin, a transient post-translational state of the protein. This diabetes-induced irregularity in post-translational processing could explain the accelerated degradation of retinal synaptophysin in diabetes.

  11. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion

    DEFF Research Database (Denmark)

    Beuchert Kallehauge, Thomas; Li, Shangzhong; Pedersen, Lasse Ebdrup

    2017-01-01

    Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as effici......Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated...... as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated...... as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we...

  12. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; von Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein...... probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated...

  13. An ultraviolet-sensitive maternal mRNA encoding a cytoskeletal protein may be involved in axis formation in the ascidian embryo

    International Nuclear Information System (INIS)

    Jeffery, W.R.

    1990-01-01

    Ultraviolet (uv) irradiation of the vegetal hemisphere of fertilized eggs during ooplasmic segregation inhibits subsequent gastrulation and axis formation in ascidian embryos. The molecular basis of this phenomenon was investigated in by comparing in vivo protein synthesis and in vitro mRNA translation in normal and uv-irradiated embryos of the ascidian Styela clava. Analysis of protein synthesis by [35S]methionine incorporation, two-dimensional (2D) gel electrophoresis, and autoradiography showed that only 21 of 433 labeled polypeptides were missing or decreased in labeling intensity in uv-irradiated embryos. The most prominent of these was a 30,000 molecular weight (pI 6.0) polypeptide (p30). Extraction of gastrulae with the nonionic detergent Triton X-100 showed that p30 is retained in the detergent insoluble residue, suggesting that it is associated with the cytoskeleton. Several lines of evidence suggest that p30 may be involved in axis formation. First, p30 labeling peaks during gastrulation, when the embryonic axis is being established. Second, axis formation and p30 labeling are abolished by the same threshold uv dose, which is distinct from that required to inactivate muscle cell development. Third, the uv sensitivity period for abolishing p30 labeling and axis formation are both restricted to ooplasmic segregation. In vitro translation of egg RNA followed by 2D gel electrophoresis and autoradiography of the protein products showed that p30 is encoded by a maternal mRNA. The translation of p30 mRNA was abolished by uv irradiation of fertilized eggs during ooplasmic segregation suggesting that this message is a uv-sensitive target. The results are consistent with the hypothesis that uv irradiation blocks gastrulation and axis formation by inhibiting the translation of maternal mRNA localized in the vegetal hemisphere of the fertilized egg

  14. The spatial biology of transcription and translation in rapidly growing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Somenath eBakshi

    2015-07-01

    Full Text Available Single-molecule fluorescence provides high resolution spatial distributions of ribosomes and RNA polymerase (RNAP in live, rapidly growing E. coli. Ribosomes are more strongly segregated from the nucleoids (chromosomal DNA than previous widefield fluorescence studies suggested. While most transcription may be co-translational, the evidence indicates that most translation occurs on free mRNA copies that have diffused from the nucleoids to a ribosome-rich region. Analysis of time-resolved images of the nucleoid spatial distribution after treatment with the transcription-halting drug rifampicin and the translation-halting drug chloramphenicol shows that both drugs cause nucleoid contraction on the 0-3 min timescale. This is consistent with the transertion hypothesis. We suggest that the longer-term (20-30 min nucleoid expansion after Rif treatment arises from conversion of 70S-polysomes to 30S and 50S subunits, which readily penetrate the nucleoids. Monte Carlo simulations of a polymer bead model built to mimic the chromosomal DNA and ribosomes (either 70S-polysomes or 30S and 50S subunits explain spatial segregation or mixing of ribosomes and nucleoids in terms of excluded volume and entropic effects alone. A comprehensive model of the transcription-translation-transertion system incorporates this new information about the spatial organization of the E. coli cytoplasm. We propose that transertion, which radially expands the nucleoids, is essential for recycling of 30S and 50S subunits from ribosome-rich regions back into the nucleoids. There they initiate co-transcriptional translation, which is an important mechanism for maintaining RNAP forward progress and protecting the nascent mRNA chain. Segregation of 70S-polysomes from the nucleoid may facilitate rapid growth by shortening the search time for ribosomes to find free mRNA concentrated outside the nucleoid and the search time for RNAP concentrated within the nucleoid to find transcription

  15. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The triplet repeats of the Sin Nombre hantavirus 5' untranslated region are sufficient in cis for nucleocapsid-mediated translation initiation.

    Science.gov (United States)

    Mir, Mohammad A; Panganiban, Antonito T

    2010-09-01

    Hantavirus nucleocapsid protein (N) can replace the cellular cap-binding complex, eukaryotic initiation factor 4F (eIF4F), to mediate translation initiation. Although N can augment translation initiation of nonviral mRNA, initiation of viral mRNA by N is superior. All members of the Bunyaviridae family, including the species of the hantavirus genus, express either three or four primary mRNAs from their tripartite negative-sense genomes. The 5' ends of the mRNAs contain nonviral heterologous oligonucleotides that originate from endonucleolytic cleavage of cellular mRNA during the process of cap snatching. In the hantaviruses these caps terminate with a 3' G residue followed by nucleotides arising from the viral template. Further, the 5' untranslated region (UTR) of viral mRNA uniformly contains, near the 5' end, either two or three copies of the triplet repeat sequence, UAGUAG or UAGUAGUAG. Through analysis of a panel of mutants with mutations in the viral UTR, we found that the sequence GUAGUAG is sufficient for preferential N-mediated translation initiation and for high-affinity binding of N to the UTR. This heptanucleotide sequence is present in viral mRNA containing either two or three copies of the triplet repeat.

  17. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    Science.gov (United States)

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  18. Silibinin inhibits translation initiation: implications for anticancer therapy.

    Science.gov (United States)

    Lin, Chen-Ju; Sukarieh, Rami; Pelletier, Jerry

    2009-06-01

    Silibinin is a nontoxic flavonoid reported to have anticancer properties. In this study, we show that silibinin exhibits antiproliferative activity on MCF-7 breast cancer cells. Exposure to silibinin leads to a concentration-dependent decrease in global protein synthesis associated with reduced levels of eukaryotic initiation factor 4F complex. Moreover, polysome profile analysis of silibinin-treated cells shows a decrease in polysome content and translation of cyclin D1 mRNA. Silibinin exerts its effects on translation initiation by inhibiting the mammalian target of rapamycin signaling pathway by acting upstream of TSC2. Our results show that silibinin blocks mammalian target of rapamycin signaling with a concomitant reduction in translation initiation, thus providing a possible molecular mechanism of how silibinin can inhibit growth of transformed cells.

  19. A Study of Translation Institutional Ethics

    Institute of Scientific and Technical Information of China (English)

    LuoXianfeng; ZhouJin

    2017-01-01

    Traditional translation ethics characterized by translators' ethics cannot provide a strong moral support to the translation practice,or guarantee the moral requirement towards translation activities in the social transformation caused by the market economy,because it does not have the power of punishment.Translation institutional ethics,however,a new form of translation ethics,integrates the translation ethic norm,translation regulations and relative laws together.As an inevitable outcome in the new era,it can escort the orderly and healthy translation activities.Its purpose is to strengthen the translators' moral consciousness,to sublimate their moral notions and to transfer from heteronomy to autonomy.

  20. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2016-08-01

    Full Text Available The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.

  1. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  2. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  3. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  4. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  5. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4......Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  6. Characterization of a major late herpes simplex virus type 1 mRNA.

    Science.gov (United States)

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  7. Hypothesis: A Role for Fragile X Mental Retardation Protein in Mediating and Relieving MicroRNA-Guided Translational Repression?

