WorldWideScience

Sample records for regularized optical flow

  1. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  2. Fast incorporation of optical flow into active polygons.

    Science.gov (United States)

    Unal, Gozde; Krim, Hamid; Yezzi, Anthony

    2005-06-01

    In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.

  3. Robust Optical Flow Estimation

    Directory of Open Access Journals (Sweden)

    Javier Sánchez Pérez

    2013-10-01

    Full Text Available n this work, we describe an implementation of the variational method proposed by Brox etal. in 2004, which yields accurate optical flows with low running times. It has several benefitswith respect to the method of Horn and Schunck: it is more robust to the presence of outliers,produces piecewise-smooth flow fields and can cope with constant brightness changes. Thismethod relies on the brightness and gradient constancy assumptions, using the information ofthe image intensities and the image gradients to find correspondences. It also generalizes theuse of continuous L1 functionals, which help mitigate the effect of outliers and create a TotalVariation (TV regularization. Additionally, it introduces a simple temporal regularizationscheme that enforces a continuous temporal coherence of the flow fields.

  4. TV-L1 optical flow for vector valued images

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Nielsen, Mads

    2011-01-01

    The variational TV-L1 framework has become one of the most popular and successful approaches for calculating optical flow. One reason for the popularity is the very appealing properties of the two terms in the energy formulation of the problem, the robust L1-norm of the data fidelity term combined...... with the total variation (TV) regular- ization that smoothes the flow, but preserve strong discontinuities such as edges. Specifically the approach of Zach et al. [1] has provided a very clean and efficient algorithm for calculating TV-L1 optical flows between grayscale images. In this paper we propose...

  5. Robust Discontinuity Preserving Optical Flow Methods

    Directory of Open Access Journals (Sweden)

    Nelson Monzón

    2016-11-01

    Full Text Available In this work, we present an implementation of discontinuity-preserving strategies in TV-L1 optical flow methods. These are based on exponential functions that mitigate the regularization at image edges, which usually provide precise flow boundaries. Nevertheless, if the smoothing is not well controlled, it may produce instabilities in the computed motion fields. We present an algorithm that allows three regularization strategies: the first one uses an exponential function together with a TV process; the second one combines this strategy with a small constant that ensures a minimum isotropic smoothing; the third one is a fully automatic approach that adapts the diffusion depending on the histogram of the image gradients. The last two alternatives are aimed at reducing the effect of instabilities. In the experiments, we observe that the pure exponential function is highly unstable while the other strategies preserve accurate motion contours for a large range of parameters.

  6. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    Science.gov (United States)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  7. Regularizing properties of Complex Monge-Amp\\`ere flows

    OpenAIRE

    Tô, Tat Dat

    2016-01-01

    We study the regularizing properties of complex Monge-Amp\\`ere flows on a K\\"ahler manifold $(X,\\omega)$ when the initial data are $\\omega$-psh functions with zero Lelong number at all points. We prove that the general Monge-Amp\\`ere flow has a solution which is immediately smooth. We also prove the uniqueness and stability of solution.

  8. Heat transfer and fluid flow in regular rod arrays with opposing flow

    International Nuclear Information System (INIS)

    Yang, J.W.

    1979-01-01

    The heat transfer and fluid flow problem of opposing flow in the fully developed laminar region has been solved analytically for regular rod arrays. The problem is governed by two parameters: the pitch-to-diameter ratio and the Grashof-to-Reynolds number ratio. The critical Gr/Re ratios for flow separation caused by the upward buoyancy force on the downward flow were evaluated for a large range of P/D ratios of the triangular array. Numerical results reveal that both the heat transfer and pressure loss are reduced by the buoyancy force. Applications to nuclear reactors are discussed

  9. Mixed Total Variation and L1 Regularization Method for Optical Tomography Based on Radiative Transfer Equation

    Directory of Open Access Journals (Sweden)

    Jinping Tang

    2017-01-01

    Full Text Available Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE. It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method.

  10. SQoS based Planning using 4-regular Grid for Optical Fiber Metworks

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun

    optical fiber based network infrastructures. In the first step of SQoS based planning, this paper describes how 4-regular Grid structures can be implemented in the physical level of optical fiber network infrastructures. A systematic approach for implementing the Grid structure is presented. We used...

  11. SQoS based Planning using 4-regular Grid for Optical Fiber Networks

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    optical fiber based network infrastructures. In the first step of SQoS based planning, this paper describes how 4-regular Grid structures can be implemented in the physical level of optical fiber network infrastructures. A systematic approach for implementing the Grid structure is presented. We used...

  12. Local smoothness for global optical flow

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    2012-01-01

    by this technique and work on local-global optical flow we propose a simple method for fusing optical flow estimates of different smoothness by evaluating interpolation quality locally by means of L1 block match on the corresponding set of gradient images. We illustrate the method in a setting where optical flows...

  13. Regularity of the 3D Navier-Stokes equations with viewpoint of 2D flow

    Science.gov (United States)

    Bae, Hyeong-Ohk

    2018-04-01

    The regularity of 2D Navier-Stokes flow is well known. In this article we study the relationship of 3D and 2D flow, and the regularity of the 3D Naiver-Stokes equations with viewpoint of 2D equations. We consider the problem in the Cartesian and in the cylindrical coordinates.

  14. Optical diagnostics of intermittent flows

    DEFF Research Database (Denmark)

    Okulov, V.L.; Naumov, I.V.; Sørensen, Jens Nørkær

    2007-01-01

    The efficiency of combined use of different optical techniques for flow diagnostics is demonstrated with the practically important case of intense swirling flows. It is shown that, when applied separately, commonly used optical measuring techniques, such as laser Doppler anemometry and particle...... is for the first time applied for diagnostics of the flow pattern in a closed cylinder with a rotating end face with the aim of studying the changeover from the steady axisymmetric to unsteady asymmetric flow over a wide range of flow parameters. It is found that such a transition is notable for azimuthal...

  15. Global regularizing flows with topology preservation for active contours and polygons.

    Science.gov (United States)

    Sundaramoorthi, Ganesh; Yezzi, Anthony

    2007-03-01

    Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.

  16. The hydrodynamic behaviour of gas—solid trickle flow over a regularly stacked packing

    NARCIS (Netherlands)

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    The hydrodynamic properties of counter-current gas—solid flow over a regularly stacked packing at trickle flow conditions have been studied. The flow properties of the solids phase were examined, using five types of solid particles with a mean particle diameter ranging from 70 to 880 μm and a

  17. Energy functions for regularization algorithms

    Science.gov (United States)

    Delingette, H.; Hebert, M.; Ikeuchi, K.

    1991-01-01

    Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.

  18. Regularities and irregularities in order flow data

    Science.gov (United States)

    Theissen, Martin; Krause, Sebastian M.; Guhr, Thomas

    2017-11-01

    We identify and analyze statistical regularities and irregularities in the recent order flow of different NASDAQ stocks, focusing on the positions where orders are placed in the order book. This includes limit orders being placed outside of the spread, inside the spread and (effective) market orders. Based on the pairwise comparison of the order flow of different stocks, we perform a clustering of stocks into groups with similar behavior. This is useful to assess systemic aspects of stock price dynamics. We find that limit order placement inside the spread is strongly determined by the dynamics of the spread size. Most orders, however, arrive outside of the spread. While for some stocks order placement on or next to the quotes is dominating, deeper price levels are more important for other stocks. As market orders are usually adjusted to the quote volume, the impact of market orders depends on the order book structure, which we find to be quite diverse among the analyzed stocks as a result of the way limit order placement takes place.

  19. Coexistence of Two Singularities in Dewetting Flows: Regularizing the Corner Tip

    NARCIS (Netherlands)

    Peters, I.R.; Snoeijer, Jacobus Hendrikus; Daerr, Adrian; Limat, Laurent

    2009-01-01

    Entrainment in wetting and dewetting flows often occurs through the formation of a corner with a very sharp tip. This corner singularity comes on top of the divergence of viscous stress near the contact line, which is only regularized at molecular scales. We investigate the fine structure of corners

  20. Flow line asymmetric nonimaging concentrating optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2016-09-01

    Nonimaging Optics has shown that it achieves the theoretical limits by utilizing thermodynamic principles rather than conventional optics. Hence in this paper the condition of the "best" design are both defined and fulfilled in the framework of thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems, even illumination and optical communication tasks. This new way of looking at the problem of efficient concentration depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background. Some of the new development of flow line designs will be introduced and the connection between the thermodynamics and flow line design will be officially formulated in the framework of geometric flux field. A new way of using geometric flux to design nonimaging optics will be introduced. And finally, we discuss the possibility of 3D ideal nonimaing optics.

  1. The hydrodynamic behaviour of gas—solid trickle flow over a regularly stacked packing

    OpenAIRE

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    The hydrodynamic properties of counter-current gas—solid flow over a regularly stacked packing at trickle flow conditions have been studied. The flow properties of the solids phase were examined, using five types of solid particles with a mean particle diameter ranging from 70 to 880 μm and a particle density from 800 to 7800 kg m−3. Data on the solids hold-up and the pressure drop caused by the solids flow were obtained from experiments in a test column of 0.10 m square cross-section. A part...

  2. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    2017-02-01

    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  3. Equipment for Aero-Optical Flow Imaging

    National Research Council Canada - National Science Library

    Catrakis, Haris

    2004-01-01

    The AFOSR/DURIP Grant has provided the funds to develop a new Aero-Optics Laboratory at UC Irvine, in order to do basic research on aero-optical laser beam propagation through high-speed turbulent flows...

  4. Optical flow optimization using parallel genetic algorithm

    Science.gov (United States)

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  5. Finding Elephant Flows for Optical Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Oude Wolbers, Mattijs; van de Meent, R.; Pras, Aiko

    2007-01-01

    Optical networks are fast and reliable networks that enable, amongst others, dedicated light paths to be established for elephant IP flows. Elephant IP flows are characterized by being small in number, but long in time and high in traffic volume. Moving these flows from the general IP network to

  6. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    Science.gov (United States)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  7. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Science.gov (United States)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  8. Optical Flow based Robot Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Kahlouche Souhila

    2008-11-01

    Full Text Available In this paper we try to develop an algorithm for visual obstacle avoidance of autonomous mobile robot. The input of the algorithm is an image sequence grabbed by an embedded camera on the B21r robot in motion. Then, the optical flow information is extracted from the image sequence in order to be used in the navigation algorithm. The optical flow provides very important information about the robot environment, like: the obstacles disposition, the robot heading, the time to collision and the depth. The strategy consists in balancing the amount of left and right side flow to avoid obstacles, this technique allows robot navigation without any collision with obstacles. The robustness of the algorithm will be showed by some examples.

  9. Development of an optical fiber flow velocity sensor.

    Science.gov (United States)

    Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki

    2009-01-01

    A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.

  10. Regularized linearization for quantum nonlinear optical cavities: application to degenerate optical parametric oscillators.

    Science.gov (United States)

    Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao

    2014-10-06

    Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.

  11. Nocturnal insects use optic flow for flight control.

    Science.gov (United States)

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society

  12. Offloading IP Flows onto Lambda-Connections

    NARCIS (Netherlands)

    Fioreze, Tiago; Oude Wolbers, Mattijs; van de Meent, R.; Pras, Aiko

    2007-01-01

    Optical networks are capable of switching IP traffic via lambda connections. In this way, big IP flows that overload the regular IP routing level may be moved to the optical level, where they get better Quality of Service (QoS). At the same time, the IP routing level is off-loaded and can serve

  13. How humans use visual optic flow to regulate stepping during walking.

    Science.gov (United States)

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optic flow-based collision-free strategies: From insects to robots.

    Science.gov (United States)

    Serres, Julien R; Ruffier, Franck

    2017-09-01

    Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Optical Particle Characterization in Flows

    Science.gov (United States)

    Tropea, Cameron

    2011-01-01

    Particle characterization in dispersed multiphase flows is important in quantifying transport processes both in fundamental and applied research: Examples include atomization and spray processes, cavitation and bubbly flows, and solid particle transport in gas and liquid carrier phases. Optical techniques of particle characterization are preferred owing to their nonintrusiveness, and they can yield information about size, velocity, composition, and to some extent the shape of individual particles. This review focuses on recent advances for measuring size, temperature, and the composition of particles, including several planar methods, various imaging techniques, laser-induced fluorescence, and the more recent use of femtosecond pulsed light sources. It emphasizes the main sources of uncertainty, the achievable accuracy, and the outlook for improvement of specific techniques and for specific applications. Some remarks are also directed toward the computational tools used to design and investigate the performance of optical particle diagnostic instruments.

  16. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    Science.gov (United States)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  17. OPTICAL FLOW FOR GLACIER MOTION ESTIMATION

    Directory of Open Access Journals (Sweden)

    C. Vogel

    2012-07-01

    Full Text Available Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions, with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing. Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We evaluate our method by comparing with manually measured point wise ground truth.

  18. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  19. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  20. Flight control of fruit flies: dynamic response to optic flow and headwind.

    Science.gov (United States)

    Lawson, Kiaran K K; Srinivasan, Mandyam V

    2017-06-01

    Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies ( Bactrocera tryoni ) was examined. A total of 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captured the behavioural responses of the fruit flies. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, in contrast, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of 'selective attention'. © 2017. Published by The Company of Biologists Ltd.

  1. Breaking camouflage and detecting targets require optic flow and image structure information.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Chen, Chang; Bingham, Geoffrey P

    2017-08-01

    Use of motion to break camouflage extends back to the Cambrian [In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution (New York Basic Books, 2003)]. We investigated the ability to break camouflage and continue to see camouflaged targets after motion stops. This is crucial for the survival of hunting predators. With camouflage, visual targets and distracters cannot be distinguished using only static image structure (i.e., appearance). Motion generates another source of optical information, optic flow, which breaks camouflage and specifies target locations. Optic flow calibrates image structure with respect to spatial relations among targets and distracters, and calibrated image structure makes previously camouflaged targets perceptible in a temporally stable fashion after motion stops. We investigated this proposal using laboratory experiments and compared how many camouflaged targets were identified either with optic flow information alone or with combined optic flow and image structure information. Our results show that the combination of motion-generated optic flow and target-projected image structure information yielded efficient and stable perception of camouflaged targets.

  2. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    Science.gov (United States)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  3. Distance and velocity estimation using optical flow from a monocular camera

    NARCIS (Netherlands)

    Ho, H.W.; de Croon, G.C.H.E.; Chu, Q.

    2016-01-01

    Monocular vision is increasingly used in Micro Air Vehicles for navigation. In particular, optical flow, inspired by flying insects, is used to perceive vehicles’ movement with respect to the surroundings or sense changes in the environment. However, optical flow does not directly provide us the

  4. Optic Flow Based State Estimation for an Indoor Micro Air Vehicle

    NARCIS (Netherlands)

    Verveld, M.J.; Chu, Q.P.; De Wagter, C.; Mulder, J.A.

    2010-01-01

    This work addresses the problem of indoor state estimation for autonomous flying vehicles with an optic flow approach. The paper discusses a sensor configuration using six optic flow sensors of the computer mouse type augmented by a three-axis accelerometer to estimate velocity, rotation, attitude

  5. Preconditioners for regularized saddle point problems with an application for heterogeneous Darcy flow problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Byczanski, Petr; Karátson, J.; Ahmad, B.

    2015-01-01

    Roč. 280, č. 280 (2015), s. 141-157 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : preconditioners * heterogeneous coefficients * regularized saddle point Inner–outer iterations * Darcy flow Subject RIV: BA - General Mathematics Impact factor: 1.328, year: 2015 http://www.sciencedirect.com/science/article/pii/S0377042714005238

  6. Distance and velocity estimation using optical flow from a monocular camera

    NARCIS (Netherlands)

    Ho, H.W.; de Croon, G.C.H.E.; Chu, Q.

    2017-01-01

    Monocular vision is increasingly used in micro air vehicles for navigation. In particular, optical flow, inspired by flying insects, is used to perceive vehicle movement with respect to the surroundings or sense changes in the environment. However, optical flow does not directly provide us the

  7. Lateral migration of a microdroplet under optical forces in a uniform flow

    International Nuclear Information System (INIS)

    Cho, Hyunjun; Chang, Cheong Bong; Jung, Jin Ho; Sung, Hyung Jin

    2014-01-01

    The behavior of a microdroplet in a uniform flow and subjected to a vertical optical force applied by a loosely focused Gaussian laser beam was studied numerically. The lattice Boltzmann method was applied to obtain the two-phase flow field, and the dynamic ray tracing method was adopted to calculate the optical force. The optical forces acting on the spherical droplets agreed well with the analytical values. The numerically predicted droplet migration distances agreed well with the experimentally obtained values. Simulations of the various flow and optical parameters showed that the droplet migration distance nondimensionalized by the droplet radius is proportional to the S number (z d /r p = 0.377S), which is the ratio of the optical force to the viscous drag. The effect of the surface tension was also examined. These results indicated that the surface tension influenced the droplet migration distance to a lesser degree than the flow and optical parameters. The results of the present work hold for the refractive indices of the mean fluid and the droplet being 1.33 and 1.59, respectively

  8. Void fraction and flow regime determination by optical probe for boiling two-phase flow in a tube subchannel

    International Nuclear Information System (INIS)

    Cheng Huiping; Wu Hongtao; Ba Changxi; Yan Xiaoming; Huang Suyi

    1995-12-01

    In view of the need to determine void fraction and flow regime of vapor-liquid two-phase flow in the steam generator test model, domestic made optical probe was applied on a small-scale freon two-phase flow test rig. Optical probe signals were collected at a sampling rate up to 500 Hz and converted into digital form. Both the time signal, and the amplitude probability density function and FFT spectrum function calculated thereof were analysed in the time and frequency domains respectively. The threshold characterizing vapor or liquid contact with the probe tip was determined from the air-water two-phase flow pressure drop test results. Then, the boiling freon two-phase flow void fraction was determined by single threshold method, and compared with numerical heat transfer computation. Typical patterns which were revealed by the above-mentioned time signal and the functions were found corresponding to distinct flow regimes, as corroborated by visual observation. The experiment shows that the optical probe was a promising technique for two-phase flow void fraction measurement and flow regime identification (3 refs., 15 figs., 1 tab.)

  9. Optic flow induced self-tilt perception

    NARCIS (Netherlands)

    Bos, J.E.

    2008-01-01

    Roll optic flow induces illusory self-tilt in humans. As far as the mechanism underlying this visual-vestibular interaction is understood, larger angles of self-tilt are predicted than observed. It is hypothesized that the discrepancy can be explained by idiotropic (i.e., referring to a personal

  10. NEB in Analysis of Optical Flow 4 x 4 and 6 x 6-Patches

    International Nuclear Information System (INIS)

    Xia, Shengxiang; Liang, Di

    2017-01-01

    We apply the nudged elastic band technique to non-lineal high-dimensional datasets, we analyze spaces of 4 x 4 and 6 x 6 optical flow patches and detect their topological properties. We experimentally prove that subsets of 4 x 4 and 6 x 6 optical flow patches can be modeled a circle, which confirm some results of 4 x 4 and 6 x 6 optical flow patches by using a new method-NEB, and expend Adams et al's result to larger patches of optical flow. (paper)

  11. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    Science.gov (United States)

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  12. Application of low-coherence optical fiber Doppler anemometry to fluid-flow measurement: optical system considerations

    Science.gov (United States)

    Boyle, William J. O.; Grattan, Kenneth T. V.; Palmer, Andrew W.; Meggitt, B. T.

    1991-08-01

    A fiber optic Doppler anemometric (FODA) sensor using an optical delay cavity technique and having the advantage of detecting velocity rather than simple speed is outlined. In this sensor the delay in a sensor cavity formed from light back-reflected from a fiber tip (Fresnel reflection) and light back-reflected from particles flowing in a fluid is balanced by the optical delay when light from this sensor cavity passes through a reference cavity formed by a combination of the zero and first diffraction orders produced by a Bragg cell inserted into the optical arrangement. The performance of an experimental sensor based on this scheme is investigated, and velocity measurements using the Doppler shift data from moving objects are presented. The sensitivity of the scheme is discussed, with reference to the other techniques of fluid flow measurement.

  13. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  14. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  15. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  16. Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows

    Energy Technology Data Exchange (ETDEWEB)

    Marc O Delchini; Jean E. Ragusa; Ray A. Berry

    2015-07-01

    We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.

  17. Frontiers in optical imaging of cerebral blood flow and metabolism.

    Science.gov (United States)

    Devor, Anna; Sakadžić, Sava; Srinivasan, Vivek J; Yaseen, Mohammad A; Nizar, Krystal; Saisan, Payam A; Tian, Peifang; Dale, Anders M; Vinogradov, Sergei A; Franceschini, Maria Angela; Boas, David A

    2012-07-01

    In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.

  18. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    Science.gov (United States)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  19. Spectrally-consistent regularization modeling of turbulent natural convection flows

    International Nuclear Information System (INIS)

    Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel

    2012-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.

  20. A Backward Pyramid Oriented Optical Flow Field Computing Method for Aerial Image

    Directory of Open Access Journals (Sweden)

    LI Jiatian

    2016-09-01

    Full Text Available Aerial image optical flow field is the foundation for detecting moving objects at low altitude and obtaining change information. In general,the image pyramid structure is embedded in numerical procedure in order to enhance the convergence globally. However,more often than not,the pyramid structure is constructed using a bottom-up approach progressively,ignoring the geometry imaging process.In particular,when the ground objects moving it will lead to miss optical flow or the optical flow too small that could hardly sustain the subsequent modeling and analyzing issues. So a backward pyramid structure is proposed on the foundation of top-level standard image. Firstly,down sampled factors of top-level image are calculated quantitatively through central projection,which making the optical flow in top-level image represent the shifting threshold of the set ground target. Secondly,combining top-level image with its original,the down sampled factors in middle layer are confirmed in a constant proportion way. Finally,the image of middle layer is achieved by Gaussian smoothing and image interpolation,and meanwhile the pyramid is formed. The comparative experiments and analysis illustrate that the backward pyramid can calculate the optic flow field in aerial image accurately,and it has advantages in restraining small ground displacement.

  1. Postural adaptations to repeated optic flow stimulation in older adults

    OpenAIRE

    O’Connor, Kathryn W.; Loughlin, Patrick J.; Redfern, Mark S.; Sparto, Patrick J.

    2008-01-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of ...

  2. Embodied memory: effective and stable perception by combining optic flow and image structure.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2013-12-01

    Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.

  3. Parallel Processor for 3D Recovery from Optical Flow

    Directory of Open Access Journals (Sweden)

    Jose Hugo Barron-Zambrano

    2009-01-01

    Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented.

  4. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  5. Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels.

    Science.gov (United States)

    Choi, Woo June; Qin, Wan; Chen, Chieh-Li; Wang, Jingang; Zhang, Qinqin; Yang, Xiaoqi; Gao, Bruce Z; Wang, Ruikang K

    2016-07-01

    Optical microangiography (OMAG) is a powerful optical angio-graphic tool to visualize micro-vascular flow in vivo. Despite numerous demonstrations for the past several years of the qualitative relationship between OMAG and flow, no convincing quantitative relationship has been proven. In this paper, we attempt to quantitatively correlate the OMAG signal with flow. Specifically, we develop a simplified analytical model of the complex OMAG, suggesting that the OMAG signal is a product of the number of particles in an imaging voxel and the decorrelation of OCT (optical coherence tomography) signal, determined by flow velocity, inter-frame time interval, and wavelength of the light source. Numerical simulation with the proposed model reveals that if the OCT amplitudes are correlated, the OMAG signal is related to a total number of particles across the imaging voxel cross-section per unit time (flux); otherwise it would be saturated but its strength is proportional to the number of particles in the imaging voxel (concentration). The relationship is validated using microfluidic flow phantoms with various preset flow metrics. This work suggests OMAG is a promising quantitative tool for the assessment of vascular flow.

  6. Synthetic perspective optical flow: Influence on pilot control tasks

    Science.gov (United States)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  7. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  8. Do kinematic metrics of walking balance adapt to perturbed optical flow?

    Science.gov (United States)

    Thompson, Jessica D; Franz, Jason R

    2017-08-01

    Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simplified Monolithic Flow Cytometer Chip With Three-Dimensional Hydrodyanmic Focusing And Integrated Fiber-Free Optics

    DEFF Research Database (Denmark)

    Motosuke, Masahiro; Jensen, Thomas Glasdam; Zhuang, Guisheng

    2011-01-01

    A miniaturized flow cytometry incorporating both fluidic and optical systems has a great possibility for portable biochemical sensing or point-of-care diagnostics. This paper presents a simple microfluidic flow cytometer combining reliable 3D hydrodynamic focusing and optical detection without...... optical fibers in a monolithic architecture fabricated by a single photolithographic process. The vertical flow focusing is achieved by the optimized inlet geometry in a PDMS lid onto the substrate with detection channel and integrated optics. The simplified approach indicates the possibility...

  10. Characterization of IP Flows Eligible for Lambda-Connections in Optical Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Oude Wolbers, Mattijs; van de Meent, R.; Pras, Aiko

    2008-01-01

    The advance on data transmission in optical networks has allowed data forwarding decisions to be taken at multiple levels in the protocol stack (e.g., at network and optical levels). With such capability, big IP flows can be moved from the network level and switched completely at the optical level

  11. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  12. Detection of Abnormal Events via Optical Flow Feature Analysis

    Directory of Open Access Journals (Sweden)

    Tian Wang

    2015-03-01

    Full Text Available In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm.

  13. Detection of Abnormal Events via Optical Flow Feature Analysis

    Science.gov (United States)

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  14. Horn–Schunck optical flow applied to deformation measurement of a birdlike airfoil

    Directory of Open Access Journals (Sweden)

    Gong Xiaoliang

    2015-10-01

    Full Text Available Current deformation measurement techniques suffer from limited spatial resolution. In this work, a highly accurate and high-resolution Horn–Schunck optical flow method is developed and then applied to measuring the static deformation of a birdlike flexible airfoil at a series of angles of attack at Reynolds number 100,000 in a low speed, low noise wind tunnel. To allow relatively large displacements, a nonlinear Horn–Schunck model and a coarse-to-fine warping process are adopted. To preserve optical flow discontinuities, a nonquadratic penalization function, a multi-cue driven bilateral filtering and a principle component analysis of local image patterns are used. First, the accuracy and convergence of this Horn–Schunck technique are verified on a benchmark. Then, the maximum displacement that can be reliably calculated by this technique is studied on synthetic images. Both studies are compared with the performance of a Lucas–Kanade optical flow method. Finally, the Horn–Schunck technique is used to estimate the 3-D deformation of the birdlike airfoil through a stereoscopic camera setup. The results are compared with those computed by Lucas–Kanade optical flow, image correlation and numerical simulation.

