WorldWideScience

Sample records for regulate morphological differentiation

  1. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  2. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of); Jang, Deok-Jin [Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711 (Korea, Republic of); Lee, Jin-A, E-mail: leeja@hnu.kr [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of)

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  3. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation.

    Science.gov (United States)

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E; Pertsemlidis, Alexander; Du, Liqin

    2014-05-15

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy.

  4. Differential morphology and image processing.

    Science.gov (United States)

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  5. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.

    Science.gov (United States)

    Moretti, Marino; Wang, Lei; Grognet, Pierre; Lanver, Daniel; Link, Hannes; Kahmann, Regine

    2017-09-01

    Regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling negatively. To broaden an understanding of the roles of RGS proteins in fungal pathogens, we functionally characterized the three RGS protein-encoding genes (rgs1, rgs2 and rgs3) in the phytopathogenic fungus Ustilago maydis. It was found that RGS proteins played distinct roles in the regulation of development and virulence. rgs1 had a minor role in virulence when deleted in a solopathogenic strain. In crosses, rgs1 was dispensable for mating and filamentation, but was required for teliospore production. Haploid rgs2 mutants were affected in cell morphology, growth, mating and were unable to cause disease symptoms in crosses. However, virulence was unaffected when rgs2 was deleted in a solopathogenic strain, suggesting an exclusive involvement in pre-fusion events. These rgs2 phenotypes are likely connected to elevated intracellular cAMP levels. rgs3 mutants were severely attenuated in mating, in their response to pheromone, virulence and formation of mature teliospores. The mating defect could be traced back to reduced expression of the transcription factor rop1. It was speculated that the distinct roles of the three U. maydis RGS proteins were achieved by direct modulation of the Gα subunit-activated signaling pathways as well as through Gα-independent functions. © 2017 John Wiley & Sons Ltd.

  6. Defining Minimal Binding Regions in Regulator of Presynaptic Morphology 1 (RPM-1) Using Caenorhabditis elegans Neurons Reveals Differential Signaling Complexes.

    Science.gov (United States)

    Baker, Scott T; Grill, Brock

    2017-02-10

    The intracellular signaling protein regulator of presynaptic morphology 1 (RPM-1) is a conserved regulator of synapse formation and axon termination in Caenorhabditis elegans RPM-1 functions in a ubiquitin ligase complex with the F-box protein FSN-1 and functions through the microtubule binding protein RAE-1. Using a structure-function approach and positive selection for transgenic C. elegans, we explored the biochemical relationship between RPM-1, FSN-1, and RAE-1. This led to the identification of two new domains in RPM-1 that are sufficient for binding to FSN-1, called FSN-1 binding domain 2 (FBD2) and FBD3. Furthermore, we map the RAE-1 binding domain to a much smaller region of RPM-1. Point mutations in RPM-1 that reduce binding to RAE-1 did not affect FSN-1 binding, indicating that RPM-1 utilizes different biochemical mechanisms to bind these molecules. Analysis of RPM-1 protein complexes in the neurons of C. elegans elucidated two further discoveries: FSN-1 binds to RAE-1, and this interaction is not mediated by RPM-1, and RPM-1 binding to FSN-1 and RAE-1 reduces FSN-1·RAE-1 complex formation. These results indicate that RPM-1 uses different mechanisms to recruit FSN-1 and RAE-1 into independent signaling complexes in neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells.

    Science.gov (United States)

    McNally, A K; Anderson, J M

    1995-11-01

    Interleukin-4 induced the formation of foreign body-type giant multinucleated cells from human monocyte-derived macrophages, an effect that was optimized with either granulocyte-macrophage colony-stimulating factor or interleukin-3, dependent on the concentration of interleukin-4, and specifically prevented by anti-interleukin-4. Very large foreign body giant cells and, predominantly, giant cell syncytia with randomly arranged nuclei and extensive cytoplasmic spreading (285 +/- 121 nuclei and 1.151 +/- 0.303 mm2 per syncytium) were consistently obtained. Under otherwise identical culture conditions, relatively much smaller Langhans-type giant cells with circularly arranged nuclei were induced with a previously described combination of interferon-gamma plus granulocyte-macrophage colony-stimulating factor or interleukin-3 (16 +/- 6 nuclei and 0.033 +/- 0.013 mm2 per giant cell); their formation was prevented by anti-interferon-gamma but not by anti-interleukin-4. Similar rates of macrophage fusion were obtained in both culture systems (72 +/- 5% and 74 +/- 6%, respectively), but these two morphological variants did not occur simultaneously or form from one another within the 10-day culture period. These findings demonstrate that interleukin-4 is a potent human macrophage fusion factor and that differential regulation of macrophage fusion by interleukin-4 and interferon-gamma may lead to morphological variants of multinucleated giant cells.

  8. Human morphology and temperature regulation

    Science.gov (United States)

    Anderson, G. S.

    For nearly a century individuals have believed that there is a link between human morphology and one's thermoregulatory response in adverse environments. Most early research was focussed on the rate of core cooling in a male adult population and the role of subcutaneous adipose tissue, surface area and the surface-area-to-mass ratio in one's ability to withstand varying degrees of cold stress. More recently research has addressed heat tolerance in various populations, exploring the role of subcutaneous adipose tissue, surface area and the surface-area-to-mass ratio in one's ability to maintain thermal equilibrium in warm and hot, dry and humid environments. Since the late 1970s an emphasis has been placed on the role of muscle and muscle perfusion in total-body thermal insulation. Yet, despite the history of research pertaining to human morphology and temperature regulation there is little consensus as to the impact of variations in human morphology on thermoregulatory responses. Individuals differing in body size, shape and composition appear to respond quantitatively differently to variations in both ambient and core temperatures but the interrelations between morphological components and temperature regulation are complex. It is the purpose of this paper to examine the literature pertaining to the impact of variations in muscularity, adipose tissue thickness and patterning, surface area and the surface-area-to-mass ratio on thermoregulation and thermal stability in response to both heat and cold stress.

  9. Morphological differentiation of vectors of onchocerciasis, Simulium ...

    African Journals Online (AJOL)

    The reliable identification of biting adult females of the sibling species of the Simulium damnosum complex transmitting the different species and strains of Onchocerca volvulus is very essential in studies of transmission and epidemiology of human onchocerciasis. A novel technique for morphological differentiation has ...

  10. Detection and differentiation of two morphologically identical ...

    African Journals Online (AJOL)

    Background: Infection with Entamoeba histolytica is a worldwide public health problem. Diagnosis of this parasite by conventional microscopy is almost impossible, because it is morphologically indistinguishable from E. dispar, which is non pathogenic. Objective: To detect and differentiate E. histolytica from E. dispar by ...

  11. Microtubule-associated protein tau (Mapt) is expressed in terminally differentiated odontoblasts and severely down-regulated in morphologically disturbed odontoblasts of Runx2 transgenic mice.

    Science.gov (United States)

    Miyazaki, Toshihiro; Baba, Tomomi T; Mori, Masako; Moriishi, Takeshi; Komori, Toshihisa

    2015-08-01

    Runx2 is an essential transcription factor for osteoblast and odontoblast differentiation and the terminal differentiation of chondrocytes. We have previously shown that the terminal differentiation of odontoblasts is inhibited in Runx2 transgenic {Tg(Col1a1-Runx2)} mice under the control of the 2.3-kb Col1a1 promoter, which directs the transgene expression to osteoblasts and odontoblasts. Odontoblasts show severe reductions in Dspp and nestin expression and lose their characteristic polarized morphology, including a long process extending to dentin, in Tg(Col1a1-Runx2) mice. We study the molecular mechanism of odontoblast morphogenesis by comparing gene expression in the molars of wild-type and Tg(Col1a1-Runx2) mice, focusing on cytoskeleton-related genes. Using microarray, we found that the gene expression of microtubule-associated protein tau (Mapt), a neuronal phosphoprotein with important roles in neuronal biology and microtubule dynamics and assembly, was high in wild-type molars but severely reduced in Tg(Col1a1-Runx2) molars. Immunohistochemical analysis revealed that Mapt was specifically expressed in terminally differentiated odontoblasts including their processes in wild-type molars but its expression was barely detectable in Tg(Col1a1-Runx2) molars. Double-staining of Mapt and Runx2 showed their reciprocal expression in odontoblasts. Mapt and tubulin co-localized in odontoblasts in wild-type molars. Immunoelectron microscopic analysis demonstrated Mapt lying around α-tubulin-positive filamentous structures in odontoblast processes. Thus, Mapt is a useful marker for terminally differentiated odontoblasts and might play an important role in odontoblast morphogenesis.

  12. Regulators of Tfh cell differentiation

    Directory of Open Access Journals (Sweden)

    Gajendra Motiram Jogdand

    2016-11-01

    Full Text Available The follicular helper T (Tfh cells help is critical for activation of B cells, antibody class switching and germinal center formation. The Tfh cells are characterized by the expression of CXCR5, ICOS, PD-1, Bcl-6, and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. Tfh cells are generated from naïve CD4 T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A, migration and positioning in the germinal center by CXCR5, surface receptors (ICOS/ICOSL, SAP/SLAM as well as transcription factor (Bcl-6, c-Maf, STAT3 signaling and repressor miR155. On the other hand Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7, surface receptor (PD-1, CTLA-4, transcription factors Blimp-1, STAT5, T-bet, KLF-2 signaling and repressor miR 146a. Interestingly, miR 17-92 and FOXO1 acts as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin Ligase and miRNA as positive and negative regulators for Tfh differentiation.

  13. Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor.

    Science.gov (United States)

    Palazzotto, Emilia; Renzone, Giovanni; Fontana, Pietro; Botta, Luigi; Scaloni, Andrea; Puglia, Anna Maria; Gallo, Giuseppe

    2015-12-01

    The molecular mechanisms regulating tryptophan biosynthesis in actinomycetes are poorly understood; similarly, the possible roles of tryptophan in the differentiation program of microorganism life-cycle are still underexplored. To unveil the possible regulatory effect of this amino acid on gene expression, an integrated study based on quantitative teverse transcription-PCR (qRT-PCR) and proteomic approaches was performed on the actinomycete model Streptomyces coelicolor. Comparative analyses on the microorganism growth in a minimal medium with or without tryptophan supplementation showed that biosynthetic trp gene expression in S. coelicolor is not subjected to a negative regulation by the presence of the end product. Conversely, tryptophan specifically induces the transcription of trp genes present in the biosynthetic gene cluster of the calcium-dependent antibiotic (CDA), a lipopeptide containing D- and L-tryptophan residues. In addition, tryptophan stimulates the transcription of the CDA gene cluster regulator cdaR and, coherently, CDA production. Surprisingly, tryptophan also promotes the production of actinorhodin, another antibiotic that does not contain this amino acid in its structure. Combined 2D-DIGE and nano liquid chromatography electrospray linear ion trap tandem mass spectrometry (LC-ESI-LIT-MS/MS) analyses revealed that tryptophan exerts a growth-stage-dependent global effect on S. coelicolor proteome, stimulating anabolic pathways and promoting the accumulation of key factors associated with morphological and physiological differentiation at the late growth stages. Phenotypic observations by scanning electron microscopy and spore production assays demonstrated an increased sporulation in the presence of tryptophan. Transcriptional analysis of catabolic genes kynA and kynB suggested that the actinomycete also uses tryptophan as a carbon and nitrogen source. In conclusion, this study originally provides the molecular basis underlying the stimulatory

  14. Low genetic differentiation among morphologically distinct ...

    African Journals Online (AJOL)

    Labeobarbus altianalis and L. bynni bynni are hexaploid cyprinid fishes in the genus Labeobarbus. In the Great Lakes region of Africa, these two large-bodied barbs exhibit considerable morphological variations. Their intraspecific classification, currently based on geographical distribution and morphological variation, is of ...

  15. Induction of morphological and functional differentiation of human ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 4. Induction of morphological and functional differentiation of ... Neuroblastoma is the most common extracranial solid tumour in children, and differentiation is considered its mostappropriate therapy. In this work, we studied effects of miR-124 overexpression on ...

  16. Towards spatially differentiated regulation of nitrogen

    DEFF Research Database (Denmark)

    Lajer Højberg, Anker; Refsgaard, Jens Christian; Jørgensen, Lisbeth Flindt

    of drains and hydro-biogeochemical conditions in associated riparian lowlands. Hence, a shift of paradigm in regulation practice is needed, whit a cost-effective regulation accounting for this variability and differentiate the regulations/restrictions between resilient and vulnerable areas. However...

  17. Autoimmune regulator, Aire, is a novel regulator of chondrocyte differentiation.

    Science.gov (United States)

    Si, Yuan; Inoue, Kazuki; Igarashi, Katsuhide; Kanno, Jun; Imai, Yuuki

    2013-08-09

    Chondrocyte differentiation is controlled by various regulators, such as Sox9 and Runx2, but the process is complex. To further understand the precise underlying molecular mechanisms of chondrocyte differentiation, we aimed to identify a novel regulatory factor of chondrocyte differentiation using gene expression profiles of micromass-cultured chondrocytes at different differentiation stages. From the results of microarray analysis, the autoimmune regulator, Aire, was identified as a novel regulator. Aire stable knockdown cells, and primary cultured chondrocytes obtained from Aire(-/-) mice, showed reduced mRNA expression levels of chondrocyte-related genes. Over-expression of Aire induced the early stages of chondrocyte differentiation by facilitating expression of Bmp2. A ChIP assay revealed that Aire was recruited on an Airebinding site (T box) in the Bmp2 promoter region in the early stages of chondrocyte differentiation and histone methylation was modified. These results suggest that Aire can facilitate early chondrocyte differentiation by expression of Bmp2 through altering the histone modification status of the promoter region of Bmp2. Taken together, Aire might play a role as an active regulator of chondrocyte differentiation, which leads to new insights into the regulatory mechanisms of chondrocyte differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Karyopherin Alpha Proteins Regulate Oligodendrocyte Differentiation.

    Directory of Open Access Journals (Sweden)

    Benjamin M Laitman

    Full Text Available Proper regulation of the coordinated transcriptional program that drives oligodendrocyte (OL differentiation is essential for central nervous system myelin formation and repair. Nuclear import, mediated in part by a group of karyopherin alpha (Kpna proteins, regulates transcription factor access to the genome. Understanding how canonical nuclear import functions to control genomic access in OL differentiation may aid in the creation of novel therapeutics to stimulate myelination and remyelination. Here, we show that members of the Kpna family regulate OL differentiation, and may play distinct roles downstream of different pro-myelinating stimuli. Multiple family members are expressed in OLs, and their pharmacologic inactivation dose-dependently decreases the rate of differentiation. Additionally, upon differentiation, the three major Kpna subtypes (P/α2, Q/α3, S/α1 display differential responses to the pro-myelinating cues T3 and CNTF. Most notably, the Q/α3 karyopherin Kpna4 is strongly upregulated by CNTF treatment both compared with T3 treatment and other Kpna responses. Kpna4 inactivation results in inhibition of CNTF-induced OL differentiation, in the absence of changes in proliferation or viability. Collectively, these findings suggest that canonical nuclear import is an integral component of OL differentiation, and that specific Kpnas may serve vital and distinct functions downstream of different pro-myelinating cues.

  19. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  20. ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes.

    Directory of Open Access Journals (Sweden)

    Idan Cohen

    Full Text Available Disrupted skin barrier due to altered keratinocyte differentiation is common in pathologic conditions such as atopic dermatitis, ichthyosis and psoriasis. However, the molecular cascades governing keratinocyte terminal differentiation are poorly understood. We have previously demonstrated that a dominant mutation in ZNF750 leads to a clinical phenotype reminiscent of psoriasis and seborrheic dermatitis. Here we show that ZNF750 is a nuclear protein bearing a functional C-terminal nuclear localization signal. ZNF750 was specifically expressed in the epidermal suprabasal layers and its expression was augmented during differentiation, both in human skin and in-vitro, peaking in the granular layer. Silencing of ZNF750 in Ca2+-induced HaCaT keratinocytes led to morphologically apparent arrest in the progression of late differentiation, as well as diminished apoptosis and sustained proliferation. ZNF750 knockdown cells presented with markedly reduced expression of epidermal late differentiation markers, including gene subsets of epidermal differentiation complex and skin barrier formation such as FLG, LOR, SPINK5, ALOX12B and DSG1, known to be mutated in various human skin diseases. Furthermore, overexpression of ZNF750 in undifferentiated cells induced terminal differentiation genes. Thus, ZNF750 is a regulator of keratinocyte terminal differentiation and with its downstream targets can serve in future elucidation of therapeutics for common diseases of skin barrier.

  1. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission.

    Directory of Open Access Journals (Sweden)

    Aurora M Fontainhas

    Full Text Available PURPOSE: Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or "resting" conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates "resting" microglial morphology and behavior. METHODS: We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. RESULTS: Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels

  2. Malaria vector Anopheles culicifacies sibling species differentiation using egg morphometry and morphology

    National Research Council Canada - National Science Library

    Tyagi, Varun; Sharma, A K; Dhiman, Sunil; Srivastava, A R; Yadav, Ruchi; Sukumaran, D; Agrawal, O P; Veer, Vijay

    2016-01-01

    .... Currently, for the first time egg morphometry and morphology has been used to differentiate the three known vector sibling species of Anopheles culicifacies collected from malaria endemic Madhya...

  3. Morphological, molecular and FTIR spectroscopic analysis during the differentiation of kidney cells from pluripotent stem cells

    National Research Council Canada - National Science Library

    Monica Maribel Mata-Miranda; Gustavo Jesus Vazquez-Zapien; Marlon Rojas-Lopez; Virginia Sanchez-Monroy; David Guillermo Perez-Ishiwara; Raul Jacobo Delgado-Macuil

    2017-01-01

    ...) analyzing their morphological, genetic, phenotypic, and spectroscopic characteristics along differentiation, highlighting that there are no reports of the use of Fourier transform infrared (FTIR...

  4. Induction of the monocytic differentiation of myeloid leukaemia cells by cotylenin A, a plant growth regulator.

    Science.gov (United States)

    Yamamoto-Yamaguchi, Y; Yamada, K; Ishii, Y; Asahi, K I; Tomoyasu, S; Honma, Y

    2001-03-01

    Regulators that play an important role in the differentiation and development of plants or invertebrates may also affect the differentiation of human leukaemia cells through a common signal transduction system, and might be clinically useful for treating acute myeloid leukaemia. Cotylenin A has been isolated as a plant growth regulator. We examined the effects of cotylenin A on the differentiation of several myelogenous leukaemia cells, and found that cotylenin A is a potent and novel inducer of the monocytic differentiation of human myeloid leukaemia cells. Cotylenin A induced the functional and morphological differentiation of myeloblastic and promyelocytic leukaemia cells, but did not effectively induce the differentiation of monocytoid leukaemia cells. Cotylenin A-induced differentiation was not affected by several inhibitors of signal transduction, suggesting that this inducer exhibits a unique mode of action.

  5. The ultrasonographic features of endometriomas: morphologic analysis and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sung; Park, Chan Sup; Song, Soon Young; Lee, Eun Ja; Park, No Hyuck [College of Medicine, Kwandong Univ., Koyang (Korea, Republic of); Park, Cheol Min [College of Medicine, Korea Univ., Seoul (Korea, Republic of); Kim, Bo Hyun; Kim, Chan Kyo [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2003-12-01

    To analyze the sonographic, morphologic, and internal echo patterns of endometriomas, and thus determine which ultrasonographic (US) findings assist diagnosis. One hundred and forty-seven eases of pathologically proven adnexal masses in 130 women were divided into three groups: group I, in which endometriomas were diagnosed at both preoperative US and surgery (true positive) (n=97); group II, in which endometriomas were misdiagnosed at preoperative US, and were confirmed after surgery to be other pathologic entities (false positive) (n=10); group III, in which other adnexal masses were misdiagnosed at preoperative US, but were proven after surgery to be endometriomas (false negative) (n=40). The US findings in these cases were retrospectively reviewed in terms of (a) morphologic type: unilocular, multiseptated, multilobulated, solid and cystic, or mixed; (b) internal echo pattern: homogeneous fine, anechoic, fine septation, or complex; (c) size; (d) wall thickness; (e) the presence or absence of septation; (f) wall nodularity; (g) echogenic wall foci; and (h) a solid area. In group I, the most common morphological type was unilocular cyst (n=63; 65%). In lesions most commonly emitted homogeneous fine echoes (n=76; 78%). In this group, most masses (86%) were less than 10 cm in diameter and the wall thickness in 65% of cases was less than 3 mm. Additionally, internal septation, wall nodularity, focal echogenic wall foci, and a solid area were observed at US. Group II, cases were pathologically confirmed as mucinous cystadenoma (n=3), mucinous cystadenoma with borderline malignancy, hemorrhagic cyst, functional cyst, endometrioid carcinoma, and hematoma. In group III, cases were misdiagnosed as cystadenoma (n=15), hemorrhagic cyst, teratoma, ovarian cancer, functional cyst and ectopic pregnancy at preoperative US. There were no significant differences in size or wall thickness between groups II and III, and group I. At US, groups II and III also showed internal

  6. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dun [Population Council, 1230 York Avenue, New York, NY 10065 (United States); Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000 (China); Chen, Hai-Xiao, E-mail: Hxchen-1@163.net [Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000 (China); Yu, Hai-Qiang [Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Liang, Yong; Wang, Carrie [Population Council, 1230 York Avenue, New York, NY 10065 (United States); Lian, Qing-Quan [The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000 (China); Deng, Hai-Teng, E-mail: dengh@mail.rockefeller.edu [Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Ge, Ren-Shan, E-mail: rge@popcbr.rockefeller.edu [Population Council, 1230 York Avenue, New York, NY 10065 (United States); The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000 (China)

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  7. Krüppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT, was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell

  8. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  9. Dissection of morphological and metabolic differentiation of ameloblasts via ectopic SP6 expression.

    Science.gov (United States)

    Muto, Taro; Miyoshi, Keiko; Horiguchi, Taigo; Noma, Takafumi

    2012-01-01

    Tooth enamel is the hardest organ in the body. In rodent incisor, the enamel is exclusively produced by ameloblasts with yellowish-brown pigmentation, indicating normal enamel formation. However, the molecular mechanisms of ameloblast differentiation and amelogenesis are not fully understood. Specificity protein (Sp) 6 has been reported as one of the critical factors for tooth development. To explore SP6 function, we generated Sp6 transgenic (Tg) rats. Unexpectedly, the enamel surfaces of the incisors in Tg rats were discolored, even though enamel formation and serum iron concentrations were normal. Histological analysis of incisors from 6-week-old Tg rats demonstrated that the ameloblast layer at the pigmentation stage was elongated up to the gingival margin with ectopic SP6 expression in longitudinal incisor sections. In contrast, the incisors from 10-week-old Tg rats revealed that the pigmented ameloblasts were morphologically changed to those of the reduced stage, concomitant with the sporadic disappearance of ectopic SP6 expression. Here we report that morphological differentiation and metabolism of the iron-containing pigment in ameloblasts are independently regulated during amelogenesis by means of ectopic SP6 expression.

  10. Morphological Criteria of Cell Differentiation Stages in Experimental Hepatocarcinoma and Evaluation of Antitumor Drug Efficiency.

    Science.gov (United States)

    Bgatova, N P; Omel'yanchuk, L V; Pozhidaeva, A A; Semeshin, V F; Lykov, A P; Poveshchenko, O V; Makarova, O P; Rachkovskaya, L N; Borodin, Yu I; Konenkov, V I

    2015-11-01

    Structural polymorphism of 5 cell differentiation stages of hepatocarcinoma-29 from ascitic fluid is detected and the morphological criteria for identification of these stages are defined on the base of optic and electron microscopy findings, cytofluorometry, and DNA cytometry. The percentage of cells at differentiation stages 4 and 5 in the tumor structure increases after hepatocarcinoma cell inoculation into the hip. Injection of a cell cycle-modulating substance to animals with tumor growth shifts the proportion of cells with various differentiation stages. The morphological criteria of 5 stages of hepatocarcinoma-29 cell differentiation can be used for prospective drug testing.

  11. Evidence of nerve sheath differentiation and high grade morphology in sclerosing epithelioid fibrosarcoma

    Science.gov (United States)

    Hanson, I; Pearson, J; Eyden, B; Slawik, S; Harris, M

    2001-01-01

    Sclerosing epithelioid fibrosarcoma is a recently described sarcoma in which ultrastructural evidence of fibroblastic differentiation forms part of the diagnostic criteria. This report describes a further case of this tumour, which showed evidence of both fibroblastic and perineurial differentiation by immunohistochemistry and electron microscopy, and which had areas of high grade morphology. The tumour metastasised and the patient died of disease 12 months after presentation. The relevance of these findings to diagnosis and differentiation in these tumours is discussed. Key Words: sclerosing epithelioid fibrosarcoma • nerve sheath differentiation • high grade morphology PMID:11533083

  12. Keratins regulate β-cell mitochondrial morphology, motility, and homeostasis.

    Science.gov (United States)

    Silvander, Jonas S G; Kvarnström, Sofie M; Kumari-Ilieva, Angeli; Shrestha, Anup; Alam, Catharina M; Toivola, Diana M

    2017-10-01

    Loss of the epithelial intermediate filament protein keratin 8 (K8) in murine β cells leads to irregular insulin vesicles and decreased insulin levels. Because mitochondria are central in glucose-stimulated insulin secretion, the relationship between keratins and β-cell mitochondrial function and morphology was investigated. β cells in murine K8-knockout (K8(-/-)) islets of Langerhans have increased numbers of mitochondria, which are rounder and have diffuse cristae, as seen by electron microscopy. The mitochondrial network in primary cultured K8(-/-) β cells is more fragmented compared with K8(+/+) mitochondria, correlating with decreased levels of mitofusin 2 and the mitofusin 2- and keratin-binding protein trichoplein. K8(-/-) β-cell mitochondria have decreased levels of total and mitochondrial cytochrome c, which correlates with a reduction in electron transport complexes I and IV. This provokes loss of mitochondrial membrane potential and reduction of ATP and insulin amount, as seen in K8(-/-) β cells. Mitochondria in K8 wild-type β cells and MIN6 insulinoma cells overexpressing K8 and 18 are more stationary compared with mitochondria in keratin-deficient cells. In conclusion, keratins, likely through trichoplein-mitofusin interactions, regulate both structural and dynamic functions of β-cell mitochondria, which could have implications for downstream insulin secretion.-Silvander, J. S. G., Kvarnström, S. M., Kumari-Ilieva, A., Shrestha, A., Alam, C. M., Toivola, D. M. Keratins regulate β-cell mitochondrial morphology, motility, and homeostasis. © FASEB.

  13. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  14. Autocrine VEGF isoforms differentially regulate endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Hideki Yamamoto

    2016-09-01

    Full Text Available Vascular endothelial growth factor A (VEGF is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2. We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell

  15. Induction of morphological and functional differentiation of human ...

    Indian Academy of Sciences (India)

    Samaneh Sharif

    2017-10-31

    Oct 31, 2017 ... stem cells, that both were derived from mouse neural brain tumours, induced neuronal phenotype (Krichevsky et al. 2006; Silber et al. 2008). In another report it is found that during the neural differentiation and treatment of SK-N-BE neuroblastoma cells with RA, miR-124 expression is http://www.ias.ac.in/ ...

  16. The thymus microenvironment in regulating thymocyte differentiation

    OpenAIRE

    Gameiro, Jacy; Nagib, Patrícia; Verinaud, Liana

    2010-01-01

    The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble prot...

  17. The Proprioceptive System Regulates Morphologic Restoration of Fractured Bones

    Directory of Open Access Journals (Sweden)

    Ronen Blecher

    2017-08-01

    Full Text Available Successful fracture repair requires restoration of bone morphology and mechanical integrity. Recent evidence shows that fractured bones of neonatal mice undergo spontaneous realignment, dubbed “natural reduction.” Here, we show that natural reduction is regulated by the proprioceptive system and improves with age. Comparison among mice of different ages revealed, surprisingly, that 3-month-old mice exhibited more rapid and effective natural reduction than newborns. Fractured bones of null mutants for transcription factor Runx3, lacking functional proprioceptors, failed to realign properly. Blocking Runx3 expression in the peripheral nervous system, but not in limb mesenchyme, recapitulated the null phenotype, as did inactivation of muscles flanking the fracture site. Egr3 knockout mice, which lack muscle spindles but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types, as well as muscle contraction, are required for this regulatory mechanism. These findings uncover a physiological role for proprioception in non-autonomous regulation of skeletal integrity.

  18. Cyclin A2 regulates erythrocyte morphology and numbers.

    Science.gov (United States)

    Jayapal, Senthil Raja; Ang, Heather Yin-Kuan; Wang, Chelsia Qiuxia; Bisteau, Xavier; Caldez, Matias J; Xuan, Gan Xiao; Yu, Weimiao; Tergaonkar, Vinay; Osato, Motomi; Lim, Bing; Kaldis, Philipp

    2016-11-16

    Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 knockout mice are viable but displayed increased mean erythrocyte volume and reduced erythrocyte counts, as well as increased frequency of erythrocytes containing Howell-Jolly bodies. Erythroblasts lacking cyclin A2 displayed defective enucleation, resulting in reduced production of enucleated erythrocytes and increased frequencies of erythrocytes containing nuclear remnants. Deletion of the Cdk inhibitor p27 Kip1 but not Cdk2, ameliorated the erythroid defects resulting from deficiency of cyclin A2, confirming the critical role of cyclin A2/Cdk activity in erythroid development. Loss of cyclin A2 in bone marrow cells in semisolid culture prevented the formation of BFU-E but not CFU-E colonies, uncovering its essential role in BFU-E function. Our data unveils the critical functions of cyclin A2 in regulating mammalian erythropoiesis.

  19. Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Mikolaj J Sulkowski

    Full Text Available BACKGROUND: Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. METHODOLOGY/PRINCIPAL FINDINGS: The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. CONCLUSIONS/SIGNIFICANCE: Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a

  20. Bit-1 is an essential regulator of myogenic differentiation.

    Science.gov (United States)

    Griffiths, Genevieve S; Doe, Jinger; Jijiwa, Mayumi; Van Ry, Pam; Cruz, Vivian; de la Vega, Michelle; Ramos, Joe W; Burkin, Dean J; Matter, Michelle L

    2015-05-01

    Muscle differentiation requires a complex signaling cascade that leads to the production of multinucleated myofibers. Genes regulating the intrinsic mitochondrial apoptotic pathway also function in controlling cell differentiation. How such signaling pathways are regulated during differentiation is not fully understood. Bit-1 (also known as PTRH2) mutations in humans cause infantile-onset multisystem disease with muscle weakness. We demonstrate here that Bit-1 controls skeletal myogenesis through a caspase-mediated signaling pathway. Bit-1-null mice exhibit a myopathy with hypotrophic myofibers. Bit-1-null myoblasts prematurely express muscle-specific proteins. Similarly, knockdown of Bit-1 expression in C2C12 myoblasts promotes early differentiation, whereas overexpression delays differentiation. In wild-type mice, Bit-1 levels increase during differentiation. Bit-1-null myoblasts exhibited increased levels of caspase 9 and caspase 3 without increased apoptosis. Bit-1 re-expression partially rescued differentiation. In Bit-1-null muscle, Bcl-2 levels are reduced, suggesting that Bcl-2-mediated inhibition of caspase 9 and caspase 3 is decreased. Bcl-2 re-expression rescued Bit-1-mediated early differentiation in Bit-1-null myoblasts and C2C12 cells with knockdown of Bit-1 expression. These results support an unanticipated yet essential role for Bit-1 in controlling myogenesis through regulation of Bcl-2. © 2015. Published by The Company of Biologists Ltd.

  1. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  2. Calculation of Differential Propagation Constant Determined by Plant Morphology Using Polarimetric Measurement

    Directory of Open Access Journals (Sweden)

    Chufeng Hu

    2014-01-01

    Full Text Available The morphology of vegetation greatly impacts propagation of polarized electromagnetic wave. In order to validate this phenomenon, the mathematical relation between the differential propagation constant of forest vegetation and of its polarized echo is quantitatively derived by using backscattering power profile. The fluctuation of differential propagation constant with frequency is analyzed by combining the morphological characteristics of vegetation. The accurate copolarized data of 3–10 GHz frequency-domain of small trees are obtained by indoor wideband polarimetric measurement system. The results show that morphological characteristics of vegetation at different frequencies can be obtained by the differential propagation constant of polarized electromagnetic wave. At low frequencies, the plants with structural features presented oriented distribution. However, the plants show random distribution of the echoes at higher frequencies, which is mainly from the canopy. The research provides important information to choose the coherence models employed in the parameters retrieval of vegetations.

  3. Clinical and morphological approaches to the differential diagnosis of diphtheric colitis

    Directory of Open Access Journals (Sweden)

    V. A. Tsinserling

    2015-01-01

    Full Text Available Inflammatory bowel diseases is a large group of nosologic forms such as more frequent acute intestinal infection, especially dysentery, chronic inflammatory diseases such as ulcerative colitis and Cron’s disease with lesions of the bowel, antibiotics-associated and ischemic colitis. There are some difficulties in differential diagnostics of inflammatory bowel diseases despite their widespread and tendency to more frequent occurrence. On the one hand, this is largely due to similar clinical picture which is most often presented by diarrhea and abdominal pain of different degree of intensity, and, on the other hand, by the disadvantages of laboratory diagnostics techniques. The article discusses the problem of clinical and morphological aspects of the differential colitis diagnostics with more detailed characteristics of fibrinous colitis of different etiology. The morphological differential diagnostics criteria, as well as a summary table of comparative characteristics of antibiotics-associated pseudomembranous colitis, dysentery, invasive candidiasis of bowel, ulcerative colitis and ischemic colitis have been presented. The importance of an integrated approach to the differential diagnostics of inflammatory bowel diseases, based on the analysis of anamnesis, clinical-laboratory and morphological data is stressed. The algorithm for optimizing of differential diagnostics of inflammatory bowel diseases with recommendations for qualitative morphological examination has been suggested. 

  4. Morphological engineering of Streptomyces hygroscopicus var. geldanus: regulation of pellet morphology through manipulation of broth viscosity.

    Science.gov (United States)

    O'Cleirigh, C; Casey, J T; Walsh, P K; O'Shea, D G

    2005-08-01

    Actinomycetes, especially members of the genus Streptomyces, are responsible for producing the majority of known antibiotics. The production of antibiotics by filamentous organisms is often dependent on the morphology and size distribution of the pellet population within the culture. Particle interaction and subsequent pellet formation are primarily dependent on the rate of collision of particles in culture, which is in turn, a function of fluid turbulence. The microbial polysaccharide xanthan gum was used to artificially regulate the apparent viscosity (mu(a)) of S. hygroscopicus fermentation broths with the aim of controlling particle interaction, aggregation and hence pellet formation. An increase in both pellet count and biomass concentration from approximately 2,000 to 8,000 pellets ml(-1) and 0.9-2.1 g l(-1) dry weight of biomass, as well a decrease in the mean pellet volume from 0.014 to 0.004 mm(3) was observed in cultures supplemented with 3 g l(-1) xanthan gum. The addition of xanthan gum significantly alters fluid rheology by increasing the mu(a). Counter-intuitively, an increase in the mu(a) within the experimental range examined resulted in an increase in the rate of gas-liquid mass transfer. This was attributed to the predominantly diffusive nature of oxygen transfer in shake flask cultures.

  5. Regulation of myoblast differentiation by metabolic perturbations induced by metformin.

    Directory of Open Access Journals (Sweden)

    Theodora Pavlidou

    Full Text Available The metabolic perturbation caused by calorie restriction enhances muscle repair by playing a critical role in regulating satellite cell availability and activity in the muscles of young and old mice. To clarify the underlying mechanisms we asked whether myoblast replication and differentiation are affected by metformin, a calorie restriction-mimicking drug. C2C12, a mouse myoblast cell line, readily differentiate in vitro and fuse to form myotubes. However, when incubated with metformin, C2C12 slow their replication and do not differentiate. Interestingly, lower doses of metformin promote myogenic differentiation. We observe that metformin treatment modulates the expression of cyclins and cyclin inhibitors thereby inducing a cell cycle perturbation that causes a delay in the G2/M transition. The effect of metformin treatment is reversible since after drug withdrawal, myoblasts can re-enter the cell cycle and/or differentiate, depending on culture conditions. Myoblasts cultured under metformin treatment fail to up-regulate MyoD and p21cip1, a key step in cell cycle exit and terminal differentiation. Although the details of the molecular mechanisms underlying the effect of the drug on myoblasts still need to be clarified, we propose that metformin negatively affects myogenic differentiation by inhibiting irreversible exit from the cell cycle through reduction of MyoD and p21cip1 levels.

  6. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  7. Induction of temporally dissociated morphological and physiological differentiation of N1E-115 cells.

    Science.gov (United States)

    Cosgrove, C; Cobbett, P

    1991-07-01

    Clonal cells derived from neural tumors have been widely used to study the processes of neuronal differentiation in vitro. The murine neuroblastoma clone N1E-115 has recently been shown to differentiate morphologically in response to removal of serum from the culture medium. In the present study, the nature and time course of electrophysiological differentiation of N1E-115 cells maintained in serum-free medium was examined. Differentiated cells had a higher resting potential and lower input conductance than nondifferentiated cells. Differentiated but not nondifferentiated cells generated current evoked action potentials, and differentiated cells fired spontaneous, repetitive action potentials after 13 days in serum-free medium. The rate of potential change during the depolarizing and repolarizing phases of the action potential became faster as the duration of maintenance of cells in serum-free medium increased. Remarkably, morphological differentiation appeared to be complete after exposure to serum-free medium for 5 days but electrophysiological differentiation was not complete until 13 days in this medium.

  8. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Fumiko Matsuoka

    Full Text Available Human bone marrow mesenchymal stem cells (hBMSCs are widely used cell source for clinical bone regeneration. Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be implanted. However, there are still no practical methods to characterize such potential non-invasively or previously. Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately, such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We applied computational machine learning, combining cell morphology features with their corresponding biochemical osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP activity and calcium deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly correlated with the experimentally defined differentiation marker values (R>0.89 for both marker predictions. The clinical applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell images and the other using both historical images together with the patient's own cell images to predict a new patient's cellular potential. The prediction accuracy was found to be greatly enhanced

  9. Morphological and genetic differentiation of Bufo toads: two cryptic species in Western Europe (Anura, Bufonidae)

    NARCIS (Netherlands)

    Arntzen, J.W.; McAtear, J.; Recuero, E.; Ziermann, J.M.; Ohler, A.; Alphen, van J.; Martínez-Solano, I.

    2013-01-01

    The Common toad Bufo bufo sensu lato is a widespread, morphologically conserved taxon. Recent studies have uncovered deep genetic differentiation between population groups, highlighting the need to revise the current taxonomy of the group and recognize additional species. Here we investigate

  10. Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin

    National Research Council Canada - National Science Library

    Wagner, W; Wehrmann, M

    2007-01-01

    .... Cytokines are known to play a key role in this process. The current study investigated the differential cytokine activity and healing morphology during healing of incisional skin wounds in rats of the ages neonatal (p0), 3 days old (p3...

  11. Regulation of T cell differentiation and function by EZH2

    Directory of Open Access Journals (Sweden)

    THEODOROS KARANTANOS

    2016-05-01

    Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.

  12. Regulation of T Cell Differentiation and Function by EZH2.

    Science.gov (United States)

    Karantanos, Theodoros; Chistofides, Anthos; Barhdan, Kankana; Li, Lequn; Boussiotis, Vassiliki A

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD.

  13. Causes and effects of morphological changes of the regulated channel of the river Toplica

    Directory of Open Access Journals (Sweden)

    Đeković Vojislav

    2005-01-01

    Full Text Available The regulation of small torrential watercourses outside the urbanized areas is often based on the so-called field type of regulation. In the selection of this concept, after the regulation works, the new channel is left to the natural process of the morphological formation of the water cross-section taking care not to disturb the general stability of the regulated channel. We present the process of morphological development of the regulated channel of the river Toplica, tributary of the river Kolubara, in the period 1982-2004 i.e. from immediately after the regulation works to the present day.

  14. Morphological and genetic differentiation among four pigment producing Indian species of Phoma (Saccardo, 1899).

    Science.gov (United States)

    Chande, Ajit; Kövics, G J; Sandhu, S S; Rai, M K

    2010-10-01

    A PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was used for assessing genetic relatedness among isolates of the genus Phoma. Randomly Amplified Polymorphic DNA (RAPD) revealed the presence of interspecific genetic variation among the pigment producing isolates of Phoma and has shown distinct phylogenetic cluster. The major objective of the study was to study the genetic variation, if any. Study was aimed to differentiate four pigment producing species of Phoma based on morphological studies and molecular markers in general and RAPD in particular. We found that the test species of Phoma can be very well differentiated using molecular markers. Phoma sorghina was differentiated from P. exigua, P. fimeti and P. herbarum. RAPD profiles of P. herbarum and P. fimeti has shown the maximum similarity, which indicates the genetic relatedness among these two species which were considered earlier as distinct species based on morphological observation.

  15. Melatonin regulates mesenchymal stem cell differentiation: a review.

    Science.gov (United States)

    Luchetti, Francesca; Canonico, Barbara; Bartolini, Desirée; Arcangeletti, Marcella; Ciffolilli, Silvia; Murdolo, Giuseppe; Piroddi, Marta; Papa, Stefano; Reiter, Russel J; Galli, Francesco

    2014-05-01

    Among the numerous functions of melatonin, the control of survival and differentiation of mesenchymal stem cells (MSCs) has been recently proposed. MSCs are a heterogeneous population of multipotent elements resident in tissues such as bone marrow, muscle, and adipose tissue, which are primarily involved in developmental and regeneration processes, gaining thus increasing interest for tissue repair and restoration therapeutic protocols. Receptor-dependent and receptor-independent responses to melatonin are suggested to occur in these cells. These involve antioxidant or redox-dependent functions of this indolamine as well as secondary effects resulting from autocrine and paracrine responses. Inflammatory cytokines and adipokines, proangiogenic/mitogenic stimuli, and other mediators that influence the differentiation processes may affect the survival and functional integrity of these mesenchymal precursor cells. In this scenario, melatonin seems to regulate signaling pathways that drive commitment and differentiation of MSC into osteogenic, chondrogenic, adipogenic, or myogenic lineages. Common pathways suggested to be involved as master regulators of these processes are the Wnt/β-catenin pathway, the MAPKs and the, TGF-β signaling. In this respect melatonin emerges a novel and potential modulator of MSC lineage commitment and adipogenic differentiation. These and other aspects of the physiological and pharmacological effects of melatonin as regulator of MSC are discussed in this review. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. EZH2: a pivotal regulator in controlling cell differentiation.

    Science.gov (United States)

    Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan

    2012-01-01

    Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.

  17. Morphological heterogeneity and population differentiation in the green chromid Etroplus suratensis (Pisces: Cichlidae in Sri Lanka

    Directory of Open Access Journals (Sweden)

    K. B. Suneetha Gunawickrama

    2007-09-01

    Full Text Available Morphological variation of the euryhaline cichlid fish Etroplus suratensis (Bloch from six geographically apart estuarine localities along the southern and western coasts of Sri Lanka was studied. Significant heterogeneity in morphology of the cichlid were found with respect to nine morphometric characters (n=218. Fish of Nilwala estuary and Garanduwa lagoon were not significantly different in morphology, yet they show discernible differences from the other four samples (Kahanda lagoon, Chilaw lagoon, Walawe estuary and Koggala lagoon with respect to the most of the studied characters. Concordant results were found by multivariate analysis of the sizecorrected morphological data as well. Three functions were significant in discriminating the populations of which the first two functions accounted for 95% of the covariance (CV1 85.4 % and CV2 9.7%. The function with the greatest discriminatory power (CV1 can clearly separate samples of Nilwala estuary (L5 and Garanduwa lagoon (L6 from the rest of the samples, while the magnitude of the discrimination between the latter samples is much smaller. Classification functions could correctly classify an average of 65.7% of the individuals into their respective a priori population units. No evidence was found for isolation-by-distance model. The results suggest that E. suratensis populations in some of the studied estuarine localities maintain significant morphological heterogeneity, and the morphological variation can be used to differentiate some of these populations.

  18. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice

    Science.gov (United States)

    Miranda-Angulo, Ana L.; Byerly, Mardi S.; Mesa, Janny; Wang, Hong; Blackshaw, Seth

    2013-01-01

    The wall of the ventral third ventricle is composed of two distinct cell populations: tanycytes and ependymal cells. Tanycytes regulate many aspects of hypothalamic physiology, but little is known about the transcriptional network that regulates their development and function. We observed that the retina and anterior neural fold homeobox transcription factor (Rax) is selectively expressed in hypothalamic tanycytes, and showed a complementary pattern of expression to markers of hypothalamic ependymal cells, such as Rarres2 (retinoic acid receptor responder). To determine whether Rax controls tanycyte differentiation and function, we generated Rax haploinsufficient mice and examined their cellular and molecular phenotype in adulthood. These mice appeared grossly normal, but careful examination revealed a thinning of the third ventricular wall and reduction of both tanycyte and ependymal markers. These experiments show that Rax is required for hypothalamic tanycyte and ependymal cell differentiation. Rax haploinsufficiency also resulted in the ectopic presence of ependymal cells in the α2 tanycytic zone, where few ependymal cells are normally found, suggesting that Rax is selectively required for α2 tanycyte differentiation. These changes in the ventricular wall were associated with reduced diffusion of Evans Blue tracer from the ventricle to the hypothalamic parenchyma, with no apparent repercussion on the gross anatomical or behavioral phenotype of these mice. In conclusion, we have provided evidence that Rax is required for the normal differentiation and patterning of hypothalamic tanycytes and ependymal cells, as well as for maintenance of the cerebrospinal fluid-hypothalamus barrier. PMID:23939786

  19. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

    Directory of Open Access Journals (Sweden)

    Pleasantine Mill

    2009-11-01

    Full Text Available Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs. Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.

  20. The Macrophage Polarization Regulates MSC Osteoblast Differentiation in vitro.

    Science.gov (United States)

    Gong, Lei; Zhao, Yan; Zhang, Yi; Ruan, Zhi

    2016-01-01

    Bone repair is a complex yet highly organized process involving interactions between various cell types and the extracellular environment. Macrophages are not only activated in inflammation during early phases of repair processes, but they are also present in bone throughout the whole bone repair process. Bone marrow derived mesenchymal stem cells (MSCs) represent an attractive therapeutic for bone fracture with their expansion potential, osteogenic capability, and potential for injury. However, less is known about the interaction between macrophage and MSC during bone repair and regeneration. This study was aimed to investigate whether macrophages in different statuses can regulate MSC osteoblast differentiation in vitro. Using in vitro cell coculture of macrophage and MSC, it was shown that macrophage polarization can regulate MSC osteoblast differentiation. This was evidenced by increased alkaline phosphatase (ALP), osteogenic markers, and bone mineralization in M2 macrophage cocultured MSC but decreased in M1 counterpart. These results might be mediated by pro-regenerative cytokines, such as TGF-β, VEGF, and IFG-1, produced by M2 macrophages and detrimental inflammation cytokines, such as IL-6, IL-12, and TNF-α, produced by M1 macrophages. Taken together, this shows that macrophage polarization could be crucial for maintaining bone homeostasis and promoting bone repair by regulating the MSC osteoblast differentiation. © 2016 by the Association of Clinical Scientists, Inc.

  1. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  2. A change in nuclear pore complex composition regulates cell differentiation.

    Science.gov (United States)

    D'Angelo, Maximiliano A; Gomez-Cavazos, J Sebastian; Mei, Arianna; Lackner, Daniel H; Hetzer, Martin W

    2012-02-14

    Nuclear pore complexes (NPCs) are built from ∼30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Glycogen synthase kinase-3beta regulates differentiation-induced apoptosis of human neural progenitor cells.

    Science.gov (United States)

    Jaeger, Alexandra; Baake, Jana; Weiss, Dieter G; Kriehuber, Ralf

    2013-02-01

    Glycogen synthase kinase-3beta is a multifunctional key regulator enzyme in neural developmental processes and a main component of the canonical Wnt signaling pathway. It is already known that the Wnt-driven differentiation of neural progenitor cells is accompanied by an increase of apoptosis at which the pro-apoptotic function of GSK-3beta is still discussed. The aim of the present study was to investigate whether the phosphorylation level of GSK-3beta at serine 9 is the primary regulatory mechanism of differentiation-induced apoptosis. Differentiating human neural ReNcell VM progenitor cells were treated with the specific GSK-3beta inhibitor SB216763 (10 μM) and analyzed in respect to the intrinsic apoptosis pathway regulation using microscopy and protein expression analysis. Differentiation of ReNcell VM cells was accompanied by cell morphological changes, cytoskeleton rearrangement and apoptosis increase. Treatment of differentiating cells with SB216763 induced a significant dephosphorylation of GSK-3beta at serine 9 accompanied by a significant decrease of apoptosis of about 0.7±0.03% and reduced activation of caspase-3 as well as BAX and PARP cleavage during the first 12h of differentiation compared to untreated, differentiating cells. Dephosphorylation of GSK-3beta at serine 9 appears not solely to be responsible for its pro-apoptotic function, because we observed a decrease of intrinsic apoptosis after treatment of the cells with the specific GSK-3beta inhibitor SB216763. We assume that GSK-3beta drives neural progenitor cell apoptosis by direct interaction with pro-apoptotic BAX or by indirect influence on the canonical Wnt/beta-catenin target gene transcription. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Serotonin: a regulator of neuronal morphology and circuitry

    Science.gov (United States)

    Daubert, Elizabeth A.; Condron, Barry G.