    Directory of Open Access Journals (Sweden)

    Isabelle Plante

    2006-01-01

    Full Text Available MicroRNA (miRNA-guided messenger RNA (mRNA translational repression is believed to be mediated by effector miRNA-containing ribonucleoprotein (miRNP complexes harboring fragile X mental retardation protein (FMRP. Recent studies documented the nucleic acid chaperone properties of FMRP and characterized its role and importance in RNA silencing in mammalian cells. We propose a model in which FMRP could facilitate miRNA assembly on target mRNAs in a process involving recognition of G quartet structures. Functioning within a duplex miRNP, FMRP may also mediate mRNA targeting through a strand exchange mechanism, in which the miRNA* of the duplex is swapped for the mRNA. Furthermore, FMRP may contribute to the relief of miRNA-guided mRNA repression through a reverse strand exchange reaction, possibly initiated by a specific cellular signal, that would liberate the mRNA for translation. Suboptimal utilization of miRNAs may thus account for some of themolecular defects in patients with the fragile X syndrome.

  8. Mutations in the NOT Genes or in the Translation Machinery Similarly Display Increased Resistance to Histidine Starvation

    Directory of Open Access Journals (Sweden)

    Martine A. Collart

    2017-05-01

    Full Text Available The NOT genes encode subunits of the conserved Ccr4-Not complex, a global regulator of gene expression, and in particular of mRNA metabolism. They were originally identified in a selection for increased resistance to histidine starvation in the yeast S. cerevisiae. Recent work indicated that the Not5 subunit, ortholog of mammalian CNOT3, determines global translation levels by defining binding of the Ccr4-Not scaffold protein Not1 to ribosomal mRNAs during transcription. This is needed for optimal translation of ribosomal proteins. In this work we searched for mutations in budding yeast that were resistant to histidine starvation using the same selection that originally led to the isolation of the NOT genes. We thereby isolated mutations in ribosome-related genes. This common phenotype of ribosome mutants and not mutants is in good agreement with the positive role of the Not proteins for translation. In this regard, it is interesting that frequent mutations in RPL5 and RPL10 or in CNOT3 have been observed to accumulate in adult T-cell acute lymphoblastic leukemia (T-ALL. This suggests that in metazoans a common function implicating ribosome subunits and CNOT3 plays a role in the development of cancer. In this perspective we suggest that the Ccr4-Not complex, according to translation levels and fidelity, could itself be involved in the regulation of amino acid biosynthesis levels. We discuss how this could explain why mutations have been identified in many cancers.

  9. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus

    International Nuclear Information System (INIS)

    Claudiani, Pamela; Riano, Elena; Errico, Alessia; Andolfi, Gennaro; Rugarli, Elena I.

    2005-01-01

    Most cases of autosomal-dominant hereditary spastic paraplegia are linked to mutations in SPG4 encoding spastin, a protein involved in microtubule dynamics and membrane trafficking. In pyramidal neurons of the motor cortex and in immortalized motor neurons, spastin is localized to the synaptic terminals and growth cones. However, in other neurons and in proliferating cells spastin is prevalently nuclear. The mechanisms that determine targeting of spastin to the nucleus or the cytoplasm are unknown. We show here that the SPG4 mRNA is able to direct synthesis of two spastin isoforms, 68 and 60 kDa, respectively, through usage of two different translational start sites. Both isoforms are imported into the nucleus, but the 68-kDa isoform contains two nuclear export signals that efficiently drive export to the cytoplasm. Nuclear export is leptomycin-B sensitive. The cytoplasmic 68-kDa spastin isoform is more abundant in the brain and the spinal cord than in other tissues. Our data indicate that spastin function is modulated through usage of alternative translational start sites and active nuclear import and export, and open new perspectives for the pathogenesis of hereditary spastic paraplegia

  10. [Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms].

    Science.gov (United States)

    Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G

    2007-01-01

    Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.

  11. DMPD: Translational mini-review series on Toll-like receptors: networks regulated byToll-like receptors mediate innate and adaptive immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17223959 Translational mini-review series on Toll-like receptors: networks regulate...ol. 2007 Feb;147(2):199-207. (.png) (.svg) (.html) (.csml) Show Translational mini-review series on Toll-lik... immunity. PubmedID 17223959 Title Translational mini-review series on Toll-like receptors: networks regulat

  12. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Lende, Ted van der; Kok, Jan; Venema, Gerard

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression.

  13. DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli.

    Science.gov (United States)

    Lalaouna, David; Morissette, Audrey; Carrier, Marie-Claude; Massé, Eric

    2015-10-01

    The 87 nucleotide long DsrA sRNA has been mostly studied for its translational activation of the transcriptional regulator RpoS. However, it also represses hns mRNA, which encodes H-NS, a major regulator that affects expression of nearly 5% of Escherichia coli genes. A speculative model previously suggested that DsrA would block hns mRNA translation by binding simultaneously to start and stop codon regions of hns mRNA (coaxial model). Here, we show that DsrA efficiently blocked translation of hns mRNA by base-pairing immediately downstream of the start codon. In addition, DsrA induced hns mRNA degradation by actively recruiting the RNA degradosome complex. Data presented here led to a model of DsrA action on hns mRNA, which supports a canonical mechanism of sRNA-induced mRNA degradation by binding to the translation initiation region. Furthermore, using MS2-affinity purification coupled with RNA sequencing technology (MAPS), we also demonstrated that DsrA targets rbsD mRNA, involved in ribose utilization. Surprisingly, DsrA base pairs far downstream of rbsD start codon and induces rapid degradation of the transcript. Thus, our study enables us to draw an extended DsrA targetome. © 2015 John Wiley & Sons Ltd.

  14. Developmental changes in translatable RNA species and protein synthesis during sporulation in the aquatic fungus Blastocladiella emersonii

    International Nuclear Information System (INIS)

    Silva, A.M. da; Costa Maia, J.C. da; Juliani, M.H.

    1986-01-01

    Protein synthesis during sporulation in Blastocladiella emersonii is developmentally regulated as revealed using ( 35 S)methionine pulse labeling and two-dimensional gel electrophoresis. A large increase in the synthesis of several proteins is associated with particular stages. A large number of basic proteins are synthesized exclusively during late sporulation. Changes in translatable mRNA species were also detected by two-dimensional gel electrophoresis of the polypeptides produced in a cell-free rabbit reticulocyte lysate primed with RNA prepared at different stages of sporulation. The synthesis of several proteins during sporulation seems to be transcriptionally controlled. Most of the sporulation-specific messages are not present in the mature zoospores. (Author)

  15. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process.

    Science.gov (United States)

    Hashem, Yaser; Frank, Joachim

    2018-03-01

    Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at the appropriate ribosomal site. Although this process has been extensively studied by hundreds of groups for nearly half a century, it has been only recently, especially during the last decade, that we have gained deeper insight into the mechanics of the eukaryotic translation initiation process. This advance in knowledge is due in part to the contributions of structural biology, which have shed light on the molecular mechanics underlying the different functions of various eukaryotic initiation factors. In this review, we focus exclusively on the contribution of structural biology to the understanding of the eukaryotic initiation process, a long-standing jigsaw puzzle that is just starting to yield the bigger picture. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  16. Multiple novel alternative splicing forms of FBXW7α have a translational modulatory function and show specific alteration in human cancer.

    Directory of Open Access Journals (Sweden)

    Yueyong Liu

    Full Text Available FBXW7 acts as a tumor suppressor through ubiquitination and degradation of multiple oncoproteins. Loss of FBXW7 expression, which could be partially attributed by the genomic deletion or mutation of FBXW7 locus, is frequently observed in various human cancers. However, the mechanisms regulating FBXW7 expression still remain poorly understood. Here we examined the 5' region of FBXW7 gene to investigate the regulation of FBXW7 expression. We identified seven alternative splicing (AS 5'-UTR forms of FBXW7α that are composed of multiple novel non-coding exons. A significant difference in translational efficiency among these 5'-UTRs variants was observed by in vivo Luciferase reporter assay and Western blot. Furthermore, we found that the mRNA level of the AS form with high translational efficiency was specifically reduced in more than 80% of breast cancer cell lines and in more than 50% of human primary cancers from various tissues. In addition, we also identified mutations of FBXW7 in prostate cancers (5.6%, kidney cancers (16.7%, and bladder cancers (18.8%. Our results suggest that in addition to mutation, differential expression of FBXW7α AS forms with different translational properties may serve as a novel mechanism for inactivation of FBXW7 in human cancer.