  15. An optical flow algorithm based on gradient constancy assumption for PIV image processing

    International Nuclear Information System (INIS)

    Zhong, Qianglong; Yang, Hua; Yin, Zhouping

    2017-01-01

    Particle image velocimetry (PIV) has matured as a flow measurement technique. It enables the description of the instantaneous velocity field of the flow by analyzing the particle motion obtained from digitally recorded images. Correlation based PIV evaluation technique is widely used because of its good accuracy and robustness. Although very successful, correlation PIV technique has some weakness which can be avoided by optical flow based PIV algorithms. At present, most of the optical flow methods applied to PIV are based on brightness constancy assumption. However, some factors of flow imaging technology and the nature property of the fluids make the brightness constancy assumption less appropriate in real PIV cases. In this paper, an implementation of a 2D optical flow algorithm (GCOF) based on gradient constancy assumption is introduced. The proposed GCOF assumes the edges of the illuminated PIV particles are constant during motion. It comprises two terms: a combined local-global gradient data term and a first-order divergence and vorticity smooth term. The approach can provide accurate dense motion fields. The approach are tested on synthetic images and on two experimental flows. The comparison of GCOF with other optical flow algorithms indicates the proposed method is more accurate especially in conditions of illumination variation. The comparison of GCOF with correlation PIV technique shows that the proposed GCOF has advantages on preserving small divergence and vorticity structures of the motion field and getting less outliers. As a consequence, the GCOF acquire a more accurate and better topological description of the turbulent flow. (paper)

  16. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study.

    Science.gov (United States)

    Gao, Hang; Bijnens, Nathalie; Coisne, Damien; Lugiez, Mathieu; Rutten, Marcel; D'hooge, Jan

    2015-01-01

    Despite the availability of multiple ultrasound approaches to left ventricular (LV) flow characterization in two dimensions, this technique remains in its childhood and further developments seem warranted. This article describes a new methodology for tracking the 2-D LV flow field based on ultrasound data. Hereto, a standard speckle tracking algorithm was modified by using a dynamic kernel embedding Navier-Stokes-based regularization in an iterative manner. The performance of the proposed approach was first quantified in synthetic ultrasound data based on a computational fluid dynamics model of LV flow. Next, an experimental flow phantom setup mimicking the normal human heart was used for experimental validation by employing simultaneous optical particle image velocimetry as a standard reference technique. Finally, the applicability of the approach was tested in a clinical setting. On the basis of the simulated data, pointwise evaluation of the estimated velocity vectors correlated well (mean r = 0.84) with the computational fluid dynamics measurement. During the filling period of the left ventricle, the properties of the main vortex obtained from the proposed method were also measured, and their correlations with the reference measurement were also calculated (radius, r = 0.96; circulation, r = 0.85; weighted center, r = 0.81). In vitro results at 60 bpm during one cardiac cycle confirmed that the algorithm properly measures typical characteristics of the vortex (radius, r = 0.60; circulation, r = 0.81; weighted center, r = 0.92). Preliminary qualitative results on clinical data revealed physiologic flow fields. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Optical PIV and LDV Comparisons of Internal Flow Investigations in SHF Impeller

    Directory of Open Access Journals (Sweden)

    G. Wuibaut

    2006-01-01

    Full Text Available The paper presents a comparison between two sets of experimental results in a centrifugal flow pump. The tested impeller is the so-called SHF impeller for which many experimental data have been continuously produced to built databases for CFD code validations with various levels of approximation. Measurements have been performed using optical techniques: 2D particle image velocimetry (PIV technique on an air test model and 2D laser doppler velocimetry (LDV technique on a water model, both for different flow rates. For the present study, results obtained by these optical techniques are compared together in terms of phase averaged velocity and velocity fluctuations inside the impeller flow passage for design flow rate.

  18. On the topological entropy of an optical Hamiltonian flow

    OpenAIRE

    Niche, Cesar J.

    2000-01-01

    In this article we prove two formulas for the topological entropy of an F-optical Hamiltonian flow induced by a C^{\\infty} Hamiltonian, where F is a Lagrangian distribution. In these formulas, we calculate the topological entropy as the exponential growth rate of the average of the determinant of the differential of the flow, restricted to the Lagrangian distribution or to a proper modification.

  19. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Dennis eEckmeier

    2013-09-01

    Full Text Available The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for manoeuvring. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increase the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information.We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signalled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

  20. Motion compensated frame interpolation with a symmetric optical flow constraint

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Bruhn, Andrés

    2012-01-01

    We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function such that ......We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function...... methods. The proposed reparametrization is generic and can be applied to almost every existing algorithm. In this paper we illustrate its advantages by considering the classic TV-L1 optical flow algorithm as a prototype. We demonstrate that this widely used method can produce results that are competitive...... with current state-of-the-art methods. Finally we show that the scheme can be implemented on graphics hardware such that it be- comes possible to double the frame rate of 640 × 480 video footage at 30 fps, i.e. to perform frame doubling in realtime....

  1. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  2. Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

    OpenAIRE

    Kyoungjin Kim

    2011-01-01

    Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while ...

  3. A novel all-fiber optic flow cytometer technology for Point-of Care and Remote Environments

    Science.gov (United States)

    Mermut, Ozzy

    Traditional flow cytometry designs tend to be bulky systems with a complex optical-fluidic sub-system and often require trained personnel for operation. This makes them difficult to readily translate to remote site testing applications. A new compact and portable fiber-optic flow cell (FOFC) technology has been developed at INO. We designed and engineered a specialty optical fiber through which a square hole is transversally bored by laser micromachining. A capillary is fitted into that hole to flow analyte within the fiber square cross-section for detection and counting. With demonstrated performance benchmarks potentially comparable to commercial flow cytometers, our FOFC provides several advantages compared to classic free-space con-figurations, e.g., sheathless flow, low cost, reduced number of optical components, no need for alignment (occurring in the fabrication process only), ease-of-use, miniaturization, portability, and robustness. This sheathless configuration, based on a fiber optic flow module, renders this cytometer amenable to space-grade microgravity environments. We present our recent results for an all-fiber approach to achieve a miniature FOFC to translate flow cytometry from bench to a portable, point-of-care device for deployment in remote settings. Our unique fiber approach provides the capability to illuminate a large surface with a uniform intensity distri-bution, independently of the initial shape originating from the light source, and without loss of optical power. The CVs and sensitivities are measured and compared to industry benchmarks. Finally, integration of LEDs enable several advantages in cost, compactness, and wavelength availability.

  4. Optic flow stabilizes flight in ruby-throated hummingbirds.

    Science.gov (United States)

    Ros, Ivo G; Biewener, Andrew A

    2016-08-15

    Flying birds rely on visual cues for retinal image stabilization by negating rotation-induced optic flow, the motion of the visual panorama across the retina, through corrective eye and head movements. In combination with vestibular and proprioceptive feedback, birds may also use visual cues to stabilize their body during flight. Here, we test whether artificially induced wide-field motion generated through projected visual patterns elicits maneuvers in body orientation and flight position, in addition to stabilizing vision. To test this hypothesis, we present hummingbirds flying freely within a 1.2 m cylindrical visual arena with a virtual surround rotated at different speeds about its vertical axis. The birds responded robustly to these visual perturbations by rotating their heads and bodies with the moving visual surround, and by adjusting their flight trajectories, following the surround. Thus, similar to insects, hummingbirds appear to use optic flow cues to control flight maneuvers as well as to stabilize their visual inputs. © 2016. Published by The Company of Biologists Ltd.

  5. Perceiving collision impacts in Alzheimer’s disease: The effect of retinal eccentricity on optic flow deficits

    Directory of Open Access Journals (Sweden)

    Nam-Gyoon eKim

    2015-11-01

    Full Text Available The present study explored whether the optic flow deficit in Alzheimer’s disease (AD reported in the literature transfers to different types of optic flow, in particular, one that specifies collision impacts with upcoming surfaces, with a special focus on the effect of retinal eccentricity. Displays simulated observer movement over a ground plane toward obstacles lying in the observer’s path. Optical expansion was modulated by varying tau-dot. The visual field was masked either centrally (peripheral vision or peripherally (central vision using masks ranging from 10° to 30° in diameter in steps of 10°. Participants were asked to indicate whether their approach would result in collision or no collision with the obstacles. Results showed that AD patients’ sensitivity to tau-dot was severely compromised, not only for central vision but also for peripheral vision, compared to age- and education-matched elderly controls. The results demonstrated that AD patients’ optic flow deficit is not limited to radial optic flow but includes also the optical pattern engendered by tau-dot. Further deterioration in the capacity to extract tau-dot to determine potential collisions in conjunction with the inability to extract heading information from radial optic flow would exacerbate AD patients’ difficulties in navigation and visuospatial orientation.

  6. Fiber optic liquid mass flow sensor and method

    Science.gov (United States)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  7. Postural adaptations to repeated optic flow stimulation in older adults

    Science.gov (United States)

    O’Connor, Kathryn W.; Loughlin, Patrick J.; Redfern, Mark S.; Sparto, Patrick J.

    2008-01-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of three conditions were performed: 1) constant 12 cm optic flow amplitude (24 cm peak-to-peak), 2) constant 4 cm amplitude (8 cm p-t-p), and 3) a transition in amplitude from 4 to 12 cm. The average power of head sway velocity (Pvel) was calculated for consecutive 5 s intervals during the trial to examine the changes in sway within and between trials. A mixed factor repeated measures ANOVA was performed to examine the effects of subject Group, Trial, and Interval on the Pvel. Pvel was greater in older adults in all conditions (p Pvel of the older adults decreased significantly between all 3 trials, but decreased only between trial 1 and 2 in young adults. While the responses of the young adults to the transition in optic flow from 4 to 12 cm did not significantly change, older adults had an increase in Pvel following the transition, ranging from 6.5 dB for the first trial to 3.4 dB for the third trial. These results show that older adults can habituate to repeated visual perturbation exposures; however, this habituation requires a greater number of exposures than young adults. This suggests aging impacts the ability to quickly modify the relative weighting of the sensory feedback for postural stabilization. PMID:18329878

  8. Generation of microfluidic flow using an optically assembled and magnetically driven microrotor

    International Nuclear Information System (INIS)

    Köhler, J; Ghadiri, R; Ksouri, S I; Guo, Q; Gurevich, E L; Ostendorf, A

    2014-01-01

    The key components in microfluidic systems are micropumps, valves and mixers. Depending on the chosen technology, the realization of these microsystems often requires rotational and translational control of subcomponents. The manufacturing of such active components as well as the driving principle are still challenging tasks. A promising all-optical approach could be the combination of laser direct writing and actuation based on optical forces. However, when higher actuation velocities are required, optical driving might be too slow. Hence, a novel approach based on optical assembling of microfluidic structures and subsequent magnetic actuation is proposed. By applying the optical assembly of microspherical building blocks as the manufacturing method and magnetic actuation, a microrotor was successfully fabricated and tested within a microfluidic channel. The resulting fluid flow was characterized by introducing an optically levitated measuring probe particle. Finally, a freely moving tracer particle visualizes the generated flow. The tracer particle analysis shows average velocities of 0.4–0.5 µm s −1 achieved with the presented technology. (paper)

  9. Using optic flow in the far peripheral field.

    Science.gov (United States)

    McManus, Meaghan; D'Amour, Sarah; Harris, Laurence R

    2017-07-01

    Self-motion information can be used to update spatial memory of location through an estimate of a change in position. Viewing optic flow alone can create Illusory self-motion or "vection." Early studies suggested that peripheral vision is more effective than central vision in evoking vection, but controlling for retinal area and perceived distance suggests that all retinal areas may be equally effective. However, the contributions of the far periphery, beyond 90°, have been largely neglected. Using a large-field Edgeless Graphics Geometry display (EGG, Christie, Canada, field of view ±112°) and systematically blocking central (±20° to ±90°) or peripheral (viewing through tunnels ±20° to ±40°) parts of the field, we compared the effectiveness of different retinal regions at evoking forwards linear vection. Fifteen participants indicated when they had reached the position of a previously presented target after visually simulating motion down a simulated corridor. The amount of simulated travel needed to match a given target distance was modelled with a leaky spatial integrator model to estimate gains (perceived/actual distance) and a spatial decay factor. When optic flow was presented only in the far periphery (beyond 90°) gains were significantly higher than for the same motion presented full field or in only the central field, resulting in accurate performance in the range of speeds associated with normal walking. The increased effectiveness of optic flow in the peripheral field alone compared to full-field motion is discussed in terms of emerging neurophysiological studies that suggest brain areas dedicated to processing information from the far peripheral field.

  10. Change regularity of water quality parameters in leakage flow conditions and their relationship with iron release.

    Science.gov (United States)

    Liu, Jingqing; Shentu, Huabin; Chen, Huanyu; Ye, Ping; Xu, Bing; Zhang, Yifu; Bastani, Hamid; Peng, Hongxi; Chen, Lei; Zhang, Tuqiao

    2017-11-01

    The long-term stagnation in metal water supply pipes, usually caused by intermittent consumption patterns, will cause significant iron release and water quality deterioration, especially at the terminus of pipelines. Another common phenomenon at the terminus of pipelines is leakage, which is considered helpful by allowing seepage of low-quality drinking water resulting from long-term stagnation. In this study, the effect of laminar flow on alleviating water quality deterioration under different leakage conditions was investigated, and the potential thresholds of the flow rate, which can affect the iron release process, were discussed. Based on a galvanized pipe and ductile cast iron pipe pilot platform, which was established at the terminus of pipelines, this research was carried out by setting a series of leakage rate gradients to analyze the influence of different leakage flow rates on iron release, as well as the relationship with chemical and biological parameters. The results showed that the water quality parameters were obviously influenced by the change in flow velocity. Water quality was gradually improved with an increase in flow velocity, but its change regularity reflected a diversity under different flow rates (p water distribution system, when the bulk water was at the critical laminar flow velocity, the concentration of total iron, the quantity and rate of total iron release remain relatively in an ideal and safe situation. Copyright © 2017. Published by Elsevier Ltd.

  11. Effective star tracking method based on optical flow analysis for star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  12. Low Delay Wyner-Ziv Coding Using Optical Flow

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Forchhammer, Søren

    2014-01-01

    on preceding frames for the generation of the SI by means of Optical Flow (OF), which is also used in the refinement step of the SI for enhanced RD performance. Compared with a state-of-the-art extrapolation-based decoder the proposed solution achieves RD Bjontegaard gains up to 1.3 dB....

  13. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-01-01

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  14. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-04-19

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  15. The role of optical flow in automated quality assessment of full-motion video

    Science.gov (United States)

    Harguess, Josh; Shafer, Scott; Marez, Diego

    2017-09-01

    In real-world video data, such as full-motion-video (FMV) taken from unmanned vehicles, surveillance systems, and other sources, various corruptions to the raw data is inevitable. This can be due to the image acquisition process, noise, distortion, and compression artifacts, among other sources of error. However, we desire methods to analyze the quality of the video to determine whether the underlying content of the corrupted video can be analyzed by humans or machines and to what extent. Previous approaches have shown that motion estimation, or optical flow, can be an important cue in automating this video quality assessment. However, there are many different optical flow algorithms in the literature, each with their own advantages and disadvantages. We examine the effect of the choice of optical flow algorithm (including baseline and state-of-the-art), on motionbased automated video quality assessment algorithms.

  16. Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission.

    Science.gov (United States)

    Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B

    2014-01-13

    Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.

  17. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene

    2016-01-01

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  18. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos

    2016-08-30

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  19. Toward Optic Flow Regulation for Wall-Following and Centring Behaviours

    Directory of Open Access Journals (Sweden)

    Julien Serres

    2006-06-01

    Full Text Available In our ongoing project on the autonomous guidance of Micro-Air Vehicles (MAVs in confined indoor and outdoor environments, we have developed a bio-inspired optic flow based autopilot enabling a hovercraft to travel safely, and avoid the walls of a corridor. The hovercraft is an air vehicle endowed with natural roll and pitch stabilization characteristics, in which planar flight control can be developed conveniently. It travels at a constant ground height (∼2mm and senses the environment by means of two lateral eyes that measure the right and left optic flows (OFs. The visuomotor feedback loop, which is called LORA(1 (Lateral Optic flow Regulation Autopilot, Mark 1, consists of a lateral OF regulator that adjusts the hovercraft's yaw velocity and keeps the lateral OF constant on one wall equal to an OF set-point. Simulations have shown that the hovercraft manages to navigate in a corridor at a “preset” groundspeed (1m/s without requiring a supervisor to make it switch abruptly between the control-laws corresponding to behaviours such as automatic wall-following, automatic centring, and automatically reacting to an opening encountered on a wall. The passive visual sensors and the simple control system used here are suitable for use on MAVs with an avionic payload of only a few grams.

  20. Toward optic flow regulation for wall-following and centring behaviours

    Directory of Open Access Journals (Sweden)

    Franck Ruffier

    2008-11-01

    Full Text Available In our ongoing project on the autonomous guidance of Micro-Air Vehicles (MAVs in confined indoor and outdoor environments, we have developed a bio-inspired optic flow based autopilot enabling a hovercraft to travel safely, and avoid the walls of a corridor. The hovercraft is an air vehicle endowed with natural roll and pitch stabilization characteristics, in which planar flight control can be developed conveniently. It travels at a constant ground height (~2mm and senses the environment by means of two lateral eyes that measure the right and left optic flows (OFs. The visuomotor feedback loop, which is called LORA(1 (Lateral Optic flow Regulation Autopilot, Mark 1, consists of a lateral OF regulator that adjusts the hovercraft's yaw velocity and keeps the lateral OF constant on one wall equal to an OF set-point. Simulations have shown that the hovercraft manages to navigate in a corridor at a "pre-set" groundspeed (1m/s without requiring a supervisor to make it switch abruptly between the control-laws corresponding to behaviours such as automatic wall-following, automatic centring, and automatically reacting to an opening encountered on a wall. The passive visual sensors and the simple control system used here are suitable for use on MAVs with an avionic payload of only a few grams.

  1. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    Science.gov (United States)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  2. Self-motion Perception from Optic Flow and Rotation Signals

    NARCIS (Netherlands)

    J.A. Beintema (Jaap)

    2000-01-01

    textabstractThe value of optic flow for retrieving movement direction was recognised already two centuries ago by astronomers, searching the sky for meteorite showers. The point from which the shower appeared to emanate they termed the radiant, knowing it indicated the direction along which the

  3. Modeling heading and path perception from optic flow in the case of independently moving objects

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  4. Modeling Heading and Path Perception from Optic Flow in the Case of Independently Moving Objects

    Directory of Open Access Journals (Sweden)

    Florian eRaudies

    2013-04-01

    Full Text Available Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMO in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion / deletion, expansion / contraction, acceleration / deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans’ heading and path perception robust in the presence of such IMOs.

  5. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    International Nuclear Information System (INIS)

    Kolari, K; Havia, T; Stuns, I; Hjort, K

    2014-01-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min −1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems. (paper)

  6. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system

    NARCIS (Netherlands)

    Miao, W.; Luo, J.; Di Lucente, S.; Dorren, H.J.S.; Calabretta, N.

    2013-01-01

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. 4×4 dynamic switch operation at 40 Gb/s reported 300ns minimum end-to-end latency (including 25m transmission link) and

  7. Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations

    DEFF Research Database (Denmark)

    Willerslev, Anne; Li, Xiao Q; Munch, Inger C

    2014-01-01

    PURPOSE: To study intravascular characteristics of flowing blood in retinal vessels using spectral-domain optical coherence tomography (SD-OCT). METHODS: Examination of selected arterial bifurcations and venous sites of confluence in 25 healthy 11-year-old children recruited as an ad hoc subsample...

  8. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  9. An optical flow-based state-space model of the vocal folds.

    Science.gov (United States)

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  10. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    A new design is presented for a gas flow cell for reactive gases at high temperatures. The design features three heated sections that are separated by flow windows. This design avoids the contact of reactive gases with the material of the exchangeable optical windows. A gas cell with this design ......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  11. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NARCIS (Netherlands)

    Tangelder, J.W.H.; Lebert, E.; Burghouts, G.J.; Zon, K. van; Den Uyl, M.J.

    2014-01-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is

  12. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    Science.gov (United States)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  13. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    Science.gov (United States)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  14. On the computations analyzing natural optic flow : Quantitative model analysis of the blowfly motion vision pathway

    NARCIS (Netherlands)

    Lindemann, J.P.; Kern, R.; Hateren, J.H. van; Ritter, H.; Egelhaaf, M.

    2005-01-01

    For many animals, including humans, the optic flow generated on the eyes during locomotion is an important source of information about self-motion and the structure of the environment. The blowfly has been used frequently as a model system for experimental analysis of optic flow processing at the

  15. The Quantitative Measurements of Vascular Density and Flow Area of Optic Nerve Head Using Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Bazvand, Fatemeh; Mirshahi, Reza; Fadakar, Kaveh; Faghihi, Houshangh; Sabour, Siamak; Ghassemi, Fariba

    2017-08-01

    The purpose of this study was to evaluate the vascular density (VD) and the flow area on optic nerve head (ONH) and peripapillary area, and the impact of age and sex using optical coherence tomography angiography (OCTA) in healthy human subjects. Both eyes of each volunteer were scanned by an RTVue XR Avanti; Optovue with OCTA using the split-spectrum amplitude-decorrelation angiography algorithm technique. Masked graders evaluated enface angiodisc OCTA data. The flow area of ONH and the VD were automatically calculated. A total of 79 eyes of patients with a mean age of 37.03±11.27 were examined. The total ONH (papillary and peripapillary) area VD was 56.03%±4.55%. The flow area of the ONH was 1.74±0.10 mm/1.34 mm. The temporal and inferotemporal peripapillary VD was different between male and female patients. Increasing age causes some changes in the flow area of the ONH and the papillary VD from the third to the fourth decade (analysis of variance test; P<0.05). A normal quantitative database of the flow area and VD of the papillary and peripapillary area, obtained by RTVue XR with OCT angiography technique, is presented here.

  16. Modelling the Flow Stress of Alloy 316L using a Multi-Layered Feed Forward Neural Network with Bayesian Regularization

    Science.gov (United States)

    Abiriand Bhekisipho Twala, Olufunminiyi

    2017-08-01

    In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.

  17. Analysis of seawater flow through optical fiber

    Science.gov (United States)

    Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia

    2015-04-01

    The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem

  18. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    Directory of Open Access Journals (Sweden)

    Geoffrey Portelli

    Full Text Available Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System" model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  19. AN AERIAL-IMAGE DENSE MATCHING APPROACH BASED ON OPTICAL FLOW FIELD

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2016-06-01

    Full Text Available Dense matching plays an important role in many fields, such as DEM (digital evaluation model producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching’s requirements. The comparison experiments demonstrated that our approach’s matching efficiency is higher than semi-global matching (SGM and Patch-based multi-view stereo matching (PMVS which verifies the feasibility and effectiveness of the algorithm.

  20. ICALEO '89 - Optical methods in flow and particle diagnostics; Proceedings of the Meeting, Orlando, FL, Oct. 15-20, 1989

    Science.gov (United States)

    Long, Marshall B.

    Various papers on optical methods in flow and particle diagnostics are presented. Individual topics addressed include: swirl effects on confined flows in a model of a dump combustor, new analog optical method for data evaluation in laser Doppler anemometry, catadioptric optics for laser Doppler velocimeter applications, mapping of velocity flow field using the laser two-focus technique, engineering applications of particle image velocimeters, quantitative fluid flow analysis by laser velocimetry and numerical processing, optical analysis of particle image velocimetry data. Also discussed are: measuring turbulence in reversing flows by particle image velocimeter, two-color particle velocimetry, data evaluation in particle image velocimetry using spatial light modulator, statistical investigation of errors in particle image velocimetry, optimization of particle image velocimeters, visualization of internal structure in volumetric data, scalar measurements in two, three, and four dimensions.

  1. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).

    Science.gov (United States)

    Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K

    2017-06-28

    Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization

  2. Extracting Structure from Optical Flow Using the Fast Error Search Technique

    National Research Council Canada - National Science Library

    Srinivasan, Sridar

    1998-01-01

    ...) of an optical flow field, using fast partial search. For each candidate location on a discrete sampling of the image area, we generate a linear system of equations for determining the remaining unknowns, viz...

  3. Accreting fluids onto regular black holes via Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)

    2017-08-15

    We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)

  4. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2010-03-01

    Full Text Available The purpose of this study is to develop a motion sensor (delivering optical flow estimations using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip. Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane and digital (NIOS II processor. The system is fully functional and is organized in different stages where the early processing (focal plane stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  5. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Science.gov (United States)

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  6. Visual Observations of Bubbly Flow in a Subchannel by using Optical Measurement Methods

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, B. D.; Song, Chul Hwa

    2008-01-01

    PIV (Particle Image Velocimetry) measurement technique is widely used in the experimental study on the fluid flow in many industrial fields. In the study of the subchannel mixing in a nuclear reactor, there have been many works by using optical measurement techniques and almost of these were limited to the single phase flow. But many occasions of safety issues in a nuclear power plant are in a condition of two phase flow. In an application of two phase flow in subchannels, intrusive probes i.e., a conductivity sensor or an optical sensor were generally used. But these probes cause breaks or distortions of bubbles when contact. PIV technique is one of the non-intrusive measurement methods which can avoid the problem of intrusive probes. This study presents an applicability of the PIV technique on an experimental study of a bubbly flow in the subchannel geometry. The bubble peaking in a subchannel according to the bubble sizes was demonstrated. The HSC (high speed camera) was also used to confirm the PIV measurement results

  7. A feasibility study of optical flow-based navigation during colonoscopy

    NARCIS (Netherlands)

    van der Stap, N.; Reilink, Rob; Misra, Sarthak; Broeders, Ivo Adriaan Maria Johannes; van der Heijden, Ferdinand

    In this study, it was shown that using the optical flow and the focus of expansion, obtained from the monocular camera at the beginning of a colonoscope, (semi-)automated steering of flexible endoscopes might become possible. This automation might help to increase colonoscopy efficiency, but is also

  8. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Cheng Shuk

    2009-02-01

    Full Text Available Abstract Background Zebrafish (Danio rerio, due to its optical accessibility and similarity to human, has emerged as model organism for cardiac research. Although various methods have been developed to assess cardiac functions in zebrafish embryos, there lacks a method to assess heartbeat regularity in blood vessels. Heartbeat regularity is an important parameter for cardiac function and is associated with cardiotoxicity in human being. Using stereomicroscope and digital video camera, we have developed a simple, noninvasive method to measure the heart rate and heartbeat regularity in peripheral blood vessels. Anesthetized embryos were mounted laterally in agarose on a slide and the caudal blood circulation of zebrafish embryo was video-recorded under stereomicroscope and the data was analyzed by custom-made software. The heart rate was determined by digital motion analysis and power spectral analysis through extraction of frequency characteristics of the cardiac rhythm. The heartbeat regularity, defined as the rhythmicity index, was determined by short-time Fourier Transform analysis. Results The heart rate measured by this noninvasive method in zebrafish embryos at 52 hour post-fertilization was similar to that determined by direct visual counting of ventricle beating (p > 0.05. In addition, the method was validated by a known cardiotoxic drug, terfenadine, which affects heartbeat regularity in humans and induces bradycardia and atrioventricular blockage in zebrafish. A significant decrease in heart rate was found by our method in treated embryos (p p Conclusion The data support and validate this rapid, simple, noninvasive method, which includes video image analysis and frequency analysis. This method is capable of measuring the heart rate and heartbeat regularity simultaneously via the analysis of caudal blood flow in zebrafish embryos. With the advantages of rapid sample preparation procedures, automatic image analysis and data analysis, this

  9. An Automated Measurement of Ciliary Beating Frequency using a Combined Optical Flow and Peak Detection.

    Science.gov (United States)

    Kim, Woojae; Han, Tae Hwa; Kim, Hyun Jun; Park, Man Young; Kim, Ku Sang; Park, Rae Woong

    2011-06-01

    The mucociliary transport system is a major defense mechanism of the respiratory tract. The performance of mucous transportation in the nasal cavity can be represented by a ciliary beating frequency (CBF). This study proposes a novel method to measure CBF by using optical flow. To obtain objective estimates of CBF from video images, an automated computer-based image processing technique is developed. This study proposes a new method based on optical flow for image processing and peak detection for signal processing. We compare the measuring accuracy of the method in various combinations of image processing (optical flow versus difference image) and signal processing (fast Fourier transform [FFT] vs. peak detection [PD]). The digital high-speed video method with a manual count of CBF in slow motion video play, is the gold-standard in CBF measurement. We obtained a total of fifty recorded ciliated sinonasal epithelium images to measure CBF from the Department of Otolaryngology. The ciliated sinonasal epithelium images were recorded at 50-100 frames per second using a charge coupled device camera with an inverted microscope at a magnification of ×1,000. The mean square errors and variance for each method were 1.24, 0.84 Hz; 11.8, 2.63 Hz; 3.22, 1.46 Hz; and 3.82, 1.53 Hz for optical flow (OF) + PD, OF + FFT, difference image [DI] + PD, and DI + FFT, respectively. Of the four methods, PD using optical flow showed the best performance for measuring the CBF of nasal mucosa. The proposed method was able to measure CBF more objectively and efficiently than what is currently possible.

