WorldWideScience

Sample records for regulate morphological differentiation

  1. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  2. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of); Jang, Deok-Jin [Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711 (Korea, Republic of); Lee, Jin-A, E-mail: leeja@hnu.kr [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of)

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  3. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    International Nuclear Information System (INIS)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-01-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival

  4. Differential morphology and image processing.

    Science.gov (United States)

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  5. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.

    Science.gov (United States)

    Moretti, Marino; Wang, Lei; Grognet, Pierre; Lanver, Daniel; Link, Hannes; Kahmann, Regine

    2017-09-01

    Regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling negatively. To broaden an understanding of the roles of RGS proteins in fungal pathogens, we functionally characterized the three RGS protein-encoding genes (rgs1, rgs2 and rgs3) in the phytopathogenic fungus Ustilago maydis. It was found that RGS proteins played distinct roles in the regulation of development and virulence. rgs1 had a minor role in virulence when deleted in a solopathogenic strain. In crosses, rgs1 was dispensable for mating and filamentation, but was required for teliospore production. Haploid rgs2 mutants were affected in cell morphology, growth, mating and were unable to cause disease symptoms in crosses. However, virulence was unaffected when rgs2 was deleted in a solopathogenic strain, suggesting an exclusive involvement in pre-fusion events. These rgs2 phenotypes are likely connected to elevated intracellular cAMP levels. rgs3 mutants were severely attenuated in mating, in their response to pheromone, virulence and formation of mature teliospores. The mating defect could be traced back to reduced expression of the transcription factor rop1. It was speculated that the distinct roles of the three U. maydis RGS proteins were achieved by direct modulation of the Gα subunit-activated signaling pathways as well as through Gα-independent functions. © 2017 John Wiley & Sons Ltd.

  6. Time-dependent regulation of morphological changes and cartilage differentiation markers in the mouse pubic symphysis during pregnancy and postpartum recovery.

    Science.gov (United States)

    Castelucci, Bianca Gazieri; Consonni, Sílvio Roberto; Rosa, Viviane Souza; Sensiate, Lucimara Aparecida; Delatti, Paula Cristina Rugno; Alvares, Lúcia Elvira; Joazeiro, Paulo Pinto

    2018-01-01

    Animal models commonly serve as a bridge between in vitro experiments and clinical applications; however, few physiological processes in adult animals are sufficient to serve as proof-of-concept models for cartilage regeneration. Intriguingly, some rodents, such as young adult mice, undergo physiological connective tissue modifications to birth canal elements such as the pubic symphysis during pregnancy; therefore, we investigated whether the differential expression of cartilage differentiation markers is associated with cartilaginous tissue morphological modifications during these changes. Our results showed that osteochondral progenitor cells expressing Runx2, Sox9, Col2a1 and Dcx at the non-pregnant pubic symphysis proliferated and differentiated throughout pregnancy, giving rise to a complex osteoligamentous junction that attached the interpubic ligament to the pubic bones until labour occurred. After delivery, the recovery of pubic symphysis cartilaginous tissues was improved by the time-dependent expression of these chondrocytic lineage markers at the osteoligamentous junction. This process potentially recapitulates embryologic chondrocytic differentiation to successfully recover hyaline cartilaginous pads at 10 days postpartum. Therefore, we propose that this physiological phenomenon represents a proof-of-concept model for investigating the mechanisms involved in cartilage restoration in adult animals.

  7. Regulators of Tfh cell differentiation

    Directory of Open Access Journals (Sweden)

    Gajendra Motiram Jogdand

    2016-11-01

    Full Text Available The follicular helper T (Tfh cells help is critical for activation of B cells, antibody class switching and germinal center formation. The Tfh cells are characterized by the expression of CXCR5, ICOS, PD-1, Bcl-6, and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. Tfh cells are generated from naïve CD4 T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A, migration and positioning in the germinal center by CXCR5, surface receptors (ICOS/ICOSL, SAP/SLAM as well as transcription factor (Bcl-6, c-Maf, STAT3 signaling and repressor miR155. On the other hand Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7, surface receptor (PD-1, CTLA-4, transcription factors Blimp-1, STAT5, T-bet, KLF-2 signaling and repressor miR 146a. Interestingly, miR 17-92 and FOXO1 acts as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin Ligase and miRNA as positive and negative regulators for Tfh differentiation.

  8. Low genetic differentiation among morphologically distinct ...

    African Journals Online (AJOL)

    Labeobarbus altianalis and L. bynni bynni are hexaploid cyprinid fishes in the genus Labeobarbus. In the Great Lakes region of Africa, these two large-bodied barbs exhibit considerable morphological variations. Their intraspecific classification, currently based on geographical distribution and morphological variation, is of ...

  9. The challenge of legitimizing spatially differentiated regulation

    DEFF Research Database (Denmark)

    Thorsøe, Martin Hvarregaard; Graversgaard, Morten; Noe, Egon

    2017-01-01

    Differentiating regulation is a promising approach to agri-environmental regulation that may potentially reduce the environmental impact of agriculture at the lowest possible costs for the farmers and society, but also possesses a number of challenges. In this article, we explore the challenges...... to the legitimacy of agri-environmental regulation that occurs when the regulatory regime changes from general regulation to differentiated regulation. The analysis is based on a case study of the implementation of the Buffer zone act in Denmark – a regulation that prevents agricultural production in a 10 (later 9......) meter fringe around selected waterbodies. We distinguish between two different ways of legitimizing: Producing knowledge and participation. We conclude that to harvest some of the obvious benefits of differentiated regulation a number of challenges must be resolved, 1) ensuring legitimacy...

  10. Intraspecific morphological and genetic differentiation in Scrophularia grayana (Scrophulariaceae).

    Science.gov (United States)

    Kamada, Takuro; Yamashiro, Tadashi; Maki, Masayuki

    2007-05-01

    Scrophularia grayana, which is distributed throughout northern Japan and Sakhalin, and its locally endemic variety var. grayanoides, have been examined morphometrically and genetically. Principal-component analysis using a total of 26 morphological characteristics revealed that these taxa are morphologically differentiated, but that the difference is not distinct. These two taxa have the same number of chromosomes in the somatic cells, 2n = 94, suggesting that ploidal level difference is not relevant to their divergence. The distributions of the taxa are adjoining in the north of Japanese mainland Honshu. Nevertheless, principal-coordinate analysis using putative 112 ISSR loci indicated they are genetically very distinct. Many taxon-specific alleles were found, and many of the alleles were fixed in each taxon. This genetic information suggests that a relatively long time has passed since the taxa became differentiated and that gene flow has rarely occurred between them, although morphological similarity has been maintained, probably because of natural selective forces.

  11. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  12. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  13. Towards spatially differentiated regulation of nitrogen

    DEFF Research Database (Denmark)

    Lajer Højberg, Anker; Refsgaard, Jens Christian; Jørgensen, Lisbeth Flindt

    EU member states are challenged by nitrogen loads to estuaries and inland freshwater systems impeding the achievement of good ecological status as required by the Water Framework Directive (WFD). In Denmark nitrate leaching from the root zone has been reduced by 50% since 1987, but additional...... reductions of 30-50% are required to meet the objectives of the WFD. Achieving such abatements by uniform restrictions for all areas, would be very costly and inefficient as studies have shown that reduction varies spatially depending on the local hydrogeological conditions, the presence and dynamics...... of drains and hydro-biogeochemical conditions in associated riparian lowlands. Hence, a shift of paradigm in regulation practice is needed, whit a cost-effective regulation accounting for this variability and differentiate the regulations/restrictions between resilient and vulnerable areas. However...

  14. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    Science.gov (United States)

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  15. Methionine restriction alters bone morphology and affects osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Amadou Ouattara

    2016-12-01

    Full Text Available Methionine restriction (MR extends the lifespan of a wide variety of species, including rodents, drosophila, nematodes, and yeasts. MR has also been demonstrated to affect the overall growth of mice and rats. The objective of this study was to evaluate the effect of MR on bone structure in young and aged male and female C57BL/6J mice. This study indicated that MR affected the growth rates of males and young females, but not aged females. MR reduced volumetric bone mass density (vBMD and bone mineral content (BMC, while bone microarchitecture parameters were decreased in males and young females, but not in aged females compared to control-fed (CF mice. However, when adjusted for bodyweight, the effect of MR in reducing vBMD, BMC and microarchitecture measurements was either attenuated or reversed suggesting that the smaller bones in MR mice is appropriate for its body size. In addition, CF and MR mice had similar intrinsic strength properties as measured by nanoindentation. Plasma biomarkers suggested that the low bone mass in MR mice could be due to increased collagen degradation, which may be influenced by leptin, IGF-1, adiponectin and FGF21 hormone levels. Mouse preosteoblast cell line cultured under low sulfur amino acid growth media attenuated gene expression levels of Col1al, Runx2, Bglap, Alpl and Spp1 suggesting delayed collagen formation and bone differentiation. Collectively, our studies revealed that MR altered bone morphology which could be mediated by delays in osteoblast differentiation. Keywords: Methionine restriction, Aged mice, Micro-computed tomography, Nanoindentation, MC3T3-E1 subclone 4

  16. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  17. Prdm8 regulates the morphological transition at multipolar phase during neocortical development.

    Directory of Open Access Journals (Sweden)

    Mayuko Inoue

    Full Text Available Here, we found that the PR domain protein Prdm8 serves as a key regulator of the length of the multipolar phase by controlling the timing of morphological transition. We used a mouse line with expression of Prdm8-mVenus reporter and found that Prdm8 is predominantly expressed in the middle and upper intermediate zone during both the late and terminal multipolar phases. Prdm8 expression was almost coincident with Unc5D expression, a marker for the late multipolar phase, although the expression of Unc5D was found to be gradually down-regulated to the point at which mVenus expression was gradually up-regulated. This expression pattern suggests the possible involvement of Prdm8 in the control of the late and terminal multipolar phases, which controls the timing for morphological transition. To test this hypothesis, we performed gain- and loss-of-function analysis of neocortical development by using in utero electroporation. We found that the knockdown of Prdm8 results in premature change from multipolar to bipolar morphology, whereas the overexpression of Prdm8 maintained the multipolar morphology. Additionally, the postnatal analysis showed that the Prdm8 knockdown stimulated the number of early born neurons, and differentiated neurons located more deeply in the neocortex, however, majority of those cells could not acquire molecular features consistent with laminar location. Furthermore, we found the candidate genes that were predominantly utilized in both the late and terminal multipolar phases, and these candidate genes included those encoding for guidance molecules. In addition, we also found that the expression level of these guidance molecules was inhibited by the introduction of the Prdm8 expression vector. These results indicate that the Prdm8-mediated regulation of morphological changes that normally occur during the late and terminal multipolar phases plays an important role in neocortical development.

  18. Manifold Shape : from Differential Geometry to Mathematical Morphology

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1994-01-01

    Much progress has been made in extending Euclidean mathematical morphology to more complex structures such as complete lattices or spaces with a non-commutative symmetry group. Such generalizations are important for practical situations such as translation and rotation invariant pattern recognition

  19. Manifold Shape: from Differential Geometry to Mathematical Morphology

    OpenAIRE

    Roerdink, J.B.T.M.

    1994-01-01

    Much progress has been made in extending Euclidean mathematical morphology to more complex structures such as complete lattices or spaces with a non-commutative symmetry group. Such generalizations are important for practical situations such as translation and rotation invariant pattern recognition or shape description of patterns on spherical surfaces. Also in computer vision much use is made of spherical mappings to describe the world as seen by a human or machine observer. Stimulated by th...

  20. Morphological differentiation despite gene flow in an endangered grasshopper.

    Science.gov (United States)

    Dowle, Eddy J; Morgan-Richards, Mary; Trewick, Steven A

    2014-10-16

    Gene flow is traditionally considered a limitation to speciation because selection is required to counter the homogenising effect of allele exchange. Here we report on two sympatric short-horned grasshoppers species in the South Island of New Zealand; one (Sigaus australis) widespread and the other (Sigaus childi) a narrow endemic. Of the 79 putatively neutral markers (mtDNA, microsatellite loci, ITS sequences and RAD-seq SNPs) all but one marker we examined showed extensive allele sharing, and similar or identical allele frequencies in the two species where they co-occur. We found no genetic evidence of deviation from random mating in the region of sympatry. However, analysis of morphological and geometric traits revealed no evidence of morphological introgression. Based on phenotype the two species are clearly distinct, but their genotypes thus far reveal no divergence. The best explanation for this is that some loci associated with the distinguishing morphological characters are under strong selection, but exchange of neutral loci is occurring freely between the two species. Although it is easier to define species as requiring a barrier between them, a dynamic model that accommodates gene flow is a biologically more reasonable explanation for these grasshoppers.

  1. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    International Nuclear Information System (INIS)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-01-01

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: ► YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. ► YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. ► Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. ► Knockdown of Gli2 rescues the Yap

  2. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  3. Induction of morphological and functional differentiation of human ...

    Indian Academy of Sciences (India)

    Samaneh Sharif

    2017-10-31

    Oct 31, 2017 ... model of neuroblastoma cancer. Influence of miR-124 .... a more reliable marker for quantifying the expand of cell differentiation (Thiele et al. ..... results for children with high-risk neuroblastoma treated on a randomized trial of ...

  4. The Proprioceptive System Regulates Morphologic Restoration of Fractured Bones

    Directory of Open Access Journals (Sweden)

    Ronen Blecher

    2017-08-01

    Full Text Available Successful fracture repair requires restoration of bone morphology and mechanical integrity. Recent evidence shows that fractured bones of neonatal mice undergo spontaneous realignment, dubbed “natural reduction.” Here, we show that natural reduction is regulated by the proprioceptive system and improves with age. Comparison among mice of different ages revealed, surprisingly, that 3-month-old mice exhibited more rapid and effective natural reduction than newborns. Fractured bones of null mutants for transcription factor Runx3, lacking functional proprioceptors, failed to realign properly. Blocking Runx3 expression in the peripheral nervous system, but not in limb mesenchyme, recapitulated the null phenotype, as did inactivation of muscles flanking the fracture site. Egr3 knockout mice, which lack muscle spindles but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types, as well as muscle contraction, are required for this regulatory mechanism. These findings uncover a physiological role for proprioception in non-autonomous regulation of skeletal integrity.

  5. Solo and keratin filaments regulate epithelial tubule morphology.

    Science.gov (United States)

    Nishimura, Ryosuke; Kato, Kagayaki; Fujiwara, Sachiko; Ohashi, Kazumasa; Mizuno, Kensaku

    2018-04-28

    Epithelial tubules, consisting of the epithelial cell sheet with a central lumen, are the basic structure of many organs. Mechanical forces play an important role in epithelial tubulogenesis; however, little is known about the mechanisms controlling the mechanical forces during epithelial tubule morphogenesis. Solo (also known as ARHGEF40) is a RhoA-targeting guanine-nucleotide exchange factor that is involved in mechanical force-induced RhoA activation and stress fiber formation. Solo binds to keratin-8/keratin-18 (K8/K18) filaments, and this interaction plays a crucial role in mechanotransduction. In this study, we examined the roles of Solo and K8/K18 filaments in epithelial tubulogenesis using MDCK cells cultured in 3D collagen gels. Knockdown of either Solo or K18 resulted in rounder tubules with increased lumen size, indicating that Solo and K8/K18 filaments play critical roles in forming the elongated morphology of epithelial tubules. Moreover, knockdown of Solo or K18 decreased the level of diphosphorylated myosin light chain (a marker of contractile force) at the luminal and outer surfaces of tubules, suggesting that Solo and K8/K18 filaments are involved in the generation of the myosin II-mediated contractile force during epithelial tubule morphogenesis. In addition, K18 filaments were normally oriented along the long axis of the tubule, but knockdown of Solo perturbed their orientation. These results suggest that Solo plays crucial roles in forming the elongated morphology of epithelial tubules and in regulating myosin II activity and K18 filament organization during epithelial tubule formation.

  6. Morphological differentiation of Streptomyces viridochromogenes E-219 on solid culture

    International Nuclear Information System (INIS)

    Liang Xinle; Zhu Jing; Jin Yingyan

    2012-01-01

    The Streptomyces viridochromogenes E-219 was derived from Streptomyces viridochromogenes CGMCC4.1119 treated with 60 Co γ-rays irradiation and protoplast fusion. With the help of fluorescent probes, fluorescence microscope and electron microscopy, the morphology and development of E-219 on solid surface culture were investigated in this study. The effect of agarslant culture time on the production of Avilamycin was also studied to provide theoretical basis for industrial fermentation of selecting the appropriate seed to culture on the agarslant culture medium. The results implied that the development of colonies of Streptomyces viridochromogenes accompanied the intermittent hyhae apoptosis, and the production of spores was from the active mycelium. The colonial morphology of strain E-219 was significantly different from the original strain CGMCC4h1119. There were variegated hyphae formation in the stage of spore germination and initial hyphae development (10 h) with the live and dead segments alternated in a highly regular fashion within the same hypha. After the early single colony formation, the third phase was followed by profuse growth of the live segments derived from the variegated hypha, then the second apoptosis of the mycelia (48 h) was occurred with another quick growth, and sporulation was occurred at 96 h. Strain CGMCC4.1119 had spiral sporotrichial and round conidiophores with spike, whereas strain E-219 had linear sporotrichial, smooth and dylindrical conidiophore. The results of shake flask experiments indicated that the spores of E-219 had that highest activity when cultured on agarslant culture medium and incubated for 106 h with the production of avilamycin up to 1200 mg/L. (authors)

  7. Forkhead Box C1 Regulates Human Primary Keratinocyte Terminal Differentiation.

    Directory of Open Access Journals (Sweden)

    Lianghua Bin

    Full Text Available The epidermis serves as a critical protective barrier between the internal and external environment of the human body. Its remarkable barrier function is established through the keratinocyte (KC terminal differentiation program. The transcription factors specifically regulating terminal differentiation remain largely unknown. Using a RNA-sequencing (RNA-seq profiling approach, we found that forkhead box c 1 (FOXC1 was significantly up-regulated in human normal primary KC during the course of differentiation. This observation was validated in human normal primary KC from several different donors and human skin biopsies. Silencing FOXC1 in human normal primary KC undergoing differentiation led to significant down-regulation of late terminal differentiation genes markers including epidermal differentiation complex genes, keratinization genes, sphingolipid/ceramide metabolic process genes and epidermal specific cell-cell adhesion genes. We further demonstrated that FOXC1 works down-stream of ZNF750 and KLF4, and upstream of GRHL3. Thus, this study defines FOXC1 as a regulator specific for KC terminal differentiation and establishes its potential position in the genetic regulatory network.

  8. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Fumiko Matsuoka

    Full Text Available Human bone marrow mesenchymal stem cells (hBMSCs are widely used cell source for clinical bone regeneration. Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be implanted. However, there are still no practical methods to characterize such potential non-invasively or previously. Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately, such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We applied computational machine learning, combining cell morphology features with their corresponding biochemical osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP activity and calcium deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly correlated with the experimentally defined differentiation marker values (R>0.89 for both marker predictions. The clinical applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell images and the other using both historical images together with the patient's own cell images to predict a new patient's cellular potential. The prediction accuracy was found to be greatly enhanced

  9. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  10. Causes and effects of morphological changes of the regulated channel of the river Toplica

    Directory of Open Access Journals (Sweden)

    Đeković Vojislav

    2005-01-01

    Full Text Available The regulation of small torrential watercourses outside the urbanized areas is often based on the so-called field type of regulation. In the selection of this concept, after the regulation works, the new channel is left to the natural process of the morphological formation of the water cross-section taking care not to disturb the general stability of the regulated channel. We present the process of morphological development of the regulated channel of the river Toplica, tributary of the river Kolubara, in the period 1982-2004 i.e. from immediately after the regulation works to the present day.

  11. Regulation of T cell differentiation and function by EZH2

    Directory of Open Access Journals (Sweden)

    THEODOROS KARANTANOS

    2016-05-01

    Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.

  12. Regulation of T Cell Differentiation and Function by EZH2

    Science.gov (United States)

    Karantanos, Theodoros; Christofides, Anthos; Bardhan, Kankana; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  13. Identification of SACE_7040, a member of TetR family related to the morphological differentiation of Saccharopolyspora erythraea.

    Science.gov (United States)

    Han, Shu; Song, Ping; Ren, Ting; Huang, Xunduan; Cao, Cheng; Zhang, Buchang

    2011-08-01

    SACE_7040 is presumed to be a member of the TetR family of transcriptional regulators in Saccharopolyspora erythraea, but its biological function is unknown. It was shown that the SACE_7040 gene knockout mutant formed aerial mycelium earlier than its original strain, and this phenotype could be restored by complementation of a single copy of SACE_7040 gene, demonstrating that SACE_7040 is an important regulator of the morphological differentiation of Sac. erythraea. When SACE_7040 gene was disrupted in the bldD mutant, we intriguingly found that the defect in aerial development exhibited by the bldD mutant could be overcome, suggesting a crosstalk between SACE_7040 and BldD in Sac. erythraea morphogenesis. These findings provide novel insights toward the Sac. erythraea developmental biology.

  14. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  15. EZH2: a pivotal regulator in controlling cell differentiation.

    Science.gov (United States)

    Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan

    2012-01-01

    Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.

  16. Morphological heterogeneity and population differentiation in the green chromid Etroplus suratensis (Pisces: Cichlidae in Sri Lanka

    Directory of Open Access Journals (Sweden)

    K. B. Suneetha Gunawickrama

    2007-09-01

    Full Text Available Morphological variation of the euryhaline cichlid fish Etroplus suratensis (Bloch from six geographically apart estuarine localities along the southern and western coasts of Sri Lanka was studied. Significant heterogeneity in morphology of the cichlid were found with respect to nine morphometric characters (n=218. Fish of Nilwala estuary and Garanduwa lagoon were not significantly different in morphology, yet they show discernible differences from the other four samples (Kahanda lagoon, Chilaw lagoon, Walawe estuary and Koggala lagoon with respect to the most of the studied characters. Concordant results were found by multivariate analysis of the sizecorrected morphological data as well. Three functions were significant in discriminating the populations of which the first two functions accounted for 95% of the covariance (CV1 85.4 % and CV2 9.7%. The function with the greatest discriminatory power (CV1 can clearly separate samples of Nilwala estuary (L5 and Garanduwa lagoon (L6 from the rest of the samples, while the magnitude of the discrimination between the latter samples is much smaller. Classification functions could correctly classify an average of 65.7% of the individuals into their respective a priori population units. No evidence was found for isolation-by-distance model. The results suggest that E. suratensis populations in some of the studied estuarine localities maintain significant morphological heterogeneity, and the morphological variation can be used to differentiate some of these populations.

  17. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    Directory of Open Access Journals (Sweden)

    Nicholas E Baker

    Full Text Available When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  18. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    Science.gov (United States)

    Baker, Nicholas E

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  19. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  20. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

    Directory of Open Access Journals (Sweden)

    Pleasantine Mill

    2009-11-01

    Full Text Available Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs. Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.

  1. Morphological analysis of energy services: Paving the way to quality differentiation in the power sector

    International Nuclear Information System (INIS)

    Salah, Florian; Flath, Christoph M.; Schuller, Alexander; Will, Christian; Weinhardt, Christof

    2017-01-01

    The activation of the still predominantly passive demand side is necessary to further guarantee a stable power system in the short term and ensure capacity adequacy in the long run. A system with a high share of generators with nearly no marginal costs requires new services that facilitate transmitting the right economic signals to the system stakeholders. To this end we refine the notion of energy services and propose a framework to systematically design quality differentiated energy services for consumers. This approach facilitates a value-based economic assessment of energy services that deviates from the marginal-cost-paradigm. We further illustrate pricing options for these new energy service products and outline infrastructural needs and additional use case-specific product properties. Moreover, we discuss how the morphological approach can be formalised using a mathematical programming formulation and introduce a complexity measure that facilitates assessing potential adoption obstacles for end consumers. Additionally, we illustrate the practical applicability of these findings by using a prototypical implementation of a decision support system. To foster differentiated energy services, we recommend a more lenient regulatory regime lowering the barriers for new market entrants. - Highlights: • Activating the demand side is necessary to further guarantee a stable power system. • We refine the notion of energy services helping to tackle this obstacle. • A morphological box to design quality differentiated energy services is proposed. • We extend this framework by implementing a prototypical decision support system. • A more lenient regulatory regime is needed to foster differentiated energy services.

  2. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  3. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    Science.gov (United States)

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  4. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  5. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  6. Genetic and Morphological Differentiation of the Semiterrestrial Crab Armases angustipes (Brachyura: Sesarmidae) along the Brazilian Coast.

    Science.gov (United States)

    Marochi, Murilo Zanetti; Masunari, Setuko; Schubart, Christoph D

    2017-02-01

    The genetic and morphometric population structures of the semiterrestrial crab Armases angustipes from along the Brazilian coast were examined. The influence of the Central South Equatorial Current on larval dispersal of A. angustipes also was evaluated. Six populations were sampled from estuarine areas in São Luis do Maranhão, Maranhão; Natal, Rio Grande do Norte; Maceió, Alagoas; Ilhéus, Bahia; Aracruz, Espírito Santo; and Guaratuba, Paraná. Patterns of genetic differentiation were assessed using DNA sequence data corresponding to parts of the mitochondrial cytochrome c oxidase subunit 1. Geometric morphometric techniques were used to evaluate morphological variation in shape and size of the carapace and right cheliped propodus. Our results revealed low genetic variability and lack of phylogeographic structure; geometric morphometrics showed statistically significant morphological differentiation and geographic structuring. Our data indicate the absence of possible barriers to gene flow for this mobile species, and no clear correlation of morphological or genetic variation with ocean currents and/or geographic distance. Our results also suggest that historical geological and climatological events and/or possible bottleneck effects influenced the current low genetic variability among the populations of A. angustipes.

  7. Morphological differentiation of Carollia brevicauda and C. perspicillata (Chiroptera: Phyllostomidae from Peru and Ecuador

    Directory of Open Access Journals (Sweden)

    Dennisse Ruelas

    2017-12-01

    Full Text Available In the bat genus Carollia, C. brevicauda and C. perspicillata are the most abundant and widely distributed in South America; also, their distributional ranges are almost completely overlapped. Because these species are morphologically very similar, they are frequently misidentified. The aims of this study were to determine the morphological and morphometric differences of C. brevicauda and C. perspicillata. For that reason, I employed a detail morphological assessment and several multivariate morphometric tools. I evaluated 26 normally craniodental variables in 375 adult specimens from Peruvian and Ecuadorian populations. In addition, 54 specimens of C. benkeithi, C. manu, and Carollia sp. were included for comparisons. I found that C. brevicauda and C. perspicillata are differentiated by 28 discrete characters, and are significantly different in 25 morphometric variables. Also, C. brevicauda, C. perspicillata, and C. manu are clustered in a different group from the group of C. benkeithi and Carollia sp. My results complement previous studies adding several characters that confidently differentiate C. brevicauda from C. perspicillata; which needs to be tested in other regions.

  8. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology.

    Directory of Open Access Journals (Sweden)

    Sergey Popov

    Full Text Available Glioblastoma is a highly aggressive tumour with marked heterogeneity at the morphological level in both the tumour cells and the associated highly prominent vasculature. As we begin to develop an increased biological insight into the underlying processes driving the disease, fewer attempts have thus far been made to understand these phenotypic differences. We sought to address this by carefully assessing the morphological characteristics of both the tumour cells and the associated vasculature, relating these observations to the IDH1/MGMT status, with a particular focus on the early onset population of young adults who develop primary glioblastoma. 276 primary glioblastoma specimens were classified into their predominant cell morphological type (fibrillary, gemistocytic, giant cell, small cell, oligodendroglial, sarcomatous, and assessed for specific tumour (cellularity, necrosis, palisades and vascular features (glomeruloid structures, arcades, pericyte proliferation. IDH1 positive glioblastomas were associated with a younger age at diagnosis, better clinical outcome, prominent oligodendroglial and small cell tumour cell morphology, pallisading necrosis and glomeruloid vascular proliferation in the absence of arcade-like structures. These features widen the phenotype of IDH1 mutation-positive primary glioblastoma in young adults and provide correlative evidence for a functional role of mutant IDH1 in the differential nature of neo-angiogenesis in different subtypes of glioblastoma.

  9. Morphologic classification of ductal breast tumors on ultrasound : differential diagnosis of benign and malignant tumors

    International Nuclear Information System (INIS)

    Won, Mi Sook; Chung, Soo Young; Yang, Ik; Lee, Yul; Park, Hai Jung; Lee, Myoung Hwan; Yoon, In Sook; Koh, Mi Gyoung

    1997-01-01

    To evaluate the morphologic differential diagnosis of benign and malignant ductal breast tumors, as seen on US US findings in 29 pathologically proven cases of ductal breast tumor were retrospectively reviewed. All patients were female and their mean age was 42 years. Nineteen tumors were benign and ten were malignant, and all ductal or cystic lesions showed solid masses. According to the location of the mural nodule, we classified the sonographic appearance of these tumors into three types:intraductal, intracystic and amorphic. The intraductal type was divided into three subtypes:incompletely obstructive, completely obstructive and multiple mural nodules. For the intracystic type, too, three subtypes were designated:the intracystic mural nodule (mural cyst), intracystic mural nodule with the duct (mural cyst+duct) and intracystic multiple mural nodules. The amorphic type is defined as an atypical ductal tumor with the mural nodule extending into adjacent parenchyma. The margin of the duct or cyst was smooth in 68.4% of benign, and irregular in 90% of malignant ductal tumors. Internal echogeneity of the duct or cyst usually showed homogeneity in both benign and malignant tumors. 73.7% of tumors connecting the duct were benign and 50% were malignant. In benign tumors, 52.6% of mural nodule had an irregular margin, while in malignant tumors, the corresponding proportion was 100%;both types usually showed heterogeneous hypoechogeneity. Among benign tumors, the most common morphologic type was the intraductal incompletely obstructive subtype (36.8%);among those that were malignant, the amorphic type was most common, accounting for 40% of tumors. No amorphic type was benign and no incompletely obstructive subtype was malignant. When ductal breast tumors are morphologically classified on the basis of sonographic findings, the intraductal incompletely obstructive subtype suggests benignancy, and the amorphic type, malignancy. The morphologic classification of ductal

  10. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    Science.gov (United States)

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.

  11. Zfp206 regulates ES cell gene expression and differentiation.

    Science.gov (United States)

    Zhang, Wen; Walker, Emily; Tamplin, Owen J; Rossant, Janet; Stanford, William L; Hughes, Timothy R

    2006-01-01

    Understanding transcriptional regulation in early developmental stages is fundamental to understanding mammalian development and embryonic stem (ES) cell properties. Expression surveys suggest that the putative SCAN-Zinc finger transcription factor Zfp206 is expressed specifically in ES cells [Zhang,W., Morris,Q.D., Chang,R., Shai,O., Bakowski,M.A., Mitsakakis,N., Mohammad,N., Robinson,M.D., Zirngibl,R., Somogyi,E. et al., (2004) J. Biol., 3, 21; Brandenberger,R., Wei,H., Zhang,S., Lei,S., Murage,J., Fisk,G.J., Li,Y., Xu,C., Fang,R., Guegler,K. et al., (2004) Nat. Biotechnol., 22, 707-716]. Here, we confirm this observation, and we show that ZFP206 expression decreases rapidly upon differentiation of cultured mouse ES cells, and during development of mouse embryos. We find that there are at least six isoforms of the ZFP206 transcript, the longest being predominant. Overexpression and depletion experiments show that Zfp206 promotes formation of undifferentiated ES cell clones, and positively regulates abundance of a very small set of transcripts whose expression is also specific to ES cells and the two- to four-cell stages of preimplantation embryos. This set includes members of the Zscan4, Thoc4, Tcstv1 and eIF-1A gene families, none of which have been functionally characterized in vivo but whose members include apparent transcription factors, RNA-binding proteins and translation factors. Together, these data indicate that Zfp206 is a regulator of ES cell differentiation that controls a set of genes expressed very early in development, most of which themselves appear to be regulators.

  12. SEPTIN2 and STATHMIN Regulate CD99-Mediated Cellular Differentiation in Hodgkin's Lymphoma.

    Directory of Open Access Journals (Sweden)

    Wenjing Jian

    Full Text Available Hodgkin's lymphoma (HL is a lymphoid neoplasm characterized by Hodgkin's and Reed-Sternberg (H/RS cells, which is regulated by CD99. We previously reported that CD99 downregulation led to the transformation of murine B lymphoma cells (A20 into cells with an H/RS phenotype, while CD99 upregulation induced differentiation of classical Hodgkin's lymphoma (cHL cells (L428 into terminal B-cells. However, the molecular mechanism remains unclear. In this study, using fluorescence two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS, we have analyzed the alteration of protein expression following CD99 upregulation in L428 cells as well as downregulation of mouse CD99 antigen-like 2 (mCD99L2 in A20 cells. Bioinformatics analysis showed that SEPTIN2 and STATHMIN, which are cytoskeleton proteins, were significantly differentially expressed, and chosen for further validation and functional analysis. Differential expression of SEPTIN2 was found in both models and was inversely correlated with CD99 expression. STATHMIN was identified in the A20 cell line model and its expression was positively correlated with that of CD99. Importantly, silencing of SEPTIN2 with siRNA substantially altered the cellular cytoskeleton in L428 cells. The downregulation of STATHMIN by siRNA promoted the differentiation of H/RS cells toward terminal B-cells. These results suggest that SEPTIN2-mediated cytoskeletal rearrangement and STATHMIN-mediated differentiation may contribute to changes in cell morphology and differentiation of H/RS cells with CD99 upregulation in HL.

  13. Ubx regulates differential enlargement and diversification of insect hind legs.

    Directory of Open Access Journals (Sweden)

    Najmus Mahfooz

    2007-09-01

    Full Text Available Differential enlargement of hind (T3 legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug and Acheta domesticus (house cricket. In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs.

  14. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  15. Regulation of TFIIIB during F9 cell differentiation.

    Science.gov (United States)

    Athineos, Dimitris; Marshall, Lynne; White, Robert J

    2010-03-12

    Differentiation of F9 embryonal carcinoma (EC) cells into parietal endoderm (PE) provides a tractable model system for studying molecular events during early and inaccessible stages of murine development. PE formation is accompanied by extensive changes in gene expression both in vivo and in culture. One of the most dramatic is the ~10-fold decrease in transcriptional output by RNA polymerase (pol) III. This has been attributed to changes in activity of TFIIIB, a factor that is necessary and sufficient to recruit pol III to promoters. The goal of this study was to identify molecular changes that can account for the low activity of TFIIIB following F9 cell differentiation. Three essential subunits of TFIIIB decrease in abundance as F9 cells differentiate; these are Brf1 and Bdp1, which are pol III-specific, and TBP, which is also used by pols I and II. The decreased levels of Brf1 and Bdp1 proteins can be explained by reduced expression of the corresponding mRNAs. However, this is not the case for TBP, which is regulated post-transcriptionally. In proliferating cells, pol III transcription is stimulated by the proto-oncogene product c-Myc and the mitogen-activated protein kinase Erk, both of which bind to TFIIIB. However, c-Myc levels fall during differentiation and Erk becomes inactive through dephosphorylation. The diminished abundance of TFIIIB is therefore likely to be compounded by changes to these positive regulators that are required for its full activity. In addition, PE cells have elevated levels of the retinoblastoma protein RB, which is known to bind and repress TFIIIB. The low activity of TFIIIB in PE can be attributed to a combination of changes, any one of which could be sufficient to inhibit pol III transcription. Declining levels of essential TFIIIB subunits and of activators that are required for maximal TFIIIB activity are accompanied by an increase in a potent repressor of TFIIIB. These events provide fail-safe guarantees to ensure that pol III

  16. Withaferin A Associated Differential Regulation of Inflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Seema Dubey

    2018-02-01

    Full Text Available A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA. Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β, CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.