  17. Generation of human induced pluripotent stem cells using non-synthetic mRNA.

    Science.gov (United States)

    Rohani, L; Fabian, C; Holland, H; Naaldijk, Y; Dressel, R; Löffler-Wirth, H; Binder, H; Arnold, A; Stolzing, A

    2016-05-01

    Here we describe some of the crucial steps to generate induced pluripotent stem cells (iPSCs) using mRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribed mRNA. V. virus' 2'-O-Methyltransferase enzyme creates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation.

    Science.gov (United States)

    Kanekura, Kohsuke; Yagi, Takuya; Cammack, Alexander J; Mahadevan, Jana; Kuroda, Masahiko; Harms, Matthew B; Miller, Timothy M; Urano, Fumihiko

    2016-05-01

    The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Genome-wide annotation of porcine microRNA genes and transcriptome profiling during Actinobacillus infection

    DEFF Research Database (Denmark)

    Nielsen, Mathilde

    MicroRNAs are small single stranded non-coding RNA molecules which contributes to the regulation of gene expression by primarily binding to the 3´end of protein coding mRNA, hereby inhibiting the translation process or promting degradation of the mRNA. The main focus of this PhD project was to ex......MicroRNAs are small single stranded non-coding RNA molecules which contributes to the regulation of gene expression by primarily binding to the 3´end of protein coding mRNA, hereby inhibiting the translation process or promting degradation of the mRNA. The main focus of this PhD project...

  20. Translational inhibition of CTX M extended spectrum β-lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime.

    Directory of Open Access Journals (Sweden)

    John Benedict Readman

    2016-03-01

    Full Text Available Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25 mer phosphorodiamidate morpholino oligomer (PMO and a 13 mer polyamide (peptide nucleic acid (PNA were designed to target mRNA (positions -4 to +21, and –17 to –5 respectively close to the translational initiation site of the extended spectrum β lactamase resistance genes of CTX M group 1. These antisense oligonucleotides were found to inhibit β lactamase activity by up to 96% in a cell free translation transcription coupled system using an expression vector carrying a blaCTX-M-15 gene cloned from a clinical isolate. Despite evidence for up regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0 - 40 nM. The PMO and PNA were covalently bound to the cell penetrating peptide (KFF3K and both significantly (P<0.05 increased sensitivity to cefotaxime in a dose dependent manner (0 - 40 nM in field isolates harbouring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine Dalgarno region of blaCTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.

  1. Translational regulation in the anoxic turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Szereszewski, Kama E; Storey, Kenneth B

    2017-12-14

    The red-eared slider turtle (Trachemys scripta elegans), has developed remarkable adaptive mechanisms for coping with decreased oxygen availability during winter when lakes and ponds become covered with ice. Strategies for enduring anoxia tolerance include an increase in fermentable fuel reserves to support anaerobic glycolysis, the buffering of end products to minimize acidosis, altered expression in crucial survival genes, and strong metabolic rate suppression to minimize ATP-expensive metabolic processes such as protein synthesis. The mammalian target of rapamycin (mTOR) is at the center of the insulin-signaling pathway that regulates protein translation. The present study analyzed the responses of the mTOR signaling pathway to 5 (5H) or 20 h (20H) of anoxic submergence in liver and skeletal muscle of T. scripta elegans with a particular focus on regulatory changes in the phosphorylation states of targets. The data showed that phosphorylation of multiple mTOR targets was suppressed in skeletal muscle, but activated in the liver. Phosphorylated mTOR Ser2448 showed no change in skeletal muscle but had increased by approximately 4.5-fold in the liver after 20H of anoxia. The phosphorylation states of upstream positive regulators of mTOR (p-PDK-1 Ser241 , p-AKT Ser473 , and protein levels of GβL), the relative levels of dephosphorylated active PTEN, as well as phosphorylation state of negative regulators (TSC2 Thr1462 , p-PRAS40 Thr246 ) were generally found to be differentially regulated in skeletal muscle and in liver. Downstream targets of mTOR (p-p70 S6K Thr389 , p-S6 Ser235 , PABP, p-4E-BP1 Thr37/46 , and p-eIF4E Ser209 ) were generally unchanged in skeletal muscle but upregulated in most targets in liver. These findings indicate that protein synthesis is enhanced in the liver and suggests an increase in the synthesis of crucial proteins required for anoxic survival.

  2. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer's disease and progressive supranuclear palsy brains.

    Science.gov (United States)

    Huin, Vincent; Buée, Luc; Behal, Hélène; Labreuche, Julien; Sablonnière, Bernard; Dhaenens, Claire-Marie

    2017-10-03

    Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.

  3. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation

    Science.gov (United States)

    Xie, Ping

    2014-12-01

    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30 S and large 50 S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  4. Regulation, initiation, and termination of the cenA and cex transcripts of Cellulomonas fimi

    International Nuclear Information System (INIS)

    Greenberg, N.M.; Warren, R.A.J.; Kilburn, D.G.; Miller, R.C. Jr.

    1987-01-01

    The authors characterized the in vivo transcripts of two Cellulomonas fimi genes, which encodes an extracellular endo-β-1,4-glucanase. By Northern blot analysis, cenA mRNA was detected in C. fimi RNA preparations from glycerol- and carboxymethyl cellulose-grown cells but not from glucose-grown cells. In contrast, cex mRNA was detected only in the preparations from carboxymethyl cellulose-grown cells. Therefore, the transcription of these genes is subject to regulation by the carbon source provided to C. fimi. By nuclease SI protection studies with unique 5'-labeled DNA probes and C. fimi RNA isolated in vivo, 5' termini were found 51 and 62 bases before the cenA translational initiation codon and 28 bases before the cex translational initiation codon. S1 mapping with unlabeled DNA probes and C. fimi RNA which had been isolated in vivo but which had been 5' labeled in vitro with guanylyltransferase and [α- 32 P]GTP confirmed that true transcription initiation sites for cenA and cex mRNA had been identified. Comparative analysis of the DNA sequences immediately upstream of the initiation sites of the cenA and cex mRNAs revealed a 30-base-pair region where these two sequences display at least 66% homology. S1 mapping was also used to locate the 3' termini of the cenA and cex transcripts. Three 3' termini were found for cenA messages, whereas only one 3' terminus was identified for cex mRNA. The transcripts of both genes terminate in regions where their corresponding DNA sequences contain inverted repeats

  5. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    Science.gov (United States)

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  6. Pseudogenes regulate parental gene expression via ceRNA network.

    Science.gov (United States)

    An, Yang; Furber, Kendra L; Ji, Shaoping

    2017-01-01

    The concept of competitive endogenous RNA (ceRNA) was first proposed by Salmena and colleagues. Evidence suggests that pseudogene RNAs can act as a 'sponge' through competitive binding of common miRNA, releasing or attenuating repression through sequestering miRNAs away from parental mRNA. In theory, ceRNAs refer to all transcripts such as mRNA, tRNA, rRNA, long non-coding RNA, pseudogene RNA and circular RNA, because all of them may become the targets of miRNA depending on spatiotemporal situation. As binding of miRNA to the target RNA is not 100% complementary, it is possible that one miRNA can bind to multiple target RNAs and vice versa. All RNAs crosstalk through competitively binding to miRNAvia miRNA response elements (MREs) contained within the RNA sequences, thus forming a complex regulatory network. The ratio of a subset of miRNAs to the corresponding number of MREs determines repression strength on a given mRNA translation or stability. An increase in pseudogene RNA level can sequester miRNA and release repression on the parental gene, leading to an increase in parental gene expression. A massive number of transcripts constitute a complicated network that regulates each other through this proposed mechanism, though some regulatory significance may be mild or even undetectable. It is possible that the regulation of gene and pseudogene expression occurring in this manor involves all RNAs bearing common MREs. In this review, we will primarily discuss how pseudogene transcripts regulate expression of parental genes via ceRNA network and biological significance of regulation. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    Science.gov (United States)

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  8. Translation Factors Specify Cellular Metabolic State

    Directory of Open Access Journals (Sweden)

    Juan Mata

    2016-08-01

    Full Text Available In this issue of Cell Reports, Shah et al. present evidence that a subcomplex of the eIF3 translation initiation factor regulates translation of mRNAs encoding components of the mitochondrial electron transport chain and glycolytic enzymes, thus linking translational control with energy metabolism.