  10. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  11. Mathematical Model and Simulation of Particle Flow around Choanoflagellates Using the Method of Regularized Stokeslets

    Science.gov (United States)

    Nararidh, Niti

    2013-11-01

    Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. We investigated the role of the microvilli in the feeding and swimming behavior of the organism using a three-dimensional model based on the method of regularized Stokeslets. This model allows us to examine the velocity generated around the feeding organism tethered in place, as well as to predict the paths of surrounding free flowing particles. In particular, we can depict the effective capture of nutritional particles and bacteria in the fluid, showing the hydrodynamic cooperation between the cell, flagellum, and microvilli of the organism. Funding Source: Murchison Undergraduate Research Fellowship.

  12. The Optical Flow Technique on the Research of Solar Non-potentiality

    Science.gov (United States)

    Liu, Ji-hong; Zhang, Hong-qi

    2010-06-01

    Several optical flow techniques, which have being applied to the researches of solar magnetic non-potentiality recently, have been summarized here. And a few new non-potential parameters which can be derived from them have been discussed, too. The main components of the work are presented as follows: (1) The optical flow techniques refers to a series of new image analyzing techniques arisen recently on the researches of solar magnetic non-potentiality. They mainly include LCT (local correlation tracking), ILCT (inductive equation combining with LCT), MEF (minimum energy effect), DAVE (differential affine velocity estimator) and NAVE (nonlinear affine velocity estimator). Their calculating and applying conditions, merits and deficiencies, all have been discussed detailedly in this work. (2) Benefit from the optical flow techniques, the transverse velocity fields of the magnetic features on the solar surface may be determined by a time sequence of high-quality images currently produced by high-resolution observations either from the ground or in space. Consequently, several new non-potential parameters may be acquired, such as the magnetic helicity flux, the induced electric field in the photosphere, the non-potential magnetic stress (whose area integration is the Lorentz force), etc. Then we can determine the energy flux across the photosphere, and subsequently evaluate the energy budget. Former works on them by small or special samples have shown that they are probably related closely to the erupting events, such as flare, filament eruptions and coronal mass ejections.

  13. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    Energy Technology Data Exchange (ETDEWEB)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z. [Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN/SP, Avenida Lineu Prestes, 2242, 05508-000 São Paulo (Brazil)

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  14. REAL-TIME FACE RECOGNITION BASED ON OPTICAL FLOW AND HISTOGRAM EQUALIZATION

    Directory of Open Access Journals (Sweden)

    D. Sathish Kumar

    2013-05-01

    Full Text Available Face recognition is one of the intensive areas of research in computer vision and pattern recognition but many of which are focused on recognition of faces under varying facial expressions and pose variation. A constrained optical flow algorithm discussed in this paper, recognizes facial images involving various expressions based on motion vector computation. In this paper, an optical flow computation algorithm which computes the frames of varying facial gestures, and integrating with synthesized image in a probabilistic environment has been proposed. Also Histogram Equalization technique has been used to overcome the effect of illuminations while capturing the input data using camera devices. It also enhances the contrast of the image for better processing. The experimental results confirm that the proposed face recognition system is more robust and recognizes the facial images under varying expressions and pose variations more accurately.

  15. Polarization-, carrier-, and format-selectable optical flow generation based on a multi-flow transmitter using passive polymers

    DEFF Research Database (Denmark)

    Katopodis, V.; Spyropoulou, M.; Tsokos, C.

    2016-01-01

    and acting as the interface between any software defined switch and the physical layer transport equipment. The transmitter has been evaluated within a flexible network node comprising programmable flexible wavelength selective switches (WSSs). Two single-flow scenarios based on a dual-polarization m...... generation is feasible with appropriate distribution of the client data in the digital domain and encapsulation into OTN containers. Configuration of the electrical and optical transmitter resources is performed via a developed software defined optics (SDO) platform residing on top of the transmitter...

  16. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    Science.gov (United States)

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  17. Nocturnal insects use optic flow for flight control

    OpenAIRE

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flyin...

  18. Flow visualization and aero-optics in simulated environments; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    International Nuclear Information System (INIS)

    Bentley, H.T. III.

    1987-01-01

    The present conference on high speed aerooptics facilities, aerodynamic holography, and photooptical techniques gives attention to the prediction of image degradation through a turbulent medium, wind tunnel studies of optical beam degradation through heterogeneous aerodynamic flows, wavelength effects on images formed through turbulence, holographic visualizations of hypersonic flow viscous interactions, holographic interferometry for gas flow pattern studies, and a holographic flow field analysis of Spacelab-3 crystal growth experiments. Also discussed are the interferometric reconstruction of continuous flow fields, the flow visualization of turbine film cooling flows, the use of the phosphor technique for remote thermometry in a combustor, pulsed laser cinematography of deflagration, and a digital image sequence analysis for optical flow computation in flame propagation visualization

  19. Crowd Analysis by Using Optical Flow and Density Based Clustering

    DEFF Research Database (Denmark)

    Santoro, Francesco; Pedro, Sergio; Tan, Zheng-Hua

    2010-01-01

    In this paper, we present a system to detect and track crowds in a video sequence captured by a camera. In a first step, we compute optical flows by means of pyramidal Lucas-Kanade feature tracking. Afterwards, a density based clustering is used to group similar vectors. In the last step...

  20. Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor

    Directory of Open Access Journals (Sweden)

    Bodo eRückauer

    2016-04-01

    Full Text Available In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS. For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240x180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS. This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera.

  1. Efficient Hardware Implementation of the Horn-Schunck Algorithm for High-Resolution Real-Time Dense Optical Flow Sensor

    Science.gov (United States)

    Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek

    2014-01-01

    This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1, 920 × 1, 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems. PMID:24526303

  2. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  3. Optical measuring techniques and their application to two-phase and three-phase flows

    International Nuclear Information System (INIS)

    Liu Xiaozhi.

    1992-01-01

    First of all it is shown that by an optical system based on the Laser-Doppler technology, which uses a pair of cylindrical waves and two optical detectors, the particle size, speed and refractive index can be measured by means of the signal frequencies. The second optical method to characterize spherical particles in a multi-phase flow is an extended phase-Doppler system. By means of an additional pair of photodetectors it has been possible for the first time to measure the refractive index in addition to speed and particle size. The last part of the paper shows that by a special phase-Doppler anemometry system with only two detectors it is also possible to distinguish between reflecting and refractive particles. By means of such PDA system measurements were made in a gas-fluid-solid three-phase flow directed vertically upwards. (orig./DG) [de

  4. Optic Flow Information Influencing Heading Perception during Rotation

    Directory of Open Access Journals (Sweden)

    Diederick C. Niehorster

    2011-05-01

    Full Text Available We investigated what roles global spatial frequency, surface structure, and foreground motion play in heading perception during simulated rotation from optic flow. The display (110°Hx94°V simulated walking on a straight path over a ground plane (depth range: 1.4–50 m at 2 m/s while fixating a target off to one side (mean R/T ratios: ±1, ±2, ±3 under six display conditions. Four displays consisted of nonexpanding dots that were distributed so as to manipulate the amount of foreground motion and the presence of surface structure. In one further display the ground was covered with disks that expanded during the trial and lastly a textured ground display was created with the same spatial frequency power spectrum as the disk ground. At the end of each 1s trial, observers indicated their perceived heading along a line at the display's center. Mean heading biases were smaller for the textured than for the disk ground, for the displays with more foreground motion and for the displays with surface structure defined by dot motion than without. We conclude that while spatial frequency content is not a crucial factor, dense motion parallax and surface structure in optic flow are important for accurate heading perception during rotation.

  5. 32nm 1-D regular pitch SRAM bitcell design for interference-assisted lithography

    Science.gov (United States)

    Greenway, Robert T.; Jeong, Kwangok; Kahng, Andrew B.; Park, Chul-Hong; Petersen, John S.

    2008-10-01

    As optical lithography advances into the 45nm technology node and beyond, new manufacturing-aware design requirements have emerged. We address layout design for interference-assisted lithography (IAL), a double exposure method that combines maskless interference lithography (IL) and projection lithography (PL); cf. hybrid optical maskless lithography (HOMA) in [2] and [3]. Since IL can generate dense but regular pitch patterns, a key challenge to deployment of IAL is the conversion of existing designs to regular-linewidth, regular-pitch layouts. In this paper, we propose new 1-D regular pitch SRAM bitcell layouts which are amenable to IAL. We evaluate the feasibility of our bitcell designs via lithography simulations and circuit simulations, and confirm that the proposed bitcells can be successfully printed by IAL and that their electrical characteristics are comparable to those of existing bitcells.

  6. Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery

    Science.gov (United States)

    Dong, Lixin; Kudrimoti, Mahesh; Cheng, Ran; Shang, Yu; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2012-01-01

    This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements. PMID:22312579

  7. [Application of optical flow dynamic texture in land use/cover change detection].

    Science.gov (United States)

    Yan, Li; Gong, Yi-Long; Zhang, Yi; Duan, Wei

    2014-11-01

    In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better

  8. Optical measurements of lateral energy flow and plasma motion in laser-produced plasmas

    International Nuclear Information System (INIS)

    Benjamin, R.F.; Riffle, J.H.

    1979-01-01

    An optical system consisting of a telephoto lens and multi-image camera is described and the experimental results and their implications are presented. We will also describe the opto-electronic system that will measure the time history of the energy flow with sub-nanosecond resolution. The system will be useful to study both one- and two-dimensional geometries. The third optical diagnostic is a laser probe utilizing detection by the opto-electronic system mentioned above. This diagnostic measures plasma motion as well as energy flow. The laser probe and detection system mounts directly onto the target chamber at LASLs Gemini CO 2 laser, causing severe alignment and stability problems whose solutions will be shown

  9. UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA

    Directory of Open Access Journals (Sweden)

    IONIŢĂ Elena

    2015-06-01

    Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.

  10. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. F...... engine and visualisation of gas flow behaviour in cylinder.......Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics....... Fast time-and spectral-resolved measurements in 1.5-5.1 μm spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H2O, CH4, CO2, CO) which is one of the key parameters...

  11. The geometric $\\beta$-function in curved space-time under operator regularization

    OpenAIRE

    Agarwala, Susama

    2009-01-01

    In this paper, I compare the generators of the renormalization group flow, or the geometric $\\beta$-functions for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric $\\beta$-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow for a conformal scalar-field theories on the same manifolds. The geometr...

  12. APPLICATION OF CHEMOMETRICS FOR ANALYSIS OF BIOAEROSOLS BY FLOW-OPTICAL METHOD

    Directory of Open Access Journals (Sweden)

    E. S. Khudyakov

    2016-01-01

    Full Text Available Subject of Research. The informativity of detection channels for bioaerosol analyzer is investigated. Analyzer operation is based on flow-optical method. Method. Measurements of fluorescence and the light scattering of separate bioaerosol particles were performed in five and two spectral ranges, correspondingly. The signals of soil dust particles were registered and used as an imitation of background atmospheric particles. For fluorescenceinduction of bioaerosol particles we used light sources: a laser one with a wavelength equal to 266 nm and 365 nm LED source.Main Results. Using chemometric data processing the classification of informative parameters has been performed and three most significant parameters have been chosen which account for 72% of total data variance. Testing has been done using SIMCA and k-NN methods. It has been proved that the use of the original and the reduced sets of three parameters produces comparable accuracy for classification of bioaerosols. Practical Relevance. The possibility of rapid detection and identification of bioaerosol particles of 1-10 microns respirable fraction (hindering in the human respiratory system by flow-optical method on a background of non-biological particles is demonstrated. The most informative optical spectral ranges for development of compact and inexpensive analyzer are chosen.

  13. Contribution of soft lenses of various powers to the optics of a piggy-back system on regular corneas.

    Science.gov (United States)

    Michaud, Langis; Brazeau, Daniel; Corbeil, Marie-Eve; Forcier, Pierre; Bernard, Pierre-Jean

    2013-12-01

    This study aims to report on the measured in vivo contribution of soft lenses of various powers to the optics of a piggyback system (PBS). This prospective, non-dispensing clinical study was conducted on regular wearers of contact lenses who showed regular corneal profiles. Subjects were masked to the products used. The study involved the use of a spherical soft lens of three different powers in a PBS, used as a carrier for a rigid gas permeable lens. Baseline data were collected and soft lenses were then fitted on both eyes of each subject. Both lenses were assessed for position and movement. Over-refraction was obtained. Soft lens power contribution to the optics (SLPC) of a PBS system was estimated by computing initial ametropia, lacrymal lens, rigid lens powers and over-refraction. A set of data on one eye was kept, for each subject, for statistical analysis. Thirty subjects (12 males, 18 females), aged 24.4 (±4.5) years, were enrolled. The use of plus powered soft lenses enhanced initial RGP lens centration. Once optimal fit was achieved, all lenses showed normal movement. SLPC represented 21.3% of the initial soft lens power when using a -6.00 carrier, and 20.6% for a +6.00. A +0.50 did not contribute to any power induced in the system. These results are generally in accordance with theoretical model developed in the past. On average, except for the low-powered carrier, the use of a spherical soft lens provided 20.9% of its marked power. To achieve better results, the use of a plus-powered carrier is recommended. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  14. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence

    Institute of Scientific and Technical Information of China (English)

    高文; 陈熙霖

    1997-01-01

    The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.

  15. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-02-01

    Full Text Available This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  16. Feasibility of Optical Coherence Tomography (OCT for Intra-Operative Detection of Blood Flow during Gastric Tube Reconstruction

    Directory of Open Access Journals (Sweden)

    Sanne M. Jansen

    2018-04-01

    Full Text Available In this study; an OCT-based intra-operative imaging method for blood flow detection during esophagectomy with gastric tube reconstruction is investigated. Change in perfusion of the gastric tube tissue can lead to ischemia; with a high morbidity and mortality as a result. Anastomotic leakage (incidence 5–20% is one of the most severe complications after esophagectomy with gastric tube reconstruction. Optical imaging techniques provide for minimal-invasive and real-time visualization tools that can be used in intraoperative settings. By implementing an optical technique for blood flow detection during surgery; perfusion can be imaged and quantified and; if needed; perfusion can be improved by either a surgical intervention or the administration of medication. The feasibility of imaging gastric microcirculation in vivo using optical coherence tomography (OCT during surgery of patients with esophageal cancer by visualizing blood flow based on the speckle contrast from M-mode OCT images is studied. The percentage of pixels exhibiting a speckle contrast value indicative of flow was quantified to serve as an objective parameter to assess blood flow at 4 locations on the reconstructed gastric tube. Here; it was shown that OCT can be used for direct blood flow imaging during surgery and may therefore aid in improving surgical outcomes for patients.

  17. The geometric β-function in curved space-time under operator regularization

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, Susama [Mathematical Institute, Oxford University, Oxford OX2 6GG (United Kingdom)

    2015-06-15

    In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined.

  18. The geometric β-function in curved space-time under operator regularization

    International Nuclear Information System (INIS)

    Agarwala, Susama

    2015-01-01

    In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined

  19. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    Science.gov (United States)

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. In-vivo imaging of blood flow dynamics using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2000-04-01

    Noninvasive quantitation of blood flow in the retinal micro circulation may elucidate the progression and treatment of ocular disorders including diabetic retinopathy, age-related degeneration, and glaucoma. Color Doppler optical coherence tomography was recently introduced as a technique allowing simultaneous micron-scale resolution cross-sectional imaging of tissue micro structure and blood flow in the human retina. Here, time-resolved imaging of dynamics of blood flow profiles was performed to measure cardiac pulsatility within retinal vessels. Retinal pulsatility has been shown to decrease throughout the progression of diabetic retinopathy.

  1. Simultaneous thermal and optical imaging of two-phase flow in a micro-model.

    Science.gov (United States)

    Karadimitriou, N K; Nuske, P; Kleingeld, P J; Hassanizadeh, S M; Helmig, R

    2014-07-21

    In the study of non-equilibrium heat transfer in multiphase flow in porous media, parameters and constitutive relations, like heat transfer coefficients between phases, are unknown. In order to study the temperature development of a relatively hot invading immiscible non-wetting fluid and, ultimately, approximate heat transfer coefficients, a transparent micro-model is used as an artificial porous medium. In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design of an innovative, elongated, PDMS (polydimethylsiloxane) micro-model with dimensions of 14.4 × 39 mm(2) and a constant depth of 100 microns is described. A novel setup for simultaneous thermal and optical imaging of flow through the micro-model is presented. This is the first time that a closed flow cell like a micro-model is used in simultaneous thermal and optical flow imaging. The micro-model is visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously and also record the thermal signature of the fluids. Dynamic drainage and imbibition experiments were conducted in order to obtain information about the heat exchange between the phases. In this paper the setup as well as analysis and qualitative results are presented.

  2. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Trevor S [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Xu Hongming [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Richardson, Steve [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Wyszynski, Miroslaw L [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom); Megaritis, Thanos [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom)

    2006-07-15

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  3. A New Method for Simulating Power Flow Density Focused by a Silicon Lens Antenna Irradiated with Linearly Polarized THz Wave

    Directory of Open Access Journals (Sweden)

    Catur Apriono

    2015-08-01

    Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.

  4. Exploiting the Error-Correcting Capabilities of Low Density Parity Check Codes in Distributed Video Coding using Optical Flow

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Søgaard, Jacob; Salmistraro, Matteo

    2012-01-01

    We consider Distributed Video Coding (DVC) in presence of communication errors. First, we present DVC side information generation based on a new method of optical flow driven frame interpolation, where a highly optimized TV-L1 algorithm is used for the flow calculations and combine three flows....... Thereafter methods for exploiting the error-correcting capabilities of the LDPCA code in DVC are investigated. The proposed frame interpolation includes a symmetric flow constraint to the standard forward-backward frame interpolation scheme, which improves quality and handling of large motion. The three...... flows are combined in one solution. The proposed frame interpolation method consistently outperforms an overlapped block motion compensation scheme and a previous TV-L1 optical flow frame interpolation method with an average PSNR improvement of 1.3 dB and 2.3 dB respectively. For a GOP size of 2...

  5. REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM

    DEFF Research Database (Denmark)

    Knudsen, Kim; Lassas, Matti; Mueller, Jennifer

    2009-01-01

    A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...... the convergence of the reconstructed conductivity to the true conductivity as the noise level tends to zero. The results provide a link between two traditions of inverse problems research: theory of regularization and inversion methods based on complex geometrical optics. Also, the procedure is a novel...

  6. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...... that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences...

  7. A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Hong, Yang

    2015-10-01

    Short-term high-resolution Quantitative Precipitation Nowcasting (QPN) has important implications for navigation, flood forecasting, and other hydrological and meteorological concerns. This study proposes a new algorithm called Pixel-based QPN using the Pyramid Lucas-Kanade Optical Flow method (PPLK), which comprises three steps: employing a Pyramid Lucas-Kanade Optical Flow method (PLKOF) to estimate precipitation advection, projecting rainy clouds by considering the advection and evolution pixel by pixel, and interpolating QPN imagery based on the space-time continuum of cloud patches. The PPLK methodology was evaluated with 2338 images from the geostationary meteorological satellite Fengyun-2F (FY-2F) of China and compared with two other advection-based methods, i.e., the maximum correlation method and the Horn-Schunck Optical Flow scheme. The data sample covered all intensive observations since the launch of FY-2F, despite covering a total of only approximately 10 days. The results show that the PPLK performed better than the algorithms used for comparison, demonstrating less time expenditure, more effective cloud tracking, and improved QPN accuracy.

  8. Monocular distance estimation from optic flow during active landing maneuvers

    International Nuclear Information System (INIS)

    Van Breugel, Floris; Morgansen, Kristi; Dickinson, Michael H

    2014-01-01

    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility. (paper)

  9. Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser as a Direct Illumination Source

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2011-12-01

    Full Text Available In this paper, a low cost optical flow sensor is combined with an external laser device to measure surface displacements and mechanical oscillations. The measurement system is based on applying coherent light to a diffuser surface and using an optical flow sensor to analyze the reflected and transferred light to estimate the displacement of the surface or the laser spot. This work is focused on the characterization of this measurement system, which can have the optical flow sensor placed at different angles and distances from the diffuser surface. The results have shown that the displacement of the diffuser surface is badly estimated when the optical mouse sensor is placed in front of the diffuser surface (angular orientation >150° while the highest sensitivity is obtained when the sensor is located behind the diffuser surface and on the axis of the laser source (angular orientation 0°. In this case, the coefficient of determination of the measured displacement, R2, was very high (>0.99 with a relative error of less than 1.29%. Increasing the distance between the surface and the sensor also increased the sensitivity which increases linearly, R2 = 0.99. Finally, this measurement setup was proposed to measure very low frequency mechanical oscillations applied to the laser device, up to 0.01 Hz in this work. The results have shown that increasing the distance between the surface and the optical flow sensor also increases the sensitivity and the measurement range.

  10. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    Science.gov (United States)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  11. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2006-07-15

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  12. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    International Nuclear Information System (INIS)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A

    2006-01-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations

  13. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Science.gov (United States)

    Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  14. Optical flow estimation on image sequences with differently exposed frames

    Science.gov (United States)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  15. Side Information and Noise Learning for Distributed Video Coding using Optical Flow and Clustering

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Rakêt, Lars Lau; Huang, Xin

    2012-01-01

    Distributed video coding (DVC) is a coding paradigm which exploits the source statistics at the decoder side to reduce the complexity at the encoder. The coding efficiency of DVC critically depends on the quality of side information generation and accuracy of noise modeling. This paper considers...... Transform Domain Wyner-Ziv (TDWZ) coding and proposes using optical flow to improve side information generation and clustering to improve noise modeling. The optical flow technique is exploited at the decoder side to compensate weaknesses of block based methods, when using motion-compensation to generate...... side information frames. Clustering is introduced to capture cross band correlation and increase local adaptivity in the noise modeling. This paper also proposes techniques to learn from previously decoded (WZ) frames. Different techniques are combined by calculating a number of candidate soft side...

  16. Diverse Regular Employees and Non-regular Employment (Japanese)

    OpenAIRE

    MORISHIMA Motohiro

    2011-01-01

    Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...

  17. Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light

    DEFF Research Database (Denmark)

    Wang, Zhenyu; El-Ali, Jamil; Perch-Nielsen, Ivan Ryberg

    2004-01-01

    channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only one single mask procedure, all the fabrication and packaging...... processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. The average intensities of the forward Scattered light and the incident light...

  18. Sensory prediction on a whiskered robot: A tactile analogy to "optic flow"

    Directory of Open Access Journals (Sweden)

    Christopher L Schroeder

    2012-10-01

    Full Text Available When an animal moves an array of sensors (e.g., the hand, the eye through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the optical flow equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker array, in which the perceptual intensity that flows over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1x5 array (row of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object’s spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.

  19. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  20. Bubble extinction in Hele-Shaw flow with surface tension and kinetic undercooling regularization

    International Nuclear Information System (INIS)

    Dallaston, Michael C; McCue, Scott W

    2013-01-01

    We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularize the ill-posedness arising from the viscous (Saffman–Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilizing the boundary, and kinetic undercooling destabilizing it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or ‘slit’ of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilizes the applicability of complex variable theory to Hele-Shaw flow. (paper)

  1. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  2. A photoionization model for the optical line emission from cooling flows

    Science.gov (United States)

    Donahue, Megan; Voit, G. M.

    1991-01-01

    The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.

  3. LightFD: A Lightweight Flow Detection Mechanism for Traffic Grooming in Optical Wireless DCNs

    KAUST Repository

    Al-Ghadhban, Amer

    2018-05-05

    State of the art wireless technologies have recently shown a great potential for enabling re-configurable data center network (DCN) topologies by augmenting the cabling complexity and link inflexibility of traditional wired data centers (DCs). In this paper, we propose an optical traffic grooming (TG) method for mice flows (MFs) and elephant flows (EFs) in wireless DCNs which are interconnected with wavelength division multiplexing (WDM) capable free-space optical (FSO) links. Since handling the bandwidth-hungry EFs along with delay-sensitive MFs over the same network resources have undesirable consequences, proposed TG policy handles MFs and EFs over distinctive network resources. MFs/EFs destined to the same rack are groomed into larger rack-to-rack MF/EF flows over dedicated lightpaths whose routes and capacities are jointly determined in a load balancing manner. Performance evaluations of proposed TG policy show a significant throughput improvement thanks to efficient bandwidth utilization of the WDM-FSO links. As MFs and EFs are needed to be separated, proposed TG requires expeditious flow detection mechanisms which can immediately classify EFs with very high accuracy. Since these cannot be met by existing packet-sampling and port-mirroring based solutions, we propose a fast and lightweight in-network flow detection (LightFD) mechanism with perfect accuracy. LightFD is designed as a module on the Virtual-Switch/Hypervisor, which detects EFs based on acknowledgment sequence number of flow packets. Emulation results show that LightFD can provide up to 500 times faster detection speeds than the sampling-based methods with %100 detection precision. We also demonstrate that the EF detection speed has a considerable impact on achievable EF throughput.

  4. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    Science.gov (United States)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  5. Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations.

    Science.gov (United States)

    Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S

    2014-05-01

    We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.

  6. Linear deflectometry - Regularization and experimental design [Lineare deflektometrie - Regularisierung und experimentelles design

    KAUST Repository

    Balzer, Jonathan; Werling, Stefan; Beyerer, Jü rgen

    2011-01-01

    distance from the optical center of the imaging component of the sensor system and propose a novel regularization strategy. Recommendations for the construction of a measurement setup aim for benefiting this strategy as well as the contrarian standard

  7. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  8. Coordinate-invariant regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-01-01

    A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc

  9. Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, S. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium); Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Sousa, R.G.; Pinto, A.M.F.R.; Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Riethmuller, M.L. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium)

    2003-12-01

    A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113 x 10{sup -3} Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data. (orig.)

  10. Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face

    Science.gov (United States)

    Kniaz, V. V.; Smirnova, Z. N.