  17. DISC1 (disrupted-in-schizophrenia-1 regulates differentiation of oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hattori

    Full Text Available Disrupted-in-schizophrenia 1 (DISC1 is a gene disrupted by a translocation, t(1;11 (q42.1;q14.3, that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.

  18. X-ray morphology of the eburnated vertebral body - diagnostic and differential diagnostic problems

    Energy Technology Data Exchange (ETDEWEB)

    Krug, B; Lorenz, R; Steinbrich, W

    1988-08-01

    1. Numerous diseases may become manifest as eburnated vertebral bodies, and hence the X-ray morphological sign of eburnation is an unspecific one. Isolated characteristics such as the involvement of one or several vertebrae, an intact vertebral space, a broadening of the paravertebral accompanying shadow, and the remaining radiological skeletal status enable narrowing down the differential diagnosis, although anamnesis and clinical findings will supply the main pointers. 2. In primary tumorous eburnations radiotherapy or chemotherapy will render an X-ray morphological assessment of therapeutic success impossible. 3. In primary diagnosis of an eburnated vertebral body it is possible to apply sonography. CT and MR as diagnostic tools step by step to narrow down the differential diagnosis by detecting or excluding pathological abdominal processes such as liver or lymphatic node metastases, paravertebral or intraspinal soft-part dense space-occupying growths or bone infiltration, but it will only rarely be possible to classify the phenomenon properly as being caused by a well-defined process, even if CT and MR are employed.

  19. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  20. Sialylation regulates myofibroblast differentiation of human skin fibroblasts.

    Science.gov (United States)

    Sasaki, Norihiko; Itakura, Yoko; Toyoda, Masashi

    2017-04-18

    differentiation in LP fibroblasts was restored by a sialidase inhibitor. Desialylation of CD44 with increased sialidase during the process to senescence reduced the localization of CD44 in lipid rafts after TGF-β1 stimulation, leading to the inhibition of myofibroblast differentiation. Thus, regulation of sialylation may be an attractive strategy for the prevention and regenerative therapy of age-related skin diseases, cosmetic skin alterations, and chronic wounds caused by delayed healing in elderly people.

  1. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  2. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  3. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-01-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  4. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  5. Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh.

    Science.gov (United States)

    Wang, Weiguang; Lian, Na; Ma, Yun; Li, Lingzhen; Gallant, Richard C; Elefteriou, Florent; Yang, Xiangli

    2012-02-01

    Atf4 is a leucine zipper-containing transcription factor that activates osteocalcin (Ocn) in osteoblasts and indian hedgehog (Ihh) in chondrocytes. The relative contribution of Atf4 in chondrocytes and osteoblasts to the regulation of skeletal development and bone formation is poorly understood. Investigations of the Atf4(-/-);Col2a1-Atf4 mouse model, in which Atf4 is selectively overexpressed in chondrocytes in an Atf4-null background, demonstrate that chondrocyte-derived Atf4 regulates osteogenesis during development and bone remodeling postnatally. Atf4 overexpression in chondrocytes of the Atf4(-/-);Col2a1-Atf4 double mutants corrects the reduction in stature and limb in Atf4(-/-) embryos and rectifies the decrease in Ihh expression, Hh signaling, proliferation and accelerated hypertrophy that characterize the Atf4(-/-) developing growth plate cartilages. Unexpectedly, this genetic manipulation also restores the expression of osteoblastic marker genes, namely Ocn and bone sialoprotein, in Atf4(-/-) developing bones. In Atf4(-/-);Col2a1-Atf4 adult mice, all the defective bone parameters found in Atf4(-/-) mice, including bone volume, trabecular number and thickness, and bone formation rate, are rescued. In addition, the conditioned media of ex vivo cultures from wild-type or Atf4(-/-);Col2a1-Atf4, but not Atf4(-/-) cartilage, corrects the differentiation defects of Atf4(-/-) bone marrow stromal cells and Ihh-blocking antibody eliminates this effect. Together, these data indicate that Atf4 in chondrocytes is required for normal Ihh expression and for its paracrine effect on osteoblast differentiation. Therefore, the cell-autonomous role of Atf4 in chondrocytes dominates the role of Atf4 in osteoblasts during development for the control of early osteogenesis and skeletal growth.

  6. Keratinocyte proliferation, differentiation, and apoptosis-Differential mechanisms of regulation by curcumin, EGCG and apigenin

    International Nuclear Information System (INIS)

    Balasubramanian, Sivaprakasam; Eckert, Richard L.

    2007-01-01

    We have proposed that it is important to examine the impact of chemopreventive agents on the function of normal human epidermal keratinocytes since these cells comprise the barrier that protects the body from a range of environmental insults. In this context, it is widely appreciated that cancer may be retarded by consumption or topical application of naturally occurring food-derived chemopreventive agents. Our studies show that (-)-epigallocatechin-3-gallate (EGCG), a green tea-derived polyphenol, acts to enhance the differentiation of normal human keratinocytes as evidenced by its ability to increase involucrin (hINV), transglutaminase type 1 (TG1) and caspase-14 gene expression. EGCG also stimulates keratinocyte morphological differentiation. These actions of EGCG are mediated via activation of a nPKC, Ras, MEKK1, MEK3, p38δ-ERK1/2 signaling cascade which leads to increased activator protein 1 (AP1) and CAATT enhancer binding protein (C/EBP) transcription factor expression, increased binding of these factors to DNA, and increased gene transcription. In contrast, apigenin, a dietary flavonoid derived from plants and vegetables, and curcumin, an agent derived from turmeric, inhibit differentiation by suppressing MAPK signal transduction and reducing API transcription factor level. Curcumin also acts to enhance apoptosis, although EGCG and apigenin do not stimulate apoptosis. In addition, all of these agents inhibit keratinocyte proliferation. These findings indicate that each of these diet-derived chemopreventive agents has a profound impact on normal human keratinocyte function and that they operate via distinct and sometimes opposing mechanisms. However, all are expected to act as chemopreventive agents

  7. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  8. Hyperthyroidism differentially regulates neuropeptide S system in the rat brain.

    Science.gov (United States)

    González, Carmen R; Martínez de Morentin, Pablo B; Martínez-Sánchez, Noelia; Gómez-Díaz, Consuelo; Lage, Ricardo; Varela, Luis; Diéguez, Carlos; Nogueiras, Rubén; Castaño, Justo P; López, Miguel

    2012-04-23

    Thyroid hormones play an important role in the regulation of energy balance, sleep and emotional behaviors. Neuropeptide S (NPS) is a recently discovered neuropeptide, regulating feeding, sleep and anxiety. Here, we examined the effect of hyperthyroidism on the gene and protein expression of neuropeptide S and its receptor (NPS-R) in the hypothalamus, brainstem and amygdala of rats. Our results showed that the expression of NPS and NPS-R was differentially modulated by hyperthyroidism in the rat brain. NPS and NPS-R mRNA and protein levels were decreased in the hypothalamus of hyperthyroid rats. Conversely NPS-R expression was highly increased in the brainstem and NPS and NPS-R expression were unchanged in the amygdala of these rats. These data suggest that changes in anxiety and food intake patterns observed in hyperthyroidism could be associated with changes in the expression of NPS and NPS-R. Thus, the NPS/NPS-R system may be involved in several hyperthyroidism-associated comorbidities. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  10. Roquin Paralogs Differentially Regulate Functional NKT Cell Subsets.

    Science.gov (United States)

    Drees, Christoph; Vahl, J Christoph; Bortoluzzi, Sabrina; Heger, Klaus D; Fischer, Julius C; Wunderlich, F Thomas; Peschel, Christian; Schmidt-Supprian, Marc

    2017-04-01

    NKT cells represent a small subset of glycolipid-recognizing T cells that are heavily implicated in human allergic, autoimmune, and malignant diseases. In the thymus, precursor cells recognize self-glycolipids by virtue of their semi-invariant TCR, which triggers NKT cell lineage commitment and maturation. During their development, NKT cells are polarized into the NKT1, NKT2, and NKT17 subsets, defined through their cytokine-secretion patterns and the expression of key transcription factors. However, we have largely ignored how the differentiation into the NKT cell subsets is regulated. In this article, we describe the mRNA-binding Roquin-1 and -2 proteins as central regulators of murine NKT cell fate decisions. In the thymus, T cell-specific ablation of the Roquin paralogs leads to a dramatic expansion of NKT17 cells, whereas peripheral mature NKT cells are essentially absent. Roquin-1/2-deficient NKT17 cells show exaggerated lineage-specific expression of nearly all NKT17-defining proteins tested. We show through mixed bone marrow chimera experiments that NKT17 polarization is mediated through cell-intrinsic mechanisms early during NKT cell development. In contrast, the loss of peripheral NKT cells is due to cell-extrinsic factors. Surprisingly, Roquin paralog-deficient NKT cells are, in striking contrast to conventional T cells, compromised in their ability to secrete cytokines. Altogether, we show that Roquin paralogs regulate the development and function of NKT cell subsets in the thymus and periphery. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Heterokaryon analysis of muscle differentiation: regulation of the postmitotic state.

    Science.gov (United States)

    Clegg, C H; Hauschka, S D

    1987-08-01

    MM14 mouse myoblasts withdraw irreversibly from the cell cycle and become postmitotic within a few hours of being deprived of fibroblast growth factor (Clegg, C. H., T. A. Linkhart, B. B. Olwin, and S. D. Hauschka, 1987, J. Cell Biol., 105:949-956). To examine the mechanisms that may regulate this developmental state of skeletal muscle, we tested the mitogen responsiveness of various cell types after their polyethylene glycol-mediated fusion with post-mitotic myocytes. Heterokaryons containing myocytes and quiescent nonmyogenic cells such as 3T3, L cell, and a differentiation-defective myoblast line (DD-1) responded to mitogen-rich medium by initiating DNA synthesis. Myonuclei replicated DNA and reexpressed thymidine kinase. In contrast, (myocyte x G1 myoblast) heterokaryons failed to replicate DNA in mitogen-rich medium and became postmitotic. This included cells with a nuclear ratio of three myoblasts to one myocyte. Proliferation dominance in (myocyte x 3T3 cell) and (myocyte x DD-1) heterokaryons was conditionally regulated by the timing of mitogen treatment; such cells became postmitotic when mitogen exposure was delayed for as little as 6 h after cell fusion. In addition, (myocyte x DD-1) heterokaryons expressed a muscle-specific trait and lost epidermal growth factor receptors when they became postmitotic. These results demonstrate that DNA synthesis is not irreversibly blocked in skeletal muscle; myonuclei readily express proliferation-related functions when provided with a mitogenic signal. Rather, myocyte-specific repression of DNA synthesis in heterokaryons argues that the postmitotic state of skeletal muscle is regulated by diffusible factors that inhibit processes of cellular mitogenesis.

  12. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Directory of Open Access Journals (Sweden)

    Anara A Kamaeva

    Full Text Available Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL, were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  13. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Science.gov (United States)

    Kamaeva, Anara A; Vasilchenko, Alexey S; Deryabin, Dmitry G

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  14. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    Science.gov (United States)

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  15. Preliminary research on morphological differentiation of avilamycin high-yield mutant strain H15

    International Nuclear Information System (INIS)

    Liang Xinle; Jin Yingyan; Chen Ming; Zhang Hong

    2010-01-01

    Morphological differentiation characters such as colony, sporotrichial, and conidiophores of mutant H15, which was derived from Streptomyces viridochromogenes 4.1119 treated with 60 Co γ-rays irradiation, were investigated by scanning electron microscope and fluorescence microscope. The results showed that mutant H15 was remarkable variation from the strain 4.1119. Cultured on agar surface, H15 had a grayish-whitish-green colony, linear sporotrichial, smooth and round conidiophore without any spike, whereas strain 4.1119 had spiral sporotrichial and round conidiophore with spike on the surface. In the submerged cultures, differentiation process of mycelia pellet of H15 was also different. Spores germinated as a compartmentalized mycelium, the young compartmentalized mycelium started to form pellets which grew in a radial pattern. After apoptosis took place in the center of the pellets, the pellet diameter growth arrested. Compared with the strain 4.1119, H15 required a long developing course for hyphae clustering and pellets formation (at 48 h, φ 245 μm). The stage of pellet arrest or apoptosis in the pellet centre were extended, which would benefit the avilamycin accumulation since the antibiotic was mainly produced at the same time. These suggested that pellet formation kinetics, relational balance between pellet diameter enlargement and mycelia apoptosis in the pellet arrest stage were key factors to avilamyin accumulation in submerged cultures of Streptomyces viridoehrongenes H15. (authors)

  16. Separation of integrin-dependent adhesion from morphological changes based on differential PLC specificities.

    Science.gov (United States)

    Wooten, D K; Teague, T K; McIntyre, B W

    1999-01-01

    In normal lymphocytes an inside-out signal up-regulating integrin adhesion is followed by a ligand-mediated outside-in cell spreading signal. Protein kinase C (PKC) inhibition blocks lymphocyte adherence to and spreading on fibronectin. In contrast, putative PLC inhibitors yield distinct differences with respect to adhesion and morphology. The phosphatidylinositol-specific phospholipase C (PLC) inhibitor neomycin blocked spreading of CD3/CD28-activated T cells on fibronectin by disrupting adhesion. Furthermore, when an additional inside-out signal for fibronectin adhesion is unnecessary such as with HPB-ALL T leukemic or phorbol-myristate-acetate-treated normal T cells, neomycin treatment does not alter adhesion or morphology. However, the phosphatidylcholine-specific PLC inhibitor D609 abrogates cell spreading without affecting adhesion to fibronectin in these cells as well as the CD3/CD28-activated T cells. These results strongly suggest that inside-out signaling for the integrin alpha4beta1 in lymphocytes proceeds through phosphatidylinositol-specific PLC and PKC, whereas the outside-in signal utilizes phosphatidylcholine-specific PLC and PKC.

  17. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  18. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  19. Template-free fabrication and morphology regulation of Ag@carbon composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyan, E-mail: zhangwenyan8531@gmail.com [College of Material Engineering, Jinling Institute of Technology, Nanjing (China); Hao, Lingyun; Lin, Qin [College of Material Engineering, Jinling Institute of Technology, Nanjing (China); Lu, Chunhua; Xu, Zhongzi [College of Materials Science and Engineering, Nanjing Technology University, Nanjing (China); Chen, Xiaoyu [College of Material Engineering, Jinling Institute of Technology, Nanjing (China)

    2014-12-15

    Graphical abstract: - Highlights: • A simple and low-cost method to prepare Ag@C composite material. • AgNO{sub 3} plays an important role in tuning size and functional groups of products. • HTC reaction time is also a key factor for regulating the Ag@C structure. - Abstract: Ag–carbon composite materials were prepared without any template by hydrothermal carbonization of solvable starch. The composite materials are composed of Ag cores and carbonaceous shell to form a core–shell (Ag@carbon) structure. During the hydrothermal carbonization process, the aromatization and carbonization of solvable starch endowed the Ag@carbon composite structure with abundant aromatic, hydroxyl and carbonyl groups. The AgNO{sub 3} concentration and HTC reaction time are two important factors for regulating the size, morphology and functional groups of the composite material. With the increasing of AgNO{sub 3} concentration, morphologies of the composite material turned from spheres to wires.

  20. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    Full Text Available Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis, we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological

  1. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Science.gov (United States)

    Konopka, Anna; Zeug, Andre; Skupien, Anna; Kaza, Beata; Mueller, Franziska; Chwedorowicz, Agnieszka; Ponimaskin, Evgeni; Wilczynski, Grzegorz M; Dzwonek, Joanna

    2016-01-01

    Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of

  2. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    Directory of Open Access Journals (Sweden)

    Aileen Balkow

    2015-08-01

    Conclusions: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes.

  3. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Kirm, Benjamin; Magdevska, Vasilka; Tome, Miha; Horvat, Marinka; Karničar, Katarina; Petek, Marko; Vidmar, Robert; Baebler, Spela; Jamnik, Polona; Fujs, Štefan; Horvat, Jaka; Fonovič, Marko; Turk, Boris; Gruden, Kristina; Petković, Hrvoje; Kosec, Gregor

    2013-12-17

    D, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.

  4. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    Science.gov (United States)

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. QUANTITATIVE GENETICS OF MORPHOLOGICAL DIFFERENTIATION IN PEROMYSCUS. II. ANALYSIS OF SELECTION AND DRIFT.

    Science.gov (United States)

    Lofsvold, David

    1988-01-01

    The hypothesis that the morphological divergence of local populations of Peromyscus is due to random genetic drift was evaluated by testing the proportionality of the among-locality covariance matrix, L, and the additive genetic covariance matrix, G. Overall, significant proportionality of L̂ and Ĝ was not observed, indicating the evolutionary divergence of local populations does not result from random genetic drift. The forces of selection needed to differentiate three taxa of Peromyscus were reconstructed to examine the divergence of species and subspecies. The selection gradients obtained illustrate the inadequacy of univariate analyses of selection by finding that some characters evolve in the direction opposite to the force of selection acting directly on them. A retrospective selection index was constructed using the estimated selection gradients, and truncation selection on this index was used to estimate the minimum selective mortality per generation required to produce the observed change. On any of the time scales used, the proportion of the population that would need to be culled was quite low, the greatest being of the same order of magnitude as the selective intensities observed in extant natural populations. Thus, entirely plausible intensities of directional natural selection can produce species-level differences in a period of time too short to be resolved in the fossil record. © 1988 The Society for the Study of Evolution.

  6. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies

    Science.gov (United States)

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed. PMID:26175512

  7. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    DEFF Research Database (Denmark)

    Eskildsen, Tilde; Taipaleenmäki, Hanna; Stenvang, Jan

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators......-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore...

  8. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  9. New insights into redox regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Ren, Fenglian; Wang, Kui; Zhang, Tao; Jiang, Jingwen; Nice, Edouard Collins; Huang, Canhua

    2015-08-01

    Reactive oxygen species (ROS), the natural byproducts of aerobic metabolism, are precisely orchestrated to evoke diverse signaling pathways. To date, studies have focused mainly on the detrimental effects of ROS in stem cells. Recently, accumulating evidence has suggested that ROS also function as second messengers that modulate stem cell self-renewal and differentiation by regulating intricate signaling networks. Although many efforts have been made to clarify the general effects of ROS on signal transduction in stem cells, less is known about the initial and direct executors of ROS signaling, which are known as 'redox sensors'. Modifications of cysteine residues in redox sensors are of significant importance in the modulation of protein function in response to different redox conditions. Intriguingly, most key molecules in ROS signaling and cell cycle regulation (including transcriptional factors and kinases) that are crucial in the regulation of stem cell self-renewal and differentiation have the potential to be redox sensors. We highlight herein the importance of redox regulation of these key regulators in stem cell self-renewal and differentiation. Understanding the mechanisms of redox regulation in stem cell self-renewal and differentiation will open exciting new perspectives for stem cell biology. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Differentiation of Three Centella Species in Australia as Inferred from Morphological Characteristics, ISSR Molecular Fingerprinting and Phytochemical Composition.

    Science.gov (United States)

    Alqahtani, Ali; Cho, Jun-Lae; Wong, Ka Ho; Li, Kong M; Razmovski-Naumovski, Valentina; Li, George Q

    2017-01-01

    Centella asiatica is one of the popular herbs used for inflammatory and neural conditions. Its differentiation from similar species is currently lacking. The aims of this study were to differentiate the three closely related Centella species using methods based on morphological characters, genetic biodiversity, phytochemical compositions and antioxidant activities. According to the morphological characteristics, the collected samples were identified as three species: C. asiatica, Centella cordifolia and Centella erecta and clustered into three groups based on their morphometric variability. Dendogram constructed on the basis of the intersimple sequence repeats (ISSR) analyses were consistent with the morphological grouping. Centella cordifolia had the highest triterpene glycosides, phenolics and antioxidant capacity, followed by C. asiatica , then C. erecta , therefore, was genetically and chemically closer to C. asiatica , while C. erecta was distinctively different from them. The results confirm the occurrence of the closely related three species of Centella in Australia, and the differentiation among them can be achieved via the combination of morphometric, molecular and phytochemical methods. This first comparative botanical study on Centella species provides a foundation for further systematic study and medicinal development of Centella .

  11. Differentiation of Three Centella Species in Australia as Inferred from Morphological Characteristics, ISSR Molecular Fingerprinting and Phytochemical Composition

    Directory of Open Access Journals (Sweden)

    Ali Alqahtani

    2017-11-01

    Full Text Available Centella asiatica is one of the popular herbs used for inflammatory and neural conditions. Its differentiation from similar species is currently lacking. The aims of this study were to differentiate the three closely related Centella species using methods based on morphological characters, genetic biodiversity, phytochemical compositions and antioxidant activities. According to the morphological characteristics, the collected samples were identified as three species: C. asiatica, Centella cordifolia and Centella erecta and clustered into three groups based on their morphometric variability. Dendogram constructed on the basis of the intersimple sequence repeats (ISSR analyses were consistent with the morphological grouping. Centella cordifolia had the highest triterpene glycosides, phenolics and antioxidant capacity, followed by C. asiatica, then C. erecta, therefore, was genetically and chemically closer to C. asiatica, while C. erecta was distinctively different from them. The results confirm the occurrence of the closely related three species of Centella in Australia, and the differentiation among them can be achieved via the combination of morphometric, molecular and phytochemical methods. This first comparative botanical study on Centella species provides a foundation for further systematic study and medicinal development of Centella.

  12. Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; te Riele, Hein; Kristiansen, Karsten

    2004-01-01

    the major energy store and brown adipocytes being potent energy-dissipaters through thermogenesis. Yet, little is known about factors differentially regulating the formation of white and brown fat cells. Members of the retinoblastoma protein family (pRB, p107, p130) have been implicated in the regulation...... of adipocyte differentiation, and expression and phosphorylation of the three retinoblastoma family proteins oscillate in a characteristic manner during differentiation of the white preadipocyte cell line 3T3-L1. We have recently demonstrated a surprising function of the retinoblastoma protein...... in the regulation of white versus brown adipocyte differentiation in vitro and possibly in vivo. Here we summarize the current knowledge on the retinoblastoma protein in fat cells, with particular emphasis on its potential role in adipocyte lineage commitment and differentiation....

  13. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus Koefoed; Kristiansen, Karsten

    2005-01-01

    factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease...

  15. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  16. Regulation of Stem Cell Differentiation by Histone Methyltransferases and Demethylases

    DEFF Research Database (Denmark)

    Pasini, D; Bracken, A P; Agger, K

    2008-01-01

    The generation of different cell types from stem cells containing identical genetic information and their organization into tissues and organs during development is a highly complex process that requires defined transcriptional programs. Maintenance of such programs is epigenetically regulated...... and the factors involved in these processes are often essential for development. The activities required for cell-fate decisions are frequently deregulated in human tumors, and the elucidation of the molecular mechanisms that regulate these processes is therefore important for understanding both developmental...

  17. Entry Regulations, Product Differentiation and Determinants of Market Structure

    OpenAIRE

    Maican, Florin; Orth, ´Matilda

    2013-01-01

    We use a dynamic oligopoly model of entry and exit to evaluate how entry regulations affect profitability and market structure in retail. The model incorporates demand and store-level heterogeneity. Based on unique data for all retail food stores in Sweden, we find that the average entry costs for small and large stores are 10 and 18 percent lower, respectively, in markets with liberal compared with restrictive regulations. Counterfactual simulations show that lower entry costs in restrictive...

  18. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.

    Science.gov (United States)

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun

    2016-11-01

    Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.

  19. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress

    OpenAIRE

    Gao, Jing; Feng, Zhihui; Wang, Xueqiang; Zeng, Mengqi; Liu, Jing; Han, Shujun; Xu, Jie; Chen, Lei; Cao, Ke; Long, Jiangang; Li, Zongfang; Shen, Weili; Liu, Jiankang

    2017-01-01

    Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by in...

  20. Theories of estimation of differentiation for regulation of social-economic development of the city agglomeration

    OpenAIRE

    Anikina, Yu; Litovchenko, V.

    2009-01-01

    Theories of estimation of differentiation of social-economic development of territorial units in city agglomeration are discussed in the article. Approbation of the given methods helped find out successfulness of the regulation of municipal development of administrative-territorial units in Krasnoyarsk agglomeration, set the goals of regional policy on peculiarities of development of the phenomenon of differentiation.

  1. APLP2 regulates neuronal stem cell differentiation during cortical development.

    Science.gov (United States)

    Shariati, S Ali M; Lau, Pierre; Hassan, Bassem A; Müller, Ulrike; Dotti, Carlos G; De Strooper, Bart; Gärtner, Annette

    2013-03-01

    Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.

  2. Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.

    Science.gov (United States)

    Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E

    2010-01-01

    The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.

  3. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  4. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol.

    Science.gov (United States)

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O; Linne, Marja-Leena

    2016-04-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p differentiation.

  5. The reservoir model: a differential equation model of psychological regulation.

    Science.gov (United States)

    Deboeck, Pascal R; Bergeman, C S

    2013-06-01

    Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  6. GSK3 is a regulator of RAR-mediated differentiation

    Science.gov (United States)

    Gupta, K; Gulen, F; Sun, L; Aguilera, R; Chakrabarti, A; Kiselar, J; Agarwal, MK; Wald, DN

    2015-01-01

    Acute myeloid leukemia (AML) is the most common form of leukemia in adults. Unfortunately, the standard therapeutic agents used for this disease have high toxicities and poor efficacy. The one exception to these poor outcomes is the use of the retinoid, all-trans retinoic acid (ATRA), for a rare subtype of AML (APL). The use of the differentiation agent, ATRA, in combination with low-dose chemotherapy leads to the long-term survival and presumed cure of 75–85% of patients. Unfortunately ATRA has not been clinically useful for other subtypes of AML. Though many non-APL leukemic cells respond to ATRA, they require significantly higher concentrations of ATRA for effective differentiation. Here we show that the combination of ATRA with glycogen synthase kinase 3 (GSK3) inhibition significantly enhances ATRA-mediated AML differentiation and growth inhibition. These studies have revealed that ATRA's receptor, the retinoic acid receptor (RAR), is a novel target of GSK3 phosphorylation and that GSK3 can impact the expression and transcriptional activity of the RAR. Overall, our studies suggest the clinical potential of ATRA and GSK3 inhibition for AML and provide a mechanistic framework to explain the promising activity of this combination regimen. PMID:22222598

  7. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation.

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Vandenbon, Alexis; Saitoh, Tatsuya; Kawasaki, Takumi; Kondo, Takeshi; Yokoyama, Kazunari K; Kidoya, Hiroyasu; Takakura, Nobuyuki; Standley, Daron; Takeuchi, Osamu; Akira, Shizuo

    2012-12-14

    Jdp2 is an AP-1 family transcription factor that regulates the epigenetic status of histones. Previous in vitro studies revealed that Jdp2 is involved in osteoclastogenesis. However, the roles of Jdp2 in vivo and its pleiotropic functions are largely unknown. Here we generated Jdp2(-/-) mice and discovered its crucial roles not only in bone metabolism but also in differentiation of neutrophils. Jdp2(-/-) mice exhibited osteopetrosis resulting from impaired osteoclastogenesis. Jdp2(-/-) neutrophils were morphologically normal but had impaired surface expression of Ly6G, bactericidal function, and apoptosis. We also found that ATF3 was an inhibitor of neutrophil differentiation and that Jdp2 directly suppresses its expression via inhibition of histone acetylation. Strikingly, Jdp2(-/-) mice were highly susceptible to Staphylococcus aureus and Candida albicans infection. Thus, Jdp2 plays pivotal roles in in vivo bone homeostasis and host defense by regulating osteoclast and neutrophil differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.

    Science.gov (United States)

    Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U Deva; Mishra, Krishnaveni

    2015-12-02

    Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD(+)-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. BMP signalling differentially regulates distinct haematopoietic stem cell types

    NARCIS (Netherlands)

    M. Crisan (Mihaela); P. Solaimani Kartalaei (Parham); C.S. Vink (Chris); T. Yamada-Inagawa (Tomoko); K. Bollerot (Karine); W.F.J. van IJcken (Wilfred); R. Van Der Linden (Reinier); S.C. de Sousa Lopes (Susana Chuva); R. Monteiro (Rui); C.L. Mummery (Christine); E.A. Dzierzak (Elaine)

    2015-01-01

    textabstractAdult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they

  10. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    Science.gov (United States)

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  11. Pupils' Self-Regulation in Physical Education: The Role of Motivational Climates and Differential Achievement Goals

    Science.gov (United States)

    Ommundsen, Yngvar

    2006-01-01

    This study examined the relationship of motivational climate and differential achievement goals to meta-cognitive self-regulation, regulation of effort, help-seeking and self-handicapping in physical education (PE). The sample consisted of 273 pupils (boys n = 125; girls n = 148) attending 10th grade PE classes in Norway. Both motivational…

  12. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α

    International Nuclear Information System (INIS)

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-01-01

    Highlights: → TNF-α inhibits POEM gene expression. → Inhibition of POEM gene expression is caused by NF-κB activation by TNF-α. → Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-α. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.

  13. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  14. Decoding cell signalling and regulation of oligodendrocyte differentiation.

    Science.gov (United States)

    Santos, A K; Vieira, M S; Vasconcellos, R; Goulart, V A M; Kihara, A H; Resende, R R

    2018-05-22

    Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Streptomyces sporulation - Genes and regulators involved in bacterial cell differentiation

    OpenAIRE

    Larsson, Jessica

    2010-01-01

    Streptomycetes are Gram-positive bacteria with a complex developmental life cycle. They form spores on specialized cells called aerial hyphae, and this sporulation involves alterations in growth, morphogenesis and cell cycle processes like cell division and chromosome segregation. Understanding the developmental mechanisms that streptomycetes have evolved for regulating for example cell division is of general interest in bacterial cell biology. It can also be valuable in the design of new dru...

  16. Human Long Noncoding RNA Regulation of Stem Cell Potency and Differentiation

    Directory of Open Access Journals (Sweden)

    Seahyoung Lee

    2017-01-01

    Full Text Available Because of their capability of differentiation into lineage-specific cells, stem cells are an attractive therapeutic modality in regenerative medicine. To develop an effective stem cell-based therapeutic strategy with predictable results, deeper understanding of the underlying molecular mechanisms of stem cell differentiation and/or pluripotency maintenance is required. Thus, reviewing the key factors involved in the transcriptional and epigenetic regulation of stem cell differentiation and maintenance is important. Accumulating data indicate that long noncoding RNAs (lncRNAs mediate numerous biological processes, including stem cell differentiation and maintenance. Here, we review recent findings on the human lncRNA regulation of stem cell potency and differentiation. Although the clinical implication of these lncRNAs is only beginning to be elucidated, it is anticipated that lncRNAs will become important therapeutic targets in the near future.

  17. Flow-regulated versus differential pressure-regulated shunt valves for adult patients with normal pressure hydrocephalus

    DEFF Research Database (Denmark)

    Ziebell, Morten; Wetterslev, Jørn; Tisell, Magnus

    2013-01-01

    Since 1965 many ventriculo-peritoneal shunt systems have been inserted worldwide to treat hydrocephalus. The most frequent indication in adults is normal pressure hydrocephalus (NPH), a condition that can be difficult to diagnose precisely. Surgical intervention with flow-regulated and differential...

  18. Mouse ribosomal RNA genes contain multiple differentially regulated variants.

    Directory of Open Access Journals (Sweden)

    Hung Tseng

    2008-03-01

    Full Text Available Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA. The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs, which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active, two are expressed in some tissues (selectively active, and two are not expressed (silent. These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.

  19. Myeloid translocation genes differentially regulate colorectal cancer programs

    Science.gov (United States)

    Parang, Bobak; Bradley, Amber M.; Mittal, Mukul K.; Short, Sarah P.; Thompson, Joshua J.; Barrett, Caitlyn W.; Naik, Rishi D.; Bilotta, Anthony J.; Washington, Mary K.; Revetta, Frank L.; Smith, Jesse J.; Chen, Xi; Wilson, Keith T.; Hiebert, Scott W.; Williams, Christopher S.

    2016-01-01

    Myeloid translocation genes (MTGs), originally identified as chromosomal translocations in acute myelogenous leukemia, are transcriptional corepressors that regulate hematopoietic stem cell programs. Analysis of The Cancer Genome Atlas (TCGA) database revealed that MTGs were mutated in epithelial malignancy and suggested that loss of function might promote tumorigenesis. Genetic deletion of MTGR1 and MTG16 in the mouse has revealed unexpected and unique roles within the intestinal epithelium. Mtgr1−/− mice have progressive depletion of all intestinal secretory cells, and Mtg16−/− mice have a decrease in goblet cells. Furthermore, both Mtgr1−/− and Mtg16−/− mice have increased intestinal epithelial cell proliferation. We thus hypothesized that loss of MTGR1 or MTG16 would modify Apc1638/+-dependent intestinal tumorigenesis. Mtgr1−/− mice, but not Mtg16−/− mice, had a 10-fold increase in tumor multiplicity. This was associated with more advanced dysplasia, including progression to invasive adenocarcinoma, and augmented intratumoral proliferation. Analysis of ChIP-seq datasets for MTGR1 and MTG16 targets indicated that MTGR1 can regulate Wnt and Notch signaling. In support of this, immunohistochemistry and gene expression analysis revealed that both Wnt and Notch signaling pathways were hyperactive in Mtgr1−/− tumors. Furthermore, in human colorectal cancer (CRC) samples MTGR1 was downregulated at both the transcript and protein level. Overall our data indicates that MTGR1 has a context dependent effect on intestinal tumorigenesis. PMID:27270437

  20. Morphological differentiation of severe aplastic anaemia from hypocellular refractory cytopenia of childhood

    DEFF Research Database (Denmark)

    Baumann, Irith; Führer, Monika; Behrendt, Sonja

    2012-01-01

    To evaluate the reproducibility and reliability of the histomorphological criteria differentiating severe aplastic anaemia (SAA) and hypoplastic refractory cytopenia of childhood (RCC), the most frequently acquired hypocellular bone marrow conditions of childhood.......To evaluate the reproducibility and reliability of the histomorphological criteria differentiating severe aplastic anaemia (SAA) and hypoplastic refractory cytopenia of childhood (RCC), the most frequently acquired hypocellular bone marrow conditions of childhood....

  1. Differentiation of Alternaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Thrane, Ulf

    1996-01-01

    Some small-spored species belonging to the genus Alternaria Nees have been studied according to their chemical, morphological, and cultural characteristics. A data matrix was constructed based on a combination of characters. Cluster analysis of the combined data set showed good resolution of two...