  9. p16(INK4a translation suppressed by miR-24.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2008-03-01

    Full Text Available Expression of the tumor suppressor p16(INK4a increases during aging and replicative senescence.Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3'-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.

  10. Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome.

    Directory of Open Access Journals (Sweden)

    Ee-Cheng Khor

    Full Text Available Prader-Willi Syndrome (PWS, a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR, including a set of small non-translated nucleolar RNA's (snoRNA. Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health

  11. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  12. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    International Nuclear Information System (INIS)

    Bloch, Donald B.; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-01-01

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: → A two-hybrid assay was developed to study interactions in macromolecular complexes. → The assay was applied to interactions between components of mRNA P-bodies. → The assay effectively and efficiently identified protein interaction domains. → P-body assembly in mammalian cells differs from that in other species.

  13. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan)

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  14. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism.

    Science.gov (United States)

    Shah, Meera; Su, Dan; Scheliga, Judith S; Pluskal, Tomáš; Boronat, Susanna; Motamedchaboki, Khatereh; Campos, Alexandre Rosa; Qi, Feng; Hidalgo, Elena; Yanagida, Mitsuhiro; Wolf, Dieter A

    2016-08-16

    The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Adaptive changes in alphavirus mRNA translation allowed colonization of vertebrate hosts.

    Science.gov (United States)

    Ventoso, Iván

    2012-09-01

    Members of the Alphavirus genus are arboviruses that alternate replication in mosquitoes and vertebrate hosts. In vertebrate cells, the alphavirus resists the activation of antiviral RNA-activated protein kinase (PKR) by the presence of a prominent RNA structure (downstream loop [DLP]) located in viral 26S transcripts, which allows an eIF2-independent translation initiation of these mRNAs. This article shows that DLP structure is essential for replication of Sindbis virus (SINV) in vertebrate cell lines and animals but is dispensable for replication in insect cells, where no ortholog of the vertebrate PKR gene has been found. Sequence comparisons and structural RNA analysis revealed the evolutionary conservation of DLP in SINV and predicted the existence of equivalent DLP structures in many members of the Alphavirus genus. A mutant SINV lacking the DLP structure evolved in murine cells to recover a wild-type phenotype by creating an alternative structure in the RNA that restored the translational independence for eIF2. Genetic, phylogenetic, and biochemical data presented here support an evolutionary scenario for the natural history of alphaviruses, in which the acquisition of DLP structure in their mRNAs probably allowed the colonization of vertebrate host and the consequent geographic expansion of some of these viruses worldwide.

  16. Role of protein and mRNA oxidation in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    hayat eel-maarouf-bouteau

    2013-04-01

    Full Text Available Reactive oxygen species (ROS are key players in the regulation of seed germination and dormancy. Although their regulated accumulation is a prerequisite for germination, the cellular basis of their action remains unknown, but very challenging to elucidate due to the lack of specificity of these compounds that can potentially react with all biomolecules. Among these, nucleic acids and proteins are very prone to oxidative damage. RNA is highly sensitive to oxidation because of its single-stranded structure and the absence of a repair system. Oxidation of mRNAs induces their decay through processing bodies or results in the synthesis of aberrant proteins through altered translation. Depending on the oxidized amino acid, ROS damage of proteins can be irreversible (i.e. carbonylation thus triggering the degradation of the oxidized proteins by the cytosolic 20S proteasome or can be reversed through the action of thioredoxins, peroxiredoxins or glutaredoxins (cysteine oxidation or by methionine sulfoxide reductase (methionine oxidation. Seed dormancy alleviation in the dry state, referred to as after-ripening, requires both selective mRNA oxidation and protein carbonylation. Similarly, seed imbibition of non-dormant seeds is associated with targeted oxidation of a subset of proteins. Altogether, these specific features testify that such oxidative modifications play important role in commitment of the cellular functioning toward germination completion.

  17. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  18. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  19. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Directory of Open Access Journals (Sweden)

    Rodolfo Villarreal-Calderon

    2013-11-01

    Full Text Available Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4 vs. high (n:26 air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005. Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  20. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) Infected With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With a DNA Vaccine Against VHSV

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Jørgensen, Hanne

    2011-01-01

    and are incorporated into the RNA-Induced Silencing Complex (RISC), which target specific mRNA sequences, causing either mRNA degradation or translation repression. This results in altered mRNA and protein profiles characteristic of a particular cellular phenotype or physiological state. By targeting immune relevant m...

  1. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    Science.gov (United States)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  2. A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    Science.gov (United States)

    Soto, Iliana C.; Fontanesi, Flavia; Myers, Richard S.; Hamel, Patrice; Barrientos, Antoni

    2012-01-01

    Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N-terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production. PMID:23217259

  3. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer.

    Science.gov (United States)

    Hsu, Jessie Hao-Ru; Hubbell-Engler, Benjamin; Adelmant, Guillaume; Huang, Jialiang; Joyce, Cailin E; Vazquez, Francisca; Weir, Barbara A; Montgomery, Philip; Tsherniak, Aviad; Giacomelli, Andrew O; Perry, Jennifer A; Trowbridge, Jennifer; Fujiwara, Yuko; Cowley, Glenn S; Xie, Huafeng; Kim, Woojin; Novina, Carl D; Hahn, William C; Marto, Jarrod A; Orkin, Stuart H

    2017-09-01

    Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Growth-Rate Dependent Regulation of tRNA Level and Charging in Bacillus licheniformis.

    Science.gov (United States)

    Ferro, Iolanda; Liebeton, Klaus; Ignatova, Zoya

    2017-10-13

    Cellular growth crucially depends on protein synthesis and the abundance of translational components. Among them, aminoacyl-tRNAs play a central role in biosynthesis and shape the kinetics of mRNA translation, thus influencing protein production. Here, we used microarray-based approaches to determine the charging levels and tRNA abundance of Bacillus licheniformis. We observed an interesting cross-talk among tRNA expression, charging pattern, and growth rate. For a large subset of tRNAs, we found a co-regulated and augmented expression at high growth rate. Their tRNA aminoacylation level is kept relatively constant through riboswitch-regulated expression of the cognate aminoacyl-tRNA-synthetase (AARS). We show that AARSs with putative riboswitch-controlled expression are those charging tRNAs with amino acids which disfavor cell growth when individually added to the nutrient medium. Our results suggest that the riboswitch-regulated AARS expression in B. licheniformis is a powerful mechanism not only to maintain a constant ratio of aminoacyl-tRNA independent of the growth rate but concomitantly to control the intracellular level of free amino acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    Science.gov (United States)

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Metformin anti-tumor effect via disruption of the MID1 translational regulator complex and AR downregulation in prostate cancer cells

    International Nuclear Information System (INIS)

    Demir, Ummuhan; Koehler, Andrea; Schneider, Rainer; Schweiger, Susann; Klocker, Helmut

    2014-01-01

    Metformin is an approved drug prescribed for diabetes. Its role as an anti-cancer agent has drawn significant attention because of its minimal side effects and low cost. However, its mechanism of anti-tumour action has not yet been fully clarified. The effect on cell growth was assessed by cell counting. Western blot was used for analysis of protein levels, Boyden chamber assays for analyses of cell migration and co-immunoprecipitation (CoIP) followed by western blot, PCR or qPCR for analysis of protein-protein and protein-mRNA interactions. Metformin showed an anti-proliferative effect on a wide range of prostate cancer cells. It disrupted the AR translational MID1 regulator complex leading to release of the associated AR mRNA and subsequently to downregulation of AR protein in AR positive cell lines. Inhibition of AR positive and negative prostate cancer cells by metformin suggests involvement of additional targets. The inhibitory effect of metformin was mimicked by disruption of the MID1-α4/PP2A protein complex by siRNA knockdown of MID1 or α4 whereas AMPK activation was not required. Findings reported herein uncover a mechanism for the anti-tumor activity of metformin in prostate cancer, which is independent of its anti-diabetic effects. These data provide a rationale for the use of metformin in the treatment of hormone naïve and castration-resistant prostate cancer and suggest AR is an important indirect target of metformin