    2015-05-01

    Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

  11. Improving the visualization of electron-microscopy data through optical flow interpolation

    KAUST Repository

    Carata, Lucian

    2013-01-01

    Technical developments in neurobiology have reached a point where the acquisition of high resolution images representing individual neurons and synapses becomes possible. For this, the brain tissue samples are sliced using a diamond knife and imaged with electron-microscopy (EM). However, the technique achieves a low resolution in the cutting direction, due to limitations of the mechanical process, making a direct visualization of a dataset difficult. We aim to increase the depth resolution of the volume by adding new image slices interpolated from the existing ones, without requiring modifications to the EM image-capturing method. As classical interpolation methods do not provide satisfactory results on this type of data, the current paper proposes a re-framing of the problem in terms of motion volumes, considering the depth axis as a temporal axis. An optical flow method is adapted to estimate the motion vectors of pixels in the EM images, and this information is used to compute and insert multiple new images at certain depths in the volume. We evaluate the visualization results in comparison with interpolation methods currently used on EM data, transforming the highly anisotropic original dataset into a dataset with a larger depth resolution. The interpolation based on optical flow better reveals neurite structures with realistic undistorted shapes, and helps to easier map neuronal connections. © 2011 ACM.

  12. Cleaning OCR'd text with Regular Expressions

    Directory of Open Access Journals (Sweden)

    Laura Turner O'Hara

    2013-05-01

    Full Text Available Optical Character Recognition (OCR—the conversion of scanned images to machine-encoded text—has proven a godsend for historical research. This process allows texts to be searchable on one hand and more easily parsed and mined on the other. But we’ve all noticed that the OCR for historic texts is far from perfect. Old type faces and formats make for unique OCR. How might we improve poor quality OCR? The answer is Regular Expressions or “regex.”

  13. Cleaning OCR'd text with Regular Expressions

    OpenAIRE

    Laura Turner O'Hara

    2013-01-01

    Optical Character Recognition (OCR)—the conversion of scanned images to machine-encoded text—has proven a godsend for historical research. This process allows texts to be searchable on one hand and more easily parsed and mined on the other. But we’ve all noticed that the OCR for historic texts is far from perfect. Old type faces and formats make for unique OCR. How might we improve poor quality OCR? The answer is Regular Expressions or “regex.”

  14. The Effect of Trimethylaluminum Flow Rate on the Structure and Optical Properties of AlInGaN Quaternary Epilayers

    Directory of Open Access Journals (Sweden)

    Dongbo Wang

    2017-03-01

    Full Text Available In this work, a series of quaternary AlxInyGa1−x−yN thin films have been successfully achieved using metal organic chemical vapor deposition (MOCVD method with adjustable trimethylaluminum (TMA flows. Surface morphology and optical properties of AlxInyGa1−x−yN films have been evaluated. The indium segregation effect on the enhancement of UV luminescence emission in AlxInyGa1-x-yN films with increasing TMA flows was investigated. Our results shed some lights on future optical materials design and LED/LD applications.

  15. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    Science.gov (United States)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  16. Linear deflectometry - Regularization and experimental design [Lineare deflektometrie - Regularisierung und experimentelles design

    KAUST Repository

    Balzer, Jonathan

    2011-01-01

    Specular surfaces can be measured with deflectometric methods. The solutions form a one-parameter family whose properties are discussed in this paper. We show in theory and experiment that the shape sensitivity of solutions decreases with growing distance from the optical center of the imaging component of the sensor system and propose a novel regularization strategy. Recommendations for the construction of a measurement setup aim for benefiting this strategy as well as the contrarian standard approach of regularization by specular stereo. © Oldenbourg Wissenschaftsverlag.

  17. Face landmark point tracking using LK pyramid optical flow

    Science.gov (United States)

    Zhang, Gang; Tang, Sikan; Li, Jiaquan

    2018-04-01

    LK pyramid optical flow is an effective method to implement object tracking in a video. It is used for face landmark point tracking in a video in the paper. The landmark points, i.e. outer corner of left eye, inner corner of left eye, inner corner of right eye, outer corner of right eye, tip of a nose, left corner of mouth, right corner of mouth, are considered. It is in the first frame that the landmark points are marked by hand. For subsequent frames, performance of tracking is analyzed. Two kinds of conditions are considered, i.e. single factors such as normalized case, pose variation and slowly moving, expression variation, illumination variation, occlusion, front face and rapidly moving, pose face and rapidly moving, and combination of the factors such as pose and illumination variation, pose and expression variation, pose variation and occlusion, illumination and expression variation, expression variation and occlusion. Global measures and local ones are introduced to evaluate performance of tracking under different factors or combination of the factors. The global measures contain the number of images aligned successfully, average alignment error, the number of images aligned before failure, and the local ones contain the number of images aligned successfully for components of a face, average alignment error for the components. To testify performance of tracking for face landmark points under different cases, tests are carried out for image sequences gathered by us. Results show that the LK pyramid optical flow method can implement face landmark point tracking under normalized case, expression variation, illumination variation which does not affect facial details, pose variation, and that different factors or combination of the factors have different effect on performance of alignment for different landmark points.

  18. Eigenanalysis of a neural network for optic flow processing

    International Nuclear Information System (INIS)

    Weber, F; Eichner, H; Borst, A; Cuntz, H

    2008-01-01

    Flies gain information about self-motion during free flight by processing images of the environment moving across their retina. The visual course control center in the brain of the blowfly contains, among others, a population of ten neurons, the so-called vertical system (VS) cells that are mainly sensitive to downward motion. VS cells are assumed to encode information about rotational optic flow induced by self-motion (Krapp and Hengstenberg 1996 Nature 384 463-6). Recent evidence supports a connectivity scheme between the VS cells where neurons with neighboring receptive fields are connected to each other by electrical synapses at the axonal terminals, whereas the boundary neurons in the network are reciprocally coupled via inhibitory synapses (Haag and Borst 2004 Nat. Neurosci. 7 628-34; Farrow et al 2005 J. Neurosci. 25 3985-93; Cuntz et al 2007 Proc. Natl Acad. Sci. USA). Here, we investigate the functional properties of the VS network and its connectivity scheme by reducing a biophysically realistic network to a simplified model, where each cell is represented by a dendritic and axonal compartment only. Eigenanalysis of this model reveals that the whole population of VS cells projects the synaptic input provided from local motion detectors on to its behaviorally relevant components. The two major eigenvectors consist of a horizontal and a slanted line representing the distribution of vertical motion components across the fly's azimuth. They are, thus, ideally suited for reliably encoding translational and rotational whole-field optic flow induced by respective flight maneuvers. The dimensionality reduction compensates for the contrast and texture dependence of the local motion detectors of the correlation-type, which becomes particularly pronounced when confronted with natural images and their highly inhomogeneous contrast distribution

  19. Optimizing oxygenation and intubation conditions during awake fibre-optic intubation using a high-flow nasal oxygen-delivery system.

    Science.gov (United States)

    Badiger, S; John, M; Fearnley, R A; Ahmad, I

    2015-10-01

    Awake fibre-optic intubation is a widely practised technique for anticipated difficult airway management. Despite the administration of supplemental oxygen during the procedure, patients are still at risk of hypoxia because of the effects of sedation, local anaesthesia, procedural complications, and the presence of co-morbidities. Traditionally used oxygen-delivery devices are low flow, and most do not have a sufficient reservoir or allow adequate fresh gas flow to meet the patient's peak inspiratory flow rate, nor provide an adequate fractional inspired oxygen concentration to prevent desaturation should complications arise. A prospective observational study was conducted using a high-flow humidified transnasal oxygen-delivery system during awake fibre-optic intubation in 50 patients with anticipated difficult airways. There were no episodes of desaturation or hypercapnia using the high-flow system, and in all patients the oxygen saturation improved above baseline values, despite one instance of apnoea resulting from over-sedation. All patients reported a comfortable experience using the device. The high-flow nasal oxygen-delivery system improves oxygenation saturation, decreases the risk of desaturation during the procedure, and potentially, optimizes conditions for awake fibre-optic intubation. The soft nasal cannulae uniquely allow continuous oxygenation and simultaneous passage of the fibrescope and tracheal tube. The safety of the procedure may be increased, because any obstruction, hypoventilation, or periods of apnoea that may arise may be tolerated for longer, allowing more time to achieve ventilation in an optimally oxygenated patient. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions.

    Science.gov (United States)

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-10-06

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).

  1. Deflection tomography of a complex flow field based on the visualization of projection array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bin; Miao Zhanli, E-mail: zb-sh@163.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061 (China)

    2011-02-01

    Tomographic techniques are used for the investigation of complex flow fields by means of deflectometric methods. A new deflection tomographic setup for obtaining an array of multidirectional deflectograms is presented. Deflection projections in different angles of view can be captured synchronously in same optical path condition and arranged on the camera in two rows with three views in each row. Tikhonov regularization method is used to reconstruct temperature distribution from deflectometric projection data. The conjugate gradient method is used to compute the regularized solution for the least-square equations. The asymmetric flame temperature distribution in the horizontal section was reconstructed from limited view angle projections. The experimental results of reconstruction from real projection data were satisfactory when compared with the direct thermocouple measurements.

  2. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  3. High flow ceramic pot filters.

    Science.gov (United States)

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Problems of Aero-optics and Adaptive Optical Systems: Analytical Review

    Directory of Open Access Journals (Sweden)

    Yu. I. Shanin

    2017-01-01

    Full Text Available The analytical review gives the basic concepts of the aero-optics problem arising from the radiation propagation in the region of the boundary layers of a laser installation carrier aircraft. Estimates the radiation wave front distortions at its propagation in the near and far field. Presents main calculation approaches and methods to solve the gas-dynamic and optical problems in propagating laser radiation. Conducts a detailed analysis of the flows and their generating optical aberrations introduced by the aircraft turret (a projection platform of the on-board laser. Considers the effect of various factors (shock wave, difference in wall and flow temperatures on the flow pattern and the optical aberrations. Provides research data on the aero-optics obtained in the flying laboratory directly while in flight. Briefly considers the experimental research methods, diagnostic equipment, and synthesis of results while studying the aero-optics problem. Discusses some methods for mitigating the aerodynamic effects on the light propagation under flight conditions. Presents data about the passive, active, and hybrid effects on the flow in the boundary layers in order to reduce aberrations through improving the flow aerodynamics.The paper considers operation of adaptive optical systems under conditions of aero-optical distortions. Presents the study results concerning the reduction of the aero-optics effect on the characteristics of radiation in far field. Gives some research results regarding the effect on the efficiency of the adaptive system of a laser beam jitter and a time delay in the feedback signal transmission, which occur under application conditions. Provides data on adaptive correction of aero-optical wave fronts of radiation. Considers some application aspects in control systems of the on-board adaptive optics of adaptive filtration as a way to improve the efficiency of adaptive optical systems. The project in mind is to use obtained results

  5. Liquid droplet sensing using twisted optical fiber couplers fabricated by hydrofluoric acid flow etching

    Science.gov (United States)

    Son, Gyeongho; Jung, Youngho; Yu, Kyoungsik

    2017-04-01

    We report a directional-coupler-based refractive index sensor and its cost-effective fabrication method using hydrofluoric acid droplet wet-etching and surface-tension-driven liquid flows. The proposed fiber sensor consists of a pair of twisted tapered optical fibers with low excess losses. The fiber cores in the etched microfiber region are exposed to the surrounding medium for efficient interaction with the guided light. We observe that the etching-based low-loss fiber-optic sensors can measure the water droplet volume by detecting the refractive index changes of the surrounding medium around the etched fiber core region.

  6. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-09-01

    Full Text Available An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  7. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    Full Text Available Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC and low and high density polyethylene (LDPE/HDPE, nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD. Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM. The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM. The effect of important parameters such as magnetic parameter Mi, the dilatant constant α, the Pseodoplastic constant β, the radii ratio δ, the pressure gradient Ω, the speed of fiber optics V, and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero. Keywords: Non-Newtonian fluid, Oldroyd 8-constant fluid, MHD flow, Double-layer fiber coating, OHAM, ADM, Wet-on-wet coating process

  8. Selection of regularization parameter for l1-regularized damage detection

    Science.gov (United States)

    Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing

    2018-06-01

    The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.

  9. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    Science.gov (United States)

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  10. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    Science.gov (United States)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  11. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements

    Science.gov (United States)

    Geoghegan, P. H.; Buchmann, N. A.; Spence, C. J. T.; Moore, S.; Jermy, M.

    2012-05-01

    A method for the construction of both rigid and compliant (flexible) transparent flow phantoms of biological flow structures, suitable for PIV and other optical flow methods with refractive-index-matched working fluid is described in detail. Methods for matching the in vivo compliance and elastic wave propagation wavelength are presented. The manipulation of MRI and CT scan data through an investment casting mould is described. A method for the casting of bubble-free phantoms in silicone elastomer is given. The method is applied to fabricate flexible phantoms of the carotid artery (with and without stenosis), the carotid artery bifurcation (idealised and patient-specific) and the human upper airway (nasal cavity). The fidelity of the phantoms to the original scan data is measured, and it is shown that the cross-sectional error is less than 5% for phantoms of simple shape but up to 16% for complex cross-sectional shapes such as the nasal cavity. This error is mainly due to the application of a PVA coating to the inner mould and can be reduced by shrinking the digital model. Sixteen per cent variation in area is less than the natural patient to patient variation of the physiological geometries. The compliance of the phantom walls is controlled within physiologically realistic ranges, by choice of the wall thickness, transmural pressure and Young's modulus of the elastomer. Data for the dependence of Young's modulus on curing temperature are given for Sylgard 184. Data for the temperature dependence of density, viscosity and refractive index of the refractive-index-matched working liquid (i.e. water-glycerol mixtures) are also presented.

  12. Association between optic nerve blood flow and objective examinations in glaucoma patients with generalized enlargement disc type

    Directory of Open Access Journals (Sweden)

    Nakazawa T

    2011-10-01

    Full Text Available Naoki Chiba, Kazuko Omodaka, Yu Yokoyama, Naoko Aizawa, Satoru Tsuda, Masayuki Yasuda, Takaaki Otomo, Shunji Yokokura, Nobuo Fuse, Toru Nakazawa Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan Background: The purpose of this study was to investigate the correlations between microcirculation in the optic disc, average peripapillary retinal nerve fiber layer thickness cupping parameters, and visual field defects in glaucoma patients with the generalized enlargement disc type. Methods: A total of 38 eyes from 38 glaucoma patients with the generalized enlargement disc type were included. The microcirculation of the optic nerve head was examined with laser speckle flow graphy, and the mean blur rate in all areas, in vessel area, and in tissue area were calculated using the laser speckle flow graphy analyzer software. Average peripapillary retinal nerve fiber layer thickness was measured using Stratus optical coherence tomography, and cupping parameters were accessed using the Heidelberg retina tomograph. The mean deviation in the Humphrey field analyzer (30-2 SITA standard was analyzed. The correlation between these parameters was evaluated using the Spearman rank correlation coefficient. Results: The correlation coefficient of mean blur rate in all optic disc area to the average peripapillary retinal nerve fiber layer thickness, vertical C/D, and mean deviation were r = 0.7546 (P < 0.0001, r = –0.6208 (P < 0.0001, and r = 0.6010 (P = 0.0001, respectively. The mean blur rate in tissue area of the optic disc showed r = 0.7305 (P < 0.0001, r = –0.6438 (P < 0.0001, and r = 0.6338 (P < 0.0001. Conclusion: We found that the mean blur rate in the optic disc was significantly correlated with the average peripapillary retinal nerve fiber layer thickness, vertical C/D, and mean deviation in patients with the generalized enlargement disc type of glaucoma. In particular, the mean blur rate in tissue area was more

  13. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    Science.gov (United States)

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-03-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements.

  14. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    Science.gov (United States)

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Symmetry-preserving regularization of wall-bounded turbulent flows

    International Nuclear Information System (INIS)

    Trias, F X; Gorobets, A; Oliva, A; Verstappen, R W C P

    2011-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive term are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces an hyper-viscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. To do so, a new criterion based on the invariants of the local strain tensor is proposed here. Altogether, the proposed method constitutes a parameter-free turbulence model.

  16. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    Directory of Open Access Journals (Sweden)

    Edward Davies

    2014-11-01

    Full Text Available A finite element analysis (FEA model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel.

  17. High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography

    NARCIS (Netherlands)

    van Leeuwen, T. G.; Kulkarni, M. D.; Yazdanfar, S.; Rollins, A. M.; Izatt, J. A.

    1999-01-01

    Color Doppler optical coherence tomography (CDOCT) is capable of precise velocity mapping in turbid media. Previous CDOCT systems based on the short-time Fourier transform have been limited to maximum flow velocities of the order of tens of millimeters per second. We describe a technique, based on

  18. Lung tumor tracking in fluoroscopic video based on optical flow

    International Nuclear Information System (INIS)

    Xu Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied.

  19. Dual-beam optical coherence tomography system for quantification of flow velocity in capillary phantoms

    Science.gov (United States)

    Daly, S. M.; Silien, C.; Leahy, M. J.

    2012-03-01

    The quantification of (blood) flow velocity within the vasculature has potent diagnostic and prognostic potential. Assessment of flow irregularities in the form of increased permeability (micro haemorrhaging), the presence of avascular areas, or conversely the presence of vessels with enlarged or increased tortuosity in the acral regions of the body may provide a means of non-invasive in vivo assessment. If assessment of dermal flow dynamics were performed in a routine manner, the existence and prevalence of ailments such as diabetes mellitus, psoriatic arthritis and Raynaud's condition may be confirmed prior to clinical suspicion. This may prove advantageous in cases wherein the efficacy of a prescribed treatment is dictated by a prompt diagnosis and to alleviate patient discomfort through early detection. Optical Coherence Tomography (OCT) is an imaging modality which utilises the principle of optical interferometry to distinguish between spatial changes in refractive index within the vasculature and thus formulate a multi-dimensional representation of the structure of the epi- and dermal skin layers. The use of the Doppler functionality has been the predominant force for the quantification of moving particles within media, elucidated via estimation of the phase shift in OCT A-scans. However, the theoretical formulation for the assessment of these phase shifts dictates that the angle between the incident light source and the vessel under question be known a priori; this may be achieved via excisional biopsy of the tissue segment in question, but is counter to the non-invasive premise of the OCT technique. To address the issue of angular dependence, an alternate means of estimating absolute flow velocity is presented. The design and development of a dual-beam (db) system incorporating an optical switch mechanism for signal discrimination of two spatially disparate points enabling quasi-simultaneous multiple specimen scanning is described. A crosscorrelation (c

  20. A combined reconstruction-classification method for diffuse optical tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hiltunen, P [Department of Biomedical Engineering and Computational Science, Helsinki University of Technology, PO Box 3310, FI-02015 TKK (Finland); Prince, S J D; Arridge, S [Department of Computer Science, University College London, Gower Street London, WC1E 6B (United Kingdom)], E-mail: petri.hiltunen@tkk.fi, E-mail: s.prince@cs.ucl.ac.uk, E-mail: s.arridge@cs.ucl.ac.uk

    2009-11-07

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.

  1. Study of periodically excited bubbly jets by PIV and double optical sensors

    International Nuclear Information System (INIS)

    Milenkovic, Rade; Sigg, Beat; Yadigaroglu, George

    2005-01-01

    Interactions between large coherent structures and bubbles in two-phase flow can be systematically observed in a periodically excited bubbly jet. Controlled excitation at fixed frequency causes large eddy structures to develop at regular intervals. Thus, interactions between large vortices and bubbles can be studied with PIV and double optical sensors (DOS) using phase-averaging techniques. A number of results on the time and space dependence of velocities and void fractions are presented revealing physical interactions between the liquid flow field and bubble movement as well as feedbacks from bubble agglomeration on the development of flow structures. A clear indication of bubble trapping inside the vortex ring is the generation of a bubble ring that travels with the same velocity as the vortex ring. The DOS results indicate clustering of the bubbles in coherent vortex structures, with a periodic variation of void fraction during the excitation period

  2. Study of periodically excited bubbly jets by PIV and double optical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Milenkovic, Rade [Laboratorium fuer Thermalhydraulics PSI, Paul Scherrer Institut, OVGA 415, CH-5232 Villigen PSI (Switzerland)]. E-mail: rade.milenkovic@psi.ch; Sigg, Beat [Laboratorium fuer Kerntechnik, ETHZ, ETH Zentrum CLT, CH-8092 Zurich (Switzerland); Yadigaroglu, George [Laboratorium fuer Kerntechnik, ETHZ, ETH Zentrum CLT, CH-8092 Zurich (Switzerland)

    2005-12-15

    Interactions between large coherent structures and bubbles in two-phase flow can be systematically observed in a periodically excited bubbly jet. Controlled excitation at fixed frequency causes large eddy structures to develop at regular intervals. Thus, interactions between large vortices and bubbles can be studied with PIV and double optical sensors (DOS) using phase-averaging techniques. A number of results on the time and space dependence of velocities and void fractions are presented revealing physical interactions between the liquid flow field and bubble movement as well as feedbacks from bubble agglomeration on the development of flow structures. A clear indication of bubble trapping inside the vortex ring is the generation of a bubble ring that travels with the same velocity as the vortex ring. The DOS results indicate clustering of the bubbles in coherent vortex structures, with a periodic variation of void fraction during the excitation period.

  3. Evaluation of CNN architectures for gait recognition based on optical flow maps

    OpenAIRE

    Castro, F. M.; Marín-Jiménez, M.J.; Guil, N.; López-Tapia, S.; Pérez de la Blanca, N.

    2017-01-01

    This work targets people identification in video based on the way they walk (\\ie gait) by using deep learning architectures. We explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (\\ie optical flow components). The low number of training samples for each subject and the use of a test set containing subjects different from the training ones makes the search of a good CNN architecture a challenging task. Universidad de Mál...

  4. Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

    Science.gov (United States)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2018-02-01

    All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.

  5. OPTICAL FLOW APPLIED TO TIME-LAPSE IMAGE SERIES TO ESTIMATE GLACIER MOTION IN THE SOUTHERN PATAGONIA ICE FIELD

    Directory of Open Access Journals (Sweden)

    E. Lannutti

    2016-06-01

    Full Text Available In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.

  6. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    International Nuclear Information System (INIS)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro

    2014-01-01

    We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N 2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc. (paper)

  7. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    Science.gov (United States)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro

    2014-07-01

    We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc.

  8. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  9. Mapping Pyroclastic Flow Inundation Using Radar and Optical Satellite Images and Lahar Modeling

    Directory of Open Access Journals (Sweden)

    Chang-Wook Lee

    2018-01-01

    Full Text Available Sinabung volcano, located above the Sumatra subduction of the Indo-Australian plate under the Eurasian plate, became active in 2010 after about 400 years of quiescence. We use ALOS/PALSAR interferometric synthetic aperture radar (InSAR images to measure surface deformation from February 2007 to January 2011. We model the observed preeruption inflation and coeruption deflation using Mogi and prolate spheroid sources to infer volume changes of the magma chamber. We interpret that the inflation was due to magma accumulation in a shallow reservoir beneath Mount Sinabung and attribute the deflation due to magma withdrawal from the shallow reservoir during the eruption as well as thermoelastic compaction of erupted material. The pyroclastic flow extent during the eruption is then derived from the LAHARZ model based on the coeruption volume from InSAR modeling and compared to that derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ image. The pyroclastic flow inundation extents between the two different methods agree at about 86%, suggesting the capability of mapping pyroclastic flow inundation by combing radar and optical imagery as well as flow modeling.

  10. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    International Nuclear Information System (INIS)

    Chen Yunyun; Li Zhenhua; Song Yang; He Anzhi

    2009-01-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  11. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    International Nuclear Information System (INIS)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El

    2008-01-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  12. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan

    2014-01-01

    -state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy......We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV...

  13. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  14. Traveling waves of the regularized short pulse equation

    International Nuclear Information System (INIS)

    Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J

    2014-01-01

    The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)

  15. Evaluation of optic nerve head blood flow in normal rats and a rodent model of non-arteritic ischemic optic neuropathy using laser speckle flowgraphy.

    Science.gov (United States)

    Takako, Hidaka; Hideki, Chuman; Nobuhisa, Nao-I

    2017-10-01

    To evaluate optic nerve head (ONH) blood flow in normal rats and a rodent model of non-arteritic ischemic optic neuropathy (rNAION) in vivo using laser speckle flowgraphy (LSFG). Rats were under general anesthesia; to induce NAION, Rose Bengal (RB) was injected into the tail vein. After the administration of RB, the left ONH was photoactivated using an argon green laser. We measured ONH blood flow in the normal rats and the rNAION group (at 1, 3, 7, 14, and 28 days after the induction of NAION) using an LSFG-Micro. We used the mean blur rate (MBR) of the vessel region (MV) and MBR of the tissue region (MT) as indicators of blood flow. We compared the MBR of the right and left eyes in both the normal rats and the rNAION group. In the normal rats, there were no significant differences in MV or MT between the right and left eyes. In the rNAION group, the MV and MT of the affected eyes were significantly lower than those of the unaffected eyes at all time points. There were significant differences between the left/right MV and MT ratios seen before the induction of NAION and those observed at 1, 3, 7, 14, and 28 days after the induction of NAION. However, there were no significant differences in these parameters among any of post-NAION induction time points. Our results indicated that the ONH blood flow of the rNAION rats fell in the acute and chronic phases.

  16. A regularized vortex-particle mesh method for large eddy simulation

    Science.gov (United States)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  17. Describing chaotic attractors: Regular and perpetual points

    Science.gov (United States)

    Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz

    2018-03-01

    We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.

  18. High performance SDN enabled flat data center network architecture based on scalable and flow-controlled optical switching system

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; Dorren, H.J.S.

    2015-01-01

    We demonstrate a reconfigurable virtual datacenter network by utilizing statistical multiplexing offered by scalable and flow-controlled optical switching system. Results show QoS guarantees by the priority assignment and load balancing for applications in virtual networks.

  19. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  20. Regular expressions cookbook

    CERN Document Server

    Goyvaerts, Jan

    2009-01-01

    This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a

  1. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition

    International Nuclear Information System (INIS)

    Tian Daogui; Sun Licheng; Yan Changqi; Liu Guoqiang

    2013-01-01

    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition, a method was proposed to measure the local parameters by using optical probes under rolling condition in this paper. An experimental investigation of two-phase flow under rolling condition was conducted using the probe fabricated by the authors. It is verified that the probe method is feasible to measure the local parameters in two'-phase flow under rolling condition. The results show that the interfacial parameters distribution near wall region has a distinct periodicity due to the rolling motion. The averaged deviation of the void fraction measured by the probe from that obtained from measured pressure drop is about 8%. (authors)

  2. LL-regular grammars

    NARCIS (Netherlands)

    Nijholt, Antinus

    1980-01-01

    Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular

  3. Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes

    International Nuclear Information System (INIS)

    Schee, Jan; Stuchlík, Zdeněk

    2015-01-01

    We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghost direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region

  4. Stereo Scene Flow for 3D Motion Analysis

    CERN Document Server

    Wedel, Andreas

    2011-01-01

    This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot

  5. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    Science.gov (United States)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  6. Spatiotemporal Super-Resolution Reconstruction Based on Robust Optical Flow and Zernike Moment for Video Sequences

    Directory of Open Access Journals (Sweden)

    Meiyu Liang

    2013-01-01

    Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.