  2. The H3K27 demethylase, Utx, regulates adipogenesis in a differentiation stage-dependent manner.

    Directory of Open Access Journals (Sweden)

    Kazushige Ota

    Full Text Available Understanding the molecular mechanisms that drive adipogenesis is important in developing new treatments for obesity and diabetes. Epigenetic regulations determine the capacity of adipogenesis. In this study, we examined the role of a histone H3 lysine 27 demethylase, the ubiquitously transcribed tetratricopeptide repeat protein on the X chromosome (Utx, in the differentiation of mouse embryonic stem cells (mESCs to adipocytes. Using gene trapping, we examined Utx-deficient male mESCs to determine whether loss of Utx would enhance or inhibit the differentiation of mESCs to adipocytes. Utx-deficient mESCs showed diminished potential to differentiate to adipocytes compared to that of controls. In contrast, Utx-deficient preadipocytes showed enhanced differentiation to adipocytes. Microarray analyses indicated that the β-catenin/c-Myc signaling pathway was differentially regulated in Utx-deficient cells during adipocyte differentiation. Therefore, our data suggest that Utx governs adipogenesis by regulating c-Myc in a differentiation stage-specific manner and that targeting the Utx signaling pathway could be beneficial for the treatment of obesity, diabetes, and congenital utx-deficiency disorders.

  3. [Comprehensive regulation effect of traditional Chinese medicine on proliferation and differentiation of neural stem cells].

    Science.gov (United States)

    Wang, Hong-Jin; Li, Jing-Jing; Ke, Hui; Xu, Xiao-Yu

    2017-11-01

    Since the discovery of neural stem cells(NSCs) in embryonic and adult mammalian central nervous systems, new approaches for proliferation and differentiation of NSCs have been put forward. One of the approaches to promote the clinical application of NSCs is to search effective methods to regulate the proliferation and differentiation. This problem is urgently to be solved in the medical field. Previous studies have shown that traditional Chinese medicine could promote the proliferation and differentiation of NSCs by regulating the relevant signaling pathway in vivo and in vitro. Domestic and foreign literatures for regulating the proliferation and differentiation of neural stem cells in recent 10 years and the reports for their target and signaling pathways were analyzed in this paper. Traditional Chinese medicine could regulate the proliferation and differentiation of NSCs through signaling pathways of Notch, PI3K/Akt, Wnt/β-catenin and GFs. However, studies about NSCs and traditional Chinese medicine should be further deepened; the mechanism of multiple targets and the comprehensive regulation function of traditional Chinese medicine should be clarified. Copyright© by the Chinese Pharmaceutical Association.

  4. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Ethan S Sokol

    2015-04-01

    Full Text Available The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS. We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.

  5. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  6. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  7. The regulation of health care providers' payments when horizontal and vertical differentiation matter.

    Science.gov (United States)

    Bardey, David; Canta, Chiara; Lozachmeur, Jean-Marie

    2012-09-01

    This paper analyzes the regulation of payment schemes for health care providers competing in both quality and product differentiation of their services. The regulator uses two instruments: a prospective payment per patient and a cost reimbursement rate. When the regulator can only use a prospective payment, the optimal price involves a trade-off between the level of quality provision and the level of horizontal differentiation. If this pure prospective payment leads to underprovision of quality and overdifferentiation, a mixed reimbursement scheme allows the regulator to improve the allocation efficiency. This is true for a relatively low level of patients' transportation costs. We also show that if the regulator cannot commit to the level of the cost reimbursement rate, the resulting allocation can dominate the one with full commitment. This occurs when the transportation cost is low or high enough, and the full commitment solution either implies full or zero cost reimbursement. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Differential responses of onion and garlic against plant growth regulators

    International Nuclear Information System (INIS)

    Oozunidou, G.; Asif, M.; Giannakuola, A.; Iliass, A.

    2011-01-01

    The effects of Gibberellic acid-GA3, Prohexadione-Calcium, and Ethephon pre-harvest application on yield, biomass production, photosynthetic function, lipid peroxidation and quality characteristics of onion (Allium cepa L.) and garlic (Allium sativum L.) plants were investigated. Shoot length and biomass of onion and garlic, expressed either in fresh or dry weight, increased significantly under GA3, while a progressive decrease under Prohex-Ca and Ethephon occurred. Higher MDA (lipid peroxidation) values were recorded after Prohex-Ca and Ethephon supply on onion and garlic plants; it seems that GA3 treatment prevents lipid peroxidation as measured with the help of the TBARS method. Plants treated with Prohex-Ca and Ethephon revealed higher peroxidase activity compared to control and GA3 treated plants. Considering the results of MDA content and peroxidase activities it can be assumed that GA3 treated plants are slightly protected from the natural course of oxidative stress, which occurs during ageing as observed for control samples. The fluctuations of chlorophyll fluorescence parameters represent a general decline in chloroplasts function after plant growth regulators exposure, whereas in combination to the suppressed chlorophyll content, structural malformations of photo systems may also occur. The production of ascorbic acid, glucose and fructose content seems to be enhanced under GA3 in both species, while their values were depressed under Prohex-Ca and Ethephon. Overall, only GA3 supply leads to a vigorous onion and garlic growth and yield. (author)

  9. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    Science.gov (United States)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  10. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation

    Science.gov (United States)

    de la Fuente, Alerie Guzman; Errea, Oihana; van Wijngaarden, Peter; Gonzalez, Ginez A.; Kerninon, Christophe; Jarjour, Andrew A.; Lewis, Hilary J.; Jones, Clare A.; Nait-Oumesmar, Brahim; Zhao, Chao; Huang, Jeffrey K.; ffrench-Constant, Charles

    2015-01-01

    The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR–VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines. PMID:26644513

  11. miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells.

    Science.gov (United States)

    Kuhn, Stephanie; Johnson, Stuart L; Furness, David N; Chen, Jing; Ingham, Neil; Hilton, Jennifer M; Steffes, Georg; Lewis, Morag A; Zampini, Valeria; Hackney, Carole M; Masetto, Sergio; Holley, Matthew C; Steel, Karen P; Marcotti, Walter

    2011-02-08

    MicroRNAs (miRNAs) are small noncoding RNAs able to regulate a broad range of protein-coding genes involved in many biological processes. miR-96 is a sensory organ-specific miRNA expressed in the mammalian cochlea during development. Mutations in miR-96 cause nonsyndromic progressive hearing loss in humans and mice. The mouse mutant diminuendo has a single base change in the seed region of the Mir96 gene leading to widespread changes in the expression of many genes. We have used this mutant to explore the role of miR-96 in the maturation of the auditory organ. We found that the physiological development of mutant sensory hair cells is arrested at around the day of birth, before their biophysical differentiation into inner and outer hair cells. Moreover, maturation of the hair cell stereocilia bundle and remodelling of auditory nerve connections within the cochlea fail to occur in miR-96 mutants. We conclude that miR-96 regulates the progression of the physiological and morphological differentiation of cochlear hair cells and, as such, coordinates one of the most distinctive functional refinements of the mammalian auditory system.

  12. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  13. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function.

    Science.gov (United States)

    Shimoyama, Atsuko; Wada, Masahiro; Ikeda, Fumiyo; Hata, Kenji; Matsubara, Takuma; Nifuji, Akira; Noda, Masaki; Amano, Katsuhiko; Yamaguchi, Akira; Nishimura, Riko; Yoneda, Toshiyuki

    2007-07-01

    Genetic and cell biological studies have indicated that Indian hedgehog (Ihh) plays an important role in bone development and osteoblast differentiation. However, the molecular mechanism by which Ihh regulates osteoblast differentiation is complex and remains to be fully elucidated. In this study, we investigated the role of Ihh signaling in osteoblast differentiation using mesenchymal cells and primary osteoblasts. We observed that Ihh stimulated alkaline phosphatase (ALP) activity, osteocalcin expression, and calcification. Overexpression of Gli2- but not Gli3-induced ALP, osteocalcin expression, and calcification of these cells. In contrast, dominant-negative Gli2 markedly inhibited Ihh-dependent osteoblast differentiation. Ihh treatment or Gli2 overexpression also up-regulated the expression of Runx2, an essential transcription factor for osteoblastogenesis, and enhanced the transcriptional activity and osteogenic action of Runx2. Coimmunoprecipitation analysis demonstrated a physical interaction between Gli2 and Runx2. Moreover, Ihh or Gli2 overexpression failed to increase ALP activity in Runx2-deficient mesenchymal cells. Collectively, these results suggest that Ihh regulates osteoblast differentiation of mesenchymal cells through up-regulation of the expression and function of Runx2 by Gli2.

  14. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1.

    Directory of Open Access Journals (Sweden)

    Choon Kiat Sim

    Full Text Available Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1, a Rho GTPase Activating Protein (RhoGAP previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK and filamentous actin (F-actin, suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.

  15. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  16. Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Sajjad Ashraf

    2017-04-01

    Full Text Available Advances in mesenchymal stem cells (MSCs and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in brain regulating gene signature for differentiation of human adipose derived mesenchymal stem cells (ASCs into chondrogenic, osteogenic, and adipogenic lineages. RHEB-overexpression increases the proliferation of the ASCs. RHEB enhances the chondrogenic differentiation of ASCs in 3D culture via upregulation of SOX9 with concomitant increase in glycosaminoglycans (GAGs, and type II collagen (COL2. RHEB increases the osteogenesis via upregulation of runt related transcription factor 2 (RUNX2 with an increase in the calcium and phosphate contents. RHEB also increases the expression of osteogenic markers, osteonectin and osteopontin. RHEB knockdown ASCs were incapable of expressing sufficient SRY (Sex determining region Y-box 9 (SOX9 and RUNX2, and therefore had decreased chondrogenic and osteogenic differentiation. RHEB-overexpression impaired ASCs differentiation into adipogenic lineage, through downregulation of CCAAT/enhancer binding protein beta (C/EBPβ. Conversely, RHEB knockdown abolished the negative regulation of adipogenesis. We demonstrate that RHEB is a novel regulator, with a critical role in ASCs lineage determination, and RHEB-modulated ASCs may be useful as a cell therapy for cartilage and bone defect treatments.

  17. Morphological and transcriptomic effects of endocrine modulators on the gonadal differentiation of chicken embryos: The case of tributyltin (TBT).

    Science.gov (United States)

    Scheider, Jessica; Afonso-Grunz, Fabian; Jessl, Luzie; Hoffmeier, Klaus; Winter, Peter; Oehlmann, Jörg

    2018-03-01

    Morphological malformations induced by tributyltin (TBT) exposure during embryonic development have already been characterized in various taxonomic groups, but, nonetheless, the molecular processes underlying these changes remain obscure. The present study provides the first genome-wide screening for differentially expressed genes that are linked to morphological alterations of gonadal tissue from chicken embryos after exposure to TBT. We applied a single injection of TBT (between 0.5 and 30 pg as Sn/g egg) into incubated fertile eggs to simulate maternal transfer of the endocrine disruptive compound. Methyltestosterone (MT) served as a positive control (30 pg/g egg). After 19 days of incubation, structural features of the gonads as well as genome-wide gene expression profiles were assessed simultaneously. TBT induced significant morphological and histological malformations of gonadal tissue from female embryos that show a virilization of the ovaries. This phenotypical virilization was mirrored by altered expression profiles of sex-dependent genes. Among these are several transcription and growth factors (e.g. FGF12, CTCF, NFIB), whose altered expression might serve as a set of markers for early identification of endocrine active chemicals that affect embryonic development by transcriptome profiling without the need of elaborate histological analyses. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  19. Morphological analysis and differentiation of benign cystic neoplasms of the pancreas using computed tomography and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Christian; Heine, G.; Stelter, L.; Steffen, I.G.; Rothe, J.H.; Walter, T.C.; Denecke, T. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Radiologie; Fischer, C. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Medizinische Klinik m. S. Hepatologie und Gastroenterologie; Bahra, M. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Allgemein, Viszeral- und Transplantationschirurgie

    2013-03-15

    Purpose: To evaluate morphologic characteristics and establish a standardized diagnostic algorithm to differentiate benign cystic pancreatic tumors (CPTs) in non-pancreatitis patients using multidetector computed tomography (CT) and magnetic resonance imaging (MRI). Materials and Methods: Patients with histopathologically proven CPTs who had undergone MRI and/or CT and subsequent tumor resection in our institution were retrospectively identified. Images were analyzed for morphology and enhancement patterns by three independent blinded observers. Preoperative image findings were correlated with histopathological results. Based on the evaluated morphologic parameters, a standardized diagnostic algorithm was designed to help characterize the lesions. Results: A total of 62 consecutive patients with 64 CPTs were identified from the surgical database (21 intraductal papillary mucinous neoplasms; 10 mucinous cystic neoplasms; 12 serous microcystic adenomas; 3 serous oligocystic adenomas; 6 solid pseudopapillary tumors; 12 neuroendocrine neoplasms). The overall averaged accuracy for the 3 observers was 89.9 % for CT and 93.1 % for MRI with increasing overall accuracy in relation to the experience of the observer (88.2 %, 91.5 %, and 93.8 %, respectively). Overall, the generalized kappa value was 0.69 (CT, 0.64; MRI, 0.76); p < 0.001. The accuracy of the standardized diagnostic algorithm was 91.1 %. Conclusion: It is possible to characterize benign CPTs with MRI and CT, while MRI appears to be superior to CT. Diagnostic accuracy depends on the observer's experience. The standardized algorithm can aid in the differential diagnosis but still needs to be tested in other patient populations. (orig.)

  20. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation

    Science.gov (United States)

    Fuchs, Gilad; Shema, Efrat; Vesterman, Rita; Kotler, Eran; Wolchinsky, Zohar; Wilder, Sylvia; Golomb, Lior; Pribluda, Ariel; Zhang, Feng; Haj-Yahya, Mahmood; Feldmesser, Ester; Brik, Ashraf; Yu, Xiaochun; Hanna, Jacob; Aberdam, Daniel; Domany, Eytan; Oren, Moshe

    2012-01-01

    Summary Embryonic stem cells (ESC) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner. PMID:22681888

  1. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani

    2010-01-01

    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  2. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    Science.gov (United States)

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  3. [The morphology and differential diagnosis of parasitic larvae of Triodontophorus (Nematoda, Strongylidae)].

    Science.gov (United States)

    Kharchenko, V A; Dvoĭnos, G M

    1989-01-01

    356 parasitic larvae of the genus Triodontophorus from Equidae (two Equus hemionus and one E. grevyi) have been investigated. They belong to three phenons, which differ from each other by the shape and dimensions of a stoma, the structure of teeth and other signs. That phenons belong to three different species: T. serratus, T. tenuicollis and T. brevicauda. The differential diagnosis of L4 of that species of Triodontophorus are given.

  4. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    Science.gov (United States)

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  5. Morphological description of Dipturus mennii (Chondrichthyes: Elasmobranchii: Rajidae and its differentiation from Dipturus trachyderma

    Directory of Open Access Journals (Sweden)

    Renan A Moreira

    2011-02-01

    Full Text Available Squamation patterns and skeletal anatomy (neurocranium, visceral arches, synarcual cartilage, scapulocoracoid, puboischiadic bar, and mixopterigium of Dipturus mennii Gomes & Paragó, 2001 are described as a contribution to our limited knowledge of the anatomy of species of Dipturus Rafinesque, 1810. The hyoid and branchial arches, as well as the synarcual cartilage, are described for the first time in this species. We provide morphological comparisons of this species with Dipturus trachyderma (Krefft & Stehmann, 1975, a species that may be confused with D. mennii; we further corroborate, through anatomical features, that these species warrant separate taxonomic recognition. The main differences between D. mennii and D. trachyderma were found in squamation of the nuchal and middisc region, neurocranium, pectoral girdle, and principally the clasper skeleton. The morphology of the pelvic girdle is similar in both species. Dipturus is characterized by having the ventral terminal cartilage J-shaped (as opposed to the Z-shaped ventral terminal cartilage in Zearaja, whose species were, until recently, placed in Dipturus. Additional characters that may be derived for Dipturus include the anterior rostral groove and elevated rostral proportions

  6. Using geometric morphometric visualizations of directional selection gradients to investigate morphological differentiation.

    Science.gov (United States)

    Weaver, Timothy D; Gunz, Philipp

    2018-04-01

    Researchers studying extant and extinct taxa are often interested in identifying the evolutionary processes that have lead to the morphological differences among the taxa. Ideally, one could distinguish the influences of neutral evolutionary processes (genetic drift, mutation) from natural selection, and in situations for which selection is implicated, identify the targets of selection. The directional selection gradient is an effective tool for investigating evolutionary process, because it can relate form (size and shape) differences between taxa to the variation and covariation found within taxa. However, although most modern morphometric analyses use the tools of geometric morphometrics (GM) to analyze landmark data, to date, selection gradients have mainly been calculated from linear measurements. To address this methodological gap, here we present a GM approach for visualizing and comparing between-taxon selection gradients with each other, associated difference vectors, and "selection" gradients from neutral simulations. To exemplify our approach, we use a dataset of 347 three-dimensional landmarks and semilandmarks recorded on the crania of 260 primate specimens (112 humans, 67 common chimpanzees, 36 bonobos, 45 gorillas). Results on this example dataset show how incorporating geometric information can provide important insights into the evolution of the human braincase, and serve to demonstrate the utility of our approach for understanding morphological evolution. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  7. New trends in the study of podoplanin as a cell morphological regulator

    Directory of Open Access Journals (Sweden)

    Yoshihiko Sawa

    2010-08-01

    Full Text Available Podoplanin is a mucin-type glycoprotein firstly identified in podocytes, which is homologous to the type I alveolar cell specific T1α-2 antigen and to the oncofetal antigen M2A recognized by the D2-40 antibody. Podoplanin possesses a platelet aggregation-stimulating domain causes the platelet aggregation on cancer cells by the binding activity to CLEC-2. Podoplanin also contributes to the formation of membrane-actin structures. The increased podoplanin expression is found in squamous cell carcinomas at the invasive edge. It has been reported that the podoplanin induces an actin cytoskeleton rearrangement dependent on the RhoA GTPase activation to phosphorylate ezrin and facilitates an epithelial-mesenchymal transition (EMT which induces the single cell migration of cancer cells. However, the podoplanin-expressing cancer cells often express E-cadherin and migrate in a collective manner, suggesting that there are podoplanin-induced alternative pathways for the actin cytoskeleton rearrangement independent of the RhoA activation and EMT. The strong expression of podoplanin is present in salivary gland myoepithelial cells, and in enamel epithelia and odontoblasts of the tooth germ for a bell stage. Podoplanin may act as a cell morphological regulator in normal and cancer cells.

  8. Genetic and morphologic differentiation of the Lusitanian toadfish (Halobatrachus didactylus between estuarine and coastal areas in Portugal

    Directory of Open Access Journals (Sweden)

    Joana F. Marques

    2006-12-01

    Full Text Available The Lusitanian toadfish, Halobatrachus didactylus (Bloch and Schneider, 1801, is distributed from the Ghana coast to the Iberian Peninsula, being particularly abundant on the south coast of Portugal. The differentiation of this species along the Portuguese coast was assessed through the analysis of 10 samples, considering morphological characters (20 morphometric and 16 meristic and genetic markers (10 allozymes, 11 loci. Southern samples included estuaries and their adjacent coastal areas, given that this species inhabits both environments, whereas western samples only comprised estuaries. Morphometric and meristic data discriminant analysis evidenced some differentiation between estuarine and coastal populations. This was not entirely corroborated by the genetic analysis, which showed an overall pattern of low FST (0.042 and Nei’s genetic distance, even between geographically distant areas. However, higher values of these parameters were found between estuaries of the south coast and their adjacent coastal areas, suggesting that estuarine systems play a major role in such differentiation. Results are discussed regarding toadfish life-history pattern and Portuguese coast geomorphology, giving an insight into the biological and environmental factors influencing population sub-structuring.

  9. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals.

    Science.gov (United States)

    Kosiak, Elzbieta Barbara; Holst-Jensen, Arne; Rundberget, Thomas; Gonzalez Jaen, Maria Teresa; Torp, Mona

    2005-03-15

    The morphological variation, secondary metabolite profiles and restriction fragment length polymorphisms (RFLPs) of PCR amplified intergenic spacer (IGS) ribosomal DNA (rDNA) were studied in 27 isolates of Fusarium equiseti, 25 isolated from Norwegian cereals and 2 from soil obtained from the IBT culture collection (BioCentrum, Technical University of Denmark). All 27 isolates were tested for production of fusarochromanone (FUSCHR), zearalenone (ZEA) and the trichothecenes: 15-monoacetoxy-scirpentriol (MAS), diacetoxy-scirpenol (DAS), T-2 and HT-2 toxins, T2-triol, neosolaniol (NEO), deoxynivalenol (DON), nivalenol (NIV) and 4-acetylnivalenol (Fus-X). The trichothecenes were analysed by GC-MS in a selected ion monitoring mode, while FUSCHR was determined by ion pair HPLC with fluorometric detection and production of ZEA by TLC. For amplification of IGS rDNA primers CNL12 and CNS1 were applied. IGS rDNA was digested with the four restriction enzymes: AvaII, CfoI, EcoRI and Sau3A. In addition, we sequenced the IGS rDNA region of three of the Norwegian isolates. There were two morphological types among the Norwegian strains of F. equiseti, type I with short apical cells (dominating) and type II with long apical cells, with four haplotypes identified based on the RFLP data. Variation in secondary metabolite profiles within and between the morphological groups was observed and the levels of produced toxins were: FUSCHR 3000-42,500 and 25-30 ng/g, NIV 20-2500 and 120-700 ng/g, FUS-X 20-15,000 and 0 ng/g, DAS 30-7500 and 0-600 ng/g, and MAS 10-600 and 0-500 ng/g, for strains with short and long apical cells, respectively. NEO was detected in 16/27 strains tested (all morphotype I). All but four strains of type I (these four lacked a restriction site for EcoRI) had identical RFLP profiles. The isolates of type II had two haplotypes. The IGS sequence similarity data indicated differences between these morphotypes corresponding to two separate lineages apparently at the

  10. Gαq Regulates the Development of Rheumatoid Arthritis by Modulating Th1 Differentiation.

    Science.gov (United States)

    Wang, Dashan; Liu, Yuan; Li, Yan; He, Yan; Zhang, Jiyun; Shi, Guixiu

    2017-01-01

    The G α q-containing G protein, an important member of G q/11 class, is ubiquitously expressed in mammalian cells. G α q has been found to play an important role in immune regulation and development of autoimmune disease such as rheumatoid arthritis (RA). However, how G α q participates in the pathogenesis of RA is still not fully understood. In the present study, we aimed to find out whether G α q controls RA via regulation of Th1 differentiation. We observed that the expression of G α q was negatively correlated with the expression of signature Th1 cytokine (IFN- γ ) in RA patients, which suggests a negative role of G α q in differentiation of Th1 cells. By using G α q knockout ( Gnaq-/- ) mice, we demonstrated that loss of G α q led to enhanced Th1 cell differentiation. G α q negative regulated the differentiation of Th1 cell by modulating the expression of T-bet and the activity of STAT4. Furthermore, we detected the increased ratio of Th1 cells in Gnaq-/- bone marrow (BM) chimeras spontaneously developing inflammatory arthritis. In conclusion, results presented in the study demonstrate that loss of G α q promotes the differentiation of Th1 cells and contributes to the pathogenesis of RA.

  11. The regulation and role of c-FLIP in human Th cell differentiation.

    Science.gov (United States)

    Kyläniemi, Minna K; Kaukonen, Riina; Myllyviita, Johanna; Rasool, Omid; Lahesmaa, Riitta

    2014-01-01

    The early differentiation of T helper (Th) cells is a tightly controlled and finely balanced process, which involves several factors including cytokines, transcription factors and co-stimulatory molecules. Recent studies have shown that in addition to the regulation of apoptosis, caspase activity is also needed for Th cell proliferation and activation and it might play a role in Th cell differentiation. The isoforms of the cellular FLICE inhibitory protein (c-FLIP) are regulators of CASPASE-8 activity and the short isoform, c-FLIPS, has been shown to be up-regulated by IL-4, the Th2 driving cytokine. In this work, we have studied the expression and functional role of three c-FLIP isoforms during the early Th cell differentiation. Only two of the isoforms, c-FLIPS and c-FLIPL, were detected at the protein level although c-FLIPR was expressed at the mRNA level. The knockdown of c-FLIPL led to enhanced Th1 differentiation and elevated IL-4 production by Th2 cells, whereas the knockdown of c-FLIPS diminished GATA3 expression and IL-4 production by Th2 cells. In summary, our results provide new insight into the role of c-FLIP proteins in the early differentiation of human Th cells.

  12. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities

    Directory of Open Access Journals (Sweden)

    Sara Montagner

    2016-05-01

    Full Text Available Summary: Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC in DNA to 5-hydroxymethylcytosine (5hmC. Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression. : The impact of TET enzymes on gene expression and cell function is incompletely understood. Montagner et al. investigate the TET-mediated regulation of mast cell differentiation and function, uncover transcriptional pathways regulated by TET2, and identify both enzymatic activity-dependent and -independent functions of TET2. Keywords: differentiation, DNA hydroxymethylation, epigenetics, mast cells, proliferation, TET

  13. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  14. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  15. DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea.

    Science.gov (United States)

    Liao, Cheng-Heng; Xu, Ya; Rigali, Sébastien; Ye, Bang-Ce

    2015-12-01

    The GntR-family transcription regulator, DasR, was previously identified as pleiotropic, controlling the primary amino sugar N-acetylglucosamine (GlcNAc) and chitin metabolism in Saccharopolyspora erythraea and Streptomyces coelicolor. Due to the remarkable regulatory impact of DasR on antibiotic production and development in the model strain of S. coelicolor, we here identified and characterized the role of DasR to secondary metabolite production and morphological development in industrial erythromycin-producing S. erythraea. The physiological studies have shown that a constructed deletion of dasR in S. erythraea resulted in antibiotic, pigment, and aerial hyphae production deficit in a nutrient-rich condition. DNA microarray assay, combined with quantitative real-time reverse transcription PCR (qRT-PCR), confirmed these results by showing the downregulation of the genes relating to secondary metabolite production in the dasR null mutant. Notably, electrophoretic mobility shift assays (EMSA) showed DasR as being the first identified regulator that directly regulates the pigment biosynthesis rpp gene cluster. In addition, further studies indicated that GlcNAc, the major nutrient signal of DasR-responsed regulation, blocked secondary metabolite production and morphological development. The effects of GlcNAc were shown to be caused by DasR mediation. These findings demonstrated that DasR is an important pleiotropic regulator for both secondary metabolism and morphological development in S. erythraea, providing new insights for the genetic engineering of S. erythraea with increased erythromycin production.

  16. Down-regulation of E protein activity augments an ILC2 differentiation program in the thymus

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are important regulators in various immune responses. Current paradigm states that all newly-made ILCs originate from common lymphoid progenitors (CLP) in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Une...

  17. Regulation of caste differentiation in the honey bee (Apis mellifera L.)

    NARCIS (Netherlands)

    Goewie, E.A.

    1978-01-01

    The nutritional environment of honey-bee larvae affects the juvenile hormone (JH) titre of larval haemolymph and tissues. In this investigation the mechanism for the regulation of caste differentiation has been studied.

    Chemo- and mechanoreceptors are found on larval mouthparts.

  18. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  19. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  20. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion.

    Science.gov (United States)

    Gogos, J A; Thompson, R; Lowry, W; Sloane, B F; Weintraub, H; Horwitz, M

    1996-08-01

    To identify genes regulated during skeletal muscle differentiation, we have infected mouse C2C12 myoblasts with retroviral gene trap vectors, containing a promoterless marker gene with a 5' splice acceptor signal. Integration of the vector adjacent to an actively transcribed gene places the marker under the transcriptional control of the endogenous gene, while the adjacent vector sequences facilitate cloning. The vector insertionally mutates the trapped locus and may also form fusion proteins with the endogenous gene product. We have screened several hundred clones, each containing a trapping vector integrated into a different endogenous gene. In agreement with previous estimates based on hybridization kinetics, we find that a large proportion of all genes expressed in myoblasts are regulated during differentiation. Many of these genes undergo unique temporal patterns of activation or repression during cell growth and myotube formation, and some show specific patterns of subcellular localization. The first gene we have identified with this strategy is the lysosomal cysteine protease cathepsin B. Expression from the trapped allele is upregulated during early myoblast fusion and downregulated in myotubes. A direct role for cathepsin B in myoblast growth and fusion is suggested by the observation that the trapped cells deficient in cathepsin B activity have an unusual morphology and reduced survival in low-serum media and undergo differentiation with impaired cellular fusion. The phenotype is reproduced by antisense cathepsin B expression in parental C2C12 myoblasts. The cellular phenotype is similar to that observed in cultured myoblasts from patients with I cell disease, in which there is diminished accumulation of lysosomal enzymes. This suggests that a specific deficiency of cathepsin B could contribute to the myopathic component of this illness.

  1. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  2. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  3. Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin.

    Science.gov (United States)

    Chang, Kai-Wei; Huang, Nancy A; Liu, I-Hsuan; Wang, Yi-Hui; Wu, Ping; Tseng, Yen-Tzu; Hughes, Michael W; Jiang, Ting Xin; Tsai, Mong-Hsun; Chen, Chien-Yu; Oyang, Yen-Jen; Lin, En-Chung; Chuong, Cheng-Ming; Lin, Shau-Ping

    2015-01-23

    Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study

  4. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.C. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Kocovski, P.; Jovic, T.; Walia, M.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Chandraratna, R.A.S. [IO Therapeutics, Inc., Santa Ana, CA 92705 (United States); Martin, T.J.; Baker, E.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Purton, L.E., E-mail: lpurton@svi.edu.au [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia)

    2017-01-01

    Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenic cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice. - Graphical abstract: Schematic shows RAR ligand regulation of osteoblast differentiation in vitro. RARγ antagonists±RARα antagonists promote osteoblast differentiation. RARγ and RARα agonists alone or in combination block osteoblast differentiation, which correlates with upregulation of Sfrp4, and downregulation of nuclear and cytosolic β-catenin and reduced expression of the Wnt target gene Axin2. Red arrows indicate effects of RAR agonists on mediators of Wnt signalling.

  5. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors.

    Science.gov (United States)

    McKey, Jennifer; Martire, Delphine; de Santa Barbara, Pascal; Faure, Sandrine

    2016-04-28

    Smooth muscle cell (SMC) plasticity maintains the balance between differentiated SMCs and proliferative mesenchymal progenitors, crucial for muscular tissue homeostasis. Studies on the development of mesenchymal progenitors into SMCs have proven useful in identifying molecular mechanisms involved in digestive musculature plasticity in physiological and pathological conditions. Here, we show that Limb Expression 1 (LIX1) molecularly defines the population of mesenchymal progenitors in the developing stomach. Using in vivo functional approaches in the chick embryo, we demonstrate that LIX1 is a key regulator of stomach SMC development. We show that LIX1 is required for stomach SMC determination to regulate the expression of the pro-proliferative gene YAP1 and mesenchymal cell proliferation. However, as stomach development proceeds, sustained LIX1 expression has a negative impact on further SMC differentiation and this is associated with a decrease in YAP1 activity. We demonstrate that expression of LIX1 must be tightly regulated to allow fine-tuning of the transcript levels and state of activation of the pro-proliferative transcriptional coactivator YAP1 to regulate proliferation rates of stomach mesenchymal progenitors and their differentiation. Our data highlight dual roles for LIX1 and YAP1 and provide new insights into the regulation of cell density-dependent proliferation, which is essential for the development and homeostasis of organs.

  6. Negative regulation of neuronal cell differentiation by INHAT subunit SET/TAF-Iβ.

    Science.gov (United States)

    Kim, Dong-Wook; Kim, Kee-Beom; Kim, Ji-Young; Lee, Kyu-Sun; Seo, Sang-Beom

    2010-09-24

    Epigenetic modification plays an important role in transcriptional regulation. As a subunit of the INHAT (inhibitor of histone acetyltransferases) complex, SET/TAF-Iβ evidences transcriptional repression activity. In this study, we demonstrate that SET/TAF-Iβ is abundantly expressed in neuronal tissues of Drosophila embryos. It is expressed at high levels prior to and in early stages of neuronal development, and gradually reduced as differentiation proceeds. SET/TAF-Iβ binds to the promoters of a subset of neuronal development markers and negatively regulates the transcription of these genes. The results of this study show that the knockdown of SET/TAF-Iβ by si-RNA induces neuronal cell differentiation, thus implicating SET/TAF-Iβ as a negative regulator of neuronal development. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors.

    Science.gov (United States)

    Sachdeva, Rohit; Jönsson, Marie E; Nelander, Jenny; Kirkeby, Agnete; Guibentif, Carolina; Gentner, Bernhard; Naldini, Luigi; Björklund, Anders; Parmar, Malin; Jakobsson, Johan

    2010-06-22

    In this study, we have used a microRNA-regulated lentiviral reporter system to visualize and segregate differentiating neuronal cells in pluripotent cultures. Efficient suppression of transgene expression, specifically in undifferentiated pluripotent cells, was achieved by using a lentiviral vector expressing a fluorescent reporter gene regulated by microRNA-292. Using this strategy, it was possible to track progeny from murine ES, human ES cells, and induced pluripotent stem cells as they differentiated toward the neural lineage. In addition, this strategy was successfully used to FACS purify neuronal progenitors for molecular analysis and transplantation. FACS enrichment reduced tumor formation and increased survival of ES cell-derived neuronal progenitors after transplantation. The properties and versatility of the microRNA-regulated vectors allows broad use of these vectors in stem cell applications.

  8. SOX17 Regulates Cholangiocyte Differentiation and Acts as a Tumor Suppressor in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Merino-Azpitarte, M; Lozano, E; Perugorria, M J

    2017-01-01

    /function was evaluated along the differentiation of human induced pluripotent stem cells (iPSC) into cholangiocytes, in the dedifferentiation process of normal human cholangiocytes (NHC) in culture and in cholangiocarcinogenesis. Lentiviruses for SOX17 overexpression or knock-down were used. Gene expression and DNA......BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a biliary malignancy linked to genetic and epigenetic abnormalities, such as hypermethylation of SOX17 promoter. Here, the role of SOX17 in cholangiocyte differentiation and cholangiocarcinogenesis was studied. METHODS: SOX17 expression...... methylation profiling were performed. RESULTS: SOX17 expression is induced in the last stage of cholangiocyte differentiation from iPSC and regulates the acquisition of biliary markers. SOX17 becomes downregulated in NHC undergoing dedifferentiation; experimental SOX17 knock-down in differentiated NHC...

  9. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    Directory of Open Access Journals (Sweden)

    Brunner Sylvia

    2008-05-01

    Full Text Available Abstract Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations.