  7. The Subjectivity of the Translator and Socio-Cultural Norms

    Science.gov (United States)

    Pei, Denghua

    2010-01-01

    This thesis attempts to probe into the dialectical relationship between the subjectivity of the translator and socio-cultural norms. The socio-cultural norms inevitably regulate the translator's translating activity, as acceptability of the translated text is the primary concern of most translators. However, this does not mean that the…

  8. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    Science.gov (United States)

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  9. Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death

    International Nuclear Information System (INIS)

    Ejeskär, Katarina; Krona, Cecilia; Carén, Helena; Zaibak, Faten; Li, Lingli; Martinsson, Tommy; Ioannou, Panayiotis A

    2005-01-01

    Neuroblastoma is a solid tumour of childhood often with an unfavourable outcome. One common genetic feature in aggressive tumours is 1p-deletion. The α-enolase (ENO1) gene is located in chromosome region 1p36.2, within the common region of deletion in neuroblastoma. One alternative translated product of the ENO1 gene, known as MBP-1, acts as a negative regulator of the c-myc oncogene, making the ENO1 gene a candidate as a tumour suppressor gene. Methods used in this study are transfection of cDNA-vectors and in vitro transcribed mRNA, cell growth assay, TUNEL-assay, real-time RT-PCR (TaqMan) for expression studies, genomic sequencing and DHPLC for mutation detection. Here we demonstrate that transfection of ENO1 cDNA into 1p-deleted neuroblastoma cell lines causes' reduced number of viable cells over time compared to a negative control and that it induces apoptosis. Interestingly, a similar but much stronger dose-dependent reduction of cell growth was observed by transfection of in vitro transcribed ENO1 mRNA into neuroblastoma cells. These effects could also be shown in non-neuroblastoma cells (293-cells), indicating ENO1 to have general tumour suppressor activity. Expression of ENO1 is detectable in primary neuroblastomas of all different stages and no difference in the level of expression can be detected between 1p-deleted and 1p-intact tumour samples. Although small numbers (11 primary neuroblastomas), there is some evidence that Stage 4 tumours has a lower level of ENO1-mRNA than Stage 2 tumours (p = 0.01). However, mutation screening of 44 primary neuroblastomas of all different stages, failed to detect any mutations. Our studies indicate that ENO1 has tumour suppressor activity and that high level of ENO1 expression has growth inhibitory effects

  10. Regulation of bacterial virulence by Csr (Rsm) systems.

    Science.gov (United States)

    Vakulskas, Christopher A; Potts, Anastasia H; Babitzke, Paul; Ahmer, Brian M M; Romeo, Tony

    2015-06-01

    Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Science.gov (United States)

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  12. Inferring microRNA regulation of mRNA with partially ordered samples of paired expression data and exogenous prediction algorithms.

    Directory of Open Access Journals (Sweden)

    Brian Godsey

    Full Text Available MicroRNAs (miRs are known to play an important role in mRNA regulation, often by binding to complementary sequences in "target" mRNAs. Recently, several methods have been developed by which existing sequence-based target predictions can be combined with miR and mRNA expression data to infer true miR-mRNA targeting relationships. It has been shown that the combination of these two approaches gives more reliable results than either by itself. While a few such algorithms give excellent results, none fully addresses expression data sets with a natural ordering of the samples. If the samples in an experiment can be ordered or partially ordered by their expected similarity to one another, such as for time-series or studies of development processes, stages, or types, (e.g. cell type, disease, growth, aging, there are unique opportunities to infer miR-mRNA interactions that may be specific to the underlying processes, and existing methods do not exploit this. We propose an algorithm which specifically addresses [partially] ordered expression data and takes advantage of sample similarities based on the ordering structure. This is done within a Bayesian framework which specifies posterior distributions and therefore statistical significance for each model parameter and latent variable. We apply our model to a previously published expression data set of paired miR and mRNA arrays in five partially ordered conditions, with biological replicates, related to multiple myeloma, and we show how considering potential orderings can improve the inference of miR-mRNA interactions, as measured by existing knowledge about the involved transcripts.

  13. In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles.

    Science.gov (United States)

    Caballero-Lima, David; Hautbergue, Guillaume M; Wilson, Stuart A; Sudbery, Peter E

    2014-11-01

    Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans-Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 μm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms

    OpenAIRE

    Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for ...

  15. A genome-wide siRNA screen in mammalian cells for regulators of S6 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Angela Papageorgiou

    Full Text Available mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Applying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 and is significantly enriched in genes whose depletion affects the proliferation/viability of the large set of cancer cell lines in the Achilles database in a manner paralleling that caused by mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene products on S6-P in TSC1 null mouse embryo fibroblasts. 76 RNAis reduced S6 phosphorylation significantly in 2 or 3 replicates. Surprisingly, among this cohort of genes the only elements previously associated with the maintenance of mTORC1 activity are two subunits of the vacuolar ATPase and the CUL4 subunit DDB1. RNAi against a second set of 84 targets reduced S6-P in only one of three replicates. However, an indication that this group also bears attention is the presence of rpS6KB1 itself, Rac1 and MAP4K3, a protein kinase that supports amino acid signaling to rpS6KB1. The finding that S6 phosphorylation requires a previously unidentified, functionally diverse cohort of genes that participate in fundamental cellular processes such as mRNA translation, RNA processing, DNA repair and metabolism suggests the operation of feedback pathways in the regulation of mTORC1 operating through novel mechanisms.

  16. Eukaryotic translation initiation factor 3 subunit e controls intracellular calcium homeostasis by regulation of cav1.2 surface expression.

    Directory of Open Access Journals (Sweden)

    Pawel Buda

    Full Text Available Inappropriate surface expression of voltage-gated Ca(2+channels (CaV in pancreatic ß-cells may contribute to the development of type 2 diabetes. First, failure to increase intracellular Ca(2+ concentrations at the sites of exocytosis impedes insulin release. Furthermore, excessive Ca(2+ influx may trigger cytotoxic effects. The regulation of surface expression of CaV channels in the pancreatic β-cells remains unknown. Here, we used real-time 3D confocal and TIRFM imaging, immunocytochemistry, cellular fractionation, immunoprecipitation and electrophysiology to study trafficking of L-type CaV1.2 channels upon β-cell stimulation. We found decreased surface expression of CaV1.2 and a corresponding reduction in L-type whole-cell Ca(2+ currents in insulin-secreting INS-1 832/13 cells upon protracted (15-30 min stimulation. This internalization occurs by clathrin-dependent endocytosis and could be prevented by microtubule or dynamin inhibitors. eIF3e (Eukaryotic translation initiation factor 3 subunit E is part of the protein translation initiation complex, but its effect on translation are modest and effects in ion channel trafficking have been suggested. The factor interacted with CaV1.2 and regulated CaV1.2 traffic bidirectionally. eIF3e silencing impaired CaV1.2 internalization, which resulted in an increased intracellular Ca(2+ load upon stimulation. These findings provide a mechanism for regulation of L-type CaV channel surface expression with consequences for β-cell calcium homeostasis, which will affect pancreatic β-cell function and insulin production.

  17. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch.

    Science.gov (United States)

    Götze, Michael; Dufourt, Jérémy; Ihling, Christian; Rammelt, Christiane; Pierson, Stephanie; Sambrani, Nagraj; Temme, Claudia; Sinz, Andrea; Simonelig, Martine; Wahle, Elmar

    2017-10-01

    Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression. © 2017 Götze et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Entrainment to periodic initiation and transition rates in a computational model for gene translation.

