WorldWideScience

Sample records for regularized motion tracking

  1. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton, London SM2 5PT (United Kingdom)

    2016-01-15

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking

  2. Manifold Regularized Correlation Object Tracking.

    Science.gov (United States)

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2018-05-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.

  3. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  4. Manifold Regularized Correlation Object Tracking

    OpenAIRE

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2017-01-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...

  5. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  6. Postural sway and gaze can track the complex motion of a visual target.

    Directory of Open Access Journals (Sweden)

    Vassilia Hatzitaki

    Full Text Available Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP and Medio-Lateral (ML direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor, a noise (brown and a periodic (sine moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.

  7. Catalytic micromotor generating self-propelled regular motion through random fluctuation

    Science.gov (United States)

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-01

    Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  8. Real Time MRI Motion Correction with Markerless Tracking

    DEFF Research Database (Denmark)

    Benjaminsen, Claus; Jensen, Rasmus Ramsbøl; Wighton, Paul

    Prospective motion correction for MRI neuroimaging has been demonstrated using MR navigators and external tracking systems using markers. The drawbacks of these two motion estimation methods include prolonged scan time plus lack of compatibility with all image acquisitions, and difficulties...... validating marker attachment resulting in uncertain estimation of the brain motion respectively. We have developed a markerless tracking system, and in this work we demonstrate the use of our system for prospective motion correction, and show that despite being computationally demanding, markerless tracking...... can be implemented for real time motion correction....

  9. Object Tracking via 2DPCA and l2-Regularization

    Directory of Open Access Journals (Sweden)

    Haijun Wang

    2016-01-01

    Full Text Available We present a fast and robust object tracking algorithm by using 2DPCA and l2-regularization in a Bayesian inference framework. Firstly, we model the challenging appearance of the tracked object using 2DPCA bases, which exploit the strength of subspace representation. Secondly, we adopt the l2-regularization to solve the proposed presentation model and remove the trivial templates from the sparse tracking method which can provide a more fast tracking performance. Finally, we present a novel likelihood function that considers the reconstruction error, which is concluded from the orthogonal left-projection matrix and the orthogonal right-projection matrix. Experimental results on several challenging image sequences demonstrate that the proposed method can achieve more favorable performance against state-of-the-art tracking algorithms.

  10. Self-Motion Impairs Multiple-Object Tracking

    Science.gov (United States)

    Thomas, Laura E.; Seiffert, Adriane E.

    2010-01-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…

  11. Tracking using motion estimation with physically motivated inter-region constraints

    KAUST Repository

    Arif, Omar

    2014-09-01

    We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme. Our method estimates motion by regularizing only within structures so that differing motions among different structures are not mixed. It simultaneously satisfies the physical constraints at the interface between a fluid and a medium that the normal component of the fluid\\'s motion must match the normal component of the medium\\'s motion and the No-Slip condition, which states that the tangential velocity approaches zero near the interface. We show that these conditions lead to partial differential equations with Robin boundary conditions at the interface, which couple the motion between structures. We show that propagating a segmentation across frames using our motion estimation scheme leads to more accurate segmentation than traditional motion estimation that does not use physical constraints. Our method is suited to interactive segmentation, prominently used in commercial applications for cardiac analysis, where segmentation propagation is used to predict a segmentation in the next frame. We show that our method leads to more accurate predictions than a popular and recent interactive method used in cardiac segmentation. © 2014 IEEE.

  12. Proton spin tracking with symplectic integration of orbit motion

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  13. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul [Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, Korea 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Department of Radiation Oncology, Asan Medical Center, Seoul, 138-736 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Radiation Physics Laboratory, Sydney Medical School, University of Sydney, 2006 (Australia)

    2011-07-15

    Purpose: In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. Methods: The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a {gamma}-test with a 3%/3 mm criterion. Results: The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the {gamma}-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation

  14. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    Science.gov (United States)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of

  15. Estimation of the global regularity of a multifractional Brownian motion

    DEFF Research Database (Denmark)

    Lebovits, Joachim; Podolskij, Mark

    This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a ...... that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path....

  16. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  17. An adaptive approach to human motion tracking from video

    Science.gov (United States)

    Wu, Lifang; Chen, Chang Wen

    2010-07-01

    Vision based human motion tracking has drawn considerable interests recently because of its extensive applications. In this paper, we propose an approach to tracking the body motion of human balancing on each foot. The ability to balance properly is an important indication of neurological condition. Comparing with many other human motion tracking, there is much less occlusion in human balancing tracking. This less constrained problem allows us to combine a 2D model of human body with image analysis techniques to develop an efficient motion tracking algorithm. First we define a hierarchical 2D model consisting of six components including head, body and four limbs. Each of the four limbs involves primary component (upper arms and legs) and secondary component (lower arms and legs) respectively. In this model, we assume each of the components can be represented by quadrangles and every component is connected to one of others by a joint. By making use of inherent correlation between different components, we design a top-down updating framework and an adaptive algorithm with constraints of foreground regions for robust and efficient tracking. The approach has been tested using the balancing movement in HumanEva-I/II dataset. The average tracking time is under one second, which is much shorter than most of current schemes.

  18. Nonlinear Motion Tracking by Deep Learning Architecture

    Science.gov (United States)

    Verma, Arnav; Samaiya, Devesh; Gupta, Karunesh K.

    2018-03-01

    In the world of Artificial Intelligence, object motion tracking is one of the major problems. The extensive research is being carried out to track people in crowd. This paper presents a unique technique for nonlinear motion tracking in the absence of prior knowledge of nature of nonlinear path that the object being tracked may follow. We achieve this by first obtaining the centroid of the object and then using the centroid as the current example for a recurrent neural network trained using real-time recurrent learning. We have tweaked the standard algorithm slightly and have accumulated the gradient for few previous iterations instead of using just the current iteration as is the norm. We show that for a single object, such a recurrent neural network is highly capable of approximating the nonlinearity of its path.

  19. Computer-aided target tracking in motion analysis studies

    Science.gov (United States)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  20. Motion Tracking for Medical Imaging: A Non-Visible Structured Light Tracking Approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2012-01-01

    We present a system for head motion tracking in 3D brain imaging. The system is based on facial surface reconstruction and tracking using a structured light (SL) scanning principle. The system is designed to fit into narrow 3D medical scanner geometries limiting the field of view. It is tested......, is that it is not necessary to place markers on the patient. This provides a simpler workflow and eliminates uncertainties related to marker attachment and stability. We show proof of concept of a marker less tracking system especially designed for clinical use with promising results....... in a clinical setting on the high resolution research tomograph (HRRT), Siemens PET scanner with a head phantom and volunteers. The SL system is compared to a commercial optical tracking system, the Polaris Vicra system, from NDI based on translatory and rotary ground truth motions of the head phantom...