    2010-01-01

    Serotonin is an important neuromodulator associated with a wide range of physiological effects in the central nervous system. The exact mechanisms for how serotonin influences brain development are not well understood, although studies in invertebrate and vertebrate model organisms are beginning to unravel a regulatory role for serotonin in neuronal morphology and circuit formation. Recent data suggests a developmental window during which altered serotonin levels permanently impact circuitry, however, the temporal constraints and molecular mechanisms responsible are still under investigation. Growing evidence suggests that alterations in early serotonin signaling contribute to a number of neurodevelopmental and neuropsychiatric disorders. Thus, understanding how altered serotonin signaling affects neuronal morphology and plasticity, and ultimately animal physiology and pathophysiology, will be of great significance. PMID:20561690

  5. Differential age-dependent import regulation by signal peptides.

    Directory of Open Access Journals (Sweden)

    Yi-Shan Teng

    Full Text Available Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.

  6. Differential regulation of polyphosphate genes in Pseudomonas aeruginosa.

    Science.gov (United States)

    Munévar, Nicolás Federico Villamil; de Almeida, Luiz Gustavo; Spira, Beny

    2017-02-01

    Phosphate homeostasis is tightly regulated in bacteria. Phosphate scarcity is overcome by inducing the expression of genes associated with the scavenging of phosphate and phosphate-containing molecules, while phosphate surplus is stored in the form of polyphosphate (polyP). Regulation of the genes involved in polyP metabolism was investigated. Knockout of the most distal gene of the pstSCAB-phoU operon that encodes a Pi-transport system results in large accumulation of polyphosphate (polyP). Here, we show that the phoU mutation differentially affects the transcription of ppk and ppx, that respectively, encode a polyP kinase and a polyP exopolyphosphatase, by increasing the former and reducing the latter, further contributing the accumulation of polyP. We also show that ppk forms an operon with the upstream gene hemB and that neither ppk nor ppx positively respond to Pi starvation. Furthermore, a putative PHO-box sequence in ppx regulatory region did not show a strong affinity for the PHO response regulator PhoB, while the promoter of hemB does not carry a PHO-box sequence. Altogether, the data indicate that the main genes involved in polyP metabolism, ppk and ppx, are differentially regulated in the absence of phoU, but neither gene belongs to the PHO regulon.

  7. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming.

    Science.gov (United States)

    Esteban-Martínez, Lorena; Boya, Patricia

    2017-06-14

    Macroautophagy/autophagy is the process by which cellular components are degraded and recycled within the lysosome. These components include mitochondria, the selective degradation of which is known as mitophagy. Mitochondria are dynamic organelles that constantly adapt their morphology, function, and number to accommodate the metabolic needs of the cell. Extensive metabolic reconfiguration occurs during cell differentiation, when mitochondrial activity increases in most cell types. However, our data demonstrate that during physiological retinal ganglion cell (RGC) development, mitophagy-dependent metabolic reprogramming towards glycolysis regulates numbers of RGCs, which are the first neurons to differentiate in the retina and whose axons form the optic nerve. We show that during retinal development tissue hypoxia triggers HIF1A/HIF-1 stabilization, resulting in increased expression of the mitophagy receptor BNIP3L/NIX. BNIP3L-dependent mitophagy results in a metabolic shift towards glycolysis essential for RGC neurogenesis. Moreover, we demonstrate that BNIP3L-dependent mitophagy also regulates the polarization of proinflammatory/M1 macrophages, which undergo glycolysis-dependent differentiation during the inflammatory response. Our results uncover a new link between hypoxia, mitophagy, and metabolic reprogramming in the differentiation of several cell types in vivo. These findings may have important implications for neurodegenerative, metabolic and other diseases in which mitochondrial dysfunction and metabolic alterations play a prominent role.

  8. Epigenetic Regulation of B Lymphocyte Differentiation, Transdifferentiation, and Reprogramming

    Directory of Open Access Journals (Sweden)

    Bruna Barneda-Zahonero

    2012-01-01

    Full Text Available B cell development is a multistep process that is tightly regulated at the transcriptional level. In recent years, investigators have shed light on the transcription factor networks involved in all the differentiation steps comprising B lymphopoiesis. The interplay between transcription factors and the epigenetic machinery involved in establishing the correct genomic landscape characteristic of each cellular state is beginning to be dissected. The participation of “epigenetic regulator-transcription factor” complexes is also crucial for directing cells during reprogramming into pluripotency or lineage conversion. In this context, greater knowledge of epigenetic regulation during B cell development, transdifferentiation, and reprogramming will enable us to understand better how epigenetics can control cell lineage commitment and identity. Herein, we review the current knowledge about the epigenetic events that contribute to B cell development and reprogramming.

  9. Huntingtin Regulates Mammary Stem Cell Division and Differentiation

    Directory of Open Access Journals (Sweden)

    Salah Elias

    2014-04-01

    Full Text Available Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington’s disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties.

  10. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  11. RAGE, Receptor of Advanced Glycation Endoproducts, Negatively Regulates Chondrocytes Differentiation

    Science.gov (United States)

    Kurosaka, Yuko; Nishimura, Haruka; Tanabe, Motoki; Takakura, Yuuki; Iwai, Keisuke; Waki, Takuya; Fujita, Takashi

    2014-01-01

    RAGE, receptor for advanced glycation endoproducts (AGE), has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE) demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA) partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms. PMID:25275461

  12. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  13. Genetic and morphological differentiation in Populus nigra L.: isolation by colonization or isolation by adaptation?

    Science.gov (United States)

    DeWoody, Jennifer; Trewin, Harriet; Taylor, Gail

    2015-06-01

    Identifying processes underlying the genetic and morphological differences among populations is a central question of evolutionary biology. Forest trees typically contain high levels of neutral genetic variation, and genetic differences are often correlated with geographic distance between populations [isolation by distance (IBD)] or are due to historic vicariance events [isolation by colonization (IBC)]. In contrast, morphological differences are largely due to local adaptation. Here, we examined genetic (microsatellite) and morphological (from a common garden experiment) variation in Populus nigra L., European black poplar, collected from 13 sites across western Europe and grown in a common garden in Belgium. Significant genetic differentiation was observed, with populations from France displaying greater admixture than the distinct Spanish and central European gene pools, consistent with previously described glacial refugia (IBC). Many quantitative traits displayed a bimodal distribution, approximately corresponding to small-leaf and large-leaf ecotypes. Examination of nine climatic variables revealed the sampling locations to have diverse climates, and although the correlation between morphological and climatic differences was significant, the pattern was not consistent with strict local adaptation. Partial Mantel tests based on multivariate summary statistics identified significant residual correlation in comparisons of small-leaf to large-leaf ecotypes, and within the small-leaf samples, but not within large-leaf ecotypes, indicating that variation within the small-leaf morphotype in particular may be adaptive. Some small-leaf populations experience climates very similar to those in large-leaf sites. We conclude that adaptive differentiation and persistent IBC acted in combination to produce the genetic and morphological patterns observed in P. nigra. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  14. Landscape characteristics influence morphological and genetic differentiation in a widespread raptor (Buteo jamaicensis).

    Science.gov (United States)

    Hull, Joshua M; Hull, Angus C; Sacks, Benjamin N; Smith, Jeff P; Ernest, Holly B

    2008-02-01

    Landscape-scale population genetic structure in vagile vertebrates was commonly considered to be a contradiction in terms whereas recent studies have demonstrated behaviour and habitat associated structure in several such species. We investigate whether landscape features influence morphological and genetic differentiation in a widespread, mobile raptor. To accurately describe genetic differentiation associated with regional landscape factors, we first investigated subspecies relationships at a continental scale. We used 17 microsatellite loci and five morphological measurements to investigate differentiation between eastern and western subspecies of red-tailed hawks (Buteo jamaicensis) and to identify patterns between differentiation and habitat within western North America. Bayesian and frequency-based analyses of microsatellite data revealed clear distinctions between B. j. borealis (eastern) and B. j. calurus (western) samples. Furthermore, hawks sampled in Texas were stouter than those collected from the Rocky Mountains and farther west. Among western samples, birds from the Great Basin, Rocky Mountains, and Washington were significantly different in morphology than those from Oregon and California. We identified a pattern of isolation by distance among western breeding sites around the Sierra Nevada. Given the long-range dispersal capabilities of raptors, this pattern suggests that population-specific habitat preferences, corresponding with habitat breaks between eastern and western slopes of the Sierra Nevada, and/or regionally variable population densities limit migration between the Mediterranean habitat of central California and the xeric habitats of southern California and interior west. We suggest habitat preferences and regionally disparate population densities may play a role in shaping genetic structure in vagile avian taxa.

  15. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Gregory M. Kelly

    2017-01-01

    Full Text Available Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.

  16. Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix.

    Science.gov (United States)

    Xu, Yanyi; Patnaik, Sourav; Guo, Xiaolei; Li, Zhenqing; Lo, Wilson; Butler, Ryan; Claude, Andrew; Liu, Zhenguo; Zhang, Ge; Liao, Jun; Anderson, Peter M; Guan, Jianjun

    2014-08-01

    Stem cell therapy has the potential to regenerate heart tissue after myocardial infarction (MI). The regeneration is dependent upon cardiac differentiation of the delivered stem cells. We hypothesized that timing of the stem cell delivery determines the extent of cardiac differentiation as cell differentiation is dependent on matrix properties such as biomechanics, structure and morphology, and these properties in cardiac extracellular matrix (ECM) continuously vary with time after MI. In order to elucidate the relationship between ECM properties and cardiac differentiation, we created an in vitro model based on ECM-mimicking fibers and a type of cardiac progenitor cell, cardiosphere-derived cells (CDCs). A simultaneous fiber electrospinning and cell electrospraying technique was utilized to fabricate constructs. By blending a highly soft hydrogel with a relatively stiff polyurethane and modulating fabrication parameters, tissue constructs with similar cell adhesion property but different global modulus, single fiber modulus, fiber density and fiber alignment were achieved. The CDCs remained alive within the constructs during a 1week culture period. CDC cardiac differentiation was dependent on the scaffold modulus, fiber volume fraction and fiber alignment. Two constructs with relatively low scaffold modulus, ∼50-60kPa, most significantly directed the CDC differentiation into mature cardiomyocytes as evidenced by gene expressions of cardiac troponin T (cTnT), calcium channel (CACNA1c) and cardiac myosin heavy chain (MYH6), and protein expressions of cardiac troponin I (cTnI) and connexin 43 (CX43). Of these two low-modulus constructs, the extent of differentiation was greater for lower fiber alignment and higher fiber volume fraction. These results suggest that cardiac ECM properties may have an effect on cardiac differentiation of delivered stem cells. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Differentiation of human acute myeloid leukaemia cells in primary culture in response to cotylenin A, a plant growth regulator.

    Science.gov (United States)

    Yamada, K; Honma, Y; Asahi, K I; Sassa, T; Hino, K I; Tomoyasu, S

    2001-09-01

    Cotylenin A, which has a diterpenoid tricarbocyclic skeleton, has been isolated as a plant growth regulator, has been shown to affect several physiological processes of higher plants and have differentiation-inducing activity in several myeloid leukaemia cell lines. We examined the effect of cotylenin A on the differentiation of leukaemic cells that were freshly isolated from acute myeloid leukaemia (AML) patients in primary culture. Cotylenin A significantly stimulated both functional and morphological differentiation of leukaemia cells in 9 out of 12 cases. This differentiation-inducing activity was more potent than those of all-trans retinoic acid and 1alpha,25-dihydroxyvitamin D3 (VD3). Treatment with a combination of cotylenin A and VD3 was more effective than cotylenin A or VD3 alone at inducing the monocytic differentiation of AML cells.

  18. Morphological, molecular and FTIR spectroscopic analysis during the differentiation of kidney cells from pluripotent stem cells.

    Science.gov (United States)

    Mata-Miranda, Monica Maribel; Vazquez-Zapien, Gustavo Jesus; Rojas-Lopez, Marlon; Sanchez-Monroy, Virginia; Perez-Ishiwara, David Guillermo; Delgado-Macuil, Raul Jacobo

    2017-04-04

    Kidney diseases are a global health problem. Currently, over 2 million people require dialysis or transplant which are associated with high morbidity and mortality; therefore, new researches focused on regenerative medicine have been developed, including the use of stem cells. In this research, we generate differentiated kidney cells (DKCs) from mouse pluripotent stem cells (mPSCs) analyzing their morphological, genetic, phenotypic, and spectroscopic characteristics along differentiation, highlighting that there are no reports of the use of Fourier transform infrared (FTIR) spectroscopy to characterize the directed differentiation of mPSCs to DKCs. The genetic and protein experiments proved the obtention of DKCs that passed through the chronological stages of embryonic kidney development. Regarding vibrational spectroscopy analysis by FTIR, bands related with biomolecules were shown on mPSCs and DKCs spectra, observing distinct differences between cell lineages and maturation stages. The second derivative of DKCs spectra showed changes in the protein bands compared to mPSCs. Finally, the principal components analysis obtained from FTIR spectra allowed to characterize chemical and structurally mPSCs and their differentiation process to DKCs in a rapid and non-invasive way. Our results indicated that we obtained DKCs from mPSCs, which passed through the chronological stages of embryonic kidney development. Moreover, FTIR spectroscopy resulted in a non-invasive, rapid and precise technic that together with principal component analysis allows to characterize chemical and structurally both kind of cells and also discriminate and determine different stages along the cell differentiation process.

  19. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size.

    Science.gov (United States)

    Löfke, Christian; Dünser, Kai; Scheuring, David; Kleine-Vehn, Jürgen

    2015-03-05

    The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.

  20. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology.

    Science.gov (United States)

    Popov, Sergey; Jury, Alexa; Laxton, Ross; Doey, Lawrence; Kandasamy, Naga; Al-Sarraj, Safa; Jürgensmeier, Juliane M; Jones, Chris

    2013-01-01

    Glioblastoma is a highly aggressive tumour with marked heterogeneity at the morphological level in both the tumour cells and the associated highly prominent vasculature. As we begin to develop an increased biological insight into the underlying processes driving the disease, fewer attempts have thus far been made to understand these phenotypic differences. We sought to address this by carefully assessing the morphological characteristics of both the tumour cells and the associated vasculature, relating these observations to the IDH1/MGMT status, with a particular focus on the early onset population of young adults who develop primary glioblastoma. 276 primary glioblastoma specimens were classified into their predominant cell morphological type (fibrillary, gemistocytic, giant cell, small cell, oligodendroglial, sarcomatous), and assessed for specific tumour (cellularity, necrosis, palisades) and vascular features (glomeruloid structures, arcades, pericyte proliferation). IDH1 positive glioblastomas were associated with a younger age at diagnosis, better clinical outcome, prominent oligodendroglial and small cell tumour cell morphology, pallisading necrosis and glomeruloid vascular proliferation in the absence of arcade-like structures. These features widen the phenotype of IDH1 mutation-positive primary glioblastoma in young adults and provide correlative evidence for a functional role of mutant IDH1 in the differential nature of neo-angiogenesis in different subtypes of glioblastoma.

  1. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology.

    Directory of Open Access Journals (Sweden)

    Sergey Popov

    Full Text Available Glioblastoma is a highly aggressive tumour with marked heterogeneity at the morphological level in both the tumour cells and the associated highly prominent vasculature. As we begin to develop an increased biological insight into the underlying processes driving the disease, fewer attempts have thus far been made to understand these phenotypic differences. We sought to address this by carefully assessing the morphological characteristics of both the tumour cells and the associated vasculature, relating these observations to the IDH1/MGMT status, with a particular focus on the early onset population of young adults who develop primary glioblastoma. 276 primary glioblastoma specimens were classified into their predominant cell morphological type (fibrillary, gemistocytic, giant cell, small cell, oligodendroglial, sarcomatous, and assessed for specific tumour (cellularity, necrosis, palisades and vascular features (glomeruloid structures, arcades, pericyte proliferation. IDH1 positive glioblastomas were associated with a younger age at diagnosis, better clinical outcome, prominent oligodendroglial and small cell tumour cell morphology, pallisading necrosis and glomeruloid vascular proliferation in the absence of arcade-like structures. These features widen the phenotype of IDH1 mutation-positive primary glioblastoma in young adults and provide correlative evidence for a functional role of mutant IDH1 in the differential nature of neo-angiogenesis in different subtypes of glioblastoma.

  2. Nondestructive detection of glass vial inner surface morphology with differential interference contrast microscopy.

    Science.gov (United States)

    Wen, Zai-Qing; Torraca, Gianni; Masatani, Peter; Sloey, Christopher; Phillips, Joseph

    2012-04-01

    Glass particles generated by glass dissolution and delamination of the glass container for pharmaceutical products have become a major issue in the pharmaceutical industry. The observation of glass particles in certain injectable drugs, including several protein therapeutics, has recently resulted in a number of product recalls. Glass vial surface properties have been suggested to play a critical role in glass dissolution and delamination. Surface characterization of glass container, therefore, is important to evaluate the quality of the glass container. In this work, we demonstrate that differential interference contrast (DIC) microscopy is a powerful, effective, and convenient technique to examine the inner surface morphology of glass vials nondestructively. DIC microscopy does not require the cutting of the glass vial for scanning the inner surface and has sufficient spatial resolution to reveal glass pitting, phase separation, delamination scars, and other defects. Typical surface morphology of pharmaceutical glass vials with different alkalinity are compared and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  3. SEPTIN2 and STATHMIN Regulate CD99-Mediated Cellular Differentiation in Hodgkin's Lymphoma.

    Directory of Open Access Journals (Sweden)

    Wenjing Jian

    Full Text Available Hodgkin's lymphoma (HL is a lymphoid neoplasm characterized by Hodgkin's and Reed-Sternberg (H/RS cells, which is regulated by CD99. We previously reported that CD99 downregulation led to the transformation of murine B lymphoma cells (A20 into cells with an H/RS phenotype, while CD99 upregulation induced differentiation of classical Hodgkin's lymphoma (cHL cells (L428 into terminal B-cells. However, the molecular mechanism remains unclear. In this study, using fluorescence two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS, we have analyzed the alteration of protein expression following CD99 upregulation in L428 cells as well as downregulation of mouse CD99 antigen-like 2 (mCD99L2 in A20 cells. Bioinformatics analysis showed that SEPTIN2 and STATHMIN, which are cytoskeleton proteins, were significantly differentially expressed, and chosen for further validation and functional analysis. Differential expression of SEPTIN2 was found in both models and was inversely correlated with CD99 expression. STATHMIN was identified in the A20 cell line model and its expression was positively correlated with that of CD99. Importantly, silencing of SEPTIN2 with siRNA substantially altered the cellular cytoskeleton in L428 cells. The downregulation of STATHMIN by siRNA promoted the differentiation of H/RS cells toward terminal B-cells. These results suggest that SEPTIN2-mediated cytoskeletal rearrangement and STATHMIN-mediated differentiation may contribute to changes in cell morphology and differentiation of H/RS cells with CD99 upregulation in HL.

  4. Single thyroid tumour showing multiple differentiated morphological patterns and intramorphological molecular genetic heterogeneity.

    Science.gov (United States)

    Schopper, Heather K; Stence, Aaron; Ma, Deqin; Pagedar, Nitin A; Robinson, Robert A

    2017-02-01

    A 49-year-old man presented with a single thyroid tumour that showed a combination of conventional papillary carcinoma, follicular variant of papillary carcinoma, clear cell papillary carcinoma, columnar cell carcinoma and poorly differentiated carcinoma. As all of the morphologies have been associated with papillary carcinoma in the literature, we wished to determine if they contained identical or different molecular abnormalities. Targeted next generation sequencing (NGS) of each morphological component and metastases was performed. NGS revealed a BRAF p.K601E mutation in both the clear cell papillary carcinoma and poorly differentiated carcinoma and a KRAS p.G12R mutation in the papillary carcinoma, follicular variant. Two different areas of columnar cell variant were tested, with one showing a KRAS p.G12D mutation but no mutation in the other area. A KRAS p.G12R mutation was seen in the metastatic clear cell variant. Two different lymph nodes had metastatic columnar cell carcinoma, one negative for mutations but the other with a compound KRAS p.G12R and KRAS p.G12V mutation on different alleles. No mutations including BRAF and KRAS were seen in the conventional papillary carcinoma. Although all of the morphological patterns in this tumour have been reported as having aetiological or other association with one another, there was only partial concordance with their molecular signatures. There was significant molecular discordance, however, even with identical morphologies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Ubx regulates differential enlargement and diversification of insect hind legs.

    Directory of Open Access Journals (Sweden)

    Najmus Mahfooz

    2007-09-01

    Full Text Available Differential enlargement of hind (T3 legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug and Acheta domesticus (house cricket. In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs.

  6. Ubx Regulates Differential Enlargement and Diversification of Insect Hind Legs

    Science.gov (United States)

    Mahfooz, Najmus; Turchyn, Nataliya; Mihajlovic, Michelle; Hrycaj, Steven; Popadić, Aleksandar

    2007-01-01

    Differential enlargement of hind (T3) legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s) responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug) and Acheta domesticus (house cricket). In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx) is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs. PMID:17848997

  7. DiGeorge syndrome gene tbx1 functions through wnt11r to regulate heart looping and differentiation.

    Directory of Open Access Journals (Sweden)

    Priya Choudhry

    Full Text Available DiGeorge syndrome (DGS is the most common microdeletion syndrome, and is characterized by congenital cardiac, craniofacial and immune system abnormalities. The cardiac defects in DGS patients include conotruncal and ventricular septal defects. Although the etiology of DGS is critically regulated by TBX1 gene, the molecular pathways underpinning TBX1's role in heart development are not fully understood. In this study, we characterized heart defects and downstream signaling in the zebrafish tbx1(-/- mutant, which has craniofacial and immune defects similar to DGS patients. We show that tbx1(-/- mutants have defective heart looping, morphology and function. Defective heart looping is accompanied by failure of cardiomyocytes to differentiate normally and failure to change shape from isotropic to anisotropic morphology in the outer curvatures of the heart. This is the first demonstration of tbx1's role in regulating heart looping, cardiomyocyte shape and differentiation, and may explain how Tbx1 regulates conotruncal development in humans. Next we elucidated tbx1's molecular signaling pathway guided by the cardiac phenotype of tbx1(-/- mutants. We show for the first time that wnt11r (wnt11 related, a member of the non-canonical Wnt pathway, and its downstream effector gene alcama (activated leukocyte cell adhesion molecule a regulate heart looping and differentiation similarly to tbx1. Expression of both wnt11r and alcama are downregulated in tbx1(-/- mutants. In addition, both wnt11r (-/- mutants and alcama morphants have heart looping and differentiation defects similar to tbx1(-/- mutants. Strikingly, heart looping and differentiation in tbx1(-/- mutants can be partially rescued by ectopic expression of wnt11r or alcama, supporting a model whereby heart looping and differentiation are regulated by tbx1 in a linear pathway through wnt11r and alcama. This is the first study linking tbx1 and non-canonical Wnt signaling and extends our understanding

  8. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Directory of Open Access Journals (Sweden)

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  9. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  10. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Science.gov (United States)

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia

    2017-11-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  11. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression.

    Directory of Open Access Journals (Sweden)

    Xiaodong Shi

    Full Text Available Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.

  12. X-ray morphology of the eburnated vertebral body - diagnostic and differential diagnostic problems

    Energy Technology Data Exchange (ETDEWEB)

    Krug, B.; Lorenz, R.; Steinbrich, W.

    1988-08-01

    1. Numerous diseases may become manifest as eburnated vertebral bodies, and hence the X-ray morphological sign of eburnation is an unspecific one. Isolated characteristics such as the involvement of one or several vertebrae, an intact vertebral space, a broadening of the paravertebral accompanying shadow, and the remaining radiological skeletal status enable narrowing down the differential diagnosis, although anamnesis and clinical findings will supply the main pointers. 2. In primary tumorous eburnations radiotherapy or chemotherapy will render an X-ray morphological assessment of therapeutic success impossible. 3. In primary diagnosis of an eburnated vertebral body it is possible to apply sonography. CT and MR as diagnostic tools step by step to narrow down the differential diagnosis by detecting or excluding pathological abdominal processes such as liver or lymphatic node metastases, paravertebral or intraspinal soft-part dense space-occupying growths or bone infiltration, but it will only rarely be possible to classify the phenomenon properly as being caused by a well-defined process, even if CT and MR are employed.

  13. Regulation of mineralocorticoid receptor expression during neuronal differentiation of murine embryonic stem cells.

    Science.gov (United States)

    Munier, Mathilde; Meduri, Geri; Viengchareun, Say; Leclerc, Philippe; Le Menuet, Damien; Lombès, Marc

    2010-05-01

    Mineralocorticoid receptor (MR) plays a critical role in brain function. However, the regulatory mechanisms controlling neuronal MR expression that constitutes a key element of the hormonal response are currently unknown. Two alternative P1 and P2 promoters drive human MR gene transcription. To examine promoter activities and their regulation during neuronal differentiation and in mature neurons, we generated stably transfected recombinant murine embryonic stem cell (ES) lines, namely P1-GFP and P2-GFP, in which each promoter drove the expression of the reporter gene green fluorescent protein (GFP). An optimized protocol, using embryoid bodies and retinoic acid, permitted us to obtain a reproducible neuronal differentiation as revealed by the decrease in phosphatase alkaline activity, the concomitant appearance of morphological changes (neurites), and the increase in the expression of neuronal markers (nestin, beta-tubulin III, and microtubule-associated protein-2) as demonstrated by immunocytochemistry and quantitative PCR. Using these cell-based models, we showed that MR expression increased by 5-fold during neuronal differentiation, MR being preferentially if not exclusively expressed in mature neurons. Although the P2 promoter was always weaker than the P1 promoter during neuronal differentiation, their activities increased by 7- and 5-fold, respectively, and correlated with MR expression. Finally, although progesterone and dexamethasone were ineffective, aldosterone stimulated both P1 and P2 activity and MR expression, an effect that was abrogated by knockdown of MR by small interfering RNA. In conclusion, we provide evidence for a tight transcriptional control of MR expression during neuronal differentiation. Given the neuroprotective and antiapoptotic role proposed for MR, the neuronal differentiation of ES cell lines opens potential therapeutic perspectives in neurological and psychiatric diseases.

  14. Morphological and molecular differentiation of the croatian populations of Ouercus pubescens Willd. (Fagaceae

    Directory of Open Access Journals (Sweden)

    Josip Franjić

    2011-01-01

    Full Text Available Taxonomy of the genus Quercus L. is very complicated and often controversial because of its great variability and intense gene flow among the related species. The purpose of this research was to determine morphological and molecular variation, relationships and taxonomic status of the Croatian populations of Quercus pubescens Willd. using morphological analysis of the leaves and RAPD-PCR technique. The results of the morphological and molecular analyses were very similar, both showing differentiation of the southern (Mediterranean from the northern (Continental pubescent oak populations. These two groups were clearly separated and the estimated gene flow among the populations that belong to different groups (Nm=1.38 is significantly less than among the populations that belong to the same group (Nm=3.70. The obtained results were compared to the available studies. This study confirms a high variability of the Q. pubescens populations, but differences were not so big to confirm the opinion of existence of several species in this area. The conclusion is that the southern Croatian populations could be pure Q. pubescens populations, while the peculiarities of the northern Croatian populations originate probably from the Q. petraea introgression.

  15. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  16. Transthyretin is a key regulator of myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Eun Ju Lee

    Full Text Available Transthyretin (TTR is a known carrier protein for thyroxine (T4 and retinol-binding protein in the blood that is primarily synthesized in the liver and choroid plexus of the brain. Herein, we report that the TTR gene is expressed in skeletal muscle tissue and up-regulated during myotube formation in C2C12 cells. TTR silencing (TTRkd significantly reduced myogenin expression and myotube formation, whereas myogenin silencing (MYOGkd did not have any effect on TTR gene expression. Both TTRkd and MYOGkd led to a decrease in calcium channel related genes including Cav1.1, STIM1 and Orai1. A significant decrease in intracellular T4 uptake during myogenesis was observed in TTRkd cells. Taken together, the results of this study suggest that TTR initiates myoblast differentiation via affecting expression of the genes involved during early stage of myogenesis and the genes related to calcium channel.

  17. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  18. PDGFs regulate tooth germ proliferation and ameloblast differentiation.

    Science.gov (United States)

    Wu, Nan; Iwamoto, Tsutomu; Sugawara, Yu; Futaki, Masaharu; Yoshizaki, Keigo; Yamamoto, Shinya; Yamada, Aya; Nakamura, Takashi; Nonaka, Kazuaki; Fukumoto, Satoshi

    2010-06-01

    The purpose of this study was to elucidate the effects of platelet-derived growth factors (PDGFs) during tooth development, as well as the mechanisms underlying the interactions of growth factors with PDGF signalling during odontogenesis. We used an ex vivo tooth germ organ culture system and two dental cell lines, SF2 cells and mDP cells, as models of odontogenesis. AG17, a tyrosine kinase inhibitor, was utilised for blocking PDGF receptor signalling. To analyse the expressions of PDGFs, reverse transcriptase (RT)-PCR and immunohistochemistry were performed. Proliferation was examined using a BrdU incorporation assay for the organ cultures and a cell counting kit for the cell lines. The expressions of Fgf2 and ameloblastin were analysed by real-time RT-PCR. The PDGF ligands PDGF-A and PDGF-B, and their receptors, PDGFRalpha and PDGFRbeta, were expressed throughout the initial stages of tooth development. In the tooth germ organ cultures, PDGF-AA, but not PDGF-BB, accelerated cusp formation. Conversely, AG17 suppressed both growth and cusp formation of tooth germs. Exogenous PDGF-BB promoted mDP cell proliferation. Furthermore, PDGF-AA decreased Fgf2 expression and increased that of ameloblastin, a marker of differentiated ameloblasts. Our results indicate that PDGFs are involved in initial tooth development and regulate tooth size and shape, as well as ameloblast differentiation. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  20. Regulation of germinal center B-cell differentiation.

    Science.gov (United States)

    Zhang, Yang; Garcia-Ibanez, Laura; Toellner, Kai-Michael

    2016-03-01

    Germinal centers (GC) are the main sites where antigen-activated B-cell clones expand and undergo immunoglobulin gene hypermutation and selection. Iterations of this process will lead to affinity maturation, replicating Darwinian evolution on the cellular level. GC B-cell selection can lead to four different outcomes: further expansion and evolution, apoptosis (non-selection), or output from the GC with differentiation into memory B cells or plasma cells. T-helper cells in GC have been shown to have a central role in regulating B-cell selection by sensing the density of major histocompatibility complex (MHC):peptide antigen complexes. Antigen is provided on follicular dendritic cells in the form of immune complex. Antibody on these immune complexes regulates antigen accessibility by shielding antigen from B-cell receptor access. Replacement of antibody on immune complexes by antibody generated from GC-derived plasma cell output will gradually reduce the availability of antigen. This antibody feedback can lead to a situation where a slow rise in selection stringency caused by a changing environment leads to directional evolution toward higher affinity antibody. © 2016 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  1. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  2. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    Science.gov (United States)

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  3. Differentiation of root canal morphology – a review of the literature

    Directory of Open Access Journals (Sweden)

    Przesmycka Agata

    2016-09-01

    Full Text Available The morphological diversity of the inner anatomy of root canals in human permanent teeth is an issue mainly described in endodontics research. In recent years, it is a relatively new point in anthropological studies because it varies by sex, geographic and ethnic circumstances. An unusual number of root canals or their specific systems can differentiate populations around the world. The multiplicity of available methods for detecting root canal systems helps to better understand their complexity; however, most cannot be applied to anthropology due to limitations that occur in the bioarcheological material. Thorough knowledge of the heterogeneity and internal anatomy of the root canals supplies numerous classification systems proposed and improved over the years by many authors. A limited number of studies in the anthropological literature and future research will shed light onto the internal tooth morphology in historical populations. The aim of this paper is to describe various classification systems of root canals applied in endodontics. However, due to the often poor state of preservation and damage of archaeological derived remains, it seems that the best method is the approach that is the simplest and least complicated.

  4. Morphological differentiation of taste organs in the ontogeny of Salamandra salamandra.

    Science.gov (United States)

    Zuwała, K; Jakubowski, M

    2001-11-01

    Morphological studies presented here provide additional cytological evidence that in the postnatal development of Salamandra salamandra there are two successive generations of taste organs: premetamorphic taste buds (TBs) in larval forms and taste disks (TDs) in postmetamorphic animals. The TBs have been found in the epithelium of the whole oropharyngeal cavity of larval forms, while in adults TDs appear only at the end of metamorphosis. The TDs can be papillary (or fungiform) on the soft (secondary) tongue and non-papillary outside the tongue. Two main cyto-morphological criteria distinguishing TDs from TBs have been established: (1) high differentiation of "nonsensory" components of a taste organ into several kinds of cells (often named "associate cells")--at least mucous cells and, separating them, wing cells; (2) a considerably larger area of the sensory epithelium than that in TBs, as the consequence of the large size of the mucous cells. In contrast to TDs each TB consists of longitudinally elongated supporting cells and taste cells, as well as of horizontally oriented basal cells, adjacent to the basement membrane. The sensory area in TBs measures 10-12 microm in diameter, while that in TDs has diameter of 45-90 microm. The anlage of the secondary tongue appears as a small folding of the floor epithelium just in front to the tip of the primary tongue in larvae 3 cm long, and is definitely formed in an animal with body length of about 6 cm.

  5. Differentiation of morphological traits of common tansy (Tanacetum vulgare L. originating from different stands

    Directory of Open Access Journals (Sweden)

    Tadeusz Kęsik

    2012-12-01

    Full Text Available The aim of the study was to determine the effect of pH and soil chemical composition on morphological traits of common tansy (Tanacetum vulgare L.. A two-year study was conducted based on observations, measurements and analyses of material collected from 24 stands in the following regions: Równina Włocławska (Włocławek Plain, Wyżyna Lubelska (Lublin Upland, Padół Zamojski (Zamość Depression, Działy Grabowieckie (Grabowiec Divide Płaskowyż Suchedniowski (Suchedniów Plateau, Wysoczyzna Siedlecka (Siedlce High Plain and Niecka Połaniecka (Połaniec Basin. Morphological traits of tansy shoots were determined: number of plants per clump, stem length, number of leaves per plant, total leaf length, petiole length, number of branches from the main stem, number of flower heads per corymb and flower head diameter. A soil analysis was performed determining the content of magnesium, potassium and phosphorus available for plants. The soil pH was also determined. The collected results indicate significant differentiation of the investigated samples, both in terms of morphological traits of the shoots and the chemical composition of the soils. A negative correlation was found between soil pH and number of leaves per shoot as well as number of branches per corymb. A positive correlation was noted between soil pH and total leaf length as well as between magnesium content and number of flower heads per corymb. The increased content of available phosphorus in the soil was associated with petiole shortening. A growth trend in the tansy shoot length was observed at larger amounts of available magnesium in the soil. On soils with low nutrient availability and a low pH, a reduced population density of the species in question was observed.

  6. Operating principles of tristable circuits regulating cellular differentiation

    Science.gov (United States)

    Jia, Dongya; Jolly, Mohit Kumar; Harrison, William; Boareto, Marcelo; Ben-Jacob, Eshel; Levine, Herbert

    2017-06-01

    Many cell-fate decisions during embryonic development are governed by a motif comprised of two transcription factors (TFs) A and B that mutually inhibit each other and may self-activate. This motif, called as a self-activating toggle switch (SATS), can typically have three stable states (phenotypes)—two corresponding to differentiated cell fates, each of which has a much higher level of one TF than the other—≤ft(A,~B\\right)=≤ft(1,~0\\right) or ≤ft(0,~1\\right) —and the third state corresponding to an ‘undecided’ stem-like state with similar levels of both A and B—≤ft(A,~B\\right)=≤ft(1/2,1/2\\right) . Furthermore, two or more SATSes can be coupled together in various topologies in different contexts, thereby affecting the coordination between multiple cellular decisions. However, two questions remain largely unanswered: (a) what governs the co-existence and relative stability of these three stable states? (b) What orchestrates the decision-making of coupled SATSes? Here, we first demonstrate that the co-existence and relative stability of the three stable states in an individual SATS can be governed by the relative strength of self-activation, external signals activating and/or inhibiting A and B, and mutual degradation between A and B. Simultaneously, we investigate the effects of these factors on the decision-making of two coupled SATSes. Our results offer novel understanding into the operating principles of individual and coupled tristable self-activating toggle switches (SATSes) regulating cellular differentiation and can yield insights into synthesizing three-way genetic circuits and understanding of cellular reprogramming.

  7. Autotaxin/ENPP2 Regulates Oligodendrocyte Differentiation in vivo in the Developing Zebrafish Hindbrain

    Science.gov (United States)

    Yuelling, Larra W.; Waggener, Christopher T.; Afshari, Fatemah S.; Lister, James A.; Fuss, Babette

    2012-01-01

    During development, progenitors that are committed to differentiate into oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated within discrete regions of the neuroepithelium. More specifically, within the developing spinal cord and hindbrain ventrally located progenitor cells that are characterized by the expression of the transcription factor olig2 give temporally rise to first motor neurons and then oligodendrocyte progenitors. The regulation of this temporal neuron-glial switch has been found complex and little is known about the extrinsic factors regulating it. Our studies described here identified a zebrafish ortholog to mammalian atx, which displays evolutionarily conserved expression pattern characteristics. Most interestingly, atx was found to be expressed by cells of the cephalic floor plate during a time period when ventrally-derived oligodendrocyte progenitors arise in the developing hindbrain of the zebrafish. Knock-down of atx expression resulted in a delay and/or inhibition of the timely appearance of oligodendrocyte progenitors and subsequent developmental stages of the oligodendrocyte lineage. This effect of atx knock-down was not accompanied by changes in the number of olig2-positive progenitor cells, the overall morphology of the axonal network or the number of somatic abducens motor neurons. Thus, our studies identified Atx as an extrinsic factor that is likely secreted by cells from the floor plate and that is involved in regulating specifically the progression of olig2-positive progenitor cells into lineage committed oligodendrocyte progenitors. PMID:22821873

  8. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche.

    Science.gov (United States)

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-10-09

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.

  9. Does selection or genetic drift explain geographic differentiation of morphological characters in house sparrows Passer domesticus?

    Science.gov (United States)

    Holand, Anna M; Jensen, Henrik; Tufto, Jarle; Moe, Rune

    2011-10-01

    Understanding the relative influence of genetic drift and selection is fundamental in evolutionary biology. The theory of neutrality predicts that the genetic differentiation of a quantitative trait (QST) equals the genetic differentiation at neutral molecular markers (FST) if the quantitative trait has not been under selection. Thus, the relative magnitude of observed QST and expected QST under neutral expectations suggests the importance of selection and genetic drift for any observed phenotypic divergence. Because QST is based on additive genetic variance, estimating QST based on phenotypic measurements is problematic due to unknown environmental effects. To account for this, we used a model where the environmental component was allowed to vary when estimating QST. The model was used on data from 14 house sparrow (Passer domesticus) populations in Norway. In accordance with the significant phenotypic inter-population differences our analyses suggested that directional selection may have favoured different optimal phenotypes for some morphological traits across populations. In particular, different body mass and male ornamental phenotypes seemed to have been favoured. The conclusions are, however, dependent on assumptions regarding the proportion of the observed inter-population variation that is due to additive genetic differences, showing the importance of collecting such information in natural populations. By estimating QST, allowing the additive genetic proportion of phenotypic inter-population variation to vary, and by making use of recent statistical methods to compare observed QST with neutral expectations, we can use data that are relatively easy to collect to identify adaptive variation in natural populations.

  10. Differences in regulation of tight junctions and cell morphology between VHL mutations from disease subtypes

    Directory of Open Access Journals (Sweden)

    Isanova Bella

    2009-07-01

    Full Text Available Abstract Background In von Hippel-Lindau (VHL disease, germline mutations in the VHL tumor suppressor gene cause clear cell renal carcinomas, hemangioblastomas, and pheochromocytomas. The VHL gene product is part of an ubiquitin E3 ligase complex and hypoxia-inducible factor alpha (HIF-α is a key substrate, although additional VHL functions have been described. A genotype-phenotype relationship exists in VHL disease such that specific VHL mutations elicit certain subsets of these tumors. Here, we examine VHL genotype-phenotype correlations at the cellular level, focusing on the regulation of tight junctions and cell morphology. Methods Wild-type and various mutant VHL proteins representing VHL disease subtypes were stably expressed in 3 VHL-negative renal carcinoma cell lines. Using these cell lines, the roles of various VHL-associated cellular functions in regulation of cell morphology were investigated. Results As a whole, type 1 mutants varied greatly from type 2 mutants, demonstrating high levels of HIF-2α, cyclin D1 and α5 integrin, lower p27 levels, and a spindly, fibroblastic cellular appearance. Type 2 mutations demonstrated an epithelial morphology similar to wild-type VHL in the majority of the renal cell lines used. Knockdown of p27 in cells with wild-type VHL led to perturbations of both epithelial morphology and ZO-1 localization to tight junctions. ZO-1 localization correlated well with VHL disease subtypes, with greater mislocalization observed for genotypes associated with a higher risk of renal carcinoma. HIF-2α knockdown in 786-O partially restored ZO-1 localization, but did not restore an epithelial morphology. Conclusion VHL has both HIF-α dependent and HIF-α independent functions in regulating tight junctions and cell morphology that likely impact the clinical phenotypes seen in VHL disease.

  11. Differentiation in the Trochulus hispidus complex and related taxa (Pulmonata: Hygromiidae): morphology, ecology and their relation to phylogeography.

    Science.gov (United States)

    Duda, Michael; Kruckenhauser, Luise; Sattmann, Helmut; Harl, Josef; Jaksch, Katharina; Haring, Elisabeth

    2014-11-01

    In this study we investigated the morphology and ecology of representatives of the taxonomically ambiguous genus Trochulus. The main focus was on the T. hispidus complex, which comprises several genetically highly divergent mitochondrial clades, as determined in a parallel molecular genetic study. We analysed shell morphology and anatomical traits and asked whether the clades are differentiated in these characters. In addition, the related species T. oreinos and T. striolatus were investigated and compared with the T. hispidus complex. Finally, we compared the ecological requirements of the taxa. Among the genetic clades of the T. hispidus complex there was no clear morphological differentiation and geographic populations could not be distinguished based on their morphology. The investigated characters of the genital anatomy did not allow discrimination of any of the T. hispidus clades and were not even diagnostic for the group as a whole. The morphotype of T. sericeus is present in all clades and thus cannot be assigned to a genetic group or any specific population. Thus, our morphological data do not provide evidence that any of the mitochondrial T. hispidus clades represent separate species. Concerning interspecific delimitation, the T. hispidus complex was clearly differentiated from T. striolatus and T. oreinos by shell morphological and anatomical characters, e.g. sculpture of shell surface and details of the penis. Finally, the habitat of T. oreinos is different from those of the other two species. In contrast to the lack of correspondence between genetic and morphological differentiation within the T. hispidus complex, related species display intraspecific morphological differentiation corresponding with mitochondrial clades: within T. striolatus there was a slight morphological differentiation between the subspecies T. s. striolatus, T. s. juvavensis and T. s. danubialis. The two subspecies of T. oreinos could be discriminated by a small but consistent

  12. Sex differentiation in Atlantic cod (Gadus morhua L.: morphological and gene expression studies

    Directory of Open Access Journals (Sweden)

    Haugen Trine

    2012-06-01

    Full Text Available Abstract Background In differentiated gonochoristic species, a bipotential gonad develops into an ovary or testis during sex differentiation. Knowledge about this process is necessary to improve methods for masculinizing genetically female Atlantic cod for the subsequent purpose of producing all-female populations. Methods Gonads were examined histologically in juveniles from 14 to 39 mm total body length (TL. Number and size of germ cells were determined in a subset of the samples. Relevant genes were cloned, and mRNA levels determined by qPCR of amh, cyp19a1a; dax1 (nr0b2; shp (nr0b2a and sox9b in a mixed-sex and an all-female population ranging from 12–49 mm TL. Results Individuals between 14–20 mm TL could be separated in two subgroups based on gonad size and germ cell number. Ovarian cavity formation was observed in some individuals from 18–20 mm TL. The mixed sex population displayed bimodal expression patterns as regards cyp19a1a (starting at 12 mm TL and amh (starting at 20 mm TL mRNA levels. After approximately 30 mm TL, cyp19a1a and amh displayed a gradual increase in both sexes. No apparent, sex-dependent expression patterns were found for dax1, shp or sox9b transcripts. However, shp levels were high until the larvae reached around 35 mm TL and then dropped to low levels, while dax1 remained low until 35 mm TL, and then increased sharply. Conclusions The morphological sex differentiation in females commenced between 14–20 mm TL, and ovarian cavities were evident by 18–20 mm TL. Testis development occurred later, and was morphologically evident after 30 mm TL. This pattern was corroborated with sexually dimorphic expression patterns of cyp19a1a from 12–13 mm TL, and a male-specific increase in amh from 20 mm TL.

  13. The Clinicopathologic Heterogeneity of Grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: Morphological Differentiation and Proliferation Identify Different Prognostic Categories.

    Science.gov (United States)

    Milione, Massimo; Maisonneuve, Patrick; Spada, Francesca; Pellegrinelli, Alessio; Spaggiari, Paola; Albarello, Luca; Pisa, Eleonora; Barberis, Massimo; Vanoli, Alessandro; Buzzoni, Roberto; Pusceddu, Sara; Concas, Laura; Sessa, Fausto; Solcia, Enrico; Capella, Carlo; Fazio, Nicola; La Rosa, Stefano

    2017-01-01

    Gastroenteropancreatic (GEP) neuroendocrine carcinomas (NECs) are defined as neuroendocrine neoplasms (NENs) with a Ki-67 index >20% according to the 2010 WHO classification. Some reports suggest that this category is heterogeneous. We retrospectively studied a series of 136 patients affected by grade 3 GEP-NECs with the aim to clarify the prognostic role of tumor morphological differentiation, proliferation, defect in mismatch repair proteins (MMRd), CD117 expression, and site of origin. The primary endpoint was the correlation between these parameters and the overall survival (OS). Univariate and multivariable Cox proportional hazards regression analyses were used to assess the prognostic significance of various clinical and histopathologic features. With a median follow-up of 81 months, the median OS was 12.9 months. At multivariate analysis, morphological differentiation, Ki-67 index, MMRd, stage, and CD117 expression were independent prognostic markers in NECs. Three different prognostic categories of NECs were identified according to the degree of morphologic differentiation (well vs. poorly differentiated) and Ki-67 index (neoplasms with a Ki-67 index 20-55% (named type A), 24.5 months in poorly differentiated neoplasms with a Ki-67 index 20-55% (type B), and 5.3 months (p neoplasms with a Ki-67 index ≥55% (type C). The present study suggests that GEP-NECs represent a heterogeneous group of neoplasms which can be better classified in different prognostic categories using both tumor morphology and Ki-67 index. © 2016 S. Karger AG, Basel.

  14. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  15. Proteins involved in platelet signaling are differentially regulated in acute coronary syndrome: a proteomic study.

    Directory of Open Access Journals (Sweden)

    Andrés Fernández Parguiña

    Full Text Available BACKGROUND: Platelets play a fundamental role in pathological events underlying acute coronary syndrome (ACS. Because platelets do not have a nucleus, proteomics constitutes an optimal approach to follow platelet molecular events associated with the onset of the acute episode. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first high-resolution two-dimensional gel electrophoresis-based proteome analysis of circulating platelets from patients with non-ST segment elevation ACS (NSTE-ACS. Proteins were identified by mass spectrometry and validations were by western blotting. Forty protein features (corresponding to 22 unique genes were found to be differentially regulated between NSTE-ACS patients and matched controls with chronic ischemic cardiopathy. The number of differences decreased at day 5 (28 and 6 months after the acute event (5. Interestingly, a systems biology approach demonstrated that 16 of the 22 differentially regulated proteins identified are interconnected as part of a common network related to cell assembly and organization and cell morphology, processes very related to platelet activation. Indeed, 14 of those proteins are either signaling or cytoskeletal, and nine of them are known to participate in platelet activation by αIIbβ3 and/or GPVI receptors. Several of the proteins identified participate in platelet activation through post-translational modifications, as shown here for ILK, Src and Talin. Interestingly, the platelet-secreted glycoprotein SPARC was down-regulated in NSTE-ACS patients compared to stable controls, which is consistent with a secretion process from activated platelets. CONCLUSIONS/SIGNIFICANCE: The present study provides novel information on platelet proteome changes associated with platelet activation in NSTE-ACS, highlighting the presence of proteins involved in platelet signaling. This investigation paves the way for future studies in the search for novel platelet-related biomarkers and drug targets

  16. Erythroid differentiation regulator 1, an interleukin 18-regulated gene, acts as a metastasis suppressor in melanoma.