  7. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  8. Tuning the optical properties of RF-PECVD grown μc-Si:H thin films using different hydrogen flow rate

    Science.gov (United States)

    Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud

    2017-07-01

    In this paper we study the effect of H2/SiH4 dilution ratio (R) on the structural and optical properties of hydrogenated microcrystalline silicon embedded in amorphous matrix thin films. The thin films are prepared using standard RF-PECVD process at substrate temperature of 200 °C. The effect of hydrogen dilution ratio on the optical index of refraction and the absorption coefficient were investigated. It was observed that by incorporating higher hydrogen flow rate in the films with low SiH4 concentration, the optical index of refraction can be tuned over a broad range of wavelengths due to the variation of crystalline properties of the produced films. By varying the hydrogen flow of μc-Si:H samples, ∼8% and 12% reduction in the index of refraction at 400 nm and at 1500 nm can be achieved, respectively. In addition a 78% reduction in surface roughness is obtained when 60sccm of H2 is used in the deposition compared to the sample without any H2 incorporation.

  9. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    International Nuclear Information System (INIS)

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-01-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  10. Area PEc Neurons Use a Multiphasic Pattern of Activity to Signal the Spatial Properties of Optic Flow

    Directory of Open Access Journals (Sweden)

    Milena Raffi

    2017-01-01

    Full Text Available The cortical representation of visual perception requires the integration of several-signal processing distributed across many cortical areas, but the neural substrates of such perception are largely unknown. The type of firing pattern exhibited by single neurons is an important indicator of dynamic circuitry within or across cortical areas. Neurons in area PEc are involved in the spatial mapping of the visual field; thus, we sought to analyze the firing pattern of activity of PEc optic flow neurons to shed some light on the cortical processing of visual signals. We quantified the firing activity of 152 optic flow neurons using a spline interpolation function, which allowed determining onset, end, and latency of each neuronal response. We found that many PEc neurons showed multiphasic activity, which is strictly related to the position of the eye and to the position of the focus of expansion (FOE of the flow field. PEc neurons showed a multiphasic activity comprised of excitatory phases interspersed with inhibitory pauses. This phasic pattern seems to be a very efficient way to signal the spatial location of visual stimuli, given that the same neuron sends different firing patterns according to a specific combination of FOE/eye position.

  11. Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and Doppler optical coherence tomography.

    Science.gov (United States)

    Gagnon, Louis; Sakadžić, Sava; Lesage, Fréderic; Mandeville, Emiri T; Fang, Qianqian; Yaseen, Mohammad A; Boas, David A

    2015-01-01

    Computing microvascular cerebral blood flow ([Formula: see text]) in real cortical angiograms is challenging. Here, we investigated whether the use of Doppler optical coherence tomography (DOCT) flow measurements in individual vessel segments can help in reconstructing [Formula: see text] across the entire vasculature of a truncated cortical angiogram. A [Formula: see text] computational framework integrating DOCT measurements is presented. Simulations performed on a synthetic angiogram showed that the addition of DOCT measurements, especially close to large inflowing or outflowing vessels, reduces the impact of pressure boundary conditions and estimated vessel resistances resulting in a more accurate reconstruction of [Formula: see text]. Our technique was then applied to reconstruct microvascular flow distributions in the mouse cortex down to [Formula: see text] by combining two-photon laser scanning microscopy angiography with DOCT.

  12. Sparsity regularization for parameter identification problems

    International Nuclear Information System (INIS)

    Jin, Bangti; Maass, Peter

    2012-01-01

    The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some

  13. Optics equations for aero-optical analysis

    Science.gov (United States)

    Sutton, George W.; Pond, John E.

    2011-05-01

    Aero-optical effects occur around moving air vehicles and impact passive imaging or active systems. The air flow around the vehicle is compressed, and often there is a turbulent shear and/or boundary layer both of which cause variations in the index of refraction. Examples of these are reconnaissance aircraft, the Stratospheric Observatory for Infrared Optics (SOFIA), and optically homing hypersonic interceptors. In other applications, a laser beam can be formed within the vehicle, and projected outward and focused on an object. These include the Airborne Laser Laboratory, Airborne Laser and the Airborne Tactical Laser. There are many compressible fluid mechanics computer programs that can predict the air density distribution of the surrounding flow field including density fluctuations in turbulent shear and/or boundary layers. It is necessary for the physical optics to be used to predict the properties of the ensuing image plane intensity distribution, whether passive or active. These include the time-averaged image blur circle and instantaneous realizations. (Ray tracing is a poor approximation that gives erroneous results for small aberrations.)

  14. Tuple image multi-scale optical flow for detailed cardiac motion extraction: Application to left ventricle rotation analysis

    NARCIS (Netherlands)

    Assen, van H.C.; Florack, L.M.J.; Westenberg, J.J.M.; Haar Romenij, ter B.M.; Hamarneh, G.; Abugharbieh, R.

    2008-01-01

    We present a new method for detailed tracking of cardiac motion based on MR-tagging imaging, multi-scale optical flow, and HARP-like image filtering.In earlier work, we showed that the results obtained with our method correlate very well with Phase Contrast MRI. In this paper we combine the

  15. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  16. An iterative method for Tikhonov regularization with a general linear regularization operator

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.

    2010-01-01

    Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan

  17. Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements

    Science.gov (United States)

    Williams, P. A.; Hadler, J. A.; Cromer, C.; West, J.; Li, X.; Lehman, J. H.

    2018-06-01

    A primary-standard flowing-water optical power meter for measuring multi-kilowatt laser emission has been built and operated. The design and operational details of this primary standard are described, and a full uncertainty analysis is provided covering the measurement range from 1–10 kW with an expanded uncertainty of 1.2%. Validating measurements at 5 kW and 10 kW show agreement with other measurement techniques to within the measurement uncertainty. This work of the U.S. Government is not subject to U.S. copyright.

  18. Experimental investigations on frictional resistance and velocity distribution of rough wall with regularly distributed triangular ribs

    International Nuclear Information System (INIS)

    Motozawa, Masaaki; Ito, Takahiro; Iwamoto, Kaoru; Kawashima, Hideki; Ando, Hirotomo; Senda, Tetsuya; Tsuji, Yoshiyuki; Kawaguchi, Yasuo

    2013-01-01

    Highlights: • Flow over the regularly distributed triangular ribs was investigated. • Simultaneous measurement of flow resistance and velocity profile was performed. • Flow resistance was measured directly and velocity profile was measured by LDV. • Flow resistance was estimated by the information of the velocity field. • Estimated flow resistance has good agreement with the measured flow resistance. -- Abstract: The relationship between the flow resistance of a turbulent flow over triangular ribs regularly distributed on a wall surface and the velocity distribution around the ribs was investigated experimentally. A concentric cylinder device composed of an inner test cylinder and an outer cylinder was employed to measure the flow resistance using the torque of the shaft of the inner cylinder and the velocity distribution of the flow around a rib by laser Doppler velocimetry (LDV) simultaneously. We prepared four inner test cylinders having 4, 8, 12 and 16 triangular ribs on the surface with the same interval between them. Each rib had an isosceles right triangle V-shape and a height of 2 mm. To investigate the relationship between flow resistance and velocity distribution, we estimated the frictional drag and pressure drag acting on the surface of the ribs separately using the velocity distribution. Therefore, we could also estimate the total flow resistance using the velocity distribution. As a result of the experiment, the flow resistance and the attachment point downstream of the rib were shown to depend on the distance between ribs. Moreover, the flow resistance estimated using the velocity distribution had good agreement with the flow resistance measured using the torque of the inner cylinder

  19. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  20. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  1. A novel scalable and low latency hybrid data center network architecture based on flow controlled fast optical switches

    NARCIS (Netherlands)

    Yan, Fulong; Guelbenzu, Gonzalo; Calabretta, Nicola

    2018-01-01

    We present a novel hybrid DCN based on flow-controlled fast optical switches. Results show packet loss < 1.4E-5 and latency < 2.4μs for 100,000 servers (0.3 load). Costs and power consumptions are also compared with current technologies.

  2. Scalable optical quantum computer

    International Nuclear Information System (INIS)

    Manykin, E A; Mel'nichenko, E V

    2014-01-01

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr 3+ , regularly located in the lattice of the orthosilicate (Y 2 SiO 5 ) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  3. Flow-through solid-phase based optical sensor for the multisyringe flow injection trace determination of orthophosphate in waters with chemiluminescence detection

    International Nuclear Information System (INIS)

    Morais, Ines P.A.; Miro, Manuel; Manera, Matias; Estela, Jose Manuel; Cerda, Victor; Souto, M. Renata S.; Rangel, Antonio O.S.S.

    2004-01-01

    In this work, a novel flow-through solid-phase based chemiluminescence (CL) optical sensor is described for the trace determination of orthophosphate in waters exploiting the multisyringe flow injection analysis (MSFIA) concept with multicommutation. The proposed time-based injection flow system relies upon the in-line derivatisation of the analyte with ammonium molybdate in the presence of vanadate, and the transient immobilisation of the resulting heteropolyacid in a N-vinylpyrrolidone/divinylbenzene copolymer packed spiral shape flow-through cell located in front of the window of a photomultiplier tube. The simultaneous injection of well-defined slugs of luminol in alkaline medium and methanol solution towards the packed reactor is afterwards performed by proper switching of the solenoid valves. Then, the light emission from the luminol oxidation by the oxidant species retained onto the sorbent material is readily detected. At the same time, the generated molybdenum-blue compound is eluted by the minute amount of injected methanol, rendering the system prepared for a new measuring cycle. Therefore, the devised sensor enables the integration of the solid-phase CL reaction with elution and detection of the emitted light without the typical drawbacks of the molybdenum-blue based spectrophotometric procedures regarding the excess of molybdate anion, which causes high background signals due to its self-reduction. The noteworthy features of the developed CL-MSFIA system are the feasibility to accommodate reactions with different pH requirements and the ability to determine trace levels of orthophosphate in high silicate content samples (Si/P ratios up to 500). Under the optimised conditions, a dynamic linear range from 5 to 50 μg P l -1 for a 1.8 ml sample, repeatability better than 3.0% and a quantification limit of 4 μg P l -1 were attained. The flowing stream system handles 11 analysis h -1 and has been successfully applied to the determination of trace levels of

  4. Regular Expression Pocket Reference

    CERN Document Server

    Stubblebine, Tony

    2007-01-01

    This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp

  5. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping (abstract)

    Science.gov (United States)

    Rossow, Molly; Mantulin, William M.; Gratton, Enrico

    2009-04-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles-such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  6. Research on target tracking in coal mine based on optical flow method

    Science.gov (United States)

    Xue, Hongye; Xiao, Qingwei

    2015-03-01

    To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.

  7. Flow mapping of multiphase flows using a novel single stem endoscopic particle image velocimetry instrument

    International Nuclear Information System (INIS)

    Lad, N; Adebayo, D; Aroussi, A

    2011-01-01

    Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data

  8. Effect of various nitrogen flow ratios on the optical properties of (Hf:N-DLC films prepared by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Meng Qi

    2017-08-01

    Full Text Available Hf and N co-doped diamond-like carbon [(Hf:N-DLC] films were deposited on 316L stainless steel and glass substrates through reactive magnetron sputtering of hafnium and carbon targets at various nitrogen flow ratios (R=N2/[N2+CH4+Ar]. The effects of chemical composition and crystal structure on the optical properties of the (Hf:N-DLC films were studied. The obtained films consist of uniform HfN nanocrystallines embedded into the DLC matrix. The size of the graphite clusters with sp2 bonds (La and the ID/IG ratio increase to 2.47 nm and 3.37, respectively, with increasing R. The optical band gap of the films decreases from 2.01 eV to 1.84 eV with increasing R. This finding is consistent with the trends of structural transformations and could be related to the increase in the density of π-bonds due to nitrogen incorporation. This paper reports the influence of nitrogen flow ratio on the correlation among the chemical composition, crystal structure, and optical properties of (Hf:N-DLC films.

  9. Laser speckle flowgraphy for differentiating between nonarteritic ischemic optic neuropathy and anterior optic neuritis.

    Science.gov (United States)

    Maekubo, Tomoyuki; Chuman, Hideki; Nao-I, Nobuhisa

    2013-07-01

    The aim of this study was to investigate the usefulness of laser speckle flowgraphy (LSFG) for the differentiation of acute nonarteritic ischemic optic neuropathy (NAION) from anterior optic neuritis (ON). To investigate blood flow in the optic disc under normal conditions, NAION, and anterior ON, we compared the tissue blood flow of the right eye with that of the left eye in the control group, and that of the affected eye with that of the unaffected eye in the NAION and anterior ON groups. In the normal control group, the tissue blood flow did not significantly differ between the right and left eyes. In the NAION group, all 6 patients had decreased optic disc blood flow in the NAION eye when compared with the unaffected eye. By contrast, in the anterior ON group, all 6 patients had increased optic disc blood flow in the anterior ON eye when compared with the unaffected eye. In the NAION group, the mean blur rate (MBR) of the affected eyes was 29.5 % lower than that of the unaffected eyes. In the anterior ON group, the MBR of the affected eyes was 15.9 % higher than that of the unaffected eyes. LSFG could be useful in differentiating between NAION and anterior ON. In addition, this imaging technique saves time and is noninvasive.

  10. Optical multicast system for data center networks.

    Science.gov (United States)

    Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren

    2015-08-24

    We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

  11. Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid of arbitrary optical thickness

    International Nuclear Information System (INIS)

    Bestman, A.R.; Adjepong, S.K.

    1987-11-01

    This paper investigates transient effect on the flow of a thermally radiating and electrically conducting compressible gas in a rotating medium bounded by a vertical flat plate. The transience is provoked by a time dependent perturbation on a constant plate temperature. The problem particularly focusses on an optically thick gas and a gas of arbitrary optical thickness when the difference between the wall and free stream temperatures is small. Analytical results are possible only for limiting values of time and these results are discussed quantitatively. Indeed the assumption of small temperature difference is more appropriate for plates which are opaque rather than transparent. (author). 3 refs

  12. Flow diagnostics using fibre optics

    Indian Academy of Sciences (India)

    hypersonic vehicle with a 2-component fibre-optic strain-gauge balance. ... ment suffers a fall in accuracy to uncomfortable levels (more than 5%) and the measurement .... 15 kW motor with an associated thyristor speed-control system.

  13. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  14. Flow Control

    Science.gov (United States)

    2013-04-08

    can be written as â fj (t) =WO tanh( WIx (t)+bI)+bO, (38) where WI , WO are the input and output matrices, respectively, and bI and bO are the input...applications, present on envisioned airborne optical platforms . One of the problems is that all adaptive optical systems rely on mechanically moving some...of successfully controlling the optical aberration due to the flow over the aperture of airborne optical platforms . As outlined above, systems

  15. A regularization method for solving the Poisson equation for mixed unbounded-periodic domains

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Mølholm Hejlesen, Mads; Walther, Jens Honoré

    2018-01-01

    the regularized unbounded-periodic Green's functions can be implemented in an FFT-based Poisson solver to obtain a convergence rate corresponding to the regularization order of the Green's function. The high order is achieved without any additional computational cost from the conventional FFT-based Poisson solver...... and enables the calculation of the derivative of the solution to the same high order by direct spectral differentiation. We illustrate an application of the FFT-based Poisson solver by using it with a vortex particle mesh method for the approximation of incompressible flow for a problem with a single periodic...

  16. The geometry of continuum regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-03-01

    This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations

  17. Regular expression containment

    DEFF Research Database (Denmark)

    Henglein, Fritz; Nielsen, Lasse

    2011-01-01

    We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...

  18. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  19. Scalable optical quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Manykin, E A; Mel' nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  20. Measurement of the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography: Validation against fractional flow reserve.

    Science.gov (United States)

    Zafar, Haroon; Sharif, Faisal; Leahy, Martin J

    2014-12-01

    The main objective of this study was to assess the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography (FD-OCT). A correlation between fractional flow reserve (FFR) and FD-OCT derived blood flow velocity is also included in this study. A total of 20 coronary stenoses in 15 patients were assessed consecutively by quantitative coronary angiography (QCA), FFR and FD-OCT. A percutaneous coronary intervention (PCI) optimization system was used in this study which combines wireless FFR measurement and FD-OCT imaging in one platform. Stenoses were labelled severe if FFR ≤ 0.8. Blood flow rate and velocity in each stenosis segment were derived from the volumetric analysis of the FD-OCT pull back images. The FFR value was ≤ 0.80 in 5 stenoses (25%). The mean blood flow rate in severe coronary stenosis ( n  = 5) was 2.54 ± 0.55 ml/s as compared to 4.81 ± 1.95 ml/s in stenosis with FFR > 0.8 ( n  = 15). A good and significant correlation between FFR and FD-OCT blood flow velocity in coronary artery stenosis ( r  = 0.74, p  < 0.001) was found. The assessment of stenosis severity using FD-OCT derived blood flow rate and velocity has the ability to overcome many limitations of QCA and intravascular ultrasound (IVUS).

  1. Changes in Retinal and Choroidal Vascular Blood Flow after Oral Sildenafil: An Optical Coherence Tomography Angiography Study

    Directory of Open Access Journals (Sweden)

    David Berrones

    2017-01-01

    Full Text Available Purpose. To describe changes in the retina and choroidal flow by optical coherence tomography angiography (OCT-A after a single dose of oral sildenafil. Method. A case-control study. Patients in the study group received 50 mg of oral sildenafil. Patients in the control group received a sham pill. Retinal and choroidal images were obtained at baseline (before pill ingestion and 1 hour after ingestion. Central macular and choroidal thickness, choroidal and outer retina flow, and the retinal and choroidal vascular density were compared using a Mann-Whitney U test. Results. Twenty eyes were enrolled into the study group and 10 eyes in the control group. There was a significant difference in central choroidal thickness and outer retina blood flow between groups after 1 hour of sildenafil ingestion (p<0.01. There were no differences in central macular thickness, choroidal flow, and retinal vascular density among groups. Conclusions. A single dose of oral sildenafil increases choroidal thickness, probably due to sildenafil-induced vasodilation.

  2. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  3. Regularization by External Variables

    DEFF Research Database (Denmark)

    Bossolini, Elena; Edwards, R.; Glendinning, P. A.

    2016-01-01

    Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...

  4. Sensory stimulation for lowering intraocular pressure, improving blood flow to the optic nerve and neuroprotection in primary open-angle glaucoma.

    Science.gov (United States)

    Rom, Edith

    2013-12-01

    Primary open-angle glaucoma is a group of optic neuropathies that can lead to irreversible blindness. Sensory stimulation in the form of acupuncture or ear acupressure may contribute to protecting patients from blindness when used as a complementary method to orthodox treatment in the form of drops, laser or surgery. The objective of this article is to provide a narrative overview of the available literature up to July 2012. It summarises reported evidence on the potential beneficial effects of sensory stimulation for glaucoma. Sensory stimulation appears to significantly enhance the pressure-lowering effect of orthodox treatments. Studies suggest that it may also improve blood flow to the eye and optic nerve head. Furthermore, it may play a role in neuroprotection through regulating nerve growth factor and brain-derived neurotrophic factor and their receptors, thereby encouraging the survival pathway in contrast to the pathway to apoptosis. Blood flow and neuroprotection are areas that are not directly influenced by orthodox treatment modalities. Numerous different treatment protocols were used to investigate the effect of sensory stimulation on intraocular pressure, blood flow or neuroprotection of the retina and optic nerve in the animal model and human pilot studies. Objective outcomes were reported to have been evaluated with Goldmann tonometry, Doppler ultrasound techniques and electrophysiology (pattern electroretinography, visually evoked potentials), and supported with histological studies in the animal model. Taken together, reported evidence from these studies strongly suggests that sensory stimulation is worthy of further research.

  5. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  6. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    Science.gov (United States)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be

  7. Regular Single Valued Neutrosophic Hypergraphs

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Malik

    2016-12-01

    Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.

  8. Properties of regular polygons of coupled microring resonators.

    Science.gov (United States)

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2007-11-01

    The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

  9. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  10. Fluidic optics

    Science.gov (United States)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  11. Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes

    Science.gov (United States)

    Bond, Tiziana C.; Letant, Sonia E.

    2014-09-09

    Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

  12. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters.

    Science.gov (United States)

    Shah, Kamal G; Singh, Vidhi; Kauffman, Peter C; Abe, Koji; Yager, Paul

    2018-05-14

    Paper-based diagnostic tests based on the lateral flow immunoassay concept promise low-cost, point-of-care detection of infectious diseases, but such assays suffer from poor limits of detection. One factor that contributes to poor analytical performance is a reliance on low-contrast chromophoric optical labels such as gold nanoparticles. Previous attempts to improve the sensitivity of paper-based diagnostics include replacing chromophoric labels with enzymes, fluorophores, or phosphors at the expense of increased fluidic complexity or the need for device readers with costly optoelectronics. Several groups, including our own, have proposed mobile phones as suitable point-of-care readers due to their low cost, ease of use, and ubiquity. However, extant mobile phone fluorescence readers require costly optical filters and were typically validated with only one camera sensor module, which is inappropriate for potential point-of-care use. In response, we propose to couple low-cost ultraviolet light-emitting diodes with long Stokes-shift quantum dots to enable ratiometric mobile phone fluorescence measurements without optical filters. Ratiometric imaging with unmodified smartphone cameras improves the contrast and attenuates the impact of excitation intensity variability by 15×. Practical application was shown with a lateral flow immunoassay for influenza A with nucleoproteins spiked into simulated nasal matrix. Limits of detection of 1.5 and 2.6 fmol were attained on two mobile phones, which are comparable to a gel imager (1.9 fmol), 10× better than imaging gold nanoparticles on a scanner (18 fmol), and >2 orders of magnitude better than gold nanoparticle-labeled assays imaged with mobile phones. Use of the proposed filter-free mobile phone imaging scheme is a first step toward enabling a new generation of highly sensitive, point-of-care fluorescence assays.

  13. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU

  14. Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction

    Science.gov (United States)

    Aarts, Fides; Jonsson, Bengt; Uijen, Johan

    In order to facilitate model-based verification and validation, effort is underway to develop techniques for generating models of communication system components from observations of their external behavior. Most previous such work has employed regular inference techniques which generate modest-size finite-state models. They typically suppress parameters of messages, although these have a significant impact on control flow in many communication protocols. We present a framework, which adapts regular inference to include data parameters in messages and states for generating components with large or infinite message alphabets. A main idea is to adapt the framework of predicate abstraction, successfully used in formal verification. Since we are in a black-box setting, the abstraction must be supplied externally, using information about how the component manages data parameters. We have implemented our techniques by connecting the LearnLib tool for regular inference with the protocol simulator ns-2, and generated a model of the SIP component as implemented in ns-2.

  15. On a correspondence between regular and non-regular operator monotone functions

    DEFF Research Database (Denmark)

    Gibilisco, P.; Hansen, Frank; Isola, T.

    2009-01-01

    We prove the existence of a bijection between the regular and the non-regular operator monotone functions satisfying a certain functional equation. As an application we give a new proof of the operator monotonicity of certain functions related to the Wigner-Yanase-Dyson skew information....

  16. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    International Nuclear Information System (INIS)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length

  17. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    Science.gov (United States)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  18. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  19. Stochastic analytic regularization

    International Nuclear Information System (INIS)

    Alfaro, J.

    1984-07-01

    Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)

  20. Combined application of ultrasonic waves, magnetic fields and optical flow in the rehabilitation of patients and disabled people

    OpenAIRE

    Chukhraiev, N.; Vladimirov, A.; Vilcahuaman, L.; Zukow, W.; Samosyuk, N.; Chukhraieva, E.; Butskaya, L.

    2016-01-01

    SHUPYK NATIONAL MEDICAL ACADEMY OF POSTGRADUATE EDUCATION PONTIFICAL CATHOLIC UNIVERSITY OF PERU RADOM UNIVERSITY SCM «MEDICAL INNOVATIVE TECHNOLOGIES» Chukhraiev N., Vladimirov А., Vilcahuamаn L., Zukow W., Samosyuk N., Chukhraieva E., Butskaya L. COMBINED APPLICATION OF ULTRASONIC WAVES, MAGNETIC FIELDS AND OPTICAL FLOW IN THE REHABILITATION OF PATIENTS AND DISABLED PEOPLE Edited by Chukh...

  1. Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system

    International Nuclear Information System (INIS)

    Han, B.X.; Reden, K.F. von; Roberts, M.L.; Schneider, R.J.; Hayes, J.M.; Jenkins, W.J.

    2007-01-01

    A continuous-flow 14 C AMS (CFAMS) system is under construction at the NOSAMS facility. This system is based on a NEC Model 1.5SDH-1 0.5 MV Pelletron accelerator and will utilize a combination of a microwave ion source (MIS) and a charge exchange canal (CXC) to produce negative carbon ions from a continuously flowing stream of CO 2 gas. For high-efficiency transmission of the large emittance, large energy-spread beam from the ion source unit, a large-acceptance and energy-achromatic injector consisting of a 45 o electrostatic spherical analyzer (ESA) and a 90 o double-focusing magnet has been designed. The 45 o ESA is rotatable to accommodate a 134-sample MC-SNICS as a second ion source. The high-energy achromat (90 o double focusing magnet and 90 o ESA) has also been customized for large acceptance. Electromagnetic field modeling and ion optics calculations of the beamline were done with Infolytica MagNet, ElecNet, and Trajectory Evaluator. PBGUNS and SIMION were used for the modeling of ion source unit

  2. Heat flow method

    International Nuclear Information System (INIS)

    Chen Yunmei

    1994-01-01

    In this paper we study the heat flow of harmonic maps between two compact Riemannian manifolds. The global existence of the regular solution and the weak solution, as well as the blow up of the weak solution are discussed. (author). 14 refs

  3. Reproducibility of Perfusion Parameters of Optic Disc and Macula in Rhesus Monkeys by Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Li, Jing; Yang, Yi-Quan; Yang, Di-Ya; Liu, Xiang-Xiang; Sun, Yun-Xiao; Wei, Shi-Fei; Wang, Ning-Li

    2016-05-05

    Optical coherence tomography (OCT) angiography is a novel technique by which we can detect the local perfusion of fundus directly. The aim of this study was to evaluate the reproducibility of optic disc and macular flow perfusion parameters in rhesus monkeys using OCT angiography. Eighteen healthy monkeys (18 eyes) were subjected to optic disc and macula flow index measurements via a high-speed and high-resolution spectral-domain OCT XR Avanti with a split-spectrum amplitude de-correlation angiography algorithm. Right eye was imaged 3 times during the first examination and once during each of the two following examinations. The intra-visit and inter-visit intraclass correlation coefficients (ICCs) were both determined. The average flow indices of the four optic disc area layers were 0.171 ± 0.009 (optic nerve head), 0.015 ± 0.004 (vitreous), 0.052 ± 0.009 (radial peripapillary capillary), and 0.167 ± 0.011 (choroid). Average flow indices of the four macula area layers were 0.044 ± 0.011 (superficial retina), 0.036 ± 0.011 (deep retina), 0.016 ± 0.009 (outer retina), and 0.155 ± 0.013 (choroid). Intra-visit (ICC value: 0.821-0.954) and inter-visit (ICC value: 0.844-0.899) repeatability were both high. The study is about the reproducibility of optic disc and macular perfusion parameters as measured by OCT angiography in healthy rhesus monkeys. Flow index measurement reproducibility is high for both the optic disc and macula of normal monkey eyes. OCT angiography might be a useful technique to assess changes when examining monkeys with experimental ocular diseases.