  10. RELATIONSHIP BETWEEN EXPRESSION OF MATRIX METALLOPROTEINASES AND MORPHOLOGICAL HETEROGENEITY, TUMOR DIFFERENTIATION AND LYMPHOGENOUS METASTASIS OF SQUAMOUS CELL LARYNGEAL CARCINOMA

    Directory of Open Access Journals (Sweden)

    О. V. Savenkova

    2015-01-01

    Full Text Available The study included 58 patients with stage Т1–3N0–3M0–1 squamous cell laryngeal carcinoma. The age range was from 31 to 77 years. Patients received no cancer treatment before surgery. The expression of metalloproteinases (ММP-1, -2, -9, their inhibitors (TIMP-1, -2 and inductor of metalloproteinase expression (CD147 were determined in tumor cells of different structures of squamous cell carcinoma using immunohistochemical method. Results were compared with the presence of lymphogenous metastases. Results. Five morphological structures of squamous cell carcinomas were studied: with keratinization (type 1, with cells of basaloid and acanthocyte types without kartinization (type 2, with cells of basaloid type (type 3, with pronounced cellular polymorphism (type 4 and single tumor cells (type 5. With regard to combination of these structures, tumors were divided into high-grade, low-grade and mixed tumor structures. In tumors without lymphogenous metastases, the increased expression of ММP-1, -2, and-9 was only revealed in discrete cells. In tumors with lymphogenic metastases, the increased MMP-9 expression was observed in more differentiated structures of 1, 2 and 3 types. Less frequent lymphogenous metastasis of vocal cord carcinomas was associated only with tumors of mixed structure, in which the expression of TIMP1 was reduced.  Conclusion. To assess the histological differentiation of squamous cell carcinoma of the larynx, it should be considered a combination of high and low-grade tumor structures. The expression of metalloproteinases should be studied considering morphological heterogeneity of squamous cell carcinomas. The frequency of lymphogenous metastasis of high-or low-grade squamous cell carcinoma of the vocal cords did not differ from that of squamous cell carcinoma of the supra-glottal area. The frequency of lymphogenous metastasis was significantly lower in mixed squamous cell carcinomas of the vocal cords than in similar

  11. Clinical and pathogenetic interrelation between molecular regulation of apoptosis and cell differentiation in osteoarthritis

    Directory of Open Access Journals (Sweden)

    M A Kabalyk

    2018-02-01

    Full Text Available Aim. To determine clinical and pathogenetic relationship between the levels of apoptosis and growth and differentiation regulation (growth inhibitor 1 induced by oxidative stress, growth/differentiation factor 5 in osteoarthritis. Methods. In a rheumatology office of Vladivostok polyclinic №3 65 patients with knee osteoarthritis Kellgren grade 1-4 aged 66.5±8.0 years were examined. 25 healthy volunteers matched by sex and age without clinical and radiologic manifestations of osteoarthritis were included into control group. To measure concentration of the studied molecules in study patients’ blood, ELISA method was used. Results. Patients with osteoarthritis compared to control group had statistically significantly increased levels of Fas, growth/differentiation factor 5 and ratio of growth/differentiation factor 5/growth inhibitor 1 induced by oxidative stress. Fas levels were significantly lower in late stages 2-4 of osteoarthritis compared to stages 1 and 2. Growth/differentiation factor 5 level was lower in patients with stage 3-4 of osteoarthritis compared to stages 1 and 2. As radiologic signs of osteoarthritis progressed, decrease of the ratio of growth/differentiation factor 5/growth inhibitor 1 induced by oxidative stress, was registered which was significantly lower in stages 2 and 3 compared to stage 1. Conclusion. Extrinsic pathway of apoptosis plays a big role in forming pain syndrome in osteoarthritis, and its maintenance is provided by other mechanisms which include influence of oxidative stress via inhibition of cell cycle mediated by growth inhibitor 1 induced by oxidative stress, reduced involvement of growth/differentiation factor 5 in differentiation processes and regulation of protein synthesis of extracellular cartilaginous tissue matrix.

  12. Intrafloral differentiation of stamen morphology and function of capparis spinosa L

    International Nuclear Information System (INIS)

    Linke, Y.; Meilin, Y.; Qiumei, C.

    2017-01-01

    In Capparis spinosa L. (Capparidaceae), a woody perennial with both male and perfect flowers on the same plant, each flower has both short and long stamens. Flowers of C. spinosa were examined for 2 years at the Turpan Eremophytes Botanical Garden in Xinjiang, China. Stamen morphological characteristics, pollen vigor, quantity of pollen, and insect visitation were compared for flowers with short and long stamens to ascertain the function of the two types of stamens. Both types of flowers, male and perfect flowers, had both long and short stamens in the same flower. The number of stamens and pollen grains as well as the color of filaments in a single flower were significantly different between long and short stamens. The number of pollen grains produced by long stamens in a flower was greater than those of shorter stamen in the same flower, although pollen vigor did not differ between pollen from long and short stamens. Insect visitation frequency was higher for long stamens than for short stamens. The pollen of long and short stamens was used for hand-pollination. The rates of fruit and seed set from the pollen of long stamens were higher than those from the pollen of short stamens. While the main function of long stamens was to provide pollen for visiting insects, short stamens might improve male resources in three ways: by providing a guaranteeof pollen availability in adverse weather conditions, increasingthe space available for pollen capture and increasing the visitation timeofindividual insects. (author)

  13. Differential Essential Oil Composition and Morphology between Perennial Satureja species Growing in Spain

    Directory of Open Access Journals (Sweden)

    David García-Rellán

    2015-06-01

    Full Text Available Chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of thirty six samples of perennial Spanish savouries (Satureja montana L., Satureja innota (Pau G. López, Satureja cuneifolia Ten. and Satureja intricata Lange, was investigated by GC and GC-MS. A total of 72 compounds accounting between 98.25-99.55% of the total oil were identified. High content of carvacrol (59.72±1.50% followed by g -terpinene (17.40±1.11% were found in S.montana essential oils. S. cuneifolia yielded an oil rich in camphor (45.04±1.67% and camphene (12.42±1.71% whereas S. innota produces an essential oil with linalool (23.94±7.58% or geraniol (8.62±3.45% according to the locality of collection and S. intricata showed chemical polymorphism with camphor (16.02±1.75%, as the main compound followed with populations with myrcene (8.46±1.46% and populations with g -terpinene (8.22±1.33%. Although the morphological affinity between S. innota, S.cuneifolia and S. intricata could lead to consider the subspecies level, the phytochemical discriminant analysis support the taxonomic classification of Flora Iberica which ranks these taxa into species.

  14. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  15. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-01-01

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases

  16. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  17. The histone demethylase Kdm6b regulates a mature gene expression program in differentiating cerebellar granule neurons.

    Science.gov (United States)

    Wijayatunge, Ranjula; Liu, Fang; Shpargel, Karl B; Wayne, Nicole J; Chan, Urann; Boua, Jane-Valeriane; Magnuson, Terry; West, Anne E

    2018-03-01

    The histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs). Atoh1-Cre mediated conditional knockout of Kdm6b in CGN precursors either alone or in combination with Kdm6a did not disturb the gross morphological development of the cerebellum. Furthermore, RNAi-mediated knockdown of Kdm6b in cultured CGN precursors did not alter the induced expression of early neuronal marker genes upon cell cycle exit. By contrast, knockdown of Kdm6b significantly impaired the induction of a mature neuronal gene expression program, which includes gene products required for functional synapse maturation. Loss of Kdm6b also impaired the ability of Brain-Derived Neurotrophic Factor (BDNF) to induce expression of Grin2c and Tiam1 in maturing CGNs. Taken together, these data reveal a previously unknown role for Kdm6b in the postmitotic stages of CGN maturation and suggest that Kdm6b may work, at least in part, by a transcriptional mechanism that promotes gene sensitivity to regulation by BDNF. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Signals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation

    Science.gov (United States)

    Li, Li; Liu, Ruizao; Zhang, Li; Zhao, Fuping; Lu, Jian; Zhang, Xiaoning; Du, Lixin

    2015-01-01

    Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis. PMID:25811841

  19. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.

    Directory of Open Access Journals (Sweden)

    Amélie Avet-Rochex

    2014-09-01

    Full Text Available Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk, which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem

  20. Tissue transglutaminase (TG2 activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line

    Directory of Open Access Journals (Sweden)

    Xiaoxue Yin

    2012-08-01

    Full Text Available Tissue transglutaminase (type II, TG2 has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14 to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC mRNA, bone morphogenetic protein-2 (BMP-2 and collagen I, significantly high alkaline phosphatase (ALP activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.

  1. Interplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation.

    Science.gov (United States)

    Deng, Tao; Postnikov, Yuri; Zhang, Shaofei; Garrett, Lillian; Becker, Lore; Rácz, Ildikó; Hölter, Sabine M; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe; Bustin, Michael

    2017-04-07

    An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior. Published by Oxford University Press on behalf of Nucleic Acids Research 2016.

  2. Morphological Investigation into Starch Bio-Nanocomposites via Synchrotron Radiation and Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Huihua Liu

    2011-01-01

    Full Text Available We studied a hydrophilic, plasticized bionanocomposite system involving sorbitol plasticizer, amylose biopolymer, and montmorillonite (MMT for the presence of competitive interactions among them at different moisture content. Synchrotron analysis via small angle X-ray scattering (SAXS and thermal analysis using differential scanning calorimetry (DSC were performed to understand crystalline growth and the distribution of crystalline domains within the samples. The SAXS diffraction patterns showed reduced interhelix spacing in the amylose network indicating strong amylose-sorbitol interactions. Depending on the sorbitol and MMT concentration, these interactions also affected the free moisture content and crystalline domains. Domains of around 95 Å and 312 Å were found in the low-moisture-content samples as compared to a single domain of 95 Å in the high-moisture-content samples. DSC measurements confirmed that the MMT increased the onset and the melting temperature of nanocomposites. Moreover, the results showed that the ternary interactions among sorbitol-amylose-MMT supported the crystalline heterogeneity through secondary nucleation.

  3. Differentiation of scintigraphic-morphological changes of the thyroid by diffusion techniques

    International Nuclear Information System (INIS)

    Auf Hamada, T.

    1974-01-01

    The essay was based on the question of the possibility of obtaining a diagnostic parameter by determining the thyroidal blood circulation with the aid of gamma-camera examination. A series of confirmed cases of hyperthyreoses, adenomas, cycts, and malignomas was selected trying to distinguish the criteria of the blood circulation of clinically, serologically, and scintigraphically normal organs. The blood circulation of the normal-sized, or slightly enlarged thyroid showed in all cases a normal curve with constant increase, but without a peak during the period of examination (60 sec.). If we look at the curve in the case of hyperthyreosis, we see, in contrast to the normal findings a notably faster accumulation of the nuclide in the thyroid, with a slightly reduced enrichment in the further course of the examination, in comparison to the initial part of the curve. The blood circulation curves of decompensated adenomas show, in contrast to the compensated adenoma, also a faster initial accumulation, in relation to the total height of the impulse, which is quantitatively increased by 1/3. If we compare all adenomas, we see that the curve ascends continously, although only in two of seven cases a peak could be differentiated, which might be due to a faster thyroid clearance. (orig./AJ) [de

  4. [Clinical value of MRI united-sequences examination in diagnosis and differentiation of morphological sub-type of hilar and extrahepatic big bile duct cholangiocarcinoma].

    Science.gov (United States)

    Yin, Long-Lin; Song, Bin; Guan, Ying; Li, Ying-Chun; Chen, Guang-Wen; Zhao, Li-Ming; Lai, Li

    2014-09-01

    To investigate MRI features and associated histological and pathological changes of hilar and extrahepatic big bile duct cholangiocarcinoma with different morphological sub-types, and its value in differentiating between nodular cholangiocarcinoma (NCC) and intraductal growing cholangiocarcinoma (IDCC). Imaging data of 152 patients with pathologically confirmed hilar and extrahepatic big bile duct cholangiocarcinoma were reviewed, which included 86 periductal infiltrating cholangiocarcinoma (PDCC), 55 NCC, and 11 IDCC. Imaging features of the three morphological sub-types were compared. Each of the subtypes demonstrated its unique imaging features. Significant differences (P big bile duct cholangiocarcinoma. MRI united-sequences examination can accurately describe those imaging features for differentiation diagnosis.

  5. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Kim, Jin-Man; Kim, Hyunsoo; Kwon, Soon Bok; Lee, Soo Young; Chung, Sung-Chang; Jeong, Dae-Won; Min, Byung-Moo

    2004-01-01

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  6. Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Bouraoui, L; Gutiérrez, J; Navarro, I

    2008-09-01

    Here, we describe optimal conditions for the culture of rainbow trout (Oncorhynchus mykiss) pre-adipocytes obtained from adipose tissue and their differentiation into mature adipocytes, in order to study the endocrine control of adipogenesis. Pre-adipocytes were isolated by collagenase digestion and cultured on laminin or 1% gelatin substrate. The expression of proliferating cell nuclear antigen was used as a marker of cell proliferation on various days of culture. Insulin growth factor-I stimulated cell proliferation especially on days 5 and 7 of culture. Tumor necrosis factor alpha (TNFalpha) slightly enhanced cell proliferation only at a low dose. We verified the differentiation of cells grown in specific medium into mature adipocytes by oil red O (ORO) staining. Quantification of ORO showed an increase in triglycerides throughout culture. Immunofluorescence staining of cells at day 11 revealed the expression of CCAAT/enhancer-binding protein and peroxisome proliferator-activator receptor gamma, suggesting that these transcriptional factors are involved in adipocyte differentiation in trout. We also examined the effect of TNFalpha on the differentiation of these adipocytes in primary culture. TNFalpha inhibited the differentiation of these cells, as indicated by a decrease in glycerol-3-phosphate dehydrogenase activity, an established marker of adipocyte differentiation. In conclusion, the culture system described here for trout pre-adipocytes is a powerful tool to study the endocrine regulation of adipogenesis in this species.

  7. Rice starch granule amylolysis--differentiating effects of particle size, morphology, thermal properties and crystalline polymorph.

    Science.gov (United States)

    Dhital, Sushil; Butardo, Vito M; Jobling, Stephen A; Gidley, Michael J

    2015-01-22

    The underlying mechanism of amylolysis of rice starch granules was investigated using isolated starch granules from wild-type, as well as SBEIIb mutant and down-regulated lines. Fused granule agglomerates isolated from mutant and transgenic lines were hydrolysed at similar rates by amylases, and had similar crystalline patterns and thermal properties as individual granules. Surface pores, a feature previously only reported for A-polymorphic starch granules, were also observed in B- and C-polymorphic rice starch granules. Although the microscopic patterns of hydrolysis among granules with different crystalline polymorphs were qualitatively similar, the extent and the rate of amylolysis were different, suggesting that B-type crystalline polymorphs are intrinsically more resistant to enzymatic hydrolysis than A-type in rice starch granules. It is proposed that the slightly longer branch lengths of amylopectin which leads to the formation of more stable B-type double helical structures compared to their A-type counterparts is the major parameter, with other factors such as granule size, surface pores and interior channels having secondary roles, in determining the rate of enzymatic hydrolysis of rice starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of developmental exposure to perfluorooctanoic acid (PFOA) on long bone morphology and bone cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, A., E-mail: antti.koskela@oulu.fi [Institute of Cancer Research and Translational Medicine, MRC Oulu and Department of Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu (Finland); Finnilä, M.A. [Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu (Finland); Korkalainen, M. [National Institute for Health and Welfare, Department of Health Protection, Kuopio (Finland); Spulber, S. [Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden); Koponen, J. [National Institute for Health and Welfare, Department of Health Protection, Kuopio (Finland); Håkansson, H. [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Tuukkanen, J. [Institute of Cancer Research and Translational Medicine, MRC Oulu and Department of Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu (Finland); Viluksela, M. [National Institute for Health and Welfare, Department of Health Protection, Kuopio (Finland); Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio (Finland)

    2016-06-15

    Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6 mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry

  9. Effects of developmental exposure to perfluorooctanoic acid (PFOA) on long bone morphology and bone cell differentiation

    International Nuclear Information System (INIS)

    Koskela, A.; Finnilä, M.A.; Korkalainen, M.; Spulber, S.; Koponen, J.; Håkansson, H.; Tuukkanen, J.; Viluksela, M.

    2016-01-01

    Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6 mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry

  10. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  11. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Mohammed M. Islam

    2013-09-01

    The transcription factor forkhead box N4 (Foxn4 is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2, located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.

  12. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications.

    Science.gov (United States)

    Li, Zhenghao; Takenobu, Hisanori; Setyawati, Amallia Nuggetsiana; Akita, Nobuhiro; Haruta, Masayuki; Satoh, Shunpei; Shinno, Yoshitaka; Chikaraishi, Koji; Mukae, Kyosuke; Akter, Jesmin; Sugino, Ryuichi P; Nakazawa, Atsuko; Nakagawara, Akira; Aburatani, Hiroyuki; Ohira, Miki; Kamijo, Takehiko

    2018-05-01

    The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also

  13. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    Science.gov (United States)

    Li, Zhiyong; Huang, Zachary Y; Sharma, Dhruv B; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  14. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    Science.gov (United States)

    Eskildsen, Tilde; Taipaleenmäki, Hanna; Stenvang, Jan; Abdallah, Basem M.; Ditzel, Nicholas; Nossent, Anne Yael; Bak, Mads; Kauppinen, Sakari; Kassem, Moustapha

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators of diverse biological processes by mediating translational repression or mRNA degradation of their target genes. Here, we show that miRNA-138 (miR-138) modulates osteogenic differentiation of hMSCs. miRNA array profiling and further validation by quantitative RT-PCR (qRT-PCR) revealed that miR-138 was down-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3′ UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central role in promoting osteoblast differentiation, as a bona fide target of miR-138. We show that miR-138 attenuates bone formation in vivo, at least in part by inhibiting the focal adhesion kinase signaling pathway. Our findings suggest that pharmacological inhibition of miR-138 by antimiR-138 could represent a therapeutic strategy for enhancing bone formation in vivo. PMID:21444814

  15. An automated high throughput screening-compatible assay to identify regulators of stem cell neural differentiation.

    Science.gov (United States)

    Casalino, Laura; Magnani, Dario; De Falco, Sandro; Filosa, Stefania; Minchiotti, Gabriella; Patriarca, Eduardo J; De Cesare, Dario

    2012-03-01

    The use of Embryonic Stem Cells (ESCs) holds considerable promise both for drug discovery programs and the treatment of degenerative disorders in regenerative medicine approaches. Nevertheless, the successful use of ESCs is still limited by the lack of efficient control of ESC self-renewal and differentiation capabilities. In this context, the possibility to modulate ESC biological properties and to obtain homogenous populations of correctly specified cells will help developing physiologically relevant screens, designed for the identification of stem cell modulators. Here, we developed a high throughput screening-suitable ESC neural differentiation assay by exploiting the Cell(maker) robotic platform and demonstrated that neural progenies can be generated from ESCs in complete automation, with high standards of accuracy and reliability. Moreover, we performed a pilot screening providing proof of concept that this assay allows the identification of regulators of ESC neural differentiation in full automation.

  16. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation.

    Science.gov (United States)

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A

    2015-05-19

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.

  17. SNF5 is an essential executor of epigenetic regulation during differentiation.

    Science.gov (United States)

    You, Jueng Soo; De Carvalho, Daniel D; Dai, Chao; Liu, Minmin; Pandiyan, Kurinji; Zhou, Xianghong J; Liang, Gangning; Jones, Peter A

    2013-04-01

    Nucleosome occupancy controls the accessibility of the transcription machinery to DNA regulatory regions and serves an instructive role for gene expression. Chromatin remodelers, such as the BAF complexes, are responsible for establishing nucleosome occupancy patterns, which are key to epigenetic regulation along with DNA methylation and histone modifications. Some reports have assessed the roles of the BAF complex subunits and stemness in murine embryonic stem cells. However, the details of the relationships between remodelers and transcription factors in altering chromatin configuration, which ultimately affects gene expression during cell differentiation, remain unclear. Here for the first time we demonstrate that SNF5, a core subunit of the BAF complex, negatively regulates OCT4 levels in pluripotent cells and is essential for cell survival during differentiation. SNF5 is responsible for generating nucleosome-depleted regions (NDRs) at the regulatory sites of OCT4 repressed target genes such as PAX6 and NEUROG1, which are crucial for cell fate determination. Concurrently, SNF5 closes the NDRs at the regulatory regions of OCT4-activated target genes such as OCT4 itself and NANOG. Furthermore, using loss- and gain-of-function experiments followed by extensive genome-wide analyses including gene expression microarrays and ChIP-sequencing, we highlight that SNF5 plays dual roles during differentiation by antagonizing the expression of genes that were either activated or repressed by OCT4, respectively. Together, we demonstrate that SNF5 executes the switch between pluripotency and differentiation.

  18. SNF5 is an essential executor of epigenetic regulation during differentiation.

    Directory of Open Access Journals (Sweden)

    Jueng Soo You

    2013-04-01

    Full Text Available Nucleosome occupancy controls the accessibility of the transcription machinery to DNA regulatory regions and serves an instructive role for gene expression. Chromatin remodelers, such as the BAF complexes, are responsible for establishing nucleosome occupancy patterns, which are key to epigenetic regulation along with DNA methylation and histone modifications. Some reports have assessed the roles of the BAF complex subunits and stemness in murine embryonic stem cells. However, the details of the relationships between remodelers and transcription factors in altering chromatin configuration, which ultimately affects gene expression during cell differentiation, remain unclear. Here for the first time we demonstrate that SNF5, a core subunit of the BAF complex, negatively regulates OCT4 levels in pluripotent cells and is essential for cell survival during differentiation. SNF5 is responsible for generating nucleosome-depleted regions (NDRs at the regulatory sites of OCT4 repressed target genes such as PAX6 and NEUROG1, which are crucial for cell fate determination. Concurrently, SNF5 closes the NDRs at the regulatory regions of OCT4-activated target genes such as OCT4 itself and NANOG. Furthermore, using loss- and gain-of-function experiments followed by extensive genome-wide analyses including gene expression microarrays and ChIP-sequencing, we highlight that SNF5 plays dual roles during differentiation by antagonizing the expression of genes that were either activated or repressed by OCT4, respectively. Together, we demonstrate that SNF5 executes the switch between pluripotency and differentiation.

  19. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells

    Energy Technology Data Exchange (ETDEWEB)

    Noah, Taeko K.; Kazanjian, Avedis [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Whitsett, Jeffrey [Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Neonatology and Pulmonary Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Shroyer, Noah F., E-mail: noah.shroyer@cchmc.org [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-02-01

    Background and Aims: SPDEF (also termed PDEF or PSE) is an ETS family transcription factor that regulates gene expression in the prostate and goblet cell hyperplasia in the lung. Spdef has been reported to be expressed in the intestine. In this paper, we identify an important role for Spdef in regulating intestinal epithelial cell homeostasis and differentiation. Methods: SPDEF expression was inhibited in colon cancer cells to determine its ability to control goblet cell gene activation. The effects of transgenic expression of Spdef on intestinal differentiation and homeostasis were determined. Results: In LS174T colon cancer cells treated with Notch/{gamma}-secretase inhibitor to activate goblet cell gene expression, shRNAs that inhibited SPDEF also repressed expression of goblet cell genes AGR2, MUC2, RETLNB, and SPINK4. Transgenic expression of Spdef caused the expansion of intestinal goblet cells and corresponding reduction in Paneth, enteroendocrine, and absorptive enterocytes. Spdef inhibited proliferation of intestinal crypt cells without induction of apoptosis. Prolonged expression of the Spdef transgene caused a progressive reduction in the number of crypts that expressed Spdef, consistent with its inhibitory effects on cell proliferation. Conclusions: Spdef was sufficient to inhibit proliferation of intestinal progenitors and induce differentiation into goblet cells; SPDEF was required for activation of goblet cell associated genes in vitro. These data support a model in which Spdef promotes terminal differentiation into goblet cells of a common goblet/Paneth progenitor.

  20. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells.

    Science.gov (United States)

    Watanabe-Susaki, Kanako; Takada, Hitomi; Enomoto, Kei; Miwata, Kyoko; Ishimine, Hisako; Intoh, Atsushi; Ohtaka, Manami; Nakanishi, Mahito; Sugino, Hiromu; Asashima, Makoto; Kurisaki, Akira

    2014-12-01

    Pluripotent stem cells have been shown to have unique nuclear properties, for example, hyperdynamic chromatin and large, condensed nucleoli. However, the contribution of the latter unique nucleolar character to pluripotency has not been well understood. Here, we show that fibrillarin (FBL), a critical methyltransferase for ribosomal RNA (rRNA) processing in nucleoli, is one of the proteins highly expressed in pluripotent embryonic stem (ES) cells. Stable expression of FBL in ES cells prolonged the pluripotent state of mouse ES cells cultured in the absence of leukemia inhibitory factor (LIF). Analyses using deletion mutants and a point mutant revealed that the methyltransferase activity of FBL regulates stem cell pluripotency. Knockdown of this gene led to significant delays in rRNA processing, growth inhibition, and apoptosis in mouse ES cells. Interestingly, both partial knockdown of FBL and treatment with actinomycin D, an inhibitor of rRNA synthesis, induced the expression of differentiation markers in the presence of LIF and promoted stem cell differentiation into neuronal lineages. Moreover, we identified p53 signaling as the regulatory pathway for pluripotency and differentiation of ES cells. These results suggest that proper activity of rRNA production in nucleoli is a novel factor for the regulation of pluripotency and differentiation ability of ES cells. © 2014 AlphaMed Press.

  1. PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division

    Directory of Open Access Journals (Sweden)

    Teruki Dainichi

    2016-05-01

    Full Text Available Asymmetric cell division (ACD in a perpendicular orientation promotes cell differentiation and organizes the stratified epithelium. However, the upstream cues regulating ACD have not been identified. Here, we report that phosphoinositide-dependent kinase 1 (PDK1 plays a critical role in establishing ACD in the epithelium. Production of phosphatidyl inositol triphosphate (PIP3 is localized to the apical side of basal cells. Asymmetric recruitment of atypical protein kinase C (aPKC and partitioning defective (PAR 3 is impaired in PDK1 conditional knockout (CKO epidermis. PDK1CKO keratinocytes do not undergo calcium-induced activation of aPKC or IGF1-induced activation of AKT and fail to differentiate. PDK1CKO epidermis shows decreased expression of Notch, a downstream effector of ACD, and restoration of Notch rescues defective expression of differentiation-induced Notch targets in vitro. We therefore propose that PDK1 signaling regulates the basal-to-suprabasal switch in developing epidermis by acting as both an activator and organizer of ACD and the Notch-dependent differentiation program.

  2. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis.

    Science.gov (United States)

    Rønning, Sissel B; Carlson, Cathrine R; Stang, Espen; Kolset, Svein O; Hollung, Kristin; Pedersen, Mona E

    2015-01-01

    The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.

  3. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis.

    Directory of Open Access Journals (Sweden)

    Sissel B Rønning

    Full Text Available The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.

  4. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  5. Identification of novel regulators in T-cell differentiation of aplastic anemia patients

    Directory of Open Access Journals (Sweden)

    Probst-Kepper Michael

    2006-10-01

    Full Text Available Abstract Background Aplastic anemia (AA is a bone marrow failure syndrome mostly characterized by an immune-mediated destruction of marrow hematopoietic progenitor/stem cells. The resulting hypocellularity limits a detailed analysis of the cellular immune response. To overcome this technical problem we performed a microarray analysis of CD3+ T-cells derived from bone marrow aspirates and peripheral blood samples of newly diagnosed AA patients and healthy volunteers. Two AA patients were additionally analyzed after achieving a partial remission following immunosuppression. The regulation of selected candidate genes was confirmed by real-time RT-PCR. Results Among more than 22.200 transcripts, 583 genes were differentially expressed in the bone marrow of AA patients compared to healthy controls. Dysregulated genes are involved in T-cell mediated cytotoxicity, immune response of Th1 differentiated T-cells, and major regulators of immune function. In hematological remission the expression levels of several candidate genes tend to normalize, such as immune regulators and genes involved in proinflammatory immune response. Conclusion Our study suggests a pivotal role of Th1/Tc1 differentiated T-cells in immune-mediated marrow destruction of AA patients. Most importantly, immune regulatory genes could be identified, which are likely involved in the recovery of hematopoiesis and may help to design new therapeutic strategies in bone marrow failure syndromes.

  6. Differential expression of genes regulated in response to drought stress in diploid cotton (Gossypium arboreum) (abstract)

    International Nuclear Information System (INIS)

    Hussain, T.; Majeed, A.; Maqbool, A.; Hussain, S.S.; Ali, T.; Riazuddin, S.

    2005-01-01

    Negative effects on the Water status of plants is one of the most common and deleterious stresses experienced by wild and cultivated plants throughout the World. Our project is designed to identify, clone and characterize gene sequences regulated in response to Water stress (e.g., drought). We used the differential-display reverse transcriptase polymerase chain reaction (DD-RT- PCA) methodology to accomplish our Objectives. Structural and functional characterization of environmental stress-induced genes has contributed to a better understanding of how plants respond and adapt to different abiotic stresses. Differential display was used to compare overall difference in gene expression between draught stressed and unstressed (control) plants of diploid Cotton (Gossypium arboreum). DDRT-PCR product from stressed and unstressed samples resolved side by side on 6% PAGE to compare qualitative and quantitative difference in mRNA expression. A total of 81 primer combinations were tested. DDRT -PCR enabled us to identify differentially expressed transcripts between water stressed and non-stressed cotton seedlings. PAGE revealed a total of 347 DNA transcripts in stressed samples (New Transcripts) while 110 down regulated and 209 up regulated DNA transcripts were also recorded. Similarly. 22 DNA transcripts were identified based on the comparative study of PAGE and Agarose gel electrophoresis. These sequences showed various degree homology With draught tolerant genes in the gene bank. (author)

  7. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes.

    Science.gov (United States)

    Marroncelli, Nicoletta; Bianchi, Marzia; Bertin, Marco; Consalvi, Silvia; Saccone, Valentina; De Bardi, Marco; Puri, Pier Lorenzo; Palacios, Daniela; Adamo, Sergio; Moresi, Viviana

    2018-02-22

    Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7 + cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.

  8. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong

    2013-12-01

    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  9. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    Science.gov (United States)

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  10. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes.

    Directory of Open Access Journals (Sweden)

    Anne Kraemer

    Full Text Available MicroRNA (miRNA-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2, which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis.

  11. UVA and UVB Irradiation Differentially Regulate microRNA Expression in Human Primary Keratinocytes

    Science.gov (United States)

    Kraemer, Anne; Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Volkmer, Beate; Atkinson, Michael J.; Moertl, Simone; Greinert, Ruediger

    2013-01-01

    MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis. PMID:24391759

  12. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation.

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-05-01

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8 + T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8 + T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8 + T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8 + T cell differentiation.

  13. Epigenetic landscapes reveal transcription factors regulating CD8+ T cell differentiation

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J. Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P.; Pereira, Renata M.; Crotty, Shane; Chang, John T.; Pipkin, Matthew E.; Wang, Wei; Goldrath, Ananda W.

    2017-01-01

    Dynamic changes in the expression of transcription factors (TFs) can influence specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that TF expression and binding contributed to establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of differentiation intermediates, facilitating identification of TFs with previously unappreciated roles in CD8+ T cell differentiation. PMID:28288100

  14. VMAT2 identified as a regulator of late-stage β-cell differentiation.

    Science.gov (United States)

    Sakano, Daisuke; Shiraki, Nobuaki; Kikawa, Kazuhide; Yamazoe, Taiji; Kataoka, Masateru; Umeda, Kahoko; Araki, Kimi; Mao, Di; Matsumoto, Shirou; Nakagata, Naomi; Andersson, Olov; Stainier, Didier; Endo, Fumio; Kume, Kazuhiko; Uesugi, Motonari; Kume, Shoen

    2014-02-01

    Cell replacement therapy for diabetes mellitus requires cost-effective generation of high-quality, insulin-producing, pancreatic β cells from pluripotent stem cells. Development of this technique has been hampered by a lack of knowledge of the molecular mechanisms underlying β-cell differentiation. The present study identified reserpine and tetrabenazine (TBZ), both vesicular monoamine transporter 2 (VMAT2) inhibitors, as promoters of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Neurog3 (referred to henceforth as Ngn3)-positive endocrine precursors. VMAT2-controlled monoamines, such as dopamine, histamine and serotonin, negatively regulated β-cell differentiation. Reserpine or TBZ acted additively with dibutyryl adenosine 3',5'-cyclic AMP, a cell-permeable cAMP analog, to potentiate differentiation of embryonic stem (ES) cells into β cells that exhibited glucose-stimulated insulin secretion. When ES cell-derived β cells were transplanted into AKITA diabetic mice, the cells reversed hyperglycemia. Our protocol provides a basis for the understanding of β-cell differentiation and its application to a cost-effective production of functional β cells for cell therapy.

  15. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    International Nuclear Information System (INIS)

    Dey, Nandini; Howell, Brian W.; De, Pradip K.; Durden, Donald L.

    2005-01-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation

  16. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    Science.gov (United States)

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  17. Tissue-specific 5' heterogeneity of PPARα transcripts and their differential regulation by leptin.

    Directory of Open Access Journals (Sweden)

    Emma S Garratt

    Full Text Available The genes encoding nuclear receptors comprise multiple 5'untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1 and liver (P2 transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3-13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors.

  18. Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin

    Science.gov (United States)

    Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.

    2013-01-01

    The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665

  19. Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation

    Directory of Open Access Journals (Sweden)

    Artem D. Berezovsky

    2014-03-01

    Full Text Available The high-mobility group–box transcription factor sex-determining region Y–box 2 (Sox2 is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM, Sox2 is a marker of cancer stemlike cells (CSCs in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications.

  20. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells.

    Science.gov (United States)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanxia [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Department of Rehabilitation, Xi' an Children' s Hospital, Xi' an 710003 (China); Liu, Xiaoguai [The 3rd Department of Infectious Diseases, Xi' an Children' s Hospital, Xi' an 710003 (China); Wang, Yaping, E-mail: yapwangyy@163.com [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  2. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    International Nuclear Information System (INIS)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-01-01

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  3. Label-free morphology-based prediction of multiple differentiation potentials of human mesenchymal stem cells for early evaluation of intact cells.

    Directory of Open Access Journals (Sweden)

    Hiroto Sasaki

    Full Text Available Precise quantification of cellular potential of stem cells, such as human bone marrow-derived mesenchymal stem cells (hBMSCs, is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1 the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2 predictions of potentials are generated before differentiation cultures are initiated; (3 prediction of multiple potentials can be provided simultaneously for each sample; and (4 predictions of potentials yield quantitative values that correlate strongly with the experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion, can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials (osteogenic, adipogenic, and chondrogenic and population doubling potential using morphological features apparent during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-related genes (p16 and p21 and cytoskeleton-related genes (PTK2, CD146, and CD49 already correlated to the decrease of potentials at this stage. To objectively compare the performance of morphology and gene expression for such early prediction, we tested a range of models using various combinations of features. Such comparison of predictive performances revealed that morphological features performed better overall than gene-expression profiles, balancing the predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not only identifies the best morphological feature

  4. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification

    Directory of Open Access Journals (Sweden)

    Yu L

    2018-01-01

    Full Text Available Lei Yu,1 Na Li,1 Jisheng Zhang,2 Yan Jiang1 1Department of Otorhinolaryngology, 2Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China Introduction: Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC, remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods: The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects.Results: We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion: These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases. Keywords: IL-13, H3K4me3 modification, nasal epithelial cell, differentiation 

  5. Activated Fps/Fes tyrosine kinase regulates erythroid differentiation and survival.

    Science.gov (United States)

    Sangrar, Waheed; Gao, Yan; Bates, Barbara; Zirngibl, Ralph; Greer, Peter A

    2004-10-01

    A substantial body of evidence implicates the cytoplasmic protein tyrosine kinase Fps/Fes in regulation of myeloid differentiation and survival. In this study we wished to determine if Fps/Fes also plays a role in the regulation of erythropoiesis. Mice tissue-specifically expressing a "gain-of-function" mutant fps/fes transgene (fps(MF)) encoding an activated variant of Fps/Fes (MFps), were used to explore the in vivo biological role of Fps/Fes. Erythropoiesis in these mice was assessed by hematological analysis, lineage marker analysis, bone-marrow colony assays, and biochemical approaches. fps(MF) mice displayed reductions in peripheral red cell counts. However, there was an accumulation of immature erythroid precursors, which displayed increased survival. Fps/Fes and the related Fer kinase were both detected in early erythroid progenitors/blasts and in mature red cells. Fps/Fes was also activated in response to erythropoietin (EPO) and stem cell factor (SCF), two critical factors in erythroid development. In addition, increased Stat5A/B activation and reduced Erk1/2 phosphorylation was observed in fps(MF) primary erythroid cells in response to EPO or SCF, respectively. These data support a role for Fps/Fes in regulating the survival and differentiation of erythroid cells through modulation of Stat5A/B and Erk kinase pathways induced by EPO and SCF. The increased numbers and survival of erythroid progenitors from fps(MF) mice, and their differential responsiveness to SCF and EPO, implicates Fps/Fes in the commitment of multilineage progenitors to the erythroid lineage. The anemic phenotype in fps(MF) mice suggests that downregulation of Fps/Fes activity might be required for terminal erythroid differentiation.