  1. Management of three-dimensional intrafraction motion through real-time DMLC tracking

    International Nuclear Information System (INIS)

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-01-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion

  2. Effective Multi-Model Motion Tracking Under Multiple Team Member Actuators

    OpenAIRE

    Gu, Yang; Veloso, Manuela

    2009-01-01

    Motivated by the interactions between a team and the tracked target, we contribute a method to achieve efficient tracking through using a play-based motion model and combined vision and infrared sensory information. This method gives the robot a more exact task-specific motion model when executing different tactics over the tracked target (e.g. the ball) or collaborating with the tracked target (e.g. the team member). Then we represent the system in a compact dynamic Bayesian network and use ...

  3. A Single Unexpected Change in Target- but Not Distractor Motion Impairs Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Hauke S. Meyerhoff

    2013-02-01

    Full Text Available Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distractors, neither, or both during a brief flash in the middle of a tracking interval. We observed that a single direction change of targets is sufficient to impair tracking performance. In contrast, changing the motion direction of distractors had no effect on performance. This indicates that target- but not distractor motion information is evaluated during tracking.

  4. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  5. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Meyer, Juergen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-01-01

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s 2 in the lateral direction, and 9.5 mm/s and 29.5 mm/s 2 in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system

  6. Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound

    International Nuclear Information System (INIS)

    Harris, Emma J; Miller, Naomi R; Bamber, Jeffrey C; Symonds-Tayler, J Richard N; Evans, Philip M

    2010-01-01

    We have evaluated a 4D ultrasound-based motion tracking system developed for tracking of abdominal organs during therapy. Tracking accuracy and precision were determined using a tissue-mimicking phantom, by comparing tracked motion with known 3D sinusoidal motion. The feasibility of tracking 3D liver motion in vivo was evaluated by acquiring 4D ultrasound data from four healthy volunteers. For two of these volunteers, data were also acquired whilst simultaneously measuring breath flow using a spirometer. Hepatic blood vessels, tracked off-line using manual tracking, were used as a reference to assess, in vivo, two types of automated tracking algorithm: incremental (from one volume to the next) and non-incremental (from the first volume to each subsequent volume). For phantom-based experiments, accuracy and precision (RMS error and SD) were found to be 0.78 mm and 0.54 mm, respectively. For in vivo measurements, mean absolute distance and standard deviation of the difference between automatically and manually tracked displacements were less than 1.7 mm and 1 mm respectively in all directions (left-right, anterior-posterior and superior-inferior). In vivo non-incremental tracking gave the best agreement. In both phantom and in vivo experiments, tracking performance was poorest for the elevational component of 3D motion. Good agreement between automatically and manually tracked displacements indicates that 4D ultrasound-based motion tracking has potential for image guidance applications in therapy.

  7. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    relying on markers. Data-driven motion correction is problematic due to the physiological dynamics. Marker-based tracking is potentially unreliable, and it is extremely hard to validate when the tracking information is correct. The motion estimation is essential for proper motion correction of the PET......This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...

  8. Motion-aware temporal regularization for improved 4D cone-beam computed tomography

    Science.gov (United States)

    Mory, Cyril; Janssens, Guillaume; Rit, Simon

    2016-09-01

    Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-breathing thorax is a valuable tool in image-guided radiation therapy of the thorax and the upper abdomen. It allows the determination of the position of a tumor throughout the breathing cycle, while only its mean position can be extracted from three-dimensional CBCT. The classical approaches are not fully satisfactory: respiration-correlated methods allow one to accurately locate high-contrast structures in any frame, but contain strong streak artifacts unless the acquisition is significantly slowed down. Motion-compensated methods can yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT method that can be seen as a trade-off between respiration-correlated and motion-compensated reconstruction. It builds upon the existing reconstruction using spatial and temporal regularization (ROOSTER) and is called motion-aware ROOSTER (MA-ROOSTER). It performs temporal regularization along curved trajectories, following the motion estimated on a prior 4D CT scan. MA-ROOSTER does not involve motion-compensated forward and back projections: the input motion is used only during temporal regularization. MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp-Davis-Kress (MC-FDK), and two respiration-correlated methods, on CBCT acquisitions of one physical phantom and two patients. It yields streak-free reconstructions, visually similar to MC-FDK, and robust information on tumor location throughout the breathing cycle. MA-ROOSTER also allows a variation of the lung tissue density during the breathing cycle, similar to that of planning CT, which is required for quantitative post-processing.

  9. Regular and stochastic particle motion in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1979-08-01

    A Hamiltonian formalism is presented for the study of charged-particle trajectories in the self-consistent field of the particles. The intention is to develop a general approach to plasma dynamics. Transformations of phase-space variables are used to separate out the regular, adiabatic motion from the irregular, stochastic trajectories. Several new techniques are included in this presentation

  10. An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T.

    Science.gov (United States)

    Schulz, Jessica; Siegert, Thomas; Reimer, Enrico; Labadie, Christian; Maclaren, Julian; Herbst, Michael; Zaitsev, Maxim; Turner, Robert

    2012-12-01

    Prospective motion correction using data from optical tracking systems has been previously shown to reduce motion artifacts in MR imaging of the head. We evaluate a novel optical embedded tracking system. The home-built optical embedded tracking system performs image processing within a 7 T scanner bore, enabling high speed tracking. Corrected and uncorrected in vivo MR volumes are acquired interleaved using a modified 3D FLASH sequence, and their image quality is assessed and compared. The latency between motion and correction of the slice position was measured to be (19 ± 5) ms, and the tracking noise has a standard deviation no greater than 10 μm/0.005° during conventional MR scanning. Prospective motion correction improved the edge strength by 16 % on average, even though the volunteers were asked to remain motionless during the acquisitions. Using a novel method for validating the effectiveness of in vivo prospective motion correction, we have demonstrated that prospective motion correction using motion data from the embedded tracking system considerably improved image quality.

  11. Siamese convolutional networks for tracking the spine motion

    Science.gov (United States)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  12. Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.

    Science.gov (United States)

    Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong

    2016-08-01

    The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.

  13. Hybrid markerless tracking of complex articulated motion in golf swings.

    Science.gov (United States)

    Fung, Sim Kwoh; Sundaraj, Kenneth; Ahamed, Nizam Uddin; Kiang, Lam Chee; Nadarajah, Sivadev; Sahayadhas, Arun; Ali, Md Asraf; Islam, Md Anamul; Palaniappan, Rajkumar

    2014-04-01

    Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene. Our research focuses on the development of a markerless human motion tracking system that tracks the major body parts of an athlete straight from a sports broadcast video. We proposed a hybrid tracking method, which consists of a combination of three algorithms (pyramidal Lucas-Kanade optical flow (LK), normalised correlation-based template matching and background subtraction), to track the golfer's head, body, hands, shoulders, knees and feet during a full swing. We then match, track and map the results onto a 2D articulated human stick model to represent the pose of the golfer over time. Our work was tested using two video broadcasts of a golfer, and we obtained satisfactory results. The current outcomes of this research can play an important role in enhancing the performance of a golfer, provide vital information to sports medicine practitioners by providing technically sound guidance on movements and should assist to diminish the risk of golfing injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Keall, Paul J.; Grau, Cai

    2014-01-01

    of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of -0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root...... validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets. MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder......-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose...