    Directory of Open Access Journals (Sweden)

    Michael Margaliot

    Full Text Available Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period T. We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period T. To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic

  19. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    Science.gov (United States)

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

  20. New potential markers of in vitro tomato morphogenesis identified by mRNA differential display.

    Science.gov (United States)

    Torelli, A; Soragni, E; Bolchi, A; Petrucco, S; Ottonello, S; Branca, C

    1996-12-01

    The identification of plant genes involved in early phases of in vitro morphogenesis can not only contribute to our understanding of the processes underlying growth regulator-controlled determination, but also provide novel markers for evaluating the outcome of in vitro regeneration experiments. To search for such genes and to monitor changes in gene expression accompanying in vitro regeneration, we have adapted the mRNA differential display technique to the comparative analysis of a model system of tomato cotyledons that can be driven selectively toward either shoot or callus formation by means of previously determined growth regulator supplementations. Hormone-independent transcriptional modulation (mainly down-regulation) has been found to be the most common event, indicating that a non-specific reprogramming of gene expression quantitatively predominates during the early phases of in vitro culture. However, cDNA fragments representative of genes that are either down-regulated or induced in a programme-specific manner could also be identified, and two of them (G35, G36) were further characterized. One of these cDNA fragments, G35, corresponds to an mRNA that is down-regulated much earlier in callus- (day 2) than in shoot-determined explants (day 6). The other, G36, identifies an mRNA that is transiently expressed in shoot-determined explants only, well before any macroscopic signs of differentiation become apparent, and thus exhibits typical features of a morphogenetic marker.

  1. The translational regulator Cup controls NMJ presynaptic terminal morphology.

    Science.gov (United States)

    Menon, Kaushiki P; Carrillo, Robert A; Zinn, Kai

    2015-07-01

    During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with two genes, EndoA and Dap160, that encode proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  3. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    Science.gov (United States)

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (

  4. pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A Sequences

    Directory of Open Access Journals (Sweden)

    Alexandra E Grier

    2016-01-01

    Full Text Available Increasing demand for large-scale synthesis of in vitro transcribed (IVT mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3′ polyadenosine (poly(A tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A tail lengths to ≃120 base pairs (bp. Here, we have developed a novel method for generation of extended poly(A tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A tracts up to ≃500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A tracts and 3′ termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s.

  5. Molecular effects of autoimmune-risk promoter polymorphisms on expression, exon choice, and translational efficiency of interferon regulatory factor 5.

    Science.gov (United States)

    Clark, Daniel N; Lambert, Jared P; Till, Rodney E; Argueta, Lissenya B; Greenhalgh, Kathryn E; Henrie, Brandon; Bills, Trieste; Hawkley, Tyson F; Roznik, Marinya G; Sloan, Jason M; Mayhew, Vera; Woodland, Loc; Nelson, Eric P; Tsai, Meng-Hsuan; Poole, Brian D

    2014-05-01

    The rs2004640 single nucleotide polymorphism and the CGGGG copy-number variant (rs77571059) are promoter polymorphisms within interferon regulatory factor 5 (IRF5). They have been implicated as susceptibility factors for several autoimmune diseases. IRF5 uses alternative promoter splicing, where any of 4 first exons begin the mRNA. The CGGGG indel is in exon 1A's promoter; the rs2004640 allele creates a splicing recognition site, enabling usage of exon 1B. This study aimed at characterizing alterations in IRF5 mRNA due to these polymorphisms. Cells with risk polymorphisms exhibited ~2-fold higher levels of IRF5 mRNA and protein, but demonstrated no change in mRNA stability. Quantitative PCR demonstrated decreased usage of exons 1C and 1D in cell lines with the risk polymorphisms. RNA folding analysis revealed a hairpin in exon 1B; mutational analysis showed that the hairpin shape decreased translation 5-fold. Although translation of mRNA that uses exon 1B is low due to a hairpin, increased IRF5 mRNA levels in individuals with the rs2004640 risk allele lead to higher overall protein expression. In addition, several new splice variants of IRF5 were sequenced. IRF5's promoter polymorphisms alter first exon usage and increase transcription levels. High levels of IRF5 may bias the immune system toward autoimmunity.

  6. Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland.

    Directory of Open Access Journals (Sweden)

    Jimena P Cabilla

    Full Text Available 17β-estradiol (E2 regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC, is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM and E2-dendrimer conjugate (EDC, 1 nM were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h, 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway.

  7. Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland.

    Science.gov (United States)

    Cabilla, Jimena P; Nudler, Silvana I; Ronchetti, Sonia A; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2011-01-01

    17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway. © 2011 Cabilla et al.

  8. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria.

    Directory of Open Access Journals (Sweden)

    Borko Amulic

    2009-01-01

    Full Text Available Malaria, caused by the parasite Plasmodium falciparum, is responsible for substantial morbidity, mortality and economic losses in tropical regions of the world. Pregnant women are exceptionally vulnerable to severe consequences of the infection, due to the specific adhesion of parasite-infected erythrocytes in the placenta. This adhesion is mediated by a unique variant of PfEMP1, a parasite encoded, hyper-variable antigen placed on the surface of infected cells. This variant, called VAR2CSA, binds to chondroitin sulfate A on syncytiotrophoblasts in the intervillous space of placentas. VAR2CSA appears to only be expressed in the presence of a placenta, suggesting that its expression is actively repressed in men, children or non-pregnant women; however, the mechanism of repression is not understood. Using cultured parasite lines and reporter gene constructs, we show that the gene encoding VAR2CSA contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus potentially enabling parasites to upregulate expression of this variant antigen in the presence of the appropriate host tissue.

  9. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation

    DEFF Research Database (Denmark)

    Chen, C Y; Gherzi, R; Andersen, Jens S.

    2000-01-01

    Regulated mRNA turnover is a highly important process, but its mechanism is poorly understood. Using interleukin-2 (IL-2) mRNA as a model, we described a role for the JNK-signaling pathway in stabilization of IL-2 mRNA during T-cell activation, acting via a JNK response element (JRE) in the 5' un...

  10. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  11. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    International Nuclear Information System (INIS)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan; Li, Qiuping; Yang, Zhiyuan; Wu, Guoqiang; Sun, Shuhui; Gu, Jianxin; Wei, Yuanyan; Jiang, Jianhai

    2010-01-01

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  12. Mechanisms of isoform-specific Na/K pump regulation by short- and long-term adrenergic activation in rat ventricular myocytes.

    Science.gov (United States)

    Yin, Jian; Guo, Hui-Cai; Yu, Ding; Wang, Hui-Ci; Li, Jun-Xia; Wang, Yong-Li

    2014-01-01

    Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH) and low-affinity current (IPL), α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane. © 2014 S. Karger AG, Basel.

  13. Mechanisms of Isoform-Specific Na/K Pump Regulation by Short- and Long-Term Adrenergic Activation in Rat Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2014-05-01

    Full Text Available Background: Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. Methods: After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH and low-affinity current (IPL, α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. Results: After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. Conclusions: These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane.

  14. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m......RNA, transient transfection of chimeric beta2 chain leader/luciferase expression plasmids in clone A cells, and translation of in vitro synthesized RNAs in rabbit reticulocyte lysates....

  15. Cytoskeletal protein translation and expression in the rat brain are stressor-dependent and region-specific.

    Directory of Open Access Journals (Sweden)

    Petra Sántha

    Full Text Available Stress is an integral component of life that can sometimes cause a critical overload, depending on the qualitative and quantitative natures of the stressors. The involvement of actin, the predominant component of dendritic integrity, is a plausible candidate factor in stress-induced neuronal cytoskeletal changes. The major aim of this study was to compare the effects of three different stress conditions on the transcription and translation of actin-related cytoskeletal genes in the rat brain. Male Wistar rats were exposed to one or other of the frequently used models of physical stress, i.e. electric foot shock stress (EFSS, forced swimming stress (FSS, or psychosocial stress (PSS for periods of 3, 7, 14, or 21 days. The relative mRNA and protein expressions of β-actin, cofilin and mitogen-activated protein kinase 1 (MAPK-1 were determined by qRT- PCR and western blotting from hippocampus and frontal cortex samples. Stressor-specific alterations in both β-actin and cofilin expression levels were seen after stress. These alterations were most pronounced in response to EFSS, and exhibited a U-shaped time course. FSS led to a significant β-actin mRNA expression elevation in the hippocampus and the frontal cortex after 3 and 7 days, respectively, without any subsequent change. PSS did not cause any change in β-actin or cofilin mRNA or protein expression in the examined brain regions. EFSS, FSS and PSS had no effect on the expression of MAPK-1 mRNA at any tested time point. These findings indicate a very delicate, stress type-dependent regulation of neuronal cytoskeletal components in the rat hippocampus and frontal cortex.