  6. Identification of genes differentially regulated in rat alveolar bone wound healing by subtractive hybridization.

    Science.gov (United States)

    Ohira, T; Myokai, F; Shiomi, N; Yamashiro, K; Yamamoto, T; Murayama, Y; Arai, H; Nishimura, F; Takashiba, S

    2004-07-01

    Periodontal healing requires the participation of regulatory molecules, cells, and scaffold or matrix. Here, we hypothesized that a certain set of genes is expressed in alveolar bone wound healing. Reciprocal subtraction gave 400 clones from the injured alveolar bone of Wistar rats. Identification of 34 genes and analysis of their expression in injured tissue revealed several clusters of unique gene regulation patterns, including the up-regulation at 1 wk of cytochrome c oxidase regulating electron transfer and energy metabolism, presumably occurring at the site of inflammation; up-regulation at 2.5 wks of pro-alpha-2 type I collagen involving the formation of a connective tissue structure; and up-regulation at 1 and 2 wks and down-regulation at 2.5 and 4 wks of ubiquitin carboxyl-terminal hydrolase l3 involving cell cycle, DNA repair, and stress response. The differential expression of genes may be associated with the processes of inflammation, wound contraction, and formation of a connective tissue structure.

  7. Itga2b regulation at the onset of definitive hematopoiesis and commitment to differentiation.

    Directory of Open Access Journals (Sweden)

    Stephanie Dumon

    Full Text Available Product of the Itga2b gene, CD41 contributes to hematopoietic stem cell (HSC and megakaryocyte/platelet functions. CD41 expression marks the onset of definitive hematopoiesis in the embryo where it participates in regulating the numbers of multipotential progenitors. Key to platelet aggregation, CD41 expression also characterises their precursor, the megakaryocyte, and is specifically up regulated during megakaryopoiesis. Though phenotypically unique, megakaryocytes and HSC share numerous features, including key transcription factors, which could indicate common sub-regulatory networks. In these respects, Itga2b can serve as a paradigm to study features of both developmental-stage and HSC- versus megakaryocyte-specific regulations. By comparing different cellular contexts, we highlight a mechanism by which internal promoters participate in Itga2b regulation. A developmental process connects epigenetic regulation and promoter switching leading to CD41 expression in HSC. Interestingly, a similar process can be observed at the Mpl locus, which codes for another receptor that defines both HSC and megakaryocyte identities. Our study shows that Itga2b expression is controlled by lineage-specific networks and associates with H4K8ac in megakaryocyte or H3K27me3 in the multipotential hematopoietic cell line HPC7. Correlating with the decrease in H3K27me3 at the Itga2b Iocus, we find that following commitment to megakaryocyte differentiation, the H3K27 demethylase Jmjd3 up-regulation influences both Itga2b and Mpl expression.

  8. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation.

    Science.gov (United States)

    Oh, Keunhee; Byoun, Ok-Jin; Ham, Don-Il; Kim, Yon Su; Lee, Dong-Sup

    2011-02-01

    Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells.

    Science.gov (United States)

    Kim, Seungbum; Zingler, Michael; Harrison, Jeffrey K; Scott, Edward W; Cogle, Christopher R; Luo, Defang; Raizada, Mohan K

    2016-03-01

    Emerging evidence indicates that differentiation and mobilization of hematopoietic cell are critical in the development and establishment of hypertension and hypertension-linked vascular pathophysiology. This, coupled with the intimate involvement of the hyperactive renin-angiotensin system in hypertension, led us to investigate the hypothesis that chronic angiotensin II (Ang II) infusion affects hematopoietic stem cell (HSC) regulation at the level of the bone marrow. Ang II infusion resulted in increases in hematopoietic stem/progenitor cells (83%) and long-term HSC (207%) in the bone marrow. Interestingly, increases of HSCs and long-term HSCs were more pronounced in the spleen (228% and 1117%, respectively). Furthermore, we observed higher expression of C-C chemokine receptor type 2 in these HSCs, indicating there was increased myeloid differentiation in Ang II-infused mice. This was associated with accumulation of C-C chemokine receptor type 2(+) proinflammatory monocytes in the spleen. In contrast, decreased engraftment efficiency of GFP(+) HSC was observed after Ang II infusion. Time-lapse in vivo imaging and in vitro Ang II pretreatment demonstrated that Ang II induces untimely proliferation and differentiation of the donor HSC resulting in diminished HSC engraftment and bone marrow reconstitution. We conclude that (1) chronic Ang II infusion regulates HSC proliferation, mediated by angiotensin receptor type 1a, (2) Ang II accelerates HSC to myeloid differentiation resulting in accumulation of C-C chemokine receptor type 2(+) HSCs and inflammatory monocytes in the spleen, and (3) Ang II impairs homing and reconstitution potentials of the donor HSCs. These observations highlight the important regulatory roles of Ang II on HSC proliferation, differentiation, and engraftment. © 2016 American Heart Association, Inc.

  10. New and Improved T-wave Morphology Parameters to Differentiate Healthy Individuals from those with Cardiomyopathy and Coronary Artery Disease

    Science.gov (United States)

    Greco, E. C.; Schlegel, T. T.; Arenare, B.; DePalma, J. L.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the ability of several known as well as new ECG repolarization parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following multiple parameters of T-wave morphology (TWM) were derived via signal averaging and singular value decomposition (SVD, which yields 8 eigenvalues, rho(sub 1) greater than rho(sub 2)...greater than rho(sub 8) and studied for their retrospective accuracy in detecting underlying disease: 1) Principal component analysis ratio of the T wave (T-PCA) = 100*rho(sub 2)/rho(sub 1); 2) Relative T-wave residuum (rTWR) = 100* SIGMA (rho(sub 4)(sup 2) +...+ rho(sub 8)(sup 2)); 3) Modified complexity ratio of the T wave (T-mCR) = 100*SIGMA(rho(sub 3)(sup 2) +...+rho(sb 8) (sup 2)); and 4) Normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)/rho(sub 1)(sup 2). All TWM parameters significantly differentiated CAD from controls (p less than 0.0001), and also CM from controls (p less than 0.0001). Retrospective areas under the ROC curve were 0.77, 0.81, 0.82, and 0.83 (CAD vs. controls) and 0.93, 0.89, 0.95 and 0.96 (CM vs. controls) for T-PCA, rTWR, T-mCR and nTV respectively. The newer TWM parameters (T-mCR and nTV) thus outperformed the more established parameters (T-PCA and rTWR), presumably by putting a greater emphasis on the third T-wave eigenvalue, which in most healthy subjects has little energy compared to the first two eigenvalues. Subsequent prospective analyses have also yielded similar results, such that we conclude that diagnostic differentiation of pathology from non-pathology may be especially aided by detecting

  11. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  12. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing.

    Science.gov (United States)

    Sun, Xiaowen; Wu, Hefang; Zhao, Genhai; Li, Zhemin; Wu, Xihua; Liu, Hui; Zheng, Zhiming

    2018-04-02

    The mycelial morphology of Aspergillus niger, a major filamentous fungus used for citric acid production, is important for citric acid synthesis during submerged fermentation. To investigate the involvement of the chitin synthase gene, chsC, in morphogenesis and citric acid production in A. niger, an RNAi system was constructed to silence chsC and the morphological mutants were screened after transformation. The compactness of the mycelial pellets was obviously reduced in the morphological mutants, with lower proportion of dispersed mycelia. These morphological changes have caused a decrease in viscosity and subsequent improvement in oxygen and mass transfer efficiency, which may be conducive for citric acid accumulation. All the transformants exhibited improvements in citric acid production; in particular, chsC-3 showed 42.6% higher production than the original strain in the shake flask. Moreover, the high-yield strain chsC-3 exhibited excellent citric acid production potential in the scale-up process.The citric acid yield and the conversion rate of glucose of chsC-3 were both improved by 3.6%, when compared with that of the original strain in the stirred tank bioreactor.

  13. Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor.

    Science.gov (United States)

    Liu, Jing; Li, Jie; Dong, Hong; Chen, Yunfu; Wang, Yansheng; Wu, Hang; Li, Changrun; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2017-07-01

    Lrp/AsnC family regulators have been found in many bacteria as crucial regulators controlling diverse cellular processes. By genomic alignment, we found that SCO3361, an Lrp/AsnC family protein from Streptomyces coelicolor, shared the highest similarity to the SACE_Lrp from Saccharopolyspora erythraea. Deletion of SCO3361 led to dramatic reduction in actinorhodin (Act) production and delay in aerial mycelium formation and sporulation on solid media. Dissection of the mechanism underlying the function of SCO3361 in Act production revealed that it altered the transcription of the cluster-situated regulator gene actII-ORF4 by directly binding to its promoter. SCO3361 was an auto-regulator and simultaneously activated the transcription of its adjacent divergently transcribed gene SCO3362. SCO3361 affected aerial hyphae formation and sporulation of S. coelicolor by activating the expression of amfC, whiB, and ssgB. Phenylalanine and cysteine were identified as the effector molecules of SCO3361, with phenylalanine reducing the binding affinity, whereas cysteine increasing it. Moreover, interactional regulation between SCO3361 and SACE_Lrp was discovered for binding to each other's target gene promoter in this work. Our findings indicate that SCO3361 functions as a pleiotropic regulator controlling secondary metabolism and morphological development in S. coelicolor.

  14. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue-Resident Memory T Cells

    Directory of Open Access Journals (Sweden)

    Tessa Bergsbaken

    2017-04-01

    Full Text Available Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103−CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN-β and interleukin-12 (IL-12, which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103−CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103− Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.

  15. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  16. Rac1 Regulates the Proliferation, Adhesion, Migration, and Differentiation of MDPC-23 Cells.

    Science.gov (United States)

    Ren, Jing; Liang, Guobin; Gong, Li; Guo, Bing; Jiang, Hongwei

    2017-04-01

    Stem cells are responsible for replacing damaged pulp tissue; therefore, promoting their survival and inducing their adhesion to dentin are vital. As a member of the Rho family of guanosine triphosphatases, Rac1 is an important regulator of osteoblast functions. However, little is known about its role in regenerative endodontic procedures. The current study examined the role of Rac1 in the proliferation, migration, and odontoblastic differentiation of MDPC-23 cells. MDPC-23 cells were transfected with small interfering RNA to knock down Rac1 expression, and then their proliferation, migration, adhesion, and odontoblastic differentiation were examined in vitro. MDPC-23 cells transfected with si-Rac1 exhibited the increased expression of several key odontogenic protein markers, including Dmp1, Dspp, Runx2, and alkaline phosphatase, as well as decreased proliferation and migration in vitro. The results suggest that Rac1 might regulate nuclear factor kappa B signaling in MDPC-23 cells. Rac1 may have vital roles in the proliferation, migration, adhesion, and odontoblastic differentiation of MDPC-23 cells. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  18. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  19. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Hamam, Dana; Ali, Dalia; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2015-02-15

    microRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel approaches for enhancing osteoblastic bone formation through inhibition of bone marrow fat formation. A number of recent studies have reported several miRNAs that enhance or inhibit adipogenic differentiation of MSCs and with potential use in microRNA-based therapy to regulate adipogenesis in the context of treating bone diseases and metabolic disorders. The current review focuses on miRNAs and their role in regulating adipogenic differentiation of MSCs.

  20. A VESICLE TRAFFICKING PROTEIN αSNAP REGULATES PANETH CELL DIFFERENTIATION IN VIVO

    Science.gov (United States)

    Lechuga, Susana; Naydenov, Nayden G.; Feygin, Alex; Jimenez, Antonio J.; Ivanov, Andrei I.

    2017-01-01

    A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. PMID:28359759

  1. A vesicle trafficking protein αSNAP regulates Paneth cell differentiation in vivo.

    Science.gov (United States)

    Lechuga, Susana; Naydenov, Nayden G; Feygin, Alex; Jimenez, Antonio J; Ivanov, Andrei I

    2017-05-13

    A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel.

    Science.gov (United States)

    He, Li; Si, Guangwei; Huang, Jiuhong; Samuel, Aravinthan D T; Perrimon, Norbert

    2018-03-01

    Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca 2+ levels, and increases in cytosolic Ca 2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca 2+ signalling. Further studies suggest that Ca 2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca 2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.

  3. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation.

    Science.gov (United States)

    Sun, Peng; Xia, Shuli; Lal, Bachchu; Eberhart, Charles G; Quinones-Hinojosa, Alfredo; Maciaczyk, Jarek; Matsui, William; Dimeco, Francesco; Piccirillo, Sara M; Vescovi, Angelo L; Laterra, John

    2009-07-01

    Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.

  4. Distinct roles of the receptor tyrosine kinases c-ErbB and c-Kit in regulating the balance between erythroid cell proliferation and differentiation

    NARCIS (Netherlands)

    Wessely, O.; Mellitzer, G.; von Lindern, M.; Levitzki, A.; Gazit, A.; Ischenko, I.; Hayman, M. J.; Beug, H.

    1997-01-01

    In the bone marrow, multipotent and committed hematopoietic progenitors have to closely regulate their balance between sustained proliferation without differentiation (self renewal) and entering a terminal differentiation pathway. A useful model to analyze this regulation at the molecular level is

  5. Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation.

    Science.gov (United States)

    Koziel, Lydia; Wuelling, Manuela; Schneider, Sabine; Vortkamp, Andrea

    2005-12-01

    During endochondral ossification, the secreted growth factor Indian hedgehog (Ihh) regulates several differentiation steps. It interacts with a second secreted factor, parathyroid hormone-related protein (PTHrP), to regulate the onset of hypertrophic differentiation, and it regulates chondrocyte proliferation and ossification of the perichondrium independently of PTHrP. To investigate how the Ihh signal is translated in the different target tissues, we analyzed the role of the zinc-finger transcription factor Gli3, which acts downstream of hedgehog signals in other organs. Loss of Gli3 in Ihh mutants restores chondrocyte proliferation and delays the accelerated onset of hypertrophic differentiation observed in Ihh-/- mutants. Furthermore the expression of the Ihh target genes patched (Ptch) and PTHrP is reactivated in Ihh-/-;Gli3-/- mutants. Gli3 seems thus to act as a strong repressor of Ihh signals in regulating chondrocyte differentiation. In addition, loss of Gli3 in mice that overexpress Ihh in chondrocytes accelerates the onset of hypertrophic differentiation by reducing the domain and possibly the level of PTHrP expression. Careful analysis of chondrocyte differentiation in Gli3-/- mutants revealed that Gli3 negatively regulates the differentiation of distal, low proliferating chondrocytes into columnar, high proliferating cells. Our results suggest a model in which the Ihh/Gli3 system regulates two distinct steps of chondrocyte differentiation: (1) the switch from distal into columnar chondrocytes is repressed by Gli3 in a PTHrP-independent mechanism; (2) the transition from proliferating into hypertrophic chondrocytes is regulated by Gli3-dependent expression of PTHrP. Furthermore, by regulating distal chondrocyte differentiation, Gli3 seems to position the domain of PTHrP expression.

  6. Wnt and Hedgehog Signaling Regulate the Differentiation of F9 Cells into Extraembryonic Endoderm

    Directory of Open Access Journals (Sweden)

    Gurjoth S. J. Deol

    2017-10-01

    Full Text Available Mouse F9 cells differentiate into primitive extraembryonic endoderm (PrE when treated with retinoic acid (RA, and this is accompanied by an up-regulation of Gata6. The role of the GATA6 network in PrE differentiation is known, and we have shown it directly activates Wnt6. Canonical Wnt/β-catenin signaling is required by F9 cells to differentiate to PrE, and this, like most developmental processes, requires input from one or more additional pathways. We found both RA and Gata6 overexpression, can induce the expression of Indian Hedgehog (Ihh and a subset of its target genes through Gli activation during PrE induction. Chemical activation of the Hh pathway using a Smoothened agonist (SAG also increased Gli reporter activity, and as expected, when Hh signaling was blocked with a Smoothened antagonist, cyclopamine, this RA-induced reporter activity was reduced. Interestingly, SAG alone failed to induce markers of PrE differentiation, and had no effect on Wnt/β-catenin-dependent TCF-LEF reporter activity. The expected increase in Wnt/β-catenin-dependent TCF-LEF reporter activity and PrE markers induced by RA was, however, blocked by cyclopamine. Finally, inhibiting GSK3 activity with BIO increased both TCF-LEF and Gli reporter activities. Together, we demonstrate the involvement of Hh signaling in the RA-induced differentiation of F9 cells into PrE, and while the activation of the Hh pathway itself is not sufficient, it as well as active Wnt/β-catenin are necessary for F9 cell differentiation.

  7. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds.

    Science.gov (United States)

    Du, Mingchun; Liang, Hui; Mou, Chenchen; Li, Xiaoran; Sun, Jie; Zhuang, Yan; Xiao, Zhifeng; Chen, Bing; Dai, Jianwu

    2014-02-01

    To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH=2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-β (TGF-β) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-β (CC-T), the samples with CBD-bFGF/TGF-β (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. Immunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Cux1 and Cux2 regulate dendritic branching, spine morphology and synapses of the upper layer neurons of the cortex

    Science.gov (United States)

    Cubelos, Beatriz; Sebastián-Serrano, Alvaro; Beccari, Leonardo; Calcagnotto, Maria Elisa; Cisneros, Elsa; Kim, Seonhee; Dopazo, Ana; Alvarez-Dolado, Manuel; Redondo, Juan Miguel; Bovolenta, Paola; Walsh, Christopher A.; Nieto, Marta

    2010-01-01

    Summary Dendrite branching and spine formation determines the function of morphologically distinct and specialized neuronal subclasses. However, little is known about the programs instructing specific branching patterns in vertebrate neurons and whether such programs influence dendritic spines and synapses. Using knockout and knockdown studies combined with morphological, molecular and electrophysiological analysis we show that the homeobox Cux1 and Cux2 are intrinsic and complementary regulators of dendrite branching, spine development and synapse formation in layer II–III neurons of the cerebral cortex. Cux genes control the number and maturation of dendritic spines partly through direct regulation of the expression of Xlr3b and Xlr4b, chromatin remodeling genes previously implicated in cognitive defects. Accordingly, abnormal dendrites and synapses in Cux2−/− mice correlate with reduced synaptic function and defects in working memory. These demonstrate critical roles of Cux in dendritogenesis and highlight novel subclass-specific mechanisms of synapse regulation that contribute to the establishment of cognitive circuits. PMID:20510857

  9. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways.

    Directory of Open Access Journals (Sweden)

    Zheng Pang

    Full Text Available Toll-like receptors (TLRs recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88 and/or TIR-domain-containing adapter-inducing interferon-β (TRIF pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1, a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2, whereas TRIF-interferon-stimulated response elements (ISRE-mediated cytokine production (IFNβ, RANTES and IP-10 was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.

  10. miR-150-Mediated Foxo1 Regulation Programs CD8+ T Cell Differentiation.

    Science.gov (United States)

    Ban, Young Ho; Oh, Se-Chan; Seo, Sang-Hwan; Kim, Seok-Min; Choi, In-Pyo; Greenberg, Philip D; Chang, Jun; Kim, Tae-Don; Ha, Sang-Jun

    2017-09-12

    MicroRNA (miR)-150 is a developmental regulator of several immune-cell types, but its role in CD8 + T cells is largely unexplored. Here, we show that miR-150 regulates the generation of memory CD8 + T cells. After acute virus infection, miR-150 knockout (KO) mice exhibited an accelerated differentiation of CD8 + T cells into memory cells and improved production of effector cytokines. Additionally, miR-150 KO CD8 + T cells displayed an enhanced recall response and improved protection against infections with another virus and bacteria. We found that forkhead box O1 (Foxo1) and T cell-specific transcription factor 1 (TCF1) are upregulated during the early activation phase in miR-150 KO CD8 + T cells and that miR-150 directly targets and suppresses Foxo1. These results suggest that miR-150-mediated suppression of Foxo1 regulates the balance between effector and memory cell differentiation, which might aid in the development of improved vaccines and T cell therapeutics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation

    Science.gov (United States)

    Correia, Clara R.; Pirraco, Rogério P.; Cerqueira, Mariana T.; Marques, Alexandra P.; Reis, Rui L.; Mano, João F.

    2016-02-01

    A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the “stem cell niche”, the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

  12. The Onecut Transcription Factors Regulate Differentiation and Distribution of Dorsal Interneurons during Spinal Cord Development

    Directory of Open Access Journals (Sweden)

    Karolina U. Kabayiza

    2017-05-01

    Full Text Available During embryonic development, the dorsal spinal cord generates numerous interneuron populations eventually involved in motor circuits or in sensory networks that integrate and transmit sensory inputs from the periphery. The molecular mechanisms that regulate the specification of these multiple dorsal neuronal populations have been extensively characterized. In contrast, the factors that contribute to their diversification into smaller specialized subsets and those that control the specific distribution of each population in the developing spinal cord remain unknown. Here, we demonstrate that the Onecut transcription factors, namely Hepatocyte Nuclear Factor-6 (HNF-6 (or OC-1, OC-2 and OC-3, regulate the diversification and the distribution of spinal dorsal interneuron (dINs. Onecut proteins are dynamically and differentially distributed in spinal dINs during differentiation and migration. Analyzes of mutant embryos devoid of Onecut factors in the developing spinal cord evidenced a requirement in Onecut proteins for proper production of a specific subset of dI5 interneurons. In addition, the distribution of dI3, dI5 and dI6 interneuron populations was altered. Hence, Onecut transcription factors control genetic programs that contribute to the regulation of spinal dIN diversification and distribution during embryonic development.

  13. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Katharina Felber

    Full Text Available Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF and canonical Wingless-type MMTV integration site (Wnt/β-Catenin signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathways are required for osteoblast differentiation in vivo. Our analysis of bone markers suggests that these pathways act at the same stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix (osx. We use two independent approaches that suggest that osx is a direct target of these pathways. Firstly, we manipulate signalling and show that osx gene expression responds with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways. Secondly, we have performed ChIP with transcription factors for both pathways and our data suggest that a genomic region in the first intron of osx mediates transcriptional activation. Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part by directing transcription of osx to promote osteoblast differentiation at sites of bone formation.

  15. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  16. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    Science.gov (United States)

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors.

    Science.gov (United States)

    Kolb, Jasmine; Anders-Maurer, Marie; Müller, Tanja; Hau, Ann-Christin; Grebbin, Britta Moyo; Kallenborn-Gerhardt, Wiebke; Behrends, Christian; Schulte, Dorothea

    2018-04-10

    Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    Science.gov (United States)

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity

    International Nuclear Information System (INIS)

    Samaraweera, Leleesha; Grandinetti, Kathryn B; Huang, Ruojun; Spengler, Barbara A; Ross, Robert A

    2014-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. NB tumors and derived cell lines are phenotypically heterogeneous. Cell lines are classified by phenotype, each having distinct differentiation and tumorigenic properties. The neuroblastic phenotype is tumorigenic, has neuronal features and includes stem cells (I-cells) and neuronal cells (N-cells). The non-neuronal phenotype (S-cell) comprises cells that are non-tumorigenic with features of glial/smooth muscle precursor cells. This study identified miRNAs associated with each distinct cell phenotypes and investigated their role in regulating associated differentiation and tumorigenic properties. A miRNA microarray was performed on the three cell phenotypes and expression verified by qRT-PCR. miRNAs specific for certain cell phenotypes were modulated using miRNA inhibitors or stable transfection. Neuronal differentiation was induced by RA; non-neuronal differentiation by BrdU. Changes in tumorigenicity were assayed by soft agar colony forming ability. N-myc binding to miR-375 promoter was assayed by chromatin-immunoprecipitation. Unsupervised hierarchical clustering of miRNA microarray data segregated neuroblastic and non-neuronal cell lines and showed that specific miRNAs define each phenotype. qRT-PCR validation confirmed that increased levels of miR-21, miR-221 and miR-335 are associated with the non-neuronal phenotype, whereas increased levels of miR-124 and miR-375 are exclusive to neuroblastic cells. Downregulation of miR-335 in non-neuronal cells modulates expression levels of HAND1 and JAG1, known modulators of neuronal differentiation. Overexpression of miR-124 in stem cells induces terminal neuronal differentiation with reduced malignancy. Expression of miR-375 is exclusive for N-myc-expressing neuroblastic cells and is regulated by N-myc. Moreover, miR-375 downregulates expression of the neuronal-specific RNA binding protein HuD. Thus, miRNAs define distinct NB cell phenotypes

  20. Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5*

    Science.gov (United States)

    Choudhury, Rawshan; McGovern, Amanda; Ridley, Caroline; Cain, Stuart A.; Baldwin, Andrew; Wang, Ming-Chuan; Guo, Chun; Mironov, Aleksandr; Drymoussi, Zoe; Trump, Dorothy; Shuttleworth, Adrian; Baldock, Clair; Kielty, Cay M.

    2009-01-01

    Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils. PMID:19570982

  1. Can green consumerism replace environmental regulation? A differentiated-products example

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Clas [Department of Economics, Swedish University of Agricultural Sciences, P.O. Box 7013, S-750 07 Uppsala (Sweden)

    2004-09-01

    This paper assumes that consumers are willing to pay an extra premium for a good if it has a low impact on the environment. We examine if a little dose of such idealistic behavior has a large impact on the market equilibrium, and to what extent it can replace the environmental regulation. The analysis is carried out in a model with product differentiation, where consumers differ in their preferences for product quality. Consumers' willingness to pay the environmental premium may be uniformly or non-uniformly distributed. Green consumerism will only be modestly influential in both cases, despite the fact that product differentiation leads to relaxed competition and increased profits, and thereby creates leverage.

  2. 2-Bromopalmitate modulates neuronal differentiation through the regulation of histone acetylation

    Directory of Open Access Journals (Sweden)

    Xueran Chen

    2014-03-01

    Full Text Available In order to evaluate the functional significance of palmitoylation during multi-potent neural stem/progenitor cell proliferation and differentiation, retinoic acid-induced P19 cells were used in this study as a model system. Cell behaviour was monitored in the presence of the protein palmitoylation inhibitor 2-bromopalmitate (2BP. Here, we observed a significant reduction in neuronal differentiation in the 2BP-treated cell model. We further explored the underlying mechanisms and found that 2BP resulted in the decreased acetylation of histones H3 and H4 and interfered with cell cycle withdrawal and neural stem/progenitor cells' renewal. Our results established a direct link between palmitoylation and the regulation of neural cell fate specification and revealed the epigenetic regulatory mechanisms that are involved in the effects of palmitoylation during neural development.

  3. NAD+ protects against EAE by regulating CD4+ T-cell differentiation

    Science.gov (United States)

    Tullius, Stefan G.; Biefer, Hector Rodriguez Cetina; Li, Suyan; Trachtenberg, Alexander J.; Edtinger, Karoline; Quante, Markus; Krenzien, Felix; Uehara, Hirofumi; Yang, Xiaoyong; Kissick, Haydn T.; Kuo, Winston P.; Ghiran, Ionita; de la Fuente, Miguel A.; Arredouani, Mohamed S.; Camacho, Virginia; Tigges, John C.; Toxavidis, Vasilis; El Fatimy, Rachid; Smith, Brian D.; Vasudevan, Anju; ElKhal, Abdallah

    2014-01-01

    CD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases. PMID:25290058

  4. Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1

    DEFF Research Database (Denmark)

    Chan, Carol W M; Wong, Newton A; Liu, Ying

    2009-01-01

    colorectal cancer cell lines. Deletion and mutation analysis of the KRT20 promoter showed that the minimum regulatory region for the control of KRT20 expression by CDX1 is within 246 bp upstream of the KRT20 transcription start site. ChIP analysis confirmed that CDX1 binds to the predicted CDX elements...... in this region of the KRT20 promoter in vivo. In addition, immunohistochemistry showed expression of CDX1 parallels that of KRT20 in the normal crypt, which further supports their close relationship. In summary, our observations strongly imply that KRT20 is directly regulated by CDX1, and therefore suggest...... a role for CDX1 in maintaining differentiation in intestinal epithelial cells. Because a key feature of the development of a cancer is an unbalanced program of proliferation and differentiation, dysregulation of CDX1 may be an advantage for the development of a colorectal carcinoma. This could, therefore...

  5. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  6. Can green consumerism replace environmental regulation? A differentiated-products example

    International Nuclear Information System (INIS)

    Eriksson, Clas

    2004-01-01

    This paper assumes that consumers are willing to pay an extra premium for a good if it has a low impact on the environment. We examine if a little dose of such idealistic behavior has a large impact on the market equilibrium, and to what extent it can replace the environmental regulation. The analysis is carried out in a model with product differentiation, where consumers differ in their preferences for product quality. Consumers' willingness to pay the environmental premium may be uniformly or non-uniformly distributed. Green consumerism will only be modestly influential in both cases, despite the fact that product differentiation leads to relaxed competition and increased profits, and thereby creates leverage

  7. Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,K+ -ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones

    DEFF Research Database (Denmark)

    Madsen, Steffen; Jensen, Lars Nørholm; Tipsmark, Christian Kølbaek

    2007-01-01

    -regulated kinase (ERK) 1/2 was stimulated by EGF but not affected by IGF-I. This study is the first to report a branchial EGF response and to demonstrate a functional ERK 1/2 pathway in the teleost gill. In conclusion, CFTR and Na(+),K(+) -ATPase are differentially regulated by salinity and hormones in gills...

  8. Mode of morphological differentiation in the Latitarsi-ground beetles (Coleoptera, Carabidae) of the world inferred from a phylogenetic tree of mitochondrial ND5 gene sequences.

    Science.gov (United States)

    Su, Zhi-Hui; Imura, Yûki; Zhou, Hong-Zhang; Okamoto, Munehiro; Osawa, Syozo

    2003-02-01

    The Latitarsi is one large division of the subtribe Carabina (subfamily Carabinae, family Carabidae), and has been considered as a discrete morphological group consisting of 17 genera. The phylogenetic relationships and evolutionary pattern of the Latitarsi ground beetles have been investigated by analyzing mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences. The phylogenetic tree suggests that the Latitarsi members do not form a single cluster, i.e., not monophyletic and at least 16 lineages belonging to the so-called Latitarsi emerged at about the same time of the Carabina radiation together with the members of other divisions. This suggests that these lineages (A, B, C, H, L, N, O, P, Q, R, S, T, U, V, W and X in Fig. 2a) may be treated each as a phylogenetically distinct division equivalent to other divisions. The group with bootstrap value of more than 80 percent has been considered as a single lineage (division) with two exceptions, V and X. The independency of each lineage has been assumed by the traditional morphology as well as a single clustering on the trees constructed by independent methods, unchanged topology by replacement of outgroups, etc. Generally speaking, the members in a single lineage are geographically linked. Many phylogenetic lineages are composed of a single or only a few species without conspicuous morphological differentiation. In contrast to such a "silent morphological evolution", a remarkable morphological differentiation occasionally took place in several lineages.

  9. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  10. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  11. 17β-estradiol regulates the differentiation of cementoblasts via Notch signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jing; Zhou, Zeyuan; Huang, Li; Li, Yuyu [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Li, Jingtao [Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Zou, Shujuan, E-mail: drzsj@scu.edu.cn [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China)

    2016-08-12

    Estrogen has been well recognized as a key factor in the homeostasis of bone and periodontal tissue, but the way it regulates the activities of cementoblasts, the cell population maintaining cementum has not been fully understood. In this study, we examined the expression of estrogen receptor in OCCM-30 cells and the effect of 17β-estradiol (E2) on the proliferation and differentiation of OCCM-30 cells. We found that both estrogen receptor α and β were expressed in OCCM-30 cells. E2 exerted no significant influence on the proliferation of OCCM-30 cells, but inhibited the transcription and translation of BSP and Runx2 in the early phase of osteogenic induction except the BSP mRNA. Afterwards in the late phase of osteogenic induction, E2 enhanced the transcription and translation of BSP and Runx2 and promoted the calcium deposition. In addition, the expression level of Notch1, NICD and Hey1 mRNAs responded to exogenous E2 in a pattern similar to that of the osteoblastic markers. DAPT could attenuate the effect of E2 on the expression of osteoblastic markers. These findings indicated that E2 might regulate the differentiation of cementoblasts via Notch signaling. - Highlights: • 17β-estradiol showed no significant effect on the proliferation of cementoblasts. • 17β-estradiol promoted the osteoblastic differentiation of cementoblasts despite of an early transient inhibition. • Notch signaling was regulated by 17β-estradiol and was responsible for mediating the effect of E2 on cementoblasts. • Hey1 might display an opposite expression pattern to Notch signaling in certain circumstances.

  12. Convergent differential regulation of parvalbumin in the brains of vocal learners.

    Directory of Open Access Journals (Sweden)

    Erina Hara

    Full Text Available Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds--songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV. In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65-300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling.

  13. Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice

    Directory of Open Access Journals (Sweden)

    Yunhua Xiao

    2017-09-01

    Full Text Available Brassinosteroids (BRs regulate important agronomic traits in rice, including plant height, leaf angle, and grain size. However, the underlying mechanisms remain not fully understood. We previously showed that GSK2, the central negative regulator of BR signaling, targets DLT, the GRAS family protein, to regulate BR responses. Here, we identified Ovate Family Protein 1 (OFP1 as a DLT interacting protein. OFP1 was ubiquitously expressed and the protein was localized in both cytoplasm and nucleus. Overexpression of OFP1 led to enlarged leaf angles, reduced plant height, and altered grain shape, largely resembled DLT overexpression plants. Genetic analysis showed that the regulation of plant architecture by OFP1 depends on DLT function. In addition, we found OFP1 was greatly induced by BR treatment, and OsBZR1, the critical transcription factor of BR signaling, was physically associated with the OFP1 promoter. Moreover, we showed that gibberellin synthesis was greatly repressed in OFP1 overexpression plants, suggesting OFP1 participates in the inhibition of plant growth by high BR or elevated BR signaling. Furthermore, we revealed that OFP1 directly interacts with GSK2 kinase, and inhibition of the kinase activity significantly promotes OFP1 protein accumulation in plant. Taken together, we identified OFP1 as an additional regulator of BR responses and revealed how BRs promote OFP1 at both transcription and protein levels to modulate plant architecture and grain morphology in rice.