  15. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  16. Robust Myocardial Motion Tracking for Echocardiography: Variational Framework Integrating Local-to-Global Deformation

    Directory of Open Access Journals (Sweden)

    Chi Young Ahn

    2013-01-01

    Full Text Available This paper proposes a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frames from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropouts, or shadowing phenomena of cardiac walls. The proposed method is designed to deal with this shape distortion problem by integrating local optical flow motion and global deformation into a variational framework. The proposed descent method controls the individual tracking points to follow the local motions of a specific speckle pattern, while their overall motions are confined to the global motion constraint being approximately an affine transform of the initial tracking points. Many real experiments show that the proposed method achieves better overall performance than conventional methods.

  17. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  18. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  19. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  20. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  1. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  2. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  3. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  4. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  5. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  6. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  7. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned......2,1) based on the detected first pattern sequence (S1'); projecting the second pattern sequence (S2) onto a surface region of the subject with the light projector; detecting the projected second pattern sequence (S2') with the first camera; and determining motion tracking parameters based...

  8. An ice-motion tracking system at the Alaska SAR facility

    Science.gov (United States)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  9. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    Science.gov (United States)

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  10. Models and Algorithms for Tracking Target with Coordinated Turn Motion

    Directory of Open Access Journals (Sweden)

    Xianghui Yuan

    2014-01-01

    Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.

  11. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion.

    Science.gov (United States)

    Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo

    2017-05-05

    In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time.

  12. Active contour-based visual tracking by integrating colors, shapes, and motions.

    Science.gov (United States)

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  13. SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H [Capital Medical University, Beijing, Beijing (China); Chen, Z [Yale New Haven Hospital, New Haven, CT (United States); Nath, R; Liu, W [Yale University School of Medicine, New Haven, CT (United States)

    2016-06-15

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the

  14. SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging

    International Nuclear Information System (INIS)

    Yan, H; Chen, Z; Nath, R; Liu, W

    2016-01-01

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the

  15. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  16. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  17. Motion tracking in narrow spaces: a structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...... the system to a standard optical motion tracker based on a rigid tracking tool. Our system achieves an angular RMSE of 0.11 degrees demonstrating its relevance for motion compensated 3D scan image reconstructions as well as its competitiveness against the standard optical system with an RMSE of 0.08 degrees...... point clouds are matched to a reference surface using a robust iterative closest point algorithm. A main challenge is the narrow geometry requiring a compact structured light system and an oblique angle of observation. The system is validated using a mannequin head mounted on a rotary stage. We compare...

  18. Structured light 3D tracking system for measuring motions in PET brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Jørgensen, Morten Rudkjær; Paulsen, Rasmus Reinhold

    2010-01-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a ...

  19. Separating complex compound patient motion tracking data using independent component analysis

    Science.gov (United States)

    Lindsay, C.; Johnson, K.; King, M. A.

    2014-03-01

    In SPECT imaging, motion from respiration and body motion can reduce image quality by introducing motion-related artifacts. A minimally-invasive way to track patient motion is to attach external markers to the patient's body and record their location throughout the imaging study. If a patient exhibits multiple movements simultaneously, such as respiration and body-movement, each marker location data will contain a mixture of these motions. Decomposing this complex compound motion into separate simplified motions can have the benefit of applying a more robust motion correction to the specific type of motion. Most motion tracking and correction techniques target a single type of motion and either ignore compound motion or treat it as noise. Few methods account for compound motion exist, but they fail to disambiguate super-position in the compound motion (i.e. inspiration in addition to body movement in the positive anterior/posterior direction). We propose a new method for decomposing the complex compound patient motion using an unsupervised learning technique called Independent Component Analysis (ICA). Our method can automatically detect and separate different motions while preserving nuanced features of the motion without the drawbacks of previous methods. Our main contributions are the development of a method for addressing multiple compound motions, the novel use of ICA in detecting and separating mixed independent motions, and generating motion transform with 12 DOFs to account for twisting and shearing. We show that our method works with clinical datasets and can be employed to improve motion correction in single photon emission computed tomography (SPECT) images.

  20. Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial.

    Science.gov (United States)

    Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.

  1. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    International Nuclear Information System (INIS)

    Fahimian, B.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  2. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, B. [Stanford University (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  3. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    Science.gov (United States)

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  4. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  5. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  6. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    International Nuclear Information System (INIS)

    Fattori, G.; Seregni, M.; Pella, A.; Riboldi, M.; Capasso, L.; Donetti, M.; Ciocca, M.; Giordanengo, S.; Pullia, M.; Marchetto, F.; Baroni, G.

    2016-01-01

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  7. Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Seregni, Matteo; Fattori, Giovanni [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Summers, Paul [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Bellomi, Massimo [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Department of Health Sciences, Università degli Studi di Milano, Milano (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

    2015-03-15

    Purpose: This study applied automatic feature detection on cine–magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each feature was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results: An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI

  8. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    Science.gov (United States)

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.

  9. WE-DE-BRA-11: A Study of Motion Tracking Accuracy of Robotic Radiosurgery Using a Novel CCD Camera Based End-To-End Test System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L; M Yang, Y [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Nelson, B [Logos Systems Intl, Scotts Valley, CA (United States)

    2016-06-15

    Purpose: A novel end-to-end test system using a CCD camera and a scintillator based phantom (XRV-124, Logos Systems Int’l) capable of measuring the beam-by-beam delivery accuracy of Robotic Radiosurgery (CyberKnife) was developed and reported in our previous work. This work investigates its application in assessing the motion tracking (Synchrony) accuracy for CyberKnife. Methods: A QA plan with Anterior and Lateral beams (with 4 different collimator sizes) was created (Multiplan v5.3) for the XRV-124 phantom. The phantom was placed on a motion platform (superior and inferior movement), and the plans were delivered on the CyberKnife M6 system using four motion patterns: static, Sine- wave, Sine with 15° phase shift, and a patient breathing pattern composed of 2cm maximum motion with 4 second breathing cycle. Under integral recording mode, the time-averaged beam vectors (X, Y, Z) were measured by the phantom and compared with static delivery. In dynamic recording mode, the beam spots were recorded at a rate of 10 frames/second. The beam vector deviation from average position was evaluated against the various breathing patterns. Results: The average beam position of the six deliveries with no motion and three deliveries with Synchrony tracking on ideal motion (sinewave without phase shift) all agree within −0.03±0.00 mm, 0.10±0.04, and 0.04±0.03 in the X, Y, and X directions. Radiation beam width (FWHM) variations are within ±0.03 mm. Dynamic video record showed submillimeter tracking stability for both regular and irregular breathing pattern; however the tracking error up to 3.5 mm was observed when a 15 degree phase shift was introduced. Conclusion: The XRV-124 system is able to provide 3D and 4D targeting accuracy for CyberKnife delivery with Synchrony. The experimental results showed sub-millimeter delivery in phantom with excellent correlation in target to breathing motion. The accuracy was degraded when irregular motion and phase shift was introduced.