    Science.gov (United States)

    Jung, Min Kyung; Park, Yoorim; Song, Seok Bean; Cheon, So Young; Park, Sunyoung; Houh, Younkyung; Ha, Soogyeong; Kim, Hee Jung; Park, Jung Min; Kim, Tae Sung; Lee, Wang Jae; Cho, Byung Joo; Bang, Sa Ik; Park, Hyunjeong; Cho, Daeho

    2011-10-01

    Erythroid differentiation regulator (Erdr1) was first discovered in mouse leukemia cell lines and functions as a stress-related survival factor. This study investigated whether Erdr1 regulates murine melanoma progression, as well as the mechanism involved in Erdr1-regulated metastasis. The expression of Erdr1 is negatively correlated with IL-18 expression, which has a pro-cancer effect in melanoma. To study the role of Erdr1 as an anti-cancer factor, cell migration, invasion, and proliferation were measured. Erdr1 overexpression markedly inhibited the level of cell migration, invasion, and proliferation in B16F10 cells in vitro. In addition, Erdr1 overexpression significantly suppressed melanoma lung colonization, metastasis, and tumor growth in vivo. To identify the factors involved in Erdr1-reduced metastasis, heat shock protein 90 (HSP90), a well-known stress protein and contributor to tumor metastasis, was examined. We found that HSP90 was significantly decreased in Erdr1-overexpressing cells. Functional analysis demonstrated that HSP90 small-interfering RNA transfection reduced the migration ability and metastasis of melanoma. In conclusion, Erdr1 shows a powerful anti-metastasis effect that leads to the ability to reduce the metastatic potential of murine malignant melanoma cells. Erdr1 is an anti-metastatic factor that may be a possible therapeutic target for treatment of melanoma.

  17. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection.

    Science.gov (United States)

    Lizardo, Kezia; Almonte, Vanessa; Law, Calvin; Aiyyappan, Janeesh Plakkal; Cui, Min-Hui; Nagajyothi, Jyothi F

    2017-02-01

    Chagas disease is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi, which affects about ten million people in its endemic regions of Latin America. After the initial acute stage of infection, 60-80% of infected individuals remain asymptomatic for several years to a lifetime; however, the rest develop the debilitating symptomatic stage, which affects the nervous system, digestive system, and heart. The challenges of Chagas disease have become global due to immigration. Despite well-documented dietary changes accompanying immigration, as well as a transition to a western style diet in the Chagas endemic regions, the role of host metabolism in the pathogenesis of Chagas disease remains underexplored. We have previously used a mouse model to show that host diet is a key factor regulating cardiomyopathy in Chagas disease. In this study, we investigated the effect of a high-fat diet on liver morphology and physiology, lipid metabolism, immune signaling, energy homeostasis, and stress responses in the murine model of acute T. cruzi infection. Our results indicate that in T. cruzi-infected mice, diet differentially regulates several liver processes, including autophagy, a stress response mechanism, with corresponding implications for human Chagas disease patients.

  18. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Kirm, Benjamin; Magdevska, Vasilka; Tome, Miha; Horvat, Marinka; Karničar, Katarina; Petek, Marko; Vidmar, Robert; Baebler, Spela; Jamnik, Polona; Fujs, Štefan; Horvat, Jaka; Fonovič, Marko; Turk, Boris; Gruden, Kristina; Petković, Hrvoje; Kosec, Gregor

    2013-12-17

    D, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.

  19. Strongyloides colitis is a lethal mimic of ulcerative colitis: the key morphologic differential diagnosis.

    Science.gov (United States)

    Qu, Zhenhong; Kundu, Uma R; Abadeer, Rania A; Wanger, Audrey

    2009-04-01

    Strongyloides stercoralis colitis is a severe, but easily curable, form of strongyloidiasis that carries a high mortality rate if untreated. Autoinfection characteristic of Strongyloides stercoralis frequently makes the infection a life-long disease unless it is effectively treated. Our experience with 4 cases of Strongyloides colitis prompted us to assess the clinical outcome of the disease by literature review. In this case series, the misdiagnosis and resultant mortality rates of Strongyloides colitis are 52% and 39.1%, respectively. A low index of suspicion and morphologic resemblance to ulcerative colitis were the main sources of diagnostic error. Ulcerative colitis alone accounted for 38.5% of the erroneous diagnoses. Features of Strongyloides colitis that contrast with those of ulcerative colitis include (1) skip pattern of the inflammation, (2) distal attenuation of the disease, (3) eosinophil-rich infiltrates, (4) relative intact crypt architecture, and (5) frequent involvement of submucosa. We also found that history of steroid therapy, chronic colitis refractory to conventional immune-modifying management, and endoscopic finding of distal attenuation of the colitis are helpful clues. It is also our experience that if Strongyloides colitis is included in the differential diagnosis, the correct diagnosis can usually be made. Current therapy with ivermectin or albendazole is very effective at a cure rate greater than 98%. We believe that the misdiagnosis and mortality rates of this curable, but often, unnecessarily deadly, infectious disease are alarming and warrant efforts to increase the awareness of the disease.

  20. Brassinosteroids Modulate Meristem Fate and Differentiation of Unique Inflorescence Morphology in Setaria viridis[OPEN

    Science.gov (United States)

    Thames, Shuiyi; Jiang, Hui

    2018-01-01

    Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture. PMID:29263085

  1. Differential scanning calorimetry and surface morphology studies on coated pellets using aqueous dispersions.

    Science.gov (United States)

    Nisar-ur-Rahman; K H, Yuen; Jia Woei, Wong; Khan, Nurzalina A k

    2005-04-01

    The present study was conducted to examine the physicochemical changes during passage of drug through polymeric membranes and observe the surface morphology features of the coated pellets using scanning electron microscopy (SEM). Drug solution was first sprayed around inert pellets to form drug-layered pellets that were coated with two commercial aqueous dispersions namely, Eudragit NE30 and Kollicoat SR30 using bottom-spray fluidized bed technique. Differential scanning calorimetry (DSC) confirmed that no interactions existed between drug and polymers. Small peak of drug was observed in the DSC thermograms of Eudragit NE30 coated pellets indicating that small amount of drug was still present in the polymeric membrane after dissolution. Views of SEM revealed as the coating levels of two types of aqueous dispersions were increased the surface of the pellets become more uniform and compact. Therefore, the diffusion length for dissolution medium to enter the drug layer and dissolved drug to diffuse out would be increased at higher coating levels. The polymer surface of coated pellets after 12 hours dissolution testing seemed to be shrunk and size of the pellets were also reduced indicating the depletion of reservoir layer.

  2. Transient differentiation of adult human bone marrow cells into neuron-like cells in culture: development of morphological and biochemical traits is mediated by different molecular mechanisms.

    Science.gov (United States)

    Suon, Sokreine; Jin, Hao; Donaldson, Angela E; Caterson, E J; Tuan, Rocky S; Deschennes, Geoffrey; Marshall, Cheryl; Iacovitti, Lorraine

    2004-12-01

    Studies on rodent bone marrow stromal cells (MSCs) have revealed a capacity, for at least a portion of cells, to express neuron-like traits after differentiation in culture. Little, however, is known about the ability of human MSCs in this regard. We show here that incubation with certain differentiation cocktails, particularly those that include reagents that increase cellular cAMP levels, produces a rapid (1-4 h) and transient (24-48 h) transformation of nearly all hMSCs into neuron-like cells displaying a complex network of processes using phase or scanning electron microscopic optics. In addition, differentiated human (h) MSCs express increased quantities of neuron-[beta-tubulin III, neurofilament (NF), neuronal-specific enolase (NSE)] and glial- [glial fibrillary acidic protein (GFAP)] specific proteins and mRNAs, which are also expressed in low levels in undifferentiated MSCs. In contrast, the mesenchymal marker, fibronectin, which is highly expressed in the undifferentiated state, is reduced following differentiation. These biochemical changes, but not the acquisition of a neuron-like appearance, are partially inhibited by incubation of hMSCs with protein (cycloheximide) and mRNA (actinomycin D) synthesis inhibitors with differentiating reagents. Only incubation with 100 ng/ml colchicine, which disrupts the microtubular cytoskeleton, prevents the conversion of hMSCs into neuron- like cells. These results demonstrate that hMSCs acquire the morphological appearance and the biochemical makeup typical of neurons by independently regulated mechanisms.

  3. The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans.

    Science.gov (United States)

    Reid, A; Sherry, T J; Yücel, D; Llamosas, E; Nicholas, H R

    2015-12-17

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors which cooperate with a variety of transcription factors to repress gene expression. Caenorhabditis elegans CTBP-1 expression has been observed in the nervous system and hypodermis. In C. elegans, CTBP-1 regulates several processes including Acute Functional Tolerance to ethanol and functions in the nervous system to modulate both lifespan and expression of a lipase gene called lips-7. Incorrect structure and/or function of the nervous system can lead to behavioral changes. Here, we demonstrate reduced exploration behavior in ctbp-1 mutants. Our examination of a subset of neurons involved in regulating locomotion revealed that the axonal morphology of dorsal SMD (SMDD) neurons is altered in ctbp-1 mutants at the fourth larval (L4) stage. Expressing CTBP-1 under the control of the endogenous ctbp-1 promoter rescued both the exploration behavior phenotype and defective SMDD axon structure in ctbp-1 mutants at the L4 stage. Interestingly, the pre-synaptic marker RAB-3 was found to localize to the mispositioned portion of SMDD axons in a ctbp-1 mutant. Further analysis of SMDD axonal morphology at days 1, 3 and 5 of adulthood revealed that the number of ctbp-1 mutants showing an SMDD axonal morphology defect increases in early adulthood and the observed defect appears to be qualitatively more severe. CTBP-1 is prominently expressed in the nervous system with weak expression detected in the hypodermis. Surprisingly, solely expressing CTBP-1a in the nervous system or hypodermis did not restore correct SMDD axonal structure in a ctbp-1 mutant. Our results demonstrate a role for CTBP-1 in exploration behavior and the regulation of SMDD axonal morphology in C. elegans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies

    Science.gov (United States)

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed. PMID:26175512

  5. Sialic acid metabolism is involved in the regulation of gene expression during neuronal differentiation of PC12 cells.

    Science.gov (United States)

    Kontou, Maria; Bauer, Christian; Reutter, Werner; Horstkorte, Rüdiger

    2008-04-01

    Sialic acid precursors are mediators of the sialic acid pathway. In this manuscript we present evidence that the application of sialic acid a precursor modulates gene expression and cell differentiation. The concept that sugars are involved in cellular transcription was first proposed by Jacob and Monod nearly 40 years ago studying the regulation of the lac-operon in prokaryotes. Surprisingly, these findings have never been transferred to eukaryotic systems. For our studies we have chosen PC12 cells. PC12-cells differentiate after application of NGF into a neuron-like phenotype. It is shown that treatment of PC12 cells with two different sialic acid precursors N-acetyl- or N-propanoylmannosamine, without application of NGF also induces neurite outgrowth. Moreover, the PC12 cells show the same morphology as the NGF-treated cells. Surprisingly, after application of both sialic acid precursors the phosphorylation and translocation of erk1/2 into the nucleus are activated, thus influencing the expression of genes involved in the differentiation of cells, such as the transcription factor c-Jun or TOAD-64/Ulip/CRMP (Turned ON After Division, 64 kd/ unc-33-like phosphoprotein/Collapsin Response Mediator Protein). These are the first experimental data showing that the sialic acid metabolism is closely associated with signal transduction and regulation of neuronal differentiation.

  6. [Effects of plant growth regulator uniconazole on plant morphology and biomass allocation of Salvia miltiorrhiza].

    Science.gov (United States)

    Gao, Shu-rui; Zhao, Zhi-gang; Hou, Jun-ling; Wang, Wen-quan; Song, Yan; Yan, Bin-bin; Jin, Yan-qing

    2015-05-01

    In this study, we use pot experiment to evaluate the effect of plant growth regulator on plant morphology and biomass allocation of Salvia miltiorrhiza. Different concentrations of uniconazole were supplied to S. miltioohiza by means of foliar spray. Height, breadth and stem diameter were measured dynamically, the biomass of leaf, stem, flower and fruit, root biomass and biomass ratio were also examined at the harvest time. Owing to the treatment, plant morphology showed significant changes, the height had been greatly reduced and the breadth decreased largely. Meanwhile, the biomass allocation changed too. The biomass ratio of leaf and stem had been notably reduced while the biomass ratio of root had been increased remarkably. It appears that foliar application of uniconazole during vigorous growth period in S. miltioohiza has dramatic effect on dwarfing plant and improving resistant to lodging. This measure could also be applied to condensed cultivation of S. miltioohiza to increase production.

  7. Regulation of mammalian cell differentiation by long non-coding RNAs.

    Science.gov (United States)

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-11-06

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development.

  8. Dynamic regulation of integrin activation by intracellular and extracellular signals controls oligodendrocyte morphology

    Directory of Open Access Journals (Sweden)

    Olsen Inger

    2005-11-01

    Full Text Available Abstract Background Myelination requires precise control of oligodendrocyte morphology and myelin generation at each of the axons contacted by an individual cell. This control must involve the integration of extracellular cues, such as those on the axon surface, with intrinsic developmental programmes. We asked whether integrins represent one class of oligodendrocyte cell-surface receptors able to provide this integration. Results Integrins signal via a process of activation, a conformational change that can be induced either by "outside-in" signals comprising physiological extracellular matrix ligands (mimicked by the pharmacological use of the divalent cation manganese or "inside-out" signalling molecules such as R-Ras. Increasing levels of outside-in signalling via the laminin receptor α6β1 integrin were found to promote oligodendrocyte processing and myelin sheet formation in culture. Similar results were obtained when inside-out signalling was increased by the expression of a constitutively-active R-Ras. Inhibiting inside-out signalling by using dominant-negative R-Ras reduces processes and myelin sheets; importantly, this can be partially rescued by the co-stimulation of outside-in signalling using manganese. Conclusion The balance of the equilibrium between active and inactive integrins regulates oligodendrocyte morphology, which is itself regulated by extrinsic and intrinsic cues so providing a mechanism of signal integration. As laminins capable of providing outside-in signals are present on axons at the time of myelination, a mechanism exists by which morphology and myelin generation might be regulated independently in each oligodendrocyte process.

  9. Differential expression of genes involved in the epigenetic regulation of cell identity in normal human mammary cell commitment and differentiation.

    Science.gov (United States)

    Coradini, Danila; Boracchi, Patrizia; Oriana, Saro; Biganzoli, Elia; Ambrogi, Federico

    2014-10-01

    The establishment and maintenance of mammary epithelial cell identity depends on the activity of a group of proteins, collectively called maintenance proteins, that act as epigenetic regulators of gene transcription through DNA methylation, histone modification, and chromatin remodeling. Increasing evidence indicates that dysregulation of these crucial proteins may disrupt epithelial cell integrity and trigger breast tumor initiation. Therefore, we explored in silico the expression pattern of a panel of 369 genes known to be involved in the establishment and maintenance of epithelial cell identity and mammary gland remodeling in cell subpopulations isolated from normal human mammary tissue and selectively enriched in their content of bipotent progenitors, committed luminal progenitors, and differentiated myoepithelial or differentiated luminal cells. The results indicated that, compared to bipotent cells, differentiated myoepithelial and luminal subpopulations were both characterized by the differential expression of 4 genes involved in cell identity maintenance: CBX6 and PCGF2, encoding proteins belonging to the Polycomb group, and SMARCD3 and SMARCE1, encoding proteins belonging to the Trithorax group. In addition to these common genes, the myoepithelial phenotype was associated with the differential expression of HDAC1, which encodes histone deacetylase 1, whereas the luminal phenotype was associated with the differential expression of SMARCA4 and HAT1, which encode a Trithorax protein and histone acetylase 1, respectively. The luminal compartment was further characterized by the overexpression of ALDH1A3 and GATA3, and the down-regulation of NOTCH4 and CCNB1, with the latter suggesting a block in cell cycle progression at the G2 phase. In contrast, myoepithelial differentiation was associated with the overexpression of MYC and the down-regulation of CCNE1, with the latter suggesting a block in cell cycle progression at the G1 phase.

  10. EBF2 regulates osteoblast-dependent differentiation of osteoclasts

    DEFF Research Database (Denmark)

    Kieslinger, Matthias; Folberth, Stephanie; Dobreva, Gergana

    2005-01-01

    of osteoclast differentiation. We find that mice homozygous for a targeted inactivation of Ebf2 show reduced bone mass and an increase in the number of osteoclasts. These defects are accompanied by a marked downregulation of the osteoprotegerin (Opg) gene, encoding a RANK decoy receptor. EBF2 binds to sequences...

  11. Growth differentiation factor 5 is a key physiological regulator of dendrite growth during development.

    Science.gov (United States)

    Osório, Catarina; Chacón, Pedro J; Kisiswa, Lilian; White, Matthew; Wyatt, Sean; Rodríguez-Tébar, Alfredo; Davies, Alun M

    2013-12-01

    Dendrite size and morphology are key determinants of the functional properties of neurons. Here, we show that growth differentiation factor 5 (GDF5), a member of the bone morphogenetic protein (BMP) subclass of the transforming growth factor β superfamily with a well-characterised role in limb morphogenesis, is a key regulator of the growth and elaboration of pyramidal cell dendrites in the developing hippocampus. Pyramidal cells co-express GDF5 and its preferred receptors, BMP receptor 1B and BMP receptor 2, during development. In culture, GDF5 substantially increased dendrite, but not axon, elongation from these neurons by a mechanism that depends on activation of SMADs 1/5/8 and upregulation of the transcription factor HES5. In vivo, the apical and basal dendritic arbours of pyramidal cells throughout the hippocampus were markedly stunted in both homozygous and heterozygous Gdf5 null mutants, indicating that dendrite size and complexity are exquisitely sensitive to the level of endogenous GDF5 synthesis.

  12. Regulation of Stem Cell Differentiation by Histone Methyltransferases and Demethylases

    DEFF Research Database (Denmark)

    Pasini, D; Bracken, A P; Agger, K

    2008-01-01

    The generation of different cell types from stem cells containing identical genetic information and their organization into tissues and organs during development is a highly complex process that requires defined transcriptional programs. Maintenance of such programs is epigenetically regulated...... and the factors involved in these processes are often essential for development. The activities required for cell-fate decisions are frequently deregulated in human tumors, and the elucidation of the molecular mechanisms that regulate these processes is therefore important for understanding both developmental...

  13. Emdogain regulation of cellular differentiation in wounded rat periodontium.

    Science.gov (United States)

    Chano, Laura; Tenenbaum, Howard C; Lekic, P Charles; Sodek, Jaro; McCulloch, Christopher A

    2003-04-01

    Emdogain is an enamel matrix derivative that may promote periodontal regeneration by recapitulating critical events in tooth morphogenesis. We hypothesized that Emdogain enhances periodontal regeneration by promoting the differentiation of cells required for the synthesis of periodontal ligament, bone and cementum. Cell differentiation was examined in rat periodontal window wounds in which there is no microbial biofilm or epithelial downgrowth, thereby simplifying the model system. Defects were filled with vehicle control or Emdogain (3 mg/ml or 30 mg/ml). Rats were sacrificed at 7, 14 and 21 d after wounding. Specimens of periodontium were immunostained for osteopontin, bone sialoprotein, osteocalcin as markers of osteogenic differentiation and for alpha-smooth muscle actin, a myofibroblastic marker. Morphometry and 3H-proline radioautography were used for assessment of tissue homeostasis and matrix production. Rats treated with Emdogain (only at 30 mg/ml) showed widening of the periodontal ligament at 7 d; by 14 and 21 d, periodontal ligament width was restored to normal values for all groups. Emdogain exerted no effect on cementum thickness, bone volume, osteoid deposition rates, or extracellular staining for osteopontin, bone sialoprotein or osteocalcin. Further, the percentage of cells with intracellular staining for osteopontin, osteocalcin or bone sialoprotein was unaffected by Emdogain. Staining for alpha-smooth muscle actin was abundant in the repopulating wound but was also unaffected by Emdogain. In conclusion, Emdogain does not apparently affect the expression of differentiation markers or bone matrix protein synthesis in the repopulation response of wounded rat molar periodontium. Therefore the effect of Emdogain on wound healing in the periodontium may be independent of differentiation in the cell populations examined in this model.

  14. Cotylenin A--a plant growth regulator as a differentiation-inducing agent against myeloid leukemia.

    Science.gov (United States)

    Honma, Yoshio

    2002-06-01

    Acute myeloid leukemia (AML) is characterized by the arrest of differentiation leading to the accumulation of immature cells. This maturation arrest can be reversed by certain agents. Although differentiation therapy for patients with acute promyelocytic leukemia (APL) using all-trans retinoic acid (ATRA) has been established, the clinical response of AML patients other than those with APL to ATRA is limited. We must consider novel therapeutic drugs against other forms of AML for the development of a differentiation therapy for leukemia. Regulators that play an important role in the differentiation and development of plants or invertebrates may also affect the differentiation of human leukemia cells through a common signal transduction system, and might be clinically useful for treating AML. Cotylenin A, a plant growth regulator, is a potent and novel inducer of the monocytic differentiation of human myeloid leukemia cell lines and leukemia cells freshly isolated from AML patients.

  15. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie

    2003-01-01

    Changes in cell shape are a morphological hallmark of differentiation. In this study we report that the expression of ADAM12, a disintegrin and metalloprotease, dramatically affects cell morphology in preadipocytes, changing them from a flattened, fibroblastic appearance to a more rounded shape. ...... for early adipocyte differentiation....

  16. Differentiation of Three Centella Species in Australia as Inferred from Morphological Characteristics, ISSR Molecular Fingerprinting and Phytochemical Composition

    Directory of Open Access Journals (Sweden)

    Ali Alqahtani

    2017-11-01

    Full Text Available Centella asiatica is one of the popular herbs used for inflammatory and neural conditions. Its differentiation from similar species is currently lacking. The aims of this study were to differentiate the three closely related Centella species using methods based on morphological characters, genetic biodiversity, phytochemical compositions and antioxidant activities. According to the morphological characteristics, the collected samples were identified as three species: C. asiatica, Centella cordifolia and Centella erecta and clustered into three groups based on their morphometric variability. Dendogram constructed on the basis of the intersimple sequence repeats (ISSR analyses were consistent with the morphological grouping. Centella cordifolia had the highest triterpene glycosides, phenolics and antioxidant capacity, followed by C. asiatica, then C. erecta, therefore, was genetically and chemically closer to C. asiatica, while C. erecta was distinctively different from them. The results confirm the occurrence of the closely related three species of Centella in Australia, and the differentiation among them can be achieved via the combination of morphometric, molecular and phytochemical methods. This first comparative botanical study on Centella species provides a foundation for further systematic study and medicinal development of Centella.

  17. Differentiation of Three Centella Species in Australia as Inferred from Morphological Characteristics, ISSR Molecular Fingerprinting and Phytochemical Composition

    Science.gov (United States)

    Alqahtani, Ali; Cho, Jun-Lae; Wong, Ka Ho; Li, Kong M.; Razmovski-Naumovski, Valentina; Li, George Q.

    2017-01-01

    Centella asiatica is one of the popular herbs used for inflammatory and neural conditions. Its differentiation from similar species is currently lacking. The aims of this study were to differentiate the three closely related Centella species using methods based on morphological characters, genetic biodiversity, phytochemical compositions and antioxidant activities. According to the morphological characteristics, the collected samples were identified as three species: C. asiatica, Centella cordifolia and Centella erecta and clustered into three groups based on their morphometric variability. Dendogram constructed on the basis of the intersimple sequence repeats (ISSR) analyses were consistent with the morphological grouping. Centella cordifolia had the highest triterpene glycosides, phenolics and antioxidant capacity, followed by C. asiatica, then C. erecta, therefore, was genetically and chemically closer to C. asiatica, while C. erecta was distinctively different from them. The results confirm the occurrence of the closely related three species of Centella in Australia, and the differentiation among them can be achieved via the combination of morphometric, molecular and phytochemical methods. This first comparative botanical study on Centella species provides a foundation for further systematic study and medicinal development of Centella. PMID:29209345

  18. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  19. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS.

    Science.gov (United States)

    Song, Jian Bo; Huang, Si Qi; Dalmay, Tamas; Yang, Zhi Min

    2012-07-01

    The present study identified Arabidopsis miR394 and its target, an F-box (SKP1-Cullin/CDC53-F-box) gene At1g27340 (here referred to as LEAF CURLING RESPONSIVENESS, LCR), for regulation of leaf curling-related morphology. The loss-of-function lcr mutants exhibit pleiotropic defects with semi-dwarfism, altered leaf shape and a shorter stem. Overexpression of an miR394-resistant version of LCR under the 35S promoter (35S:m5LCR) and target mimicry MIM394 resulted in a curled-down leaf defect. Conversely, transgenic plants overexpressing 35S:MIR394a/b display a curled-up leaf phenotype. Detailed analyses show that there is a certain level of LCR that is optimal for leaf morphology, but lower or higher levels lead to abnormal leaf development, indicating that expression of miR394 in the leaf lamina is necessary for proper leaf morphology. Because the phytohormone auxin plays a crucial role in leaf morphogenesis and patterning, the DR5-GUS reporter gene was used to monitor the auxin response. We show that DR5 expression patterns in lcr and 35S::m5LCR plants were significantly different from those in the wild type. Also, overexpression of LCR in 35S::m5LCR plants drastically decreased the expression of the auxin-responsive genes IAA3, AXR3 and IAMT1, whereas increased expression of the genes was found in 35S::MIR394a plants. These results indicate that miR394 and its target LCR are involved in the regulation of leaf development.

  20. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  1. Differential regulation of NAB corepressor genes in Schwann cells

    Directory of Open Access Journals (Sweden)

    Sachdev Shrikesh

    2007-12-01

    Full Text Available Abstract Background Myelination of peripheral nerves by Schwann cells requires not only the Egr2/Krox-20 transactivator, but also the NGFI-A/Egr-binding (NAB corepressors, which modulate activity of Egr2. Previous work has shown that axon-dependent expression of Egr2 is mediated by neuregulin stimulation, and NAB corepressors are co-regulated with Egr2 expression in peripheral nerve development. NAB corepressors have also been implicated in macrophage development, cardiac hypertrophy, prostate carcinogenesis, and feedback regulation involved in hindbrain development. Results To test the mechanism of NAB regulation in Schwann cells, transfection assays revealed that both Nab1 and Nab2 promoters are activated by Egr2 expression. Furthermore, direct binding of Egr2 at these promoters was demonstrated in vivo by chromatin immunoprecipitation analysis of myelinating sciatic nerve, and binding of Egr2 to the Nab2 promoter was stimulated by neuregulin in primary Schwann cells. Although Egr2 expression activates the Nab2 promoter more highly than Nab1, we surprisingly found that only Nab1 – but not Nab2 – expression levels were reduced in sciatic nerve from Egr2 null mice. Analysis of the Nab2 promoter showed that it is also activated by ETS proteins (Ets2 and Etv1/ER81 and is bound by Ets2 in vivo. Conclusion Overall, these results indicate that induction of Nab2 expression in Schwann cells involves not only Egr2, but also ETS proteins that are activated by neuregulin stimulation. Although Nab1 and Nab2 play partially redundant roles, regulation of Nab2 expression by ETS factors explains several observations regarding regulation of NAB genes. Finally, these data suggest that NAB proteins are not only feedback inhibitors of Egr2, but rather that co-induction of Egr2 and NAB genes is involved in forming an Egr2/NAB complex that is crucial for regulation of gene expression.

  2. LINGO-1 Regulates Oligodendrocyte Differentiation through the Cytoplasmic Gelsolin Signaling Pathway.

    Science.gov (United States)

    Shao, Zhaohui; Lee, Xinhua; Huang, Guanrong; Sheng, Guoqing; Henderson, Christopher E; Louvard, Daniel; Sohn, Jiho; Pepinsky, Blake; Mi, Sha

    2017-03-22

    Differentiation and maturation of oligodendrocyte progenitor cells (OPCs) involve the assembly and disassembly of actin microfilaments. However, how actin dynamics are regulated during this process remains poorly understood. Leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of OPC differentiation. We discovered that anti-LINGO-1 antibody-promoted OPC differentiation was accompanied by upregulation of cytoplasmic gelsolin (cGSN), an abundant actin-severing protein involved in the depolymerization of actin filaments. Treating rat OPCs with cGSN siRNA reduced OPC differentiation, whereas overexpression of cGSN promoted OPC differentiation in vitro and remyelination in vivo Furthermore, coexpression of cGSN and LINGO-1 blocked the inhibitory effect of LINGO-1. Our study demonstrates that cGSN works downstream of LINGO-1 signaling pathway, which enhances actin dynamics and is essential for OPC morphogenesis and differentiation. This finding may lead to novel therapeutic approaches for the treatment of demyelinating diseases such as multiple sclerosis (MS).SIGNIFICANCE STATEMENT Myelin loss and subsequent axon degeneration contributes to a variety of neurological diseases, such as multiple sclerosis (MS). Understanding the regulation of myelination by oligodendrocytes is therefore critical for developing therapies for the treatment of MS. We previously demonstrated that leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of oligodendrocyte differentiation and that anti-LINGO-1 promotes remyelination in preclinical animal models for MS and in a phase II acute optic neuritis clinical trial (RENEW). The mechanism by which LINGO-1 regulates oligodendrocyte differentiation is unknown. Here, we demonstrate that LINGO-1 regulates oligodendrocyte differentiation and maturation through the cytoplasmic gelsolin signaling pathway, providing new

  3. Benzyl butyl phthalate decreases myogenic differentiation of endometrial mesenchymal stem/stromal cells through miR-137-mediated regulation of PITX2.

    Science.gov (United States)

    Chen, Hung-Sheng; Hsu, Chia-Yi; Chang, Yu-Chia; Chuang, Hui-Yu; Long, Cheng-Yu; Hsieh, Tsung-Hua; Tsai, Eing-Mei

    2017-03-15

    Phthalate, an environmental toxin, has been considered as an endocrine-disrupting chemical. Growing evidence has demonstrated links between endocrine-disrupting chemicals, tissue development, and reproductive physiology, but the mechanisms of gene expression regulation by environmental factors that affect cell differentiation are unclear. Herein, we investigated the effects of butyl benzyl phthalate (BBP) on human endometrial mesenchymal stem/stromal cell (EN-MSC) differentiation and identified a novel signaling pathway. Differentiation of endometrial mesenchymal stem/stromal cells decreased after administration of BBP. We analyzed BBP regulation of gene expression in EN-MSC using cDNA microarrays and Ingenuity Pathway Analysis software to identify affected target genes and their biological functions. PITX2 emerged as a common gene hit from separate screens targeting skeletal and muscular disorders, cell morphology, and tissue development. BBP decreased transcription of PITX2 and elevated expression of the microRNA miR-137, the predicted upstream negative regulator of PITX2. These data indicated that BBP affects PITX2 expression through miR-137 targeting of the 3' untranslated region of PITX2 mRNA. PITX2 down-regulation also decreased MyoD transcript levels in EN-MSC. Our results demonstrate that BBP decreases EN-MSC myogenic differentiation through up-regulation of miR-137, contribute to our understanding of EN-MSC differentiation, and underline the hazardous potential of environmental hormones.

  4. Cathepsins B and L differentially regulate amyloid precursor protein processing.

    Science.gov (United States)

    Klein, Donna M; Felsenstein, Kevin M; Brenneman, Douglas E

    2009-03-01

    Previous studies have shown that cathepsins control amyloid beta (Abeta) levels in chromaffin cells via a regulated secretory pathway. In the present study, this concept was extended to investigations in primary hippocampal neurons to test whether Abeta release was coregulated by cathepsins and electrical activity, proposed components of a regulated secretory pathway. Inhibition of cathepsin B (catB) activity with CA074Me or attenuation of catB expression through small interfering RNA produced decreases in Abeta release, similar to levels produced with suppression of beta-site APP-cleaving enzyme 1 (BACE1) expression. To test whether the catB-dependent release of Abeta was linked to ongoing electrical activity, neurons were treated with tetrodotoxin (TTX) and CA074Me. These comparisons demonstrated no additivity between decreases in Abeta release produced by TTX and CA074Me. In contrast, pharmacological inhibition of cathepsin L (catL) selectively elevated Abeta42 levels but not Abeta40 or total Abeta. Mechanistic studies measuring C-terminal fragments of amyloid precursor protein (APP) suggested that catL elevated alpha-secretase activity, thereby suppressing Abeta42 levels. The mechanism of catB-mediated regulation of Abeta release remains unclear but may involve elevation of beta-secretase. In summary, these studies provide evidence for a significant alternative pathway for APP processing that involves catB and activity-dependent release of Abeta in a regulated secretory pathway for primary neurons.

  5. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  6. MicroRNA-24 Regulates Osteogenic Differentiation via Targeting T-Cell Factor-1

    Directory of Open Access Journals (Sweden)

    Weigong Zhao

    2015-05-01

    Full Text Available MicroRNAs (miRNAs have been reported to have diverse biological roles in regulating many biological processes, including osteogenic differentiation. In the present study, we identified that miR-24 was a critical regulator during osteogenic differentiation. We found that overexpression of miR-24 significantly inhibited osteogenic differentiation, which decreased alkaline phosphatase activity, matrix mineralization and the expression of osteogenic differentiation markers. In contrast, inhibition of miR-24 exhibited an opposite effect. Furthermore, we delineated that miR-24 regulates post-transcriptionals of T-cell factor-1 (Tcf-1 via targeting the 3'-untranslated region (UTR of Tcf-1 mRNA. MiR-24 was further found to regulate the protein expression of Tcf-1 in the murine osteoprogenitors cells and bone mesenchymal stem cells. Additionally, the positive effect of miR-24 suppression on osteoblast differentiation was apparently abrogated by Tcf-1 silencing. Taken together, our data suggest that miR-24 participates in osteogenic differentiation by targeting and regulating Tcf-1 expression in osteoblastic cells.

  7. Coordinate regulation of RARgamma2, TBP, and TAFII135 by targeted proteolysis during retinoic acid-induced differentiation of F9 embryonal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Carré Lucie

    2001-03-01

    Full Text Available Abstract Background Treatment of mouse F9 embryonal carcinoma cells with all-trans retinoic acid (T-RA induces differentiation into primitive endodermal type cells. Differentiation requires the action of the receptors for all trans, and 9cis-retinoic acid (RAR and RXR, respectively and is accompanied by growth inhibition, changes in cell morphology, increased apoptosis, proteolytic degradation of the RARγ2 receptor, and induction of target genes. Results We show that the RNA polymerase II transcription factor TFIID subunits TBP and TAFII135 are selectively depleted in extracts from differentiated F9 cells. In contrast, TBP and TAFII135 are readily detected in extracts from differentiated F9 cells treated with proteasome inhibitors showing that their disappearance is due to targeted proteolysis. This regulatory pathway is not limited to F9 cells as it is also seen when C2C12 myoblasts differentiate into myotubes. Targeting of TBP and TAFII135 for proteolysis in F9 cells takes place coordinately with that previously reported for the RARγ2 receptor and is delayed or does not take place in RAR mutant F9 cells where differentiation is known to be impaired or abolished. Moreover, ectopic expression of TAFII135 delays proteolysis of the RARγ2 receptor and impairs primitive endoderm differentiation at an early stage as evidenced by cell morphology, induction of marker genes and apoptotic response. In addition, enhanced TAFII135 expression induces a novel differentiation pathway characterised by the appearance of cells with an atypical elongated morphology which are cAMP resistant. Conclusions These observations indicate that appropriately timed proteolysis of TBP and TAFII135 is required for normal F9 cell differentiation. Hence, in addition to transactivators, targeted proteolysis of basal transcription factors also plays an important role in gene regulation in response to physiological stimuli.

  8. Sex-Based Selectivity of PPARγ Regulation in Th1, Th2, and Th17 Differentiation

    Directory of Open Access Journals (Sweden)

    Hong-Jai Park

    2016-08-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ has recently been recognized to regulate adaptive immunity through Th17 differentiation, Treg functions, and TFH responses. However, its role in adaptive immunity and autoimmune disease is still not clear, possibly due to sexual differences. Here, we investigated in vitro treatment study with the PPARγ agonist pioglitazone to compare Th1, Th2, and Th17 differentiation in male and female mouse splenic T cells. Pioglitazone treatment significantly inhibited various effector T cell differentiations including Th1, Th2, and Th17 cells from female naïve T cells, but it selectively reduced IL-17 production in male Th17 differentiation. Interestingly, pioglitazone and estradiol (E2 co-treatment of T cells in males inhibited differentiation of Th1, Th2, and Th17 cells, suggesting a mechanism for the greater sensitivity of PPARγ to ligand treatment in the regulation of effector T cell differentiation in females. Collectively, these results demonstrate that PPARγ selectively inhibits Th17 differentiation only in male T cells and modulates Th1, Th2, and Th17 differentiation in female T cells based on different level of estrogen exposure. Accordingly, PPARγ could be an important immune regulator of sexual differences in adaptive immunity.

  9. BMP signalling differentially regulates distinct haematopoietic stem cell types.

    Science.gov (United States)

    Crisan, Mihaela; Kartalaei, Parham Solaimani; Vink, Chris S; Vink, Chris; Yamada-Inagawa, Tomoko; Bollerot, Karine; van IJcken, Wilfred; van der Linden, Reinier; de Sousa Lopes, Susana M Chuva; Monteiro, Rui; Mummery, Christine; Dzierzak, Elaine

    2015-08-18

    Adult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they are first generated in the aorta-gonad-mesonephros region, but at later developmental stages, its role in HSCs is controversial. Here we show that HSCs in murine fetal liver and the bone marrow are of two types that can be prospectively isolated--BMP activated and non-BMP activated. Clonal transplantation demonstrates that they have distinct haematopoietic lineage outputs. Moreover, the two HSC types differ in intrinsic genetic programs, thus supporting a role for the BMP signalling axis in the regulation of HSC heterogeneity and lineage output. Our findings provide insight into the molecular control mechanisms that define HSC types and have important implications for reprogramming cells to HSC fate and treatments targeting distinct HSC types.

  10. Sox proteins: regulators of cell fate specification and differentiation.

    Science.gov (United States)

    Kamachi, Yusuke; Kondoh, Hisato

    2013-10-01

    Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.

  11. Flow-regulated versus differential pressure-regulated shunt valves for adult patients with normal pressure hydrocephalus

    DEFF Research Database (Denmark)

    Ziebell, Morten; Wetterslev, Jørn; Tisell, Magnus

    2013-01-01

    Since 1965 many ventriculo-peritoneal shunt systems have been inserted worldwide to treat hydrocephalus. The most frequent indication in adults is normal pressure hydrocephalus (NPH), a condition that can be difficult to diagnose precisely. Surgical intervention with flow-regulated and differential...

  12. Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis.

    Science.gov (United States)

    Zeng, Xiankun; Hou, Steven X

    2012-11-01

    Like the mammalian intestine, the Drosophila adult midgut is constantly replenished by multipotent intestinal stem cells (ISCs). Although it is well known that adult ISCs arise from adult midgut progenitors (AMPs), relatively little is known about the mechanisms that regulate AMP specification. Here, we demonstrate that Broad (Br)-mediated hormone signaling regulates AMP specification. Br is highly expressed in AMPs temporally during the larva-pupa transition stage, and br loss of function blocks AMP differentiation. Furthermore, Br is required for AMPs to develop into functional ISCs. Conversely, br overexpression drives AMPs toward premature differentiation. In addition, we found that Br and Notch (N) signaling function in parallel pathways to regulate AMP differentiation. Our results reveal a molecular mechanism whereby Br-mediated hormone signaling directly regulates stem cells to generate adult cells during metamorphosis.

  13. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    Science.gov (United States)

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  14. Melatonin inhibits embryonic salivary gland branching morphogenesis by regulating both epithelial cell adhesion and morphology.

    Science.gov (United States)

    Obana-Koshino, Aya; Ono, Hitomi; Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or "brake" of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development.

  15. Pterygium epithelium abnormal differentiation related to activation of extracellular signal-regulated kinase signaling pathway in vitro

    Directory of Open Access Journals (Sweden)

    Juan Peng

    2015-12-01

    Full Text Available AIM: To investigate whether the abnormal differentiation of the pterygium epithelium is related to the extracellular signal-regulated kinase (ERK signaling pathway in vitro. METHODS: The expression levels of phosphorylated ERK (P-ERK, keratin family members including K19 and K10 and the ocular master control gene Pax-6 were measured in 16 surgically excised pterygium tissues and 12 eye bank conjunctiva. In colony-forming cell assays, the differences in clone morphology and in K10, K19, P-ERK and Pax-6 expression between the head and body were investigated. When cocultured with the ERK signaling pathway inhibitor PD98059, the changes in clone morphology, colony-forming efficiency, differentiated marker K10, K19 and Pax-6 expression and P-ERK protein expression level were examined by immunoreactivity and Western blot analysis. RESULTS: The expression of K19 and Pax-6 decreased in the pterygium, especially in the head. No staining of K10 was found in the normal conjunctiva epithelium, but it was found to be expressed in the superficial cells in the head of the pterygium. Characteristic upregulation of P-ERK was observed by immunohistochemistry. The clone from the head with more differentiated cells in the center expressed more K10, and the clone from the body expressed more K19. The P-ERK protein level increased in the pterygium epithelium compared with conjunctiva and decreased when cocultured with PD98059. The same medium with the ERK inhibitor PD98059 was more effective in promoting clonal growth than conventional medium with 3T3 murine feeder layers. It was observed that the epithelium clone co-cultured with the inhibitor had decreased K10 expression and increased K19 and Pax-6 expression. CONCLUSION: We suggest ERK signaling pathway activation might play a role in the pterygium epithelium abnormal differentiation.

  16. Morphological evaluation of cell differentiation after the isolation of single cells by a femtosecond laser-induced impulsive force.

    Science.gov (United States)

    Maezawa, Yasuyo; Okano, Kazunori; Matsubara, Mie; Masuhara, Hiroshi; Hosokawa, Yoichiroh

    2011-02-01

    When nerve growth factor (NGF) is interacted with PC12 cells derived from rat pheochromocytoma, they are partially differentiated into neuron-like cells with neurites. In this work, PC12 cells differentiated by NGF were selectively isolated using a localized impulsive force in a μm-scale area, which was generated by focusing an infrared femtosecond laser into a cell culture medium. In order to evaluate the ability of the isolation method, differentiated and undifferentiated cells were isolated and their morphological changes after the isolation were compared. In both cases, their neurites were once contracted and some of them gradually regenerated day by day. When differentiated cells were isolated, the percentage of differentiated cells with regenerated neurites, 6 h after the isolation, was about 3.3 times higher than that when undifferentiated ones were isolated. This result was compared with a control trypsin experiment. In the comparison, it was indicated that the same degree of cell function was maintained when the present isolation method was used.

  17. The Semaphorin 4D-RhoA-Akt Signal Cascade Regulates Enamel Matrix Secretion in Coordination With Cell Polarization During Ameloblast Differentiation.

    Science.gov (United States)

    Otsu, Keishi; Ida-Yonemochi, Hiroko; Fujiwara, Naoki; Harada, Hidemitsu

    2016-11-01

    During tooth development, oral epithelial cells differentiate into ameloblasts in order to form the most mineralized tissue in the vertebrate body: enamel. During this process, ameloblasts directionally secrete enamel matrix proteins and morphologically change from low columnar cells to polarized tall columnar cells, both of which are essential for the proper formation of enamel. In this study, we elucidated the molecular mechanism that integrates ameloblast function and morphology. Immunohistochemistry revealed that the restricted expression of semaphorin 4D (Sema4D) and RhoA activation status are closely associated with ameloblast differentiation in mouse incisors. In addition, in vitro gain-of-function and loss-of-function experiments demonstrated that Sema4D acts upstream of RhoA to regulate cell polarity and amelogenin expression via the Plexin B1/Leukemia-associated RhoGEF (LARG) complex during ameloblast differentiation. Experiments in transgenic mice demonstrated that expression of a dominant-negative form of RhoA in dental epithelium hindered ameloblast differentiation and subsequent enamel formation, as well as perturbing the establishment of polarized cell morphology and vectorial amelogenin expression. Finally, we showed that spatially restricted Akt mediates between Sema4D-RhoA signaling and these downstream cellular events. Collectively, our results reveal a novel signaling network, the Sema4D-RhoA-Akt signal cascade, that coordinates cellular function and morphology and highlights the importance of specific spatiotemporally restricted components of a signaling pathway in the regulation of ameloblast differentiation. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  18. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.

    Science.gov (United States)

    Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng

    2016-10-01

    Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Differential regulation of dentin matrix protein 1 expression during odontogenesis.

    Science.gov (United States)

    Lu, Yongbo; Zhang, Shubin; Xie, Yixia; Pi, Yuli; Feng, Jian Q

    2005-01-01

    Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone. Both in vitro and in vivo data show that DMP1 is critical for mineralization and tooth morphogenesis (growth and development). In this study, we studied Dmp1 gene regulation. The in vitro transient transfection assay identified two important DNA fragments, the 2.4- and 9.6-kb promoter regions. We next generated and analyzed transgenic mice bearing the beta-galactosidase (lacZ) reporter gene driven by the 2.4- or 9.6-kb promoter with the complete 4-kb intron 1. The 9.6-kb Dmp1-lacZ mice conferred a DMP1 expression pattern in odontoblasts identical to that in the endogenous Dmp1 gene. This is reflected by lacZ expression in Dmp1-lacZ knock-in mice during all stages of odontogenesis. In contrast, the 2.4-kb Dmp1-lacZ mice display activity in odontoblast cells only at the early stage of odontogenesis. Thus, we propose that different transcription factors regulate early or later cis-regulatory domains of the Dmp1 promoter, which gives rise to the unique spatial and temporal expression pattern of Dmp1 gene at different stages of tooth development. 2005 S. Karger AG, Basel

  20. Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C.

    Science.gov (United States)

    Chen, Liujing; Jiang, Fulin; Qiao, Yini; Li, Hong; Wei, Zhangming; Huang, Tu; Lan, Jingxiang; Xia, Yue; Li, Juan

    2017-12-07

    Stem cell-based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear-cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Morphological differentiation of Rosa agrestis Savi in the buffer zone of the Low Tatras National Park (Slovakia

    Directory of Open Access Journals (Sweden)

    Anna Sołtys-Lelek

    2014-04-01

    Full Text Available The paper presents morphological diversity within Rosa agrestis Savi, species identified among others in the buffer zone and the area of the Low Tatras National Park (Slovakia. This taxon belongs to the polymorphic section Caninae DC. em. Christ, and its morphological differentiation particularly relates to the degree of hairiness and glandularity of leaves and the presence or absence of glandules on pedicels. Based on these features four varieties of this species (R. agrestis var. agrestis, R. agrestis var. albiflora (Opiz. Degen, R. agrestis var. gizellae (Borbás R. Keller, and R. agrestis var. schulzei were distinguished in Europe (Popek 1996. The occurrences of all these varieties were found in the analyzed area.

  2. Morphological differentiation of the common toad Bufo bufo (Linnaeus, 1758 in the central part of the Balkan Peninsula

    Directory of Open Access Journals (Sweden)

    Čađenović Natalija

    2013-01-01

    Full Text Available This study analyzes the degree of morphological differentiation among populations of the common toad Bufo bufo in the central part of the Balkan Peninsula. Variations in a number of morphometric and qualitative characters in 14 population samples were analyzed using univariate and multivariate statistics. We found a high degree of female-biased sexual size dimorphism. Morphological variation among the samples was more expressed in morphometric than in qualitative characters. The significant size differences that exist between northern and southern population groups could be the result of phenotypic plasticity. Our results do not support a clear split between northern and southern populations, contrary to the current taxonomic treatment of these groups as B. b. bufo and B. b. spinosus, respectively. [Projekat Ministarstva nauke Republike Srbije, br. 173043

  3. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α.

    Science.gov (United States)

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-07-15

    POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Inhibins Tune the Thymocyte Selection Process by Regulating Thymic Stromal Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ebzadrel Carbajal-Franco

    2015-01-01

    Full Text Available Inhibins and Activins are members of the TGF-β superfamily that regulate the differentiation of several cell types. These ligands were initially identified as hormones that regulate the hypothalamus-pituitary-gonadal axis; however, increasing evidence has demonstrated that they are key regulators in the immune system. We have previously demonstrated that Inhibins are the main Activin ligands expressed in the murine thymus and that they regulate thymocyte differentiation, promoting the DN3-DN4 transition and the selection of SP thymocytes. As Inhibins are mainly produced by thymic stromal cells, which also express Activin receptors and Smad proteins, we hypothesized that Inhibins might play a role in stromal cell differentiation and function. Here, we demonstrate that, in the absence of Inhibins, thymic conventional dendritic cells display reduced levels of MHC Class II (MHCII and CD86. In addition, the ratio between cTECs and mTECs was affected, indicating that mTEC differentiation was favoured and cTEC diminished in the absence of Inhibins. These changes appeared to impact thymocyte selection leading to a decreased selection of CD4SP thymocytes and increased generation of natural regulatory T cells. These findings demonstrate that Inhibins tune the T cell selection process by regulating both thymocyte and stromal cell differentiation.

  5. [Comprehensive regulation effect of traditional Chinese medicine on proliferation and differentiation of neural stem cells].

    Science.gov (United States)

    Wang, Hong-Jin; Li, Jing-Jing; Ke, Hui; Xu, Xiao-Yu

    2017-11-01

    Since the discovery of neural stem cells(NSCs) in embryonic and adult mammalian central nervous systems, new approaches for proliferation and differentiation of NSCs have been put forward. One of the approaches to promote the clinical application of NSCs is to search effective methods to regulate the proliferation and differentiation. This problem is urgently to be solved in the medical field. Previous studies have shown that traditional Chinese medicine could promote the proliferation and differentiation of NSCs by regulating the relevant signaling pathway in vivo and in vitro. Domestic and foreign literatures for regulating the proliferation and differentiation of neural stem cells in recent 10 years and the reports for their target and signaling pathways were analyzed in this paper. Traditional Chinese medicine could regulate the proliferation and differentiation of NSCs through signaling pathways of Notch, PI3K/Akt, Wnt/β-catenin and GFs. However, studies about NSCs and traditional Chinese medicine should be further deepened; the mechanism of multiple targets and the comprehensive regulation function of traditional Chinese medicine should be clarified. Copyright© by the Chinese Pharmaceutical Association.