  14. CCAAT/Enhancer Binding Protein β Regulates Expression of Indian Hedgehog during Chondrocytes Differentiation

    Science.gov (United States)

    Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Ishihara, Kohei; Doi, Toshio; Iwamoto, Yukihide

    2014-01-01

    Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh) also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2) was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation. Methodology/Results Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between −214 and −210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression. Conclusions C

  15. CCAAT/enhancer binding protein β regulates expression of Indian hedgehog during chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Takahiro Ushijima

    Full Text Available CCAAT/enhancer binding protein β (C/EBPβ is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2 was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation.Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between -214 and -210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA and a chromatin immunoprecipitation (ChIP assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression.C/EBPβ and RUNX2 cooperatively stimulate

  16. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary

    NARCIS (Netherlands)

    Chassot, Anne-Amandine; Gregoire, Elodie P.; Lavery, Rowena; Taketo, Makoto M.; de Rooij, Dirk G.; Adams, Ian R.; Chaboissier, Marie-Christine

    2011-01-01

    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog

  17. RSPO1/beta-Catenin Signaling Pathway Regulates Oogonia Differentiation and Entry into Meiosis in the Mouse Fetal Ovary

    NARCIS (Netherlands)

    Chassot, A.A.; Gregoire, E.P.; Lavery, R.; Taketo, M.M.; de Rooij, D.G.; Adams, I.R.; Chaboissier, M.C.

    2011-01-01

    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog

  18. Erythroid Differentiation Regulator 1 as a Novel Biomarker for Hair Loss Disorders.

    Science.gov (United States)

    Woo, Yu Ri; Hwang, Sewon; Jeong, Seo Won; Cho, Dae Ho; Park, Hyun Jeong

    2017-02-03

    Erythroid differentiation regulator 1 (Erdr1) is known to be involved in the inflammatory process via regulating the immune system in many cutaneous disorders, such as psoriasis and rosacea. However, the role of Erdr1 in various hair loss disorders remains unclear. The aim of this study was to investigate the putative role of Erdr1 in alopecias. Skin samples from 21 patients with hair loss disorders and five control subjects were retrieved, in order to assess their expression levels of Erdr1. Results revealed that expression of Erdr1 was significantly downregulated in the epidermis and hair follicles of patients with hair loss disorders, when compared to that in the control group. In particular, the expression of Erdr1 was significantly decreased in patients with alopecia areata. We propose that Erdr1 downregulation might be involved in the pathogenesis of hair loss, and could be considered as a novel biomarker for hair loss disorders.

  19. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    Science.gov (United States)

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  20. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    International Nuclear Information System (INIS)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-01-01

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  1. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  2. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    Science.gov (United States)

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors

    Directory of Open Access Journals (Sweden)

    Jasmine Kolb

    2018-04-01

    Full Text Available Summary: Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. : A hallmark of adult neurogenesis is its strong dependence on physiological stimuli and environmental signals. Schulte and colleagues show that the nuclear localization and activity of a transcriptional regulator of adult neurogenesis is controlled by posttranslational modification. Their results link intrinsic control over neuron production to external signals and help to explain how adult neurogenesis can occur “on demand.” Keywords: subventricular zone, stem cell niche, posttranslational modification, controlled nuclear import, TALE-homdomain protein, MEIS2, PBX1, CRM1, neurogenesis, stem cell niche

  4. Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation.

    Science.gov (United States)

    Chowdhury, Indrajit; Thomas, Kelwyn; Zeleznik, Anthony; Thompson, Winston E

    2016-05-01

    Published results from our laboratory identified prohibitin (PHB), a gene product expressed in granulosa cells (GCs) that progressively increases during follicle maturation. Our current in vitro studies demonstrate that follicle-stimulating hormone (FSH) stimulates Phb expression in rat primary GCs. The FSH-dependent expression of PHB was primarily localized within mitochondria, and positively correlates with the morphological changes in GCs organelles, and synthesis and secretions of estradiol (E2) and progesterone (P4). In order to confirm that PHB plays a regulatory role in rat GC differentiation, endogenous PHB-knockdown studies were carried out in undifferentiated GCs using adenoviral (Ad)-mediated RNA interference methodology. Knockdown of PHB in GCs resulted in the suppression of the key steroidogenic enzymes including steroidogenic acute regulatory protein (StAR), p450 cholesterol side-chain cleavage enzyme (p450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and aromatase (Cyp19a1); and decreased E2 and P4 synthesis and secretions in the presence of FSH stimulation. Furthermore, these experimental studies also provided direct evidence that PHB within the mitochondrial fraction in GCs is phosphorylated at residues Y249, T258, and Y259 in response to FSH stimulation. The observed levels of phosphorylation of PHB at Y249, T258, and Y259 were significantly low in GCs in the absence of FSH stimulation. In addition, during GC differentiation FSH-induced expression of phospho-PHB (pPHB) requires the activation of MEK1-ERK1/2 signaling pathway. Taken together, these studies provide new evidence supporting FSH-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs. © 2016 The authors.

  5. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Directory of Open Access Journals (Sweden)

    Zizhen Yao

    2013-04-01

    The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  6. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    International Nuclear Information System (INIS)

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-01-01

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  7. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.

  8. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Massimiliano, E-mail: caiazzo@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Istituto di diagnosi e cura ' Hermitage Capodimonte,' 80131 Naples (Italy); Colucci-D' Amato, Luca, E-mail: luca.colucci@unina2.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Dipartimento di Scienze della Vita, Seconda Universita di Napoli, 81100 Caserta (Italy); Esposito, Maria T., E-mail: maria_teresa.esposito@kcl.ac.uk [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Parisi, Silvia, E-mail: parisi@ceinge.unina.it [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Stifani, Stefano, E-mail: stefano.stifani@mcgill.ca [Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Ramirez, Francesco, E-mail: francesco.ramirez@mssm.edu [Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 (United States); Porzio, Umberto di, E-mail: diporzio@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy)

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  9. Regulation of granulocyte colony-stimulating factor receptor-mediated granulocytic differentiation by C-mannosylation.

    Science.gov (United States)

    Otani, Kei; Niwa, Yuki; Suzuki, Takehiro; Sato, Natsumi; Sasazawa, Yukiko; Dohmae, Naoshi; Simizu, Siro

    2018-04-06

    Granulocyte colony-stimulating factor (G-CSF) receptor (G-CSFR) is a type I cytokine receptor which is involved in hematopoietic cell maturation. G-CSFR has three putative C-mannosylation sites at W253, W318, and W446; however, it is not elucidated whether G-CSFR is C-mannosylated or not. In this study, we first demonstrated that G-CSFR was C-mannosylated at only W318. We also revealed that C-mannosylation of G-CSFR affects G-CSF-dependent downstream signaling through changing ligand binding capability but not cell surface localization. Moreover, C-mannosylation of G-CSFR was functional and regulated granulocytic differentiation in myeloid 32D cells. In conclusion, we found that G-CSFR is C-mannosylated at W318 and that this C-mannosylation has role(s) for myeloid cell differentiation through regulating downstream signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. KDM1A/LSD1 regulates the differentiation and maintenance of spermatogonia in mice.

    Directory of Open Access Journals (Sweden)

    Dexter A Myrick

    Full Text Available The proper regulation of spermatogenesis is crucial to ensure the continued production of sperm and fertility. Here, we investigated the function of the H3K4me2 demethylase KDM1A/LSD1 during spermatogenesis in developing and adult mice. Conditional deletion of Kdm1a in the testis just prior to birth leads to fewer spermatogonia and germ cell loss before 3 weeks of age. These results demonstrate that KDM1A is required for spermatogonial differentiation, as well as germ cell survival, in the developing testis. In addition, inducible deletion of Kdm1a in the adult testis results in the abnormal accumulation of meiotic spermatocytes, as well as apoptosis and progressive germ cell loss. These results demonstrate that KDM1A is also required during adult spermatogenesis. Furthermore, without KDM1A, the stem cell factor OCT4 is ectopically maintained in differentiating germ cells. This requirement for KDM1A is similar to what has been observed in other stem cell populations, suggesting a common function. Taken together, we propose that KDM1A is a key regulator of spermatogenesis and germ cell maintenance in the mouse.

  11. Phytohormonal regulation of biomass allocation and morphological and physiological traits of leaves in response to environmental changes in Polygonum cuspidatum

    Directory of Open Access Journals (Sweden)

    Daisuke Sugiura

    2016-08-01

    Full Text Available Plants plastically change their morphological and physiological traits in response to environmental changes, which are accompanied by changes in endogenous levels of phytohormones. Although roles of phytohormones in various aspects of plant growth and development were elucidated, their importance in the regulation of biomass allocation was not fully investigated. This study aimed to determine causal relationships among changes in biomass allocation, morphological and physiological traits, and endogenous levels of phytohormones such as gibberellins (GAs and cytokinins (CKs in response to environmental changes in Polygonum cuspidatum. Seedlings of P. cuspidatum were grown under two light intensities, each at three nitrogen availabilities. The seedlings grown in high light intensity and high nitrogen availability (HH were subjected to three additional treatments: defoliating half of the leaves (Def, transferral to low nitrogen availability (LowN or low light intensity (LowL. Biomass allocation at the whole-plant level, morphological and physiological traits of each leaf, and endogenous levels of phytohormones in each leaf and shoot apex were measured. Age-dependent changes in leaf traits were also investigated. After the treatments, endogenous levels of GAs in the shoot apex and leaves significantly increased in Def, decreased in LowN, and did not change in LowL compared with HH seedlings. Among all of the seedlings, the levels of GAs in the shoot apex and leaves were strongly correlated with biomass allocation ratio between leaves and roots. The levels of GAs in the youngest leaves were highest, while the levels of CKs were almost consistent in each leaf. The levels of CKs were positively correlated with leaf nitrogen content in each leaf, whereas the levels of GAs were negatively correlated with the total non-structural carbohydrate content in each leaf. These results support our hypothesis that GAs and CKs are key regulatory factors that control

  12. Transiently truncated and differentially regulated expression of midkine during mouse embryogenesis

    International Nuclear Information System (INIS)

    Chen Qin; Yuan Yuanyang; Lin Shuibin; Chang Youde; Zhuo Xinming; Wei Wei; Tao Ping; Ruan Lingjuan; Li Qifu; Li Zhixing

    2005-01-01

    Midkine (MK) is a retinoic acid response cytokine, mostly expressed in embryonic tissues. Aberrant expression of MK was found in numerous cancers. In human, a truncated MK was expressed specifically in tumor/cancer tissues. Here we report the discovery of a novel truncated form of MK transiently expressed during normal mouse embryonic development. In addition, MK is concentrated at the interface between developing epithelium and mesenchyme as well as highly proliferating cells. Its expression, which is closely coordinated with angiogenesis and vasculogenesis, is spatiotemporally regulated with peaks in extensive organogenesis period and undifferentiated cells tailing off in maturing cells, implying its role in nascent blood vessel (endothelial) signaling of tissue differentiation and stem cell renewal/differentiation.. Cloning and sequencing analysis revealed that the embryonic truncated MK, in which the conserved domain is in-frame deleted, presumably producing a novel secreted small peptide, is different from the truncated form in human cancer tissues, whose deletion results in a frame-shift mutation. Our data suggest that MK may play a role in epithelium-mesenchyme interactions, blood vessel signaling, and the decision of proliferation vs differentiation. Detection of the transiently expressed truncated MK reveals its novel function in development and sheds light on its role in carcinogenesis

  13. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes

    International Nuclear Information System (INIS)

    Li, Lei; Yang, Zheng; Zhang, Hai; Chen, Wenchuan; Chen, Mengshi; Zhu, Zhimin

    2012-01-01

    Highlights: ► CM from LIPUS-stimulated osteocytes inhibits proliferation of osteoblasts. ► CM from LIPUS-stimulated osteocytes enhances differentiation of osteoblasts. ► LIPUS stimulates MLO-Y4 cells to secrete PGE 2 and NO. -- Abstract: Low-intensity pulsed ultrasound (LIPUS) has been used as a safe and effective modality to enhance fracture healing. As the most abundant cells in bone, osteocytes orchestrate biological activities of effector cells via direct cell-to-cell contacts and by soluble factors. In this study, we have used the osteocytic MLO-Y4 cells to study the effects of conditioned medium from LIPUS-stimulated MLO-Y4 cells on proliferation and differentiation of osteoblastic MC3T3-E1 cells. Conditioned media from LIPUS-stimulated MLO-Y4 cells (LIPUS-Osteocyte-CM) were collected and added on MC3T3-E1 cell cultures. MC3T3-E1 cells cultured in LIPUS-Osteocyte-CM demonstrated a significant inhibition of proliferation and an increased alkaline phosphatase activity. The results of PGE 2 and NO assay showed that LIPUS could enhance PGE 2 and NO secretion from MLO-Y4 cells at all time points within 24 h after LIPUS stimulation. We conclude that LIPUS regulates proliferation and differentiation of osteoblasts through osteocytes in vitro. Increased secretion of PGE 2 from osteocytes may play a role in this effect.

  14. 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes

    Science.gov (United States)

    Cheng, Jin; Ding, Qian; Wang, Jia; Deng, Lin; Yang, Lu; Tao, Lei; Lei, Haihong; Lu, Shaoping

    2016-01-01

    Heart disease is one of the deadliest diseases causing mortality due to the limited regenerative capability of highly differentiated cardiomyocytes. Stem cell-based therapy in tissue engineering is one of the most exciting and rapidly growing areas and raises promising prospects for cardiac repair. In this study, we have synthesized FITC-mesoporous silica nanoparticles (FMSNs) based on a sol-gel method (known as Stöber's method) as a drug delivery platform to transport 5-azacytidine in P19 embryonic carcinoma stem cells. The surfactant CTAB is utilized as a liquid crystal template to self-aggregate into micelles, resulting in the synthesis of MSNs. Based on the cell viability assay, treatment with FMSNs + 5-azacytidine resulted in much more significant inhibition of the proliferation than 5-azacytidine alone. To study the mechanism, we have tested the differentiation genes and cardiac marker genes in P19 cells and found that these genes have been up-regulated in P19 embryonic carcinoma stem cells treated with FMSNs + 5-azacytidine + poly(allylamine hydrochloride) (PAH), with the changes of histone modifications on the regulatory region. In conclusion, with FMSNs as drug delivery platforms, 5-azacytidine can be more efficiently delivered into stem cells and can be used to monitor and track the transfection process in situ to clarify their effects on stem cell functions and the differentiation process, which can serve as a promising tool in tissue engineering and other biomedical fields.

  15. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates.

    Science.gov (United States)

    Yu, Bo; Jiang, Kaibiao; Chen, Bin; Wang, Hantao; Li, Xinfeng; Liu, Zude

    2017-05-31

    Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.

  16. Dystroglycan and mitochondrial ribosomal protein L34 regulate differentiation in the Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Yougen Zhan

    2010-05-01

    Full Text Available Mutations that diminish the function of the extracellular matrix receptor Dystroglycan (DG result in muscular dystrophies, with associated neuronal migration defects in the brain and mental retardation e.g. Muscle Eye Brain Disease. To gain insight into the function of DG in the nervous system we initiated a study to examine its contribution to development of the eye of Drosophila melanogaster. Immuno-histochemistry showed that DG is concentrated on the apical surface of photoreceptors (R cells during specification of cell-fate in the third instar larva and is maintained at this location through early pupal stages. In point mutations that are null for DG we see abortive R cell elongation during differentiation that first appears in the pupa and results in stunted R cells in the adult. Overexpression of DG in R cells results in a small but significant increase in their size. R cell differentiation defects appear at the same stage in a deficiency line Df(2RDg(248 that affects Dg and the neighboring mitochondrial ribosomal gene, mRpL34. In the adult, these flies have severely disrupted R cells as well as defects in the lens and ommatidia. Expression of an mRpL34 transgene rescues much of this phenotype. We conclude that DG does not affect neuronal commitment but functions R cell autonomously to regulate neuronal elongation during differentiation in the pupa. We discuss these findings in view of recent work implicating DG as a regulator of cell metabolism and its genetic interaction with mRpL34, a member of a class of mitochondrial genes essential for normal metabolic function.

  17. Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation

    International Nuclear Information System (INIS)

    Hayashi, Mikihito; Nakashima, Tomoki; Kodama, Tatsuhiko; Makrigiannis, Andrew P.; Toyama-Sorimachi, Noriko; Takayanagi, Hiroshi

    2010-01-01

    Osteoclasts, multinucleated cells that resorb bone, play a key role in bone remodeling. Although immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling is critical for osteoclast differentiation, the significance of immunoreceptor tyrosine-based inhibitory motif (ITIM) has not been well understood. Here we report the function of Ly49Q, an Ly49 family member possessing an ITIM motif, in osteoclastogenesis. Ly49Q is selectively induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation in bone marrow-derived monocyte/macrophage precursor cells (BMMs) among the Ly49 family of NK receptors. The knockdown of Ly49Q resulted in a significant reduction in the RANKL-induced formation of tartrate-resistance acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a decreased expression of osteoclast-specific genes such as Nfatc1, Tm7sf4, Oscar, Ctsk, and Acp5. Osteoclastogenesis was also significantly impaired in Ly49Q-deficient cells in vitro. The inhibitory effect of Ly49Q-deficiency may be explained by the finding that Ly49Q competed for the association of Src-homology domain-2 phosphatase-1 (SHP-1) with paired immunoglobulin-like receptor-B (PIR-B), an ITIM-bearing receptor which negatively regulates osteoclast differentiation. Unexpectedly, Ly49Q deficiency did not lead to impaired osteoclast formation in vivo, suggesting the existence of a compensatory mechanism. This study provides an example in which an ITIM-bearing receptor functions as a positive regulator of osteoclast differentiation.

  18. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  19. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana.

    Science.gov (United States)

    Maniga, Antonio; Ghisaura, Stefania; Perrotta, Lara; Marche, Maria Giovanna; Cella, Rino; Albani, Diego

    2017-01-01

    In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities.

  20. Biphasic regulation of intracellular calcium by gemfibrozil contributes to inhibiting L6 myoblast differentiation: implications for clinical myotoxicity.

    Science.gov (United States)

    Liu, Aiming; Yang, Julin; Gonzalez, Frank J; Cheng, Gary Q; Dai, Renke

    2011-02-18

    Gemfibrozil is the most myotoxic fibrate drug commonly used for dyslipidemia, but the mechanism is poorly understood. The current study revealed that gemfibrozil inhibits myoblast differentiation through the regulation of intracellular calcium ([Ca(2+)]i) as revealed in L6 myoblasts by use of laser scan confocal microscopy and flow cytometry using Fluo-4 AM as a probe. Gemfibrozil at 20-400 μM, could regulate [Ca(2+)]i in L6 cells in a biphasic manner, and sustained reduction was observed when the concentration reached 200 μM. Inhibition of L6 differentiation by gemfibrozil was concentration-dependent with maximal effect noted between 200 and 400 μM, as indicated by creatine kinase activities and the differentiation index, respectively. In differentiating L6 myoblasts, gemfibrozil at concentrations below 400 μM led to no significant signs of apoptosis or cytotoxicity, whereas differentiation, inhibited by 200 μM gemfibrozil, was only partially recovered. A good correlation was noted between gemfibrozil concentrations that regulate [Ca(2+)]i and inhibit L6 myoblasts differentiation, and both are within the range of total serum concentrations found in the clinic. These data suggest a potential pharmacodynamic effect of gemfibrozil on myogenesis as a warning sign, in addition to the complex pharmacokinetic interactions. It is also noteworthy that mobilization of [Ca(2+)]i by gemfibrozil may trigger complex biological responses besides myocyte differentiation. Information revealed in this study explores the mechanism of gemfibrozil-induced myotoxicity through the regulation of intracellular calcium.

  1. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    International Nuclear Information System (INIS)

    Brady, Robert T.; O'Brien, Fergal J.; Hoey, David A.

    2015-01-01

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  2. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  3. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Lan [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Pharmaceutical Sciences, Jilin University, Changchun 130021 (China); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Wang, Yongsheng [Department of Pharmaceutical Sciences, Jilin University, Changchun 130021 (China); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.

  4. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    International Nuclear Information System (INIS)

    Qiao, Lan; Paul, Pritha; Lee, Sora; Qiao, Jingbo; Wang, Yongsheng; Chung, Dai H.

    2013-01-01

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma

  5. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    International Nuclear Information System (INIS)

    Adachi, Atsuo; Takahashi, Tomosaburo; Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko; Ueyama, Tomomi; Matsubara, Hiroaki

    2012-01-01

    Highlights: ► NFAT5 protein expression is downregulated during cardiomyogenesis. ► Inhibition of NFAT5 function suppresses canonical Wnt signaling. ► Inhibition of NFAT5 function attenuates mesodermal induction. ► NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2′Z, 3′E]-6-bromoindirubin-3′-oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  6. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions–comparison of glioblastomas and brain abscesses

    Science.gov (United States)

    Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-01-01

    Background Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. Methods 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. Results All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10−5 mm2 × s−1. Conclusions ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA. PMID:29719596

  7. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions-comparison of glioblastomas and brain abscesses.

    Science.gov (United States)

    Horvath-Rizea, Diana; Surov, Alexey; Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-04-06

    Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm 2 . Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10 -5 mm 2 × s -1 . ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

  8. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  9. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  10. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  11. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  12. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  13. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  14. Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    D Studer

    2012-07-01

    Full Text Available Chondrocyte hypertrophy is one of the key physiological processes involved in the longitudinal growth of long bones, yet the regulation of hypertrophy is also becoming increasingly relevant for clinical application of mesenchymal stem cells (MSCs and screening for drugs to treat hypertrophic osteoarthritis. The extraordinary cell volume increase during hypertrophy is accompanied by an up-regulation of collagen X, matrix metalloproteinases (MMPs, and vascular endothelial growth factor (VEGF, all which are targets of the runt-related transcription factor 2 (Runx2. Many pathways, including parathyroid hormone-related protein (PTHrP/Indian Hedgehog, Wingless/Int (Wnt/β-catenin, and transforming growth factor beta (TGF-β/Sma and Mad Related Family (Smad pathways, can regulate hypertrophy, but factors as diverse as hypoxia, co-culture, epigenetics and biomaterial composition can also potently affect Runx2 expression. Control of hypertrophic differentiation can be exploited both for cartilage repair, where a stable phenotype is desired, but also in bone regeneration, where hypertrophic cartilage could act as a template for endochondral bone formation. We hope this review will motivate the design of novel engineered microenvironments for skeletal regeneration applications.

  15. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    2017-01-01

    Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.

  16. An empirical investigation of spatial differentiation and price floor regulations in retail markets for gasoline

    Science.gov (United States)

    Houde, Jean-Francois

    In the first essay of this dissertation, I study an empirical model of spatial competition. The main feature of my approach is to formally specify commuting paths as the "locations" of consumers in a Hotelling-type model of spatial competition. The main consequence of this location assumption is that the substitution patterns between stations depend in an intuitive way on the structure of the road network and the direction of traffic flows. The demand-side of the model is estimated by combining a model of traffic allocation with econometric techniques used to estimate models of demand for differentiated products (Berry, Levinsohn and Pakes (1995)). The estimated parameters are then used to evaluate the importance of commuting patterns in explaining the distribution of gasoline sales, and compare the economic predictions of the model with the standard home-location model. In the second and third essays, I examine empirically the effect of a price floor regulation on the dynamic and static equilibrium outcomes of the gasoline retail industry. In particular, in the second essay I study empirically the dynamic entry and exit decisions of gasoline stations, and measure the impact of a price floor on the continuation values of staying in the industry. In the third essay, I develop and estimate a static model of quantity competition subject to a price floor regulation. Both models are estimated using a rich panel dataset on the Quebec gasoline retail market before and after the implementation of a price floor regulation.

  17. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis.

    Directory of Open Access Journals (Sweden)

    Amber J Marty

    2015-06-01

    Full Text Available In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0-48 hours, gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C and during the phase transition to mold (22°C. This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition.

  18. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling.

    Science.gov (United States)

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Lang, Ming-Fei; Yang, Su; Li, Wendong; Shi, Yanhong

    2010-02-02

    Neural stem cell self-renewal and differentiation is orchestrated by precise control of gene expression involving nuclear receptor TLX. Let-7b, a member of the let-7 microRNA family, is expressed in mammalian brains and exhibits increased expression during neural differentiation. However, the role of let-7b in neural stem cell proliferation and differentiation remains unknown. Here we show that let-7b regulates neural stem cell proliferation and differentiation by targeting the stem cell regulator TLX and the cell cycle regulator cyclin D1. Overexpression of let-7b led to reduced neural stem cell proliferation and increased neural differentiation, whereas antisense knockdown of let-7b resulted in enhanced proliferation of neural stem cells. Moreover, in utero electroporation of let-7b to embryonic mouse brains led to reduced cell cycle progression in neural stem cells. Introducing an expression vector of Tlx or cyclin D1 that lacks the let-7b recognition site rescued let-7b-induced proliferation deficiency, suggesting that both TLX and cyclin D1 are important targets for let-7b-mediated regulation of neural stem cell proliferation. Let-7b, by targeting TLX and cyclin D1, establishes an efficient strategy to control neural stem cell proliferation and differentiation.

  19. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology.

    Science.gov (United States)

    Manford, Andrew G; Stefan, Christopher J; Yuan, Helen L; Macgurn, Jason A; Emr, Scott D

    2012-12-11

    Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    Full Text Available Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.

  1. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  2. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  3. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression.

    Science.gov (United States)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Classical and alternative NF-κB signaling cooperate in regulating adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Weidemann, A.; Lovas, A.; Rauch, A.

    2016-01-01

    Background and objective:Inflammation of adipose tissue (AT) is a central mediator of insulin resistance. However, the molecular mechanisms triggered by inflammatory cells are not fully understood. The aim of this study was to analyze the metabolic functions of lymphotoxin-β-receptor (LTβ...... to adipocytes. The molecular mechanism was elucidated by chromatin immunoprecipitation and combinatorial treatment with α-LTβR and tumor necrosis factor (TNF).Results:RelB FatKO mice showed improved insulin sensitivity despite increased adiposity and adipocyte hypertrophy. LTβR-induced activation of p52-Rel.......Conclusions:Our data describe an anti-adipogenic action of LTβR signaling and a novel synergism of alternative and classical NF-κB signaling in the regulation of adipocytes. In conclusion, this strong synergism between the two NF-κB pathways shows a method to inhibit adipocyte differentiation and to improve insulin...

  5. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  6. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  7. DIFFERENTIAL MORPHOLOGY BETWEEN REST-FRAME OPTICAL AND ULTRAVIOLET EMISSION FROM 1.5 < z < 3 STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Bond, Nicholas A.; Gawiser, Eric; Koekemoer, Anton M.

    2011-01-01

    We present the results of a comparative study of the rest-frame optical and rest-frame ultraviolet morphological properties of 117 star-forming galaxies (SFGs), including BX, BzK, and Lyman break galaxies with B 3σ) and larger than we find in passive galaxies at 1.4 0.05) generally have complex morphologies that are both extended and asymmetric, suggesting that they are mergers-in-progress or very large galaxies in the act of formation. We also find a correlation between half-light radius and ICD, a fact that is not reflected by the difference in half-light radii between bandpasses. In general, we find that it is better to use diagnostics like the ICD to measure the morphological properties of the difference image than it is to measure the difference in morphological properties between bandpasses.

  8. Differential regulation of BACE1 expression by oxidative and nitrosative signals

    Directory of Open Access Journals (Sweden)

    Xu Huaxi

    2011-03-01

    Full Text Available Abstract Background It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD. Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO, in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the β-cleavage of APP to Aβ peptides. Results Herein, we studied events such as S-nitrosylation, a covalent modification of cysteine residues by NO, and H2O2-mediated oxidation. We found that NO and H2O2 differentially modulate BACE1 expression and enzymatic activity: NO at low concentrations (2O2 (1-10 μM induces BACE1 expression via transcriptional activation, resulting in increased enzymatic activity. The differential effects of NO and H2O2 on BACE1 expression and activity are also reflected in their opposing effects on Aβ generation in cultured neurons in a dose-dependent manner. Furthermore, we found that BACE1 is highly S-nitrosylated in normal aging brains while S-nitrosylation is markedly reduced in AD brains. Conclusion This study demonstrates for the first time that BACE1 is highly modified by NO via multiple mechanisms: low and high levels of NO suppress BACE1 via transcriptional and post translational regulation, in contrast with the upregulation of BACE1 by H2O2-mediated oxidation. These novel NO-mediated regulatory mechanisms likely protect BACE1 from being further oxidized by excessive oxidative stress, as from H2O2 and peroxynitrite which are known to upregulate BACE1 and activate the enzyme, resulting in excessive cleavage of APP and Aβ generation; they likely represent the crucial house-keeping mechanism for BACE1 expression/activation under physiological conditions.

  9. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol

    OpenAIRE

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O.; Linne, Marja-Leena

    2015-01-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was...

  10. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol

    OpenAIRE

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula; Linne, Marja-Leena

    2016-01-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was...

  11. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei, E-mail: geraldleelei@163.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Yang, Zheng [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Zhang, Hai [Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA (United States); Chen, Wenchuan [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Chen, Mengshi [Department of Biomechanics, Sichuan University, Chengdu (China); Zhu, Zhimin, E-mail: hxzhimin@163.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer CM from LIPUS-stimulated osteocytes inhibits proliferation of osteoblasts. Black-Right-Pointing-Pointer CM from LIPUS-stimulated osteocytes enhances differentiation of osteoblasts. Black-Right-Pointing-Pointer LIPUS stimulates MLO-Y4 cells to secrete PGE{sub 2} and NO. -- Abstract: Low-intensity pulsed ultrasound (LIPUS) has been used as a safe and effective modality to enhance fracture healing. As the most abundant cells in bone, osteocytes orchestrate biological activities of effector cells via direct cell-to-cell contacts and by soluble factors. In this study, we have used the osteocytic MLO-Y4 cells to study the effects of conditioned medium from LIPUS-stimulated MLO-Y4 cells on proliferation and differentiation of osteoblastic MC3T3-E1 cells. Conditioned media from LIPUS-stimulated MLO-Y4 cells (LIPUS-Osteocyte-CM) were collected and added on MC3T3-E1 cell cultures. MC3T3-E1 cells cultured in LIPUS-Osteocyte-CM demonstrated a significant inhibition of proliferation and an increased alkaline phosphatase activity. The results of PGE{sub 2} and NO assay showed that LIPUS could enhance PGE{sub 2} and NO secretion from MLO-Y4 cells at all time points within 24 h after LIPUS stimulation. We conclude that LIPUS regulates proliferation and differentiation of osteoblasts through osteocytes in vitro. Increased secretion of PGE{sub 2} from osteocytes may play a role in this effect.

  12. SHP1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Menghui Jiang

    2016-07-01

    Full Text Available Osteoblasts and adipocytes are derived from a common precursor, mesenchymal stem cells (MSCs. Alterations in the normal fate of differentiating MSCs are involved in the development of obesity and osteoporosis. Here, we report that viable motheaten (mev mice, which are deficient in the SH2-domain-containing phosphatase-1 (SHP1, develop osteoporosis spontaneously. Consistently, MSCs from mev/mev mice exhibit significantly reduced osteogenic potential and greatly increased adipogenic potential. When MSCs were transplanted into nude mice, SHP1-deficient MSCs resulted in diminished bone formation compared with wild-type MSCs. SHP1 was found to bind to GSK3β and suppress its kinase activity by dephosphorylating pY216, thus resulting in β-catenin stabilization. Mice, in which SHP1 was deleted in MSCs using SHP1fl/flDermo1-cre, displayed significantly decreased bone mass and increased adipose tissue. Taken together, these results suggest a possible role for SHP1 in controlling tissue homeostasis through modulation of MSC differentiation via Wnt signaling regulation.

  13. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.

    Science.gov (United States)

    Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing

    2018-05-09

    CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.

  14. Differential arousal regulation by prokineticin 2 signaling in the nocturnal mouse and the diurnal monkey.

    Science.gov (United States)

    Zhou, Qun-Yong; Burton, Katherine J; Neal, Matthew L; Qiao, Yu; Kanthasamy, Anumantha G; Sun, Yanjun; Xu, Xiangmin; Ma, Yuanye; Li, Xiaohan

    2016-08-18

    The temporal organization of activity/rest or sleep/wake rhythms for mammals is regulated by the interaction of light/dark cycle and circadian clocks. The neural and molecular mechanisms that confine the active phase to either day or night period for the diurnal and the nocturnal mammals are unclear. Here we report that prokineticin 2, previously shown as a circadian clock output molecule, is expressed in the intrinsically photosensitive retinal ganglion cells, and the expression of prokineticin 2 in the intrinsically photosensitive retinal ganglion cells is oscillatory in a clock-dependent manner. We further show that the prokineticin 2 signaling is required for the activity and arousal suppression by light in the mouse. Between the nocturnal mouse and the diurnal monkey, a signaling receptor for prokineticin 2 is differentially expressed in the retinorecipient suprachiasmatic nucleus and the superior colliculus, brain projection targets of the intrinsically photosensitive retinal ganglion cells. Blockade with a selective antagonist reveals the respectively inhibitory and stimulatory effect of prokineticin 2 signaling on the arousal levels for the nocturnal mouse and the diurnal monkey. Thus, the mammalian diurnality or nocturnality is likely determined by the differential signaling of prokineticin 2 from the intrinsically photosensitive retinal ganglion cells onto their retinorecipient brain targets.

  15. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain); Elvira, Gema; Silva, Augusto [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain)

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, a shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.

  16. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    Science.gov (United States)

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  17. ADAM-17 regulates endothelial cell morphology, proliferation, and in vitro angiogenesis

    International Nuclear Information System (INIS)

    Goeoz, Pal; Goeoz, Monika; Baldys, Aleksander; Hoffman, Stanley

    2009-01-01

    Modulation of angiogenesis is a promising approach for treating a wide variety of human diseases including ischemic heart disease and cancer. In this study, we show that ADAM-17 is an important regulator of several key steps during angiogenesis. Knocking down ADAM-17 expression using lentivirus-delivered siRNA in HUVECs inhibited cell proliferation and the ability of cells to form close contact in two-dimensional cultures. Similarly, ADAM-17 depletion inhibited the ability of HUVECs to form capillary-like networks on top of three-dimensional Matrigel as well as in co-culture with fibroblasts within a three-dimensional scaffold. In mechanistic studies, both baseline and VEGF-induced MMP-2 activation and Matrigel invasion were inhibited by ADAM-17 depletion. Based on our findings we propose that ADAM-17 is part of a novel pro-angiogenic pathway leading to MMP-2 activation and vessel formation.

  18. Urban morphological determinants of temperature regulating ecosystem services in African cities: the case of Dar es Salaam, Tanzania

    Science.gov (United States)

    Cavan, Gina; Lindley, Sarah; Kibassa, Deusdedit; Shemdoe, Riziki; Capuano, Paolo; De Paola, Francesco; Renner, Florian; Pauleit, Stephan

    2013-04-01

    Urban green structure provides important regulating ecosystem services, such as temperature and flood regulation, and thus, has the potential to increase the resilience of African cities to climate change. Green structures within urban areas are not only limited to discrete units associated with recreational parks, agricultural areas and open spaces: they also exist within zones which have other primary functions, such as church yards, along transport routes, and within residential areas. Differing characteristics of urban areas can be conceptualised and subsequently mapped through the idea of urban morphology types. Urban morphology types are classifications which combine facets of urban form and function. When mapped, UMT units provide biophysically relevant meso-scale geographical zones which can be used as the basis for understanding climate-related impacts and adaptations. For example, they support the assessment of urban temperature patterns and the temperature regulating services provided by urban green structures. There are some examples of the use of UMTs for assessing regulating ecosystem services in European cities but little similar knowledge is available in an African context. This paper outlines the concept of urban morphology types (UMTs) and how they were applied to African case study cities (Cavan et al., 2012). It then presents the methods used to understand temperature regulating ecosystem services across an example African case study city, including (i) a GIS-based assessment of urban green structures, and (ii) applying an energy balance model to estimate current and future surface temperatures under climate change projections. The assessment is carried out for Dar es Salaam, Tanzania. Existing evidence suggests increases in both mean and extreme temperatures in the city. Historical analysis of the number of hot days per year suggests a rise from a maximum of 47 days per year in the period 1961-87 to 72 days per year in 2003-2011 (Giugni et al

  19. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  20. Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone

    Directory of Open Access Journals (Sweden)

    Xingming Shi

    2007-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPAR-γ belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-γ's role in energy balance, signals originating from the gut (e.g., GIP, fat (e.g., leptin, muscle (e.g., myostatin, or bone (e.g., GILZ can in turn modulate PPAR expression and/or function. Of the two PPAR-γ isoforms, PPAR-γ2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-γ2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-γ2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation.