  10. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    Science.gov (United States)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  11. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    Science.gov (United States)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  12. Motion correction in neurological fan beam SPECT using motion tracking and fully 3D reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.; Eberl, S.; Meikle, S.; Braun, M.; Westmead Hospital, Westmead, NSW; University of Technology, Sydney, NSW

    1998-01-01

    Full text: We have previously proposed the use of fully three-dimensional (3D) reconstruction and continuous monitoring of head position to correct for motion artifacts in neurological SPECT and PET. Knowledge of the motion during acquisition provided by a head tracking system can be used to reposition the projection data in space in such a way as to negate motion effects during reconstruction. The reconstruction algorithm must deal with variations in the projection geometry resulting from differences in the timing and nature of motion between patients. Rotational movements about any axis other than the camera's axis of rotation give rise to projection geometries which necessitate the use of a fully 3D reconstruction algorithm. Our previous work with computer simulations assuming parallel hole collimation demonstrated the feasibility of correcting for motion. We have now refined our iterative 3D reconstruction algorithm to support fan beam data and attenuation correction, and developed a practical head tracking system for use on a Trionix Triad SPECT system. The correction technique has been tested in fan beam SPECT studies of the 3D Hoffman brain phantom. Arbitrary movements were applied to the phantom during acquisition and recorded by the head tracker which monitored the position and orientation of the phantom throughout the study. 3D reconstruction was then performed using the motion data provided by the tracker. The accuracy of correction was assessed by comparing the corrected images with a motion free study acquired immediately beforehand, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. 3D reconstruction of the 128x128x128 data set took 20 minutes on a SUN Ultra 1 workstation. The results of these phantom experiments suggest that the technique can effectively compensate for head motion under clinical SPECT imaging

  13. Ego-Motion and Tracking for Continuous Object Learning: A Brief Survey

    Science.gov (United States)

    2017-09-01

    past research related to the tasks of ego-motion estimation and object tracking from the viewpoint of their role in continuous object learning...in visual object tracking, competitions are held each year to identify the most accurate and robust tracking implementations. Over recent competitions...information should they share) or vice versa? These are just some of the questions that must be addressed in future research toward continuous object

  14. Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.

    Science.gov (United States)

    Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong

    2016-08-01

    The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.

  15. First evaluation of the feasibility of MLC tracking using ultrasound motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F., E-mail: martin.fast@icr.ac.uk; O’Shea, Tuathan P., E-mail: tuathan.oshea@nhs.net; Nill, Simeon; Oelfke, Uwe; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2016-08-15

    Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.

  16. First evaluation of the feasibility of MLC tracking using ultrasound motion estimation

    International Nuclear Information System (INIS)

    Fast, Martin F.; O’Shea, Tuathan P.; Nill, Simeon; Oelfke, Uwe; Harris, Emma J.

    2016-01-01

    Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.

  17. Motion tracking in narrow spaces: A structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...

  18. Effectiveness of an Automatic Tracking Software in Underwater Motion Analysis

    Directory of Open Access Journals (Sweden)

    Fabrício A. Magalhaes

    2013-12-01

    Full Text Available Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP, based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers’ positions were manually tracked to determine the markers’ center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM. Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker’s coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4% than for COM (17.8%. Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis.

  19. Markerless PET motion correction: tracking in narrow gantries through optical fibers

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Olesen, Oline Vinter; Benjaminsen, Claus

    2015-01-01

    be accurate while only adding minimal complexity to the workflow. We present: Tracoline 2.0, a surface scanner prototype, which allows for markerless tracking in the clinic. The system uses structured light through optical fibre bundles, which easily fit in narrow gantries. The optical fibres also makes...... the system compatible with magnetic resonance (MR) imaging since all the electronics are moved away from the scanner. We demonstrate the system in a positron emission tomography (PET) study using the Siemens high resolution research tomography (HRRT). With two Ge/Ga-68 line sources fitted in a mannequin head...... for rotations up to ±25º. Based on the tracking results the PET frames were also successfully corrected for motion by aligning 10 s frames without motion for the stepwise experiment and aligning 1 s frames for the experiment with continuous motion. We have demonstrated and evaluated a system for markerless...

  20. Fish tracking by combining motion based segmentation and particle filtering

    Science.gov (United States)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  1. Using Motion Tracking to Detect Spontaneous Movements in Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2015-01-01

    We study the characteristics of infants’ spontaneous movements, based on data obtained from a markerless motion tracking system. From the pose data, the set of features are generated from the raw joint-angles of the infants and different classifiers are trained and evaluated using annotated data...

  2. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment

    DEFF Research Database (Denmark)

    Zimmerman, Jens; Korreman, Stine; Persson, Gitte

    2009-01-01

    (DMLC). The aim of this work was to evaluate the dose delivered to moving targets using the RapidArc (Varian Medical Systems, Inc.) technology with and without a DMLC tracking algorithm. MATERIAL AND METHODS: A Varian Clinac iX was equipped with a preclinical RapidArc and a 3D DMLC tracking application......) and state (1). CONCLUSIONS: DMLC tracking together with RapidArc make a feasible combination and is capable of improving the dose distribution delivered to a moving target. It seems to be of importance to minimize noise influencing the tracking, to gain the full benefit from the application........ A motion platform was placed on the couch, with the detectors on top: a PTW seven29 and a Scandidos Delta4. One lung plan and one prostate plan were delivered. Motion was monitored using a Real-time Position Management (RPM) system. Reference measurements were performed for both plans with both detectors...