  6. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  7. The regulation of health care providers' payments when horizontal and vertical differentiation matter.

    Science.gov (United States)

    Bardey, David; Canta, Chiara; Lozachmeur, Jean-Marie

    2012-09-01

    This paper analyzes the regulation of payment schemes for health care providers competing in both quality and product differentiation of their services. The regulator uses two instruments: a prospective payment per patient and a cost reimbursement rate. When the regulator can only use a prospective payment, the optimal price involves a trade-off between the level of quality provision and the level of horizontal differentiation. If this pure prospective payment leads to underprovision of quality and overdifferentiation, a mixed reimbursement scheme allows the regulator to improve the allocation efficiency. This is true for a relatively low level of patients' transportation costs. We also show that if the regulator cannot commit to the level of the cost reimbursement rate, the resulting allocation can dominate the one with full commitment. This occurs when the transportation cost is low or high enough, and the full commitment solution either implies full or zero cost reimbursement. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A; Moeller, Hanne B; Zelenina, Marina

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  9. Mechanism of regulation of stem cell differentiation by matrix stiffness.

    Science.gov (United States)

    Lv, Hongwei; Li, Lisha; Sun, Meiyu; Zhang, Yin; Chen, Li; Rong, Yue; Li, Yulin

    2015-05-27

    Stem cell behaviors are regulated by multiple microenvironmental cues. As an external signal, mechanical stiffness of the extracellular matrix is capable of governing stem cell fate determination, but how this biophysical cue is translated into intracellular signaling remains elusive. Here, we elucidate mechanisms by which stem cells respond to microenvironmental stiffness through the dynamics of the cytoskeletal network, leading to changes in gene expression via biophysical transduction signaling pathways in two-dimensional culture. Furthermore, a putative rapid shift from original mechanosensing to de novo cell-derived matrix sensing in more physiologically relevant three-dimensional culture is pointed out. A comprehensive understanding of stem cell responses to this stimulus is essential for designing biomaterials that mimic the physiological environment and advancing stem cell-based clinical applications for tissue engineering.

  10. Epigenetic regulation of stem cells : the role of chromatin in cell differentiation.

    Science.gov (United States)

    Wutz, Anton

    2013-01-01

    The specialized cell types of tissues and organs are generated during development and are replenished over lifetime though the process of differentiation. During differentiation the characteristics and identity of cells are changed to meet their functional requirements. Differentiated cells then faithfully maintain their characteristic gene expression patterns. On the molecular level transcription factors have a key role in instructing specific gene expression programs. They act together with chromatin regulators which stabilize expression patterns. Current evidence indicates that epigenetic mechanisms are essential for maintaining stable cell identities. Conversely, the disruption of chromatin regulators is associated with disease and cellular transformation. In mammals, a large number of chromatin regulators have been identified. The Polycomb group complexes and the DNA methylation system have been widely studied in development. Other chromatin regulators remain to be explored. This chapter focuses on recent advances in understanding epigenetic regulation in embryonic and adult stem cells in mammals. The available data illustrate that several chromatin regulators control key lineage specific genes. Different epigenetic systems potentially could provide stability and guard against loss or mutation of individual components. Recent experiments also suggest intervals in cell differentiation and development when new epigenetic patterns are established. Epigenetic patterns have been observed to change at a progenitor state after stem cells commit to differentiation. This finding is consistent with a role of epigenetic regulation in stabilizing expression patterns after their establishment by transcription factors. However, the available data also suggest that additional, presently unidentified, chromatin regulatory mechanisms exist. Identification of these mechanism is an important aim for future research to obtain a more complete framework for understanding stem cell

  11. Insulin receptor-mediated signaling via phospholipase C-γ regulates growth and differentiation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Juan M Murillo-Maldonado

    Full Text Available Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ encoded by small wing (sl acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.

  12. The unique pseudanthium of Actinodium (Myrtaceae) - morphological reinvestigation and possible regulation by CYCLOIDEA-like genes

    Science.gov (United States)

    2013-01-01

    Background Genes encoding TCP transcription factors, such as CYCLOIDEA-like (CYC-like) genes, are well known actors in the control of plant morphological development, particularly regarding the control of floral symmetry. Despite recent understanding that these genes play a role in establishing the architecture of inflorescences in the sunflower family (Asteraceae), where hundreds of finely organized flowers are arranged to mimic an individual flower, little is known about their function in the development of flower-like inflorescences across diverse phylogenetic groups. Here, we studied the head-like pseudanthium of the Australian swamp daisy Actinodium cunninghamii Schau. (Myrtaceae, the myrtle family), which consists of a cluster of fertile flowers surrounded by showy ray-shaped structures, to fully characterize its inflorescence development and to test whether CYC-like genes may participate in the control of its daisy-like flowering structures. Results We used standard morphological and anatomical methods to analyze Actinodium inflorescence development. Furthermore, we isolated Actinodium CYC-like genes using degenerate PCR primers, and studied the expression patterns of these genes using quantitative RT-PCR. We found that the ray-shaped elements of Actinodium are not single flowers but instead branched short-shoots occasionally bearing flowers. We found differential expression of CYC-like genes across the pseudanthium of Actinodium, correlating with the showiness and branching pattern of the ray structures. Conclusions The Actinodium inflorescence represents a novel type of pseudanthium with proximal branches mimicking ray flowers. Expression patterns of CYC-like genes are suggestive of participation in the control of pseudanthium development, in a manner analogous to the distantly related Asteraceae. As such, flowering plants appear to have recruited CYC-like genes for heteromorphic inflorescence development at least twice during their evolutionary history

  13. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    Science.gov (United States)

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  14. Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; te Riele, Hein; Kristiansen, Karsten

    2004-01-01

    The differentiation of white and brown fat cells is controlled by a similar set of transcription factors, including PPARgamma and C/EBPalpha. However, despite many similarities between the two types of fat cells, they carry out essentially opposite functions in vivo, with white adipocytes being...... the major energy store and brown adipocytes being potent energy-dissipaters through thermogenesis. Yet, little is known about factors differentially regulating the formation of white and brown fat cells. Members of the retinoblastoma protein family (pRB, p107, p130) have been implicated in the regulation...... of adipocyte differentiation, and expression and phosphorylation of the three retinoblastoma family proteins oscillate in a characteristic manner during differentiation of the white preadipocyte cell line 3T3-L1. We have recently demonstrated a surprising function of the retinoblastoma protein...

  15. Differential timing of gene expression regulation between leptocephali of North Atlantic eels in the Sargasso Sea

    DEFF Research Database (Denmark)

    Bernatchez, Louis; Saint-Cyr, Jérôme; Maes, Gregory E.

    2011-01-01

    the alternative hypotheses of (1) differential timing of gene expression regulation during early development versus (2) species-specific differences in expression of particular genes. Our results provide much stronger support for the former hypothesis since no gene showed consistent significant differences...... in expression levels between the two species. In contrast, 146 genes showed differential timings of expression between species, although the observed expression level differences between the species were generally small. Consequently, species-specific gene expression regulation seems to play a minor role...... in species differentiation. Overall, these results show that the basis of the early developmental divergence between the American and European eel is probably influenced by differences in the timing of gene expression regulation for genes involved in a large array of biological functions...

  16. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  17. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae.

    OpenAIRE

    Lorenz, M C; Heitman, J.

    1998-01-01

    In response to nitrogen starvation, diploid cells of the budding yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. This dimorphic transition is regulated by the Galpha protein GPA2, by RAS2, and by elements of the pheromone-responsive MAP kinase cascade, yet the mechanisms by which nitrogen starvation is sensed remain unclear. We have found that MEP2, a high affinity ammonium permease, is required for pseudohyphal differentiation in response to ammoniu...

  18. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  19. AP2 suppresses osteoblast differentiation and mineralization through down-regulation of Frizzled-1.

    Science.gov (United States)

    Yu, Shibing; Yerges-Armstrong, Laura M; Chu, Yanxia; Zmuda, Joseph M; Zhang, Yingze

    2015-02-01

    Transcription factor activating protein 2 (AP2) plays an important role in cellular differentiation. Although profound craniofacial and long bone developmental abnormalities have been observed in AP2-knockout mice, the molecular effects of AP2 on osteoblasts are poorly defined. We demonstrated that AP2 regulates the expression of human Frizzled 1 (FZD1), a co-receptor for the Wnt signalling pathway, in human osteoblast cell lines and primary bone marrow stromal cells (BMSCs). We also identified a putative AP2-binding site in the FZD1 proximal promoter in silico and characterized this binding element further in Saos2 in vitro by ChIP, electrophoretic mobility shift and promoter reporter assays. The transcriptional repression of the FZD1 promoter by AP2 was confirmed in normal human fetal osteoblasts (hFOB). Furthermore, overexpression of AP2 resulted in a significant reduction in both differentiation and mineralization of Saos2 cells. Knockdown of FZD1 expression before AP2 up-regulation diminished the AP2-dependent inhibition of Saos2 cell differentiation and mineralization. Similarly, overexpressing FZD1 before AP2 treatment in both Saos2 and BMSCs diminished the inhibitory effect of AP2 on osteoblast differentiation and mineralization. Taken together, these results demonstrate that AP2 is a negative regulator of osteoblast differentiation and mineralization, and its inhibitory effect may be mediated in part through down-regulation of FZD1 expression.

  20. Β-carotene inhibits neuroblastoma tumorigenesis by regulating cell differentiation and cancer cell stemness.

    Science.gov (United States)

    Lim, Ji Ye; Kim, Yoo-Sun; Kim, Kyung-Mi; Min, Soo Jin; Kim, Yuri

    2014-08-08

    Neuroblastoma (NB) is the most common extracranial solid cancer in young children and malignant NB cells have been shown to possess cancer stem cell (CSC) characteristics. Thus, the successful elimination of CSCs represents a strategy for developing an effective preventive and chemotherapeutic agent. CSCs are characterized by differentiation and tumorigenicity. β-Carotene (BC) has been associated with many anticancer mechanisms, although the efficacy of BC on CSCs remains unclear. In the present study, the effects of BC on tumor cell differentiation and tumorigenicity was investigated using a xenograft model. Mice were pretreated with BC for 21 days, then received a subcutaneous injection of SK-N-BE(2)C cells. Both tumor incidence and tumor growth were significantly inhibited for mice that received BC supplementation compared to the control group. Treatment with BC has also been shown to induce tumor cell differentiation by up-regulating differentiation markers, such as vimentin, peripherin, and neurofilament. Conversely, BC treatment has been shown to significantly suppress tumor stemness by down-regulating CSC markers such as Oct 3/4 and DLK1. BC treatment also significantly down-regulated HIF1-α expression and its downstream target, vascular endothelial growth factor (VEGF). Taken together, these results suggest that BC is a potential chemotherapeutic reagent for the treatment of NB, and mediates this effect by regulating the differentiation and stemness of CSCs, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Athlete's heart and hypertrophic cardiomyopathy: contribution on clinical and morphologic differentiation].

    Science.gov (United States)

    Bahlmann, Edda; Kuck, Karl Heinz; Nienaber, Christoph A

    2015-07-01

    Hypertrophic cardiomyopathy (HCM) is a complex genetic disorder usually diagnosed in a young adult population. The diagnosis is based on echocardiographic identification of left ventricular hypertrophy, associated with a non-dilated hyperdynamic chamber in the absence of another cardiac or systemic disorder. The differentiation between HCM and physiological left ventricular hypertrophy (athlete`s heart) is essential: HCM is the main cause of exercise-induced sudden cardiac death in the young and especially in young athletes with overlapping features in Athlete's Heart or HCM. Differentiation between physiological left ventricular hypertrophy and HCM is challenging. Echocardiography allows detailed assessment of left ventricular structure and function which is fundamental. Additional genetic studies for identification of the broad HCM phenotype can be necessary to differentiate between Athlete's Heart and HCM. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription.

    Science.gov (United States)

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; Da Silva, Daniel; Roeder, Robert G; Teichmann, Martin

    2010-09-15

    RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.

  3. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation

    Science.gov (United States)

    Chang, Ying-Hua; Ye, Lei; Cai, Wenxuan; Lee, Yoonkyu; Guner, Huseyin; Lee, Youngsook; Kamp, Timothy J.; Zhang, Jianyi; Ge, Ying

    2015-01-01

    Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function. PMID:26033914

  4. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  5. Morphology and histochemistry of glandular trichomes in Hyptis villosa Pohl ex Benth. (Lamiaceae and differential labeling of cytoskeletal elements

    Directory of Open Access Journals (Sweden)

    Luiz Ricardo dos Santos Tozin

    Full Text Available ABSTRACT Lamiaceae contains many species known for their aromatic properties that are produced by the production of essential oils in glandular trichomes. Hyptis is one of the most common genera of Lamiaceae in the Brazilian flora, and includes several species with medicinal value. However, studies on the morphology and functioning of their glandular trichomes are lacking. We analyzed the morphology, histochemistry and ultrastructure of the glandular trichomes in leaves of H. villosa, emphasizing the differential distribution of actin filaments and microtubules in cells secreting hydrophilic and lipophilic compounds. Four morphotypes of glandular trichomes were identified. Total lipid, terpenes, alkaloids, phenolic compounds, proteins and polysaccharides were histochemically detected in all morphotyes. This evidences the mixed nature of the secretions of this species, although there are differences in the prevalence of lipophilic and hydrophilic components among the glandular morphotypes and among the cells of the same trichome. The actin microfilaments are more abundant in cells that secrete mainly hydrophilic compounds, and microtubules predominate in cells that secrete lipophilic compounds. Our results corroborate the correlation between the glandular morphotype and the composition of the secretion produced, with a differential distribution of the cytoskeletal elements according to the prevalence of either hydrophilic or lipophilic substances.

  6. Differential regulation of COL2A1 expression in developing and mature chondrocytes.

    Science.gov (United States)

    Seghatoleslami, M R; Lichtler, A C; Upholt, W B; Kosher, R A; Clark, S H; Mack, K; Rowe, D W

    1995-12-01

    To investigate the regulation of type II collagen gene expression in cells undergoing chondrogenic differentiation, we have employed a 5-kbp genomic fragment of the human type II collagen gene which contains 1.8kbp of upstream sequences, the transcription start site, the first exon and 3 kbp of intronic sequences, fused to either lac Z or chloramphenicol acetyl transferase-reporter gene. Transient expression studies revealed a parallel increase in transgene activity and endogenous type II collagen mRNA levels during the onset of the cartilage differentiation of limb mesenchymal cells in high-density micromass cultures. At later periods in culture, however, the transgene activity declines, although steady-state levels of type II collagen mRNA are reported to continue to increase (Kosher et al.: J. Cell. Biol. 102: 1151-1156, 1986; Kravis and Upholt. Dev. Biol. 108: 164-172, 1985). In addition, the activity of the transgene is seven-fold higher at the onset of chondrogenic differentiation in micromass cultures that in well differentiated sternal chondrocytes, although similar levels of type II collagen transcripts are found in these cells. Furthermore, deletions of intronic segments resulted in greater drop in activity of the constructs in differentiating chondrocytes in micromass cultures than in mature sternal chondrocytes. The expression of the construct in transgenic mice is higher at the onset of chondrogenic differentiation and in newly differentiated chondrocytes than in more mature differentiated chondrocytes. Based on these observations, it appears that the mechanisms involved in the regulation of the type II collagen gene at the onset of chondrocyte differentiation are different from those resulting in the maintenance of its expression in fully differentiated chondrocytes.

  7. 5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons.

    Science.gov (United States)

    Brodsky, Matthew; Lesiak, Adam J; Croicu, Alex; Cohenca, Nathalie; Sullivan, Jane M; Neumaier, John F

    2017-04-01

    The 5-HT6 receptor has been implicated in a variety of cognitive processes including habitual behaviors, learning, and memory. It is found almost exclusively in the brain, is expressed abundantly in striatum, and localizes to neuronal primary cilia. Primary cilia are antenna-like, sensory organelles found on most neurons that receive both chemical and mechanical signals from other cells and the surrounding environment; however, the effect of 5-HT6 receptor function on cellular morphology has not been examined. We confirmed that 5-HT6 receptors were localized to primary cilia in wild-type (WT) but not 5-HT6 knockout (5-HT6KO) in both native mouse brain tissue and primary cultured striatal neurons then used primary neurons cultured from WT or 5-HT6KO mice to study the function of these receptors. Selective 5-HT6 antagonists reduced cilia length in neurons cultured from wild-type mice in a concentration and time-dependent manner without altering dendrites, but had no effect on cilia length in 5-HT6KO cultured neurons. Varying the expression levels of heterologously expressed 5-HT6 receptors affected the fidelity of ciliary localization in both WT and 5-HT6KO neurons; overexpression lead to increasing amounts of 5-HT6 localization outside of the cilia but did not alter cilia morphology. Introducing discrete mutations into the third cytoplasmic loop of the 5-HT6 receptor greatly reduced, but did not entirely eliminate, trafficking of the 5-HT6 receptor to primary cilia. These data suggest that blocking 5-HT6 receptor activity reduces the length of primary cilia and that mechanisms that regulate trafficking of 5-HT6 receptors to cilia are more complex than previously thought. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani

    2010-01-01

    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  9. Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation.

    Science.gov (United States)

    Sachlos, Eleftherios; Auguste, Debra T

    2008-12-01

    Differentiation of human embryonic stem (hES) cells into cells for regenerative medicine is often initiated by embryoid body (EB) formation. EBs may be treated with soluble biochemicals such as cytokines, growth factors and vitamins to induce differentiation. A scanning electron microscopy analysis, conducted over 14 days, revealed time-dependent changes in EB structure which led to the formation of a shell that significantly reduced the diffusive transport of a model molecule (374 Da) by >80%. We found that the shell consists of 1) an extracellular matrix (ECM) comprised of collagen type I; 2) a squamous cellular layer with tight cell-cell adhesions associated with E-cadherin; and 3) a collagen type IV lining indicative of a basement membrane. Disruption of the basement membrane, by either inhibiting its formation with noggin or permeabilizing it with collagenase, resulted in recovery of diffusive transport. Increasing the diffusive transport of retinoic acid (RA) and serum in EBs by a 15-min collagenase digestion on days 4, 5, 6 and 7 promoted neuronal differentiation. Flow cytometry and quantitative RT-PCR analysis of collagenase-treated EBs revealed 68% of cells expressing neural cell adhesion molecule (NCAM) relative to 28% for untreated EBs. Our results suggest that limitations in diffusive transport of biochemicals need to be considered when formulating EB differentiation strategies.

  10. Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides s.l.

    Science.gov (United States)

    Hutsemékers, Virginie; Vieira, Cristiana C; Ros, Rosa María; Huttunen, Sanna; Vanderpoorten, Alain

    2012-02-01

    Bryophyte floras typically exhibit extremely low levels of endemism. The interpretation, that this might reflect taxonomic shortcomings, is tested here for the Macaronesian flora, using the moss species complex of Rhynchostegium riparioides as a model. The deep polyphyly of R. riparioides across its distribution range reveals active differentiation that better corresponds to geographic than morphological differences. Morphometric analyses are, in fact, blurred by a size gradient that accounts for 80% of the variation observed among gametophytic traits. The lack of endemic diversification observed in R. riparioides in Macaronesia weakens the idea that the low rates of endemism observed in the Macaronesian bryophyte flora might solely be explained by taxonomic shortcomings. To the reverse, the striking polyphyly of North American and European lineages of R. riparioides suggests that the similarity between the floras of these continents has been over-emphasized. Discriminant analyses point to the existence of morphological discontinuities among the lineages resolved by the molecular phylogeny. The global rate of error associated to species identification based on morphology (0.23) indicates, however, that intergradation of shape and size characters among species in the group challenges their identification. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Differential diagnosis of laryngeal spindle cell carcinoma and inflammatory myofibroblastic tumor – report of two cases with similar morphology

    Directory of Open Access Journals (Sweden)

    Hagen Rudolf

    2007-01-01

    Full Text Available Abstract Background Spindle cell tumors of the larynx are rare. In some cases, the dignity is difficult to determine. We report two cases of laryngeal spindle cell tumors. Case presentation Case 1 is a spindle cell carcinoma (SPC in a 55 year-old male patient and case 2 an inflammatory myofibroblastic tumor (IMT in a 34 year-old female patient. A comprehensive morphological and immunohistochemical analysis was done. Both tumors arose at the vocal folds. Magnified laryngoscopy showed polypoid tumors. After resection, conventional histological investigation revealed spindle cell lesions with similar morphology. We found ulceration, mild atypia, and myxoid stroma. Before immunohistochemistry, the dignity was uncertain. Immunohistochemical investigations led to diagnosis of two distinct tumors with different biological behaviour. Both expressed vimentin. Furthermore, the SPC was positive for pan-cytokeratin AE1/3, CK5/6, and smooth-muscle actin, whereas the IMT reacted with antibodies against ALK-1, and EMA. The proliferation (Ki67 was up to 80% in SPC and 10% in IMT. Other stainings with antibodies against p53, p21, Cyclin D1, or Rb did not result in additional information. After resection, the patient with SPC is free of disease for seven months. The IMT recurred three months after first surgery, but no relapses were found eight months after resurgery. Conclusion Differential diagnosis can be difficult without immunohistochemistry. Therefore, a comprehensive morphological and immunohistochemical analysis is necessary, but markers of cell cycle (apart from the assessment of proliferation do not help.

  12. Differentiating the QRS Morphology of Posterior Fascicular Ventricular Tachycardia From Right Bundle Branch Block and Left Anterior Hemiblock Aberrancy.

    Science.gov (United States)

    Michowitz, Yoav; Tovia-Brodie, Oholi; Heusler, Ishai; Sabbag, Avi; Rahkovich, Michael; Shmueli, Hezzy; Glick, Aharon; Belhassen, Bernard

    2017-09-01

    Left posterior fascicular ventricular tachycardia (LPF-VT) is frequently misdiagnosed as supraventricular tachycardia with aberrant right bundle branch block (RBBB) and left anterior hemiblock (LAHB). The purpose of the present study was to define the morphological ECG characteristics of LPF-VT and attempt to differentiate it from RBBB and LAHB aberrancy. A systematic Medline search was used to identify or locate ECG tracings from patients with LPF-VTs. ECGs with LPF-VT were also collected from patients who underwent ablation of this arrhythmia at the Tel Aviv and Sheba Medical Centers. These ECGs were compared with ECGs of consecutive patients with RBBB and LAHB and no obvious cardiac pathology by echocardiography. Overall, 183 ECGs of LPF-VT were compared with 61 ECGs showing RBBB and LAHB. Univariate analysis demonstrated differences in QRS axis, limb (I, aVr), and precordial (V 1 , V 2 , V 6 ) ECG leads. On multivariate logistic regression analysis, LPF-VT was more often associated with atypical RBBB-like V 1 morphology (odds ratio, 5.1; P =0.004), positive QRS in aVr (odds ratio, 19.2; P <0.001), V 6 R/S ratio ≤1 (odds ratio, 6.7; P =0.01), and QRS ≤140 ms (odds ratio, 7.7; P <0.001). Using these 4 variables, a prediction model was developed that predicted LPF-VT with sensitivity and specificity of 82.1% and 78.3%, respectively. Patients with 3 of 4 positive variables had high probability of having LPF-VT, whereas patients with ≤1 positive variable always had RBBB plus LAHB. The morphological ECG characteristics of LPF-VT were defined, and a high accurate tool for correctly differentiating LPF-VT from RBBB and LAHB aberrancy was developed. © 2017 American Heart Association, Inc.

  13. Morphological analysis and differentiation of benign cystic neoplasms of the pancreas using computed tomography and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Christian; Heine, G.; Stelter, L.; Steffen, I.G.; Rothe, J.H.; Walter, T.C.; Denecke, T. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Radiologie; Fischer, C. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Medizinische Klinik m. S. Hepatologie und Gastroenterologie; Bahra, M. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Allgemein, Viszeral- und Transplantationschirurgie

    2013-03-15

    Purpose: To evaluate morphologic characteristics and establish a standardized diagnostic algorithm to differentiate benign cystic pancreatic tumors (CPTs) in non-pancreatitis patients using multidetector computed tomography (CT) and magnetic resonance imaging (MRI). Materials and Methods: Patients with histopathologically proven CPTs who had undergone MRI and/or CT and subsequent tumor resection in our institution were retrospectively identified. Images were analyzed for morphology and enhancement patterns by three independent blinded observers. Preoperative image findings were correlated with histopathological results. Based on the evaluated morphologic parameters, a standardized diagnostic algorithm was designed to help characterize the lesions. Results: A total of 62 consecutive patients with 64 CPTs were identified from the surgical database (21 intraductal papillary mucinous neoplasms; 10 mucinous cystic neoplasms; 12 serous microcystic adenomas; 3 serous oligocystic adenomas; 6 solid pseudopapillary tumors; 12 neuroendocrine neoplasms). The overall averaged accuracy for the 3 observers was 89.9 % for CT and 93.1 % for MRI with increasing overall accuracy in relation to the experience of the observer (88.2 %, 91.5 %, and 93.8 %, respectively). Overall, the generalized kappa value was 0.69 (CT, 0.64; MRI, 0.76); p < 0.001. The accuracy of the standardized diagnostic algorithm was 91.1 %. Conclusion: It is possible to characterize benign CPTs with MRI and CT, while MRI appears to be superior to CT. Diagnostic accuracy depends on the observer's experience. The standardized algorithm can aid in the differential diagnosis but still needs to be tested in other patient populations. (orig.)

  14. Arabidopsis and Tobacco superman regulate hormone signalling and mediate cell proliferation and differentiation.

    Science.gov (United States)

    Nibau, Candida; Di Stilio, Verónica S; Wu, Hen-Ming; Cheung, Alice Y

    2011-01-01

    Arabidopsis thaliana superman (SUP) plays an important role during flower development by maintaining the boundary between stamens and carpels in the inner two whorls. It was proposed that SUP maintains this boundary by regulating cell proliferation in both whorls, as loss-of-function superman mutants produce more stamens at the expense of carpels. However, the cellular mechanism that underlies SUP function remains unknown. Here Arabidopsis or tobacco (Nicotiana tabacum) SUP was overexpressed in tobacco plants to substantiate SUP's role as a regulator of cell proliferation and boundary definition and provide evidence that its biological role may be mediated via hormonal changes. It was found that moderate levels of SUP stimulated cell growth and proliferation, whereas high levels were inhibitory. SUP stimulated auxin- and cytokinin-regulated processes, and cells overexpressing SUP displayed reduced hormone dependency for proliferation and regeneration into plants. SUP also induced proliferation of female traits in the second and third flower whorls and promoted differentiation of petaloid properties in sepals, further supporting a role for SUP as a boundary regulator. Moreover, cytokinin suppressed stamen development and promoted differentiation of carpeloid tissues, suggesting that SUP may regulate male and female development via its effect on cytokinin signalling. Taken together, these observations suggest a model whereby the effect of SUP on cell growth and proliferation involves the modulation of auxin- and cytokinin-regulated processes. Furthermore, differential SUP expression or different sensitivities of different cell types to SUP may determine whether SUP stimulates or suppresses their proliferation.

  15. Differentiation of Alternaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Thrane, Ulf

    1996-01-01

    Some small-spored species belonging to the genus Alternaria Nees have been studied according to their chemical, morphological, and cultural characteristics. A data matrix was constructed based on a combination of characters. Cluster analysis of the combined data set showed good resolution of two...... groups of small-spored Alternaria the Alternaria infectoria group and the Alternaria alternata group. Isolates in the A. infectoria group produced only unique metabolites of unknown identity, whereas all isolates in the A. alternata group produced alternariol and alternariol monomethyl ether. Furthermore...

  16. [Differentiation of haploid and diploid rape plants at the cytological and morphological levels].

    Science.gov (United States)

    Soroka, A I

    2013-01-01

    Some cytological and morphological characteristics of haploid and dihaploid plants of winter rape obtained via anther culture were studied. It was shown that in haploid plants the number of chloroplasts in stomata guard cells and the size of the stomata guard cells themselves were much smaller, and the number of stomata per unit area was greater than in doubled haploids and diploids. Haploids were also characterized by a smaller size of petals and anthers, and in general, a smaller flower compared to dihaploids and diploids.

  17. Epigenetic Regulation of Mesenchymal Stem Cells: A Focus on Osteogenic and Adipogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chad M. Teven

    2011-01-01

    Full Text Available Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES cells. Mesenchymal stem cells (MSCs are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.

  18. Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells

    NARCIS (Netherlands)

    Distelmaier, F.; Valsecchi, F.; Forkink, M.; Emst-de Vries, S.E. van; Swarts, H.G.P.; Rodenburg, R.J.T.; Verwiel, E.T.P.; Smeitink, J.A.M.; Willems, P.H.G.M.; Koopman, W.J.H.

    2012-01-01

    AIMS: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic

  19. Shear stress regulates late EPC differentiation via mechanosensitive molecule-mediated cytoskeletal rearrangement.

    Directory of Open Access Journals (Sweden)

    Min Cheng

    Full Text Available BACKGROUND: Previous studies have demonstrated that endothelial progenitor cells (EPCs, in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the underlying mechanisms regulating the shear stress-induced EPC differentiation have not been understood completely. The present study was undertaken to further investigate the effects of shear stress on the late EPC differentiation, and to elucidate the signal mechanism involved. METHODOLOGY/PRINCIPAL FINDING: In vitro and in vivo assays revealed that cytoskeletal remodeling was involved in the shear stress-upregulated expression of endothelial markers vWF and CD31 in late EPCs, with subsequently increased in vivo reendothelialization after arterial injury. Moreover, shear stress activated several mechanosensitive molecules including integrin β1, Ras, ERK1/2, paxillin and FAK, which were all involved in both cytoskeletal rearrangement and cell differentiation in response to shear stress in late EPCs. CONCLUSIONS/SIGNIFICANCE: Shear stress is a key regulator for late EPC differentiation into endothelial cells, which is important for vascular repair, and the cytoskeletal rearrangement mediated by the activation of the cascade of integrin β1, Ras, ERK1/2, paxillin and FAK is crucial in this process.

  20. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  1. Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling.

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    Full Text Available Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB gene develop spondylocarpotarsal syndrome (SCT, a disorder characterized by dwarfism (delayed bone formation and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation. To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes. Within the shortened growth plate of postnatal FlnB(-/- mice long bone, we observed a similarly progressive decline in the number of rapidly proliferating chondrocytes and premature differentiation characterized by an enlarged prehypertrophic zone, a widened Col2a1(+/Col10a1(+ overlapping region, but relatively reduced hypertrophic zone length. The reduced chondrocyte proliferation and premature differentiation were, in part, attributable to enhanced G2/M phase progression, where fewer FlnB deficient ATDC5 chondrocytes resided in the G2/M phase of the cell cycle. FlnB loss reduced Cdk1 phosphorylation (an inhibitor of G2/M phase progression and Cdk1 inhibition in chondrocytes mimicked the null FlnB, premature differentiation phenotype, through a β1-integrin receptor- Pi3k/Akt (a key regulator of chondrocyte differentiation mediated pathway. In this context, the early prehypertrophic differentiation provides an explanation for the premature differentiation seen in this disorder, whereas the progressive decline in proliferating chondrocytes would ultimately lead to reduced chondrocyte production and shortened bone length. These findings begin to define a role for filamin proteins in directing both cell proliferation and differentiation through indirect regulation of cell cycle associated proteins.

  2. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  3. [Extracellular matrix regulates expressions of germ cell differentiation associated genes in mouse embryonic stem cells].

    Science.gov (United States)

    Guo, Xin; Qi, Zheng-Yu; Qin, Jie; Cui, Guang-Hui; Gui, Yao-Ting; Cai, Zhi-Ming

    2009-11-01

    Interactions of cells with the extracellular matrix (ECM) are essential for cell differentiation. The authors sought to determine the roles of different ECMs in the expressions of germ cell differentiation associated genes after mouse embryonic stem cells (mESCs) differentiated into embryoid bodies (EBs). EBs derived from mESCs were maintained in suspension for 3 days and then cultured on the plates coated with various ECMs, including fibronectin (F), laminin (L), matrigel (M), collagen (C) and nonadhensive agarose (A), respectively, for 1, 2, 3 or 4 days, followed by evaluation of the expressions of the genes associated with germ cell differentiation by RT-PCR. The EBs of the F and L groups exhibited facilitated adherent differentiation. The expressions of the Blimp-1, Stella, Mvh and Stra8 genes were increased gradually in the F and L but not obviously in the M and C groups. The overall gene expressions were low in the A group, but high and then gradually decreased in the blank control group. Endogenous fibronectin, laminin and integrin beta1 were obviously expressed in the L and control groups. Laminin /integrin beta1 signaling may play a role in regulating the differentiation of mESCs into primordial germ cells (PGCs). Exogenous laminin can facilitate the differentiation of mESC-derived EBs into PGCs by acting on the integrin beta1 subunit, while exogenous fibronectin may be involved in the regulation of the differentiation through other integrin subunit. Endogenous laminin and fibronectin secreted by EBs may also facilitate cell differentiation in the absence of exogenous ECMs.

  4. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces.

    Science.gov (United States)

    Stiehler, Maik; Lind, Martin; Mygind, Tina; Baatrup, Anette; Dolatshahi-Pirouz, Alireza; Li, Haisheng; Foss, Morten; Besenbacher, Flemming; Kassem, Moustapha; Bünger, Cody

    2008-08-01

    Metallic implants are widely used in orthopedic surgery and dentistry. Durable osseous fixation of an implant requires that osteoprogenitor cells attach and adhere to the implant, proliferate, differentiate into osteoblasts, and produce mineralized matrix. In the present study, we investigated the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4 days). Osteogenic differentiation response was quantified by cell-specific alkaline phosphatase activity (ALP) assay (4 days), expression analysis of bone-related genes (4 days), and mineralization assay (21 days). Undifferentiated and osteogenically stimulated MSCs cultured on the different surfaces showed the same tendencies for proliferation and differentiation. MSCs exposed to Ti surfaces demonstrated enhanced proliferation compared with Ta and Cr surfaces. Cultivation of MSCs on Ta surfaces resulted in significantly increased mean cellular area and cell-specific ALP activity compared with the other surfaces tested. Cells cultured on Cr demonstrated reduced spreading and proliferation. In conclusion, Ta metal, as an alternative for Ti, can be considered as a promising biocompatible material, whereas further studies are needed to fully understand the role of Cr and its alloys in bone implants.

  5. Protrudin Regulates Endoplasmic Reticulum Morphology and Function Associated with the Pathogenesis of Hereditary Spastic Paraplegia*

    Science.gov (United States)

    Hashimoto, Yutaka; Shirane, Michiko; Matsuzaki, Fumiko; Saita, Shotaro; Ohnishi, Takafumi; Nakayama, Keiichi I.

    2014-01-01

    Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP. PMID:24668814

  6. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia.

    Science.gov (United States)

    Hashimoto, Yutaka; Shirane, Michiko; Matsuzaki, Fumiko; Saita, Shotaro; Ohnishi, Takafumi; Nakayama, Keiichi I

    2014-05-09

    Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP.

  7. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  8. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth

    Science.gov (United States)

    Juan Du; Shawn D. Mansfield; Andrew T. Groover

    2009-01-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX...

  9. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Madsen, Lise

    2009-01-01

    development, it is now evident that both are implicated in metabolism and cellular development. OBJECTIVE/METHODS: To review the role of pRB and p53 in adipocyte differentiation and function emphasizing that pRB and p53, via their effects on adipocyte development and function, play a role in the regulation...

  10. Down-regulation of E protein activity augments an ILC2 differentiation program in the thymus

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are important regulators in various immune responses. Current paradigm states that all newly-made ILCs originate from common lymphoid progenitors (CLP) in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Une...

  11. The Fam50a positively regulates ameloblast differentiation via interacting with Runx2.

    Science.gov (United States)

    Kim, Yuri; Hur, Sung-Woong; Jeong, Byung-Chul; Oh, Sin-Hye; Hwang, Yun-Chan; Kim, Sun-Hun; Koh, Jeong-Tae

    2017-06-02

    Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D-PAGE analysis using mouse ameloblast lineage cell line (mALCs) cultured with mineralizing medium. Of identified proteins, family with sequence similarity 50 member A (Fam50a) was significantly increased during differentiation of mALCs. Fam50a protein was also highly expressed in secretory ameloblasts of mouse tooth germs. In mALCs cultures, forced expression of Fam50a up-regulated the expression of enamel matrix protein genes such as amelogenin, ameloblastin, and enamelin. In addition, up-regulation of Fam50a also increased ALP activity and mineralized nodule formation in a dose-dependent manner. In contrast, knockdown of Fam50a decreased expression levels of enamel matrix protein genes, ALP activity, and mineralized nodule formation. By fluorescence microscopy, endogenous Fam50a protein was found to be localized to the nucleus of ameloblasts. In addition, Fam50a synergistically increased Ambn transactivation by Runx2. Moreover, Fam50a increased binding affinity of Runx2 to Ambn promoter by physically interacting with Runx2. Taken together, these results suggest Fam50a might be a new positive regulator of ameloblast differentiation. © 2017 Wiley Periodicals, Inc.

  12. Regulation of caste differentiation in the honey bee (Apis mellifera L.)

    NARCIS (Netherlands)

    Goewie, E.A.

    1978-01-01

    The nutritional environment of honey-bee larvae affects the juvenile hormone (JH) titre of larval haemolymph and tissues. In this investigation the mechanism for the regulation of caste differentiation has been studied.

    Chemo- and mechanoreceptors are found on larval mouthparts.

  13. Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts

    NARCIS (Netherlands)

    Vaes, B.L.T.; Dechering, K.J.; Someren, van P.; Hendriks, J.M.A.; Ven, van de C.J.J.M.; Feijen, A.; Mummery, C.L.; Reinders, M.J.T.; Olijve, W.; Zoelen, van E.J.J.; Steegenga, W.T.

    2005-01-01

    Wnt signaling has been implicated in regulating bone formation by controlling osteoblast proliferation and function. Although stabilization of ß-catenin by Wnt has been shown to increase alkaline phosphatase expression and osteoblast differentiation, the precise role of Wnt signaling during the

  14. Genetic and morphologic differentiation of the Lusitanian toadfish (Halobatrachus didactylus between estuarine and coastal areas in Portugal

    Directory of Open Access Journals (Sweden)

    Joana F. Marques

    2006-12-01

    Full Text Available The Lusitanian toadfish, Halobatrachus didactylus (Bloch and Schneider, 1801, is distributed from the Ghana coast to the Iberian Peninsula, being particularly abundant on the south coast of Portugal. The differentiation of this species along the Portuguese coast was assessed through the analysis of 10 samples, considering morphological characters (20 morphometric and 16 meristic and genetic markers (10 allozymes, 11 loci. Southern samples included estuaries and their adjacent coastal areas, given that this species inhabits both environments, whereas western samples only comprised estuaries. Morphometric and meristic data discriminant analysis evidenced some differentiation between estuarine and coastal populations. This was not entirely corroborated by the genetic analysis, which showed an overall pattern of low FST (0.042 and Nei’s genetic distance, even between geographically distant areas. However, higher values of these parameters were found between estuaries of the south coast and their adjacent coastal areas, suggesting that estuarine systems play a major role in such differentiation. Results are discussed regarding toadfish life-history pattern and Portuguese coast geomorphology, giving an insight into the biological and environmental factors influencing population sub-structuring.

  15. Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation.

    Science.gov (United States)

    Gao, Xiaofei; Lee, Hsiang-Ying; Li, Wenbo; Platt, Randall Jeffrey; Barrasa, M Inmaculada; Ma, Qi; Elmes, Russell R; Rosenfeld, Michael G; Lodish, Harvey F

    2017-09-19

    An effect of thyroid hormone (TH) on erythropoiesis has been known for more than a century but the molecular mechanism(s) by which TH affects red cell formation is still elusive. Here we demonstrate an essential role of TH during terminal human erythroid cell differentiation; specific depletion of TH from the culture medium completely blocked terminal erythroid differentiation and enucleation. Treatment with TRβ agonists stimulated premature erythroblast differentiation in vivo and alleviated anemic symptoms in a chronic anemia mouse model by regulating erythroid gene expression. To identify factors that cooperate with TRβ during human erythroid terminal differentiation, we conducted RNA-seq in human reticulocytes and identified nuclear receptor coactivator 4 (NCOA4) as a critical regulator of terminal differentiation. Furthermore, Ncoa4(-/-) mice are anemic in perinatal periods and fail to respond to TH by enhanced erythropoiesis. Genome-wide analysis suggests that TH promotes NCOA4 recruitment to chromatin regions that are in proximity to Pol II and are highly associated with transcripts abundant during terminal differentiation. Collectively, our results reveal the molecular mechanism by which TH functions during red blood cell formation, results that are potentially useful to treat certain anemias.

  16. Autophagy is involved in mouse kidney development and podocyte differentiation regulated by Notch signalling.

    Science.gov (United States)

    Zhang, Chuyue; Li, Wen; Wen, Junkai; Yang, Zhuo

    2017-07-01

    Podocyte dysfunction results in glomerular diseases accounted for 90% of end-stage kidney disease. The evolutionarily conserved Notch signalling makes a crucial contribution in podocyte development and function. However, the underlying mechanism of Notch pathway modulating podocyte differentiation remains less obvious. Autophagy, reported to be related with Notch signalling pathways in different animal models, is regarded as a possible participant during podocyte differentiation. Here, we found the dynamic changes of Notch1 were coincided with autophagy: they both increased during kidney development and podocyte differentiation. Intriguingly, when Notch signalling was down-regulated by DAPT, autophagy was greatly diminished, and differentiation was also impaired. Further, to better understand the relationship between Notch signalling and autophagy in podocyte differentiation, rapamycin was added to enhance autophagy levels in DAPT-treated cells, and as a result, nephrin was recovered and DAPT-induced injury was ameliorated. Therefore, we put forward that autophagy is involved in kidney development and podocyte differentiation regulated by Notch signalling. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. New trends in the study of podoplanin as a cell morphological regulator

    Directory of Open Access Journals (Sweden)

    Yoshihiko Sawa

    2010-08-01

    Full Text Available Podoplanin is a mucin-type glycoprotein firstly identified in podocytes, which is homologous to the type I alveolar cell specific T1α-2 antigen and to the oncofetal antigen M2A recognized by the D2-40 antibody. Podoplanin possesses a platelet aggregation-stimulating domain causes the platelet aggregation on cancer cells by the binding activity to CLEC-2. Podoplanin also contributes to the formation of membrane-actin structures. The increased podoplanin expression is found in squamous cell carcinomas at the invasive edge. It has been reported that the podoplanin induces an actin cytoskeleton rearrangement dependent on the RhoA GTPase activation to phosphorylate ezrin and facilitates an epithelial-mesenchymal transition (EMT which induces the single cell migration of cancer cells. However, the podoplanin-expressing cancer cells often express E-cadherin and migrate in a collective manner, suggesting that there are podoplanin-induced alternative pathways for the actin cytoskeleton rearrangement independent of the RhoA activation and EMT. The strong expression of podoplanin is present in salivary gland myoepithelial cells, and in enamel epithelia and odontoblasts of the tooth germ for a bell stage. Podoplanin may act as a cell morphological regulator in normal and cancer cells.

  18. Hydration history and attachment morphology regulate seed release in Chorizanthe rigida (Polygonaceae), a serotinous desert annual.

    Science.gov (United States)

    Martínez-Berdeja, Alejandra; Torres, Mauricio; Altshuler, Douglas L; Ezcurra, Exequiel

    2014-07-01

    • Premise of the study: Most seed dispersal studies focus on the spatial aspects of propagule dissemination, i.e., the movement of seeds away from the mother plant. However, the timing of seed release can also be a critical variable influencing the probability of seedling survival. We used a biomechanical approach to analyze seed release in Chorizanthe rigida, a serotinous desert annual, to understand the adaptive significance of seed retention in this species.• Methods: We performed pull-to-break tests on individual propagules (i.e., involucres and achene) from newly developed and older plants, under dry and wet conditions, and recorded the breaking force. We measured the involucral base area using digital images and image processing software.• Key results: There is a positive correlation between the force required to detach an involucre and the size of its base area. The force required to detach involucres from soaked and older plants was lower than that for dry and new plants. This pattern provides a mechanism for the plant to regulate the number of involucres released in different rain events.• Conclusions: Seed release in C. rigida is mediated by propagule morphology, rainfall conditions, and age of the dry plant. These factors allow this species to cope with desert environmental variability by influencing the timing and number of seeds released. © 2014 Botanical Society of America, Inc.

  19. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  20. Regulation of Pax6 by CTCF during induction of mouse ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available Pax6 plays an important role in embryonic cell (ES differentiation during embryonic development. Expression of Pax6 undergoes from a low level to high levels following ES cell differentiation to neural stem cells, and then fades away in most of the differentiated cell types. There is a limited knowledge concerning how Pax6 is regulated in ES cell differentiation. We report that Pax6 expression in mouse ES cells was controlled by CCCTC binding factor (CTCF through a promoter repression mechanism. Pax6 expression was significantly enhanced while CTCF activity was kept in the constant during ES cell differentiation to radial glial cells. Instead, the interaction of CTCF with Pax6 gene was regulated by decreased CTCF occupancy in its binding motifs upstream from Pax6 P0 promoter following the course of ES cell differentiation. Reduced occupancy of CTCF in the binding motif region upstream from the P0 promoter was due to increased DNA methylations in the CpG sites identified in the region. Furthermore, changes in DNA methylation levels in vitro and in vivo effectively altered methylation status of these identified CpG sites, which affected ability of CTCF to interact with the P0 promoter, resulting in increases in Pax6 expression. We conclude that there is an epigenetic mechanism involving regulations of Pax6 gene during ES cell differentiation to neural stem cells, which is through increases or decreases in methylation levels of Pax6 gene to effectively alter the ability of CTCF in control of Pax6 expression, respectively.

  1. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.C. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Kocovski, P.; Jovic, T.; Walia, M.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Chandraratna, R.A.S. [IO Therapeutics, Inc., Santa Ana, CA 92705 (United States); Martin, T.J.; Baker, E.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Purton, L.E., E-mail: lpurton@svi.edu.au [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia)

    2017-01-01

    Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenic cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice. - Graphical abstract: Schematic shows RAR ligand regulation of osteoblast differentiation in vitro. RARγ antagonists±RARα antagonists promote osteoblast differentiation. RARγ and RARα agonists alone or in combination block osteoblast differentiation, which correlates with upregulation of Sfrp4, and downregulation of nuclear and cytosolic β-catenin and reduced expression of the Wnt target gene Axin2. Red arrows indicate effects of RAR agonists on mediators of Wnt signalling.

  2. Look before you regulate: differential perceptual strategies underlying expressive suppression and cognitive reappraisal.

    Science.gov (United States)

    Bebko, Genna M; Franconeri, Steven L; Ochsner, Kevin N; Chiao, Joan Y

    2011-08-01

    Successful emotion regulation is important for maintaining psychological well-being. Although it is known that emotion regulation strategies, such as cognitive reappraisal and expressive suppression, may have divergent consequences for emotional responses, the cognitive processes underlying these differences remain unclear. Here we used eye-tracking to investigate the role of attentional deployment in emotion regulation success. We hypothesized that differences in the deployment of attention to emotional areas of complex visual scenes may be a contributing factor to the differential effects of these two strategies on emotional experience. Eye-movements, pupil size, and self-reported negative emotional experience were measured while healthy young adult participants viewed negative IAPS images and regulated their emotional responses using either cognitive reappraisal or expressive suppression. Consistent with prior work, reappraisers reported feeling significantly less negative than suppressers when regulating emotion as compared to a baseline condition. Across both groups, participants looked away from emotional areas during emotion regulation, an effect that was more pronounced for suppressers. Critically, irrespective of emotion regulation strategy, participants who looked toward emotional areas of a complex visual scene were more likely to experience emotion regulation success. Taken together, these results demonstrate that attentional deployment varies across emotion regulation strategies and that successful emotion regulation depends on the extent to which people look toward emotional content in complex visual scenes. 2011 APA, all rights reserved

  3. ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis.

    Science.gov (United States)

    Iriyama, Takayuki; Takeda, Kohsuke; Nakamura, Hiromi; Morimoto, Yoshifumi; Kuroiwa, Takumi; Mizukami, Junya; Umeda, Tsuyoshi; Noguchi, Takuya; Naguro, Isao; Nishitoh, Hideki; Saegusa, Kaoru; Tobiume, Kei; Homma, Toshiki; Shimada, Yutaka; Tsuda, Hitoshi; Aiko, Satoshi; Imoto, Issei; Inazawa, Johji; Chida, Kazuhiro; Kamei, Yoshimasa; Kozuma, Shiro; Taketani, Yuji; Matsuzawa, Atsushi; Ichijo, Hidenori

    2009-04-08

    Apoptosis and inflammation generally exert opposite effects on tumorigenesis: apoptosis serves as a barrier to tumour initiation, whereas inflammation promotes tumorigenesis. Although both events are induced by various common stressors, relatively little is known about the stress-induced signalling pathways regulating these events in tumorigenesis. Here, we show that stress-activated MAP3Ks, ASK1 and ASK2, which are involved in cellular responses to various stressors such as reactive oxygen species, differentially regulate the initiation and promotion of tumorigenesis. ASK2 in cooperation with ASK1 functioned as a tumour suppressor by exerting proapoptotic activity in epithelial cells, which was consistent with the reduction in ASK2 expression in human cancer cells and tissues. In contrast, ASK1-dependent cytokine production in inflammatory cells promoted tumorigenesis. Our findings suggest that ASK1 and ASK2 are critically involved in tumorigenesis by differentially regulating apoptosis and inflammation.