  1. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    Science.gov (United States)

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.

  2. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Immani Swapna

    2016-04-01

    Full Text Available Dopamine action in the nucleus accumbens (NAc is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3 plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ∼2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations.

  3. The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm.

    Science.gov (United States)

    Kubo, Atsushi; Kim, Yon Hui; Irion, Stefan; Kasuda, Shogo; Takeuchi, Mitsuaki; Ohashi, Kazuo; Iwano, Masayuki; Dohi, Yoshiko; Saito, Yoshihiko; Snodgrass, Ralph; Keller, Gordon

    2010-02-01

    We investigated the role of the hematopoietically expressed homeobox (Hex) in the differentiation and development of hepatocytes within embryonic stem cell (ESC)-derived embryoid bodies (EBs). Analyses of hepatic endoderm derived from Hex(-/-) EBs revealed a dramatic reduction in the levels of albumin (Alb) and alpha-fetoprotein (Afp) expression. In contrast, stage-specific forced expression of Hex in EBs from wild-type ESCs led to the up-regulation of Alb and Afp expression and secretion of Alb and transferrin. These inductive effects were restricted to c-kit(+) endoderm-enriched EB-derived populations, suggesting that Hex functions at the level of hepatic specification of endoderm in this model. Microarray analysis revealed that Hex regulated the expression of a broad spectrum of hepatocyte-related genes, including fibrinogens, apolipoproteins, and cytochromes. When added to the endoderm-induced EBs, bone morphogenetic protein 4 acted synergistically with Hex in the induction of expression of Alb, Afp, carbamoyl phosphate synthetase, transcription factor 1, and CCAAT/enhancer binding protein alpha. These findings indicate that Hex plays a pivotal role during induction of liver development from endoderm in this in vitro model and suggest that this strategy may provide important insight into the generation of functional hepatocytes from ESCs.

  4. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  5. Modeling endocrine regulation of the menstrual cycle using delay differential equations.

    Science.gov (United States)

    Harris, Leona A; Selgrade, James F

    2014-11-01

    This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible "abnormal" condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. ADAMTS9-Regulated Pericellular Matrix Dynamics Governs Focal Adhesion-Dependent Smooth Muscle Differentiation

    Directory of Open Access Journals (Sweden)

    Timothy J. Mead

    2018-04-01

    Full Text Available Summary: Focal adhesions anchor cells to extracellular matrix (ECM and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM. : Mead et al. identify a proteolytic mechanism that actively maintains a pericellular microenvironment conducive to uterine smooth muscle activation prior to parturition. They show that pericellular matrix proteolysis by the secreted metalloprotease ADAMTS9 is crucial for maintenance of focal adhesions in uterine smooth muscle cells, and its absence impairs parturition. Keywords: metalloprotease, extracellular matrix, smooth muscle, proteoglycan, myometrium, parturition, uterus, focal adhesion, proteolysis, interference reflection microscopy

  7. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity.

    Science.gov (United States)

    Gupta, D K; Pena, L B; Romero-Puertas, M C; Hernández, A; Inouhe, M; Sandalio, L M

    2017-04-01

    The role of NADPH oxidases under cadmium (Cd) toxicity was studied using Arabidopsis thaliana mutants AtrbohC, AtrbohD and AtrbohF, which were grown under hydroponic conditions with 25 and 100 μM Cd for 1 and 5 days. Cadmium reduced the growth of leaves in WT, AtrbohC and D, but not in AtrbohF. A time-dependent increase in H 2 O 2 and lipid peroxidation was observed in all genotypes, with AtrbohC showing the smallest increase. An opposite behaviour was observed with NO accumulation. Cadmium increased catalase activity in WT plants and decreased it in Atrboh mutants, while glutathione reductase and glycolate oxidase activities increased in Atrboh mutants, and superoxide dismutases were down-regulated in AtrbohC. The GSH/GSSG and ASA/DHA couples were also affected by the treatment, principally in AtrbohC and AtrbohF, respectively. Cadmium translocation to the leaves was severely reduced in Atrboh mutants after 1 day of treatment and even after 5 days in AtrbohF. Similar results were observed for S, P, Ca, Zn and Fe accumulation, while an opposite trend was observed for K accumulation, except in AtrbohF. Thus, under Cd stress, RBOHs differentially regulate ROS metabolism, redox homeostasis and nutrient balance and could be of potential interest in biotechnology for the phytoremediation of polluted soils. © 2016 John Wiley & Sons Ltd.

  8. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway

    OpenAIRE

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transiti...

  9. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats.

    Science.gov (United States)

    Muñoz-Castañeda, Juan R; Herencia, Carmen; Pendón-Ruiz de Mier, Maria Victoria; Rodriguez-Ortiz, Maria Encarnación; Diaz-Tocados, Juan M; Vergara, Noemi; Martínez-Moreno, Julio M; Salmerón, Maria Dolores; Richards, William G; Felsenfeld, Arnold; Kuro-O, Makoto; Almadén, Yolanda; Rodríguez, Mariano

    2017-09-01

    In renal failure, hyperphosphatemia occurs despite a marked elevation in serum fibroblast growth factor (FGF)-23. Abnormal regulation of the FGFR1-Klotho receptor complex may cause a resistance to the phosphaturic action of FGF23. The purpose of the present study was to investigate the regulation of renal Klotho and FGF receptor (FEFR)-1 in healthy and uremic rats induced by 5/6 nephrectomy. In normal rats, the infusion of rat recombinant FGF23 enhanced phosphaturia and increased renal FGFR1 expression; however, Klotho expression was reduced. Uremic rats on a high-phosphate (HP) diet presented hyperphosphatemia with marked elevation of FGF23 and an increased fractional excretion of phosphate (P) that was associated with a marked reduction of Klotho expression and an increase in FGFR1. After neutralization of FGF23 by anti-FGF23 administration, phosphaturia was still abundant, Klotho expression remained low, and the FGFR1 level was reduced. These results suggest that the expression of renal Klotho is modulated by phosphaturia, whereas the FGFR1 expression is regulated by FGF23. Calcitriol (CTR) administration prevented a decrease in renal Klotho expression. In HEK293 cells HP produced nuclear translocation of β-catenin, together with a reduction in Klotho. Wnt/β-catenin inhibition with Dkk-1 prevented the P-induced down-regulation of Klotho. The addition of CTR to HP medium was able to recover Klotho expression. In summary, high FGF23 levels increase FGFR1, whereas phosphaturia decreases Klotho expression through the activation of Wnt/β-catenin pathway.-Muñoz-Castañeda, J. R., Herencia, C., Pendón-Ruiz de Mier, M. V., Rodriguez-Ortiz, M. E., Diaz-Tocados, J. M., Vergara, N., Martínez-Moreno, J. M., Salmerón, M. D., Richards, W. G., Felsenfeld, A., Kuro-O, M., Almadén, Y., Rodríguez, M. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats. © FASEB.

  10. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study.

    Science.gov (United States)

    Podlasz, P; Jakimiuk, A; Chmielewska-Krzesinska, M; Kasica, N; Nowik, N; Kaleczyc, J

    2016-01-01

    The present study has demonstrated the galaninergic innervation of the endocrine pancreas including sources of the galaninergic nerve fibers, and the influence of galanin receptor agonists on blood glucose level in the zebrafish. For the first time, a very abundant galaninergic innervation of the endocrine pancreas during development is shown, from the second day post-fertilization to adulthood. The fibers originated from ganglia consisting of galanin-IR, non-adrenergic (non-sensory) neurons located rostrally to the pancreatic tissue. The ganglia were found on the dorsal side of the initial part of the anterior intestinal segment, close to the intestinal branch of the vagus nerve. The galanin-IR neurons did not show immunoreactivity for applied antibodies against tyrosine hydroxylase, choline acetyltransferase, and vesicular acetylcholine transporter. Intraperitoneal injections of galanin analog NAX 5055 resulted in a statistically significant increase in the blood glucose level. Injections of another galanin receptor agonist, galnon, also caused a rise in blood glucose level; however, it was not statistically significant. The present findings suggest that, like in mammals, in the zebrafish galanin is involved in the regulation of blood glucose level. However, further studies are needed to elucidate the exact mechanism of the galanin action.

  11. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    Science.gov (United States)

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  12. Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation.

    Science.gov (United States)

    Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe

    2017-01-01

    Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.

  13. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation.

    Science.gov (United States)

    Valladares, Ana; Flores, Enrique; Herrero, Antonia

    2016-02-01

    Many filamentous cyanobacteria respond to the external cue of nitrogen scarcity by the differentiation of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. Heterocysts follow a spatial pattern along the filament of two heterocysts separated by ca. 10-15 vegetative cells performing oxygenic photosynthesis. HetR is a transcriptional regulator that directs heterocyst differentiation. In the model strain Anabaena sp. PCC 7120, the HetR protein was observed in various oligomeric forms in vivo, including a tetramer that peaked with maximal hetR expression during differentiation. Tetramers were not detected in a hetR point mutant incapable of differentiation, but were conspicuous in an over-differentiating strain lacking the PatS inhibitor. In differentiated filaments the HetR tetramer was restricted to heterocysts, being undetectable in vegetative cells. HetR co-purified with RNA polymerase from Anabaena mainly as a tetramer. In vitro, purified recombinant HetR was distributed between monomers, dimers, trimers and tetramers, and it was phosphorylated when incubated with (γ-(32)P)ATP. Phosphorylation and PatS hampered the accumulation of HetR tetramers and impaired HetR binding to DNA. In summary, tetrameric HetR appears to represent a functionally relevant form of HetR, whose abundance in the Anabaena filament could be negatively regulated by phosphorylation and by PatS. © 2015 John Wiley & Sons Ltd.

  14. Influence of growth regulators (IBA, BA on anatomical and morphological changes in bromeliads in in vitro culture

    Directory of Open Access Journals (Sweden)

    Renata Galek

    2014-01-01

    Full Text Available The subject of study were Tillandsia coronata and Guzmania monostachya. The material has been obtained by means of in vitro propagation. The plants were grown for 18 weeks on various kinds of media. Morphological changes were recorded in both species subjected to action of growth regulators. The changes in plant habit were linked with anatomic build. The effect of cytokinin BA upon growth of the stem pith was found, transversely to its axis, through development of numerous meristematic centres and growth and development of adventitious shoots. Leaves of plant grown on media containing cyto-kinin BA were build of a higher number of cell layers of assimilation parenchyma. In plants grown on media with addition of cytokinin the size of stomatal cells was smaller and was accompanied by analogous changes in size of epidermis cells proper. The bushy type of the plants, caused by presence of cytokinin in medium, resulted from the increase of thickness and breadth of leaves and growth of the stem pith, with simultaneous inhibition of cells' elongation. Auxin IBA did not favour the growth of the existing axillary shoots, but stimulated elongation of the stem pith. The stomata of plants of both species grown on media with addition of auxin were bigger. As result of the applied growth regulators a higher frequency of appearance of binucleate cells was found in parenchyma cells of the stem and leaves in both the species studied.

  15. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  16. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  17. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration

    Science.gov (United States)

    Wang, Lijun; Zhao, Yu; Bao, Xichen; Zhu, Xihua; Kwok, Yvonne Ka-yin; Sun, Kun; Chen, Xiaona; Huang, Yongheng; Jauch, Ralf; Esteban, Miguel A; Sun, Hao; Wang, Huating

    2015-01-01

    Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis. PMID:25686699

  18. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    Science.gov (United States)

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  19. The species concept in a marine diatom: LSU rDNA–based phylogenetic differentiation in Skeletonema marinoi/dohrnii (Bacillariophyceae) is not reflected in morphology

    DEFF Research Database (Denmark)

    Ellegaard, Marianne; Godhe, Anna; Härnström, Karolina

    2008-01-01

    and Canada) included in the study showed differences in LSU rDNA sequence within the morphospecies, with differences seen even among clones established from a single plankton net sample. Morphologically, all clones were indistinguishable from each other and from the closely related species Skeletonema...... dohrnii. In the original description of these two species, they were differentiated by the structure of the girdle bands. However, the girdle band types of both species were found within single samples of almost all clones of S. marinoi in this study. The LSU-based phylogeny is consistent with the split...... into two species, and there may be a difference in their biogeographical distribution. We therefore do not at present suggest that the two species be merged. Questions regarding species delimitation and cryptic species within protists often arise from such studies that include data from both morphological...

  20. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise

    Czech Academy of Sciences Publication Activity Database

    Mikulíček, Peter; Jandzik, D.; Fritz, U.; Schneider, C.; Široký, P.

    2013-01-01

    Roč. 108, č. 1 (2013), s. 151-160 ISSN 0024-4066 Institutional support: RVO:68081766 Keywords : Amplified fragment length polymorphism * morphological plasticity * reptiles * stabilizing selection * Testudines Subject RIV: EG - Zoology Impact factor: 2.535, year: 2013

  1. Social defeat during adolescence and adulthood differentially induce BDNF-regulated immediate early genes

    Directory of Open Access Journals (Sweden)

    Caroline M. Coppens

    2011-11-01

    Full Text Available Stressful life events generally enhance the vulnerability for the development of human psychopathologies such as anxiety disorders and depression. The incidence rates of adult mental disorders steeply rises during adolescence in parallel with a structural and functional reorganization of the neural circuitry underlying stress reactivity. However, the mechanisms underlying susceptibility to stress and manifestation of mental disorders during adolescence are little understood. We hypothesized that heightened sensitivity to stress during adolescence reflects age-dependent differences in the expression of activity-dependent genes involved in synaptic plasticity. Therefore, we compared the effect of social stress during adolescence with social stress in adulthood on the expression of a panel of genes linked to induction of long-term potentiation (LTP and brain-derived neurotrophic factor (BDNF signaling. We show that social defeat during adolescence and adulthood differentially regulates expression of the immediate early genes BDNF, Arc, Carp, and Tieg1, as measured by qPCR in tissue lysates from prefrontal cortex, nucleus accumbens, and hippocampus. In the hippocampus, mRNA levels for all four genes were robustly elevated following social defeat in adolescence, whereas none were induced by defeat in adulthood. The relationship to coping style was also examined using adult reactive and proactive coping rats. Gene expression levels of reactive and proactive animals were similar in the prefrontal cortex and hippocampus. However, a trend toward a differential expression of BDNF and Arc mRNA in the nucleus accumbens was detected. BDNF mRNA was increased in the nucleus accumbens of proactive defeated animals, whereas the expression level in reactive defeated animals was comparable to control animals. The results demonstrate striking differences in immediate early gene expression in response to social defeat in adolescent and adult rats.

  2. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation.

    Science.gov (United States)

    Wride, M A; Parker, E; Sanders, E J

    1999-09-01

    The optical clarity of the lens is ensured by the programmed removal of nuclei and other organelles from the lens fibre cells during development. The morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. Proteins encoded by the bcl-2 proto-oncogene family are important in either promoting or inhibiting apoptosis, and caspases are involved in downstream proteolytic events. Here, the expression of bcl-2 family members (bcl-2, bax, bad, and bcl-x(s/l)) and caspases-1, -2, -3, -4, and -6 was investigated through a range of stages of chick lens development using immunocytochemistry, Western blotting, and affinity labelling for caspases using biotinylated caspase inhibitors. Using differentiating lens epithelial cell cultures, it was demonstrated that the addition to cultures of synthetic peptide inhibitors of caspases -1, -2, -4, -6, and -9 brought about a 50-70% reduction in the number of degenerating nuclei per unit area of culture, as assessed by image analysis. These effects were comparable to those seen when general inhibitors of caspases were added to cultures. On the other hand, inhibitors of caspases-3 and -8 were not effective in significantly reducing the number of TUNEL-labelled nuclei. Expression of the caspase substrates poly(ADP-ribose) polymerase (PARP) and the 45-kDa subunit of DNA fragmentation factor (DFF 45) was also observed in the developing lens. Western blots of cultures to which caspase inhibitors were added revealed alterations in the PARP cleavage pattern, but not in that of DFF. These results demonstrate a role for members of the bcl-2 family and caspases in the degeneration of lens fibre cell nuclei during chick secondary lens fibre development and support the proposal that this process has many characteristics in common with apoptosis. Copyright 1999 Academic Press.

  3. RANKL regulates differentiation of microfold cells in mouse nasopharynx-associated lymphoid tissue (NALT).

    Science.gov (United States)

    Mutoh, Mami; Kimura, Shunsuke; Takahashi-Iwanaga, Hiromi; Hisamoto, Meri; Iwanaga, Toshihiko; Iida, Junichiro

    2016-04-01

    Murine nasopharynx-associated lymphoid tissue (NALT), located at the base of the nasal cavity, serves as a major site for the induction of mucosal immune responses against airway antigens. The follicle-associated epithelium (FAE) covering the luminal surface of NALT is characterized by the presence of microfold cells (M cells), which take up and transport luminal antigens to lymphocytes. Glycoprotein 2 (GP2) has recently been identified as a reliable marker for M cells in Peyer's patches of the intestine. However, the expression of GP2 and other functional molecules in the M cells of NALT has not yet been examined. We have immunohistochemically detected GP2-expressing cells in the FAE of NALT and the simultaneous expression of other intestinal M-cell markers, namely Tnfaip2, CCL9, and Spi-B. These cells have been further identified as M cells because of their higher uptake capacity of luminal microbeads. Electron microscopic observations have shown that GP2-expressing cells on the FAE display morphological features typical of M cells: they possess short microvilli and microfolds on the luminal surface and are closely associated with intraepithelial lymphocytes. We have also found that the receptor activator of nuclear factor kappa-B ligand (RANKL) is expressed by stromal cells underneath the FAE, which provides its receptor RANK. The administration of RANKL markedly increases the number of GP2(+)Tnfaip2(+) cells on the NALT FAE and that of intestinal M cells. These results suggest that GP2(+)Tnfaip2(+) cells in NALT are equivalent to intestinal M cells, and that RANKL-RANK signaling induces their differentiation.

  4. CUDC-907 Promotes Bone Marrow Adipocytic Differentiation Through Inhibition of Histone Deacetylase and Regulation of Cell Cycle.

    Science.gov (United States)

    Ali, Dalia; Alshammari, Hassan; Vishnubalaji, Radhakrishnan; Chalisserry, Elna Paul; Hamam, Rimi; Alfayez, Musaad; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2017-03-01

    The role of bone marrow adipocytes (BMAs) in overall energy metabolism and their effects on bone mass are currently areas of intensive investigation. BMAs differentiate from bone marrow stromal cells (BMSCs); however, the molecular mechanisms regulating BMA differentiation are not fully understood. In this study, we investigated the effect of CUDC-907, identified by screening an epigenetic small-molecule library, on adipocytic differentiation of human BMSCs (hBMSCs) and determined its molecular mechanism of action. Human bone marrow stromal cells exposed to CUDC-907 (500 nM) exhibited enhanced adipocytic differentiation (∼2.9-fold increase, P < 0.005) compared with that of control cells. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis, cell cycle, and DNA replication. Chromatin immune precipitation combined with quantitative polymerase chain reaction showed significant increase in H3K9ac epigenetic marker in the promoter regions of AdipoQ, FABP4, PPARγ, KLF15, and CEBPA in CUDC-907-treated hBMSCs. Follow-up experiments corroborated that the inhibition of histone deacetylase (HDAC) activity enhanced adipocytic differentiation, while the inhibition of PI3K decreased adipocytic differentiation. In addition, CUDC-907 arrested hBMSCs in the G0-G1 phase of the cell cycle and reduced the number of S-phase cells. Our data reveal that HDAC, PI3K, and cell cycle genes are important regulators of BMA formation and demonstrate that adipocyte differentiation of hBMSCs is associated with complex changes in a number of epigenetic and genetic pathways, which can be targeted to regulate BMA formation.

  5. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues.

    Science.gov (United States)

    Amoyel, Marc; Hillion, Kenzo-Hugo; Margolis, Shally R; Bach, Erika A

    2016-11-01

    Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling. © 2016. Published by The Company of Biologists Ltd.

  6. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    International Nuclear Information System (INIS)

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-01-01

    Highlights: → Effect of compressive force on osteoblasts were examined. → Compressive force induced OPG expression and suppressed osteoclastogenesis. → This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm 2 ) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of IκBα, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca 2+ pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-κB) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt/Ca 2+ pathway.

  7. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction

    Science.gov (United States)

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.

    2016-01-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  8. Differential Effects of Two Fermentable Carbohydrates on Central Appetite Regulation and Body Composition

    Science.gov (United States)

    Gibson, Glenn R.; Tuohy, Kieran M.; Sharma, Raj Kumar; Swann, Jonathan R.; Deaville, Eddie R.; Sleeth, Michele L.; Thomas, E. Louise; Holmes, Elaine; Bell, Jimmy D.; Frost, Gary

    2012-01-01

    activity in the hypothalamic appetite centers. Differential effects of fermentable carbohydrates open new possibilities for nutritionally targeting appetite regulation and body composition. PMID:22952656

  9. Differential effects of two fermentable carbohydrates on central appetite regulation and body composition.

    Directory of Open Access Journals (Sweden)

    Tulika Arora

    Full Text Available Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and β-glucan exert similar effects on body composition and central appetite regulation in high fat fed mice.Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w fermentable carbohydrate, 10% (w/w inulin or 10% (w/w β-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance ((1H NMR, colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI and manganese enhanced MRI (MEMRI, respectively, PYY (peptide YY concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and β-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in β-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. β-Glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state.Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. β-Glucan appears to suppress neuronal activity in the hypothalamic appetite centers. Differential

  10. Regnase-1 and Roquin Nonredundantly Regulate Th1 Differentiation Causing Cardiac Inflammation and Fibrosis.

    Science.gov (United States)

    Cui, Xiaotong; Mino, Takashi; Yoshinaga, Masanori; Nakatsuka, Yoshinari; Hia, Fabian; Yamasoba, Daichi; Tsujimura, Tohru; Tomonaga, Keizo; Suzuki, Yutaka; Uehata, Takuya; Takeuchi, Osamu

    2017-12-15

    Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng , but not Il4 or Il17a Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1 , via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  12. The morphological and functional differentiation of the alimentary canal of the pig during ontogeny. I. Development and differentiation of the fundic portion of the stomach.

    Science.gov (United States)

    Georgieva, R; Gerov, K

    1975-01-01

    Several periods of intensive growth are observed in the development of the fundus of pig's stomach: at the end of the 2nd and the beginning of the 3rd month of embryogenesis, the periods shortly prior to and after birth, and between the 10th and 20th day following birth. The gastric pits are formed at about the 45th day of embriogenesis. At the beginning of the third month the fundic glands are formed. The parietal cells first differentiate and are found in 60-day old embryos. The mucous neck cells are differentiated at the beginning of the 3rd month but secretion of mucoid substance starts on about the 45th to 50th day of the prenatal development. With increasing age of the pigs the quantity of PAS-positive substances in the surface epithelium, as well as in the mucous neck cells gradually increases. The differentiation of the chief cells rich in RNA occurs approximately on the 90th day of the prenatal development.

  13. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    , isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the "electron transport chain" and neuronal differentiation, emphasizing that "tissue important" genes are regulated at several...

  14. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Alajez, Nehad M

    2017-01-01

    3 (LRP3) in regulating the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed significantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during...

  15. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  16. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    Directory of Open Access Journals (Sweden)

    Niurka Trujillo-Paredes

    2016-03-01

    Full Text Available Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs, but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+. These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  17. RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation

    DEFF Research Database (Denmark)

    Fabre, Odile Martine Julie; Salehzada, T; Lambert, K

    2012-01-01

    Adipose tissue structure is altered during obesity, leading to deregulation of whole-body metabolism. Its function depends on its structure, in particular adipocytes number and differentiation stage. To better understand the mechanisms regulating adipogenesis, we have investigated the role...... is associated with CHOP10 mRNA and regulates its stability. CHOP10 expression is conserved in RNase L(-/-)-MEFs, maintaining preadipocyte state while impairing their terminal differentiation. RNase L(-/-)-MEFs have decreased lipids storage capacity, insulin sensitivity and glucose uptake. Expression of ectopic...... RNase L in RNase L(-/-)-MEFs triggers CHOP10 mRNA instability, allowing increased lipids storage, insulin response and glucose uptake. Similarly, downregulation of CHOP10 mRNA with CHOP10 siRNA in RNase L(-/-)-MEFs improves their differentiation in adipocyte. In vivo, aged RNase L(-)/(-) mice present...

  18. [Morphological differentiations of the gills of two Gymnocypris przewa-lskii subspecies in different habitats and their functional adaptations].

    Science.gov (United States)

    Zhang, Ren-Yi; Li, Guo-Gang; Zhang, Cun-Fang; Tang, Yong-Tao; Zhao, Kai

    2013-08-01

    Gill morphologies of two subspecies of Gymnocypris przewalskii (Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii ganzihonensis) in different habitats were analyzed under scanning electron microscope. Results indicated that G. p. przewalskii had numerous long and dense-lined gill rakers while G. p. ganzihonensis had few short and scatter-lined gill rakers. There were no significant differences in distance between gill filaments (DBF) and distance gill lamella (DBL) between the two subspecies, but gill filaments of G. p. przewalskii were longer than in G. p. ganzihonensis. The electron microscopic study indicated that the pavement epithelium cells of G. p. przewalskii were well defined as irregular ovals, but were hexagonal in G. p. ganzihonensis. Moreover, G. p. przewalskii had more chloride cells than G. p. ganzihonensis, and mucous cells were only found on the surface of gill filaments of G. p. przewalskii. The morphological differences between the two subspecies of G. przewalskii are adaptations to their corresponding diets and habitats.

  19. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  20. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  1. Elastin Is Differentially Regulated by Pressure Therapy in a Porcine Model of Hypertrophic Scar.

    Science.gov (United States)

    Carney, Bonnie C; Liu, Zekun; Alkhalil, Abdulnaser; Travis, Taryn E; Ramella-Roman, Jessica; Moffatt, Lauren T; Shupp, Jeffrey W

    Beneficial effects of pressure therapy for hypertrophic scars have been reported, but the mechanisms of action are not fully understood. This study evaluated elastin and its contribution to scar pliability. The relationship between changes in Vancouver Scar Scale (VSS) scores of pressure-treated scars and differential regulation of elastin was assessed. Hypertrophic scars were created and assessed weekly using VSS and biopsy procurement. Pressure treatment began on day 70 postinjury. Treated scars were compared with untreated shams. Treatment lasted 2 weeks, through day 84, and scars were assessed weekly through day 126. Transcript and protein levels of elastin were quantified. Pressure treatment resulted in lower VSS scores compared with sham-treated scars. Pliability (VSSP) was a key contributor to this difference. At day 70 pretreatment, VSSP = 2. Without treatment, sham-treated scars became less pliable, while pressure-treated scars became more pliable. The percentage of elastin in scars at day 70 was higher than in uninjured skin. Following treatment, the percentage of elastin increased and continued to increase through day 126. Untreated sham scars did not show a similar increase. Quantification of Verhoeff-Van Gieson staining corroborated the findings and immunofluorescence revealed the alignment of elastin fibers. Pressure treatment results in increased protein level expression of elastin compared with sham-untreated scars. These findings further characterize the extracellular matrix's response to the application of pressure as a scar treatment, which will contribute to the refinement of rehabilitation practices and ultimately improvements in functional and psychosocial outcomes for patients.

  2. Differential regulation of GluA1 expression by ketamine and memantine.

    Science.gov (United States)

    Zhang, Ke; Yamaki, Vitor Nagai; Wei, Zhisheng; Zheng, Yu; Cai, Xiang

    2017-01-01

    Evidence from preclinical and clinical studies shows that ketamine, a noncompetitive NMDA receptor antagonist, exerts rapid and sustained antidepressant responses. However, ketamine's psychotomimetic side effects and abuse liability limit the clinical use of the compound. Interestingly, memantine, another NMDA receptor channel blocker, processes no defined antidepressant property but is much safer and clinical tolerated. Understanding why ketamine but not memantine exhibits rapid antidepressant responses is important to elucidate the cellular signaling underlying the fast antidepressant actions of ketamine and to design a new safer generation of fast-acting antidepressants. Here we show that ketamine but memantine caused a rapid and sustained antidepressant-like responses in forced swim test (FST). Both drugs enhanced GluA1 S845 phosphorylation and potentiated Schaffer collateral-CA1 synaptic transmission. However, ketamine but not memantine elevated the expression of GluA1. Incubating acutely prepared hippocampal slices with ketamine but not memantine enhanced mTOR phosphorylation in a time course parallel to the time course of GluA1 elevation. Our results suggest that distinct properties in regulation of mTOR phosphorylation and synaptic protein expression may underlie the differential effectiveness of ketamine and memantine in their antidepressant responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle

    Science.gov (United States)

    Ali, Mehboob

    2015-01-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22. PMID:25617350

  4. STUDY OF INTRA TESTICULAR REGULATIONS OF SPERMATOGENESIS DIFFERENTIATION BY EX-VIVO APPROACH

    Directory of Open Access Journals (Sweden)

    A. Adaika

    2010-12-01

    Full Text Available The aim of this work is to study the regulation of intratesticular during spermatogenesis ex vivo. To highlight the progress of spermatogenesis ex vivo, we developed two cell culture systems of seminiferous tubules to study the role of local factors that control the proliferation and differentiation of male germ cells. Our studies are based on two main techniques: RT-PCR and RNA extraction to examine changes in the expression of some growth factors in the culture of seminiferous tubules as the SCF, c- Kit and TGFß. The results show, using RT-PCR, that expression of SCF, c-Kit and TGFb is probably not involved in the alterations of spermatogenesis ex vivo. Indeed, their expressions are not modified during three weeks of culture, and their expressions depend on the proportion of cells where they are expressed. Our results also show that clusterin is a marker of Sertoli cells in the culture of seminiferous tubules and its expression is not altered by the presence of germ cells.

  5. DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges.

    Science.gov (United States)

    Drury, Jeanie L; Chung, Whasun Oh

    2015-03-01

    Epigenetic modifications are changes in gene expression without altering DNA sequence. We previously reported that bacteria-specific innate immune responses are regulated by epigenetic modifications. Our hypothesis is that DNA methylation affects gingival cytokine secretion in response to bacterial stimulation. Gingival epithelial cells (GECs) were treated with DNMT-1 inhibitors prior to Porphyromonas gingivalis (Pg) or Fusobacterium nucleatum (Fn) exposure. Protein secretion was assessed using ELISA. Gene expression was quantified using qRT-PCR. The ability of bacteria to invade inhibitor pretreated GECs was assessed utilizing flow cytometry. Changes were compared to unstimulated GECs. GEC upregulation of IL-6 and CXCL1 by Pg or Fn stimulation was significantly diminished by inhibitor pretreatment. Pg stimulated IL-1α secretion and inhibitor pretreatment significantly enhanced this upregulation, while Fn alone or with inhibitor pretreatment had no effect on IL-1α expression. GEC upregulation of human beta-definsin-2 in response to Pg and Fn exposure was enhanced following the inhibitor pretreatment. GEC susceptibility to bacterial invasion was unaltered. These results suggest that DNA methylation differentially affects gingival cytokine secretion in response to Pg or Fn. Our data provide basis for better understanding of how epigenetic modifications, brought on by exposure to oral bacteria, will subsequently affect host susceptibility to oral diseases. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?

    Science.gov (United States)

    Paiola, Matthieu; Knigge, Thomas; Duflot, Aurélie; Pinto, Patricia I S; Farcy, Emilie; Monsinjon, Tiphaine

    2018-07-01

    In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Spontaneous Vesicle Fusion Is Differentially Regulated at Cholinergic and GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Haowen Liu

    2018-02-01

    Full Text Available The locomotion of C. elegans is balanced by excitatory and inhibitory neurotransmitter release at neuromuscular junctions. However, the molecular mechanisms that maintain the balance of synaptic transmission remain enigmatic. Here, we investigated the function of voltage-gated Ca2+ channels in triggering spontaneous release at cholinergic and GABAergic synapses. Recordings of the miniature excitatory/inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively showed that UNC-2/CaV2 and EGL-19/CaV1 channels are the two major triggers for spontaneous release. Notably, however, Ca2+-independent spontaneous release was observed at GABAergic but not cholinergic synapses. Functional screening led to the identification of hypomorphic unc-64/Syntaxin-1A and snb-1/VAMP2 mutants in which mEPSCs are severely impaired, whereas mIPSCs remain unaltered, indicating differential regulation of these currents at cholinergic and GABAergic synapses. Moreover, Ca2+-independent spontaneous GABA release was nearly abolished in the hypomorphic unc-64 and snb-1 mutants, suggesting distinct mechanisms for Ca2+-dependent and Ca2+-independent spontaneous release.

  8. Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Alcohol insult triggers complex events in the liver, promoting fibrogenic/inflammatory signals and in more advanced cases, aberrant matrix deposition. It is well accepted that the regenerative capacity of the adult liver is impaired during alcohol injury. The liver progenitor/stem cells have been shown to play an important role in liver regeneration -in response to various chronic injuries; however, the effects of alcohol on stem cell differentiation in the liver are not well understood.We employed hepatic progenitor cells derived from hESCs to study the impact of ethanol on hepatocyte differentiation by exposure of these progenitor cells to ethanol during hepatocyte differentiation.We found that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitor cells in a dose-dependent manner. There was also a moderate cell cycle arrest at G1/S checkpoint in the ethanol treated cells, which is associated with a reduced level of cyclin D1 in these cells. Ethanol treatment specifically inhibited the activation of the ERK but not JNK nor the p38 MAP signaling pathway. At the same time, the WNT signaling pathway was also reduced in the cells exposed to ethanol. Upon evaluating the effects of the inhibitors of these two signaling pathways, we determined that the Erk inhibitor replicated the effects of ethanol on the hepatocyte differentiation and attenuated the WNT/β-catenin signaling, however, inhibitors of WNT only partially replicated the effects of ethanol on the hepatocyte differentiation.Our results demonstrated that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitors through inhibiting the MAPK/ERK signaling pathway, and subsequently attenuating the WNT signaling pathway. Thus, our finding provides a novel insight into the mechanism by which alcohol regulates cell fate selection of hESC-derived hepatic progenitor cells, and the identified pathways may provide therapeutic targets

  9. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling.