  3. SU-G-JeP1-14: Respiratory Motion Tracking Using Kinect V2

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, E; Snyder, M [Wayne State University, Detroit, MI (United States)

    2016-06-15

    Purpose: Investigate capability and accuracy of Kinect v2 camera for tracking respiratory motion to use as a tool during 4DCT or in combination with motion management during radiotherapy treatments. Methods: Utilizing the depth sensor on the Kinect as well as code written in C#, the respiratory motion of a patient was tracked by recording the depth (distance) values obtained at several points on the patient. Respiratory traces were also obtained using Varian’s RPM system, which traces the movement of a propriety marker placed on the patient’s abdomen, as well as an Anzai belt, which utilizes a pressure sensor to track respiratory motion. With the Kinect mounted 60 cm above the patient and pointing straight down, 11 breathing cycles were recorded with each system simultaneously. Relative displacement values during this time period were saved to file. While RPM and the Kinect give displacement values in distance units, the Anzai system has arbitrary units. As such, displacement for all three are displayed relative to the maximum value for the time interval from that system. Additional analysis was performed between RPM and Kinect for absolute displacement values. Results: Analysis of the data from all three systems indicates the relative motion obtained from the Kinect is both accurate and in sync with the data from RPM and Anzai. The absolute displacement data from RPM and Kinect show similar displacement values throughout the acquisition except for the depth obtained from the Kinect during maximum exhalation (largest distance from Kinect). Conclusion: By simply utilizing the depth data of specific points on a patient obtained from the Kinect, respiratory motion can be tracked and visualized with accuracy comparable to that of the Varian RPM and Anzai belt.

  4. Poster - 51: A tumor motion-compensating system with tracking and prediction – a proof-of-concept study

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kaiming; Teo, Peng; Kawalec, Philip; Pistorius, Stephen [CancerCare Manitoba (Canada)

    2016-08-15

    Purpose: This work reports on the development of a mechanical slider system for the counter-steering of tumor motion in adaptive Radiation Therapy (RT). The tumor motion was tracked using a weighted optical flow algorithm and its position is being predicted with a neural network (NN). Methods: The components of the proposed mechanical counter-steering system includes: (1) an actuator which provides the tumor motion, (2) the motion detection using an optical flow algorithm, (3) motion prediction using a neural network, (4) a control module and (5) a mechanical slider to counter-steer the anticipated motion of the tumor phantom. An asymmetrical cosine function and five patient traces (P1–P5) were used to evaluate the tracking of a 3D printed lung tumor. In the proposed mechanical counter-steering system, both actuator (Zaber NA14D60) and slider (Zaber A-BLQ0070-E01) were programed to move independently with LabVIEW and their positions were recorded by 2 potentiometers (ETI LCP12S-25). The accuracy of this counter-steering system is given by the difference between the two potentiometers. Results: The inherent accuracy of the system, measured using the cosine function, is −0.15 ± 0.06 mm. While the errors when tracking and prediction were included, is (0.04 ± 0.71) mm. Conclusion: A prototype tumor motion counter-steering system with tracking and prediction was implemented. The inherent errors are small in comparison to the tracking and prediction errors, which in turn are small in comparison to the magnitude of tumor motion. The results show that this system is suited for evaluating RT tracking and prediction.

  5. Tracking without perceiving: a dissociation between eye movements and motion perception.

    Science.gov (United States)

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-02-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.

  6. Motion management during IMAT treatment of mobile lung tumors-A comparison of MLC tracking and gated delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Pommer, Tobias; Keall, Paul

    2014-01-01

    Purpose:To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four...... tracking reduced the effects of the target movements, although the gated delivery showed a better dosimetric accuracy and enabled a larger reduction of the margins in some cases. MLC tracking did not prolong the treatment time compared to delivery with no motion compensation while gating had a considerably...... of the dosimetric error contributions showed that the gated delivery mainly had errors in target localization, while MLC tracking also had contributions from MLC leaf fitting and leaf adjustment. The average treatment time was about three times longer with gating compared to delivery with MLC tracking (that did...

  7. Tracking using motion estimation with physically motivated inter-region constraints

    KAUST Repository

    Arif, Omar; Sundaramoorthi, Ganesh; Hong, Byungwoo; Yezzi, Anthony J.

    2014-01-01

    We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme

  8. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  9. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  10. The transition from regular to irregular motions, explained as travel on Riemann surfaces

    International Nuclear Information System (INIS)

    Calogero, F; Santini, P M; Gomez-Ullate, D; Sommacal, M

    2005-01-01

    We introduce and discuss a simple Hamiltonian dynamical system, interpretable as a three-body problem in the (complex) plane and providing the prototype of a mechanism explaining the transition from regular to irregular motions as travel on Riemann surfaces. The interest of this phenomenology-illustrating the onset in a deterministic context of irregular motions-is underlined by its generality, suggesting its eventual relevance to understand natural phenomena and experimental investigations. Here only some of our main findings are reported, without detailing their proofs: a more complete presentation will be published elsewhere

  11. PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking

    Science.gov (United States)

    White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders

    2010-01-01

    Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635

  12. Comparative analysis of respiratory motion tracking using Microsoft Kinect v2 sensor.

    Science.gov (United States)

    Silverstein, Evan; Snyder, Michael

    2018-05-01

    To present and evaluate a straightforward implementation of a marker-less, respiratory motion-tracking process utilizing Kinect v2 camera as a gating tool during 4DCT or during radiotherapy treatments. Utilizing the depth sensor on the Kinect as well as author written C# code, respiratory motion of a subject was tracked by recording depth values obtained at user selected points on the subject, with each point representing one pixel on the depth image. As a patient breathes, specific anatomical points on the chest/abdomen will move slightly within the depth image across pixels. By tracking how depth values change for a specific pixel, instead of how the anatomical point moves throughout the image, a respiratory trace can be obtained based on changing depth values of the selected pixel. Tracking these values was implemented via marker-less setup. Varian's RPM system and the Anzai belt system were used in tandem with the Kinect to compare respiratory traces obtained by each using two different subjects. Analysis of the depth information from the Kinect for purposes of phase- and amplitude-based binning correlated well with the RPM and Anzai systems. Interquartile Range (IQR) values were obtained comparing times correlated with specific amplitude and phase percentages against each product. The IQR time spans indicated the Kinect would measure specific percentage values within 0.077 s for Subject 1 and 0.164 s for Subject 2 when compared to values obtained with RPM or Anzai. For 4DCT scans, these times correlate to less than 1 mm of couch movement and would create an offset of 1/2 an acquired slice. By tracking depth values of user selected pixels within the depth image, rather than tracking specific anatomical locations, respiratory motion can be tracked and visualized utilizing the Kinect with results comparable to that of the Varian RPM and Anzai belt. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of

  13. Fast and Accurate Rat Head Motion Tracking With Point Sources for Awake Brain PET.

    Science.gov (United States)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-07-01

    To avoid the confounding effects of anesthesia and immobilization stress in rat brain positron emission tomography (PET), motion tracking-based unrestrained awake rat brain imaging is being developed. In this paper, we propose a fast and accurate rat headmotion tracking method based on small PET point sources. PET point sources (3-4) attached to the rat's head are tracked in image space using 15-32-ms time frames. Our point source tracking (PST) method was validated using a manually moved microDerenzo phantom that was simultaneously tracked with an optical tracker (OT) for comparison. The PST method was further validated in three awake [ 18 F]FDG rat brain scans. Compared with the OT, the PST-based correction at the same frame rate (31.2 Hz) reduced the reconstructed FWHM by 0.39-0.66 mm for the different tested rod sizes of the microDerenzo phantom. The FWHM could be further reduced by another 0.07-0.13 mm when increasing the PST frame rate (66.7 Hz). Regional brain [ 18 F]FDG uptake in the motion corrected scan was strongly correlated ( ) with that of the anesthetized reference scan for all three cases ( ). The proposed PST method allowed excellent and reproducible motion correction in awake in vivo experiments. In addition, there is no need of specialized tracking equipment or additional calibrations to be performed, the point sources are practically imperceptible to the rat, and PST is ideally suitable for small bore scanners, where optical tracking might be challenging.