  4. Changing image of correlation optics: introduction.

    Science.gov (United States)

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  5. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C...

  6. Fast optical measurements and imaging of flow mixing: Fast optical measurements and imaging of temperature in combined fossil fuel and biomass/waste systems

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik; Fateev, A.; Lindorff Nielsen, K.; Evseev, V.

    2012-02-15

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. Fast time-and spectral-resolved measurements in 1.5-5.1 mu spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H{sub 2}O, CH{sub 4}, CO{sub 2}, CO) which is one of the key parameters in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel distribustion. The applicability of the system for gas leak detection is also demonstrated. The infrared spectrometer system with minor developments was applied for fast time-resolved exhaust gas temperature measurements performed simultaneously at the three optical ports of the exhaust duct of a marine Diesel engine and visualisation of gas flow behaviour in cylinder. (Author)

  7. The heat-transfer performance of gas—solid trickle flow over a regularly stacked packing

    NARCIS (Netherlands)

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    The heat-transfer behaviour of a countercurrent gas—solid trickle flow contactor is studied, using coarse sand particles as the solids phase. Experimental data on the overall heat-transfer rate constant between the gas flow and the solid particle flow were obtained in a 0.15 m square cross-section

  8. Effective field theory dimensional regularization

    International Nuclear Information System (INIS)

    Lehmann, Dirk; Prezeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed

  9. Effective field theory dimensional regularization

    Science.gov (United States)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  10. On the K-term and dispersion ratios of semi-regular variables

    International Nuclear Information System (INIS)

    Aslan, Z.

    1981-01-01

    Optical velocities of semi-regular (SR) and irregular (Lb) variables are analysed for a K-term. There is evidence for a dependence upon stellar period. Absorption lines in shorter period non-emission SR variables are blue-shifted relative to the centre-of-mass velocity by about 6 +- 3 km s -1 . Emission-line SR variables give a non-negative absorption K-term and Lb variables give no K-terms other than zero. Comparison is made with the K-terms implied by the OH velocity pattern in long-period variables. Dispersion ratios are also calculated. (author)

  11. Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)

    2008-08-15

    During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)

  12. Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques

    International Nuclear Information System (INIS)

    Lemaitre, P.; Porcheron, E.

    2008-01-01

    During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B M , which is useful in describing heat transfer associated with two-phase flow. (orig.)

  13. Hierarchical regular small-world networks

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan

    2008-01-01

    Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)

  14. High throughput analysis of samples in flowing liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, W. Patrick (Los Alamos, NM); Grace, W. Kevin (Los Alamos, NM); Goodwin, Peter M. (Los Alamos, NM); Jett, James H. (Los Alamos, NM); Orden, Alan Van (Fort Collins, CO); Keller, Richard A. (White Rock, NM)

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  15. The flow of two zinc oxide-eugenol-based endodontic sealers

    Directory of Open Access Journals (Sweden)

    Ilić Dragan V.

    2013-01-01

    Full Text Available Background/Aim. Endodontic sealers (ES for obturation are usually prepared with a slight variation of their components both on purpose or unintentionally. Considering that fact, as well as a frequent use of compaction techniques with the applied force to gutta-percha and ES of 1-3 kg, the aim of this study was to investigate the flow of two zinc-oxide eugenol ES in regard to the applied force and a variation of sealer’s components. Methods. The experimental group samples of both ES were prepared according to the manufacturer’s instructions, applied between pair of glass slabs and loaded by weights of 1 and 2 kg, respectively (American National Standard, Specification No. 57. Some samples of one ES were prepared as thick consistency with 10% more powder and some as thin mixture with 10% less powder than the standard prescription. These semples had been exposed to the load of 2 kg. The control group included samples of both ES prepared as standard prescription but exposed to the weight of one glass slab only. The spread ES appeared as a regular circle 10 min upon mixing and weighting. Measuring of the circle diameter was done by an orthodontic ruler. The flow of the used ES was considered the function of its spread diameter. Results. Application of 1 vs 2 kg load for both regularly mixed sealers in the scope of disk diameter (flow was statistically insignificant (p > 0.05. This means that the stated null hypothesis that there would be no significant difference in flow rate among the regularly mixed sealers at the level of α = 0.05 is accepted. The findings about difference in the disk diameter in regard to mixing variation of Endomethasone indicate that the null hypothesis that there would be no significant difference in flow rate between the regular and thick mixed mass at the level of α = 0.05 is accepted. In the comparison of regular and thin mix a significant difference was noted and the null hypotesis is rejected (p < 0.01. The control

  16. 75 FR 76006 - Regular Meeting

    Science.gov (United States)

    2010-12-07

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...

  17. General inverse problems for regular variation

    DEFF Research Database (Denmark)

    Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan

    2014-01-01

    Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...

  18. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Science.gov (United States)

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  19. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    Science.gov (United States)

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  20. Mechanism of magnetic liquid flowing in the magnetic liquid seal gap of reciprocating shaft

    Science.gov (United States)

    Li, Decai; Xu, Haiping; He, Xinzhi; Lan, Huiqing

    2005-03-01

    In order to solve the problems that exist in the magnetic liquid seal of reciprocating shaft, we have set up an experimental facility, which composes a camera, microscope, step-by-step motor, pin roller screw, reciprocating motion shaft, pole pieces, permanent magnet and the magnetic liquid in the seal gap. Through the optical technology and image process of the experimental facility, we have studied the magnetic liquid flow in the seal gap when the reciprocating shaft moves with different velocities and strokes. This study specially concentrates on: (1) the regular pattern of such flow; (2) the loss quantity of magnetic liquid caused by the reciprocating motion shaft; (3) the failure reasons of this magnetic liquid seal; and (4) the design of a new structure for the magnetic liquid seal of reciprocating shaft. The application indicates that the new structure is very effective in some occasions. The new structure was accepted as the state patent in 2001 and authenticated as the achievement in the scientific research in 2002.

  1. Mechanism of magnetic liquid flowing in the magnetic liquid seal gap of reciprocating shaft

    International Nuclear Information System (INIS)

    Li Decai; Xu Haiping; He Xinzhi; Lan Huiqing

    2005-01-01

    In order to solve the problems that exist in the magnetic liquid seal of reciprocating shaft, we have set up an experimental facility, which composes a camera, microscope, step-by-step motor, pin roller screw, reciprocating motion shaft, pole pieces, permanent magnet and the magnetic liquid in the seal gap. Through the optical technology and image process of the experimental facility, we have studied the magnetic liquid flow in the seal gap when the reciprocating shaft moves with different velocities and strokes. This study specially concentrates on: (1) the regular pattern of such flow; (2) the loss quantity of magnetic liquid caused by the reciprocating motion shaft; (3) the failure reasons of this magnetic liquid seal; and (4) the design of a new structure for the magnetic liquid seal of reciprocating shaft. The application indicates that the new structure is very effective in some occasions. The new structure was accepted as the state patent in 2001 and authenticated as the achievement in the scientific research in 2002

  2. 2. Basis of measurement of plasma flow. 2.3 Plasma flow measurements. Spectroscopic methods

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2007-01-01

    The construction of optical system, optical fiber incident system, reciprocal linear dispersion, grating smile and astigmatism of the reflection plane diffraction grating spectrometer are explained in order to measure the plasma flow. The specification of flow measurement and evaluation of 0 point of velocity are stated. For examples of measurements, the fine structures of He II (Δn = 3 - 4) in material and plasma(MAP)-II of Tokyo University, plasma flow measurement by the charge exchange recombination spectroscopy using Large Helical Device and by Zeeman spectroscopy using TRIAM-1M tokamak plasma are stated. (S.Y.)

  3. Continuum-regularized quantum gravity

    International Nuclear Information System (INIS)

    Chan Huesum; Halpern, M.B.

    1987-01-01

    The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)

  4. Improved Optical Flow Algorithm for a Intelligent Traffic Tracking System

    Directory of Open Access Journals (Sweden)

    Xia Yupeng

    2013-05-01

    Full Text Available It is known that to get the contours and segmentations of moving cars is the essential step of image processing in intelligent traffic tracking systems. As an effective way, the optical flow algorithm is widely used for this kind of applications. But in traditional gradient-based approaches, in order to make the data responding to the edges of moving objects expand to the area, which gray level is flat, it needs to keep the iteration times large enough. It takes a large amount of calculation time, and the accuracy of the result is not as good as expected. In order to improve the numerical reliability of image gradient data, Hessian matrix distinguishing, Gaussian filtering standard deviation amending, mean model amending and multi-image comparing, the four algorithms were investigated by applying them to track moving objects. From the experimental results, it is shown that both the calculation convergence speed and accuracy of our methods have greatly improved comparing with traditional algorithms, the feasibility and validity of those methods were confirmed.

  5. Experiencing flow in a workplace physical activity intervention for female health care workers

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Barene, Svein; Strahler, Katharina

    2016-01-01

    and adherence to regular physical activity 18 weeks after the end of the intervention was found. Furthermore, repeated measures throughout the intervention period showed a significantly different development of flow values over time for the adherers and nonadherers. Flow therefore may be of importance...... for adherence to regular workplace physical activity. Future research needs to investigate the importance of flow in other physical activity settings, especially also for male participants.......Flow is a rewarding psychological state that motivates individuals to repeat activities. This study explored healthcare workers’ flow experiences during a workplace exercise intervention. Seventy-nine females were assigned to either a 12-week football or Zumba exercise intervention and their flow...

  6. Online co-regularized algorithms

    NARCIS (Netherlands)

    Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.

    2012-01-01

    We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks

  7. Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model

    NARCIS (Netherlands)

    Hulscher, Suzanne J.M.H.

    1996-01-01

    The three-dimensional model presented in this paper is used to study how tidal currents form wave-like bottom patterns. Inclusion of vertical flow structure turns out to be necessary to describe the formation, or absence, of all known large-scale regular bottom features. The tide and topography are

  8. Imaging optical probe for pressurized steam-water environment

    International Nuclear Information System (INIS)

    Donaldson, M.R.; Pulfrey, R.E.

    1979-01-01

    An air-cooled imaging optical probe, with an outside diameter of 25.4 mm, has been developed to provide high resolution viewing of flow regimes in a steam-water environment at 343 0 C and 15.2 MPa. The design study considered a 3-m length probe. A 0.3-m length probe prototype was fabricated and tested. The optical probe consists of a 3.5-mm diameter optics train surrounded by two coaxial coolant flow channels and two coaxial insulating dead air spaces. With air flowing through the probe at 5.7 g/s, thermal analysis shows that no part of the optics train will exceed 93 0 C when a 3-m length probe is immersed in a 343 0 C environment. Computer stress analysis plus actual tests show that the probe can operate successfully with conservative safety factors. The imaging optical probe was tested five times in the design environment at the semiscale facility at the INEL. Two-phase flow regimes in the high temperature, high pressure, steam-water blowdown and reflood experiments were recorded on video tape for the first time with the imaging optical probe

  9. Geometric continuum regularization of quantum field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  10. Retrobulbar blood flow and visual organ function disturbance in the course of giant cell arteritis coexisting with optic disc drusen – a case repor

    Directory of Open Access Journals (Sweden)

    Monika Modrzejewska

    2013-09-01

    Full Text Available The review presented ophthalmologic syndrome connected with visual organ function disorder in giant cell arteritis patient concomitant with optic nerve disc drusen. Diagnostic difficulties were shown in relation to incidence of both similar ophthalmic symptoms as well as interpretation of specialists examinations results (pattern visual evoked potential test, scanning laser polarimetry, and perimetric tests – kinetic and static. Apart from ophthalmic investigations, significant role of radiological examinations was considered, especially color Doppler ultrasonography of retrobulbar circulation – optic artery, central retinal artery, long posterior ciliary arteries. Adequate interpretation of results seems to be crucial to establish scheme and timing of treatment in case of co-occurrence of the abovementioned disorders. In the presented case early implementation of steroid therapy resulted in improvement of blood flow parameters and the regression of ophthalmological complaints. Visual field deficiency in kinetic perimetry, reduced wave amplitude p100 in visual evoked potential test as well as decrease in number of optic nerve fibers in optic nerve disc region in scanning laser polarimetry exam can be diagnostic features in diagnosis of visual impairment in the course of giant cell arteritis and optic nerve disc drusen. Evaluation of blood flow velocity parameters in retrobulbar arteries in color Doppler ultrasonography is the most valuable screening in monitoring ophthalmic dysregulation in presented disorders.

  11. Bypassing the Limits of Ll Regularization: Convex Sparse Signal Processing Using Non-Convex Regularization

    Science.gov (United States)

    Parekh, Ankit

    Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal

  12. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    Science.gov (United States)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  13. Using Tikhonov Regularization for Spatial Projections from CSR Regularized Spherical Harmonic GRACE Solutions

    Science.gov (United States)

    Save, H.; Bettadpur, S. V.

    2013-12-01

    It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.

  14. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  15. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  16. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  17. Optical vortex metrology: Are phase singularities foes or friends in optical metrology?

    DEFF Research Database (Denmark)

    Takeda, M.; Wang, W.; Hanson, Steen Grüner

    2008-01-01

    We raise an issue whether phase singularities are foes or friends in optical metrology, and give an answer by introducing the principle and applications of a new technique which we recently proposed for displacement and flow measurements. The technique is called optical vortex metrology because i...

  18. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A [Duke University Medical Center, Durham, NC (United States); Ge, Y [University of North Carolina at Charlotte, Charlotte, NC (United States)

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  19. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    International Nuclear Information System (INIS)

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-01-01

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  20. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  1. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  2. Effects of single-walled carbon nanotubes on the optical and photo-conductive properties of their composite films with regio-regular poly(3-hexylthiophene)

    International Nuclear Information System (INIS)

    Bakour, Anass; Geschier, Frédéric; Baitoul, Mimouna; Mbarek, Mohamed; El-Hadj, Karim; Duvail, Jean-Luc; Lefrant, Serge; Faulques, Eric; Massuyeau, Florian; Wery-Venturini, Jany

    2014-01-01

    The effect of a small admixture of single-walled carbon nanotubes (SWNTs) HiPCO (high pressure carbon monoxide) (from 0.5 to 2 wt%) on the supramolecular structure in regio-regular poly(3-hexylthiophene) (RR-P3HT) thin films is studied and their optical and photoconductivity properties are investigated. It is demonstrated that the presence of such small amounts of nanotubes improves the structural organization in the films as evidenced by X-ray diffraction (XRD) studies. This is confirmed by UV–visible optical absorption investigations which clearly show a better conjugation of P3HT in the presence of nanotubes. In Raman spectra of composites, changes in intensities and frequencies of the radial breathing modes are observed upon addition of nanotubes. This can be rationalized by a modification of the resonance conditions caused by a selective dispersion and wrapping of SWNTs via π-interaction (π-stacking). As a consequence of these interactions, a dramatic photoluminescence (PL) quenching is observed which becomes more and more pronounced with increasing the nanotube content. This implies a fast photo-induced electron transfer favoured by a large area of the SWNTs/P3HT interface and strong interactions between these two components. An increase in the composite photocurrent by at least one-order of magnitude, as compared to the case of pure P3HT film, is the most pronounced effect of this electron transfer. These two effects are of crucial importance for the application of the investigated composites in bulk hetero-junction photovoltaic cells (BHJPCs) and organic photo-detectors (OPDs). - Highlights: • Optical properties of single-walled carbon nanotubes/P3HT films are investigated. • The insertion of SWNTs leads to an improvement of structural organization. • Composite films shows photoluminescence quenching at low SWNTs concentration. • Existence of a fast photo-induced electron transfer between SWNTs and P3HT. • These two effects are of crucial

  3. Effects of single-walled carbon nanotubes on the optical and photo-conductive properties of their composite films with regio-regular poly(3-hexylthiophene)

    Energy Technology Data Exchange (ETDEWEB)

    Bakour, Anass [University Sidi Mohammed Ben Abdellah, Faculty of Sciences, Dhar El Mahraz, Laboratory of Solid State Physics, Group Polymers and Nanomaterials, PO Box 1796, Atlas, Fes 30000 (Morocco); Geschier, Frédéric [Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, UMR 6502, 2 rue de la Houssinière, PO Box 3229, 44322 Nantes cedex (France); Baitoul, Mimouna, E-mail: baitoul@yahoo.fr [University Sidi Mohammed Ben Abdellah, Faculty of Sciences, Dhar El Mahraz, Laboratory of Solid State Physics, Group Polymers and Nanomaterials, PO Box 1796, Atlas, Fes 30000 (Morocco); Mbarek, Mohamed [Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, UMR 6502, 2 rue de la Houssinière, PO Box 3229, 44322 Nantes cedex (France); Unité de Recherche, Matériaux Nouveaux et Dispositifs Electroniques Organiques, Faculté des Sciences, Université de Monastir, 5000 Monastir (Tunisia); El-Hadj, Karim; Duvail, Jean-Luc; Lefrant, Serge; Faulques, Eric; Massuyeau, Florian; Wery-Venturini, Jany [Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, UMR 6502, 2 rue de la Houssinière, PO Box 3229, 44322 Nantes cedex (France)

    2014-02-14

    The effect of a small admixture of single-walled carbon nanotubes (SWNTs) HiPCO (high pressure carbon monoxide) (from 0.5 to 2 wt%) on the supramolecular structure in regio-regular poly(3-hexylthiophene) (RR-P3HT) thin films is studied and their optical and photoconductivity properties are investigated. It is demonstrated that the presence of such small amounts of nanotubes improves the structural organization in the films as evidenced by X-ray diffraction (XRD) studies. This is confirmed by UV–visible optical absorption investigations which clearly show a better conjugation of P3HT in the presence of nanotubes. In Raman spectra of composites, changes in intensities and frequencies of the radial breathing modes are observed upon addition of nanotubes. This can be rationalized by a modification of the resonance conditions caused by a selective dispersion and wrapping of SWNTs via π-interaction (π-stacking). As a consequence of these interactions, a dramatic photoluminescence (PL) quenching is observed which becomes more and more pronounced with increasing the nanotube content. This implies a fast photo-induced electron transfer favoured by a large area of the SWNTs/P3HT interface and strong interactions between these two components. An increase in the composite photocurrent by at least one-order of magnitude, as compared to the case of pure P3HT film, is the most pronounced effect of this electron transfer. These two effects are of crucial importance for the application of the investigated composites in bulk hetero-junction photovoltaic cells (BHJPCs) and organic photo-detectors (OPDs). - Highlights: • Optical properties of single-walled carbon nanotubes/P3HT films are investigated. • The insertion of SWNTs leads to an improvement of structural organization. • Composite films shows photoluminescence quenching at low SWNTs concentration. • Existence of a fast photo-induced electron transfer between SWNTs and P3HT. • These two effects are of crucial

  4. Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gigault, Julien [National Institute of Standards and Technology, Material Measurement Laboratory, 100 Bureau Drive Stop 8520, Gaithersburg, MD 20899-8520 (United States); Hackley, Vincent A., E-mail: vince.hackley@nist.gov [National Institute of Standards and Technology, Material Measurement Laboratory, 100 Bureau Drive Stop 8520, Gaithersburg, MD 20899-8520 (United States)

    2013-02-06

    Highlights: ► Isotopically modified and unmodified AgNPs characterization by A4F-DAD-MALS–DLS-ICP-MS. ► Size-resolved characterization and speciation in simple or complex media. ► Capacity to detect stable isotope enriched AgNPs in a standard estuarine sediment. ► New opportunities to monitor and study fate and transformations of AgNPs. -- Abstract: The principal objective of this work was to develop and demonstrate a new methodology for silver nanoparticle (AgNP) detection and characterization based on asymmetric-flow field flow fractionation (A4F) coupled on-line to multiple detectors and using stable isotopes of Ag. This analytical approach opens the door to address many relevant scientific challenges concerning the transport and fate of nanomaterials in natural systems. We show that A4F must be optimized in order to effectively fractionate AgNPs and larger colloidal Ag particles. With the optimized method one can accurately determine the size, stability and optical properties of AgNPs and their agglomerates under variable conditions. In this investigation, we couple A4F to optical absorbance (UV–vis spectrometer) and scattering detectors (static and dynamic) and to an inductively coupled plasma mass spectrometer. With this combination of detection modes it is possible to determine the mass isotopic signature of AgNPs as a function of their size and optical properties, providing specificity necessary for tracing and differentiating labeled AgNPs from their naturally occurring or anthropogenic analogs. The methodology was then applied to standard estuarine sediment by doping the suspension with a known quantity of isotopically enriched {sup 109}AgNPs stabilized by natural organic matter (standard humic and fulvic acids). The mass signature of the isotopically enriched AgNPs was recorded as a function of the measured particle size. We observed that AgNPs interact with different particulate components of the sediment, and also self-associate to form

  5. Automatic analysis of ciliary beat frequency using optical flow

    Science.gov (United States)

    Figl, Michael; Lechner, Manuel; Werther, Tobias; Horak, Fritz; Hummel, Johann; Birkfellner, Wolfgang

    2012-02-01

    Ciliary beat frequency (CBF) can be a useful parameter for diagnosis of several diseases, as e.g. primary ciliary dyskinesia. (PCD). CBF computation is usually done using manual evaluation of high speed video sequences, a tedious, observer dependent, and not very accurate procedure. We used the OpenCV's pyramidal implementation of the Lukas-Kanade algorithm for optical flow computation and applied this to certain objects to follow the movements. The objects were chosen by their contrast applying the corner detection by Shi and Tomasi. Discrimination between background/noise and cilia by a frequency histogram allowed to compute the CBF. Frequency analysis was done using the Fourier transform in matlab. The correct number of Fourier summands was found by the slope in an approximation curve. The method showed to be usable to distinguish between healthy and diseased samples. However there remain difficulties in automatically identifying the cilia, and also in finding enough high contrast cilia in the image. Furthermore the some of the higher contrast cilia are lost (and sometimes found) by the method, an easy way to distinguish the correct sub-path of a point's path have yet to be found in the case where the slope methods doesn't work.

  6. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    Science.gov (United States)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  7. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  8. Image degradation characteristics and restoration based on regularization for diffractive imaging

    Science.gov (United States)

    Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun

    2017-11-01

    The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.

  9. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    Science.gov (United States)

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  10. Regularities of Multifractal Measures

    Indian Academy of Sciences (India)

    First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...

  11. Adaptive Regularization of Neural Classifiers

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai

    1997-01-01

    We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...

  12. Regular scattering patterns from near-cloaking devices and their implications for invisibility cloaking

    International Nuclear Information System (INIS)

    Kocyigit, Ilker; Liu, Hongyu; Sun, Hongpeng

    2013-01-01

    In this paper, we consider invisibility cloaking via the transformation optics approach through a ‘blow-up’ construction. An ideal cloak makes use of singular cloaking material. ‘Blow-up-a-small-region’ construction and ‘truncation-of-singularity’ construction are introduced to avoid the singular structure, however, giving only near-cloaks. The study in the literature is to develop various mechanisms in order to achieve high-accuracy approximate near-cloaking devices, and also from a practical viewpoint to nearly cloak an arbitrary content. We study the problem from a different viewpoint. It is shown that for those regularized cloaking devices, the corresponding scattering wave fields due to an incident plane wave have regular patterns. The regular patterns are both a curse and a blessing. On the one hand, the regular wave pattern betrays the location of a cloaking device which is an intrinsic defect due to the ‘blow-up’ construction, and this is particularly the case for the construction by employing a high-loss layer lining. Indeed, our numerical experiments show robust reconstructions of the location, even by implementing the phaseless cross-section data. The construction by employing a high-density layer lining shows a certain promising feature. On the other hand, it is shown that one can introduce an internal point source to produce the canceling scattering pattern to achieve a near-cloak of an arbitrary order of accuracy. (paper)

  13. First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration.

    Science.gov (United States)

    Szyrkowiec, Thomas; Autenrieth, Achim; Gunning, Paul; Wright, Paul; Lord, Andrew; Elbers, Jörg-Peter; Lumb, Alan

    2014-02-10

    For the first time, we demonstrate the orchestration of elastic datacenter and inter-datacenter transport network resources using a combination of OpenStack and OpenFlow. Programmatic control allows a datacenter operator to dynamically request optical lightpaths from a transport network operator to accommodate rapid changes of inter-datacenter workflows.

  14. Condition Number Regularized Covariance Estimation.

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2013-06-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.

  15. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    Science.gov (United States)

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  16. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S

    2015-01-01

    BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dyn...

  17. The application of the signal flow graph method to charged-particle optics - the formula derivation of a three-sector isotope separator

    International Nuclear Information System (INIS)

    Lu Hongyou; Zhao Zhiyong; Sun Quinren

    1987-01-01

    A brief introduction of the Signal Flow Graph (SFG) method is given. The application of it to charged-particle optics (CPO) is described. The method has the advantages of simplicity, visualisation and computerisation. An example of the application of SFG is given for the design of a three-sector electromagnetic isotope separator. (orig.)

  18. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Science.gov (United States)

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  19. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  20. Optical diffraction from fractals with a structural transition

    International Nuclear Information System (INIS)

    Perez Rodriguez, F.; Canessa, E.

    1994-04-01

    A macroscopic characterization of fractals showing up a structural transition from dense to multibranched growth is made using optical diffraction theory. Such fractals are generated via the numerical solution of the 2D Poisson and biharmonic equations and are compared to more 'regular' irreversible clusters such as diffusion limited and Laplacian aggregates. The optical diffraction method enables to identify a decrease of the fractal dimension above the structural point. (author). 19 refs, 6 figs

  1. Returning Special Education Students to Regular Classrooms: Externalities on Peers’ Outcomes

    DEFF Research Database (Denmark)

    Rangvid, Beatrice Schindler

    Policy reforms to boost full inclusion and conventional return flows send students with special educational needs (SEN) from segregated settings to regular classrooms. Using full population micro data from Denmark, I investigate whether becoming exposed to returning SEN students affects...... on test score gains of moderate size (-0.036 SD), while no significant effect is found in non-reform years. The results are robust to sensitivity checks. The negative exposure effect is significant only for boys, but does not differ by parental education or grade-level....

  2. Condition Number Regularized Covariance Estimation*

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2012-01-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197

  3. The Cross-Flow Mixing Analysis of Quasi-Static Pebble Flow in Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Fang Xiang; Liu Zhiyong; Sun Yanfei; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    In the pebble bed reactor, large number of fuel pebbles’ movement law and moving state can affect the reactor’s design, operation and safety directly. Therefore the pebble flow, which is based on the theory of particle streaming, is one of the most important research subjects of the pebble bed reactor engineering. The in-core pebble flow is a very slow particle flow (or called quasi-static particle flow), which is very different from the usual particle motion. How to accurately describe the characteristics of in-core pebble flow is a central issue for this subject. Due to the presence of random flow, the cross-mixing phenomenon will occur inevitably. In the present paper, the mixing phenomenon of pebble flow is generalized on the basis of experiment results. The pebble flow cross-mixing probability serves as the parameter which describes both the regularity and the randomness of pebble flow. The results are provided in the form of diagrammatic presentation. (author)

  4. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  5. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.; Li, Y.P.; He, F.; Liu, X.Q.; Zhang, J.Y. [Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2015-04-28

    Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group (n=20). Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD), CD34{sup +} monocyte count, and endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05) and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05). RIPre activated STAT-3 and increased CD34{sup +} endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells.