    Science.gov (United States)

    Zhang, Jin-fang; Fu, Wei-ming; He, Ming-liang; Xie, Wei-dong; Lv, Qing; Wan, Gang; Li, Guo; Wang, Hua; Lu, Gang; Hu, Xiang; Jiang, Su; Li, Jian-na; Lin, Marie C M; Zhang, Ya-ou; Kung, Hsiang-fu

    2011-01-01

    Osteogenic differentiation of mesenchymal stem cells (MSCs) is a complex process, which is regulated by various factors including microRNAs. Our preliminary data showed that the expression of endogenous miR-20a was increased during the course of osteogenic differentiation. Simultaneously, the expression of osteoblast markers and regulators BMP2, BMP4, Runx2, Osx, OCN and OPN was also elevated whereas adipocyte markers PPARγ and osteoblast antagonist, Bambi and Crim1, were downregulated, thereby suggesting that miR-20a plays an important role in regulating osteoblast differentiation. To validate this hypothesis, we tested its effects on osteogenic differentiation by introducing miR-20a mimics and lentiviral-miR20a-expression vectors into hMSCs. We showed that miR-20a promoted osteogenic differentiation by the upregulation of BMP/Runx2 signaling. We performed bioinformatics analysis and predicted that PPARγ, Bambi and Crim1 would be potential targets of miR-20a. PPARγ is a negative regulator of BMP/Runx2 signaling whereas Bambi or Crim1 are antagonists of the BMP pathway. Furthermore, we confirmed that all these molecules were indeed the targets of miR-20a by luciferase reporter, quantitative RT-PCR and western blot assays. Similarly to miR-20a overexpression, the osteogenesis was enhanced by the silence of PPARγ, Bambi or Crim1 by specific siRNAs. Taken together, for the first time, we demonstrated that miR-20a promoted the osteogenesis of hMSCs in a co-regulatory pattern by targeting PPARγ, Bambi and Crim1, the negative regulators of BMP signaling.

  10. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53.

    Science.gov (United States)

    Flamini, Valentina; Ghadiali, Rachel S; Antczak, Philipp; Rothwell, Amy; Turnbull, Jeremy E; Pisconti, Addolorata

    2018-03-13

    Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Aspectos morfológicos de folhas na diferenciação de variedades de carambola Morphological aspects of leaves in differentiation of varieties of star fruit

    Directory of Open Access Journals (Sweden)

    Renata Aparecida de Andrade

    2007-08-01

    Full Text Available Em certas espécies vegetais, a distinção entre variedades pode ser realizada com base em aspectos morfológicos das folhas, o que permite a diferenciação mesmo quando não apresentam flores e/ou frutos. O presente trabalho foi realizado objetivando a distinção entre variedades de caramboleira (Averrhoa carambola L. através de aspectos foliares. Foram avaliadas quatro variedades de caramboleira: Arkin, B-10, Golden Star e Hart, com quatro repetições de 10 folhas cada. Pelos resultados obtidos no presente trabalho, conclui-se que há diferenças morfológicas foliares entre as variedades de caramboleira, permitindo a sua distinção, especialmente em condições de viveiro.In some vegetable species, the distinction among varieties can be done based on morphological aspects of the leaves that allow the differentiation even when they do not have flowers and/or fruits. The aim of this work was to differentiate the varieties of star fruit (Averrhoa carambola L. by foliar aspects. It was evaluated four varieties of star fruit: Arkin, B-10, Golden Star and Hart, with four replications containing 10 leaves in each one. The results obtained showed that exist morphological foliar differences among the varieties of star fruit, being permitted the distinction, especially in nursery conditions.

  12. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer.

    Science.gov (United States)

    Centuori, Sara M; Martinez, Jesse D

    2014-10-01

    A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.

  13. Roles of Retinoids and Retinoic Acid Receptors in the Regulation of Hematopoietic Stem Cell Self-Renewal and Differentiation

    Directory of Open Access Journals (Sweden)

    Louise E. Purton

    2007-01-01

    Full Text Available Multipotent hematopoietic stem cells (HSCs sustain blood cell production throughout an individual's lifespan through complex processes ultimately leading to fates of self-renewal, differentiation or cell death decisions. A fine balance between these decisions in vivo allows for the size of the HSC pool to be maintained. While many key factors involved in regulating HSC/progenitor cell differentiation and cell death are known, the critical regulators of HSC self-renewal are largely unknown. In recent years, however, a number of studies describing methods of increasing or decreasing the numbers of HSCs in a given population have emerged. Of major interest here are the emerging roles of retinoids in the regulation of HSCs.

  14. The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora.

    Science.gov (United States)

    Schindler, Daniel; Nowrousian, Minou

    2014-07-01

    Filamentous ascomycetes have long been known as producers of a variety of secondary metabolites, many of which have toxic effects on other organisms. However, the role of these metabolites in the biology of the fungi that produce them remains in most cases enigmatic. A major group of fungal secondary metabolites are polyketides. They are chemically diverse, but have in common that their chemical scaffolds are synthesized by polyketide synthases (PKSs). In a previous study, we analyzed development-dependent expression of pks genes in the filamentous ascomycete Sordaria macrospora. Here, we show that a deletion mutant of the pks4 gene is sterile, producing only protoperithecia but no mature perithecia, whereas overexpression of pks4 leads to enlarged, malformed fruiting bodies. Thus, correct expression levels of pks4 are essential for wild type-like perithecia formation. The predicted PKS4 protein has a domain structure that is similar to homologs in other fungi, but conserved residues of a methyl transferase domain present in other fungi are mutated in PKS4. Expression of several developmental genes is misregulated in the pks4 mutant. Surprisingly, the development-associated app gene is not downregulated in the mutant, in contrast to all other previously studied mutants with a block at the protoperithecial stage. Our data show that the polyketide synthase gene pks4 is essential for sexual development and plays a role in regulating fruiting body morphology. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Combined Effects of Surface Morphology and Mechanical Straining Magnitudes on the Differentiation of Mesenchymal Stem Cells without Using Biochemical Reagents

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Jang

    2011-01-01

    Full Text Available Existing studies examining the control of mesenchymal stem cell (MSC differentiation into desired cell types have used a variety of biochemical reagents such as growth factors despite possible side effects. Recently, the roles of biomimetic microphysical environments have drawn much attention in this field. We studied MSC differentiation and changes in gene expression in relation to osteoblast-like cell and smooth muscle-like cell type resulting from various microphysical environments, including differing magnitudes of tensile strain and substrate geometries for 8 days. In addition, we also investigated the residual effects of those selected microphysical environment factors on the differentiation by ceasing those factors for 3 days. The results of this study showed the effects of the strain magnitudes and surface geometries. However, the genes which are related to the same cell type showed different responses depending on the changes in strain magnitude and surface geometry. Also, different responses were observed three days after the straining was stopped. These data confirm that controlling microenvironments so that they mimic those in vivo contributes to the differentiation of MSCs into specific cell types. And duration of straining engagement was also found to play important roles along with surface geometry.

  16. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche

    Directory of Open Access Journals (Sweden)

    LM McNamara

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs within their native environment of the stem cell niche in bone receive biochemical stimuli from surrounding cells. These stimuli likely influence how MSCs differentiate to become bone precursors. The ability of MSCs to undergo osteogenic differentiation is well established in vitro;however, the role of the natural cues from bone’s regulatory cells, osteocytes and osteoblasts in regulating the osteogenic differentiation of MSCs in vivo are unclear. In this study we delineate the role of biochemical signalling from osteocytes and osteoblasts, using conditioned media and co-culture experiments, to understand how they direct osteogenic differentiation of MSCs. Furthermore, the synergistic relationship between osteocytes and osteoblasts is examined by transwell co-culturing of MSCs with both simultaneously. Osteogenic differentiation of MSCs was quantified by monitoring alkaline phosphatase (ALP activity, calcium deposition and cell number. Intracellular ALP was found to peak earlier and there was greater calcium deposition when MSCs were co-cultured with osteocytes rather than osteoblasts, suggesting that osteocytes are more influential than osteoblasts in stimulating osteogenesis in MSCs. Osteoblasts initially stimulated an increase in the number of MSCs, but ultimately regulated MSC differentiation down the same pathway. Our novel co-culture system confirmed a synergistic relationship between osteocytes and osteoblasts in producing biochemical signals to stimulate the osteogenic differentiation of MSCs. This study provides important insights into the mechanisms at work within the native stem cell niche to stimulate osteogenic differentiation and outlines a possible role for the use of co-culture or conditioned media methodologies for tissue engineering applications.

  17. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Matsushima, Ken-ichiro; Hara, Seiichi; Shinohara, Yasutomo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Koyama, Yasuji

    2011-07-01

    Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.

  18. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary.

    Directory of Open Access Journals (Sweden)

    Anne-Amandine Chassot

    Full Text Available Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog gene and factors synthesized by the somatic Sertoli cells promote gonocyte differentiation. In the female, ovarian differentiation requires activation of the WNT/β-catenin signaling pathway in the somatic cells by the secreted protein RSPO1. Using mouse models, we now show that Rspo1 also activates the WNT/β-catenin signaling pathway in germ cells. In XX Rspo1(-/- gonads, germ cell proliferation, expression of the early meiotic marker Stra8, and entry into meiosis are all impaired. In these gonads, impaired entry into meiosis and germ cell sex reversal occur prior to detectable Sertoli cell differentiation, suggesting that β-catenin signaling acts within the germ cells to promote oogonial differentiation and entry into meiosis. Our results demonstrate that RSPO1/β-catenin signaling is involved in meiosis in fetal germ cells and contributes to the cellular decision of germ cells to differentiate into oocyte or sperm.

  19. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate.

    Directory of Open Access Journals (Sweden)

    Weiguang Wang

    2016-10-01

    Full Text Available TGFβs act through canonical and non-canonical pathways, and canonical signals are transduced via Smad2 and Smad3. However, the contribution of canonical vs. non-canonical pathways in cartilage is unknown because the role of Smad2 in chondrogenesis has not been investigated in vivo. Therefore, we analyzed mice in which Smad2 is deleted in cartilage (Smad2CKO, global Smad3-/- mutants, and crosses of these strains. Growth plates at birth from all mutant strains exhibited expanded columnar and hypertrophic zones, linked to increased proliferation in resting chondrocytes. Defects were more severe in Smad2CKO and Smad2CKO;Smad3-/- (Smad2/3 mutant mice than in Smad3-/- mice, demonstrating that Smad2 plays a role in chondrogenesis. Increased levels of Ihh RNA, a key regulator of chondrocyte proliferation and differentiation, were seen in prehypertrophic chondrocytes in the three mutant strains at birth. In accordance, TGFβ treatment decreased Ihh RNA levels in primary chondrocytes from control (Smad2fx/fx mice, but inhibition was impaired in cells from mutants. Consistent with the skeletal phenotype, the impact on TGFβ-mediated inhibition of Ihh RNA expression was more severe in Smad2CKO than in Smad3-/- cells. Putative Smad2/3 binding elements (SBEs were identified in the proximal Ihh promoter. Mutagenesis demonstrated a role for three of them. ChIP analysis suggested that Smad2 and Smad3 have different affinities for these SBEs, and that the repressors SnoN and Ski were differentially recruited by Smad2 and Smad3, respectively. Furthermore, nuclear localization of the repressor Hdac4 was decreased in growth plates of Smad2CKO and double mutant mice. TGFβ induced association of Hdac4 with Smad2, but not with Smad3, on the Ihh promoter. Overall, these studies revealed that Smad2 plays an essential role in the development of the growth plate, that both Smads 2 and 3 inhibit Ihh expression in the neonatal growth plate, and suggested they accomplish

  20. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate

    Science.gov (United States)

    Wang, Weiguang; Song, Buer; Anbarchian, Teni; Shirazyan, Anna

    2016-01-01

    TGFβs act through canonical and non-canonical pathways, and canonical signals are transduced via Smad2 and Smad3. However, the contribution of canonical vs. non-canonical pathways in cartilage is unknown because the role of Smad2 in chondrogenesis has not been investigated in vivo. Therefore, we analyzed mice in which Smad2 is deleted in cartilage (Smad2CKO), global Smad3-/- mutants, and crosses of these strains. Growth plates at birth from all mutant strains exhibited expanded columnar and hypertrophic zones, linked to increased proliferation in resting chondrocytes. Defects were more severe in Smad2CKO and Smad2CKO;Smad3-/- (Smad2/3) mutant mice than in Smad3-/- mice, demonstrating that Smad2 plays a role in chondrogenesis. Increased levels of Ihh RNA, a key regulator of chondrocyte proliferation and differentiation, were seen in prehypertrophic chondrocytes in the three mutant strains at birth. In accordance, TGFβ treatment decreased Ihh RNA levels in primary chondrocytes from control (Smad2fx/fx) mice, but inhibition was impaired in cells from mutants. Consistent with the skeletal phenotype, the impact on TGFβ-mediated inhibition of Ihh RNA expression was more severe in Smad2CKO than in Smad3-/- cells. Putative Smad2/3 binding elements (SBEs) were identified in the proximal Ihh promoter. Mutagenesis demonstrated a role for three of them. ChIP analysis suggested that Smad2 and Smad3 have different affinities for these SBEs, and that the repressors SnoN and Ski were differentially recruited by Smad2 and Smad3, respectively. Furthermore, nuclear localization of the repressor Hdac4 was decreased in growth plates of Smad2CKO and double mutant mice. TGFβ induced association of Hdac4 with Smad2, but not with Smad3, on the Ihh promoter. Overall, these studies revealed that Smad2 plays an essential role in the development of the growth plate, that both Smads 2 and 3 inhibit Ihh expression in the neonatal growth plate, and suggested they accomplish this by binding to

  1. Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production

    Directory of Open Access Journals (Sweden)

    Alexander S. Little

    2018-01-01

    Full Text Available Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E or a phosphoablative (AlgR D54N form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro. AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se. AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection

  2. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  3. Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice

    Directory of Open Access Journals (Sweden)

    Sun Wei-Zen

    2008-09-01

    , S1, and ACC. However, morphine preferentially suppressed supraspinal related nociceptive behavior in KO mice. This effect was reflected in the potentiated differential effects of morphine in the S1 and ACC in KO mice. This potentiation may be due to an up-regulation of opioid receptors. Thus these findings strongly suggest an antagonistic interaction between the endogenous enkephalinergic system and exogenous opioid analgesic actions in the supraspinal brain structures.

  4. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

    Directory of Open Access Journals (Sweden)

    Rubén Aquino-Martínez

    2017-11-01

    Full Text Available Abstract Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4 on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced

  5. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomie Turgeon

    . Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation.

  6. Reliable molecular differentiation of Trichuris ovis and Trichuris discolor from sheep (Ovis orientalis aries) and roe deer (Capreolus capreolus) and morphological characterisation of their females: morphology does not work sufficiently.

    Science.gov (United States)

    Vejl, Pavel; Nechybová, Stanislava; Peřinková, Pavla; Melounová, Martina; Sedláková, Vladimíra; Vašek, Jakub; Čílová, Daniela; Rylková, Kateřina; Jankovská, Ivana; Vadlejch, Jaroslav; Langrová, Iva

    2017-08-01

    The main aim of the study was to evaluate associations between morphological variability of Trichuris females from sheep and roe deer and their rDNA polymorphism in whipworm populations from the Czech Republic. The results introduced the use of new molecular markers based on the internal transcribed spacer (ITS)1-5.8S RNA-ITS2 region polymorphisms, as useful tools for the unambiguous differentiation of congeners Trichuris ovis and Trichuris discolor. These markers revealed both parasites in roe deer and in sheep; however, T. ovis females predominated in sheep while T. discolor females occurred mostly in roe deer. Additional analysis of ITS1-5.8 rRNA-ITS2 discovered the genetic uniformity of the analysed T. discolor but high haplotype variation of T. ovis. Simultaneously, molecularly designated female individuals of both species were categorised into four morphotypes (MT) on the basis of morphology of genital pore area. MT1 and MT4 (vulvar opening on everted vaginal appendage/on visible cuticular bulge) occurred only in T. ovis, MT2 (uneverted vagina-vulvar opening without any elevation) was identified only in T. discolor and MT3 (transient type of vulvar opening on a small swelling) was observed in both species. Statistical analysis of biometric data confirmed that morphology of vulva is not a reliable marker for the species determination. On the basis of the ITS1-5.8S RNA-ITS2 region variability, we carried out a phylogenetic analysis (maximum likelihood method, Hasegawa-Kishino-Yano model) which showed that T. ovis haplotypes from the Czech Republic and Ireland and T. discolor haplotypes from the Czech Republic, Spain, Iran and Japan are sister OTUs.

  7. Genetic and morphological differentiation between Melica ciliata L. and M. transsilvanica Schur (Poaceae in Europe reveals the non-presence of M. ciliata in the Polish flora

    Directory of Open Access Journals (Sweden)

    Magdalena Szczepaniak

    2011-12-01

    Full Text Available A good knowledge of species delimitation is crucial for the biodiversity protection and the conservation of wild species. We studied the efficiency of AFLP markers and morphological characters to assist species determination for Melica ciliata L. and M. transsilvanica Schur within European range of distribution, including isolated and range-limit populations of "M. ciliata" (i.e. M. cf. ciliata from the Polish Sudetes, where it is regarded as critically endangered. AFLP markers were found to be more effective then morphological characters (more or less continuous in distinguishing the both studied species. AMOVA revealed very low genetic diversity within populations and high differentiation among populations of M. ciliata and M. transsilvanica (FST = 0.89 and 0.95, respectively. The species-diagnostic AFLP markers of M. transsilvanica shared with "M. ciliata" from the Sudetes were detected. On the other hand, no species-diagnostic genetic markers of M. ciliata or hybrid-diagnostic markers of M. × thuringiaca were found within "M. ciliata". PCoA and NJ showed an overlapping genetic diversity of "M. ciliata" and M. transsilvanica. Hierar­chical AMOVA supported the absence of a significant genotypic distinction between "M. ciliata" and M. transsilvanica. ANOVA showed that the length ratio of lower to upper glumes was the best morphological character to discriminate between M. ciliata and M. transsilvanica. Combined morphological and genetic data show that M. ciliata is not currently present in Poland as its putative Polish populations represent M. transsilvanica. A significant decrease in genetic varia­bility that could influence viability was not observed the in Sudetian populations of M. transsilvanica. However, the population size changes significantly as a result of plant succession. Correction of the northern limit of the continuous distribution of M. ciliata L. in Central Europe is presented.

  8. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs.

    Science.gov (United States)

    Hawse, William F; Boggess, William C; Morel, Penelope A

    2017-07-15

    The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneuji, Takeshi [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Takahashi, Tetsu [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan)

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  10. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    Science.gov (United States)

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  11. The influence of glass fibers on the morphology of β-nucleated isotactic polypropylene evaluated by differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Janevski Aco

    2015-01-01

    Full Text Available The presence of fillers/fibers can significantly affect the polymorphic behavior of semi-crystalline polymers. The influence of glass fibers on morphology of β-nucleated iPP during isothermal and nonisothermal crystallization was analyzed in detail by DSC, and the kinetics and thermodynamic parameters were determined for the systems containing 10-60 % glass fibers. The presence of glass fibers in model composites with β-iPP has insignificant effect on the morphology of the polymer. Thermodynamic and kinetics parameters of crystallization of iPP in model composites are close to those obtained for the nucleated polymer. The relative content of β-crystalline phase is slightly affected by increasing glass fiber’s content from 10 % mas to 60 % mas, due to appearance of α-crystallites. However, the stability of β-crystalline phase is decreased by the increasing glass fibers content and there appeared certain amount of β1 and β2 phases which are known as disposed to recrystallization.

  12. Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes.

    Science.gov (United States)

    Chen, Jianfeng; Cao, Te; Zhang, Xiaolin; Xi, Yilong; Ni, Leyi; Jeppesen, Erik

    2016-10-03

    To evaluate the relative importance of photosynthetic versus morphological adaptations of submersed macrophytes to low light intensity in lakes, rapid light curves (RLCs), morphological parameters, relative growth rate (RGR), clonal reproduction and abundance of two submersed macrophytes (Potamogeton maackianus and Vallisneria natans) were examined under 2.8%, 7.1%, 17.1% and 39.5% ambient light in a field and outdoor experimental study. The plants increased their initial slope of RLCs (α) and decreased their minimum saturating irradiance (E k ) and maximum relative electron transport rate (ETRm) of RLCs under low light stress, but V. natans was more sensitive in RLCs than P. maackianus. Accordingly, the RGR, plant height and abundance of P. maackianus were higher in the high light regimes (shallow water) but lower in the low light regimes than those of V. natans. At the 2.8% ambient light, V. natans produced ramets and thus fulfilled its population expansion, in contrast to P. maackianus. The results revealed that P. maackianus as a canopy-former mainly elongated its shoot length towards the water surface to compensate for the low light conditions, however, it became limited in severe low light stress conditions. V. natans as a rosette adapted to low light stress mainly through photosynthetic adjustments and superior to severely low light than shoot elongation.

  13. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    Science.gov (United States)

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  14. Differential regulation of tissue thiol-disulfide redox status in a murine model of peritonitis

    Directory of Open Access Journals (Sweden)

    Benton Shana M

    2012-10-01

    Full Text Available Abstract Background Glutathione (GSH/glutathione disulfide (GSSG and cysteine (Cys/cystine (CySS are major redox pools with important roles in cytoprotection. We determined the impact of septic peritonitis on thiol-disulfide redox status in mice. Methods FVB/N mice (6–12 week old; 8/group underwent laparotomy with cecal ligation and puncture (CLP or laparotomy alone (control. Sections of ileum, colon, lung and liver were obtained and GSH, GSSG, Cys and CySS concentrations determined by HPLC 24 h after laparotomy. Redox potential [Eh in millivolts (mV] of the GSH/GSSG and Cys/CySS pools was calculated using the Nernst equation. Data were analyzed by ANOVA (mean ± SE. Results GSH/GSSG Eh in ileum, colon, and liver was significantly oxidized in septic mice versus control mice (ileum: septic −202±4 versus control −228±2 mV; colon: -195±8 versus −214±1 mV; and liver: -194±3 vs. -210±1 mV, all Ph was unchanged with CLP, while liver and lung Cys/CySS Eh became significantly more reducing (liver: septic = −103±3 versus control −90±2 mV; lung: -101±5 versus −81±1 mV, each P Conclusions Septic peritonitis induced by CLP oxidizes ileal and colonic GSH/GSSG redox but Cys/CySS Eh remains unchanged in these intestinal tissues. In liver, CLP oxidizes the GSH/GSSG redox pool and CyS/CySS Eh becomes more reducing; in lung, CLP does not alter GSH/GSSG Eh, and Cys/CySS Eh is less oxidized. CLP-induced infection/inflammation differentially regulates major thiol-disulfide redox pools in this murine model.

  15. Resveratrol Differentially Regulates NAMPT and SIRT1 in Hepatocarcinoma Cells and Primary Human Hepatocytes

    Science.gov (United States)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2014-01-01

    Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648

  16. Differentially regulated miRNAs as prognostic biomarkers in the blood of primary CNS lymphoma patients.

    Science.gov (United States)

    Roth, Patrick; Keller, Andreas; Hoheisel, Jörg D; Codo, Paula; Bauer, Andrea S; Backes, Christina; Leidinger, Petra; Meese, Eckart; Thiel, Eckhard; Korfel, Agnieszka; Weller, Michael

    2015-02-01

    Despite improved therapeutic regimens, primary CNS lymphoma (PCNSL) remains a therapeutic challenge. A prognostic classification of PCNSL patients may represent an important step towards optimised patient-adapted therapy. However, only higher age and low Karnofsky Performance Status (KPS) have repeatedly been reported to be associated with shorter overall survival (OS). Here we characterised microRNA (miRNA) fingerprints in the blood of PCNSL patients with short-term survival (STS) versus long-term survival (LTS) to assess their potential as novel prognostic biomarkers. Blood was collected from patients enrolled in the G-PCNSL-SG1 trial, a phase III study for patients with newly diagnosed PCNSL. miRNAs were extracted from the blood and analysed by next generation sequencing. The STS group comprised 20 patients with a median OS of 3 months and was compared to 20 LTS patients with a median OS of 55 months. The cohorts were balanced for age and KPS. Twelve annotated miRNAs were significantly deregulated between the two groups. Among them, miR-151a-5p and miR-151b exhibited the most prominent differences. Importantly, the combination of several miRNA allowed for a good separation between short- and long-term survivors with maximal Area Under Curve (AUC) above 0.75. Besides the known miRNAs we identified putative novel miRNA candidates with potential regulatory influence of PCNSL. Finally, the differential regulation of the most promising candidate miRNAs was confirmed by real-time polymerase chain reaction (PCR) in a validation cohort consisting of 20 STS and LTS patients. In conclusion, peripheral blood miRNA expression patterns hold promise as a prognostic tool in PCNSL patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    Science.gov (United States)

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-05

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.

  18. Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Binos, Steve; Truong, Thy T; Imin, Nijat; Mariani, Michael; Djordjevic, Michael A

    2015-08-01

    Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Differential epigenetic regulation of TOX subfamily high mobility group box genes in lung and breast cancers.

    Directory of Open Access Journals (Sweden)

    Mathewos Tessema

    Full Text Available Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190 and 23% breast (n = 80 tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05. These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43% than lung (5% cancer, whereas TOX3 was frequently methylated in lung (58% than breast (30% tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment.

  20. Allocation of Heme is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1 and null (fc1-2 mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1 and null (fc2-2 mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.

  1. Differential regulation of. mu. , delta, kappa opioid receptors by Mn/sup + +/

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, M.; Oetting, G.M.; Coscia, C.J.

    1986-03-05

    Differential effects of Mn/sup + +/ on three opioid receptor subtypes of rat brain membranes were evaluated. Concentration dependency studies performed with 0.05-20 mM Mn/sup + +/ revealed that only the delta receptors are stimulated at any concentration. The binding of 1 nM /sup 3/H-DAGO was not stimulated by low concentrations (< 1mM) of Mn/sup + +/, and was significantly inhibited at higher concentrations (40% at 20 mM). 1 nM /sup 3/H-EKC (+100nM DAGO and 100nM DADLE) binding was inhibited by Mn/sup + +/ in the entire concentration range. While regulation of ..mu.. receptor binding did not change during postnatal development, delta and kappa binding displayed a pronounced developmental time-dependency. Kappa sites were hardly affected by Mn/sup + +/ at day 5, and adult levels of inhibition were reached only after the third week postnatal. In contrast, 1 nM /sup 3/H-DADLE (+10nM DAGO) binding was most sensitive to Mn/sup + +/ on day 5 after birth (100% stimulation with 5-20 mM). The ED/sub 50/ of Mn/sup + +/ stimulation was unchanged during maturation. These immature delta sites displayed a similar extent of Mn/sup + +/ reversal of Gpp(NH)p inhibition as seen in microsomes, which represent a good model of N/sub i/-uncoupled receptors. These data suggest that ..mu.., delta and kappa receptors are differently coupled to N/sub i/. Moreover, a second divalent cation binding site, in addition to that on N/sub i/ might exist for delta receptors.

  2. Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism.

    Science.gov (United States)

    Badziong, Julia; Ting, Saskia; Synoracki, Sarah; Tiedje, Vera; Brix, Klaudia; Brabant, Georg; Moeller, Lars Christian; Schmid, Kurt Werner; Fuhrer, Dagmar; Zwanziger, Denise

    2017-09-01

    Thyroid hormone (TH) transporters are expressed in thyrocytes and most play a role in TH release. We asked whether expression of the monocarboxylate transporter 8 (MCT8) and the L-type amino acid transporters LAT2 and LAT4 is changed with thyrocyte dedifferentiation and in hyperfunctioning thyroid tissues. Protein expression and localization of transporters was determined by immunohistochemistry in human thyroid specimen including normal thyroid tissue (NT, n  = 19), follicular adenoma (FA, n  = 44), follicular thyroid carcinoma (FTC, n  = 45), papillary thyroid carcinoma (PTC, n  = 40), anaplastic thyroid carcinoma (ATC, n  = 40) and Graves' disease (GD, n  = 50) by calculating the 'hybrid' (H) score. Regulation of transporter expression was investigated in the rat follicular thyroid cell line PCCL3 under basal and thyroid stimulating hormone (TSH) conditions. MCT8 and LAT4 were localized at the plasma membrane, while LAT2 transporter showed cytoplasmic localization. MCT8 expression was downregulated in benign and malignant thyroid tumours as compared to NT. In contrast, significant upregulation of MCT8, LAT2 and LAT4 was found in GD. Furthermore, a stronger expression of MCT8 was demonstrated in PCCL3 cells after TSH stimulation. Downregulation of MCT8 in thyroid cancers qualifies MCT8 as a marker of thyroid differentiation. The more variable expression of LATs in distinct thyroid malignancies may be linked with other transporter properties relevant to altered metabolism in cancer cells, i.e. amino acid transport. Consistent upregulation of MCT8 in GD is in line with increased TH release in hyperthyroidism, an assumption supported by our in vitro results showing TSH-dependent upregulation of MCT8. © 2017 European Society of Endocrinology.

  3. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Resveratrol differentially regulates NAMPT and SIRT1 in Hepatocarcinoma cells and primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Susanne Schuster

    Full Text Available Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382. Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells.

  5. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    Science.gov (United States)

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. The transition from proliferation to differentiation in colorectal cancer is regulated by the calcium activated chloride channel A1.

    Directory of Open Access Journals (Sweden)

    Bo Yang

    Full Text Available Breaking the balance between proliferation and differentiation in animal cells can lead to cancer, but the mechanisms maintaining this balance remain largely undefined. The calcium activated chloride channel A1 (CLCA1 is a member of the calcium sensitive chloride conductance family of proteins and is expressed mainly in the colon, small intestine and appendix. We show that CLCA1 plays a functional role in differentiation and proliferation of Caco-2 cells and of intestinal tissue. Caco-2 cells spontaneously differentiate either in confluent culture or when treated with butyrate, a molecule present naturally in the diet. Here, we compared CLCA1 expressional levels between patients with and without colorectal cancer (CRC and determined the functional role of CLCA1 in differentiation and proliferation of Caco-2 cells. We showed that: 1 CLCA1 and CLCA4 expression were down-regulated significantly in CRC patients; 2 CLCA1 expression was up-regulated in Caco-2 cells induced to differentiate by confluent culture or by treatment with sodium butyrate (NaBT; 3 Knockdown of CLCA1 with siRNA significantly inhibited cell differentiation and promoted cell proliferation in Caco-2 confluent cultures, and 4 In Caco-2 3D culture, suppression of CLCA1 significantly increased cell proliferation and compromised NaBT-induced inhibition of proliferation. In conclusion, CLCA1 may contribute to promoting spontaneous differentiation and reducing proliferation of Caco-2 cells and may be a target of NaBT-induced inhibition of proliferation and therefore a potential diagnostic marker for CRC prognosis.

  7. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined.P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed.Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of pluripotent cell populations should be further examined to elucidate the

  8. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  9. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation.

    Directory of Open Access Journals (Sweden)

    Anahi V Odell

    Full Text Available Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.

  10. Delayed Mesoderm and Erythroid Differentiation of Murine Embryonic Stem Cells in the Absence of the Transcriptional Regulator FUBP1

    Directory of Open Access Journals (Sweden)

    Josephine Wesely

    2017-01-01

    Full Text Available The transcriptional regulator far upstream binding protein 1 (FUBP1 is essential for fetal and adult hematopoietic stem cell (HSC self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs, absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice.

  11. Morphological response of the saltmarsh habitats of the Guadiana estuary due to flow regulation and sea-level rise

    Science.gov (United States)

    Sampath, D. M. R.; Boski, T.

    2016-12-01

    In the context of rapid sea-level rise in the 21st century, the reduction of fluvial sediment supply due to the regulation of river discharge represents a major challenge for the management of estuarine ecosystems. Therefore, the present study aims to assess the cumulative impacts of the reduction of river discharge and projected sea-level rise on the morphological evolution of the Guadiana estuary during the 21st century. The assessment was based on a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters and empirical knowledge of the system. As methods applied to estimate environmental flows do not take into consideration the fluvial discharge required to maintain saltmarsh habitats and the impact of sea-level rise, simulations were carried out for ten cases in terms of base river flow and sea-level rise so as to understand their sensitivity on the deepening of saltmarsh platforms. Results suggest saltmarsh habitats may not be affected severely in response to lower limit scenarios of sea-level rise and sedimentation. A similar behaviour can be expected even due to the upper limit scenarios until 2050, but with a significant submergence afterwards. In the case of the upper limit scenarios under scrutiny, there was a net erosion of sediment from the estuary. Multiplications of amplitudes of the base flow function by factors 1.5, 2, and 5 result in reduction of the estimated net eroded sediment volume by 25, 40, and 80%, respectively, with respect to the net eroded volume for observed river discharge. The results also indicate that defining the minimum environmental flow as a percentage of dry season flow (as done presently) should be updated to include the full spectrum of natural flows, incorporating temporal variability to better anticipate scenarios of sea-level rise during this century. As permanent submergence of intertidal habitats can be significant after 2050, due to the projected 79 cm rise of sea-level by the year

  12. Effect of regulated deficit irrigation on the morphology, physiology, carbon allocation and nonstructural carbohydrates of three Kentucky bluegrasses

    International Nuclear Information System (INIS)

    Liu, J. R.; Ma, L.; Liu, Y. K.; Liu, T. J.; Lu, J. N.; Wang, D. N.

    2015-01-01

    Regulated deficit irrigation (RDI) has been assessed in a wide number of field and fruit crops. However, few are the studies dealing with turfgrass. This study was conducted to investigate the morphology, physiology and carbon metabolic responses to regulated deficit irrigation for three Kentucky bluegrass (Poa pratensis L.) cultivars. Three Kentucky bluegrass cultivars were grown in PVC (polyvinyl chloride) tubes in a greenhouse and subjected to three soil water treatments in a growth chamber: 1) full irrigation; 2) drought stress, 21 days without water after full irrigation; and 3) drought recovery, stressed plants were re-watered for an additional 21 d. The present study indicated that drought resulted in a decline in turf quality (TQ), leaf relative water content (RWC), and photochemical efficiency (Fv/Fm) and an increase in electrolyte leakage (EL) for the cultivars. The turf quality, RWC, and Fv/Fm of the three Kentucky bluegrass cultivars increased with re-watering. The allocation of /sup 14/ C increased in the roots of these cultivars during the initial phase of drought stress, where a /sup 14/ C distribution shift from the roots to the stem and leaves appeared with further drought stress. Moreover, there was a significant accumulation of total nonstructural carbohydrates (TNC) in the leaves and stem. The TNC content in the leaves, stem, and roots did not completely return to the control levels following 21 d of re-watering, which was consistent with the recovery of TQ, RWC, Fv/Fm, and EL. In addition, during the re-watering treatment, the reduction in the TNC content may be due to increases in the demand or usage as a result of a rapid recovery in the growth and physiological activities as shown by increased TQ, RWC, and Fv/Fm and decreased EL. Our results suggested that the changes in the carbon allocation model and the accumulation and storage of TNC, as well as the changes in TQ, RWC, Fv/Fm, and EL, for the three cultivars are an adaptive reaction to

  13. Overexpressed Calponin3 by Subsonic Vibration Induces Neural Differentiation of hUC-MSCs by Regulating the Ionotropic Glutamate Receptor.

    Science.gov (United States)

    Kim, Hyun-Jung; Kim, Jin-Hee; Song, Yeo-Ju; Seo, Young-Kwon; Park, Jung-Keug; Kim, Chan-Wha

    2015-09-01

    In this study, we used proteomics to investigate the effects of sonic vibration (SV) on mesenchymal stem cells derived from human umbilical cords (hUC-MSCs) during neural differentiation to understand how SV enhances neural differentiation of hUC-MSCs. We investigated the levels of gene and protein related to neural differentiation after 3 or 5 days in a group treated with 40-Hz SV. In addition, protein expression patt