  14. Robust object tracking techniques for vision-based 3D motion analysis applications

    Science.gov (United States)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  15. Tissue-Point Motion Tracking in the Tongue from Cine MRI and Tagged MRI

    Science.gov (United States)

    Woo, Jonghye; Stone, Maureen; Suo, Yuanming; Murano, Emi Z.; Prince, Jerry L.

    2014-01-01

    Purpose: Accurate tissue motion tracking within the tongue can help professionals diagnose and treat vocal tract--related disorders, evaluate speech quality before and after surgery, and conduct various scientific studies. The authors compared tissue tracking results from 4 widely used deformable registration (DR) methods applied to cine magnetic…

  16. SU-G-JeP1-07: Development of a Programmable Motion Testbed for the Validation of Ultrasound Tracking Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, A; Matrosic, C; Zagzebski, J; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To develop an advanced testbed that combines a 3D motion stage and ultrasound phantom to optimize and validate 2D and 3D tracking algorithms for real-time motion management during radiation therapy. Methods: A Siemens S2000 Ultrasound scanner utilizing a 9L4 transducer was coupled with the Washington University 4D Phantom to simulate patient motion. The transducer was securely fastened to the 3D stage and positioned to image three cylinders of varying contrast in a Gammex 404GS LE phantom. The transducer was placed within a water bath above the phantom in order to maintain sufficient coupling for the entire range of simulated motion. A programmed motion sequence was used to move the transducer during image acquisition and a cine video was acquired for one minute to allow for long sequence tracking. Images were analyzed using a normalized cross-correlation block matching tracking algorithm and compared to the known motion of the transducer relative to the phantom. Results: The setup produced stable ultrasound motion traces consistent with those programmed into the 3D motion stage. The acquired ultrasound images showed minimal artifacts and an image quality that was more than suitable for tracking algorithm verification. Comparisons of a block matching tracking algorithm with the known motion trace for the three features resulted in an average tracking error of 0.59 mm. Conclusion: The high accuracy and programmability of the 4D phantom allows for the acquisition of ultrasound motion sequences that are highly customizable; allowing for focused analysis of some common pitfalls of tracking algorithms such as partial feature occlusion or feature disappearance, among others. The design can easily be modified to adapt to any probe such that the process can be extended to 3D acquisition. Further development of an anatomy specific phantom better resembling true anatomical landmarks could lead to an even more robust validation. This work is partially funded by NIH

  17. SU-G-JeP1-07: Development of a Programmable Motion Testbed for the Validation of Ultrasound Tracking Algorithms

    International Nuclear Information System (INIS)

    Shepard, A; Matrosic, C; Zagzebski, J; Bednarz, B

    2016-01-01

    Purpose: To develop an advanced testbed that combines a 3D motion stage and ultrasound phantom to optimize and validate 2D and 3D tracking algorithms for real-time motion management during radiation therapy. Methods: A Siemens S2000 Ultrasound scanner utilizing a 9L4 transducer was coupled with the Washington University 4D Phantom to simulate patient motion. The transducer was securely fastened to the 3D stage and positioned to image three cylinders of varying contrast in a Gammex 404GS LE phantom. The transducer was placed within a water bath above the phantom in order to maintain sufficient coupling for the entire range of simulated motion. A programmed motion sequence was used to move the transducer during image acquisition and a cine video was acquired for one minute to allow for long sequence tracking. Images were analyzed using a normalized cross-correlation block matching tracking algorithm and compared to the known motion of the transducer relative to the phantom. Results: The setup produced stable ultrasound motion traces consistent with those programmed into the 3D motion stage. The acquired ultrasound images showed minimal artifacts and an image quality that was more than suitable for tracking algorithm verification. Comparisons of a block matching tracking algorithm with the known motion trace for the three features resulted in an average tracking error of 0.59 mm. Conclusion: The high accuracy and programmability of the 4D phantom allows for the acquisition of ultrasound motion sequences that are highly customizable; allowing for focused analysis of some common pitfalls of tracking algorithms such as partial feature occlusion or feature disappearance, among others. The design can easily be modified to adapt to any probe such that the process can be extended to 3D acquisition. Further development of an anatomy specific phantom better resembling true anatomical landmarks could lead to an even more robust validation. This work is partially funded by NIH

  18. Assisting doctors on assessing movements in infants using motion tracking

    DEFF Research Database (Denmark)

    Olsen, Mikkel; Herskind, Anna; Nielsen, Jens Bo

    2015-01-01

    In this work, we consider the possibilities of having an automatic computer-based system for tracking the movements of infants. An existing motion tracking system is used to process recorded video sequences containing both color and spatial information of the infant's body pose and movements....... The system uses these sequences of data to estimate the underlying skeleton of the infant and parametrize the movements. Post-processing of these parameters can yield objective measurements of an infant's movement patterns. This could e.g. be quantification of (a)symmetry and recognition of certain gestures/actions...

  19. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2

  20. Feasibility of Stereo-Infrared Tracking to Monitor Patient Motion During Cardiac SPECT Imaging

    OpenAIRE

    Beach, Richard D.; Pretorius, P. Hendrik; Boening, Guido; Bruyant, Philippe P.; Feng, Bing; Fulton, Roger R.; Gennert, Michael A.; Nadella, Suman; King, Michael A.

    2004-01-01

    Patient motion during cardiac SPECT imaging can cause diagnostic imaging artifacts. We investigated the feasibility of monitoring patient motion using the Polaris motion-tracking system. This system uses passive infrared reflection from small spheres to provide real-time position data with vendor stated 0.35 mm accuracy and 0.2 mm repeatability. In our configuration, the Polaris system views through the SPECT gantry toward the patient's head. List-mode event data was temporally synchronized w...

  1. Hard Ware Implementation of Diamond Search Algorithm for Motion Estimation and Object Tracking

    International Nuclear Information System (INIS)

    Hashimaa, S.M.; Mahmoud, I.I.; Elazm, A.A.