  6. Prevalence of Dental Erosion among the Young Regular Swimmers in Kaunas, Lithuania.

    Science.gov (United States)

    Zebrauskas, Andrius; Birskute, Ruta; Maciulskiene, Vita

    2014-04-01

    To determine prevalence of dental erosion among competitive swimmers in Kaunas, the second largest city in Lithuania. The study was designed as a cross-sectional survey, with a questionnaire and clinical examination protocols. The participants were 12 - 25 year-old swimmers regularly practicing in the swimming pools of Kaunas. Of the total of 132 participants there were 76 (12 - 17 year-old) and 56 (18 - 25 year-old) individuals; in Groups 1 and 2, respectively. Participants were examined for dental erosion, using a portable dental unit equipped with fibre-optic light, compressed air and suction, and standard dental instruments for oral inspection. Lussi index was applied for recording dental erosion. The completed questionnaires focused on the common erosion risk factors were returned by all participants. Dental erosion was found in 25% of the 12 - 17 year-olds, and in 50% of 18 - 25 years-olds. Mean value of the surfaces with erosion was 6.31 (SD 4.37). All eroded surfaces were evaluated as grade 1. Swimming training duration and the participants' age correlated positively (Kendall correlation, r = 0.65, P dental erosion and the analyzed risk factors (gastroesophageal reflux disease, frequent vomiting, dry mouth, regular intake of acidic medicines, carbonated drinks) was found in both study groups. Prevalence of dental erosion of very low degree was high among the regular swimmers in Kaunas, and was significantly related to swimmers' age.

  7. Exotic RG flows from holography

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite (France); Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of Physics, University of Crete, Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, Heraklion (Greece); Nitti, Francesco; Silva Pimenta, Leandro [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite (France)

    2017-02-15

    Holographic RG flows are studied in an Einstein-dilaton theory with a general potential. The superpotential formalism is utilized in order to characterize and classify all solutions that are associated with asymptotically AdS space-times. Such solutions correspond to holographic RG flows and are characterized by their holographic β-functions. Novel solutions are found that have exotic properties from a RG point-of view. Some have β-functions that are defined patch-wise and lead to flows where the β-function changes sign without the flow stopping. Others describe flows that end in non-neighboring extrema in field space. Finally others describe regular flows between two minima of the potential and correspond holographically to flows driven by the VEV of an irrelevant operator in the UV CFT. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  9. Minimizing total weighted completion time in a proportionate flow shop

    NARCIS (Netherlands)

    Shakhlevich, N.V.; Hoogeveen, J.A.; Pinedo, M.L.

    1998-01-01

    We study the special case of the m machine flow shop problem in which the processing time of each operation of job j is equal to pj; this variant of the flow shop problem is known as the proportionate flow shop problem. We show that for any number of machines and for any regular performance

  10. Regular-, irregular-, and pseudo-character processing in Chinese: The regularity effect in normal adult readers

    Directory of Open Access Journals (Sweden)

    Dustin Kai Yan Lau

    2014-03-01

    Full Text Available Background Unlike alphabetic languages, Chinese uses a logographic script. However, the pronunciation of many character’s phonetic radical has the same pronunciation as the character as a whole. These are considered regular characters and can be read through a lexical non-semantic route (Weekes & Chen, 1999. Pseudocharacters are another way to study this non-semantic route. A pseudocharacter is the combination of existing semantic and phonetic radicals in their legal positions resulting in a non-existing character (Ho, Chan, Chung, Lee, & Tsang, 2007. Pseudocharacters can be pronounced by direct derivation from the sound of its phonetic radical. Conversely, if the pronunciation of a character does not follow that of the phonetic radical, it is considered as irregular and can only be correctly read through the lexical-semantic route. The aim of the current investigation was to examine reading aloud in normal adults. We hypothesized that the regularity effect, previously described for alphabetical scripts and acquired dyslexic patients of Chinese (Weekes & Chen, 1999; Wu, Liu, Sun, Chromik, & Zhang, 2014, would also be present in normal adult Chinese readers. Method Participants. Thirty (50% female native Hong Kong Cantonese speakers with a mean age of 19.6 years and a mean education of 12.9 years. Stimuli. Sixty regular-, 60 irregular-, and 60 pseudo-characters (with at least 75% of name agreement in Chinese were matched by initial phoneme, number of strokes and family size. Additionally, regular- and irregular-characters were matched by frequency (low and consistency. Procedure. Each participant was asked to read aloud the stimuli presented on a laptop using the DMDX software. The order of stimuli presentation was randomized. Data analysis. ANOVAs were carried out by participants and items with RTs and errors as dependent variables and type of stimuli (regular-, irregular- and pseudo-character as repeated measures (F1 or between subject

  11. Characterization of local fluid flow in 3D porous construct characterized by Fourier domain Doppler optical coherence tomography

    Science.gov (United States)

    Bagnaninchi, P. O.; Yang, Y.; El Haj, A.; Hinds, M. T.; Wang, R. K.

    2007-02-01

    In order to achieve functional tissue with the correct biomechanical properties it is critical to stimulate mechanically the cells. Perfusion bioreactor induces fluid shear stress that has been well characterized for two-dimensional culture where both simulation and experimental data are available. However these results can't be directly translated to tissue engineering that makes use of complex three-dimensional porous scaffold. Moreover, stimulated cells produce extensive extra-cellular matrix (ECM) that alter dramatically the micro-architecture of the constructs, changing the local flow dynamic. In this study a Fourier domain Doppler optical coherent tomography (FD-DOCT) system working at 1300nm with a bandwidth of 50nm has been used to determine the local flow rate inside different types of porous scaffolds used in tissue engineering. Local flow rates can then be linearly related, for Newtonian fluid, to the fluid shear stress occurring on the pores wall. Porous chitosan scaffolds (\\fgr 1.5mm x 3mm) with and without a central 250 μm microchannel have been produced by a freeze-drying technique. This techniques allow us to determine the actual shear stress applied to the cells and to optimise the input flow rate consequently, but also to relate the change of the flow distribution to the amount of ECM production allowing the monitoring of tissue formation.

  12. Regularity effect in prospective memory during aging

    Directory of Open Access Journals (Sweden)

    Geoffrey Blondelle

    2016-10-01

    Full Text Available Background: Regularity effect can affect performance in prospective memory (PM, but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30, 16 intermediate adults (40–55, and 25 older adults (65–80. The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities. We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding, short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results: A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young, but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion: Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical

  13. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    Science.gov (United States)

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  14. J-regular rings with injectivities

    OpenAIRE

    Shen, Liang

    2010-01-01

    A ring $R$ is called a J-regular ring if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. It is proved that if R is J-regular, then (i) R is right n-injective if and only if every homomorphism from an $n$-generated small right ideal of $R$ to $R_{R}$ can be extended to one from $R_{R}$ to $R_{R}$; (ii) R is right FP-injective if and only if R is right (J, R)-FP-injective. Some known results are improved.

  15. The Regularity of Optimal Irrigation Patterns

    Science.gov (United States)

    Morel, Jean-Michel; Santambrogio, Filippo

    2010-02-01

    A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.

  16. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    Science.gov (United States)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  17. Design principles and realization of electro-optical circuit boards

    Science.gov (United States)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  18. Iterative Regularization with Minimum-Residual Methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2007-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  19. Iterative regularization with minimum-residual methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2006-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  20. Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve.

    Science.gov (United States)

    Diletti, Roberto; Van Mieghem, Nicolas M; Valgimigli, Marco; Karanasos, Antonis; Everaert, Bert R C; Daemen, Joost; van Geuns, Robert-Jan; de Jaegere, Peter P; Zijlstra, Felix; Regar, Evelyn

    2015-08-01

    The present report describes a novel coronary fractional flow reserve (FFR) system which allows FFR assessment using a rapid exchange microcatheter (RXi). The RXi microcatheter is compatible with standard 0.014" coronary guidewires facilitating lesion negotiation and FFR assessment in a wide range of coronary anatomies. In case of serial lesions, a microcatheter would have the important advantage of allowing multiple pullbacks while maintaining wire access to the vessel. The RXi is a fibre-optic sensor technology-based device. This technology might allow reduction in signal drift. The RXi microcatheter's fibre-optic sensor is located 5 mm from the distal tip. The microcatheter profile at the sensor site is 0.027"0.036". The segment of the catheter which is intended to reside within the target lesion is proximal to the sensor and has dimensions decreased to 0.020"0.025"; these dimensions are comparable to a 0.022" circular-shaped wire. The RXi microcatheter FFR system represents a novel technology that could allow easier lesion negotiation, maintaining guidewire position, facilitating pullbacks for assessment of serial lesions and simplifying the obtainment of post-intervention FFR measurements. The optical sensing technology could additionally result in less signal drift. Further investigations are required to evaluate the clinical value of this technology fully.

  1. Cellular properties of slug flow in vertical co-current gas-liquid flow: slug-churn transition

    International Nuclear Information System (INIS)

    Lusseyran, Francois

    1990-01-01

    This research thesis reports the study and description of the structure of a slug flow regime in a co-current vertical cylindrical duct, and the characterization and prediction of its transition towards a slug-churn (de-structured) regime. Flow physical mechanisms highlighted by the measurement of two important dynamics variables (wall friction and thickness of liquid films) are related to hypotheses of cellular models. The author first proposes an overview of slug flow regimes: theoretical steady and one-dimensional analysis, mass assessment equations of cellular models, application to the assessment of the flow rate and of the thickness of the film surrounding the gas slug. In the second part, the author addresses the slug flow regime transition towards the slug-churn regime: assessment of the evolution of flow dynamic properties, use of average wall friction analysis to obtain a relevant transition criterion. The third part presents experimental conditions, and measurement methods: conductometry for thickness measurement, polarography for wall friction measurement, and gas phase detection by using an optic barrier or optic fibres [fr

  2. FLOWING BILATERAL FILTER: DEFINITION AND IMPLEMENTATIONS

    Directory of Open Access Journals (Sweden)

    Maxime Moreaud

    2015-06-01

    Full Text Available The bilateral filter plays a key role in image processing applications due to its intuitive parameterization and its high quality filter result, smoothing homogeneous regions while preserving the edges of the objects. Considering the image as a topological relief, seeing pixel intensities as peaks and valleys, we introduce a way to control the tonal weighting coefficients, the flowing bilateral filter, reducing "halo" artifacts typically produced by the regular bilateral filter around a large peak surrounded by two valleys of lower values. In this paper we propose to investigate exact and approximated versions of CPU and parallel GPU (Graphical Processing Unit based implementations of the regular and flowing bilateral filter using the NVidia CUDA API. Fast implementations of these filters are important for the processing of large 3D volumes up to several GB acquired by x-ray or electron tomography.

  3. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  4. Characteristic Analysis of Mixed Traffic Flow of Regular and Autonomous Vehicles Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Yangzexi Liu

    2017-01-01

    Full Text Available The technology of autonomous vehicles is expected to revolutionize the operation of road transport systems. The penetration rate of autonomous vehicles will be low at the early stage of their deployment. It is a challenge to explore the effects of autonomous vehicles and their penetration on heterogeneous traffic flow dynamics. This paper aims to investigate this issue. An improved cellular automaton was employed as the modeling platform for our study. In particular, two sets of rules for lane changing were designed to address mild and aggressive lane changing behavior. With extensive simulation studies, we obtained some promising results. First, the introduction of autonomous vehicles to road traffic could considerably improve traffic flow, particularly the road capacity and free-flow speed. And the level of improvement increases with the penetration rate. Second, the lane-changing frequency between neighboring lanes evolves with traffic density along a fundamental-diagram-like curve. Third, the impacts of autonomous vehicles on the collective traffic flow characteristics are mainly related to their smart maneuvers in lane changing and car following, and it seems that the car-following impact is more pronounced.

  5. Retrieving Against the Flow: Incoherence Between Optic Flow and Movement Direction Has Little Effect on Memory for Order

    Directory of Open Access Journals (Sweden)

    Emiliano Díez

    2018-03-01

    Full Text Available Research from multiple areas in neuroscience suggests a link between self-locomotion and memory. In two free recall experiments with adults, we looked for a link between (a memory, and (b the coherence of movement and optic flow. In both experiments, participants heard lists of words while on a treadmill and wearing a virtual reality (VR headset. In the first experiment, the VR scene and treadmill were stationary during encoding. During retrieval, all participants walked forward, but the VR scene was stationary, moved forward, or moved backwards. In the second experiment, during encoding all participants walked forward and viewed a forward-moving VR scene. During retrieval, all participants continued to walk forward but the VR scene was stationary, forward-moving, or backward-moving. In neither experiment was there a significant difference in the amount recalled, or output order strategies, attributable to differences in movement conditions. Thus, any effects of movement on memory are more limited than theories of hippocampal function and theories in cognitive psychology anticipate.

  6. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    Directory of Open Access Journals (Sweden)

    Yariv I

    2016-10-01

    Full Text Available Inbar Yariv,1 Menashe Haddad,2,3 Hamootal Duadi,1 Menachem Motiei,1 Dror Fixler1 1Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel; 2Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 3Mayanei Hayeshua Medical Center, Benei Brak, Israel Abstract: Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD. Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography to low quantities of GNRs (<3 mg. Keywords: Gerchberg-Saxton, optical properties, gold nanorods, blood vessel, tissue viability

  7. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  8. A Variational Approach to Video Registration with Subspace Constraints.

    Science.gov (United States)

    Garg, Ravi; Roussos, Anastasios; Agapito, Lourdes

    2013-01-01

    This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.

  9. Higher derivative regularization and chiral anomaly

    International Nuclear Information System (INIS)

    Nagahama, Yoshinori.

    1985-02-01

    A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)

  10. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  11. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  12. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  13. 75 FR 53966 - Regular Meeting

    Science.gov (United States)

    2010-09-02

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...

  14. Work and family life of childrearing women workers in Japan: comparison of non-regular employees with short working hours, non-regular employees with long working hours, and regular employees.

    Science.gov (United States)

    Seto, Masako; Morimoto, Kanehisa; Maruyama, Soichiro

    2006-05-01

    This study assessed the working and family life characteristics, and the degree of domestic and work strain of female workers with different employment statuses and weekly working hours who are rearing children. Participants were the mothers of preschoolers in a large Japanese city. We classified the women into three groups according to the hours they worked and their employment conditions. The three groups were: non-regular employees working less than 30 h a week (n=136); non-regular employees working 30 h or more per week (n=141); and regular employees working 30 h or more a week (n=184). We compared among the groups the subjective values of work, financial difficulties, childcare and housework burdens, psychological effects, and strains such as work and family strain, work-family conflict, and work dissatisfaction. Regular employees were more likely to report job pressures and inflexible work schedules and to experience more strain related to work and family than non-regular employees. Non-regular employees were more likely to be facing financial difficulties. In particular, non-regular employees working longer hours tended to encounter socioeconomic difficulties and often lacked support from family and friends. Female workers with children may have different social backgrounds and different stressors according to their working hours and work status.

  15. Incremental projection approach of regularization for inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)

    2016-10-15

    This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.

  16. Geometric regularizations and dual conifold transitions

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Lazaroiu, Calin I.

    2003-01-01

    We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)

  17. Adaptive regularization

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.

    1994-01-01

    Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...

  18. Regularizing portfolio optimization

    International Nuclear Information System (INIS)

    Still, Susanne; Kondor, Imre

    2010-01-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  19. Regularizing portfolio optimization

    Science.gov (United States)

    Still, Susanne; Kondor, Imre

    2010-07-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  20. An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis.

    Science.gov (United States)

    Tsafack, V C; Marquette, C A; Leca, B; Blum, L J

    2000-01-01

    A fibre optic biosensor based on luminol electrochemiluminescence (ECL) integrated in a flow injection analysis (FIA) system was developed for the detection of choline. The electrochemiluminescence of luminol was generated by a glassy carbon electrode polarised at +425 mV vs. a platinum pseudo-reference electrode. Choline oxidase (Chx) was immobilised either covalently on polyamide (ABC type) or on UltraBind preactivated membranes, or by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) alone or after absorption on a weak anion exchanger, DEAE (diethylaminoethyl) Sepharose. The optimisation of the reaction conditions and physicochemical parameters influencing the FIA biosensor response demonstrated that the choline biosensor exhibited the best performances in a 30 mM veronal buffer containing 30 mM KCl and 1.5 mM MgCl2, at pH 9. The use of a 0.5 ml min-1 flow rate enabled the measurement of choline by the membrane-based ECL biosensors in 8 or 5 min, with ABC or UltraBind membranes, respectively, whereas the measurement required only 3 min with the DEAE-PVA system. For comparison, the detection of choline was performed with Chx immobilised using the four different supports. The best performances were obtained with the DEAE-PVA-Chx sensing layer, which allowed a detection limit of 10 pmol, whereas with the ABC, the UltraBind and the PVA systems, the detection limits were 300 pmol, 75 pmol and 220 pmol, respectively. The DEAE-based system also exhibited a good operational stability since 160 repeated measurements of 3 nmol of choline could be performed with an RSD of 4.5% whereas the stability under the best conditions was 45 assays with the other supports.

  1. Tessellating the Sphere with Regular Polygons

    Science.gov (United States)

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  2. Microscale fluid transport using optically controlled marangoni effect

    Science.gov (United States)

    Thundat, Thomas G [Knoxville, TN; Passian, Ali [Knoxville, TN; Farahi, Rubye H [Oak Ridge, TN

    2011-05-10

    Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

  3. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    Science.gov (United States)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  4. Accretion onto some well-known regular black holes

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2016-01-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  5. Accretion onto some well-known regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  6. Accretion onto some well-known regular black holes

    Science.gov (United States)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  7. Diagrammatic methods in phase-space regularization

    International Nuclear Information System (INIS)

    Bern, Z.; Halpern, M.B.; California Univ., Berkeley

    1987-11-01

    Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)

  8. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size

    Science.gov (United States)

    Kydd, Jocelyn; Rajakaruna, Harshana; Briski, Elizabeta; Bailey, Sarah

    2018-03-01

    Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≥ 50 μm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles

  9. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    Science.gov (United States)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  10. Metric regularity and subdifferential calculus

    International Nuclear Information System (INIS)

    Ioffe, A D

    2000-01-01

    The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces

  11. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  12. Experimental comparison of the optical measurements of a cross-flow in a rod bundle with mixing vanes

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, Bok Deuk; Song, Chul Hwa

    2008-01-01

    The lateral crossflow on subchannels in a rod bundle array was investigated to understand the flow characteristics related to the mixing vane types on a spacer grid by using the PIV technique. For more measurement resolutions, a 5x5 rod bundle was fabricated a 2.6 times larger than the real rod bundle size in a pressurized water reactor. A rod-embedded optic array was specially designed and used for the illumination of the inner subchannels. The crossflow field in a subchannel was characterized by the type and the arrangement of the mixing vanes. At a near downstream location from the spacer grid (z/D h =1) in the case of the split type, a couple of small vortices were generated diagonally in a subchannel. On the other hand, in the case of the swirl type, there was a large elliptic vortex generated in the center of a subchannel. The measurement results were compared with the experimental results which had been performed with the LDV technique at the same test facility. The magnitudes of the flow velocity and the vorticity in PIV results were less than those in LDV measurement results. It was shown that the instantaneous flow fields in a subchannel frequently have quite different shapes from the averaged one

  13. On Analysis of Stationary Viscous Incompressible Flow Through a Radial Blade Machine

    Science.gov (United States)

    Neustupa, Tomáš

    2010-09-01

    The paper is concerned with the analysis of the two dimensional model of incompressible, viscous, stationary flow through a radial blade machine. This type of turbine is sometimes called Kaplan's turbine. In the technical area the use is either to force some regular characteristic to the flow of the medium going through the turbine (flow of melted iron, air conditioning) or to gain some energy from the flowing medium (water). The inflow and outflow part of boundary are in general a concentric circles. The larger one represents an inflow part of boundary the smaller one the outflow part of boundary. Between them are regularly spaced the blades of the machine. We study the existence of the weak solution in the case of nonlinear boundary condition of the "do-nothing" type. The model is interesting for study the behavior of the flow when the boundary is formed by mutually disjoint and separated parts.

  14. Fiber-optic displacement sensors on the Hunters Trophy UGT impulse gauge experiments

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.E.L.; Poutiatine, A.I.

    1995-03-01

    As part of a program to develop gauges for measurement of various mechanical properties in hostile environments, the authors fielded purely optical displacement sensors at the ends of long fiber-optic cables as supplements to the regular displacement sensors of four impulse gauges fielded as part of a materials study on the Hunters Trophy underground effects test at the Nevada Test Site. These fiber-optic sensor systems and their performance on the Hunters Trophy test are described in this report.

  15. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  16. Temporal regularity of the environment drives time perception

    OpenAIRE

    van Rijn, H; Rhodes, D; Di Luca, M

    2016-01-01

    It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be var- ied. In one experiment, we asked whether the last stim...

  17. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  18. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    Science.gov (United States)

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  19. Laboratory measurements of shock propagation through spherical cavities in an optically accessible polymer.

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten; Cooper, Marcia A.; Guo, Shuyue

    2017-11-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  20. Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow.

    Science.gov (United States)

    Zhang, Weilong; Guo, Bingxuan; Li, Ming; Liao, Xuan; Li, Wenzhuo

    2018-04-16

    Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images.

  1. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  2. C-share: Optical circuits sharing for software-defined data-centers [arXiv

    DEFF Research Database (Denmark)

    Ben-Itzhak, Yaniv; Caba, Cosmin Marius; Schour, Liran

    2016-01-01

    Integrating optical circuit switches in data-centers is an ongoing research challenge. In recent years, state-of-the-art solutions introduce hybrid packet/circuit architectures for different optical circuit switch technologies, control techniques, and traffic rerouting methods. These solutions...... are based on separated packet and circuit planes which do not have the ability to utilize an optical circuit with flows that do not arrive from or delivered to switches directly connected to the circuit’s end-points. Moreover, current SDN-based elephant flow rerouting methods require a forwarding rule...... for each flow, which raise scalability issues. In this paper, we present C-Share - a practical, scalable SDN-based circuit sharing solution for data center networks. C-Share inherently enable elephant flows to share optical circuits by exploiting a flat upper tier network topology. C-Share is based...

  3. The uniqueness of the regularization procedure

    International Nuclear Information System (INIS)

    Brzezowski, S.

    1981-01-01

    On the grounds of the BPHZ procedure, the criteria of correct regularization in perturbation calculations of QFT are given, together with the prescription for dividing the regularized formulas into the finite and infinite parts. (author)

  4. In situ viscometry by optical trapping interferometry

    DEFF Research Database (Denmark)

    Guzmán, C.; Flyvbjerg, Henrik; Köszali, R.

    2008-01-01

    We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency of the f......We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency...

  5. Preliminary results from the laboratory study of a flow-through fluorometer for measuring oil-in-water levels

    International Nuclear Information System (INIS)

    Lambert, P.; Fieldhouse, B.; Wang, Z.; Fingas, M.; Pearson, L.; Collazzi, E.

    2000-01-01

    An extensive bench-scale test program was conducted to evaluate the performance of the Turner Instruments flow-through model 10AU and model 10 fluorometers for measuring real-time concentrations of oil in water. The results were compared with alternative total petroleum hydrocarbon (TPH) methods. The 10AU model was equipped with a long wavelength optical kit, the other with the short wavelength optical kit for diesel fuels and light refined oil products. The oils tested were Alberta Sweet Mixed Blend crude oil, Prudhoe Bay crude oil, Bunker C fuel oil and diesel fuel. It was determined that the long wavelength optical kit has minimal capacity to detect and quantify diesel fuels compared to the short wavelength kit, although the latter exhibits a lower performance level. A calibration procedure was also established for oil-in-water to convert the real-time fluorometer data to oil concentrations. Initial comparisons of these tests with standard infrared and gas chromatography procedures were promising. It was determined that fluorometer data can differentiate between various oil-in-water concentrations, but regularly gives concentration values double those of the solvent extraction, infrared or gas chromatography methods. Future studies are being planned to relate the results of this study to the chemical composition of various oils. 16 refs., 5 tabs., 6 figs

  6. Coupling regularizes individual units in noisy populations

    International Nuclear Information System (INIS)

    Ly Cheng; Ermentrout, G. Bard

    2010-01-01

    The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.

  7. Learning regularization parameters for general-form Tikhonov

    International Nuclear Information System (INIS)

    Chung, Julianne; Español, Malena I

    2017-01-01

    Computing regularization parameters for general-form Tikhonov regularization can be an expensive and difficult task, especially if multiple parameters or many solutions need to be computed in real time. In this work, we assume training data is available and describe an efficient learning approach for computing regularization parameters that can be used for a large set of problems. We consider an empirical Bayes risk minimization framework for finding regularization parameters that minimize average errors for the training data. We first extend methods from Chung et al (2011 SIAM J. Sci. Comput. 33 3132–52) to the general-form Tikhonov problem. Then we develop a learning approach for multi-parameter Tikhonov problems, for the case where all involved matrices are simultaneously diagonalizable. For problems where this is not the case, we describe an approach to compute near-optimal regularization parameters by using operator approximations for the original problem. Finally, we propose a new class of regularizing filters, where solutions correspond to multi-parameter Tikhonov solutions, that requires less data than previously proposed optimal error filters, avoids the generalized SVD, and allows flexibility and novelty in the choice of regularization matrices. Numerical results for 1D and 2D examples using different norms on the errors show the effectiveness of our methods. (paper)

  8. 5 CFR 551.421 - Regular working hours.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Regular working hours. 551.421 Section... Activities § 551.421 Regular working hours. (a) Under the Act there is no requirement that a Federal employee... distinction based on whether the activity is performed by an employee during regular working hours or outside...

  9. Regular extensions of some classes of grammars

    NARCIS (Netherlands)

    Nijholt, Antinus

    Culik and Cohen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this report we consider the analogous extension of the LL(k) grammers, called the LL-regular grammars. The relations of this class of grammars to other classes of grammars are shown. Every LL-regular

  10. Reconfigurable optical implementation of quantum complex networks

    Science.gov (United States)

    Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V.

    2018-05-01

    Network theory has played a dominant role in understanding the structure of complex systems and their dynamics. Recently, quantum complex networks, i.e. collections of quantum systems arranged in a non-regular topology, have been theoretically explored leading to significant progress in a multitude of diverse contexts including, e.g., quantum transport, open quantum systems, quantum communication, extreme violation of local realism, and quantum gravity theories. Despite important progress in several quantum platforms, the implementation of complex networks with arbitrary topology in quantum experiments is still a demanding task, especially if we require both a significant size of the network and the capability of generating arbitrary topology—from regular to any kind of non-trivial structure—in a single setup. Here we propose an all optical and reconfigurable implementation of quantum complex networks. The experimental proposal is based on optical frequency combs, parametric processes, pulse shaping and multimode measurements allowing the arbitrary control of the number of the nodes (optical modes) and topology of the links (interactions between the modes) within the network. Moreover, we also show how to simulate quantum dynamics within the network combined with the ability to address its individual nodes. To demonstrate the versatility of these features, we discuss the implementation of two recently proposed probing techniques for quantum complex networks and structured environments.

  11. Forward optical glory

    International Nuclear Information System (INIS)

    Nussenzveig, H.M.