  16. The Dynamics of SecM-Induced Translational Stalling

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2014-06-01

    Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

  17. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism

    Directory of Open Access Journals (Sweden)

    Llopis Ana

    2010-03-01

    Full Text Available Abstract Background Gene expression is achieved by the coordinated action of multiple factors to ensure a perfect synchrony from chromatin epigenetic regulation through to mRNA export. Sus1 is a conserved mRNA export/transcription factor and is a key player in coupling transcription initiation, elongation and mRNA export. In the nucleus, Sus1 is associated to the transcriptional co-activator SAGA and to the NPC associated complex termed TREX2/THSC. Through these associations, Sus1 mediates the nuclear dynamics of different gene loci and facilitate the export of the new transcripts. Results In this study, we have investigated whether the yeast Sus1 protein is linked to factors involved in mRNA degradation pathways. We provide evidence for genetic interactions between SUS1 and genes coding for components of P-bodies such as PAT1, LSM1, LSM6 and DHH1. We demonstrate that SUS1 deletion is synthetic lethal with 5'→3' decay machinery components LSM1 and PAT1 and has a strong genetic interaction with LSM6 and DHH1. Interestingly, Sus1 overexpression led to an accumulation of Sus1 in cytoplasmic granules, which can co-localise with components of P-bodies and stress granules. In addition, we have identified novel physical interactions between Sus1 and factors associated to P-bodies/stress granules. Finally, absence of LSM1 and PAT1 slightly promotes the Sus1-TREX2 association. Conclusions In this study, we found genetic and biochemical association between Sus1 and components responsible for cytoplasmic mRNA metabolism. Moreover, Sus1 accumulates in discrete cytoplasmic granules, which partially co-localise with P-bodies and stress granules under specific conditions. These interactions suggest a role for Sus1 in gene expression during cytoplasmic mRNA metabolism in addition to its nuclear function.

  18. Effects of antihistamine on up-regulation of histamine H1 receptor mRNA in the nasal mucosa of patients with pollinosis induced by controlled cedar pollen challenge in an environmental exposure unit

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kitamura

    2015-11-01

    Full Text Available In the present study, we examined the effects of antihistamine on the up-regulation of H1R mRNA in the nasal mucosa of patients with pollinosis induced by controlled exposure to pollen using an environmental exposure unit. Out of 20 patients, we designated 14 responders, whose levels of H1R mRNA in the nasal mucosa were increased after the first pollen exposure and excluded 6 non-responders. Accordingly, the first exposure to pollen without treatment significantly induced both nasal symptoms and the up-regulation of H1R mRNA in the nasal mucosa of the responders. Subsequently, prophylactic administration of antihistamine prior to the second pollen exposure significantly inhibited both of the above effects in the responders. Moreover, the nasal expression of H1R mRNA before the second pollen exposure in the responders pretreated with antihistamine was significantly decreased, as compared with that before the first pollen exposure without treatment. These findings suggest that antihistamines suppressed histamine-induced transcriptional activation of H1R gene in the nasal mucosa, in addition to their blocking effect against histamine on H1R, resulting in a decrease of nasal symptoms. These findings further suggest that by their inverse agonistic activity, antihistamines suppress the basal transcription of nasal H1R in the absence of histamine in responders.

  19. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  20. Experimental Analysis of Mimivirus Translation Initiation Factor 4a Reveals Its Importance in Viral Protein Translation during Infection of Acanthamoeba polyphaga.

    Science.gov (United States)

    Bekliz, Meriem; Azza, Said; Seligmann, Hervé; Decloquement, Philippe; Raoult, Didier; La Scola, Bernard

    2018-05-15

    The Acanthamoeba polyphaga mimivirus is the first giant virus ever described, with a 1.2-Mb genome which encodes 979 proteins, including central components of the translation apparatus. One of these proteins, R458, was predicted to initiate translation, although its specific role remains unknown. We silenced the R458 gene using small interfering RNA (siRNA) and compared levels of viral fitness and protein expression in silenced versus wild-type mimivirus. Silencing decreased the growth rate, but viral particle production at the end of the viral cycle was unaffected. A comparative proteomic approach using two-dimensional difference-in-gel electrophoresis (2D-DIGE) revealed deregulation of the expression of 32 proteins in silenced mimivirus, which were defined as up- or downregulated. Besides revealing proteins with unknown functions, silencing R458 also revealed deregulation in proteins associated with viral particle structures, transcriptional machinery, oxidative pathways, modification of proteins/lipids, and DNA topology/repair. Most of these proteins belong to genes transcribed at the end of the viral cycle. Overall, our data suggest that the R458 protein regulates the expression of mimivirus proteins and, thus, that mimivirus translational proteins may not be strictly redundant in relation to those from the amoeba host. As is the case for eukaryotic initiation factor 4a (eIF4a), the R458 protein is the prototypical member of the ATP-dependent DEAD box RNA helicase mechanism. We suggest that the R458 protein is required to unwind the secondary structures at the 5' ends of mRNAs and to bind the mRNA to the ribosome, making it possible to scan for the start codon. These data are the first experimental evidence of mimivirus translation-related genes, predicted to initiate protein biosynthesis. IMPORTANCE The presence in the genome of a mimivirus of genes coding for many translational processes, with the exception of ribosome constituents, has been the subject of

  1. DEAD-Box RNA Helicases are among the Constituents of the Tobacco Pollen mRNA Storing Bodies

    Czech Academy of Sciences Publication Activity Database

    Hafidh, Said; Potěšil, D.; Zdráhal, Z.; Honys, David

    2013-01-01

    Roč. 1, č. 3 (2013) ISSN 2329-9029 R&D Projects: GA ČR GPP501/11/P321; GA ČR(CZ) GAP501/11/1462; GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) LD13049 Institutional support: RVO:61389030 Keywords : Translation * mRNA storage * RNA helicase Subject RIV: EB - Genetics ; Molecular Biology

  2. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Directory of Open Access Journals (Sweden)

    Ganesh Ambigapathy

    Full Text Available Brain-derived neurotrophic factor (BDNF has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  3. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Science.gov (United States)

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  4. Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus

    Directory of Open Access Journals (Sweden)

    Hannah Burgess

    2018-03-01

    Full Text Available Through the action of two virus-encoded decapping enzymes (D9 and D10 that remove protective caps from mRNA 5′-termini, Vaccinia virus (VACV accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy. Keywords: oncolytic virus, mRNA decay, decapping

  5. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  6. Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim Lütken; Waage, Johannes Eichler; Tian, Geng

    2012-01-01

    ABSTRACT: BACKGROUND: Nonsense-mediated mRNA decay (NMD) affects the outcome of alternative splicing by degrading mRNA isoforms with premature termination codons. Splicing regulators constitute important NMD targets; however, the extent to which loss of NMD causes extensive deregulation...... of alternative splicing has not previously been assayed in a global, unbiased manner. Here, we combine mouse genetics and RNA-seq to provide the first in vivo analysis of the global impact of NMD on splicing patterns in two primary mouse tissues ablated for the NMD factor UPF2. RESULTS: We developed...... importance, the latter events are associated with high intronic conservation. CONCLUSIONS: Our data demonstrate that NMD regulates alternative splicing outcomes through an intricate web of splicing regulators and that its loss leads to the deregulation of a panoply of splicing events, providing novel...