    2009-01-01

    Object tracking is very important task in computer vision. Fast search algorithms emerged as important search technique to achieve real time tracking results. To enhance the performance of these algorithms, we advocate the hardware implementation of such algorithms. Diamond search block matching motion estimation has been proposed recently to reduce the complexity of motion estimation. In this paper we selected the diamond search algorithm (DS) for implementation using FPGA. This is due to its fundamental role in all fast search patterns. The proposed architecture is simulated and synthesized using Xilinix and modelsim soft wares. The results agree with the algorithm implementation in Matlab environment.

  2. Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology

    Science.gov (United States)

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric

    2018-02-01

    Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a

  3. A practical head tracking system for motion correction in neurological SPECT and PET

    International Nuclear Information System (INIS)

    Fulton, R.R.; Eberl, S.; Meikle, S.; Hutton, B.F.; Braun, M.

    1998-01-01

    Full text: Patient motion during data acquisition can degrade the quality of SPECT and PET images. Techniques for motion correction in neurological studies in both modalities based on continuous monitoring of head position have been proposed. However difficulties in developing suitable head tracking systems have so far impeded clinical implementations. We have developed a head tracking system based on the mechanical ADL-1 tracker (Shooting Star Technology, Rosedale, Canada) on a Trionix triple-head SPECT camera A software driver running on a SUN Sparc host computer communicates with the tracker over a serial line providing up to 300 updates per second with angular and positional resolutions of 0.05 degrees and 0.2 mm respectively. The SUN Sparc workstation which acquires the SPECT study also communicates with the tracker, eliminating synchronisation problems. For motion correction, the motion parameters provided by the tracker within its own coordinate system must be converted to the camera's coordinate system. The conversion requires knowledge of the rotational relationships between the two coordinate systems and the displacement of their origins, both of which are determined from a calibration procedure. The tracker has been tested under clinical SPECT imaging conditions with a 3D Hoffman brain phantom. Multiple SPECT acquisitions were performed. After each acquisition the phantom was moved to a new position and orientation. Motion parameters reported by the tracker for each applied movement were compared with those obtained by applying an automated image registration program to the sequential reconstructed studies. Maximum differences were < 0.5 degrees and < 2mm, within the expected errors of the registration procedure. We conclude that this tracking system will be suitable for clinical evaluation of motion correction in SPECT and PET

  4. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    Science.gov (United States)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  5. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    Science.gov (United States)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  6. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    Science.gov (United States)

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  7. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    Science.gov (United States)

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-04-13

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  8. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Mark Ostyn

    2016-04-01

    Full Text Available One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF localization system designed to track intrafraction motion (target motion during the radiation treatment. This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  9. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  10. Turbulence characterization by studying laser beam wandering in a differential tracking motion setup

    Science.gov (United States)

    Pérez, Darío G.; Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Garavaglia, Mario

    2009-09-01

    The Differential Image Motion Monitor (DIMM) is a standard and widely used instrument for astronomical seeing measurements. The seeing values are estimated from the variance of the differential image motion over two equal small pupils some distance apart. The twin pupils are usually cut in a mask on the entrance pupil of the telescope. As a differential method, it has the advantage of being immune to tracking errors, eliminating erratic motion of the telescope. The Differential Laser Tracking Motion (DLTM) is introduced here inspired by the same idea. Two identical laser beams are propagated through a path of air in turbulent motion, at the end of it their wander is registered by two position sensitive detectors-at a count of 800 samples per second. Time series generated from the difference of the pair of centroid laser beam coordinates is then analyzed using the multifractal detrended fluctuation analysis. Measurements were performed at the laboratory with synthetic turbulence: changing the relative separation of the beams for different turbulent regimes. The dependence, with respect to these parameters, and the robustness of our estimators is compared with the non-differential method. This method is an improvement with respect to previous approaches that study the beam wandering.

  11. An Assessment of a Low-Cost Visual Tracking System (VTS) to Detect and Compensate for Patient Motion During SPECT

    Science.gov (United States)

    McNamara, Joseph E.; Bruyant, Philippe; Johnson, Karen; Feng, Bing; Lehovich, Andre; Gu, Songxiang; Gennert, Michael A.; King, Michael A.

    2008-06-01

    Patient motion is inevitable in SPECT and PET due to the lengthy period of time patients are imaged and patient motion can degrade diagnostic accuracy. The goal of our studies is to perfect a methodology for tracking and correcting patient motion when it occurs. In this paper we report on enhancements to the calibration, camera stability, accuracy of motion tracking, and temporal synchronization of a low-cost visual tracking system (VTS) we are developing. The purpose of the VTS is to track the motion of retro-reflective markers on stretchy bands wrapped about the chest and abdomen of patients. We have improved the accuracy of 3D spatial calibration by using a MATLAB optical camera calibration package with a planar calibration pattern. This allowed us to determine the intrinsic and extrinsic parameters for stereo-imaging with our CCD cameras. Locations in the VTS coordinate system are transformed to the SPECT coordinate system by a VTS/SPECT mapping using a phantom of 7 retro-reflective spheres each filled with a drop of Tc99m. We switched from pan, tilt and zoom (PTZ) network cameras to fixed network cameras to reduce the amount of camera drift. The improved stability was verified by tracking the positions of fixed retro-reflective markers on a wall. The ability of our VTS to track movement, on average, with sub-millimeter and sub-degree accuracy was established with the 7-sphere phantom for 1 cm vertical and axial steps as well as for an arbitrary rotation and translation. The difference in the time of optical image acquisition as decoded from the image headers relative to synchronization signals sent to the SPECT system was used to establish temporal synchrony between optical and list-mode SPECT acquisition. Two experiments showed better than 100 ms agreement between VTS and SPECT observed motion for three axial translations. We were able to track 3 reflective markers on an anthropomorphic phantom with a precision that allowed us to correct motion such that no

  12. MRI-guided tumor tracking in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Jiang, Steve B [Center for Advanced Radiotherapy Technology and Department of Radiation Oncology, University of California San Diego, 3960 Health Sciences Dr., La Jolla, CA 92093-0865 (United States); Du, Jiang, E-mail: lcervino@ucsd.edu [Department of Radiology, University of California San Diego, 200 West Arbor Dr., San Diego, CA 92103-8226 (United States)

    2011-07-07

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error e and the error at 95% confidence level e{sub 95} were evaluated for each model. The ANN model led to e = 1.5 mm and e{sub 95} = 4.2 mm, while TM led to e = 0.6 mm and e{sub 95} = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  13. A Review of Point-Wise Motion Tracking Algorithms for Fetal Magnetic Resonance Imaging.