  4. The first case of morphological differentiation of Altai Osman Oreoleuciscus potanini (Cyprinidae, Actinopterigii) in a river.

    Science.gov (United States)

    Dgebuadze, Yu Yu; Mironovskii, A N; Mendsaikhan, B; Slyn'ko, Yu V

    2017-03-01

    The variability of osteological characters has been investigated in cyprinid fish of the genus Oreoleuciscus (Potanin Altai osman) from the river Zavkhan; this fish species is endemic for water bodies of Central Asia. Multivariate analysis of 13 quantitative parameters of the size of the cerebral and visceral skull and the pectoral girdle and the construction of ontogenetic channels allowed the detection of morphologically distinct forms in the fluvial habitats. The result obtained provides additional proof of the possibility of sympatric diversification of fish in river ecosystems. One of the two fluvial forms discovered has been shown to be identical (with regard to the osteological characters) to a previously described herbivorous form of O. potanini from the standing water bodies of the Great Lakes Hollow (Western Mongolia).

  5. Morphological and morphometric differentiation of dorsal-spined first stage larvae of lungworms (Nematoda: Protostrongylidae infecting muskoxen (Ovibos moschatus in the central Canadian Arctic

    Directory of Open Access Journals (Sweden)

    Pratap Kafle

    2015-12-01

    Full Text Available Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis are the two most common protostrongylid nematodes infecting muskoxen in the North American Arctic and Subarctic. First stage larvae (L1 of these lungworms have considerable morphological similarity that makes their differential diagnosis very difficult. Using light microscopy, we studied in detail the L1 of these two species and identified the key differences in morphological and morphometric attributes. Thirty L1 of each species from naturally infected muskox were heat-killed and then assessed for morphological and morphometric features that could be used for species-level differentiation. Key differentiating features include: length and morphology of the tail extension, curvature of the body, ventral post-anal transverse cuticular striations, and total body length. A laboratory guide for differentiation of L1 based on these species-specific characters was prepared and used by an experienced observer to identify an additional 35 L1 extracted from a different set of fecal samples from free-ranging muskoxen with mixed infections. The identities of these L1 were confirmed by sequence analysis of the ITS-2 region of the nuclear ribosomal DNA. Accuracy of morphological identification was 100 percent, reflecting the reliability of the proposed guide for differentiation. Using the guide, three minimally trained lab assistants each fixed and accurately identified 10 of 10 randomly selected L1. Ability to morphologically differentiate these facilitates the monitoring of overlapping range expansion of both parasites in the Canadian Arctic. Studies enabling species-level parasite identification are also critical for defining biodiversity, detecting mixed infections, and understanding host–parasite interactions. Morphological identification is a simple, reliable and cost-effective alternative to labor and equipment intensive molecular methods and can easily be performed in low resource

  6. Regulation of neural stem cell differentiation by transcription factors HNF4-1 and MAZ-1.

    Science.gov (United States)

    Wang, Jiao; Cheng, Hua; Li, Xiao; Lu, Wei; Wang, Kai; Wen, Tieqiao

    2013-02-01

    Neural stem cells (NSCs) are promising candidates for a variety of neurological diseases due to their ability to differentiate into neurons, astrocytes, and oligodentrocytes. During this process, Rho GTPases are heavily involved in neuritogenesis, axon formation and dendritic development, due to their effects on the cytoskeleton through downstream effectors. The activities of Rho GTPases are controlled by Rho-GDP dissociation inhibitors (Rho-GDIs). As shown in our previous study, these are also involved in the differentiation of NSCs; however, little is known about the underlying regulatory mechanism. Here, we describe how the transcription factors hepatic nuclear factor (HNF4-1) and myc-associated zinc finger protein (MAZ-1) regulate the expression of Rho-GDIγ in the stimulation of NSC differentiation. Using a transfection of cis-element double-stranded oligodeoxynucleotides (ODNs) strategy, referred to as "decoy" ODNs, we examined the effects of HNF4-1 and MAZ-1 on NSC differentiation in the NSC line C17.2. Our results show that HNF4-1 and MAZ-1 decoy ODNs significantly knock down Rho-GDIγ gene transcription, leading to NSC differentiation towards neurons. We observed that HNF4-1 and MAZ-1 decoy ODNs are able enter to the cell nucleolus and specifically bind to their target transcription factors. Furthermore, the expression of Rho-GDIγ-mediated genes was identified, suggesting that the regulatory mechanism for the differentiation of NSCs is triggered by the transcription factors MAZ-1 and HNF4-1. These findings indicate that HNF4-1 and MAZ-1 regulate the expression of Rho-GDIγ and contribute to the differentiation of NSCs. Our findings provide a new perspective within regulatory mechanism research during differentiation of NSCs, especially the clinical application of transcription factor decoys in vivo, suggesting potential therapeutic strategies for neurodegenerative disease.

  7. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  8. Extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) as a novel regulator of myogenic cell differentiation.

    Science.gov (United States)

    Attia, Mohamed; Mohamed, Attia; Huet, Eric; Eric, Huet; Delbé, Jean; Jean, Delbé; Ledoux, Dominique; Dominique, Ledoux; Menashi, Suzanne; Suzanne, Menashi; Martelly, Isabelle; Isabelle, Martelly

    2011-01-01

    Matrix metalloproteinases (MMPs) are thought to play an important role in skeletal muscle cell growth and differentiation. In view of the MMP inducing function of EMMPRIN/CD147, its role in myogenic cell differentiation was investigated. EMMPRIN level increased during differentiation of both rat primary myoblasts derived from satellite cells and mouse C2.7 myogenic cells and was associated with an alteration in its molecular forms. In parallel, expression of pro-MMP-9 gradually decreased and that of pro-MMP-2 and active MMP-2 increased. While small interfering RNA (siRNA) inhibition of EMMPRIN expression accelerated cell differentiation, exogenously added recombinant EMMPRIN inhibited differentiation by an MMP-mediated mechanism, as the MMP inhibitor marimastat abrogated EMMPRIN's effect. Our results further suggest that EMMPRIN regulates differentiation through an MMP activation of transforming growth factor beta (TGFβ), a known inhibitor of myoblast's differentiation, as the increased activation and signaling of TGFβ by EMMPRIN was attenuated in the presence of marimastat. EMMPRIN inhibition may thus represent a novel strategy in the treatment of muscular degenerative disorders.

  9. Intermittent Hypoxia Regulates Stem-like Characteristics and Differentiation of Neuroblastoma Cells

    Science.gov (United States)

    Bhaskara, Vasantha Kumar; Mohanam, Indra; Rao, Jasti S.; Mohanam, Sanjeeva

    2012-01-01

    Background Neuroblastomas are the most common extracranial solid tumors in children. Neuroblastomas are derived from immature cells of the sympathetic nervous system and are characterized by clinical and biological heterogeneity. Hypoxia has been linked to tumor progression and increased malignancy. Intermittent hypoxia or repeated episodes of hypoxia followed by re-oxygenation is a common phenomenon in solid tumors including neuroblastoma and it has a significant influence on the outcome of therapies. The present study focuses on how intermittent hypoxia modulates the stem-like properties and differentiation in neuroblastoma cells. Methods and Findings Cell survival was assessed by clonogenic assay and cell differentiation was determined by morphological characterization. Hypoxia-inducible genes were analyzed by real-time PCR and Western blotting. Immunofluorescence, real-time PCR and Western blotting were utilized to study stem cell markers. Analysis of neural crest / sympathetic nervous system (SNS) markers and neuronal differentiation markers were done by real-time PCR and Western blotting, respectively. Intermittent hypoxia stimulated the levels of HIF-1α and HIF-2 α proteins and enhanced stem-like properties of neuroblastoma cells. In intermittent hypoxia-conditioned cells, downregulation of SNS marker genes and upregulation of genes expressed in the neural crest were observed. Intermittent hypoxia suppressed the retinoic acid-induced differentiation of neuroblastoma cells. Conclusions Our results suggest that intermittent hypoxia enhances stem-like characteristics and suppresses differentiation propensities in neuroblastoma cells. PMID:22363512

  10. Sirt2 Regulates Adipocyte Differentiation Involving FoxO1 Acetylation/Deacetylation

    Science.gov (United States)

    Jing, Enxuan; Gesta, Stephane; Ronald Kahn, C.

    2007-01-01

    Summary The mammalian Sirtuin proteins contain seven family members that are homologous to yeast Sir2. Here we show that Sirt2, a cytoplasmic sirtuin, is the most abundant sirtuin in adipocytes, its expression is down regulated during preadipocyte differentiation in 3T3-L1 cells. Over-expression of Sirt2 inhibits differentiation, whereas reducing Sirt2 expression promotes adipogenesis. Both effects are accompanied by corresponding changes in the expression of PPARγ, C/EBPα and genes marking terminal adipocyte differentiation, such as Glut4, aP2, and fatty acid synthase. At the molecular level, reducing Sirt2 in 3T3-L1 adipocytes acts by promoting acetylation of FoxO1. This occurs as the result of direct interaction between Sirt2 and FoxO1, and enhances insulin-stimulated phosphorylation of FoxO1, which in turn regulates FoxO1 nuclear and cytosolic localization. Thus, Sirt2 acts as an important regulator of adipocyte differentiation through control of FoxO1 acetylation/phosphorylation and activity and may contribute to control adipose tissue mass and function. PMID:17681146

  11. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  12. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    Directory of Open Access Journals (Sweden)

    Brunner Sylvia

    2008-05-01

    Full Text Available Abstract Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations.

  13. ADP-Ribosylation Factor 1 Regulates Proliferation, Migration, and Fusion in Early Stage of Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Min Jae Kim

    2015-12-01

    Full Text Available Small G-protein adenosine diphosphate (ADP-ribosylation factors (ARFs regulate a variety of cellular functions, including actin cytoskeleton remodeling, plasma membrane reorganization, and vesicular transport. Here, we propose the functional roles of ARF1 in multiple stages of osteoclast differentiation. ARF1 was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL-induced osteoclast differentiation and transiently activated in an initial stage of their differentiation. Differentiation of ARF1-deficient osteoclast precursors into mature osteoclasts temporarily increased in pre-maturation stage of osteoclasts followed by reduced formation of mature osteoclasts, indicating that ARF1 regulates the osteoclastogenic process. ARF1 deficiency resulted in reduced osteoclast precursor proliferation and migration as well as increasing cell-cell fusion. In addition, ARF1 silencing downregulated c-Jun N-terminal kinase (JNK, Akt, osteopontin, and macrophage colony-stimulating factor (M-CSF-receptor c-Fms as well as upregulating several fusion-related genes including CD44, CD47, E-cadherin, and meltrin-α. Collectively, we showed that ARF1 stimulated proliferation and migration of osteoclast precursors while suppressing their fusion, suggesting that ARF1 may be a plausible inter-player that mediates the transition to osteoclast fusion at multiple steps during osteoclast differentiation

  14. Glycogen synthase kinase-3 (GSK-3) regulates TGF-β₁-induced differentiation of pulmonary fibroblasts.

    Science.gov (United States)

    Baarsma, Hoeke A; Engelbertink, Lilian H J M; van Hees, Lonneke J; Menzen, Mark H; Meurs, Herman; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib A M; Gosens, Reinoud

    2013-06-01

    Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF-β₁-induced myofibroblast differentiation is currently largely unknown. To determine the contribution of GSK-3 signalling in TGF-β₁-induced myofibroblast differentiation. We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively. Stimulation of MRC5 and primary human lung fibroblasts with TGF-β₁ resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF-β₁-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF-β₁-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling. We demonstrate that GSK-3 signalling regulates TGF-β₁-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases. © 2013 The Authors. British Journal of Pharmacology © 2013 The British

  15. Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1-induced differentiation of pulmonary fibroblasts

    Science.gov (United States)

    Baarsma, Hoeke A; Engelbertink, Lilian HJM; van Hees, Lonneke J; Menzen, Mark H; Meurs, Herman; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib AM; Gosens, Reinoud

    2013-01-01

    Background Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF-β1-induced myofibroblast differentiation is currently largely unknown. Purpose To determine the contribution of GSK-3 signalling in TGF-β1-induced myofibroblast differentiation. Experimental Approach We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively. Results Stimulation of MRC5 and primary human lung fibroblasts with TGF-β1 resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF-β1-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF-β1-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling. Conclusion and Implication We demonstrate that GSK-3 signalling regulates TGF-β1-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases. PMID:23297769

  16. Protein S-Nitrosylation Regulates Xylem Vessel Cell Differentiation in Arabidopsis.

    Science.gov (United States)

    Kawabe, Harunori; Ohtani, Misato; Kurata, Tetsuya; Sakamoto, Tomoaki; Demura, Taku

    2018-01-01

    Post-translational modifications of proteins have important roles in the regulation of protein activity. One such modification, S-nitrosylation, involves the covalent binding of nitric oxide (NO)-related species to a cysteine residue. Recent work showed that protein S-nitrosylation has crucial functions in plant development and environmental responses. In the present study, we investigated the importance of protein S-nitrosylation for xylem vessel cell differentiation using a forward genetics approach. We performed ethyl methanesulfonate mutagenesis of a transgenic Arabidopsis 35S::VND7-VP16-GR line in which the activity of VASCULAR-RELATED NAC-DOMAIN7 (VND7), a key transcription factor involved in xylem vessel cell differentiation, can be induced post-translationally by glucocorticoid treatment, with the goal of obtaining suppressor mutants that failed to differentiate ectopic xylem vessel cells; we named these mutants suppressor of ectopic vessel cell differentiation induced by VND7 (seiv) mutants. We found the seiv1 mutant to be a recessive mutant in which ectopic xylem cell differentiation was inhibited, especially in aboveground organs. In seiv1 mutants, a single nucleic acid substitution (G to A) leading to an amino acid substitution (E36K) was present in the gene encoding S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1), which regulates the turnover of the natural NO donor, S-nitrosoglutathione. An in vitro S-nitrosylation assay revealed that VND7 can be S-nitrosylated at Cys264 and Cys320 located near the transactivation activity-related domains, which were shown to be important for transactivation activity of VND7 by transient reporter assay. Our results suggest crucial roles for GSNOR1-regulated protein S-nitrosylation in xylem vessel cell differentiation, partly through the post-translational modification of VND7. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions

  17. Origin of inner ear hair cells: morphological and functional differentiation from ciliary cells into hair cells in zebrafish inner ear.

    Science.gov (United States)

    Tanimoto, Masashi; Ota, Yukiko; Inoue, Maya; Oda, Yoichi

    2011-03-09

    Auditory and vestibular functions in vertebrates depend on the transduction of sound vibration or head acceleration into electrical responses in inner ear hair cells. Mechanoelectrical transduction occurs at the tip of stereocilia, which are polarized to form an orientational arrangement that determines directional sensitivity. It remains to be clarified when and how premature hair cells acquire their specialized structure and function in living animals. The developmental origin of inner ear hair cells has been studied in vivo in zebrafish embryos. Tether cells, a small number of ciliated cells associated with an "ear stone" (or otolith) in the embryonic zebrafish inner ear, are believed to be precocious hair cells. However, whether or not tether cells acquire hair bundles and mechanosensitivity remains unknown. In the present study, we investigated the morphological and functional development of tether cells. Immunohistochemical examination revealed that stereocilia appeared on the tether cell apex in a polarized arrangement at 22 h postfertilization (hpf). Labeling with FM1-43, a marker of functional mechanotransduction channels, and the in vivo electrophysiological recording of mechanotransducer responses in the developing inner ear demonstrated that tether cells acquired direction-selective mechanosensitivity at 23 hpf. These results revealed that tether cells begin to function as hair cells within an hour after the appearance of a polarized array of stereociliary bundles. Thus, the ciliary cells morphologically and functionally differentiate into the first sensory hair cells in the inner ear of the zebrafish.

  18. Glioblastoma multiforme versus solitary supratentorial brain metastasis. Differentiation based on morphology and magnetic resonance signal characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Martin H.; Wuestefeld, J.; Schaefer, M.L.; Wiener, E. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Synowitz, M.; Lohkamp, L.N. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Neurochirurgie; Badakshi, H. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Strahlentherapie

    2013-03-15

    Purpose: To evaluate the diagnostic potential of a multi-factor analysis of morphometric parameters and magnetic resonance (MR) signal characteristics of a mass and peritumoral area to distinguish solitary supratentorial metastasis from glioblastoma multiforme (GBM). Materials and Methods: MR examinations of 51 patients with histologically proven GBM and 44 with a single supratentorial metastasis were evaluated. A large variety of morphologic criteria and MR signal characteristics in different sequences were analyzed. The data were subjected to logistic regression to investigate their ability to discriminate between GBM and cerebral metastasis. Receiver-operating characteristic (ROC) analysis was used to select an optimal cut-off point for prediction and to assess the predictive value in terms of sensitivity, specificity, and accuracy of the final model. Results: The logistic regression analysis revealed that the ratio of the maximum diameter of the peritumoral area measured on T2-weighted images (d T2) to the maximum diameter of the enhancing mass area (d T1, post-contrast) is the only useful criterion to distinguish single supratentorial brain metastasis from GBM with a lower ratio favoring GBM (accuracy 68 %, sensitivity 84 % and specificity 45 %). The cut-off point for the ratio d T2/d T1 post-contrast was calculated as 2.35. Conclusion: Measurement of maximum diameters of the peritumoral area in relation to the enhancing mass can be evaluated easily in the clinical routine to discriminate GBM from solitary supratentorial metastasis with an accuracy comparable to that of advanced MRI techniques. (orig.)

  19. Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality.

    Science.gov (United States)

    Zheng, Liang; Van Labeke, Marie-Christine

    2017-06-01

    The effect of light quality on leaf morphology, photosynthetic efficiency and antioxidant capacity of leaves that fully developed under a specific spectrum was investigated in Chrysanthemum cv. Four light treatments were applied at 100μmolm-2s-1 and a photoperiod of 14h using light-emitting diodes, which were 100% red (R), 100% blue (B), 75% red with 25% blue (RB) and white (W), respectively. Intraspecific variation was investigated by studying the response of eight cultivars. Overall, red light significantly decreased the leaf area while the thinnest leaves were observed for W. Chlorophyll content and Chl a/b ratio was highest for W and lowest under R. B and RB resulted in the highest maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII). A negative correlation between heat dissipation (NPQ) and ΦPSII was found. Blue light induced the highest hydrogen peroxide content, which is a proxy for total ROS generation, followed by W and RB while low contents were found under R. The antioxidative response was not always correlated with hydrogen content and differed depending on the light quality treatment. Blue light enhanced the proline levels, while carotenoids, total flavonoid and phenolic compounds were higher under W. Intraspecific variation in the responses were observed for most parameters with exception of leaf thickness; this intraspecific variation was most pronounced for total phenolic and flavonoid compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Differential Essential Oil Composition and Morphology between Perennial Satureja species Growing in Spain

    Directory of Open Access Journals (Sweden)

    David García-Rellán

    2015-06-01

    Full Text Available Chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of thirty six samples of perennial Spanish savouries (Satureja montana L., Satureja innota (Pau G. López, Satureja cuneifolia Ten. and Satureja intricata Lange, was investigated by GC and GC-MS. A total of 72 compounds accounting between 98.25-99.55% of the total oil were identified. High content of carvacrol (59.72±1.50% followed by g -terpinene (17.40±1.11% were found in S.montana essential oils. S. cuneifolia yielded an oil rich in camphor (45.04±1.67% and camphene (12.42±1.71% whereas S. innota produces an essential oil with linalool (23.94±7.58% or geraniol (8.62±3.45% according to the locality of collection and S. intricata showed chemical polymorphism with camphor (16.02±1.75%, as the main compound followed with populations with myrcene (8.46±1.46% and populations with g -terpinene (8.22±1.33%. Although the morphological affinity between S. innota, S.cuneifolia and S. intricata could lead to consider the subspecies level, the phytochemical discriminant analysis support the taxonomic classification of Flora Iberica which ranks these taxa into species.

  1. Morphological differentiation of Ixodes persulcatus and I. ricinus hybrid larvae in experiment and under natural conditions.

    Science.gov (United States)

    Bugmyrin, Sergey V; Belova, Oxana A; Ieshko, Eugeniy P; Bespyatova, Liubov A; Karganova, Galina G

    2015-03-01

    The objective of the study was detection of hybrid larvae in Ixodes persulcatus and Ixodes ricinus cohabitation sites. To this end, the following three tasks were solved: interspecies crossing of ticks, evaluation of typical morphological signs of the hybrid larvae, and analysis of collected specimens from sites of sympatry. Under experimental conditions, hybrid larvae of I. persulcatus (female) and I. ricinus (male) were obtained that differed from the parental species by the size of setae on the scutum and alloscutum. Discriminant analysis yielded 87.5% classification accuracy for the priory set groups of I. persulcatus, I. ricinus, and hybrids. Of 88 hybrid larvae, 13 (15%) were classified as I. persulcatus and 4 (5%) as I. ricinus. We measured larvae of Ixodes ticks (n=141) collected from small mammals in 1950-1970 in Karelia in cohabitation sites of these species that were previously classified as I. persulcatus or I. ricinus. According to the results of discriminant analysis, 31 larvae (22%) were classified as hybrids with probability p≥0.52; for 10 larvae (7%), the probability of placement to the hybrid group was >0.95. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. MyomiR-133 regulates brown fat differentiation through Prdm16.

    Science.gov (United States)

    Trajkovski, Mirko; Ahmed, Kashan; Esau, Christine C; Stoffel, Markus

    2012-12-01

    Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.

  3. PR-Set7 establishes a repressive trans-tail histone code that regulates differentiation.

    Science.gov (United States)

    Sims, Jennifer K; Rice, Judd C

    2008-07-01

    Posttranslational modifications of the DNA-associated histone proteins play fundamental roles in eukaryotic transcriptional regulation. We previously discovered a novel trans-tail histone code involving monomethylated histone H4 lysine 20 (H4K20) and H3 lysine 9 (H3K9); however, the mechanisms that establish this code and its function in transcription were unknown. In this report, we demonstrate that H3K9 monomethylation is dependent upon the PR-Set7 H4K20 monomethyltransferase but independent of its catalytic function, indicating that PR-Set7 recruits an H3K9 monomethyltransferase to establish the trans-tail histone code. We determined that this histone code is involved in a transcriptional regulatory pathway in vivo whereby monomethylated H4K20 binds the L3MBTL1 repressor protein to repress specific genes, including RUNX1, a critical regulator of hematopoietic differentiation. The selective loss of monomethylated H4K20 at the RUNX1 promoter resulted in the displacement of L3MBTL1 and a concomitant increase in RUNX1 transcription. Importantly, the lack of monomethylated H4K20 in the human K562 multipotent cell line was specifically associated with spontaneous megakaryocytic differentiation, in part, by activating RUNX1. Our findings demonstrate that this newly described repression pathway is required for regulating proper megakaryopoiesis and suggests that it is likely to function similarly in other multipotent cell types to regulate specific differentiation pathways.

  4. Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Luke A. Wylie

    2015-05-01

    Full Text Available Neuroblastoma (NB, although rare, accounts for 15% of all paediatric cancer mortality. Unusual among cancers, NBs lack a consistent set of gene mutations and, excluding large-scale chromosomal rearrangements, the genome seems to be largely intact. Indeed, many interesting features of NB suggest that it has little in common with adult solid tumours but instead has characteristics of a developmental disorder. NB arises overwhelmingly in infants under 2 years of age during a specific window of development and, histologically, NB bears striking similarity to undifferentiated neuroblasts of the sympathetic nervous system, its likely cells of origin. Hence, NB could be considered a disease of development arising when neuroblasts of the sympathetic nervous system fail to undergo proper differentiation, but instead are maintained precociously as progenitors with the potential for acquiring further mutations eventually resulting in tumour formation. To explore this possibility, we require a robust and flexible developmental model to investigate the differentiation of NB's presumptive cell of origin. Here, we use Xenopus frog embryos to characterise the differentiation of anteroventral noradrenergic (AVNA cells, cells derived from the neural crest. We find that these cells share many characteristics with their mammalian developmental counterparts, and also with NB cells. We find that the transcriptional regulator Ascl1 is expressed transiently in normal AVNA cell differentiation but its expression is aberrantly maintained in NB cells, where it is largely phosphorylated on multiple sites. We show that Ascl1's ability to induce differentiation of AVNA cells is inhibited by its multi-site phosphorylation at serine-proline motifs, whereas overexpression of cyclin-dependent kinases (CDKs and MYCN inhibit wild-type Ascl1-driven AVNA differentiation, but not differentiation driven by a phospho-mutant form of Ascl1. This suggests that the maintenance of ASCL1

  5. [The influence of satellite cells on meat quality and its differential regulation].

    Science.gov (United States)

    Shen, Lin-Yuan; Zhang, Shun-Hua; Wu, Ze-Hui; Zheng, Meng-Yue; Li, Xue-Wei; Zhu, Li

    2013-09-01

    Satellite cell is a kind of myogenic stem cells, which plays an important role in muscle development and injury repair. Through proliferation, differentiation and fusion of muscle fiber can satellite cells make new myonuclear, leading to the hypertrophy of skeletal muscle and fiber type transformation, and this would further affect the meat quality. Here, we review the relationship between muscle fiber development and meat quality attributes as well as the influence of the satellite cell differentiation on muscle fiber character. Besides, we also summarize the classical signaling pathway (i.e., Notch etc.) and influence of epigenetic regulation (i.e. miRNA) on muscle quality.

  6. Protein kinase D2 is an essential regulator of murine myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Alexander Kleger

    Full Text Available Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC family. The protein kinase D (PKD isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12 as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration.

  7. Carbonic anhydrase II regulates differentiation of ameloblasts via intracellular pH-dependent JNK signaling pathway.

    Science.gov (United States)

    Wang, Xiaogu; Suzawa, Tetsuo; Ohtsuka, Hirotada; Zhao, Baohong; Miyamoto, Yoichi; Miyauchi, Tomohiko; Nishimura, Riko; Inoue, Tomio; Nakamura, Masanori; Baba, Kazuyoshi; Kamijo, Ryutaro

    2010-11-01

    Differentiation of ameloblasts from undifferentiated epithelial cells is controlled by diverse growth factors, as well as interactions between epithelium and mesenchyme. However, there is a considerable lack of knowledge regarding the precise mechanisms that control ameloblast differentiation and enamel biomineralization. We found that the expression level of carbonic anhydrase II (CAII) is strongly up-regulated in parallel with differentiation of enamel epithelium tissues, while the enzyme activity of CA was also increased along with differentiation in ameloblast primary cultures. The expression level of amelogenin, a marker of secretory-stage ameloblasts, was enhanced by ethoxzolamide (EZA), a CA inhibitor, as well as CAII antisense (CAIIAS), whereas the expression of enamel matrix serine proteinase-1 (EMSP-1), a marker for maturation-stage ameloblasts, was suppressed by both. These agents also promoted ameloblast proliferation. In addition, inhibition of ameloblast differentiation by EZA and CAIIAS was confirmed using tooth germ organ cultures. Furthermore, EZA and CAIIAS elevated intracellular pH in ameloblasts, while experimental decreases in intracellular pH abolished the effect of CAIIAS on ameloblasts and triggered the activation of c-Jun N-terminal kinase (JNK). SP600125, a JNK inhibitor, abrogated the response of ameloblasts to an experimental decrease in intracellular pH, while the inhibition of JNK also impaired ameloblast differentiation. These results suggest a novel role for CAII during amelogenesis, that is, controlling the differentiation of ameloblasts. Regulation of intracellular pH, followed by activation of the JNK signaling pathway, may be responsible for the effects of CAII on ameloblasts. © 2010 Wiley-Liss, Inc.

  8. A Positive Role of microRNA-15b on Regulation of Osteoblast Differentiation

    Science.gov (United States)

    Vimalraj, S.; Partridge, Nicola C.; Selvamurugan, N.

    2014-01-01

    Osteoblast differentiation is tightly regulated by several factors including microRNAs (miRNAs). In this paper we report that pre-mir-15b is highly expressed in differentiated osteoblasts. The functional role of miR-15b in osteoblast differentiation was determined using miR-15b mimic/inhibitor and the expression of osteoblast differentiation marker genes such as alkaline phosphatase (ALP), type I collagen genes was decreased by miR-15b inhibitor. Runx2, a bone specific transcription factor is generally required for expression of osteoblast differentiation marker genes and in response to miR-15b inhibitor treatment, Runx2 mRNA expression was not changed; whereas its protein expression was decreased. Even though Smurf1 (SMAD specific E3 ubiquitin protein ligase 1), HDAC4 (histone deacetylase 4), Smad7, and Crim1 were found to be few of miR-15b’s putative target genes, there was increased expression of only Smurf1 gene at mRNA and protein levels by miR-15b inhibitor. miR-15b mimic treatment significantly increased and decreased expressions of Runx2 and Smurf1 proteins, respectively. We further identified that the Smurf1 3’UTR is directly targeted by miR-15b using the luciferase reporter gene system. This is well documented that Smurf1 interacts with Runx2 and degrades it by proteasomal pathway. Hence, based on our results we suggest that miR-15b promotes osteoblast differentiation by indirectly protecting Runx2 protein from Smurf1 mediated degradation. Thus, this study identified that miR-15b can act as a positive regulator for osteoblast differentiation. PMID:24435757

  9. Morphological Investigation into Starch Bio-Nanocomposites via Synchrotron Radiation and Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Huihua Liu

    2011-01-01

    Full Text Available We studied a hydrophilic, plasticized bionanocomposite system involving sorbitol plasticizer, amylose biopolymer, and montmorillonite (MMT for the presence of competitive interactions among them at different moisture content. Synchrotron analysis via small angle X-ray scattering (SAXS and thermal analysis using differential scanning calorimetry (DSC were performed to understand crystalline growth and the distribution of crystalline domains within the samples. The SAXS diffraction patterns showed reduced interhelix spacing in the amylose network indicating strong amylose-sorbitol interactions. Depending on the sorbitol and MMT concentration, these interactions also affected the free moisture content and crystalline domains. Domains of around 95 Å and 312 Å were found in the low-moisture-content samples as compared to a single domain of 95 Å in the high-moisture-content samples. DSC measurements confirmed that the MMT increased the onset and the melting temperature of nanocomposites. Moreover, the results showed that the ternary interactions among sorbitol-amylose-MMT supported the crystalline heterogeneity through secondary nucleation.

  10. Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation.

    Science.gov (United States)

    Kang, Heemin; Wong, Dexter Siu Hong; Yan, Xiaohui; Jung, Hee Joon; Kim, Sungkyu; Lin, Sien; Wei, Kongchang; Li, Gang; Dravid, Vinayak P; Bian, Liming

    2017-10-24

    Cellular adhesion is regulated by the dynamic ligation process of surface receptors, such as integrin, to adhesive motifs, such as Arg-Gly-Asp (RGD). Remote control of adhesive ligand presentation using external stimuli is an appealing strategy for the temporal regulation of cell-implant interactions in vivo and was recently demonstrated using photochemical reaction. However, the limited tissue penetration of light potentially hampers the widespread applications of this method in vivo. Here, we present a strategy for modulating the nanoscale oscillations of an integrin ligand simply and solely by adjusting the frequency of an oscillating magnetic field to regulate the adhesion and differentiation of stem cells. A superparamagnetic iron oxide nanoparticle (SPION) was conjugated with the RGD ligand and anchored to a glass substrate by a long flexible poly(ethylene glycol) linker to allow the oscillatory motion of the ligand to be magnetically tuned. In situ magnetic scanning transmission electron microscopy and atomic force microscopy imaging confirmed the nanoscale motion of the substrate-tethered RGD-grafted SPION. Our findings show that ligand oscillations under a low oscillation frequency (0.1 Hz) of the magnetic field promoted integrin-ligand binding and the formation and maturation of focal adhesions and therefore the substrate adhesion of stem cells, while ligands oscillating under high frequency (2 Hz) inhibited integrin ligation and stem cell adhesion, both in vitro and in vivo. Temporal switching of the multimodal ligand oscillations between low- and high-frequency modes reversibly regulated stem cell adhesion. The ligand oscillations further induced the stem cell differentiation and mechanosensing in the same frequency-dependent manner. Our study demonstrates a noninvasive, penetrative, and tunable approach to regulate cellular responses to biomaterials in vivo. Our work not only provides additional insight into the design considerations of biomaterials to

  11. Germline Stem Cell Differentiation Entails Regional Control of Cell Fate Regulator GLD-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Brenner, John L; Schedl, Tim

    2016-03-01

    Germline stem cell differentiation in Caenorhabditis elegans is controlled by glp-1 Notch signaling. Cell fate regulator GLD-1 is sufficient to induce meiotic entry and expressed at a high level during meiotic prophase, inhibiting mitotic gene activity. glp-1 signaling and other regulators control GLD-1 levels post-transcriptionally (low in stem cells, high in meiotic prophase), but many aspects of GLD-1 regulation are uncharacterized, including the link between glp-1-mediated transcriptional control and post-transcriptional GLD-1 regulation. We established a sensitive assay to quantify GLD-1 levels across an ∼35-cell diameter field, where distal germline stem cells differentiate proximally into meiotic prophase cells in the adult C. elegans hermaphrodite, and applied the approach to mutants in known or proposed GLD-1 regulators. In wild-type GLD-1 levels elevated ∼20-fold in a sigmoidal pattern. We found that two direct transcriptional targets of glp-1 signaling, lst-1 and sygl-1, were individually required for repression of GLD-1. We determined that lst-1 and sygl-1 act in the same genetic pathway as known GLD-1 translational repressor fbf-1, while lst-1 also acts in parallel to fbf-1, linking glp-1-mediated transcriptional control and post-transcriptional GLD-1 repression. Additionally, we estimated the position in wild-type gonads where germ cells irreversibly commit to meiotic development based on GLD-1 levels in worms where glp-1 activity was manipulated to cause an irreversible fate switch. Analysis of known repressors and activators, as well as modeling the sigmoidal accumulation pattern, indicated that regulation of GLD-1 levels is largely regional, which we integrated with the current view of germline stem cell differentiation. Copyright © 2016 by the Genetics Society of America.

  12. Pin1 enhances adipocyte differentiation by positively regulating the transcriptional activity of PPARγ.

    Science.gov (United States)

    Han, Younho; Lee, Sung Ho; Bahn, Minjin; Yeo, Chang-Yeol; Lee, Kwang Youl

    2016-11-15

    Pin1 is a peptidylprolyl cis/trans isomerase and it has a unique enzymatic activity of catalyzing isomerization of the peptide bond between phospho-serine/threonine and proline. Through the conformational change of its substrates, Pin1 regulates diverse biological processes including adipogenesis. In mouse embryonic fibroblasts and 3T3-L1 preadipocytes, overexpression of Pin1 enhances adipocyte differentiation whereas inhibition of Pin1 activity suppresses it. However, the precise functions of Pin1 during adipogenesis are not clear. In the present study, we investigated the potential targets of Pin1 during adipogenesis. We found that Pin1 interacts directly with and regulates the transcriptional activity of PPARγ, a key regulator of adipogenesis. In addition, ERK activity and Ser273 of PPARγ, a potential ERK phosphorylation target site, are important for the regulation of PPARγ function by Pin1 in 3T3-L1 cells. Taken together our results suggest a novel regulatory mechanism of Pin1 during adipogenesis, in which Pin1 enhances adipocyte differentiation by regulating the function of PPARγ. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Differential regulation of Streptococcus mutans gtfBCD genes in response to copper ions.

    Science.gov (United States)

    Chen, Pei-Min; Chen, Jen-Yang; Chia, Jean-San

    2006-03-01

    To persist in the oral cavity, bacteria must be able to tolerate environmental fluctuation, particularly in pH, nutrients, and essential elements. Glucosyltransferases B, C, and D of Streptococcus mutans synthesize glucans, and play essential roles in the sucrose-dependent adhesion of the organism to tooth surfaces. Transcriptions of gtfB, gtfC, and gtfD could be differentially regulated through independent promoters. To test the hypothesis that environmental factors frequently encountered in the dental plaque might serve as effector molecules involved in regulation, transcripts of individual gtfs were identified by reverse transcriptase-polymerase chain reaction assay and confirmed by Northern blot analysis using anti-sense RNA probes. When S. mutans was grown in different medium at low pH, differential regulation of the gtfs was observed. More specifically, the transcription and translational expression of gtfD but not gtfB and gtfC was specifically induced by copper ion (Cu(2+)). The up-regulation was independent of the Cu(2+)-transport operon copYAZ. These findings support the involvement of Cu(2+) as an effector molecule in the regulation of S. mutans gtfD. Nutrient change dominates influence of pH but not the effect of Cu(2+).

  14. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    DEFF Research Database (Denmark)

    Eskildsen, Tilde; Taipaleenmäki, H.; Stenvang, Jan

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators......, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3' UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central...

  15. An integrative computational systems biology approach identifies differentially regulated dynamic transcriptome signatures which drive the initiation of human T helper cell differentiation.

    Science.gov (United States)

    Aijö, Tarmo; Edelman, Sanna M; Lönnberg, Tapio; Larjo, Antti; Kallionpää, Henna; Tuomela, Soile; Engström, Emilia; Lahesmaa, Riitta; Lähdesmäki, Harri

    2012-10-30

    A proper balance between different T helper (Th) cell subsets is necessary for normal functioning of the adaptive immune system. Revealing key genes and pathways driving the differentiation to distinct Th cell lineages provides important insight into underlying molecular mechanisms and new opportunities for modulating the immune response. Previous computational methods to quantify and visualize kinetic differential expression data of three or more lineages to identify reciprocally regulated genes have relied on clustering approaches and regression methods which have time as a factor, but have lacked methods which explicitly model temporal behavior. We studied transcriptional dynamics of human umbilical cord blood T helper cells cultured in absence and presence of cytokines promoting Th1 or Th2 differentiation. To identify genes that exhibit distinct lineage commitment dynamics and are specific for initiating differentiation to different Th cell subsets, we developed a novel computational methodology (LIGAP) allowing integrative analysis and visualization of multiple lineages over whole time-course profiles. Applying LIGAP to time-course data from multiple Th cell lineages, we identified and experimentally validated several differentially regulated Th cell subset specific genes as well as reciprocally regulated genes. Combining differentially regulated transcriptional profiles with transcription factor binding site and pathway information, we identified previously known and new putative transcriptional mechanisms involved in Th cell subset differentiation. All differentially regulated genes among the lineages together with an implementation of LIGAP are provided as an open-source resource. The LIGAP method is widely applicable to quantify differential time-course dynamics of many types of datasets and generalizes to any number of conditions. It summarizes all the time-course measurements together with the associated uncertainty for visualization and manual

  16. Emerging self-regulation in toddlers born preterm or low birth weight: Differential susceptibility to parenting?

    Science.gov (United States)

    POEHLMANN, JULIE; SCHWICHTENBERG, A. J. M.; SHLAFER, REBECCA J.; HAHN, EMILY; BIANCHI, JON-PAUL; WARNER, RACHAEL

    2012-01-01

    The differential susceptibility to parenting model was examined in relation to toddler self-regulation in a prospective longitudinal study of infants born preterm or low birth weight. We followed 153 mother–infant dyads across five time points between the infant’s Neonatal Intensive Care Unit stay and 24 months postterm. Assessments of infant temperament, quality of early parenting interactions, contextual variables, and toddler effortful control and behavior problems were conducted. Results supported differential susceptibility and dual risk models in addition to documenting main effects of early parenting on children’s emerging self-regulation. Our data suggested that preterm or low birth weight infants who were prone to distress or rated by mothers as more difficult were particularly susceptible to the effects of early negative parenting. PMID:21262047

  17. Selective estrogen receptor down-regulator and selective estrogen receptor modulators differentially regulate lactotroph proliferation.

    Directory of Open Access Journals (Sweden)

    Sanjay Kansra

    2010-04-01

    Full Text Available We recently reported that estrogen receptor alpha (ERalpha, even in absence of estrogen (E2, plays a critical role in lactotroph homeostasis. The anti-estrogen ICI 182780 (ICI, but not tamoxifen or raloxifene, rapidly promoted the degradation of ERalpha, and inhibited cell proliferation. However, all three ER antagonists suppressed PRL release, suggesting that receptor occupation is sufficient to inhibit prl gene expression whereas receptor degradation is required to suppress lactotroph proliferation. In this study our objective was to determine whether ERalpha degradation versus occupation, differentially modulates the biological outcome of anti-estrogens.Using the rat lactotroph cell line, GH3 cells, we report that ICI induced proteosome mediated degradation of ERalpha. In contrast, an ERalpha specific antagonist, MPP, that does not promote degradation of ERalpha, did not inhibit cell proliferation. Further, ICI, but not MPP, abolished anchorage independent growth of GH3 cells. Yet, both ICI and MPP were equally effective in suppressing prl expression and release, as well as ERE-mediated transcriptional activity.Taken together, our results demonstrate that in lactotrophs, ERalpha degradation results in decreased cell proliferation, whereas ERalpha occupation by an antagonist that does not promote degradation of ERalpha is sufficient to inhibit prl expression.

  18. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    Science.gov (United States)

    Li, Zhiyong; Huang, Zachary Y; Sharma, Dhruv B; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  19. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari Kermani, Abbas; Qanie, Diyako; Andersen, Thomas L

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...... and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin...

  20. Rice starch granule amylolysis--differentiating effects of particle size, morphology, thermal properties and crystalline polymorph.

    Science.gov (United States)

    Dhital, Sushil; Butardo, Vito M; Jobling, Stephen A; Gidley, Michael J

    2015-01-22

    The underlying mechanism of amylolysis of rice starch granules was investigated using isolated starch granules from wild-type, as well as SBEIIb mutant and down-regulated lines. Fused granule agglomerates isolated from mutant and transgenic lines were hydrolysed at similar rates by amylases, and had similar crystalline patterns and thermal properties as individual granules. Surface pores, a feature previously only reported for A-polymorphic starch granules, were also observed in B- and C-polymorphic rice starch granules. Although the microscopic patterns of hydrolysis among granules with different crystalline polymorphs were qualitatively similar, the extent and the rate of amylolysis were different, suggesting that B-type crystalline polymorphs are intrinsically more resistant to enzymatic hydrolysis than A-type in rice starch granules. It is proposed that the slightly longer branch lengths of amylopectin which leads to the formation of more stable B-type double helical structures compared to their A-type counterparts is the major parameter, with other factors such as granule size, surface pores and interior channels having secondary roles, in determining the rate of enzymatic hydrolysis of rice starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Pannexin 3 regulates proliferation and differentiation of odontoblasts via its hemichannel activities.

    Science.gov (United States)

    Iwamoto, Tsutomu; Nakamura, Takashi; Ishikawa, Masaki; Yoshizaki, Keigo; Sugimoto, Asuna; Ida-Yonemochi, Hiroko; Ohshima, Hayato; Saito, Masahiro; Yamada, Yoshihiko; Fukumoto, Satoshi

    2017-01-01

    Highly coordinated regulation of cell proliferation and differentiation contributes to the formation of functionally shaped and sized teeth; however, the mechanism underlying the switch from cell cycle exit to cell differentiation during odontogenesis is poorly understood. Recently, we identified pannexin 3 (Panx3) as a member of the pannexin gap junction protein family from tooth germs. The expression of Panx3 was predominately localized in preodontoblasts that arise from dental papilla cells and can differentiate into dentin-secreting odontoblasts. Panx3 also co-localized with p21, a cyclin-dependent kinase inhibitor protein, in preodontoblasts. Panx3 was expressed in primary dental mesenchymal cells and in the mDP dental mesenchymal cell line. Both Panx3 and p21 were induced during the differentiation of mDP cells. Overexpression of Panx3 in mDP cells reduced cell proliferation via up-regulation of p21, but not of p27, and promoted the Bone morphogenetic protein 2 (BMP2)-induced phosphorylation of Smad1/5/8 and the expression of dentin sialophosphoprotein (Dspp), a marker of differentiated odontoblasts. Furthermore, Panx3 released intracellular ATP into the extracellular space through its hemichannel and induced the phosphorylation of AMP-activated protein kinase (AMPK). 5-Aminoimidazole-4-carboxamide-ribonucleoside (AICAR), an activator of AMPK, reduced mDP cell proliferation and induced p21 expression. Conversely, knockdown of endogenous Panx3 by siRNA inhibited AMPK phosphorylation, p21 expression, and the phosphorylation of Smad1/5/8 even in the presence of BMP2. Taken together, our results suggest that Panx3 modulates intracellular ATP levels, resulting in the inhibition of odontoblast proliferation through the AMPK/p21 signaling pathway and promotion of cell differentiation by the BMP/Smad signaling pathway.

  2. The PI3K pathway regulates endochondral bone growth through control of hypertrophic chondrocyte differentiation

    Directory of Open Access Journals (Sweden)

    Beier Frank

    2008-04-01

    Full Text Available Abstract Background The majority of our bones develop through the process of endochondral ossification that involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. A large number of growth factors and hormones have been implicated in the regulation of growth plate biology, however, less is known about the intracellular signaling pathways involved. PI3K/Akt has been identified as a major regulator of cellular proliferation, differentiation and death in multiple cell types. Results and Discussion Employing an organ culture system of embryonic mouse tibiae and LY294002, a pharmacological inhibitor of PI3K, we show that inhibition of the pathway results in significant growth reduction, demonstrating that PI3K is required for normal endochondral bone growth in vitro. PI3K inhibition reduces the length of the proliferating and particularly of the hypertrophic zone. Studies with organ cultures and primary chondrocytes in micromass culture show delayed hypertrophic differentiation of chondrocytes and increased apoptosis in the presence of LY294002. Surprisingly, PI3K inhibition had no strong effect on IGF1-induced bone growth, but partially blocked the anabolic effects of C-type natriuretic peptide. Conclusion Our data demonstrate an essential role of PI3K signaling in chondrocyte differentiation and as a consequence of this, in the endochondral bone growth process.

  3. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro.

    Science.gov (United States)

    Jiao, Yang; Zhang, Jingying; Lu, Lunjie; Xu, Jiaying; Qin, Liqiang

    2016-02-19

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.

  4. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2016-02-01

    Full Text Available The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05. Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ and glucose transporter type 4 (GLUT4 expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.

  5. Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells.

    Science.gov (United States)

    Yukita, Akira; Hosoya, Akihiro; Ito, Yuzuru; Katagiri, Takenobu; Asashima, Makoto; Nakamura, Hiroaki

    2012-05-01

    SUMO (small ubiquitin-related modifier) modification (SUMOylation) has been reported to regulate various biological events such as cell-cycle progression, proliferation, and survival. Bone morphogenetic proteins (BMPs) play an important role in osteoblast differentiation and maturation. Although Smad4, which acts as a transcriptional factor in the BMP signaling, is a target of SUMOylation, the involvement of SUMOylation in osteoblast differentiation remains unclear. In this report, we demonstrated spatial expression patterns of SUMO proteins and Ubc9 (ubiquitin conjugating enzyme 9), which is a unique E2-SUMOylation enzyme, in mouse tibia. Furthermore, siRNA knockdown of Ubc9 enhanced osteoblastic differentiation induced by BMP2 in C2C12 mouse myoblasts and ST2 mouse bone-marrow derived stromal cells. Ubc9 knockdown elevated the BMP signaling transduction and reduced the expression of muscle-related genes in cooperation with BMP2. Finally, a luciferase assay using an Id1 (target gene of BMP signaling) reporter revealed that Smad4 mutants prevented from SUMOylation at their Lys158 possessed more potent transcriptional activity than wild-type Smad4. Taken together, these findings suggest that Ubc9 negatively regulates osteoblastic differentiation induced by BMP via, at least in part, SUMOylation of Smad4. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  7. HOP/NECC1, a novel regulator of mouse trophoblast differentiation.

    Science.gov (United States)

    Asanoma, Kazuo; Kato, Hidenori; Yamaguchi, Shinichiro; Shin, Chong Hyun; Liu, Zhi-Ping; Kato, Kiyoko; Inoue, Takafumi; Miyanari, Yoko; Yoshikawa, Koji; Sonoda, Kenzo; Fukushima, Kotaro; Wake, Norio

    2007-08-17

    Homeodomain-only protein/not expressed in choriocarcinoma clone 1 (HOP/NECC1) is a newly identified gene that modifies the expression of cardiac-specific genes and thereby regulates heart development. More recently, HOP/NECC1 was reported to be a suppressor of choriocarcinogenesis. Here, we examined the temporal expression profile of HOP/NECC1 in wild-type mouse placenta. We found that E8.5-E9.5 wild-type placenta expressed HOP/NECC1 in the giant cell and spongiotrophoblast layers. HOP/NECC1 (-/-) placenta exhibited marked propagation of giant cell layers and, in turn reduction of spongiotrophoblast formation. We demonstrated SRF transcriptional activity increased in the differentiating trophoblasts and forced expression of SRF in a trophoblast stem (TS) cell line induces the differentiation into giant cells. Negative regulation of SRF (serum response factor) by the binding of HOP/NECC1 protein contributed at least in part to the generation of these placental defects. Gradual induction of HOP/NECC1 in response to differentiation stimuli may result in the decision to differentiate into a particular type of trophoblastic cell lineage and result in non-lethal defects shown by the HOP/NECC1 (-/-) placentas.