    Forward optical glory effects in Mie scattering are displayed here for the first time. These effects include regular oscillations in Mie efficiency factors and characteristic deviations from zero polarization in near-forward scattering which are observable for real refractive indices near √2 and 2. Complex angular momentum theory predicts the period of oscillation correctly and shows the important role played by surface waves with shortcuts through the sphere. three possible types of experiments for detecting the forward glory are proposed, involving measurements of extinction, radiation pressure, and polarization in near-forward scattering. (Author) [pt

  12. Regular non-twisting S-branes

    International Nuclear Information System (INIS)

    Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.

    2004-01-01

    We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)

  13. Monolithic fiber optic sensor assembly

    Science.gov (United States)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  14. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  15. Near-Regular Structure Discovery Using Linear Programming

    KAUST Repository

    Huang, Qixing

    2014-06-02

    Near-regular structures are common in manmade and natural objects. Algorithmic detection of such regularity greatly facilitates our understanding of shape structures, leads to compact encoding of input geometries, and enables efficient generation and manipulation of complex patterns on both acquired and synthesized objects. Such regularity manifests itself both in the repetition of certain geometric elements, as well as in the structured arrangement of the elements. We cast the regularity detection problem as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both these aspects are captured by our near-regular structure extraction framework, which alternates between discrete and continuous optimizations. We demonstrate the effectiveness of our framework on a variety of problems including near-regular structure extraction, structure-preserving pattern manipulation, and markerless correspondence detection. Robustness results with respect to geometric and topological noise are presented on synthesized, real-world, and also benchmark datasets. © 2014 ACM.

  16. Regular Expression Matching and Operational Semantics

    Directory of Open Access Journals (Sweden)

    Asiri Rathnayake

    2011-08-01

    Full Text Available Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.

  17. Tetravalent one-regular graphs of order 4p2

    DEFF Research Database (Denmark)

    Feng, Yan-Quan; Kutnar, Klavdija; Marusic, Dragan

    2014-01-01

    A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified.......A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified....

  18. Prevalence of Dental Erosion among the Young Regular Swimmers in Kaunas, Lithuania

    Directory of Open Access Journals (Sweden)

    Andrius Zebrauskas

    2014-07-01

    Full Text Available Objectives: To determine prevalence of dental erosion among competitive swimmers in Kaunas, the second largest city in Lithuania. Material and Methods: The study was designed as a cross-sectional survey, with a questionnaire and clinical examination protocols. The participants were 12 - 25 year-old swimmers regularly practicing in the swimming pools of Kaunas. Of the total of 132 participants there were 76 (12 - 17 year-old and 56 (18 - 25 year-old individuals; in Groups 1 and 2, respectively. Participants were examined for dental erosion, using a portable dental unit equipped with fibre-optic light, compressed air and suction, and standard dental instruments for oral inspection. Lussi index was applied for recording dental erosion. The completed questionnaires focused on the common erosion risk factors were returned by all participants. Results: Dental erosion was found in 25% of the 12 - 17 year-olds, and in 50% of 18 - 25 years-olds. Mean value of the surfaces with erosion was 6.31 (SD 4.37. All eroded surfaces were evaluated as grade 1. Swimming training duration and the participants’ age correlated positively (Kendall correlation, r = 0.65, P < 0.001, meaning that older swimmers had practiced for longer period. No significant correlation between occurrence of dental erosion and the analyzed risk factors (gastroesophageal reflux disease, frequent vomiting, dry mouth, regular intake of acidic medicines, carbonated drinks was found in both study groups. Conclusions: Prevalence of dental erosion of very low degree was high among the regular swimmers in Kaunas, and was significantly related to swimmers’ age.

  19. Rheological Modeling of Macro Viscous Flows of Granular Suspension of Regular and Irregular Particles

    Directory of Open Access Journals (Sweden)

    Anna Maria Pellegrino

    2017-12-01

    Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.

  20. Regularization and error assignment to unfolded distributions

    CERN Document Server

    Zech, Gunter

    2011-01-01

    The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.

  1. Higher order total variation regularization for EIT reconstruction.

    Science.gov (United States)

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut

    2018-01-08

    Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.

  2. Recursive regularization step for high-order lattice Boltzmann methods

    Science.gov (United States)

    Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre

    2017-09-01

    A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.

  3. Application of Turchin's method of statistical regularization

    Science.gov (United States)

    Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey

    2018-04-01

    During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.

  4. On the regularized fermionic projector of the vacuum

    Science.gov (United States)

    Finster, Felix

    2008-03-01

    We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.

  5. On the regularized fermionic projector of the vacuum

    International Nuclear Information System (INIS)

    Finster, Felix

    2008-01-01

    We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed

  6. The heat flows and harmonic maps from complete manifolds into generalized regular balls

    International Nuclear Information System (INIS)

    Li Jiayu.

    1993-01-01

    Let M be a complete Riemannian manifold (compact (with or without boundary) or noncompact). Let N be a complete Riemannian manifold. We generalize the existence result for harmonic maps obtained by Hildebrandt-Kaul-Widman using the heat flow method. (author). 21 refs

  7. Extremely tortuous coronary arteries - when optical coherence tomography and fractional flow reserve did not help us much

    Directory of Open Access Journals (Sweden)

    Miloradović Vladimir

    2018-01-01

    Full Text Available Introduction. Extreme coronary tortuosity may lead to flow alteration resulting in a reduction in coronary pressure distal to the tortuous segment, subsequently leading to ischemia. Therefore the detection of a true cause of ischemia, i.e. whether a fixed stenosis or tortuosity by itself is responsible for its creation, with non-invasive and invasive methods is a real challenge. Case report. We presented a case of a patient with a history of stable angina [Canadian Cardiovascular Society (CCS class II], an abnormal stress test and coronary tortuosity without hemodynamically significant stenosis. Due to suspected linear lesion between the two bends in proximal segment of Right coronary artery (RCA we performed optical coherence tomography (OCT, minimum lumen area (MLA-13.19 mm2 and fractional flow reserve (FFR RCA (0.94. We opted for conservative treatment for stable angina. Conclusion. When tortuosities are associated with atherosclerosis in coronary artery for determination of true cause of ischemia invasive methods can be used, such as OCT and FFR.

  8. Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.

    2014-01-01

    of secondary load cycles. Special attention was paid to this secondary load cycle and the flow features that cause it. By visual observation and a simplified analytical model it was shown that the secondary load cycle was caused by the strong nonlinear motion of the free surface which drives a return flow......Forcing by steep regular water waves on a vertical circular cylinder at finite depth was investigated numerically by solving the two-phase incompressible Navier–Stokes equations. Consistently with potential flow theory, boundary layer effects were neglected at the sea bed and at the cylinder...... at the back of the cylinder following the passage of the wave crest. The numerical computations were further analysed in the frequency domain. For a representative example, the secondary load cycle was found to be associated with frequencies above the fifth- and sixth-harmonic force component. For the third...

  9. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  10. Spatially-Variant Tikhonov Regularization for Double-Difference Waveform Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Youzuo [Los Alamos National Laboratory; Huang, Lianjie [Los Alamos National Laboratory; Zhang, Zhigang [Los Alamos National Laboratory

    2011-01-01

    Double-difference waveform inversion is a potential tool for quantitative monitoring for geologic carbon storage. It jointly inverts time-lapse seismic data for changes in reservoir geophysical properties. Due to the ill-posedness of waveform inversion, it is a great challenge to obtain reservoir changes accurately and efficiently, particularly when using time-lapse seismic reflection data. Regularization techniques can be utilized to address the issue of ill-posedness. The regularization parameter controls the smoothness of inversion results. A constant regularization parameter is normally used in waveform inversion, and an optimal regularization parameter has to be selected. The resulting inversion results are a trade off among regions with different smoothness or noise levels; therefore the images are either over regularized in some regions while under regularized in the others. In this paper, we employ a spatially-variant parameter in the Tikhonov regularization scheme used in double-difference waveform tomography to improve the inversion accuracy and robustness. We compare the results obtained using a spatially-variant parameter with those obtained using a constant regularization parameter and those produced without any regularization. We observe that, utilizing a spatially-variant regularization scheme, the target regions are well reconstructed while the noise is reduced in the other regions. We show that the spatially-variant regularization scheme provides the flexibility to regularize local regions based on the a priori information without increasing computational costs and the computer memory requirement.

  11. Impact of winter flow regulation on pest-level populations of blackfly ...

    African Journals Online (AJOL)

    The mid-reaches of the Great Fish River in the Eastern Cape Province of South Africa experience regular outbreaks of the pest blackfly Simulium chutteri as a direct consequence of increased flows caused by an inter-basin transfer scheme. There are opportunities to control these outbreaks through flow manipulation by ...

  12. Inverse design of dispersion compensating optical fiber using topology optimization

    DEFF Research Database (Denmark)

    Riishede, Jesper; Sigmund, Ole

    2008-01-01

    We present a new numerical method for designing dispersion compensating optical fibers. The method is based on the solving of the Helmholtz wave equation with a finite-difference modesolver and uses topology optimization combined with a regularization filter for the design of the refractive index...

  13. The existence and regularity of time-periodic solutions to the three-dimensional Navier–Stokes equations in the whole space

    International Nuclear Information System (INIS)

    Kyed, Mads

    2014-01-01

    The existence, uniqueness and regularity of time-periodic solutions to the Navier–Stokes equations in the three-dimensional whole space are investigated. We consider the Navier–Stokes equations with a non-zero drift term corresponding to the physical model of a fluid flow around a body that moves with a non-zero constant velocity. The existence of a strong time-periodic solution is shown for small time-periodic data. It is further shown that this solution is unique in a large class of weak solutions that can be considered physically reasonable. Finally, we establish regularity properties for any strong solution regardless of its size. (paper)

  14. Manifold Regularized Correlation Object Tracking.

    Science.gov (United States)

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2018-05-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.

  15. From recreational to regular drug use

    DEFF Research Database (Denmark)

    Järvinen, Margaretha; Ravn, Signe

    2011-01-01

    This article analyses the process of going from recreational use to regular and problematic use of illegal drugs. We present a model containing six career contingencies relevant for young people’s progress from recreational to regular drug use: the closing of social networks, changes in forms...

  16. Regular variation on measure chains

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel; Vitovec, J.

    2010-01-01

    Roč. 72, č. 1 (2010), s. 439-448 ISSN 0362-546X R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : regularly varying function * regularly varying sequence * measure chain * time scale * embedding theorem * representation theorem * second order dynamic equation * asymptotic properties Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09008475

  17. New regular black hole solutions

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-01-01

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  18. Manifold Regularized Correlation Object Tracking

    OpenAIRE

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2017-01-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...

  19. On geodesics in low regularity

    Science.gov (United States)

    Sämann, Clemens; Steinbauer, Roland

    2018-02-01

    We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.

  20. Holographic aids for internal combustion engine flow studies

    Science.gov (United States)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  1. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  2. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  3. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  4. Irreversibility of world-sheet renormalization group flow

    International Nuclear Information System (INIS)

    Oliynyk, T.; Suneeta, V.; Woolgar, E.

    2005-01-01

    We demonstrate the irreversibility of a wide class of world-sheet renormalization group (RG) flows to first order in α ' in string theory. Our techniques draw on the mathematics of Ricci flows, adapted to asymptotically flat target manifolds. In the case of somewhere-negative scalar curvature (of the target space), we give a proof by constructing an entropy that increases monotonically along the flow, based on Perelman's Ricci flow entropy. One consequence is the absence of periodic solutions, and we are able to give a second, direct proof of this. If the scalar curvature is everywhere positive, we instead construct a regularized volume to provide an entropy for the flow. Our results are, in a sense, the analogue of Zamolodchikov's c-theorem for world-sheet RG flows on noncompact spacetimes (though our entropy is not the Zamolodchikov C-function)

  5. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    Science.gov (United States)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  6. Laplacian manifold regularization method for fluorescence molecular tomography

    Science.gov (United States)

    He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei

    2017-04-01

    Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.

  7. Learning Sparse Visual Representations with Leaky Capped Norm Regularizers

    OpenAIRE

    Wangni, Jianqiao; Lin, Dahua

    2017-01-01

    Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of $\\ell_1$ regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and...

  8. Adaptive regularization of noisy linear inverse problems

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue

    2006-01-01

    In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....

  9. Some comments on combusting flows and instrumentation for two-phase flows

    International Nuclear Information System (INIS)

    Whitelaw, J.H.

    1985-01-01

    Measurements of the velocity characteristics of combusting flows have been reported over the past 15 years and have Encompassed an extensive range of flows configurations. Difficulties in applying instrumentation and interpreting results are, however, still experienced and this presentation describes two experiments which are useful examples of successful applications. The first is concerned with a gas-turbine combustion chamber which involves limited optical access with high heat release but does not require measurement accuracy such as that of, for example, external aerodynamic flows. The second combines laser velocimetry with digitally compensated thermocouples to provide detailed information of a premixed, bluff-body stabilized flame and involves conditionally sampled results so as to determine the separate flow characteristics of products and reactants

  10. Experimental research on intraocular aqueous flow by PIV method.

    Science.gov (United States)

    Yang, Hongyu; Song, Hongfang; Mei, Xi; Li, Lin; Fu, Xineng; Zhang, Mindi; Liu, Zhicheng

    2013-10-21

    Aqueous humor flows regularly from posterior chamber to anterior chamber, and this flow much involves intraocular pressure, the eye tissue nutrition and metabolism. To visualize and measure the intraocular flow regular pattern of aqueous humor. Intraocular flow in the vitro eyeball is driven to simulate the physiological aqueous humor flow, and the flow field is measured by Particle Image Velocimetry(PIV). Fluorescent particle solution of a certain concentration was infused into the root of Posterior Chamber(PC) of vitro rabbit eye to simulate the generation of aqueous and was drained out at a certain hydrostatic pressure from the angle of Anterior Chamber(AC) to represent the drainage of aqueous. PIV method was used to record and calculate the flow on the midsagittal plane of the eyeball. Velocity vector distribution in AC has been obtained, and the distribution shows symmetry feature to some extent. Fluorescent particle solution first fills the PC as it is continuously infused, then surges into AC through the pupil, flows upwards toward the central cornea, reflecting and scattering, and eventually converges along the inner cornea surface towards the outflow points at the periphery of the eyeball. Velocity values around the pupillary margin are within the range of 0.008-0.012 m/s, which are close to theoretical values of 0.0133 m/s, under the driving rate of 100 μl/min. Flow field of aqueous humor can be measured by PIV method, which makes it possible to study the aqueous humor dynamics by experimental method. Our study provides a basis for experimental research on aqueous humor flow; further, it possibly helps to diagnose and treat eye diseases as shear force damage of ocular tissues and destructions on corneal endothelial cells from the point of intraocular flow field.

  11. Label-free in vivo optical micro-angiography imaging of cerebral capillary blood flow within meninges and cortex in mice with the skull left intact

    Science.gov (United States)

    Jia, Yali; Wang, Ruikang K.

    2011-03-01

    Abnormal microcirculation within meninges is common in many neurological diseases. There is a need for an imaging method that is capable of visualizing functional meningeal microcirculations alone, preferably decoupled from the cortical blood flow. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing 3D images of dynamic blood perfusion within micro-circulatory tissue beds at an imaging depth up to ~2 mm, with an unprecedented imaging sensitivity to the blood flow at ~4 μm/s. In this study, we demonstrate the utility of ultra-high sensitive OMAG in imaging the detailed blood flow distributions, at a capillary level resolution, within meninges and cortex in mice with the cranium left intact. The results indicate that OMAG can be a valuable tool for the study of meningeal circulations.

  12. Laser doppler anemometry in single- and two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.

    1976-01-01

    The present report gives an introduction into laser-Doppler anemometry and tries to explain the basic physical principles of this measuring technique. Moire fringe patterns are used in order to visually model LDA-signals and to explain the basic difference in optical systems. It is pointed out that LDA measurements in highly turbulent flows and in two-phase flows should be attempted with direction sensitive instruments only. Some of the optical systems developed by the author and his collaborators are introduced and their functioning in measurements is demonstrated. These measurements embrace investigations in a number of single-phase flows including flames. (orig.) [de

  13. Library search with regular reflectance IR spectra

    International Nuclear Information System (INIS)

    Staat, H.; Korte, E.H.; Lampen, P.

    1989-01-01

    Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)

  14. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  15. Exclusion of children with intellectual disabilities from regular ...

    African Journals Online (AJOL)

    Study investigated why teachers exclude children with intellectual disability from the regular classrooms in Nigeria. Participants were, 169 regular teachers randomly selected from Oyo and Ogun states. Questionnaire was used to collect data result revealed that 57.4% regular teachers could not cope with children with ID ...

  16. On infinite regular and chiral maps

    OpenAIRE

    Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán

    2015-01-01

    We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.

  17. 29 CFR 779.18 - Regular rate.

    Science.gov (United States)

    2010-07-01

    ... employee under subsection (a) or in excess of the employee's normal working hours or regular working hours... Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... not less than one and one-half times their regular rates of pay. Section 7(e) of the Act defines...

  18. Hydrodynamics of vapor-liquid annular dispersed flows in channels with heated rod clusters under unsteady conditions

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Kroshilin, V.E.; Nigmatulin, B.I.

    1984-01-01

    A one-dimensional unsteady hydrodynamic model of vapour-liquid disperse-annular flows in channels with heated fuel rod clusters has been constructed. Regularities in the appearance of critical heat transfer due to the dryout of a near-wall liquid film on rod surfaces in such channels are investigated. The model developed takes into account the main flow regularities in the channels with heated rod clusters. The calculations made have shown that the time before crisis appearance agrees satisfactorily with the experimental data

  19. Continuum regularized Yang-Mills theory

    International Nuclear Information System (INIS)

    Sadun, L.A.

    1987-01-01

    Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions

  20. Physical layer impairments tolerance based lightpath provision in software defined optical network

    Institute of Scientific and Technical Information of China (English)

    Zhao Xianlong; Xu Xianze; Bai Huifeng

    2017-01-01

    As all-optical networks grow with ever increasing ultra-high speed, the communication quality suffers seriously from physical layer impairments ( PLIs) .The same problem still exists in software defined optical network ( SDON) controlled by OpenFlow.Aimed to solve this problem, a PLIs tol-erance based lightpath provision scheme is proposed for OpenFlow controlled optical networks.This proposed approach not only takes the OSNR model to represent those linear PLIs factors, but also in-troduces those nonlinear factors into the OSNR model.Thus, the proposed scheme is able to cover most PLIs factors of each optical link and conduct optical lightpath provison with better communica-tion quality.Moreover, PLIs tolerance model is also set up and considered in this work with some necessary extension to OpenFlow protocols to achieve better compatibility between physical layer im-pairments factors and various services connections.Simulation results show that the proposed scheme is able to get better performance in terms of packet loss rate and connection setup time.

  1. Measurement of local flow pattern in boiling R12 simulating PWR conditions with multiple optical probes

    International Nuclear Information System (INIS)

    Garnier, J.

    1998-01-01

    For a comprehensive approach of boiling crisis phenomenon in order to get more reliable predictions of critical heat flux in PWR core, a flow pattern study is under progress at CEA GRENOBLE (in a joint program with Electricite de France: EdF). The first aim is to get experimental results on flow structure in the range of thermal hydraulic parameters involved in the core of a PWR (pressure up to 16 MPa, heat flux about 1 MW/m 2 , mass velocity up to 5000 kg/s/m 2 . As critical heat flux is a local phenomenon and is the result of the flow development, the data has to be measured from the beginning of boiling until boiling crisis, and from the bulk flow until the boundary layer close to the heating walls. Therefore, these results will be useful in modeling not only boiling crisis phenomenon but also condensation in subcooled boiling, coalescence, splitting up, mass and energy transfers at interfaces, and so on. In a first step, the test section is a vertical tube 19.2 mm internal diameter with an axial uniform heat flux over a 3.5m length. The study is performed on the DEBORA loop with Freon 12 as coolant fluid. We assume that basic boiling phenomena (and the knowledge we get about them) only depend on the fluid properties by means of dimensionless parameters but not on the fluid itself. In a first part, we briefly recall that interfacial detection is the most important parameter of a flow pattern study. Therefore, the use of probes able to measure the Phase Indicator Function (P.I.F.) is necessary. A first study of flow conditions shows that the flow pattern is essentially a bubbly one with vapor particles of low diameter (about 300 clm) and high velocity (up to 7 m/s). These criteria induce that a multiple optical probe is the most appropriate tool provided we improve the technology. We detail the way to obtain probes able to detect small particles at high velocity. Each fiber is stretched to get a tip of 10 Clm with the cladding kept on 50 μm length which defines

  2. Estimation of Centers and Stagnation points in optical flow fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    In a topological sense fluid flows are characterised by their stagnation points. Given a temporal sequence of images of fluids we will consider the application of local polynomials to the estimation of smooth fluid flow fields. The normal flow at intensity contours is estimated from the local dis...

  3. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    Science.gov (United States)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  4. Internet-based remote counseling to support stress management: preventing interruptions to regular exercise in elderly people

    Science.gov (United States)

    Hashimoto, Sayuri; Munakata, Tsunestugu; Hashimoto, Nobuyuki; Okunaka, Jyunzo; Koga, Tatsuzo

    2006-01-01

    Our research showed that a high degree of life-stress has a negative mental health effect that may interrupt regular exercise. We used an internet based, remotely conducted, face to face, preventive counseling program using video monitors to reduce the source of life-stresses that interrupts regular exercise and evaluated the preventative effects of the program in elderly people. NTSC Video signals were converted to the IP protocol and facial images were transmitted to a PC display using the exclusive optical network lines of JGN2. Participants were 22 elderly people in Hokkaido, Japan, who regularly played table tennis. A survey was conducted before the intervention in August 2003. IT remote counseling was conducted on two occasions for one hour on each occasion. A post intervention survey was conducted in February 2004 and a follow-up survey was conducted in March 2005. Network quality was satisfactory with little data loss and high display quality. Results indicated that self-esteem increased significantly, trait anxiety decreased significantly, cognition of emotional support by people other than family members had a tendency to increase, and source of stress had a tendency to decrease after the intervention. Follow-up results indicated that cognition of emotional support by family increased significantly, and interpersonal dependency decreased significantly compared to before the intervention. These results suggest that face to face IT remote counseling using video monitors is useful to keep elderly people from feeling anxious and to make them confident to continue exercising regularly. Moreover, it has a stress management effect.

  5. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  6. Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes

    Science.gov (United States)

    Stuchlík, Zdeněk; Schee, Jan

    2015-12-01

    In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.

  7. Regularity effect in prospective memory during aging

    OpenAIRE

    Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique

    2016-01-01

    Background: Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults.Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 1...

  8. 20 CFR 226.14 - Employee regular annuity rate.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Employee regular annuity rate. 226.14 Section... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing an Employee Annuity § 226.14 Employee regular annuity rate. The regular annuity rate payable to the employee is the total of the employee tier I...

  9. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  10. Regular algebra and finite machines

    CERN Document Server

    Conway, John Horton

    2012-01-01

    World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg

  11. Committee on Atomic, Molecular, and Optical Sciences (CAMOS)

    International Nuclear Information System (INIS)

    1992-01-01

    The Committee on Atomic, Molecular and Optical Sciences (CAMOS) of the National Research Council (NRC) is charged with monitoring the health of the field of atomic, molecular, and optical (AMO) science in the United States. Accordingly, the Committee identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the CAMOS to meet its charge. This progress report presents a review of CAMOS activities from February 1, 1992 to January 31, 1993. This report also includes the status of activities associated with the CAMOS study on the field that is being conducted by the Panel on the Future of Atomic, Molecular, and Optical Sciences (FAMOS)

  12. 39 CFR 6.1 - Regular meetings, annual meeting.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Regular meetings, annual meeting. 6.1 Section 6.1 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE MEETINGS (ARTICLE VI) § 6.1 Regular meetings, annual meeting. The Board shall meet regularly on a schedule...

  13. One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows

    Science.gov (United States)

    Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael

    2016-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.

  14. Modelling and measurements of sand transport processes over full-scale ripples in oscillatory flow

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Ribberink, Jan S.; O'Donoghue, Tom; Doucette, Jeffrey C.

    2006-01-01

    A new series of laboratory experiments was performed in the Aberdeen Oscillatory Flow Tunnel (AOFT) and the Large Oscillating Water Tunnel (LOWT) to investigate time-averaged suspended sand concentrations and transport rates over rippled beds in regular and irregular oscillatory flow. The

  15. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet

    International Nuclear Information System (INIS)

    Yan, B.H.; Zhang, G.; Gu, H.Y.

    2012-01-01

    Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.

  16. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; Pfiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  17. Hermite regularization of the lattice Boltzmann method for open source computational aeroacoustics.

    Science.gov (United States)

    Brogi, F; Malaspinas, O; Chopard, B; Bonadonna, C

    2017-10-01

    The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, which is of interest for aeroacoustic applications. Several solutions have been proposed but are often too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. An original regularized collision operator is proposed, based on the expansion of Hermite polynomials, that greatly improves the accuracy and stability of the LBM without significantly altering its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between this approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial software, while here the entire theoretical framework is implemented using an open source library (palabos).

  18. Virtual optical network provisioning with unified service logic processing model for software-defined multidomain optical networks

    Science.gov (United States)

    Zhao, Yongli; Li, Shikun; Song, Yinan; Sun, Ji; Zhang, Jie

    2015-12-01

    Hierarchical control architecture is designed for software-defined multidomain optical networks (SD-MDONs), and a unified service logic processing model (USLPM) is first proposed for various applications. USLPM-based virtual optical network (VON) provisioning process is designed, and two VON mapping algorithms are proposed: random node selection and per controller computation (RNS&PCC) and balanced node selection and hierarchical controller computation (BNS&HCC). Then an SD-MDON testbed is built with OpenFlow extension in order to support optical transport equipment. Finally, VON provisioning service is experimentally demonstrated on the testbed along with performance verification.

  19. Eavesdropping-aware routing and spectrum allocation based on multi-flow virtual concatenation for confidential information service in elastic optical networks

    Science.gov (United States)

    Bai, Wei; Yang, Hui; Yu, Ao; Xiao, Hongyun; He, Linkuan; Feng, Lei; Zhang, Jie

    2018-01-01

    The leakage of confidential information is one of important issues in the network security area. Elastic Optical Networks (EON) as a promising technology in the optical transport network is under threat from eavesdropping attacks. It is a great demand to support confidential information service (CIS) and design efficient security strategy against the eavesdropping attacks. In this paper, we propose a solution to cope with the eavesdropping attacks in routing and spectrum allocation. Firstly, we introduce probability theory to describe eavesdropping issue and achieve awareness of eavesdropping attacks. Then we propose an eavesdropping-aware routing and spectrum allocation (ES-RSA) algorithm to guarantee information security. For further improving security and network performance, we employ multi-flow virtual concatenation (MFVC) and propose an eavesdropping-aware MFVC-based secure routing and spectrum allocation (MES-RSA) algorithm. The presented simulation results show that the proposed two RSA algorithms can both achieve greater security against the eavesdropping attacks and MES-RSA can also improve the network performance efficiently.

  20. Automating InDesign with Regular Expressions

    CERN Document Server

    Kahrel, Peter

    2006-01-01

    If you need to make automated changes to InDesign documents beyond what basic search and replace can handle, you need regular expressions, and a bit of scripting to make them work. This Short Cut explains both how to write regular expressions, so you can find and replace the right things, and how to use them in InDesign specifically.