  7. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-01-01

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E 2 ), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E 2 , showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E 2 treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer

  8. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  9. Translational control is a major contributor to hypoxia induced gene expression

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Jutten, Barry; Seigneuric, Renaud; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of solid tumors that is associated with an aggressive phenotype, resistance to therapy and poor prognosis. Major contributors to these adverse effects are the transcriptional program activated by the HIF family of transcription factors as well as the translational response mediated by PERK-dependent phosphorylation of eIF2α and inhibition of mTORC1 activity. In this study we determined the relative contribution of both transcriptional and translational responses to changes in hypoxia induced gene expression. Material and methods: Total and efficiently translated (polysomal) mRNA was isolated from DU145 prostate carcinoma cells that were exposed for up to 24 h of hypoxia ( 2 ). Changes in transcription and translation were assessed using affymetrix microarray technology. Results: Our data reveal an unexpectedly large contribution of translation control on both induced and repressed gene expression at all hypoxic time points, particularly during acute hypoxia (2-4 h). Gene ontology analysis revealed that gene classes like transcription and signal transduction are stimulated by translational control whereas expression of genes involved in cell growth and protein metabolism are repressed during hypoxic conditions by translational control. Conclusions: Our data indicate that translation influences gene expression during hypoxia on a scale comparable to that of transcription.

  10. Alternative Mode of E-Site tRNA Binding in the Presence of a Downstream mRNA Stem Loop at the Entrance Channel.

    Science.gov (United States)

    Zhang, Yan; Hong, Samuel; Ruangprasert, Ajchareeya; Skiniotis, Georgios; Dunham, Christine M

    2018-03-06

    Structured mRNAs positioned downstream of the ribosomal decoding center alter gene expression by slowing protein synthesis. Here, we solved the cryo-EM structure of the bacterial ribosome bound to an mRNA containing a 3' stem loop that regulates translation. Unexpectedly, the E-site tRNA adopts two distinct orientations. In the first structure, normal interactions with the 50S and 30S E site are observed. However, in the second structure, although the E-site tRNA makes normal interactions with the 50S E site, its anticodon stem loop moves ∼54 Å away from the 30S E site to interact with the 30S head domain and 50S uL5. This position of the E-site tRNA causes the uL1 stalk to adopt a more open conformation that likely represents an intermediate state during E-site tRNA dissociation. These results suggest that structured mRNAs at the entrance channel restrict 30S subunit movement required during translation to slow E-site tRNA dissociation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure.

    Directory of Open Access Journals (Sweden)

    Gabriela Moura

    Full Text Available BACKGROUND: Codon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. METHODOLOGIES/PRINCIPAL FINDINGS: We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context. CONCLUSIONS: The data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage.

  12. Adipocyte resistin mRNA levels are down-regulated by laparoscopic ovarian electrocautery in both obese and lean women with polycystic ovary syndrome.

    Science.gov (United States)

    Seow, Kok-Min; Juan, Chi-Chang; Ho, Low-Tone; Hsu, Yung-Pei; Lin, Yu-Hung; Huang, Lee-Wen; Hwang, Jiann-Loung

    2007-04-01

    The aim of this study was to investigate serum and adipocyte mRNA expression of resistin in lean and obese women with polycystic ovary syndrome (PCOS) before and 3 months after laparoscopic ovarian electrocauterization (LOE). Adipose tissue obtained from 12 women with PCOS (six obese and six lean, body mass index > 27 kg m(-1) as threshold point) before and after LOE was analysed. Gene expression of resistin was measured by semi-quantitative RT-PCR. Ten lean, age-matched healthy women served as controls. Both lean and obese women with PCOS had significantly higher fasting and 2 h insulin and homeostasis model insulin resistance index (HOMA(IR)) values and lower fasting glucose-to-insulin ratios (G(0)/I(0)) than did the controls. The serum levels of glucose and insulin and HOMA(IR) were significantly decreased, and the G(0)/I(0) ratio was significantly increased 3 months after LOE. No difference was found in serum resistin levels between controls and either obese or lean women with PCOS before LOE, nor between PCOS patients before and after LOE. However, resistin mRNA expression levels in both lean and obese women with PCOS before LOE were significantly higher than that in controls and were decreased significantly after LOE back to control levels. Local resistin activity may be actively involved in the pathogenesis of PCOS. LOE reduces insulin resistance and down-regulates resistin mRNA expression in lean and obese women with PCOS.

  13. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    International Nuclear Information System (INIS)

    Grzybowska, Ewa A.

    2012-01-01

    Highlights: ► Functional characteristics of intronless genes (IGs). ► Diseases associated with IGs. ► Origin and evolution of IGs. ► mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  14. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli

    International Nuclear Information System (INIS)

    Zhang Weici; Xiao Weihua; Wei Haiming; Zhang Jian; Tian Zhigang

    2006-01-01

    Codon usage and thermodynamic optimization of the 5'-end of mRNA have been applied to improve the efficiency of human protein production in Escherichia coli. However, high level expression of human protein in E. coli is still a challenge that virtually depends upon each individual target genes. Using human interleukin 10 (huIL-10) and interferon α (huIFN-α) coding sequences, we systematically analyzed the influence of several major factors on expression of human protein in E. coli. The results from huIL-10 and reinforced by huIFN-α showed that exposing AUG initiator codon from base-paired structure within mRNA itself significantly improved the translation of target protein, which resulted in a 10-fold higher protein expression than the wild-type genes. It was also noted that translation process was not affected by the retained short-range stem-loop structure at Shine-Dalgarno (SD) sequences. On the other hand, codon-optimized constructs of huIL-10 showed unimproved levels of protein expression, on the contrary, led to a remarkable RNA degradation. Our study demonstrates that exposure of AUG initiator codon from long-range intra-strand secondary structure at 5'-end of mRNA may be used as a general strategy for human protein production in E. coli

  15. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease.

    Directory of Open Access Journals (Sweden)

    Raquel Amorim

    Full Text Available The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.

  16. Self-Regulation and Mechanisms of Action in Psychotherapy: A Theory-Based Translational Perspective

    Science.gov (United States)

    Strauman, Timothy J.; Goetz, Elena L.; Detloff, Allison M.; MacDuffie, Katherine E.; Zaunmüller, Luisa; Lutz, Wolfgang

    2012-01-01

    Psychotherapy is a complex, multi-layered process with the potential to bring about changes at multiple levels of functioning, from the neurobiology of the brain to the individual’s role in the social world. Although studies of the mechanisms by which psychotherapy leads to change continue to appear, there remains much to be learned about how psychological interventions work. To guide explorations of how and for whom particular treatment approaches lead to change, researchers can rely on theory to identify potential loci for change and on translational research methods to integrate basic behavioral science and neuroscience with clinical science. In this article, we describe research linking individual differences in the self-regulation of personal goal pursuit with the etiology and treatment of mood disorders. The research draws upon regulatory focus theory as a model of self-regulation and on microintervention designs – controlled laboratory investigations of a specific therapeutic technique – to generate and test hypotheses about how psychological interventions can help to reverse maladaptive self-regulatory processes. PMID:23072383

  17. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    Science.gov (United States)

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  18. Regulation of neutrophil senescence by microRNAs.

    Directory of Open Access Journals (Sweden)

    Jon R Ward

    2011-01-01

    Full Text Available Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease.

  19. Regulation of activity-regulated cytoskeleton protein (Arc) mRNA after acute and chronic electroconvulsive stimulation in the rat

    DEFF Research Database (Denmark)

    Larsen, M H; Olesen, M; Woldbye, D P D

    2005-01-01

    The temporal profile of Arc gene expression after acute and chronic electroconvulsive stimulations (ECS) was studied using semi-quantitative in situ hybridisation in the rat cortex. A single ECS strongly and temporarily increased Arc mRNA levels in dentate granular cells with maximal induction seen...

  20. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation.

    Science.gov (United States)

    Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong

    2009-07-10

    SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.