  8. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.

    Science.gov (United States)

    Lee, Xinhua; Yang, Zhongshu; Shao, Zhaohui; Rosenberg, Sheila S; Levesque, Melissa; Pepinsky, R Blake; Qiu, Mengsheng; Miller, Robert H; Chan, Jonah R; Mi, Sha

    2007-01-03

    Neurons and glia share a mutual dependence in establishing a functional relationship, and none is more evident than the process by which axons control myelination. Here, we identify LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) as a potent axonal inhibitor of oligodendrocyte differentiation and myelination that is regulated by nerve growth factor and its cognate receptor TrkA in a dose-dependent manner. Whereas LINGO-1 expressed by oligodendrocyte progenitor cells was previously identified as an inhibitor of differentiation, we demonstrate that axonal expression of LINGO-1 inhibits differentiation with equal potency. Disruption of LINGO-1 on either cell type is sufficient to overcome the inhibitory action and promote differentiation and myelination, independent of axon diameter. Furthermore, these results were recapitulated in transgenic mice overexpressing the full length LINGO-1 under the neuronal promoter synapsin. Myelination was greatly inhibited in the presence of enforced axonal LINGO-1. The implications of these results relate specifically to the development of potential therapeutics targeting extrinsic growth factors that may regulate the axonal expression of modulators of oligodendrocyte development.

  9. Nuclear matrix binding protein SMAR1 regulates T-cell differentiation and allergic airway disease.

    Science.gov (United States)

    Chemmannur, S V; Badhwar, A J; Mirlekar, B; Malonia, S K; Gupta, M; Wadhwa, N; Bopanna, R; Mabalirajan, U; Majumdar, S; Ghosh, B; Chattopadhyay, S

    2015-11-01

    Asthma is a complex airway allergic disease involving the interplay of various cell types, cytokines, and transcriptional factors. Though many factors contribute to disease etiology, the molecular control of disease phenotype and responsiveness is not well understood. Here we report an essential role of the matrix attachment region (MAR)-binding protein SMAR1 in regulating immune response during allergic airway disease. Conditional knockout of SMAR1 in T cells rendered the mice resistant to eosinophilic airway inflammation against ovalbumin (OVA) allergen with low immunoglobulin E (IgE) and interleukin-5 (IL-5) levels. Moreover, a lower IgE/IgG2a ratio and higher interferon-γ (IFN-γ) response suggested aberrant skewing of T-cell differentiation toward type 1 helper T cell (Th1) response. We show that SMAR1 functions as a negative regulator of Th1 and Th17 differentiation by interacting with two potential and similar MAR regions present on the promoters of T-bet and IL-17. Thus, we present SMAR1 as a regulator of T-cell differentiation that favors the establishment of Th2 cells by modulating Th1 and Th17 responses.

  10. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes.

    Directory of Open Access Journals (Sweden)

    Anne Kraemer

    Full Text Available MicroRNA (miRNA-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2, which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis.

  11. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong

    2013-12-01

    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  12. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    Science.gov (United States)

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  13. Epigenetic landscapes reveal transcription factors regulating CD8+ T cell differentiation

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J. Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P.; Pereira, Renata M.; Crotty, Shane; Chang, John T.; Pipkin, Matthew E.; Wang, Wei; Goldrath, Ananda W.

    2017-01-01

    Dynamic changes in the expression of transcription factors (TFs) can influence specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that TF expression and binding contributed to establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of differentiation intermediates, facilitating identification of TFs with previously unappreciated roles in CD8+ T cell differentiation. PMID:28288100

  14. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation.

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-05-01

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8+ T cell differentiation.

  15. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation

    DEFF Research Database (Denmark)

    Lafont, Anne Gaëlle; Rousseau, Karine; Tomkiewicz, Jonna

    2016-01-01

    expressed in the eel, but with differential patterns of tissue expression and regulation. ESR1 only is consistently up-regulated in vivo in female eel BPG-liver axis during induced sexual maturation, and also up-regulated in vitro by estradiol in eel hepatocyte primary cultures. This first comparative study...

  16. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC).

    Science.gov (United States)

    Ivanov, Vladimir N; Hei, Tom K

    2014-12-01

    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In

  17. Disparate chromatin landscapes and kinetics of inactivation impact differential regulation of p53 target genes.

    Science.gov (United States)

    Gomes, Nathan P; Espinosa, Joaquín M

    2010-09-01

    The p53 transcription factor regulates the expression of genes involved in cellular responses to stress, including cell cycle arrest and apoptosis. The p53 transcriptional program is extremely malleable, with target gene expression varying in a stress- and cell type-specific fashion. The molecular mechanisms underlying differential p53 target gene expression remain elusive. Here we provide evidence for gene-specific mechanisms affecting expression of three important p53 target genes. First we show that transcription of the apoptotic gene PUMA is regulated through intragenic chromatin boundaries, as revealed by distinct histone modification territories that correlate with binding of the insulator factors CTCF, Cohesins and USF1/2. Interestingly, this mode of regulation produces an evolutionary conserved long non-coding RNA of unknown function. Second, we demonstrate that the kinetics of transcriptional competence of the cell cycle arrest gene p21 and the apoptotic gene FAS are markedly different in vivo, as predicted by recent biochemical dissection of their core promoter elements in vitro. After a pulse of p53 activity in cells, assembly of the transcriptional apparatus on p21 is rapidly reversed, while FAS transcriptional activation is more sustained. Collectively these data add to a growing list of p53-autonomous mechanisms that impact differential regulation of p53 target genes.

  18. Divergent cAMP signaling differentially regulates serotonin-induced spinal motor plasticity.

    Science.gov (United States)

    Fields, D P; Mitchell, G S

    2017-02-01

    Spinal metabotropic serotonin receptors encode transient experiences into long-lasting changes in motor behavior (i.e. motor plasticity). While interactions between serotonin receptor subtypes are known to regulate plasticity, the significance of molecular divergence in downstream G protein coupled receptor signaling is not well understood. Here we tested the hypothesis that distinct cAMP dependent signaling pathways differentially regulate serotonin-induced phrenic motor facilitation (pMF); a well-studied model of spinal motor plasticity. Specifically, we studied the capacity of cAMP-dependent protein kinase A (PKA) and exchange protein activated by cAMP (EPAC) to regulate 5-HT2A receptor-induced pMF within adult male rats. Although spinal PKA, EPAC and 5-HT2A each elicit pMF when activated alone, concurrent PKA and 5-HT2A activation interact via mutual inhibition thereby blocking pMF expression. Conversely, concurrent EPAC and 5-HT2A activation enhance pMF expression reflecting additive contributions from both mechanisms. Thus, we demonstrate that distinct downstream cAMP signaling pathways enable differential regulation of 5-HT2A-induced pMF. Conditional activation of independent signaling mechanisms may explain experience amendable changes in plasticity expression (i.e. metaplasticity), an emerging concept thought to enable flexible motor control within the adult central nervous system. Published by Elsevier Ltd.

  19. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism.

    Science.gov (United States)

    Edfeldt, Kristina; Liu, Philip T; Chun, Rene; Fabri, Mario; Schenk, Mirjam; Wheelwright, Matthew; Keegan, Caroline; Krutzik, Stephan R; Adams, John S; Hewison, Martin; Modlin, Robert L

    2010-12-28

    We investigated the mechanisms by which T-cell cytokines are able to influence the Toll-like receptor (TLR)-induced, vitamin D-dependent antimicrobial pathway in human monocytes. T-cell cytokines differentially influenced TLR2/1-induced expression of the antimicrobial peptides cathelicidin and DEFB4, being up-regulated by IFN-γ, down-regulated by IL-4, and unaffected by IL-17. The Th1 cytokine IFN-γ up-regulated TLR2/1 induction of 25-hydroxyvitamin D-1α-hydroxylase (i.e., CYP27B1), leading to enhanced bioconversion of 25-hydroxyvitamin D(3) (25D(3)) to its active metabolite 1,25D(3). In contrast, the Th2 cytokine IL-4, by itself and in combination with the TLR2/1 ligand, induced catabolism of 25D(3) to the inactive metabolite 24,25D(3), and was dependent on expression of vitamin D-24-hydroxylase (i.e., CYP24A1). Therefore, the ability of T-cell cytokines to differentially control monocyte vitamin D metabolism represents a mechanism by which cell-mediated immune responses can regulate innate immune mechanisms to defend against microbial pathogens.

  20. Characterization of the Methylation Status of and Myogenic Regulator Factors in Cell Myogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Zhe Chao

    2016-07-01

    Full Text Available Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  1. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanxia [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Department of Rehabilitation, Xi' an Children' s Hospital, Xi' an 710003 (China); Liu, Xiaoguai [The 3rd Department of Infectious Diseases, Xi' an Children' s Hospital, Xi' an 710003 (China); Wang, Yaping, E-mail: yapwangyy@163.com [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  2. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation

    Directory of Open Access Journals (Sweden)

    Kauffman Stuart A

    2009-02-01

    genes, of transcription factors functionally linked to tumor progression, cell cycle, and development. Conclusion Since many of the transcription factors identified by this approach are also known to be implicated in hematopoietic differentiation and leukemia, this study points to the utility of incorporating a dynamical systems level view into a computational analysis framework for elucidating transcriptional mechanisms regulating differentiation.

  3. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification

    Directory of Open Access Journals (Sweden)

    Yu L

    2018-01-01

    Full Text Available Lei Yu,1 Na Li,1 Jisheng Zhang,2 Yan Jiang1 1Department of Otorhinolaryngology, 2Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China Introduction: Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC, remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods: The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects.Results: We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion: These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases. Keywords: IL-13, H3K4me3 modification, nasal epithelial cell, differentiation 

  4. Mast cells regulate CD4+ T cell differentiation in absence of antigen presentation.

    Science.gov (United States)

    Rodriguez Cetina Biefer, Hector; Heinbokel, Timm; Uehara, Hirofumi; Camacho, Virginia; Minami, Koichiro; Nian, Yeqi; Koduru, Suresh; El Fatimy, Rachid; Ghiran, Ionita; Trachtenberg, Alexander J; de la Fuente, Miguel A; Azuma, Haruhito; Akbari, Omid; Tullius, Stefan G; Vasudevan, Anju; Elkhal, Abdallah

    2018-02-19

    Given their unique capacity for antigen uptake, processing, and presentation, antigen presenting cells (APCs) are critical for initiating and regulating innate and adaptive immune responses. We have previously shown the role of nicotinamide adenine dinucleotide (NAD + ) in T cell differentiation independently of the cytokine milieu, while the precise mechanisms remained unknown. The objective of this study is to further dissect the mechanism of actions of NAD + , and to determine the impact of APCs on NAD + -mediated T cell activation. Isolated dendritic cells and bone marrow-derived mast cells were used to characterize the mechanisms of action of NAD + on CD4 + T cell fate in vitro. Furthermore, NAD + -mediated CD4 + T cell differentiation was investigated in vivo using WT C57BL/6, Mast cell -/- , MHC class ll -/- , WASP -/- , 5C.C7 Rag2 -/- and CD11b-DTR transgenic mice. Finally, we tested the physiological impact of NAD + on the systemic immune response in the context of Listeria monocytogenes infection. Our in vivo and in vitro findings indicate that following NAD + administration MCs, exclusively, promote CD4 + T cell differentiation, both in absence of antigen and independently of major APCs. Moreover, we found that MCs mediated CD4 + T cell differentiation independently of MHC-II and TCR signaling machinery. More importantly, although treatment with NAD + resulted in a decreased MHC-II expression on CD11c + cells, MC-mediated CD4 + T cell differentiation rendered mice resistant to the administration of lethal doses of Listeria monocytogenes. Collectively, our study unravels a novel cellular and molecular pathway that regulates innate and adaptive immunity via MCs, exclusively, and underscores the therapeutic potential of NAD + in the context of primary immunodeficiencies and antimicrobial resistance. Copyright © 2018. Published by Elsevier Inc.

  5. Chromophobe renal cell carcinoma with neuroendocrine differentiation/morphology: A clinicopathological and genetic study of three cases

    Directory of Open Access Journals (Sweden)

    Chisato Ohe, MD

    2014-09-01

    Full Text Available Chromophobe renal cell carcinoma (ChRCC with neuroendocrine differentiation/morphology (NED/NEM is exceedingly rare. We present three cases of ChRCC with NED/NEM, two of which showed positivity for neuroendocrine markers on immunohistochemical analysis. Patients ranged in age from 49 to 79 years (mean: 64.3 years. One of the three patients died of metastatic disease to multiple organs. Of the remaining two patients, one is currently alive without disease and the other is alive with disease. Histologically, all three tumors were composed of conventional ChRCC and NEM showed glandular and rosette formation. Immunohistochemically, tumor cells were positive for CK7, KAI1, E-cadherin, and c-kit in both ChRCC and neuroendocrine areas in three cases. CD56 and synaptophysin immunoreactivity were detected in two cases; in only the neuroendocrine area in one case and in both components in the other. Neuroendocrine granules were ultrastructurally observed at both neuroendocrine and conventional areas of ChRCC. Array comparative genomic hybridization (CGH study indicated losses of chromosomes 1, 2, 6, 10, 17, 21, and Y in both conventional ChRCC and NED in one case. In addition, losses of chromosomes 1, 2, 4, 6, 9, 10, 13, 16p, 17, and 21 were observed in both components of the remaining one tumor. Furthermore, loss of chromosome 5 was identified only in the neuroendocrine area in this case. We concluded that the neuroendocrine area may reflect dedifferentiation within ChRCC. It is possible that losses of chromosomes 4, 5, and 16p may be involved in the neuroendocrine differentiation or progression of ChRCC.

  6. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.

    Science.gov (United States)

    Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali

    2013-04-01

    The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.

  7. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  8. Eos negatively regulates human γ-globin gene transcription during erythroid differentiation.

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Yu

    Full Text Available BACKGROUND: Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4, a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs. DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3 of the β-globin locus control region (LCR, the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation.

  9. Label-free morphology-based prediction of multiple differentiation potentials of human mesenchymal stem cells for early evaluation of intact cells.

    Directory of Open Access Journals (Sweden)

    Hiroto Sasaki

    Full Text Available Precise quantification of cellular potential of stem cells, such as human bone marrow-derived mesenchymal stem cells (hBMSCs, is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1 the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2 predictions of potentials are generated before differentiation cultures are initiated; (3 prediction of multiple potentials can be provided simultaneously for each sample; and (4 predictions of potentials yield quantitative values that correlate strongly with the experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion, can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials (osteogenic, adipogenic, and chondrogenic and population doubling potential using morphological features apparent during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-related genes (p16 and p21 and cytoskeleton-related genes (PTK2, CD146, and CD49 already correlated to the decrease of potentials at this stage. To objectively compare the performance of morphology and gene expression for such early prediction, we tested a range of models using various combinations of features. Such comparison of predictive performances revealed that morphological features performed better overall than gene-expression profiles, balancing the predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not only identifies the best morphological feature

  10. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  11. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  12. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  13. APP regulates NGF receptor trafficking and NGF-mediated neuronal differentiation and survival.

    Directory of Open Access Journals (Sweden)

    Yun-wu Zhang

    Full Text Available β-Amyloid precursor protein (APP is a key factor in Alzheimer's disease (AD but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF, which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.

  14. Plakophilin-1, a Novel Wnt Signaling Regulator, Is Critical for Tooth Development and Ameloblast Differentiation.

    Science.gov (United States)

    Miyazaki, Kanako; Yoshizaki, Keigo; Arai, Chieko; Yamada, Aya; Saito, Kan; Ishikawa, Masaki; Xue, Han; Funada, Keita; Haruyama, Naoto; Yamada, Yoshihiko; Fukumoto, Satoshi; Takahashi, Ichiro

    2016-01-01

    Tooth morphogenesis is initiated by reciprocal interactions between the ectoderm and neural crest-derived mesenchyme, and the Wnt signaling pathway is involved in this process. We found that Plakophilin (PKP)1, which is associated with diseases such as ectodermal dysplasia/skin fragility syndrome, was highly expressed in teeth and skin, and was upregulated during tooth development. We hypothesized that PKP1 regulates Wnt signaling via its armadillo repeat domain in a manner similar to β-catenin. To determine its role in tooth development, we performed Pkp1 knockdown experiments using ex vivo organ cultures and cell cultures. Loss of Pkp1 reduced the size of tooth germs and inhibited dental epithelial cell proliferation, which was stimulated by Wnt3a. Furthermore, transfected PKP1-emerald green fluorescent protein was translocated from the plasma membrane to the nucleus upon stimulation with Wnt3a and LiCl, which required the PKP1 N terminus (amino acids 161 to 270). Localization of PKP1, which is known as an adhesion-related desmosome component, shifted to the plasma membrane during ameloblast differentiation. In addition, Pkp1 knockdown disrupted the localization of Zona occludens 1 in tight junctions and inhibited ameloblast differentiation; the two proteins were shown to directly interact by immunoprecipitation. These results implicate the participation of PKP1 in early tooth morphogenesis as an effector of canonical Wnt signaling that controls ameloblast differentiation via regulation of the cell adhesion complex.

  15. Plakophilin-1, a Novel Wnt Signaling Regulator, Is Critical for Tooth Development and Ameloblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Kanako Miyazaki

    Full Text Available Tooth morphogenesis is initiated by reciprocal interactions between the ectoderm and neural crest-derived mesenchyme, and the Wnt signaling pathway is involved in this process. We found that Plakophilin (PKP1, which is associated with diseases such as ectodermal dysplasia/skin fragility syndrome, was highly expressed in teeth and skin, and was upregulated during tooth development. We hypothesized that PKP1 regulates Wnt signaling via its armadillo repeat domain in a manner similar to β-catenin. To determine its role in tooth development, we performed Pkp1 knockdown experiments using ex vivo organ cultures and cell cultures. Loss of Pkp1 reduced the size of tooth germs and inhibited dental epithelial cell proliferation, which was stimulated by Wnt3a. Furthermore, transfected PKP1-emerald green fluorescent protein was translocated from the plasma membrane to the nucleus upon stimulation with Wnt3a and LiCl, which required the PKP1 N terminus (amino acids 161 to 270. Localization of PKP1, which is known as an adhesion-related desmosome component, shifted to the plasma membrane during ameloblast differentiation. In addition, Pkp1 knockdown disrupted the localization of Zona occludens 1 in tight junctions and inhibited ameloblast differentiation; the two proteins were shown to directly interact by immunoprecipitation. These results implicate the participation of PKP1 in early tooth morphogenesis as an effector of canonical Wnt signaling that controls ameloblast differentiation via regulation of the cell adhesion complex.

  16. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+Tissue-Resident Memory T Cells.

    Science.gov (United States)

    Bergsbaken, Tessa; Bevan, Michael J; Fink, Pamela J

    2017-04-04

    Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8 + T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103 - CD69 + Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-β and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103 - CD69 + Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2 + IL-12-producing cells reduced the size of the CD103 - Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2010-06-01

    A number of mechano-regulation theories have been proposed that relate the differentiation pathway of mesenchymal stem cells (MSCs) to their local biomechanical environment. During spontaneous repair processes in skeletal tissues, the organisation of the extracellular matrix is a key determinant of its mechanical fitness. In this paper, we extend the mechano-regulation theory proposed by Prendergast et al. (J Biomech 30(6):539-548, 1997) to include the role of the mechanical environment on the collagen architecture in regenerating soft tissues. A large strain anisotropic poroelastic material model is used in a simulation of tissue differentiation in a fracture subject to cyclic bending (Cullinane et al. in J Orthop Res 20(3):579-586, 2002). The model predicts non-union with cartilage and fibrous tissue formation in the defect. Predicted collagen fibre angles, as determined by the principal decomposition of strain- and stress-type tensors, are similar to the architecture seen in native articular cartilage and neoarthroses induced by bending of mid-femoral defects in rats. Both stress and strain-based remodelling stimuli successfully predicted the general patterns of collagen fibre organisation observed in vivo. This provides further evidence that collagen organisation during tissue differentiation is determined by the mechanical environment. It is envisioned that such predictive models can play a key role in optimising MSC-based skeletal repair therapies where recapitulation of the normal tissue architecture is critical to successful repair.

  18. A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp.

    Science.gov (United States)

    Potúcková, L; Kelemen, G H; Findlay, K C; Lonetto, M A; Buttner, M J; Kormanec, J

    1995-07-01

    A gene (sigF) encoding a new sigma factor was isolated from Streptomyces aureofaciens using a degenerate oligonucleotide probe designed from the GLI(KDNE)A motif lying within the well-conserved region 2.2 of the eubacterial sigma 70 family. Homologues were present in other Streptomyces spp., and that of the genetically well studied Streptomyces coelicolor A3(2) was also cloned. The nucleotide sequences of the two sigF genes were determined and shown to encode primary translation products of 287 (S. coelicolor) and 295 (S. aureofaciens) amino acid residues, both showing greatest similarity to sigma B of Bacillus subtilis. However, while sigma B is involved in stationary-phase gene expression and in the general stress response in B. subtilis, sigma F affects morphological differentiation in Streptomyces. Disruption of sigF did not affect vegetative growth but did cause a whi mutant phenotype. Microscopic examination showed that the sigF mutant produced spores that were smaller and deformed compared with those of the wild type, that the spore walls were thinner and sensitive to detergents and that in sigF mutant spores the chromosome failed to condense. sigma F is proposed to control the late stages of spore development in Streptomyces.

  19. New and Improved T-wave Morphology Parameters to Differentiate Healthy Individuals from those with Cardiomyopathy and Coronary Artery Disease

    Science.gov (United States)

    Greco, E. C.; Schlegel, T. T.; Arenare, B.; DePalma, J. L.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the ability of several known as well as new ECG repolarization parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following multiple parameters of T-wave morphology (TWM) were derived via signal averaging and singular value decomposition (SVD, which yields 8 eigenvalues, rho(sub 1) greater than rho(sub 2)...greater than rho(sub 8) and studied for their retrospective accuracy in detecting underlying disease: 1) Principal component analysis ratio of the T wave (T-PCA) = 100*rho(sub 2)/rho(sub 1); 2) Relative T-wave residuum (rTWR) = 100* SIGMA (rho(sub 4)(sup 2) +...+ rho(sub 8)(sup 2)); 3) Modified complexity ratio of the T wave (T-mCR) = 100*SIGMA(rho(sub 3)(sup 2) +...+rho(sb 8) (sup 2)); and 4) Normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)/rho(sub 1)(sup 2). All TWM parameters significantly differentiated CAD from controls (p less than 0.0001), and also CM from controls (p less than 0.0001). Retrospective areas under the ROC curve were 0.77, 0.81, 0.82, and 0.83 (CAD vs. controls) and 0.93, 0.89, 0.95 and 0.96 (CM vs. controls) for T-PCA, rTWR, T-mCR and nTV respectively. The newer TWM parameters (T-mCR and nTV) thus outperformed the more established parameters (T-PCA and rTWR), presumably by putting a greater emphasis on the third T-wave eigenvalue, which in most healthy subjects has little energy compared to the first two eigenvalues. Subsequent prospective analyses have also yielded similar results, such that we conclude that diagnostic differentiation of pathology from non-pathology may be especially aided by detecting

  20. An in vitro study on the involvement of LINGO-1 and Rho GTPases in Nogo-A regulated differentiation of oligodendrocyte precursor cells.

    Science.gov (United States)

    Zhao, Xiang-Hui; Jin, Wei-Lin; Ju, Gong

    2007-10-01

    Nogo-A has been considered as one of the most important myelin-associated axonal regeneration inhibitors in the central nervous system. Recent studies have demonstrated various additional physiological roles of Nogo family members. To understand the possible effect of Nogo-A on the differentiation of oligodendrocytes, antibodies against distinct extracellular domains of Nogo-A were applied in cell cultures. Oligodendrocyte precursor cells from P2 rat cortex were grown in the presence of monoclonal antibody against the N-terminal inhibitory domain of Nogo-A or the C-terminal 66 amino acid loop of Nogo-A for 3 days, and the antibody treatment resulted in stunted process extension and inhibited differentiation of oligodendrocytes. Concomitant with morphology changes, Rho GTPases activity was greatly increased upon the antibody treatment and the expression level of LINGO-1, which was recently shown to be a negative regulator for the oligodendrocyte maturation, was upregulated in the process of antibody treatment. These results indicate that endogenous Nogo-A expressed in oligodendrocyte may act though Rho GTPase and LINGO-1 to influence the morphological differentiation of oligodendrocytes and will help us to understand the physiology role of Nogo-A in oligodendrocyte biology.

  1. PPAR-γ Regulates Trophoblast Differentiation in the BeWo Cell Model

    Science.gov (United States)

    Levytska, Khrystyna; Drewlo, Sascha; Baczyk, Dora; Kingdom, John

    2014-01-01

    Common pregnancy complications, such as severe preeclampsia and intrauterine growth restriction, disrupt pregnancy progression and impair maternal and fetal wellbeing. Placentas from such pregnancies exhibit lesions principally within the syncytiotrophoblast (SCT), a layer in direct contact with maternal blood. In humans and mice, glial cell missing-1 (GCM-1) promotes differentiation of underlying cytotrophoblast cells into the outer SCT layer. GCM-1 may be regulated by the transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-γ); in mice, PPAR-γ promotes labyrinthine trophoblast differentiation via Gcm-1, and, as we previously demonstrated, PPAR-γ activation ameliorates disease features in rat model of preeclampsia. Here, we aimed to characterize the baseline activity of PPAR-γ in the human choriocarcinoma BeWo cell line that mimics SCT formation in vitro and modulate PPAR-γ activity to study its effects on cell proliferation versus differentiation. We report a novel negative autoregulatory mechanism between PPAR-γ activity and expression and show that blocking PPAR-γ activity induces cell proliferation at the expense of differentiation, while these remain unaltered following treatment with the agonist rosiglitazone. Gaining a deeper understanding of the role and activity of PPAR-γ in placental physiology will offer new avenues for the development of secondary prevention and/or treatment options for placentally-mediated pregnancy complications. PMID:24711815

  2. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2

    Directory of Open Access Journals (Sweden)

    Ioannis Grammatikakis

    2016-05-01

    Full Text Available During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2 mRNA generates a short TRF2 protein isoform (TRF2-S capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH as RBPs specifically capable of interacting with the spliced RNA segment (exon 7 of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation.

  3. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2.

    Science.gov (United States)

    Grammatikakis, Ioannis; Zhang, Peisu; Panda, Amaresh C; Kim, Jiyoung; Maudsley, Stuart; Abdelmohsen, Kotb; Yang, Xiaoling; Martindale, Jennifer L; Motiño, Omar; Hutchison, Emmette R; Mattson, Mark P; Gorospe, Myriam

    2016-05-03

    During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2) mRNA generates a short TRF2 protein isoform (TRF2-S) capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs) controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH) as RBPs specifically capable of interacting with the spliced RNA segment (exon 7) of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    Science.gov (United States)

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. PPAR-γ Regulates Trophoblast Differentiation in the BeWo Cell Model

    Directory of Open Access Journals (Sweden)

    Khrystyna Levytska

    2014-01-01

    Full Text Available Common pregnancy complications, such as severe preeclampsia and intrauterine growth restriction, disrupt pregnancy progression and impair maternal and fetal wellbeing. Placentas from such pregnancies exhibit lesions principally within the syncytiotrophoblast (SCT, a layer in direct contact with maternal blood. In humans and mice, glial cell missing-1 (GCM-1 promotes differentiation of underlying cytotrophoblast cells into the outer SCT layer. GCM-1 may be regulated by the transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-γ; in mice, PPAR-γ promotes labyrinthine trophoblast differentiation via Gcm-1, and, as we previously demonstrated, PPAR-γ activation ameliorates disease features in rat model of preeclampsia. Here, we aimed to characterize the baseline activity of PPAR-γ in the human choriocarcinoma BeWo cell line that mimics SCT formation in vitro and modulate PPAR-γ activity to study its effects on cell proliferation versus differentiation. We report a novel negative autoregulatory mechanism between PPAR-γ activity and expression and show that blocking PPAR-γ activity induces cell proliferation at the expense of differentiation, while these remain unaltered following treatment with the agonist rosiglitazone. Gaining a deeper understanding of the role and activity of PPAR-γ in placental physiology will offer new avenues for the development of secondary prevention and/or treatment options for placentally-mediated pregnancy complications.

  6. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation.

    Science.gov (United States)

    Chang, Xing

    2016-05-01

    RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation

    Science.gov (United States)

    Correia, Clara R.; Pirraco, Rogério P.; Cerqueira, Mariana T.; Marques, Alexandra P.; Reis, Rui L.; Mano, João F.

    2016-02-01

    A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the “stem cell niche”, the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

  8. Expanding the morphologic spectrum of differentiated VIN (dVIN) through detailed mapping of cases with p53 loss.

    Science.gov (United States)

    Singh, Naveena; Leen, Sarah L; Han, Guangming; Faruqi, Asma; Kokka, Fani; Rosenthal, Adam; Jiang, Xin Rong; Kim, Rachel; McAlpine, Jessica N; Gilks, C Blake

    2015-01-01

    The pathogenesis of vulvar squamous cell carcinoma follows 1 of 2 distinct pathways. A precursor lesion in the human papilloma virus-independent pathway, differentiated vulvar intraepithelial neoplasia (dVIN), was only recently characterized in detail and is infrequently diagnosed without an associated component of invasive carcinoma. Aberrant p53 immunostaining is frequently seen in dVIN, and in approximately 25% to 30% of cases it manifests as a complete loss or a p53-null pattern. The abrupt transition between p53 loss and basal p53 expression in lesional versus nonlesional epithelium allows clear demarcation between neoplastic and non-neoplastic epithelium. For this study, 14 specimens from 10 patients were identified from the pathology archives of 2 teaching hospitals on the basis of: (1) a diagnosis of dVIN, with or without invasive carcinoma; and (2) p53-null immunostaining pattern in lesional cells. Ten specimens had associated invasive carcinoma. All sections from each specimen that showed the specimen resection margin were stained for p53 and reviewed together with all hematoxylin and eosin sections. Detailed morphologic assessment of the p53-null epithelium was made and compared with the adjacent benign squamous epithelium. The status of the resection margins based on the original pathologic assessment was compared with that assessed with p53 immunohistochemistry. One specimen showed p53 loss in the invasive carcinoma but patchy basal positivity in the region originally diagnosed as dVIN, supporting interpretation as a benign hyperplastic focus, rather than dVIN. In the remaining 13 specimens the areas originally diagnosed as dVIN, as well as the associated invasive carcinoma (if present), were p53-null. In 8 of these specimens, on the basis of the presence of p53-null immunostaining and subtle morphologic abnormalities, dVIN was more extensive than originally recognized. The spectrum of morphologic changes in p53-null regions that were in continuity

  9. Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Couchman, John Robert

    2014-01-01

    While syndecan-2 is usually considered a mesenchymal transmembrane proteoglycan, it can be upregulated in some tumour cells, such as the malignant breast carcinoma cell line, MDA-MB231. Depletion of this syndecan by siRNA, but not other syndecans, has a marked effect on cell morphology, increasing...

  10. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily

    DEFF Research Database (Denmark)

    Østergaard, L; Lauvergeat, V; Naested, H

    2001-01-01

    resembling the expression pattern of late embryogenic abundant ABA-responsive genes. Differential expression of the two genes during plant development was confirmed in plants expressing transcriptional fusions between the two promoters and the Escherichia coli beta-glucuronidase reporter gene. This showed......Two tandem genes were identified on Arabidopsis chromosome II (AtCRL1 and AtCRL2) encoding proteins with homology to members of the dihydroflavonol-4-reductase (DFR) superfamily. The encoded CRL1 and CRL2 proteins share 87% mutual amino acid sequence identity whereas their promoter regions...... are highly divergent, suggesting differential regulation of the CRL genes. Phylogenetic analysis placed CRL1 and CRL2 in a separate branch of the DFR superfamily. Northern blotting showed strong AtCRL1 induction by abscisic acid (ABA), drought, and heat shock, and high expression level in seeds, thus...

  11. Can green consumerism replace environmental regulation? A differentiated-products example

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Clas [Department of Economics, Swedish University of Agricultural Sciences, P.O. Box 7013, S-750 07 Uppsala (Sweden)

    2004-09-01

    This paper assumes that consumers are willing to pay an extra premium for a good if it has a low impact on the environment. We examine if a little dose of such idealistic behavior has a large impact on the market equilibrium, and to what extent it can replace the environmental regulation. The analysis is carried out in a model with product differentiation, where consumers differ in their preferences for product quality. Consumers' willingness to pay the environmental premium may be uniformly or non-uniformly distributed. Green consumerism will only be modestly influential in both cases, despite the fact that product differentiation leads to relaxed competition and increased profits, and thereby creates leverage.

  12. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation.

    Science.gov (United States)

    Gesteira, Tarsis F; Sun, Mingxia; Coulson-Thomas, Yvette M; Yamaguchi, Yu; Yeh, Lung-Kun; Hascall, Vincent; Coulson-Thomas, Vivien J

    2017-09-01

    Limbal epithelial stem cells (LSCs), located in the basal layer of the corneal epithelium in the corneal limbus, are vital for maintaining the corneal epithelium. LSCs have a high capacity of self-renewal with increased potential for error-free proliferation and poor differentiation. To date, limited research has focused on unveiling the composition of the limbal stem cell niche, and, more important, on the role the specific stem cell niche may have in LSC differentiation and function. Our work investigates the composition of the extracellular matrix in the LSC niche and how it regulates LSC differentiation and function. Hyaluronan (HA) is naturally synthesized by hyaluronan synthases (HASs), and vertebrates have the following three types: HAS1, HAS2, and HAS3. Wild-type and HAS and TSG-6 knockout mice-HAS1-/-;HAS3-/-, HAS2Δ/ΔCorEpi, TSG-6-/--were used to determine the importance of the HA niche in LSC differentiation and specification. Our data demonstrate that the LSC niche is composed of a HA rich extracellular matrix. HAS1-/-;HAS3-/-, HAS2Δ/ΔCorEpi, and TSG-6-/- mice have delayed wound healing and increased inflammation after injury. Interestingly, upon insult the HAS knock-out mice up-regulate HA throughout the cornea through a compensatory mechanism, and in turn this alters LSC and epithelial cell specification. The LSC niche is composed of a specialized HA matrix that differs from that present in the rest of the corneal epithelium, and the disruption of this specific HA matrix within the LSC niche leads to compromised corneal epithelial regeneration. Finally, our findings suggest that HA has a major role in maintaining the LSC phenotype.

  13. F-spondin negatively regulates dental follicle differentiation through the inhibition of TGF-β activity.

    Science.gov (United States)

    Orimoto, Ai; Kurokawa, Misaki; Handa, Keisuke; Ishikawa, Masaki; Nishida, Eisaku; Aino, Makoto; Mitani, Akio; Ogawa, Miho; Tsuji, Takashi; Saito, Masahiro

    2017-07-01

    F-spondin is an extracellular matrix (ECM) protein that belongs to the thrombospondin type I repeat superfamily and is a negative regulator of bone mass. We have previously shown that f-spondin is specifically expressed in the dental follicle (DF), which gives rise to the periodontal ligament (PDL) during the tooth root formation stage. To investigate the molecular mechanism of PDL formation, we investigated the function of f-spondin in DF differentiation. The expression patterning of f-spondin in the developing tooth germ was compared with that of periodontal ligament-related genes, including runx2, type I collagen and periostin, by in situ hybridization analysis. To investigate the function of f-spondin during periodontal ligament formation, an f-spondin adenovirus was infected into the bell stage of the developing tooth germ, and the effect on dental differentiation was analyzed. F-spondin was specifically expressed in the DF of the developing tooth germ; by contrast, type I collagen, runx2 and periostin were expressed in the DF and in the alveolar bone. F-spondin-overexpresssing tooth germ exhibited a reduction in gene expression of periostin and type I collagen in the DF. By contrast, the knockdown of f-spondin in primary DF cells increased the expression of these genes. Treatment with recombinant f-spondin protein functionally inhibited periostin expression induced by transforming growth factor-β (TGF-β). Our data indicated that f-spondin inhibits the differentiation of DF cells into periodontal ligament cells by inhibiting TGF-β. These data suggested that f-spondin negatively regulates PDL differentiation which may play an important role in the immature phenotype of DF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. LINGO-1 regulates oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts.

    Science.gov (United States)

    Lee, Xinhua; Shao, Zhaohui; Sheng, Guoqing; Pepinsky, Blake; Mi, Sha

    2014-05-01

    Oligodendrocyte differentiation is negatively regulated by LINGO-1 and positively regulated by the ErbB2 receptor tyrosine kinase. In wild-type oligodendrocytes, inhibition of ErbB2 blocks differentiation, whereas activation of ErbB2 promotes differentiation. In LINGO-1(-/-) oligodendrocytes, inhibition of ErbB2 blocks oligodendrocyte differentiation; whereas activation of ErbB2 does not enhance differentiation. Biological and biochemical evidence showing that LINGO-1 can directly bind to ErbB2, block ErbB2 translocation into lipid rafts, and inhibit its phosphorylation for activation. The study demonstrates a novel regulatory mechanism of ErbB2 function whereby LINGO-1 suppresses oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Convergent differential regulation of parvalbumin in the brains of vocal learners.

    Directory of Open Access Journals (Sweden)

    Erina Hara

    Full Text Available Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds--songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV. In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65-300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling.

  16. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms.

    Directory of Open Access Journals (Sweden)

    Patrycja M Dubielecka

    2010-05-01

    Full Text Available Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown.Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably.Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.

  17. 17β-estradiol regulates the differentiation of cementoblasts via Notch signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jing; Zhou, Zeyuan; Huang, Li; Li, Yuyu [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Li, Jingtao [Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Zou, Shujuan, E-mail: drzsj@scu.edu.cn [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China)

    2016-08-12

    Estrogen has been well recognized as a key factor in the homeostasis of bone and periodontal tissue, but the way it regulates the activities of cementoblasts, the cell population maintaining cementum has not been fully understood. In this study, we examined the expression of estrogen receptor in OCCM-30 cells and the effect of 17β-estradiol (E2) on the proliferation and differentiation of OCCM-30 cells. We found that both estrogen receptor α and β were expressed in OCCM-30 cells. E2 exerted no significant influence on the proliferation of OCCM-30 cells, but inhibited the transcription and translation of BSP and Runx2 in the early phase of osteogenic induction except the BSP mRNA. Afterwards in the late phase of osteogenic induction, E2 enhanced the transcription and translation of BSP and Runx2 and promoted the calcium deposition. In addition, the expression level of Notch1, NICD and Hey1 mRNAs responded to exogenous E2 in a pattern similar to that of the osteoblastic markers. DAPT could attenuate the effect of E2 on the expression of osteoblastic markers. These findings indicated that E2 might regulate the differentiation of cementoblasts via Notch signaling. - Highlights: • 17β-estradiol showed no significant effect on the proliferation of cementoblasts. • 17β-estradiol promoted the osteoblastic differentiation of cementoblasts despite of an early transient inhibition. • Notch signaling was regulated by 17β-estradiol and was responsible for mediating the effect of E2 on cementoblasts. • Hey1 might display an opposite expression pattern to Notch signaling in certain circumstances.

  18. Cux1 and Cux2 regulate dendritic branching, spine morphology and synapses of the upper layer neurons of the cortex

    Science.gov (United States)

    Cubelos, Beatriz; Sebastián-Serrano, Alvaro; Beccari, Leonardo; Calcagnotto, Maria Elisa; Cisneros, Elsa; Kim, Seonhee; Dopazo, Ana; Alvarez-Dolado, Manuel; Redondo, Juan Miguel; Bovolenta, Paola; Walsh, Christopher A.; Nieto, Marta

    2010-01-01

    Summary Dendrite branching and spine formation determines the function of morphologically distinct and specialized neuronal subclasses. However, little is known about the programs instructing specific branching patterns in vertebrate neurons and whether such programs influence dendritic spines and synapses. Using knockout and knockdown studies combined with morphological, molecular and electrophysiological analysis we show that the homeobox Cux1 and Cux2 are intrinsic and complementary regulators of dendrite branching, spine development and synapse formation in layer II–III neurons of the cerebral cortex. Cux genes control the number and maturation of dendritic spines partly through direct regulation of the expression of Xlr3b and Xlr4b, chromatin remodeling genes previously implicated in cognitive defects. Accordingly, abnormal dendrites and synapses in Cux2−/− mice correlate with reduced synaptic function and defects in working memory. These demonstrate critical roles of Cux in dendritogenesis and highlight novel subclass-specific mechanisms of synapse regulation that contribute to the establishment of cognitive circuits. PMID:20510857

  19. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.

    Science.gov (United States)

    Park, Hyoung Joon; Yun, Jisoo; Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  20. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hyoung Joon Park

    Full Text Available This study assessed the effects of Coprinus comatus cap (CCC on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ. Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the

  1. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant

    Energy Technology Data Exchange (ETDEWEB)

    Ogas, J.; Somerville, C. [Carnegie Institution of Washington, Stanford, CA (United States); Cheng, Jin-Chen; Sung, R. [Univ. of California, Berkeley, CA (United States)

    1997-07-04

    The plant growth regulator gibberellin (GA) has a profound effect on shoot development and promotes developmental transitions such as flowering. Little is known about any analogous effect GA might have on root development. In a screen for mutants, Arabi-dopsis plants carrying a mutation designated pickle (pkl) were isolated in which the primary root meristem retained characteristics of embryonic tissue. Expression of this aberrant differentiation state was suppressed by GA. Root tissue from plants carrying the pkl mutation spontaneously regenerated new embryos and plants. 19 refs., 3 figs., 1 tab.

  2. CUDC-907 Promotes Bone Marrow Adipocytic Differentiation Through Inhibition of Histone Deacetylase and Regulation of Cell Cycle

    DEFF Research Database (Denmark)

    Ali, Dalia; Alshammari, Hassan; Vishnubalaji, Radhakrishnan

    2017-01-01

    The role of bone marrow adipocytes (BMAs) in overall energy metabolism and their effects on bone mass are currently areas of intensive investigation. BMAs differentiate from bone marrow stromal cells (BMSCs); however, the molecular mechanisms regulating BMA differentiation are not fully understoo...

  3. RSPO1/beta-Catenin Signaling Pathway Regulates Oogonia Differentiation and Entry into Meiosis in the Mouse Fetal Ovary

    NARCIS (Netherlands)

    Chassot, A.A.; Gregoire, E.P.; Lavery, R.; Taketo, M.M.; de Rooij, D.G.; Adams, I.R.; Chaboissier, M.C.

    2011-01-01

    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog

  4. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary

    NARCIS (Netherlands)

    Chassot, Anne-Amandine; Gregoire, Elodie P.; Lavery, Rowena; Taketo, Makoto M.; de Rooij, Dirk G.; Adams, Ian R.; Chaboissier, Marie-Christine

    2011-01-01

    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog

  5. Erythroid Differentiation Regulator 1 as a Novel Biomarker for Hair Loss Disorders.

    Science.gov (United States)

    Woo, Yu Ri; Hwang, Sewon; Jeong, Seo Won; Cho, Dae Ho; Park, Hyun Jeong

    2017-02-03

    Erythroid differentiation regulator 1 (Erdr1) is known to be involved in the inflammatory process via regulating the immune system in many cutaneous disorders, such as psoriasis and rosacea. However, the role of Erdr1 in various hair loss disorders remains unclear. The aim of this study was to investigate the putative role of Erdr1 in alopecias. Skin samples from 21 patients with hair loss disorders and five control subjects were retrieved, in order to assess their expression levels of Erdr1. Results revealed that expression of Erdr1 was significantly downregulated in the epidermis and hair follicles of patients with hair loss disorders, when compared to that in the control group. In particular, the expression of Erdr1 was significantly decreased in patients with alopecia areata. We propose that Erdr1 downregulation might be involved in the pathogenesis of hair loss, and could be considered as a novel biomarker for hair loss disorders.

  6. Gut–neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila

    Science.gov (United States)

    Han, Hui; Pan, Chenyu; Liu, Chunying; Lv, Xiangdong; Yang, Xiaofeng; Xiong, Yue; Lu, Yi; Wu, Wenqing; Han, Junhai; Zhou, Zhaocai; Jiang, Hai; Zhang, Lei; Zhao, Yun

    2015-01-01

    Intestinal homeostasis is maintained by intestinal stem cells (ISCs) and their progenies. A complex autonomic nervous system spreads over posterior intestine. However, whether and how neurons regulate posterior intestinal homeostasis is largely unknown. Here we report that neurons regulate Drosophila posterior intestinal homeostasis. Specifically, downregulation of neuronal Hedgehog (Hh) signaling inhibits the differentiation of ISCs toward enterocytes (ECs), whereas upregulated neuronal Hh signaling promotes such process. We demonstrate that, among multiple sources of Hh ligand, those secreted by ECs induces similar phenotypes as does neuronal Hh. In addition, intestinal JAK/STAT signaling responds to activated neuronal Hh signaling, suggesting that JAK/STAT signaling acts downstream of neuronal Hh signaling in intestine. Collectively, our results indicate that neuronal Hh signaling is essential for the determination of ISC fate. PMID:27462407

  7. Gut-neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila.

    Science.gov (United States)

    Han, Hui; Pan, Chenyu; Liu, Chunying; Lv, Xiangdong; Yang, Xiaofeng; Xiong, Yue; Lu, Yi; Wu, Wenqing; Han, Junhai; Zhou, Zhaocai; Jiang, Hai; Zhang, Lei; Zhao, Yun

    2015-01-01

    Intestinal homeostasis is maintained by intestinal stem cells (ISCs) and their progenies. A complex autonomic nervous system spreads over posterior intestine. However, whether and how neurons regulate posterior intestinal homeostasis is largely unknown. Here we report that neurons regulate Drosophila posterior intestinal homeostasis. Specifically, downregulation of neuronal Hedgehog (Hh) signaling inhibits the differentiation of ISCs toward enterocytes (ECs), whereas upregulated neuronal Hh signaling promotes such process. We demonstrate that, among multiple sources of Hh ligand, those secreted by ECs induces similar phenotypes as does neuronal Hh. In addition, intestinal JAK/STAT signaling responds to activated neuronal Hh signaling, suggesting that JAK/STAT signaling acts downstream of neuronal Hh signaling in intestine. Collectively, our results indicate that neuronal Hh signaling is essential for the determination of ISC fate.

  8. Erythroid Differentiation Regulator 1 as a Novel Biomarker for Hair Loss Disorders

    Science.gov (United States)

    Woo, Yu Ri; Hwang, Sewon; Jeong, Seo Won; Cho, Dae Ho; Park, Hyun Jeong

    2017-01-01

    Erythroid differentiation regulator 1 (Erdr1) is known to be involved in the inflammatory process via regulating the immune system in many cutaneous disorders, such as psoriasis and rosacea. However, the role of Erdr1 in various hair loss disorders remains unclear. The aim of this study was to investigate the putative role of Erdr1 in alopecias. Skin samples from 21 patients with hair loss disorders and five control subjects were retrieved, in order to assess their expression levels of Erdr1. Results revealed that expression of Erdr1 was significantly downregulated in the epidermis and hair follicles of patients with hair loss disorders, when compared to that in the control group. In particular, the expression of Erdr1 was significantly decreased in patients with alopecia areata. We propose that Erdr1 downregulation might be involved in the pathogenesis of hair loss, and could be considered as a novel biomarker for hair loss disorders. PMID:28165377

  9. Authentic and Hubristic Pride: Differential Relations to Aspects of Goal Regulation, Affect, and Self-Control.

    Science.gov (United States)

    Carver, Charles S; Johnson, Sheri L

    2010-12-01

    This study examines the relationships of trait-like tendencies towards authentic and hubristic pride (Tracy & Robins, 2004) with goal-regulation tendencies, affective tendencies, and impulsive traits. Undergraduates (n = 936) completed the 14-item measure of authentic and hubristic pride (Tracy & Robins, 2007b) and a battery of other self-report measures. The two types of pride correlated with distinct profiles of goal regulation tendencies, affective tendencies, and self-control. Authentic pride correlated with measures of self-control, whereas hubristic pride was related to measures of impulsivity and aggression. Overall, the differential pattern of correlations fits with a model in which authentic pride is tied to adaptive achievement and goal engagement, whereas hubristic pride is tied to extrinsic values of public recognition and social dominance.

  10. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  11. PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Naohiko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ogata, Takehiro; Adachi, Atsuo; Imoto-Tsubakimoto, Hiroko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ueyama, Tomomi, E-mail: toueyama-circ@umin.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Matsubara, Hiroaki [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer PARM-1 expression is induced during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 expression precedes Nkx2.5 and Tbx5 during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 activates BMP/Smad signaling. Black-Right-Pointing-Pointer PARM-1 enhances cardiac specification, resulting in promoted cardiomyogenesis. -- Abstract: PARM-1, prostatic androgen repressed message-1, is an endoplasmic reticulum (ER) molecule that is involved in ER stress-induced apoptosis in cardiomyocytes. In this study, we assessed whether PARM-1 plays a role in the differentiation of stem cells into cardiomyocytes. While PARM-1 was not expressed in undifferentiated P19CL6 embryonic carcinoma cells, PARM-1 expression was induced during cardiomyogenic differentiation. This expression followed expression of mesodermal markers, and preceded expression of cardiac transcription factors. PARM-1 overexpression did not alter the expression of undifferentiated markers and the proliferative property in undifferentiated P19CL6 cells. Expression of cardiac transcription factors during cardiomyogenesis was markedly enhanced by overexpression of PARM-1, while expression of mesodermal markers was not altered, suggesting that PARM-1 is involved in the differentiation from the mesodermal lineage to cardiomyocytes. Furthermore, overexpression of PARM-1 induced BMP2 mRNA expression in undifferentiated P19CL6 cells and enhanced both BMP2 and BMP4 mRNA expression in the early phase of cardiomyogenesis. PARM-1 overexpression also enhanced phosphorylation of Smads1/5/8. Thus, PARM-1 plays an important role in the cardiomyogenic differentiation of P19CL6 cells through regulating BMP/Smad signaling pathways, demonstrating a novel role of PARM-1 in the cardiomyogenic differentiation of stem cells.

  12. Regulation of the Balance Between Proliferation and Differentiation in Germ Line Stem Cells.

    Science.gov (United States)

    Singh, Ramya; Hansen, Dave

    In many animals, reproductive fitness is dependent upon the production of large numbers of gametes over an extended period of time. This level of gamete production is possible due to the continued presence of germ line stem cells. These cells can produce two types of daughter cells, self-renewing daughter cells that will maintain the stem cell population and differentiating daughter cells that will become gametes. A balance must be maintained between the proliferating self-renewing cells and those that differentiate for long-term gamete production to be maintained. Too little proliferation can result in depletion of the stem cell population, while too little differentiation can lead to a lack of gamete formation and possible tumor formation. In this chapter, we discuss our current understanding of how the balance between proliferation and differentiation is achieved in three well-studied germ line model systems: the Drosophila female, the mouse male, and the C. elegans hermaphrodite. While these three systems have significant differences in how this balance is regulated, including differences in stem cell population size, signaling pathways utilized, and the use of symmetric and/or asymmetric cell divisions, there are also similarities found between them. These similarities include the reliance on a predominant signaling pathway to promote proliferation, negative feedback loops to rapidly shutoff proliferation-promoting cues, close association of the germ line stem cells with a somatic niche, cytoplasmic connections between cells, projections emanating from the niche cell, and multiple mechanisms to limit the spatial influence of the niche. A comparison between different systems may help to identify elements that are essential for a proper balance between proliferation and differentiation to be achieved and elements that may be achieved through various mechanisms.

  13. Fc(epsilon)RI and FcgammaRIII/CD16 differentially regulate atopic dermatitis in mice.

    Science.gov (United States)

    Abboud, Georges; Staumont-Sallé, Delphine; Kanda, Akira; Roumier, Thomas; Deruytter, Nathalie; Lavogiez, Céline; Fleury, Sébastien; Rémy, Patrick; Papin, Jean-Paul; Capron, Monique; Dombrowicz, David

    2009-05-15

    The high-affinity IgE receptor Fc(epsilon)RI and, in some models, the low-affinity IgG receptor Fc(epsilon)RIIII/CD16 play an essential role in allergic diseases. In human skin, they are present on APCs and effector cells recruited into the inflamed dermis. FcRgamma is a subunit shared, among other FcRs, by Fc(epsilon)RI and CD16 and is essential to their assembly and signal transduction. Using an experimental model reproducing some features of human atopic dermatitis and specific FcR-deficient mice, we have herein delineated the respective contribution of Fc(epsilon)RIand Fc(epsilon)RIII/CD16 to the pathology. We demonstrate that symptoms of atopic dermatitis are completely absent in FcRgamma-deficient animals but only partially inhibited in either Fc(epsilon)RI- or FcgammaRIII/CD16-deficient animals. Absence or attenuation of the pathology is correlated to increased skin expression of regulatory IL-10 and Foxp3. While Fc(epsilon)RI controls both Th1 and Th2 skin response, mast cell recruitment into draining lymph nodes and IgE production, CD16 regulates only Th2 skin response, as well as T cell proliferation and IgG1 production. This isotype-specific regulation by the cognate FcR is associated to a differential regulation of IL-4 and IL-21 expression in the draining lymph nodes. Fc(epsilon)RIand CD16 thus contribute to atopic dermatitis but differentially regulate immune responses associated with the disease. Targeting both IgE/Fc(epsilon)RI and IgG/CD16 interactions might represent an efficient therapeutic strategy for allergic diseases.

  14. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training.

    Science.gov (United States)

    Smith, Calvin C; Mauricio, Rui; Nobre, Luis; Marsh, Barnaby; Wüst, Rob C I; Rossiter, Harry B; Ichiyama, Ronaldo M

    2015-02-01

    Perineuronal nets (PNNs) are lattice like structures which encapsulate the cell body and proximal dendrites of many neurons and are thought to be involved in regulating synaptic plasticity. It is believed that exercise can enhance the plasticity of the Central Nervous System (CNS) in healthy and dysfunctional states by shifting the balance between plasticity promoting and plasticity inhibiting factors in favor of the former. Recent work has focused on exercise effects on trophic factors but its effect on other plasticity regulators is poorly understood. In the present study we investigated how exercise regulates PNN expression in the lumbar spinal cord and areas of the brain associated with motor control and learning and memory. Adult, female Sprague-Dawley rats with free access to a running wheel for 6 weeks had significantly increased PNN expression in the spinal cord compared to sedentary rats (PNN thickness around motoneurons, exercise=15.75±0.63μm, sedentary=7.98±1.29μm, pbrain associated with learning and memory there was a significant reduction in perineuronal net expression (number of neurons with PNN in hippocampus CA1-exercise 21±0.56 and sedentary 24±0.34, pexercised=2.37±0.13μm, sedentary=4.27±0.21μm; pexercise, PNNs are differentially regulated in select regions of the CNS, with a general decreased expression in the brain and increased expression in the lumbar spinal cord. This differential expression may indicate different regulatory mechanisms associated with plasticity in the brain compared to the spinal cord. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A genetic analysis of intersex, a gene regulating sexual differentiation in Drosophila melanogaster females

    Energy Technology Data Exchange (ETDEWEB)

    Chase, B.A. [Stanford Univ., CA (United States)]|[Univ. of Nebraska, Omaha, NE (United States); Baker, B.S. [Stanford Univ., CA (United States)

    1995-04-01

    Sex-type in Drosophila melanogaster is controlled by a hierarchically acting set of regulatory genes. At the terminus of this hierarchy lie those regulatory genes responsible for implementing sexual differentiation: genes that control the activity of target loci whose products give rise to sexually dimorphic phenotypes. The genetic analysis of the intersex (ix) gene presented here demonstrates that ix is such a terminally positioned regulatory locus. The ix locus has been localized to the cytogenetic interval between 47E3-6 and 47F11-18. A comparison of the morphological and behavioral phenotypes of homozygotes and hemizygotes for three point mutations at ix indicates that the null phenotypes of homozygotes diplo-X animals into intersexes while leaving haplo-X animals unaffected. Analysis of X-ray induced, mitotic recombination clones lacking ix{sup +} function in the abdomen of diplo-X individuals indicates that the ix{sup +} product functions in a cell-autonomous manner and that it is required at least until the termination of cell division in this tissue. Taken together with previous analyses, our results indicate that the ix{sup +} product is required to function with the female-specific product of doublesex to implement appropriate female sexual differentiation in diplo-X animals. 55 refs., 4 figs., 4 tabs.

  16. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    Science.gov (United States)

    Askmyr, Maria; White, Kirby E; Jovic, Tanja; King, Hannah A; Quach, Julie M; Maluenda, Ana C; Baker, Emma K; Smeets, Monique F; Walkley, Carl R; Purton, Louise E

    2015-10-21

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf(-/-) mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf(-/-) mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf(-/-) BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner.

  17. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Directory of Open Access Journals (Sweden)

    Zizhen Yao

    2013-04-01

    The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  18. Differentiating the Effects of Familial Risk for Alcohol Dependence and Prenatal Exposure to Alcohol on Offspring Brain Morphology.

    Science.gov (United States)

    Sharma, Vinod K; Hill, Shirley Y

    2017-02-01

    Offspring with a family history of alcohol dependence (AD) have been shown to have altered structural and functional integrity of corticolimbic brain structures. Similarly, prenatal exposure to alcohol is associated with a variety of structural and functional brain changes. The goal of this study was to differentiate the brain gray matter volumetric differences associated with familial risk and prenatal exposure to alcohol among offspring while controlling for lifetime personal exposures to alcohol and drugs. A total of 52 high-risk (HR) offspring from maternal multiplex families with a high proportion of AD were studied along with 55 low-risk (LR) offspring. Voxel-based morphometric analysis was performed using statistical parametric mapping (SPM8) software using 3T structural images from these offspring to identify gray matter volume differences associated with familial risk and prenatal exposure. Significant familial risk group differences were seen with HR males showing reduced volume of the left inferior temporal, left fusiform, and left and right insula regions relative to LR males, controlling for prenatal exposure to alcohol drugs and cigarettes. HR females showed a reduction in the right fusiform but also showed a reduction in volume in portions of the cerebellum (left crus I and left lobe 8). Prenatal alcohol exposure effects, assessed within the familial HR group, was associated with reduced right middle cingulum and left middle temporal volume. Even low exposure resulting from mothers drinking in amounts less than the median of those who drank (53 drinks or less over the course of the pregnancy) showed a reduction in volume in the right anterior cingulum and in the left cerebellum (lobes 4 and 5). Familial risk for AD and prenatal exposure to alcohol and other drugs show independent effects on brain morphology. Copyright © 2017 by the Research Society on Alcoholism.

  19. Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation.

    Science.gov (United States)

    Kamal, Tania; Green, Taryn N; Morel-Kopp, Marie-Christine; Ward, Christopher M; McGregor, Ailsa L; McGlashan, Susan R; Bohlander, Stefan K; Browett, Peter J; Teague, Lochie; During, Matthew J; Skerry, Timothy M; Josefsson, Emma C; Kalev-Zylinska, Maggie L

    2015-09-01

    Human megakaryocytes release glutamate and express glutamate-gated Ca(2+)-permeable N-methyl-D-aspartate receptors (NMDARs) that support megakaryocytic maturation. While deregulated glutamate pathways impact oncogenicity in some cancers, the role of glutamate and NMDARs in megakaryocytic malignancies remains unknown. The aim of this study was to determine if NMDARs participate in Ca(2+) responses in leukemic megakaryoblasts and if so, whether modulating NMDAR activity could influence cell growth. Three human cell lines, Meg-01, Set-2 and K-562 were used as models of leukemic megakaryoblasts. NMDAR components were examined in leukemic cells and human bone marrow, including in megakaryocytic disease. Well-established NMDAR modulators (agonists and antagonists) were employed to determine NMDAR effects on Ca(2+) flux, cell viability, proliferation and differentiation. Leukemic megakaryoblasts contained combinations of NMDAR subunits that differed from normal bone marrow and the brain. NMDAR agonists facilitated Ca(2+) entry into Meg-01 cells, amplified Ca(2+) responses to adenosine diphosphate (ADP) and promoted growth of Meg-01, Set-2 and K-562 cells. Low concentrations of NMDAR inhibitors (riluzole, memantine, MK-801 and AP5; 5-100μM) were weakly cytotoxic but mainly reduced cell numbers by suppressing proliferation. The use-dependent NMDAR inhibitor, memantine (100μM), reduced numbers and proliferation of Meg-01 cells to less than 20% of controls (IC50 20μM and 36μM, respectively). In the presence of NMDAR inhibitors cells acquired morphologic and immunophenotypic features of megakaryocytic differentiation. In conclusion, NMDARs provide a novel pathway for Ca(2+) entry into leukemic megakaryoblasts that supports cell proliferation but not differentiation. NMDAR inhibitors counteract these effects, suggesting a novel opportunity to modulate growth of leukemic megakaryoblasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. RUNX3 regulates intercellular adhesion molecule 3 (ICAM-3 expression during macrophage differentiation and monocyte extravasation.

    Directory of Open Access Journals (Sweden)

    Ana Estecha

    Full Text Available The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and α(dβ(2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation.

  1. miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors

    Science.gov (United States)

    Cruz, F M; Tomé, M; Bernal, J A; Bernad, A

    2015-01-01

    B lymphoma Mo-MLV insertion region 1 (Bmi1) is a polycomb-family transcriptional factor critical for self-renewal in many adult stem cells and human neoplasia. We sought to identify microRNAs regulated by Bmi1 that could play a role in multipotent cardiac progenitor cell (CPC) decisions. We found that miR-300, a poorly characterized microRNA mapping in the Dlk1-Dio3 microRNA cluster, was positively regulated by Bmi1 in CPCs. Forced expression of miR-300 in CPCs promoted an improved stemness signature with a significant increase in Oct4 levels, a reduction in senescence progression and an enhanced proliferative status via p19 activation and inhibition of p16 accumulation. Endothelial and cardiogenic differentiation were clearly compromised by sustained miR-300 expression. Additionally, RNA and protein analysis revealed a significant reduction in key cardiac transcription factors, including Nkx2.5 and Tbx5. Collectively, these results suggest that some functions attributed to Bmi1 are due to induction of miR-300, which decreases the cardiogenic differentiation potential of multipotent CPCs in vitro and promotes self-renewal. PMID:26512961

  2. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS.

    Directory of Open Access Journals (Sweden)

    Rosa C Baños

    2009-06-01

    Full Text Available Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

  3. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway.

    Science.gov (United States)

    Sato, Kojiro; Suematsu, Ayako; Nakashima, Tomoki; Takemoto-Kimura, Sayaka; Aoki, Kazuhiro; Morishita, Yasuyuki; Asahara, Hiroshi; Ohya, Keiichi; Yamaguchi, Akira; Takai, Toshiyuki; Kodama, Tatsuhiko; Chatila, Talal A; Bito, Haruhiko; Takayanagi, Hiroshi

    2006-12-01

    Calcium (Ca(2+)) signaling is essential for a variety of cellular responses and higher biological functions. Ca(2+)/calmodulin-dependent kinases (CaMKs) and the phosphatase calcineurin activate distinct downstream pathways that are mediated by the transcription factors cAMP response element (CRE)-binding protein (CREB) and nuclear factor of activated T cells (NFAT), respectively. The importance of the calcineurin-NFAT pathway in bone metabolism has been demonstrated in osteoclasts, osteoblasts and chondrocytes. However, the contribution of the CaMK-CREB pathway is poorly understood, partly because of the difficulty of dissecting the functions of homologous family members. Here we show that the CaMKIV-CREB pathway is crucial for osteoclast differentiation and function. Pharmacological inhibition of CaMKs as well as the genetic ablation of Camk4 reduced CREB phosphorylation and downregulated the expression of c-Fos, which is required for the induction of NFATc1 (the master transcription factor for osteoclastogenesis) that is activated by receptor activator of NF-kappaB ligand (RANKL). Furthermore, CREB together with NFATc1 induced the expression of specific genes expressed by differentiated osteoclasts. Thus, the CaMK-CREB pathway biphasically functions to regulate the transcriptional program of osteoclastic bone resorption, by not only enhancing induction of NFATc1 but also facilitating NFATc1-dependent gene regulation once its expression is induced. This provides a molecular basis for a new therapeutic strategy for bone diseases.

  4. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    Science.gov (United States)

    Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

  5. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Massimiliano, E-mail: caiazzo@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Istituto di diagnosi e cura ' Hermitage Capodimonte,' 80131 Naples (Italy); Colucci-D' Amato, Luca, E-mail: luca.colucci@unina2.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Dipartimento di Scienze della Vita, Seconda Universita di Napoli, 81100 Caserta (Italy); Esposito, Maria T., E-mail: maria_teresa.esposito@kcl.ac.uk [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Parisi, Silvia, E-mail: parisi@ceinge.unina.it [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Stifani, Stefano, E-mail: stefano.stifani@mcgill.ca [Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Ramirez, Francesco, E-mail: francesco.ramirez@mssm.edu [Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 (United States); Porzio, Umberto di, E-mail: diporzio@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy)

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  6. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation.

    Science.gov (United States)

    Solovei, Irina; Wang, Audrey S; Thanisch, Katharina; Schmidt, Christine S; Krebs, Stefan; Zwerger, Monika; Cohen, Tatiana V; Devys, Didier; Foisner, Roland; Peichl, Leo; Herrmann, Harald; Blum, Helmut; Engelkamp, Dieter; Stewart, Colin L; Leonhardt, Heinrich; Joffe, Boris

    2013-01-31

    Eukaryotic cells have a layer of heterochromatin at the nuclear periphery. To investigate mechanisms regulating chromatin distribution, we analyzed heterochromatin organization in different tissues and species, including mice with mutations in the lamin B receptor (Lbr) and lamin A (Lmna) genes that encode nuclear envelope (NE) proteins. We identified LBR- and lamin-A/C-dependent mechanisms tethering heterochromatin to the NE. The two tethers are sequentially used during cellular differentiation and development: first the LBR- and then the lamin-A/C-dependent tether. The absence of both LBR and lamin A/C leads to loss of peripheral heterochromatin and an inverted architecture with heterochromatin localizing to the nuclear interior. Myoblast transcriptome analyses indicated that selective disruption of the LBR- or lamin-A-dependent heterochromatin tethers have opposite effects on muscle gene expression, either increasing or decreasing, respectively. These results show how changes in NE composition contribute to regulating heterochromatin positioning, gene expression, and cellular differentiation during development. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Allometry and size control: what can studies of body size regulation teach us about the evolution of morphological scaling relationships?

    Science.gov (United States)

    Mirth, Christen K; Anthony Frankino, W; Shingleton, Alexander W

    2016-02-01

    The relationship between organ and body size, known as morphological allometry, has fascinated biologists for over a century because changes in allometry generate the vast diversity of organism shapes. Nevertheless, progress has been limited in understanding the genetic mechanisms that regulate allometries and how these mechanisms evolve. This is perhaps because allometry is measured at the population level, however adult organ and body size depends on genetic background and the developmental environment of individuals. Recent findings have enhanced our understanding of how insects regulate their organ and body sizes in response to environmental conditions, particularly nutritional availability. We argue that merging these developmental insights with a population genetics approach will provide a powerful system for understanding the evolution of allometry. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure.

    Science.gov (United States)

    Pan, Houhua; Xie, Youtao; Zhang, Zequan; Li, Kai; Hu, Dandan; Zheng, Xuebin; Fan, Qiming; Tang, Tingting

    2017-04-01

    Hierarchical structure mimicking the natural bone microenvironment has been considered as a promising platform to regulate cell functions. We have previously fabricated hierarchical macropore/nanowire structure and evidence has shown that it can better manipulate the cytoskeleton status and osteogenic performance of osteoblasts. However, how cues of hierarchical structure are translated and ultimately linked to BMSC lineage commitment have still remained elusive, which hinders the accurate knowledge and further development of the hierarchical structure. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) fate on hierarchical structure was investigated as well as the detailed mechanisms. It was shown that well-developed cytoskeleton and focal adhesion were observed for BMSCs on hierarchical structure, which was accompanied by enhanced osteogenic and depressed adipogenic potential. Evidence of increased YAP activity and nuclear translocation were exhibited on hierarchical structure and YAP knockdown inhibited osteogenic differentiation and promoted adipogenic differentiation induced by hierarchical structure. Further remove of cytoskeleton tension inhibited YAP function, which confirmed the key role of YAP-mediated mechanotransduction in the BMSC differentiation. These results together provide information of the stem cell fate commitment on hierarchical structure and a promising approach to design advanced biomaterials by focusing on specific mechanotransduction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth

    Science.gov (United States)

    Lin, Minkui; Li, Lu; Liu, Chao; Liu, Hongbing; He, Fenglei; Yan, Fuhua; Zhang, Yanding; Chen, YiPing

    2011-01-01

    Wnt/β-catenin signaling is essential for tooth development beyond the bud stage, but little is known about the role of non-canonical Wnt signaling in odontogenesis. Here we compared the expression of Wnt5a, a representative of noncanonical Wnts, with that of Ror2, the Wnt5a receptor for non-canonical signaling, in the developing tooth, and analyzed tooth phenotype in Wnt5a mutants. Wnt5a deficient mice exhibit retarded tooth development beginning from E16.5, leading to the formation of smaller and abnormally patterned teeth with a delayed odontoblast differentiation at birth. These defects are associated with upregulated Axin2 and Shh expression in the dental epithelium and reduced levels of cell proliferation in the dental epithelium and mesenchyme. Retarded tooth development and defective odontoblast differentiation were also observed in Ror2 mutant mice. Our results suggest that Wnt5a regulates growth, patterning, and odontoblast differentiation during odontogenesis, at least partially by modulating Wnt/β-catenin canonical signaling. PMID:21246660

  10. C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation.

    Science.gov (United States)

    Clark, Scott G; Chiu, Catherine

    2003-08-01

    Neurons acquire distinct cell identities and implement differential gene programs to generate their appropriate neuronal attributes. On the basis of position, axonal structure and synaptic connectivity, the 302 neurons of the nematode Ceanorhabditis elegans are divided into 118 classes. The development and differentiation of many neurons require the gene zag-1, which encodes a deltaEF1/ZFH-1 Zn-finger-homeodomain protein. zag-1 mutations cause misexpression of neuron-specific genes, block formation of stereotypic axon branches, perturb neuronal migrations, and induce various axon-guidance, fasciculation and branching errors. A zag-1-GFP translational reporter is expressed transiently in most or all neurons during embryogenesis and in select neurons during the first larval stage. Analysis of the zag-1 promoter reveals that zag-1 is expressed in neurons and specific muscles, and that ZAG-1 directly represses its own expression. zag-1 activity also downregulates expression of genes involved in either the synthesis or reuptake of serotonin, dopamine and GABA. We propose that ZAG-1 acts as a transcriptional repressor to regulate multiple, discrete, neuron-specific aspects of terminal differentiation, including cell migration, axonal development and gene expression.

  11. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  12. In situ regulating of surface morphologies, anti-corrosion and tribological properties of epoxy resin coatings by heat treatment

    Science.gov (United States)

    Liu, Dan; Zhao, Wenjie; Liu, Shuan; Cen, Qihong; Xue, Qunji

    2017-06-01

    A simple and in situ formation method through controlling curing temperature was used to regulate the surface morphology of epoxy resin (EP) coating. Multi-functional tribology test equipment and an electrochemistry workstation were used to evaluate the tribological and anti-corrosion properties of the EP coating cured with diethylenetriamine at room temperature, 80 °C, 100 °C and 120 °C, respectively. The results indicated that the diameter and depth of pores or pits existing on the surface of EP coatings decreased significantly with the increase of curing temperature. The EP coating cured at 120 °C exhibited the best tribological performance, the friction coefficient and wear trace area were 0.56 and 0.003 02 mm2 under dry conditions, 0.18 and 1.873  ×  10-5 mm2 under seawater conditions, respectively. The excellent tribological performance could be attributed to the surface morphologies and high hardness of EP coatings. The EP coating cured at 80 °C exhibited the best anti-corrosion performance that the impedance modulus at 0.01 Hz was close to 5.0 KΩ cm2 even after being immersed in 3.5 wt% NaCl solution for 24 h, which was closely related to its hydrophobic behavior and surface morphology.

  13. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Antonio Maniga

    Full Text Available In plants and protists, dihydrofolate reductase (DHFR and thymidylate synthase (TS are part of a bifunctional enzyme (DRTS that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular

  14. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana.

    Science.gov (United States)

    Maniga, Antonio; Ghisaura, Stefania; Perrotta, Lara; Marche, Maria Giovanna; Cella, Rino; Albani, Diego

    2017-01-01

    In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities.

  15. Leptin is differentially expressed and epigenetically regulated across monochorionic twin placenta with discordant fetal growth.

    Science.gov (United States)

    Schrey, S; Kingdom, J; Baczyk, D; Fitzgerald, B; Keating, S; Ryan, G; Drewlo, S

    2013-11-01

    Severely growth-discordant monochorionic (MC) twins offer a unique opportunity to study fetal and placental growth based on a similar genetic background and maternal host environment where the healthy twin serves as an ideal control. Differences in development of MC twins may therefore be due to differential epigenetic regulation of genes involved in placental development and function. Growth-discordant twins are known for abnormal angio-architecture in the placenta of the smaller twin. Since the reasons for this phenotype are mostly unknown this study was aimed to investigate the expression and regulation of genes known to be involved in angiogenesis. We studied 10 severely growth-discordant MC twin placentas (birthweight difference ≥20%) without twin-twin-transfusion syndrome and 5 growth-concordant MC twin placentas. Growth-discordant twin placentas were phenotyped by histology. Placental mRNA expression of 88 angiogenesis-related genes was measured by PCR array. ELISA assay and immunohistochemistry were used to confirm PCR results. EpiTYPTER for DNA methylation was used to determine if methylation ratios were responsible for differential gene expression. The PCR array analysis showed significant mRNA up-regulation in the placental share of the smaller twin for several genes. These included leptin (24.6-fold, P = 0.017), fms-like tyrosine kinase 1 (Flt1, 2.4-fold, P = 0.016) and Endoglin (Eng, 1.86-fold, P = 0.078). None of the other 84 angiogenesis-related genes showed significant differences. ELISA confirmed significantly increased leptin protein expression (49.22 versus 11.03 pg/ml, P = 0.049) in the smaller twin of the discordant growth cohort. Leptin expression in smaller twins' placentas was associated with elevated DNA methylation of the leptin promotor region suggesting the inhibition of binding of a transcriptional activator/inhibitor in that region. We attempted to overcome the limitation of sample size by careful patient selection. We minimized any

  16. MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhenyu Xu

    Full Text Available As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1, has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs in previous studies. However, the role of CARM1 in human embryonic stem cells (hESCs and the regulatory mechanism that controls CARM1 expression during ESCs differentiation are presently unknown. Here, we demonstrate that CARM1 plays an active role in the resistance to differentiation in hESCs by regulating pluripotency genes in response to BMP4. In a functional screen, we identified the miR-181 family as a regulator of CARM1 that is induced during ESC differentiation and show that endogenous miR-181c represses the expression of CARM1. Depletion of CARM1 or enforced expression of miR-181c inhibits the expression of pluripotency genes and induces differentiation independent of BMP4, whereas overexpression of CARM1 or miR-181c inhibitor elevates Nanog and impedes differentiation. Furthermore, expression of CARM1 rescue constructs inhibits the effect of miR-181c overexpression in promoting differentiation. Taken together, our findings demonstrate the importance of a miR-181c-CARM1 pathway in regulating the differentiation of hESCs.

  17. CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation.

    Science.gov (United States)

    Li, Xuan; Wu, Xiao-Qi; Deng, Rong; Li, Dan-Dan; Tang, Jun; Chen, Wen-Dan; Chen, Jing-Hong; Ji, Jiao; Jiao, Lin; Jiang, Shan; Yang, Fen; Feng, Gong-Kan; Senthilkumar, Ravichandran; Yue, Fei; Zhang, Hai-Liang; Wu, Rui-Yan; Yu, Yan; Xu, Xue-Lian; Mai, Jia; Li, Zhi-Ling; Peng, Xiao-Dan; Huang, Yun; Huang, Xiang; Ma, Ning-Fang; Tao, Qian; Zeng, Yi-Xin; Zhu, Xiao-Feng

    2017-10-27

    Autophagy is a degradative pathway that delivers cellular components to the lysosome for degradation. The role of autophagy in cell differentiation is poorly understood. Here we show that CaMKII can directly phosphorylate Beclin 1 at Ser90 to promote K63-linked ubiquitination of Beclin 1 and activation of autophagy. Meanwhile, CaMKII can also promote K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2) by catalyzing phosphorylation of Id proteins and recruiting TRAF-6. Ubiquitinated Id-1/Id-2 can then bind to p62 and be transported to autolysosomes for degradation. Id degradation promotes the differentiation of neuroblastoma cells and reduces the proportion of stem-like cells. Our study proposes a mechanism by which autophagic degradation of Id proteins can regulate cell differentiation. This suggests that targeting of CaMKII and the regulation of autophagic degradation of Id may be an effective therapeutic strategy to induce cell differentiation in neuroblastoma.

  18. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration

    Directory of Open Access Journals (Sweden)

    Suryavanshi Narendra

    2011-08-01

    Full Text Available Abstract Background Cell migration is essential during development and in human disease progression including cancer. Most cell migration studies concentrate on known or predicted components of migration pathways. Results Here we use data from a genome-wide RNAi morphology screen in Drosophila melanogaster cells together with bioinformatics to identify 26 new regulators of morphology and cytoskeletal organization in human cells. These include genes previously implicated in a wide range of functions, from mental retardation, Down syndrome and Huntington's disease to RNA and DNA-binding genes. We classify these genes into seven groups according to phenotype and identify those that affect cell migration. We further characterize a subset of seven genes, FAM40A, FAM40B, ARC, FMNL3, FNBP3/FBP11, LIMD1 and ZRANB1, each of which has a different effect on cell shape, actin filament distribution and cell migration. Interestingly, in several instances closely related isoforms with a single Drosophila homologue have distinct phenotypes. For example, FAM40B depletion induces cell elongation and tail retraction defects, whereas FAM40A depletion reduces cell spreading. Conclusions Our results identify multiple regulators of cell migration and cytoskeletal signalling that are highly conserved between Drosophila and humans, and show that closely related paralogues can have very different functions in these processes.

  19. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Atsuo [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ueyama, Tomomi, E-mail: toueyama-circ@umin.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Matsubara, Hiroaki [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer NFAT5 protein expression is downregulated during cardiomyogenesis. Black-Right-Pointing-Pointer Inhibition of NFAT5 function suppresses canonical Wnt signaling. Black-Right-Pointing-Pointer Inhibition of NFAT5 function attenuates mesodermal induction. Black-Right-Pointing-Pointer NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2 Prime Z, 3 Prime E]-6-bromoindirubin-3 Prime -oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  20. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Lan [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Pharmaceutical Sciences, Jilin University, Changchun 130021 (China); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Wang, Yongsheng [Department of Pharmaceutical Sciences, Jilin University, Changchun 130021 (China); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.

  1. Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs.

    Science.gov (United States)

    Michon, Frederic; Tummers, Mark; Kyyrönen, Marika; Frilander, Mikko J; Thesleff, Irma

    2010-04-15

    Teeth form as appendages of the ectoderm and their morphogenesis is regulated by tissue interactions mediated by networks of conserved signal pathways. Micro-RNA (miRNA) pathway has emerged as important regulator of various aspects of embryonic development, but its function in odontogenesis has not been elucidated. We show that the expression of RNAi pathway effectors is dynamic during tooth morphogenesis and differentiation of dental cells. Based on microarray profiling we selected 8 miRNAs expressed during morphogenesis and 7 miRNAs in the incisor cervical loop containing the stem cell niche. These miRNAs were mainly expressed in the dental epithelium. Conditional deletion of Dicer-1 in the epithelium (Dcr(K14)(-)(/)(-)) resulted in rather mild but significant aberrations in tooth shape and enamel formation. The cusp patterns of the Dcr(K14)(-)(/)(-) molar crowns resembled the patterns of both ancestral muroid rodents and mouse mutants with modulated signal pathways. In the Dcr(K14)(-)(/)(-) incisors, longitudinal grooves formed on the labial surface and these were shown to result from ectopic budding of the progenitor epithelium in the cervical loop. In addition, ameloblast differentiation was impaired and resulted in deficient enamel formation in molars and incisors. To help the identification of candidate target genes of the selected tooth enriched miRNAs, we constructed a new ectodermal organ oriented database, miRTooth. The predicted targets of the selected miRNAs included several components of the main morphogenetic signal pathways regulating tooth development. Based on our findings we suggest that miRNAs modulate tooth morphogenesis largely by fine tuning conserved signaling networks and that miRNAs may have played important roles during tooth evolution. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  3. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  4. Morphological diversity and genetic regulation of inflorescence abscission zones in grasses.

    Science.gov (United States)

    Doust, Andrew N; Mauro-Herrera, Margarita; Francis, Amie D; Shand, Laura C

    2014-10-01

    • Variation in how seeds are dispersed in grasses is ecologically important, and selection for dispersal mechanisms has produced a great variety of dispersal structures (diaspores). Abscission ("shattering") is necessary in wild grasses, but its elimination by selection on nonshattering mutants was a key component of the domestication syndrome in cereal grasses. A key question is whether a common genetic pathway controls abscission in wild grasses, and, if so, what genes in that pathway may have been selected upon during domestication. We summarize morphological and genetic information on abscission zones and disarticulation patterns in grasses and identify hypotheses to test the likelihood of a common genetic pathway.• Morphological data on abscission zones for over 10000 species of grasses were tabulated and analyzed using a tribal phylogeny of the grasses. The genomic location of quantitative trait loci (QTLs) and orthologs of genes controlling shattering were compared across species to ascertain whether the same loci might control shattering in different grass lineages.• The simple trait of nonshattering is derived from a great diversity of shattering phenotypes. Several sets of QTLs from multiple species are syntenic yet many are not. Genes known to be involved in shattering in several species were found to have orthologs that sometimes colocalized with QTLs in different species, adding support to the hypothesis of retention of a common genetic pathway. These results are used to suggest a research plan that could test the common genetic pathway model more thoroughly. © 2014 Botanical Society of America, Inc.

  5. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  6. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  7. Differential expression of cell-cycle regulators in human beta-cells derived from insulinoma tissue.

    Science.gov (United States)

    Ueberberg, Sandra; Tannapfel, Andrea; Schenker, Peter; Viebahn, Richard; Uhl, Waldemar; Schneider, Stephan; Meier, Juris J

    2016-05-01

    The low frequency of beta-cell replication in the adult human pancreas limits beta-cell regeneration. A better understanding of the regulation of human beta-cell proliferation is crucial to develop therapeutic strategies aiming to enhance beta-cell mass. To identify factors that control beta-cell proliferation, cell-cycle regulation was examined in human insulinomas as a model of increased beta-cell proliferation (n=11) and healthy pancreatic tissue from patients with benign pancreatic tumors (n=9). Tissue sections were co-stained for insulin and cell-cycle proteins. Transcript levels of selected cell-cycle factors in beta-cells were determined by qRT-PCR after performing laser-capture microdissection. The frequency of beta-cell replication was 3.74±0.92% in the insulinomas and 0.11±0.04% in controls (p=0.0016). p21 expression was higher in insulinomas (p=0.0058), and Rb expression was higher by trend (p=0.085), whereas p16 (pcell-cycle factors in beta-cells derived from insulinomas and healthy adults differs markedly. Targeting such differentially regulated cell-cycle proteins may evolve as a future strategy to enhance beta-cell regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. ADAMTS9-Mediated Extracellular Matrix Dynamics Regulates Umbilical Cord Vascular Smooth Muscle Differentiation and Rotation

    Directory of Open Access Journals (Sweden)

    Sumeda Nandadasa

    2015-06-01

    Full Text Available Despite the significance for fetal nourishment in mammals, mechanisms of umbilical cord vascular growth remain poorly understood. Here, the secreted metalloprotease ADAMTS9 is shown to be necessary for murine umbilical cord vascular development. Restricting it to the cell surface using a gene trap allele, Adamts9Gt, impaired umbilical vessel elongation and radial growth via reduced versican proteolysis and accumulation of extracellular matrix (ECM. Both Adamts9Gt and conditional Adamts9 deletion revealed that ADAMTS9 produced by mesenchymal cells acted non-autonomously to regulate smooth muscle cell (SMC proliferation, differentiation, and orthogonal reorientation during growth of the umbilical vasculature. In Adamts9Gt/Gt, we observed interference with PDGFRβ signaling via the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK pathway, which regulates cytoskeletal dynamics during SMC rotation. In addition, we observed disrupted Shh signaling and perturbed orientation of the mesenchymal primary cilium. Thus, ECM dynamics is a major influence on umbilical vascular SMC fate, with ADAMTS9 acting as its principal mediator.

  9. Differential neural activation when voluntarily regulating emotions in service members with chronic mild traumatic brain injury.

    Science.gov (United States)

    Dretsch, Michael N; Daniel, Thomas A; Goodman, Adam M; Katz, Jeffrey S; Denney, Thomas; Deshpande, Gopikrishna; Robinson, Jennifer L

    2017-09-19

    The objective of this study was to characterize the functional activation of the neural correlates of voluntary regulation of emotion in soldiers both with and without chronic mild traumatic brain injury (mTBI). Using functional magnetic resonance imaging (fMRI) and a battery of cognitive and psychological health measures, we assessed differences between active-duty U.S. soldiers with chronic mTBI (n = 37) and without (Controls, n = 35). Participants were instructed to maintain (passively view), enhance, and suppress emotions associated with negative and neutral visual stimuli. The mTBI group showed significantly greater clinical symptoms, but only a mild decrement in attention. Group contrasts, while controlling for posttraumatic stress disorder (PTSD) symptoms, revealed a differential neural activation pattern compared to controls, but only during the enhance condition. Specifically, the mTBI group showed greater activation in the precentral gyrus, postcentral gyrus, inferior parietal lobe, insula, and superior temporal gyrus. Finally, the effect of PTSD symptoms during the enhance condition was associated with accentuated activation of the frontal and limbic regions implicated in both emotion regulation and PTSD. Hyperactivation of neural regions in the mTBI group during the enhance condition may reflect vigilance towards negative contextual stimuli and/or poor strategy that might result in suboptimal allocation of resources to regulate emotions.

  10. Differential Regulation of Orthologous Chitinase Genes in Mycoparasitic Trichoderma Species ▿ †

    Science.gov (United States)

    Gruber, Sabine; Kubicek, Christian P.; Seidl-Seiboth, Verena

    2011-01-01

    Mycoparasitic Trichoderma species have expanded numbers of fungal subgroup C chitinases that contain multiple carbohydrate binding modules and could thus be important for fungal cell wall degradation during the mycoparasitic attack. In this study, we analyzed the gene regulation of subgroup C chitinases in the mycoparasite Trichoderma virens. In addition to regulation by nutritional stimuli, we found complex expression patterns in different parts of the fungal colony, and also, the mode of cultivation strongly influenced subgroup C chitinase transcript levels. Thus, the regulation of these genes is governed by a combination of colony-internal and -external signals. Our results showed completely different expression profiles of subgroup C chitinase genes in T. virens than in a previous study with T. atroviride, although both fungi are potent mycoparasites. Only a few subgroup C chitinase orthologues were found in T. atroviride and T. virens, and even those showed substantially divergent gene expression patterns. Microscopic analysis revealed morphogenetic differences between T. atroviride and T. virens, which could be connected to differential subgroup C chitinase gene expression. The biological function of fungal subgroup C chitinases therefore might not be as clear-cut as previously anticipated. They could have pleiotropic roles and might be involved in both degradation of exogenous chitinous carbon sources, including other fungal cell walls, and recycling of their own cell walls during hyphal development and colony formation. PMID:21856825

  11. The demands of lactation promote differential regulation of lipid stores in fasting elephant seals.

    Science.gov (United States)

    Fowler, Melinda A; Debier, Cathy; Champagne, Cory D; Crocker, Daniel E; Costa, Daniel P

    2016-01-01

    Fasting animals must ration stored reserves appropriately for metabolic demands. Animals that experience fasting concomitant with other metabolically demanding activities are presented with conflicting demands of energy conservation and expenditure. Our objective was to understand how fasting northern elephant seals regulate the mobilization of lipid reserves and subsequently milk lipid content during lactation. We sampled 36 females early and 39 at the end of lactation. To determine the separate influences of lactation from fasting, we also sampled fasting but non-lactating females early and late (8 and 6 seals, respectively) in their molting fasting period. Mass and adiposity were measured, as well as circulating non-esterified fatty acid (NEFA), triacylglycerol (TAG), cortisol, insulin and growth hormone levels. Milk was collected from lactating females. Milk lipid content increased from 31% in early to 51% in late lactation. In lactating females plasma NEFA was positively related to cortisol and negatively related to insulin, but in molting seals, only variation in cortisol was related to NEFA. Milk lipid content varied with mass, adiposity, NEFA, TAG, cortisol and insulin. Surprisingly, growth hormone concentration was not related to lipid metabolites or milk lipid. Suppression of insulin release appears to be the differential regulator of lipolysis in lactating versus molting seals, facilitating mobilization of stored lipids and maintenance of high NEFA concentrations for milk synthesis. Milk lipid was strongly impacted by the supply of substrate to the mammary gland, indicating regulation at the level of mobilization of lipid reserves. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Translation is actively regulated during the differentiation of CD8(+) effector T cells.

    Science.gov (United States)

    Araki, Koichi; Morita, Masahiro; Bederman, Annelise G; Konieczny, Bogumila T; Kissick, Haydn T; Sonenberg, Nahum; Ahmed, Rafi

    2017-09-01

    Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8(+) effector T cells (Teff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correlated with cell proliferation and stimulation via the T cell antigen receptor (TCR). The translation of mRNAs that encode translation machinery, including ribosomal proteins, was upregulated during the T cell clonal-expansion phase, followed by inhibition of the translation of those transcripts when the CD8(+) Teff cells stopped dividing just before the contraction phase. That translational suppression was more pronounced in terminal effector cells than in memory precursor cells and was regulated by antigenic stimulation and signals from the kinase mTOR. Our studies show that translation of transcripts encoding ribosomal proteins is regulated during the differentiation of CD8(+) Teff cells and might have a role in fate 'decisions' involved in the formation of memory cells.

  13. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    2017-01-01

    Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.

  14. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species.

    Science.gov (United States)

    Jeong, Sangyun; Rebeiz, Mark; Andolfatto, Peter; Werner, Thomas; True, John; Carroll, Sean B

    2008-03-07

    Understanding the mechanisms underlying the morphological divergence of species is one of the central goals of evolutionary biology. Here, we analyze the genetic and molecular bases of the divergence of body pigmentation patterns between Drosophila yakuba and its sister species Drosophila santomea. We found that loss of pigmentation in D. santomea involved the selective loss of expression of the tan and yellow pigmentation genes. We demonstrate that tan gene expression was eliminated through the mutational inactivation of one specific tan cis-regulatory element (CRE) whereas the Tan protein sequence remained unchanged. Surprisingly, we identify three independent loss-of-function alleles of the tan CRE in the young D. santomea lineage. We submit that there is sufficient empirical evidence to support the general prediction that functional evolutionary changes at pleiotropic loci will most often involve mutations in their discrete, modular cis-regulatory elements.

  15. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    Science.gov (United States)

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  16. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  17. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression.

    Science.gov (United States)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. StearoylCoA desaturase-5: a novel regulator of neuronal cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Debora I Sinner

    lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation.

  19. Infringement of cytokines regulation and morphological changes of thyroid gland in Wistar rats with experimental thyrotoxicosis

    OpenAIRE

    V V Zdor; E V Markelova; O M Oleksenko

    2012-01-01

    In view of abundance of autoimmune diseases of thyroid gland, Graves’ Disease in particular, the role of immune regulation and the possibility of controlling it by estimating the function of regulatory T-limphocytes are important questions today. Available for practical estimation of T- and B-lymphocytes tolerance disorder in GBD are serum levels of Th1- and Th2- marker cytokines. Experimental thyrotoxicosis in Wistar rats showed significant increase in serum Il-1α, IFN-γ and Il-10 depending ...

  20. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis.

    Directory of Open Access Journals (Sweden)

    Amber J Marty

    2015-06-01

    Full Text Available In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0-48 hours, gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C and during the phase transition to mold (22°C. This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition.

  1. Differential regulation of Hes/Hey genes during inner ear development.

    Science.gov (United States)

    Petrovic, Jelena; Gálvez, Hector; Neves, Joana; Abelló, Gina; Giraldez, Fernando

    2015-07-01

    Notch signaling plays a crucial role during inner ear development and regeneration. Hes/Hey genes encode for bHLH transcription factors identified as Notch targets. We have studied the expression and regulation of Hes/Hey genes during inner ear development in the chicken embryo. Among several Hes/Hey genes examined, only Hey1 and Hes5 map to the sensory regions, although with salient differences. Hey1 expression follows Jag1 expression except at early prosensory stages while Hes5 expression corresponds well to Dl1 expression throughout otic development. Although Hey1 and Hes5 are direct Notch downstream targets, they differ in the level of Notch required for activation. Moreover, they also differ in mRNA stability, showing different temporal decays after Notch blockade. In addition, Bmp, Wnt and Fgf pathways also modify Hey1 and Hes5 expression in the inner ear. Particularly, the Wnt pathway modulates Hey1 and Jag1 expression. Finally, gain of function experiments show that Hey1 and Hes5 cross-regulate each other in a complex manner. Both Hey1 and Hes5 repress Dl1 and Hes5 expression, suggesting that they prevent the transition to differentiation stages, probably by preventing Atoh1 expression. In spite of its association with Jag1, Hey1 does not seem to be instrumental for lateral induction as it does not promote Jag1 expression. We suggest that, besides being both targets of Notch, Hey1 and Hes5 are subject to a rather complex regulation that includes the stability of their transcripts, cross regulation and other signaling pathways. © 2014 Wiley Periodicals, Inc.

  2. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number.

    Science.gov (United States)

    Sankaran, Vijay G; Ludwig, Leif S; Sicinska, Ewa; Xu, Jian; Bauer, Daniel E; Eng, Jennifer C; Patterson, Heide Christine; Metcalf, Ryan A; Natkunam, Yasodha; Orkin, Stuart H; Sicinski, Piotr; Lander, Eric S; Lodish, Harvey F

    2012-09-15

    Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.

  3. Retracted: Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids.

    Science.gov (United States)

    2015-10-01

    The above article, published online on 20 December 2007 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Professor L Popescu and John Wiley and Sons Ltd. The retraction has been requested by the University of Florida, Office of Research, in response to their investigation which concluded fabrication of data in Figures 2, 3 and 4. Reference Pan Q, Luo X, Chegini N. Retracted: differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 12: 227-240. Doi: 10.1111/j.1582-4934.2007.00207.x. Copyright © 2015 Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Rbfox proteins regulate tissue-specific alternative splicing of Mef2D required for muscle differentiation.

    Science.gov (United States)

    Runfola, Valeria; Sebastian, Soji; Dilworth, F Jeffrey; Gabellini, Davide

    2015-02-15

    Among the Mef2 family of transcription factors, Mef2D is unique in that it undergoes tissue-specific splicing to generate an isoform that is essential for muscle differentiation. However, the mechanisms mediating this muscle-specific processing of Mef2D remain unknown. Using bioinformatics, we identified Rbfox proteins as putative modulators of Mef2D muscle-specific splicing. Accordingly, we found direct and specific Rbfox1 and Rbfox2 binding to Mef2D pre-mRNA in vivo. Gain- and loss-of-function experiments demonstrated that Rbfox1 and Rbfox2 cooperate in promoting Mef2D splicing and subsequent myogenesis. Thus, our findings reveal a new role for Rbfox proteins in regulating myogenesis through activation of essential muscle-specific splicing events. © 2015. Published by The Company of Biologists Ltd.

  5. Differential regulation of BACE1 expression by oxidative and nitrosative signals

    Directory of Open Access Journals (Sweden)

    Xu Huaxi

    2011-03-01

    Full Text Available Abstract Background It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD. Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO, in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the β-cleavage of APP to Aβ peptides. Results Herein, we studied events such as S-nitrosylation, a covalent modification of cysteine residues by NO, and H2O2-mediated oxidation. We found that NO and H2O2 differentially modulate BACE1 expression and enzymatic activity: NO at low concentrations (2O2 (1-10 μM induces BACE1 expression via transcriptional activation, resulting in increased enzymatic activity. The differential effects of NO and H2O2 on BACE1 expression and activity are also reflected in their opposing effects on Aβ generation in cultured neurons in a dose-dependent manner. Furthermore, we found that BACE1 is highly S-nitrosylated in normal aging brains while S-nitrosylation is markedly reduced in AD brains. Conclusion This study demonstrates for the first time that BACE1 is highly modified by NO via multiple mechanisms: low and high levels of NO suppress BACE1 via transcriptional and post translational regulation, in contrast with the upregulation of BACE1 by H2O2-mediated oxidation. These novel NO-mediated regulatory mechanisms likely protect BACE1 from being further oxidized by excessive oxidative stress, as from H2O2 and peroxynitrite which are known to upregulate BACE1 and activate the enzyme, resulting in excessive cleavage of APP and Aβ generation; they likely represent the crucial house-keeping mechanism for BACE1 expression/activation under physiological conditions.

  6. β1-Integrin and integrin linked kinase regulate astrocytic differentiation of neural stem cells.

    Directory of Open Access Journals (Sweden)

    Liuliu Pan

    Full Text Available Astrogliosis with glial scar formation after damage to the nervous system is a major impediment to axonal regeneration and functional recovery. The present study examined the role of β1-integrin signaling in regulating astrocytic differentiation of neural stem cells. In the adult spinal cord β1-integrin is expressed predominantly in the ependymal region where ependymal stem cells (ESCs reside. β1-integrin signaling suppressed astrocytic differentiation of both cultured ESCs and subventricular zone (SVZ progenitor cells. Conditional knockout of β1-integrin enhanced astrogliogenesis both by cultured ESCs and by SVZ progenitor cells. Previous studies have shown that injection into the injured spinal cord of a self-assembling peptide amphiphile that displays an IKVAV epitope (IKVAV-PA limits glial scar formation and enhances functional recovery. Here we find that injection of IKVAV-PA induced high levels of β1-integrin in ESCs in vivo, and that conditional knockout of β1-integrin abolished the astroglial suppressive effects of IKVAV-PA in vitro. Injection into an injured spinal cord of PAs expressing two other epitopes known to interact with β1-integrin, a Tenascin C epitope and the fibronectin epitope RGD, improved functional recovery comparable to the effects of IKVAV-PA. Finally we found that the effects of β1-integrin signaling on astrogliosis are mediated by integrin linked kinase (ILK. These observations demonstrate an important role for β1-integrin/ILK signaling in regulating astrogliosis from ESCs and suggest ILK as a potential target for limiting glial scar formation after nervous system injury.

  7. Mst1 and mst2 are essential regulators of trophoblast differentiation and placenta morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xingrong Du

    Full Text Available The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2, key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive. Here, we investigated the functions of Mst1/2 in mouse placental development using both conventional and conditional (endothelial Mst1/2 double knockout mice. We found that the number of trophoblast giant cells dramatically increased while spongiotrophoblast cells almost completely disappeared in Mst1/2 deficient placentas. We showed that Mst1/2 deficiency down regulated the expression of Mash2, which is required for suppressing the differentiation of trophoblast giant cells. Furthermore, we demonstrated that endothelial-specific deletion of Mst1/2 led to impaired placental labyrinthine vasculature and embryonic lethality at E11.5, but neither affected vasculature in yolk sac and embryo proper nor endocardium development. Collectively, our findings suggest that Mst1/2 regulate placental development by control of trophoblast cell differentiation and labyrinthine vasculature at midgestation and Mst1/2 control labyrinth morphogenesis in trophoblast- and fetal endothelial-dependent manners. Thus, our studies have defined novel roles of Mst1/2 in mouse placental development.

  8. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.

    Science.gov (United States)

    Ye, Lihua; Robertson, Morgan A; Mastracci, Teresa L; Anderson, Ryan M

    2016-01-15

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [ICAM-1 regulates differentiation of MSC to adipocytes via activating MAPK pathway].

    Science.gov (United States)

    Chen, Ji-De; Xu, Fen-Fen; Zhu, Heng; Li, Xi-Mei; Tang, Bo; Liu, Yuan-Lin; Zhang, Yi

    2014-02-01

    This study was aimed to explore the molecular mechanism of the regulatory effects of ICAM-1 on the differentiation of mesenchymal stem cells (MSC) to adipocytes. The murine MSC cell line C3H10T 1/2 was treated with the supernatants contained plasmid MIGR1-ICAM-1 and MIGR1-ICAM-1/MSC (high expression of ICAM-1), the activation of the pathway was detected by Western blot. The ICAM-1 modified MSC and its control cells named MIGR1/MSC were cultured in adipocyte medium with or without the inhibitors of the ERK, P38, and JNK pathway. Oil-red-O staining was used to detect the lipid accumulation, and the expression of C/EBPα and PPARγ in differentiation of MSC to adipocyte were examined by real-time-PCR. The results showed that the overexpression of ICAM-1 stably activated the ERK, P38, and JNK pathway in MSC. Inhibiting of the activation of ERK pathways by chemical inhibitors up-regulated the mRNA expression level of C/EBPα and PPARγ in MIGR1-ICAM-1/MSC while inhibiting of P38 pathway resulted in lower mRNA expression of the transcription factors. Consistent with the mRNA expression, the lipid droplets were getting smaller and number of adipocytes increased when P38 pathway was inhibited, while bigger lipid droplet and increased quantity of adipocytes were identified in MIGR1-ICAM-1/MSC with the addition of ERK pathway inhibitor. It is concluded that ICAM-1 may suppress MSC differentiate into adipocyte via activating ERK pathway, while it can maintain the adipogenesis of MSC though P38 pathway.

  10. Enhancer of zeste homolog 2 regulates cell differentiation and proliferation in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Amallia N. Setyawati

    2014-12-01

    Full Text Available Background Neuroblastoma (NB is one of the most common extracranial solid tumors occurring in infancy and childhood with highly variable outcomes. Polycomb group (PcG proteins are epigenetic gene silencers. Enhancer of zeste homolog 2 (EZH2 is a member of the polycomb repressor complex 2 (PRC2 group, with the main function to catalyze the polycomb repressor complex by methylating lysine 9 and 27 of histone H3. This study aimed to investigate the biological functionality of EZH2 in NB. Methods This was an experimental study with an analysis of correlation initially of the known prognostic factors of NB patients’ outcomes, by comparing the expression of v-myc avian myelocytomatosis viral oncogene neuroblastoma (MYCN with that of EZH2, on the basis of the patients’ overall and relapse free survival rates. This was followed with a biological functional study to assess the role of EZH2 expression in NB. Results EZH2 knockdown induces neurite extension and differentiation marker growth associated protein 43 (GAP43 in NB cells, although it does not affect cell cycle. By ectopic expression of EZH2, all-trans retinoic acid (ATRA induced neurite extension was suppressed and GAP43 was decreased. Overall, EZH2 seems to have an important role in NB cell differentiation. Although EZH2 did not alter cell proliferation, in the soft agar colony formation assay there was a significant increase in total colony number and number of large colonies. Conclusion Our result clarified the potential role of EZH2 in the regulation of cell differentiation and proliferation, which subsequently may play an important role in the poor prognosis of NB patients.

  11. Rho/MRTF-A-Induced Integrin Expression Regulates Angiogenesis in Differentiated Multipotent Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are known to undergo endothelial differentiation in response to treatment with vascular endothelial growth factor (VEGF, but their angiogenic ability is poorly characterized. In the present study, we aimed to further investigate the role of Rho/MRTF-A in angiogenesis by MSCs and the effect of the Rho/MRTF-A pathway on the expression of integrins α1β1 and α5β1, which are known to mediate physiological and pathological angiogenesis. Our results showed that increased expression of α1, α5, and β1 was observed during angiogenesis of differentiated MSCs, and the Rho/MRTF-A signaling pathway was demonstrated to be involved in regulating the expression of integrins α1, α5, and β1. Luciferase reporter assay and ChIP assay determined that MRTF-A could bind to and transactivate the integrin α1 and α5 promoters. Treatment with the Rho inhibitor C3 transferase, the Rho-associated protein kinase (ROCK inhibitor Y27632 or with shMRTF-A inhibited both the upregulation of α1, α5, and β1 as well as angiogenesis. Furthermore, in human umbilical vein endothelial cells (HUVECs, MRTF-A deletion led to marked reductions in cell migration and vessel network formation compared with the control. These data demonstrate that Rho/MRTF-A signaling is an important mediator that controls integrin gene expression during MSC-mediated angiogenic processes.

  12. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. PRMT1 and PRMT8 regulate retinoic acid-dependent neuronal differentiation with implications to neuropathology.

    Science.gov (United States)

    Simandi, Zoltan; Czipa, Erik; Horvath, Attila; Koszeghy, Aron; Bordas, Csilla; Póliska, Szilárd; Juhász, István; Imre, László; Szabó, Gábor; Dezso, Balazs; Barta, Endre; Sauer, Sascha; Karolyi, Katalin; Kovacs, Ilona; Hutóczki, Gábor; Bognár, László; Klekner, Álmos; Szucs, Peter; Bálint, Bálint L; Nagy, Laszlo

    2015-03-01

    Retinoids are morphogens and have been implicated in cell fate commitment of embryonic stem cells (ESCs) to neurons. Their effects are mediated by RAR and RXR nuclear receptors. However, transcriptional cofactors required for cell and gene-specific retinoid signaling are not known. Here we show that protein arginine methyl transferase (PRMT) 1 and 8 have key roles in determining retinoid regulated gene expression and cellular specification in a multistage neuronal differentiation model of murine ESCs. PRMT1 acts as a selective modulator, providing the cells with a mechanism to reduce the potency of retinoid signals on regulatory "hotspots." PRMT8 is a retinoid receptor target gene itself and acts as a cell type specific transcriptional coactivator of retinoid signaling at later stages of differentiation. Lack of either of them leads to reduced nuclear arginine methylation, dysregulated neuronal gene expression, and altered neuronal activity. Importantly, depletion of PRMT8 results in altered expression of a distinct set of genes, including markers of gliomagenesis. PRMT8 is almost entirely absent in human glioblastoma tissues. We propose that PRMT1 and PRMT8 serve as a rheostat of retinoid signaling to determine neuronal cell specification in a context-dependent manner and might also be relevant in the development of human brain malignancy. © 2014 AlphaMed Press.

  14. Odd-skipped related genes regulate differentiation of embryonic limb mesenchyme and bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Stricker, Sigmar; Mathia, Susanne; Haupt, Julia; Seemann, Petra; Meier, Julia; Mundlos, Stefan

    2012-03-01

    The regulation of progenitor cell differentiation to a specific tissue type is one of the fundamental questions of biology. Here, we identify Osr1 and Osr2, 2 closely related genes encoding zinc finger transcription factors, as being strongly expressed in irregular connective tissue (ICT) fibroblasts in the chicken embryo, suitable as a developmental marker. We provide evidence that both Osr1 and Osr2 regulate mesenchymal cell-type differentiation. Both Osr1 and Osr2 can promote the formation of ICT, a cell type of so far unknown molecular specification, while suppressing differentiation of other tissues such as cartilage and tendon from uncommitted progenitors. Conversely, knockdown of either Osr gene alone or in combination reverses this effect, thereby leading to decreased differentiation of ICT fibroblasts and increased chondrogenesis in vitro. This indicates that Osr genes play a pivotal role in ICT fibroblast differentiation. Undifferentiated mesenchymal cells reside in the adult body in the form of mesenchymal stem cells in the bone marrow cavity. Using bone marrow stromal cells (BMSCs) isolated from chicken fetal long bones, we show that Osr1 and Osr2 have an intrinsic role in BMSC differentiation similar to their role in early embryonic development, that is, the enforcement of CT fibroblast differentiation and the repression of other cell types as exemplified here by osteoblast differentiation.

  15. Regulation of corneal fibroblast morphology and collagen reorganization by extracellular matrix mechanical properties.

    Science.gov (United States)

    Karamichos, Dimitris; Lakshman, Neema; Petroll, W Matthew

    2007-11-01

    To investigate how extracellular matrix mechanical properties influence cell and matrix patterning in three-dimensional culture. Human corneal fibroblasts were seeded within 30 x 10 mm collagen matrices that were unconstrained (UN), fully constrained (CO) along the long axis by attaching the construct to two immobilized plastic bars, or partially constrained (PC) by allowing linear elastic displacement of one bar. After 24 hours, constructs were labeled with phalloidin and were imaged using fluorescent and reflected light (for collagen) confocal microscopy. Cell morphology and local collagen fibril density and alignment were measured using digital image processing. Corneal fibroblasts in UN matrices were less elongated (UN collagen density and the degree of cell/collagen coalignment were higher in constrained matrices (UN collagen were often observed between individual cells. These data suggest that cell spreading, alignment, and contractile force generation are directly influenced by the mechanical properties of the surrounding extracellular matrix (ECM). Corneal fibroblasts generally align and compact collagen parallel to the axis of greatest ECM stiffness. Mechanical cross-talk between adjacent cells leads to enhancement of matrix reorganization, and results in additional, more complex matrix patterning.

  16. The Homeobox BcHOX8 Gene in Botrytis Cinerea Regulates Vegetative Growth and Morphology

    Science.gov (United States)

    Antal, Zsuzsanna; Rascle, Christine; Cimerman, Agnès; Viaud, Muriel; Billon-Grand, Geneviève; Choquer, Mathias; Bruel, Christophe

    2012-01-01

    Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum. PMID:23133556

  17. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    Full Text Available Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.

  18. Terminal Bacteroid Differentiation Is Associated With Variable Morphological Changes in Legume Species Belonging to the Inverted Repeat-Lacking Clade

    National Research Council Canada - National Science Library

    Montiel, Jesús; Szűcs, Attila; Boboescu, Iulian Z; Gherman, Vasile D; Kondorosi, Éva; Kereszt, Attila

    2016-01-01

    .... As bacteroids in other IRLC legumes, such as Cicer arietinum and Glycyrrhiza lepidota, were reported not to display features of terminal differentiation, we investigated the fate of bacteroids...

  19. Krebs cycle enzymes from livers of old mice are differentially regulated by caloric restriction.

    Science.gov (United States)

    Hagopian, Kevork; Ramsey, Jon J; Weindruch, Richard

    2004-08-01

    Krebs cycle enzyme activities and levels of five metabolites were determined from livers of old mice (30 months) maintained either on control or on long-term caloric restriction (CR) diets (28 months). In CR mice, the cycle was divided into two major blocks, the first containing citrate synthase, aconitase and NAD-dependent isocitrate dehydrogenase which showed decreased activities, while the second block, containing the remaining enzymes, displayed increased activity (except for fumarase, which was unchanged). CR also resulted in decreased levels of citrate, glutamate and alpha-ketoglutarate, increased levels of malate, and unchanged levels of aspartate. The alpha-ketoglutarate/glutamate and malate/alpha-ketoglutarate ratios were higher in CR, in parallel with previously reported increases with CR in pyruvate carboxylase activity and glucagon levels, respectively. The results indicate that long-term CR induces a differential regulation of Krebs cycle in old mice and this regulation may be the result of changes in gene expression levels, as well as a complex interplay between enzymes, hormones and other effectors. Truncation of Krebs cycle by CR may be an important adaptation to utilize available substrates for the gluconeogenesis necessary to sustain glycolytic tissues, such as brain.

  20. Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation.

    Science.gov (United States)

    Gao, Fei; Zhang, Jun; Wang, Xiaona; Yang, Junling; Chen, Dahua; Huff, Vicki; Liu, Yi-Xun

    2014-01-15

    The Wt1 gene encodes a nuclear transcription factor that is specifically expressed in ovarian granulosa cells. However, the physiological significance of Wt1 in ovarian follicle development remains elusive. In this study, we found that Wt1(+/R394W) mice were grossly normal, however, the females displayed severe reproductive defects. Only ∼15% of the Wt1(+/R394W) females became pregnant after mating with wild-type males, compared with 88.2% of control females. Further study revealed that the subfertility of Wt1(+/R394W) females was caused by aberrant ovarian follicle development. Compared with control females, the ovary size and the number of developing follicles was significantly decreased in Wt1 mutant ovaries which was very similar to premature ovarian failure (POF) in human patients. The results of in vitro studies demonstrated that the expression of follicle stimulating hormone receptor (FSHR), 3β-hydroxysteroid dehydrogenase and Aromatase was inhibited by Wt1 in granulosa cells, and mutation of Wt1 resulted in the upregulation of these genes and in the premature differentiation of granulosa cells. We also found that Wt1 was likely involved in granulosa cell development via the regulation of E-cadherin and Par6b expression. Mutation in Wt1 caused defects in polarity establishment in granulosa cells, which also likely contributed to the observed aberrant follicle development. The results of this study provide new mechanisms for understanding the regulation of ovarian follicle development and potential pathological cause of POF in human patients.

  1. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation

    Science.gov (United States)

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-01-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe a srl2 (semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function. SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1 (SLL1)/ROLLED LEAF9 (RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation. PMID:26873975

  2. Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons

    Directory of Open Access Journals (Sweden)

    Tarallo Raffaella

    2006-10-01

    Full Text Available Abstract Background The homeodomain transcription factor Orthopedia (Otp is essential in restricting the fate of multiple classes of secreting neurons in the neuroendocrine hypothalamus of vertebrates. However, there is little information on the intercellular factors that regulate Otp expression during development. Results Here, we identified two otp orthologues in zebrafish (otp1 and otp2 and explored otp1 in the context of the morphogenetic pathways that specify neuroectodermal regions. During forebrain development, otp1 is expressed in anterior groups of diencephalic cells, positioned in the preoptic area (PO (anterior alar plate and the posterior tuberculum (PT (posterior basal plate. The latter structure is characterized by Tyrosine Hydroxylase (TH-positive cells, suggesting a role for otp1 in the lineage restriction of catecholaminergic (CA neurons. Disruptions of Hedgehog (HH and Fibroblast Growth Factor (FGF pathways point to the ability of SHH protein to trigger otp1 expression in PO presumptive neuroblasts, with the attenuating effect of Dzip1 and FGF8. In addition, our data disclose otp1 as a determinant of CA neurons in the PT, where otp1 activity is strictly dependent on Nodal signaling and it is not responsive to SHH and FGF. Conclusion In this study, we pinpoint the evolutionary importance of otp1 transcription factor in cell states of the diencephalon anlage and early neuronal progenitors. Furthermore, our data indicate that morphogenetic mechanisms differentially regulate otp1 expression in alar and basal plates.

  3. Glucagon-like peptide-1 regulation of carbohydrate intake is differentially affected by obesogenic diets

    Science.gov (United States)

    Pritchett, Carolyn E.; Hajnal, Andras

    2013-01-01

    The incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of appetite by acting as an anorexigenic gut-brain signal. The postprandial release of GLP-1 can be blunted in obese humans and animals. However, it remains unknown whether obesogenic diets with varying fat and carbohydrate content may differentially influence the effectiveness of GLP-1 feedback. To investigate this, male Sprague-Dawley rats were fed a standard (low fat) chow diet, or one of two high-energy diets varying in fat content (45 or 60 kcal%) for 28 weeks. Intake of sucrose and fructose solutions, two commonly added sugars in the Western diet, was then tested in non-deprived rats following administration of the GLP-1 receptor agonist, Exendin-4 (0, 0.5, 1, 2, 3 µg/kg; s.c.). Exendin-4 dose-dependently reduced short (2-hr) sucrose and fructose intake. This effect was significantly attenuated in rats fed more dietary fat despite both diets resulting in obesity. These findings demonstrate that intake of carbohydrates when offered as treats can be regulated by GLP-1 and suggests that dietary fat consumption, rather than extra calories or obesity, may lead to impaired GLP-1 feedback to curb carbohydrate intake. Future studies are warranted to investigate relevance of these observations to human and to elucidate the underlying mechanisms. PMID:22134200

  4. Wnt Ligands Differentially Regulate Toxicity and Translocation of Graphene Oxide through Different Mechanisms in Caenorhabditis elegans

    Science.gov (United States)

    Zhi, Lingtong; Ren, Mingxia; Qu, Man; Zhang, Hanyu; Wang, Dayong

    2016-12-01

    In this study, we investigated the possible involvement of Wnt signals in the control of graphene oxide (GO) toxicity using the in vivo assay system of Caenorhabditis elegans. In nematodes, the Wnt ligands, CWN-1, CWN-2, and LIN-44, were found to be involved in the control of GO toxicity. Mutation of cwn-1 or lin-44 gene induced a resistant property to GO toxicity and resulted in the decreased accumulation of GO in the body of nematodes, whereas mutation of cwn-2 gene induces a susceptible property to GO toxicity and an enhanced accumulation of GO in the body of nematodes. Genetic interaction assays demonstrated that mutation of cwn-1 or lin-44 was able to suppress the susceptibility to GO toxicity shown in the cwn-2 mutants. Loss-of-function mutations in all three of these Wnt ligand genes resulted in the resistance of nematodes to GO toxicity. Moreover, the Wnt ligands might differentially regulate the toxicity and translocation of GO through different mechanisms. These findings could be important in understanding the function of Wnt signals in the regulation of toxicity from environmental nanomaterials.

  5. Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells.

    Science.gov (United States)

    Distelmaier, Felix; Valsecchi, Federica; Forkink, Marleen; van Emst-de Vries, Sjenet; Swarts, Herman G; Rodenburg, Richard J T; Verwiel, Eugène T P; Smeitink, Jan A M; Willems, Peter H G M; Koopman, Werner J H

    2012-12-15

    Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca(2+)) handling in healthy human skin fibroblasts. Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein (CM-H(2)DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O(2) consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca(2+) transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders.

  6. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry.

    Science.gov (United States)

    Di Cio, Stefania; Bøggild, Thea M L; Connelly, John; Sutherland, Duncan S; Gautrot, Julien E

    2017-03-01

    The nanoscale geometry and topography of the extra-cellular matrix (ECM) is an important parameter controlling cell adhesion and phenotype. Similarly, integrin expression and the geometrical maturation of adhesions they regulate have been correlated with important changes in cell spreading and phenotype. However, how integrin expression controls the nanoscale sensing of the ECM geometry is not clearly understood. Here we develop a new nanopatterning technique, electrospun nanofiber lithography (ENL), which allows the production of a quasi-2D fibrous nanopattern with controlled dimensions (250-1000nm) and densities. ENL relies on electrospun fibres to act as a mask for the controlled growth of protein-resistant polymer brushes. SEM, AFM and immunofluorescence imaging were used to characterise the resulting patterns and the adsorption of the extra-cellular matrix protein fibronectin to the patterned fibres. The control of adhesion formation was studied, as well as the remodelling and deposition of novel matrix. Cell spreading was found to be regulated by the size of fibres, similarly to previous observations made on circular nanopatterns. However, cell shape and polarity were more significantly affected. These changes correlated with important cytoskeleton reorganisation, with a gradual decrease in stress fibre formation as the pattern dimensions decrease. Finally, the differential expression of αvβ3 and α5β1 integrins in engineered cell lines was found to be an important mediator of cell sensing of the nanoscale geometry of the ECM. The novel nanofiber patterns developed in this study, via ENL, mimic the geometry and continuity of natural matrices found in the stroma of tissues, whilst preserving a quasi-2D character (to facilitate imaging and for comparison with other 2D systems such as micropatterned monolayers and circular nanopatches generated by colloidal lithography). These results demonstrate that the nanoscale geometry of the ECM plays an important role

  7. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats.

    Science.gov (United States)

    Muñoz-Castañeda, Juan R; Herencia, Carmen; Pendón-Ruiz de Mier, Maria Victoria; Rodriguez-Ortiz, Maria Encarnación; Diaz-Tocados, Juan M; Vergara, Noemi; Martínez-Moreno, Julio M; Salmerón, Maria Dolores; Richards, William G; Felsenfeld, Arnold; Kuro-O, Makoto; Almadén, Yolanda; Rodríguez, Mariano

    2017-09-01

    In renal failure, hyperphosphatemia occurs despite a marked elevation in serum fibroblast growth factor (FGF)-23. Abnormal regulation of the FGFR1-Klotho receptor complex may cause a resistance to the phosphaturic action of FGF23. The purpose of the present study was to investigate the regulation of renal Klotho and FGF receptor (FEFR)-1 in healthy and uremic rats induced by 5/6 nephrectomy. In normal rats, the infusion of rat recombinant FGF23 enhanced phosphaturia and increased renal FGFR1 expression; however, Klotho expression was reduced. Uremic rats on a high-phosphate (HP) diet presented hyperphosphatemia with marked elevation of FGF23 and an increased fractional excretion of phosphate (P) that was associated with a marked reduction of Klotho expression and an increase in FGFR1. After neutralization of FGF23 by anti-FGF23 administration, phosphaturia was still abundant, Klotho expression remained low, and the FGFR1 level was reduced. These results suggest that the expression of renal Klotho is modulated by phosphaturia, whereas the FGFR1 expression is regulated by FGF23. Calcitriol (CTR) administration prevented a decrease in renal Klotho expression. In HEK293 cells HP produced nuclear translocation of β-catenin, together with a reduction in Klotho. Wnt/β-catenin inhibition with Dkk-1 prevented the P-induced down-regulation of Klotho. The addition of CTR to HP medium was able to recover Klotho expression. In summary, high FGF23 levels increase FGFR1, whereas phosphaturia decreases Klotho expression through the activation of Wnt/β-catenin pathway.-Muñoz-Castañeda, J. R., Herencia, C., Pendón-Ruiz de Mier, M. V., Rodriguez-Ortiz, M. E., Diaz-Tocados, J. M., Vergara, N., Martínez-Moreno, J. M., Salmerón, M. D., Richards, W. G., Felsenfeld, A., Kuro-O, M., Almadén, Y., Rodríguez, M. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats. © FASEB.

  8. Skin sensitizers differentially regulate signaling pathways in MUTZ-3 cells in relation to their individual potency.

    Science.gov (United States)

    Albrekt, Ann-Sofie; Johansson, Henrik; Börje, Anna; Borrebaeck, Carl; Lindstedt, Malin

    2014-02-11

    Due to the recent European legislations posing a ban of animal tests for safety assessment within the cosmetic industry, development of in vitro alternatives for assessment of skin sensitization is highly prioritized. To date, proposed in vitro assays are mainly based on single biomarkers, which so far have not been able to classify and stratify chemicals into subgroups, related to risk or potency. Recently, we presented the Genomic Allergen Rapid Detection (GARD) assay for assessment of chemical sensitizers. In this paper, we show how the genome wide readout of GARD can be expanded and used to identify differentially regulated pathways relating to individual chemical sensitizers. In this study, we investigated the mechanisms of action of a range of skin sensitizers through pathway identification, pathway classification and transcription factor analysis and related this to the reactive mechanisms and potency of the sensitizing agents. By transcriptional profiling of chemically stimulated MUTZ-3 cells, 33 canonical pathways intimately involved in sensitization to chemical substances were identified. The results showed that metabolic processes, cell cycling and oxidative stress responses are the key events activated during skin sensitization, and that these functions are engaged differently depending on the reactivity mechanisms of the sensitizing agent. Furthermore, the results indicate that the chemical reactivity groups seem to gradually engage more pathways and more molecules in each pathway with increasing sensitizing potency of the chemical used for stimulation. Also, a switch in gene regulation from up to down regulation, with increasing potency, was seen both in genes involved in metabolic functions and cell cycling. These observed pathway patterns were clearly reflected in the regulatory elements identified to drive these processes, where 33 regulatory elements have been proposed for further analysis. This study demonstrates that functional analysis of

  9. Recombinant erythroid differentiation regulator 1 inhibits both inflammation and angiogenesis in a mouse model of rosacea.

    Science.gov (United States)

    Kim, Miri; Kim, Kyung-Eun; Jung, Haw Young; Jo, Hyunmu; Jeong, Seo-Won; Lee, Jahyung; Kim, Chang Han; Kim, Heejong; Cho, Daeho; Park, Hyun Jeong

    2015-09-01

    The erythroid differentiation regulator 1 (Erdr1), which is a novel and highly conserved factor, was recently reported to be negatively regulated by IL-18 and to play a crucial role as an antimetastatic factor. IL-18 is a proinflammatory cytokine that functions as an angiogenic mediator in inflammation. Rosacea is a chronic inflammatory skin disorder that is characterized by abnormal inflammation and vascular hyperactivity of the facial skin. To determine whether Erdr1 contributes to the regulation of the chronic inflammatory process in the development of rosacea, an immunohistochemical analysis was performed in healthy donors and patients with rosacea. In this study, we showed that Erdr1 was downregulated, whereas IL-18 was upregulated, in patients with rosacea, which led us to question the role of Erdr1 in this disorder. Moreover, a rosacea-like BALB/c mouse model was used to determine the role of Erdr1 in rosacea in vivo. LL-37 injection induced typical rosacea features, including erythema, telangiectasia and inflammation. Treatment with recombinant Erdr1 (rErdr1) resulted in a significant reduction of erythema, inflammatory cell infiltration (including CD4(+) and CD8(+) T cells), and microvessel density with vascular endothelial growth factor (VEGF). Taken together, our findings suggest that rErdr1 may be involved in attenuating the inflammation and angiogenesis associated with the pathogenesis of rosacea. Thus, these results provide new insight into the mechanism involved in this condition and indicate that rErdr1 could be a potential target for therapeutic intervention of rosacea. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The m6A methyltransferase Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in haploid yeast cells.

    Science.gov (United States)

    Yadav, Pradeep Kumar; Rajasekharan, Ram

    2017-08-18

    N6-Methyladenosine (m6A) is among the most common modifications in eukaryotic mRNA. The role of yeast m6A methyltransferase, Ime4, in meiosis and sporulation in diploid strains is very well studied, but its role in haploid strains has remained unknown. Here, with the help of an immunoblotting strategy and Ime4-GFP protein localization studies, we establish the physiological role of Ime4 in haploid cells. Our data showed that Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology through the long-chain fatty acyl-CoA synthetase Faa1, independently of the RNA methylation complex (MIS complex). The MIS complex consists of the Ime4, Mum2, and Slz1 proteins. Our affinity enrichment strategy (methylated RNA immunoprecipitation assays) using m6A polyclonal antibodies coupled with mRNA isolation, quantitative real-time PCR, and standard PCR analyses confirmed the presence of m6A-modified FAA1 transcripts in haploid yeast cells. The term "epitranscriptional regulation" encompasses the RNA modification-mediated regulation of genes. Moreover, we demonstrate that the Aft2 transcription factor up-regulates FAA1 expression. Because the m6A methylation machinery is fundamentally conserved throughout eukaryotes, our findings will help advance the rapidly emerging field of RNA epitranscriptomics. The metabolic link identified here between m6A methylation and triacylglycerol metabolism via the Ime4 protein provides new insights into lipid metabolism and the pathophysiology of lipid-related metabolic disorders, such as obesity. Because the yeast vacuole is an analogue of the mammalian lysosome, our findings pave the way to better understand the role of m6A methylation in lysosome-related functions and diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes

    Science.gov (United States)

    Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli

    2016-01-01

    Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription. PMID:26310138

  12. Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes.

    Science.gov (United States)

    Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli; Chen, Hui; Chen, Shuo

    2016-02-01

    Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription.

  13. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  14. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    Science.gov (United States)

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  15. Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1

    Science.gov (United States)

    Copeland, Sarah J.; Thurston, Susan F.; Copeland, John W.

    2016-01-01

    The Golgi apparatus is the central hub of intracellular trafficking and consists of tethered stacks of cis, medial, and trans cisternae. In mammalian cells, these cisternae are stitched together as a perinuclear Golgi ribbon, which is required for the establishment of cell polarity and normal subcellular organization. We previously identified FHDC1 (also known as INF1) as a unique microtubule-binding member of the formin family of cytoskeletal-remodeling proteins. We show here that endogenous FHDC1 regulates Golgi ribbon formation and has an apparent preferential association with the Golgi-derived microtubule network. Knockdown of FHDC1 expression results in defective Golgi assembly and suggests a role for FHDC1 in maintenance of the Golgi-derived microtubule network. Similarly, overexpression of FHDC1 induces dispersion of the Golgi ribbon into functional ministacks. This effect is independent of centrosome-derived microtubules and instead likely requires the interaction between the FHDC1 microtubule-binding domain and the Golgi-derived microtubule network. These effects also depend on the interaction between the FHDC1 FH2 domain and the actin cytoskeleton. Thus our results suggest that the coordination of actin and microtubule dynamics by FHDC1 is required for normal Golgi ribbon formation. PMID:26564798

  16. Interferon-γ–inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages

    Science.gov (United States)

    Pei, Gang; Schnettger, Laura; Bronietzki, Marc; Repnik, Urska; Griffiths, Gareth; Gutierrez, Maximiliano Gabriel

    2015-01-01

    Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2–positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages. PMID:26157167

  17. Interferon-γ-inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages.

    Science.gov (United States)

    Pei, Gang; Schnettger, Laura; Bronietzki, Marc; Repnik, Urska; Griffiths, Gareth; Gutierrez, Maximiliano Gabriel

    2015-09-01

    Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2-positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages. © 2015 Pei, Schnettger, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. c-Myb Regulates Proliferation and Differentiation of Adventitial Sca1+ Vascular Smooth Muscle Cell Progenitors by Transactivation of Myocardin.

    Science.gov (United States)

    Shikatani, Eric A; Chandy, Mark; Besla, Rickvinder; Li, Cedric C; Momen, Abdul; El-Mounayri, Omar; Robbins, Clinton S; Husain, Mansoor

    2016-07-01

    Vascular smooth muscle cells (VSMCs) are believed to dedifferentiate and proliferate in response to vessel injury. Recently, adventitial progenitor cells were implicated as a source of VSMCs involved in vessel remodeling. c-Myb is a transcription factor known to regulate VSMC proliferation in vivo and differentiation of VSMCs from mouse embryonic stem cell-derived progenitors in vitro. However, the role of c-Myb in regulating specific adult vascular progenitor cell populations was not known. Our objective was to examine the role of c-Myb in the proliferation and differentiation of Sca1(+) adventitial VSMC progenitor cells. Using mice with wild-type or hypomorphic c-myb (c-myb(h/h)), BrdU (bromodeoxyuridine) uptake and flow cytometry revealed defective proliferation of Sca1(+) adventitial VSMC progenitor cells at 8, 14, and 28 days post carotid artery denudation injury in c-myb(h/h) arteries. c-myb(h/h) cKit(+)CD34(-)Flk1(-)Sca1(+)CD45(-)Lin(-) cells failed to proliferate, suggesting that c-myb regulates the activation of specific Sca1(+) progenitor cells in vivo and in vitro. Although expression levels of transforming growth factor-β1 did not vary between wild-type and c-myb(h/h) carotid arteries, in vitro differentiation of c-myb(h/h) Sca1(+) cells manifested defective transforming growth factor-β1-induced VSMC differentiation. This is mediated by reduced transcriptional activation of myocardin because chromatin immunoprecipitation revealed c-Myb binding to the myocardin promoter only during differentiation of Sca1(+) cells, myocardin promoter mutagenesis identified 2 specific c-Myb-responsive binding sites, and adenovirus-mediated expression of myocardin rescued the phenotype of c-myb(h/h) progenitors. These data support a role for c-Myb in the regulation of VSMC progenitor cells and provide novel insight into how c-myb regulates VSMC differentiation through myocardin. © 2016 American Heart Association, Inc.

  19. An OBSL1-Cul7Fbxw8 Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning

    Science.gov (United States)

    Litterman, Nadia; Ikeuchi, Yoshiho; Gallardo, Gilbert; O'Connell, Brenda C.; Sowa, Mathew E.; Gygi, Steven P.; Harper, J. Wade; Bonni, Azad

    2011-01-01

    The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7Fbxw8 localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7Fbxw8 by independent approaches including Fbxw8 knockdown reveals that Cul7Fbxw8 is selectively required for the growth and elaboration of dendrites but not axons in primary neurons and in the developing rat cerebellum in vivo. Inhibition of Cul7Fbxw8 also dramatically impairs the morphology of the Golgi complex, leading to deficient secretory trafficking in neurons. Using an immunoprecipitation/mass spectrometry screening approach, we also uncover the cytoskeletal adaptor protein OBSL1 as a critical regulator of Cul7Fbxw8 in Golgi morphogenesis and dendrite elaboration. OBSL1 forms a physical complex with the scaffold protein Cul7 and thereby localizes Cul7 at the Golgi apparatus. Accordingly, OBSL1 is required for the morphogenesis of the Golgi apparatus and the elaboration of dendrites. Finally, we identify the Golgi protein Grasp65 as a novel and physiologically relevant substrate of Cul7Fbxw8 in the control of Golgi and dendrite morphogenesis in neurons. Collectively, these findings define a novel OBSL1-regulated Cul7Fbxw8 ubiquitin signaling mechanism that orchestrates the morphogenesis of the Golgi apparatus and patterning of dendrites, with fundamental implications for our understanding of brain development. PMID:21572988

  20. Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination.

    Directory of Open Access Journals (Sweden)

    Kazuya Kuboyama

    Full Text Available BACKGROUND: Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz. METHODOLOGY/PRINCIPAL FINDINGS: We found an early onset of the expression of myelin basic protein (MBP, a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis. CONCLUSIONS/SIGNIFICANCE: Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.

  1. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization.

    Science.gov (United States)

    Yokota, Naoki; Mainprize, Todd G; Taylor, Michael D; Kohata, Tomohiko; Loreto, Michael; Ueda, Shigeo; Dura, Wieslaw; Grajkowska, Wiesia; Kuo, John S; Rutka, James T

    2004-04-22

    To increase our understanding of the molecular pathogenesis of medulloblastoma (MB), we utilized the technique of suppression subtractive hybridization (SSH) to identify genes that are dysregulated in MB when compared to cerebellum. SSH-enriched cDNA libraries from both human and Ptch+/- heterozygous murine MBs were generated by subtracting common cDNAs from corresponding non-neoplastic cerebellum. For the human classic MB library, total human cerebellar RNA was used as control tissue; for the Ptch+/- heterozygous MB, non-neoplastic cerebellum from an unaffected Ptch+/- littermate was used as the control. Through differential screening of these libraries, over 100 upregulated tumor cDNA fragments were isolated, sequenced and identified with the NCBI BLAST program. From these, we selected genes involved in cellular proliferation, antiapoptosis, and cerebellar differentiation for further analysis. Upregulated genes identified in the human MB library included Unc33-like protein (ULIP), SOX4, Neuronatin (NNAT), the mammalian homologue of Drosophila BarH-like 1(BARHL1), the nuclear matix protein NRP/B (ENC1), and the homeobox OTX2 gene. Genes found to be upregulated in the murine MB library included cyclin D2 (Ccnd2), thymopoietin (Tmpo), Musashi-1 (Msh1), protein phosphatase 2A inhibitor-2 (I-2pp2a), and Unc5h4(D). Using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), the mRNA expression levels for these genes were markedly higher in human MBs than in cerebellum. Western blot analysis was used to further confirm the overexpression of a subset of these genes at the protein level. Notch pathway overactivity was demonstrated in the TE671 MB cell line expressing high levels of MSH1 through HES1-Luciferase transfections. This study has revealed a panel of developmentally regulated genes that may be involved in the pathogenesis of MB. Copyright 2004 Nature Publishing Group

  2. Social defeat during adolescence and adulthood differentially induce BDNF-regulated immediate early genes

    Directory of Open Access Journals (Sweden)

    Caroline M. Coppens

    2011-11-01

    Full Text Available Stressful life events generally enhance the vulnerability for the development of human psychopathologies such as anxiety disorders and depression. The incidence rates of adult mental disorders steeply rises during adolescence in parallel with a structural and functional reorganization of the neural circuitry underlying stress reactivity. However, the mechanisms underlying susceptibility to stress and manifestation of mental disorders during adolescence are little understood. We hypothesized that heightened sensitivity to stress during adolescence reflects age-dependent differences in the expression of activity-dependent genes involved in synaptic plasticity. Therefore, we compared the effect of social stress during adolescence with social stress in adulthood on the expression of a panel of genes linked to induction of long-term potentiation (LTP and brain-derived neurotrophic factor (BDNF signaling. We show that social defeat during adolescence and adulthood differentially regulates expression of the immediate early genes BDNF, Arc, Carp, and Tieg1, as measured by qPCR in tissue lysates from prefrontal cortex, nucleus accumbens, and hippocampus. In the hippocampus, mRNA levels for all four genes were robustly elevated following social defeat in adolescence, whereas none were induced by defeat in adulthood. The relationship to coping style was also examined using adult reactive and proactive coping rats. Gene expression levels of reactive and proactive animals were similar in the prefrontal cortex and hippocampus. However, a trend toward a differential expression of BDNF and Arc mRNA in the nucleus accumbens was detected. BDNF mRNA was increased in the nucleus accumbens of proactive defeated animals, whereas the expression level in reactive defeated animals was comparable to control animals. The results demonstrate striking differences in immediate early gene expression in response to social defeat in adolescent and adult rats.

  3. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans.

    Science.gov (United States)

    Huh, J Y; Dincer, F; Mesfum, E; Mantzoros, C S

    2014-12-01

    Irisin is a recently identified exercise-induced myokine suggested to induce browning of white adipocytes. Deficiency of myostatin, and thus stimulation of muscle growth, has also been reported to induce irisin and its precursor FNDC5 expression in muscle and drive the browning of white adipocytes in mice, implying that irisin may be related to muscle growth in addition to its beneficial effects in adipocytes. In humans, the effect of irisin in muscle hypertrophy as well as adipocyte metabolism has not been fully investigated. Primary cultured human myocytes/adipocytes and 3T3-L1 cells were used to examine irisin-regulated gene/protein expression. Lipid accumulation, ATP content, glycolysis, lipolysis and metabolite profile were measured in control and irisin-treated (10 and 50 nM) adipocytes. In human myocytes, FNDC5 mRNA and irisin secretion were increased during myogenic differentiation, along with PGC1α and myogenin expression. Irisin treatment significantly increased insulin-like growth factor 1 and decreased myostatin gene expression through ERK pathway. PGC1α4, a newly discovered PGC1α isoform specifically related to muscle hypertrophy, was also upregulated. In human adipocytes, irisin induced uncoupling protein 1 and consequently increased adipocyte energy expenditure, expression of metabolic enzymes and metabolite intermediates, resulting in inhibition of lipid accumulation. Irisin and FNDC5 treatment also reduced preadipocyte differentiation, suggesting an additional mechanism in suppressing fat mass. These results suggest that irisin/FNDC5 has a pleiotropic role in muscle and improvement of adipocyte metabolism in humans.

  4. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools.

    Science.gov (United States)

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T

    2016-08-24

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in

  5. Alcohol-induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation.

    Science.gov (United States)

    Veazey, Kylee J; Carnahan, Mindy N; Muller, Daria; Miranda, Rajesh C; Golding, Michael C

    2013-07-01

    From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate that ethanol (EtOH) has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations in the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are 2 of the most prominent posttranslational histone modifications regulating stem cell maintenance and neural differentiation. Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with EtOH for 5 days. Control and EtOH-treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed EtOH-induced alterations in transcription. Unexpectedly, the majority of chromatin-modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2 l, Wdr5, and Kdm1b exhibited significant differences. Our results indicate that primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the histone code and errors in the epigenetic

  6. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  7. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Kotoku, Tomomi; Kosaka, Koji; Nishio, Miki; Ishida, Yasumasa; Kawaichi, Masashi; Matsuda, Eishou

    2016-01-01

    The molecular mechanisms underlying mesodermal and cardiac specification from embryonic stem cells (ESCs) are not fully understood. Here, we showed that the BTB domain-containing zinc finger protein CIBZ is expressed in mouse ESCs but is dramatically downregulated during ESC differentiation. CIBZ deletion in ESCs induced specification toward mesoderm phenotypes and their differentiation into cardiomyocytes, whereas overexpression of CIBZ delayed these processes. During ESC differentiation, CIBZ loss-and-gain-of-function data indicate that CIBZ negatively regulates the expressions of Brachyury (T) and Mesp1, the key transcriptional factors responsible for the specification of mammalian mesoderm and cardiac progenitors, respectively. Chromatin immunoprecipitation assays showed that CIBZ binds to T and Mesp1 promoters in undifferentiated ESCs, and luciferase assays indicate that CIBZ suppresses T and Mesp1 promoters. These findings demonstrate that CIBZ is a novel regulator of mesodermal and cardiac differentiation of ESCs, and suggest that CIBZ-mediated cardiac differentiation depends on the regulation of these two genes. PMID:27659197

  8. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells.

    Science.gov (United States)

    Zhang, Junfang; Han, Bingshe; Li, Xiaoxia; Bies, Juraj; Jiang, Penglei; Koller, Richard P; Wolff, Linda

    2016-09-08

    The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.

  9. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction

    Science.gov (United States)

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.

    2016-01-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  10. Differential regulation of cardiac excitation–contraction coupling by cAMP phosphodiesterase subtypes

    Science.gov (United States)

    Mika, Delphine; Bobin, Pierre; Pomérance, Martine; Lechêne, Patrick; Westenbroek, Ruth E.; Catterall, William A.; Vandecasteele, Grégoire; Leroy, Jérôme; Fischmeister, Rodolphe

    2013-01-01

    Aims Multiple phosphodiesterases (PDEs) hydrolyze cAMP in cardiomyocytes, but the functional significance of this diversity is not well understood. Our goal here was to characterize the involvement of three different PDEs (PDE2–4) in cardiac excitation–contraction coupling (ECC). Methods and results Sarcomere shortening and Ca2+ transients were recorded simultaneously in adult rat ventricular myocytes and ECC protein phosphorylation by PKA was determined by western blot analysis. Under basal conditions, selective inhibition of PDE2 or PDE3 induced a small but significant increase in Ca2+ transients, sarcomere shortening, and troponin I phosphorylation, whereas PDE4 inhibition had no effect. PDE3 inhibition, but not PDE2 or PDE4, increased phospholamban phosphorylation. Inhibition of either PDE2, 3, or 4 increased phosphorylation of the myosin-binding protein C, but neither had an effect on L-type Ca2+ channel or ryanodine receptor phosphorylation. Dual inhibition of PDE2 and PDE3 or PDE2 and PDE4 further increased ECC compared with individual PDE inhibition, but the most potent combination was obtained when inhibiting simultaneously PDE3 and PDE4. This combination also induced a synergistic induction of ECC protein phosphorylation. Submaximal β-adrenergic receptor stimulation increased ECC, and this effect was potentiated by individual PDE inhibition with the rank order of potency PDE4 = PDE3 > PDE2. Identical results were obtained on ECC protein phosphorylation. Conclusion Our results demonstrate that PDE2, PDE3, and PDE4 differentially regulate ECC in adult cardiomyocytes. PDE2 and PDE3 play a more prominent role than PDE4 in regulating basal cardiac contraction and Ca2+ transients. However, PDE4 becomes determinant when cAMP levels are elevated, for instance, upon β-adrenergic stimulation or PDE3 inhibition. PMID:23933582

  11. Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes.

    Science.gov (United States)

    Mika, Delphine; Bobin, Pierre; Pomérance, Martine; Lechêne, Patrick; Westenbroek, Ruth E; Catterall, William A; Vandecasteele, Grégoire; Leroy, Jérôme; Fischmeister, Rodolphe

    2013-11-01

    Multiple phosphodiesterases (PDEs) hydrolyze cAMP in cardiomyocytes, but the functional significance of this diversity is not well understood. Our goal here was to characterize the involvement of three different PDEs (PDE2-4) in cardiac excitation-contraction coupling (ECC). Sarcomere shortening and Ca(2+) transients were recorded simultaneously in adult rat ventricular myocytes and ECC protein phosphorylation by PKA was determined by western blot analysis. Under basal conditions, selective inhibition of PDE2 or PDE3 induced a small but significant increase in Ca(2+) transients, sarcomere shortening, and troponin I phosphorylation, whereas PDE4 inhibition had no effect. PDE3 inhibition, but not PDE2 or PDE4, increased phospholamban phosphorylation. Inhibition of either PDE2, 3, or 4 increased phosphorylation of the myosin-binding protein C, but neither had an effect on L-type Ca(2+) channel or ryanodine receptor phosphorylation. Dual inhibition of PDE2 and PDE3 or PDE2 and PDE4 further increased ECC compared with individual PDE inhibition, but the most potent combination was obtained when inhibiting simultaneously PDE3 and PDE4. This combination also induced a synergistic induction of ECC protein phosphorylation. Submaximal β-adrenergic receptor stimulation increased ECC, and this effect was potentiated by individual PDE inhibition with the rank order of potency PDE4 = PDE3 > PDE2. Identical results were obtained on ECC protein phosphorylation. Our results demonstrate that PDE2, PDE3, and PDE4 differentially regulate ECC in adult cardiomyocytes. PDE2 and PDE3 play a more prominent role than PDE4 in regulating basal cardiac contraction and Ca(2+) transients. However, PDE4 becomes determinant when cAMP levels are elevated, for instance, upon β-adrenergic stimulation or PDE3 inhibition.

  12. Differential effects of two fermentable carbohydrates on central appetite regulation and body composition.

    Directory of Open Access Journals (Sweden)

    Tulika Arora

    Full Text Available Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and β-glucan exert similar effects on body composition and central appetite regulation in high fat fed mice.Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w fermentable carbohydrate, 10% (w/w inulin or 10% (w/w β-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance ((1H NMR, colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI and manganese enhanced MRI (MEMRI, respectively, PYY (peptide YY concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and β-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in β-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. β-Glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state.Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. β-Glucan appears to suppress neuronal activity in the hypothalamic appetite centers. Differential

  13. Polycomb group protein Ezh2 regulates hepatic progenitor cell proliferation and differentiation in murine embryonic liver.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Koike

    Full Text Available In embryonic liver, hepatic progenitor cells are actively proliferating and generate a fundamental cellular pool for establishing parenchymal components. However, the molecular basis for the expansion of the progenitors maintaining their immature state remains elusive. Polycomb group proteins regulate gene expression throughout the genome by modulating of chromatin structure and play crucial roles in development. Enhancer of zeste homolog 2 (Ezh2, a key component of polycomb group proteins, catalyzes tri-methylation of lysine 27 of histone H3 (H3K27me3, which trigger the gene suppression. In the present study, we investigated a role of Ezh2 in the regulation of the expanding hepatic progenitor population in vivo. We found that Ezh2 is highly expressed in the actively proliferating cells at the early developmental stage. Using a conditional knockout mouse model, we show that the deletion of the SET domain of Ezh2, which is responsible for catalytic induction of H3K27me3, results in significant reduction of the total liver size, absolute number of liver parenchymal cells, and hepatic progenitor cell population in size. A clonal colony assay in the hepatic progenitor cells directly isolated from in vivo fetal livers revealed that the bi-potent clonogenicity was significantly attenuated by the Ezh2 loss of function. Moreover, a marker expression based analysis and a global gene expression analysis showed that the knockout of Ezh2 inhibited differentiation to hepatocyte with reduced expression of a number of liver-function related genes. Taken together, our results indicate that Ezh2 is required for the hepatic progenitor expansion in vivo, which is essential for the functional maturation of embryonic liver, through its activity for catalyzing H3K27me3.

  14. Endogenous hypothalamic somatostatins differentially regulate growth hormone secretion from goldfish pituitary somatotropes in vitro.

    Science.gov (United States)

    Yunker, Warren K; Smith, Sean; Graves, Chad; Davis, Philip J; Unniappan, Surajlal; Rivier, Jean E; Peter, Richard E; Chang, John P

    2003-09-01

    Using Southern blot analysis of RT-PCR products, mRNA for three different somatostatin (SS) precursors (PSS-I, -II, and -III), which encode for SS(14), goldfish brain (gb)SS(28), and [Pro(2)]SS(14), respectively, were detected in goldfish hypothalamus. PSS-I and -II mRNA, but not PSS-