    Science.gov (United States)

    Chikop, Shivaprasad; Koulagi, Girish; Kumbara, Ankita; Geethanath, Sairam

    2016-01-01

    We review recent feature-based tracking algorithms as applied to fetal magnetic resonance imaging (MRI). Motion in fetal MRI is an active and challenging area of research, but the challenge can be mitigated by strategies related to patient setup, acquisition, reconstruction, and image processing. We focus on fetal motion correction through methods based on tracking algorithms for registration of slices with similar anatomy in multiple volumes. We describe five motion detection algorithms based on corner detection and region-based methods through pseudocodes, illustrating the results of their application to fetal MRI. We compare the performance of these methods on the basis of error in registration and minimum number of feature points required for registration. Harris, a corner detection method, provides similar error when compared to the other methods and has the lowest number of feature points required at that error level. We do not discuss group-wise methods here. Finally, we attempt to communicate the application of available feature extraction methods to fetal MRI.

  14. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    Science.gov (United States)

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  15. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

    Science.gov (United States)

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa

    2016-08-01

    For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1

  16. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    Science.gov (United States)

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  17. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  18. Object Detection and Tracking using Modified Diamond Search Block Matching Motion Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Apurva Samdurkar

    2018-06-01

    Full Text Available Object tracking is one of the main fields within computer vision. Amongst various methods/ approaches for object detection and tracking, the background subtraction approach makes the detection of object easier. To the detected object, apply the proposed block matching algorithm for generating the motion vectors. The existing diamond search (DS and cross diamond search algorithms (CDS are studied and experiments are carried out on various standard video data sets and user defined data sets. Based on the study and analysis of these two existing algorithms a modified diamond search pattern (MDS algorithm is proposed using small diamond shape search pattern in initial step and large diamond shape (LDS in further steps for motion estimation. The initial search pattern consists of five points in small diamond shape pattern and gradually grows into a large diamond shape pattern, based on the point with minimum cost function. The algorithm ends with the small shape pattern at last. The proposed MDS algorithm finds the smaller motion vectors and fewer searching points than the existing DS and CDS algorithms. Further, object detection is carried out by using background subtraction approach and finally, MDS motion estimation algorithm is used for tracking the object in color video sequences. The experiments are carried out by using different video data sets containing a single object. The results are evaluated and compared by using the evaluation parameters like average searching points per frame and average computational time per frame. The experimental results show that the MDS performs better than DS and CDS on average search point and average computation time.

  19. Structured Light-Based Motion Tracking in the Limited View of an MR Head Coil

    DEFF Research Database (Denmark)

    Erikshøj, M.; Olesen, Oline Vinter; Conradsen, Knut

    2013-01-01

    A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions of the fac......A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions...

  20. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy

    Science.gov (United States)

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-05-01

    Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved  >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only  <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem

  1. Using Gaussian Process Annealing Particle Filter for 3D Human Tracking

    Directory of Open Access Journals (Sweden)

    Michael Rudzsky

    2008-01-01

    Full Text Available We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track better for low frame rate videos. We also show that our algorithm is capable of recovering after a temporal target loss.

  2. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Victoria, James; Dempsey, James [ViewRay Incorporated, Inc., Oakwood Village, Ohio 44146 (United States); Ruan, Su [Laboratoire LITIS (EA 4108), Equipe Quantif, University of Rouen, Rouen 76183 (France); Anastasio, Mark [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States)

    2016-08-15

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity

  3. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    International Nuclear Information System (INIS)

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark

    2016-01-01

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity

  4. An evaluation of intrafraction motion of the prostate in the prone and supine positions using electromagnetic tracking

    International Nuclear Information System (INIS)

    Shah, Amish P.; Kupelian, Patrick A.; Willoughby, Twyla R.; Langen, Katja M.; Meeks, Sanford L.

    2011-01-01

    Purpose: To evaluate differences in target motion during prostate irradiation in the prone versus supine position using electromagnetic tracking to measure prostate mobility. Materials/methods: Twenty patients received prostate radiotherapy in the supine position utilizing the Calypso Localization System (registered) for prostate positioning and monitoring. For each patient, 10 treatment fractions were followed by a session in which the patient was repositioned prone, and prostate mobility was tracked. The fraction of time that the prostate was displaced by >3, 5, 7, and 10 mm was calculated for each patient, for both positions (400 tracking sessions). Results: Clear patterns of respiratory motion were seen in the prone tracks due to the influence of increased abdominal motion. Averaged over all patients, the prostate was displaced >3 and 5 mm for 37.8% and 10.1% of the total tracking time in the prone position, respectively. In the supine position, the prostate was displaced >3 and 5 mm for 12.6% and 2.9%, respectively. With both patient setups, inferior and posterior drifts of the prostate position were observed. Averaged over all prone tracking sessions, the prostate was displaced >3 mm in the posterior and inferior directions for 11.7% and 9.5% of the total time, respectively. Conclusions: With real-time tracking of the prostate, it is possible to study the effects of different setup positions on the prostate mobility. The percentage of time the prostate moved >3 and 5 mm was increased by a factor of three in the prone versus supine position. For larger displacements (>7 mm) no difference in prostate mobility was observed between prone and supine positions. To reduce rectal toxicity, radiotherapy in the prone position may be a suitable alternative provided respiratory motion is accounted for during treatment. Acute and late toxicity results remain to be evaluated for both patient positions.

  5. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    Science.gov (United States)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  6. SU-G-JeP1-06: Correlation of Lung Tumor Motion with Tumor Location Using Electromagnetic Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Muccigrosso, D; Maughan, N; Parikh, P [Washington University School of Medicine, Saint Louis, MO (United States); Schultejans, H; Bera, R [Lindbergh High School, St. Louis, MO (United States)

    2016-06-15

    Purpose: It is well known that lung tumors move with respiration. However, most measurements of lung tumor motion have studied long treatment times with intermittent imaging; those populations may not necessarily represent conventional LINAC patients. We summarized the correlation between tumor motion and location in a multi-institutional trial with electromagnetic tracking, and identified the patient cohort that would most benefit from respiratory gating. Methods: Continuous electromagnetic transponder data (Varian Medical, Seattle, WA) of lung tumor motion was collected from 14 patients (214 total fractions) across 3 institutions during external beam radiation therapy in a prospective clinical trial (NCT01396551). External intervention from the clinician, such as couch shifts, instructed breath-holds, and acquisition pauses, were manually removed from the 10 Hz tracking data according to recorded notes. The average three-dimensional displacement from the breathing cycle’s end-expiratory to end-inhalation phases (peak-to-peak distance) of the transponders’ isocenter was calculated for each patient’s treatment. A weighted average of each isocenter was used to assess the effects of location on motion. A total of 14 patients were included in this analysis, grouped by their transponders’ location in the lung: upper, medial, and lower. Results: 8 patients had transponders in the upper lung, and 3 patients each in the medial lobe and lower lung. The weighted average ± standard deviation of all peak-to-peak distances for each group was: 1.04 ± 0.39 cm in the lower lung, 0.56 ± 0.14 cm in the medial lung, and 0.30 ± 0.06 cm in the upper lung. Conclusion: Tumors in the lower lung are most susceptible to excessive motion and daily variation, and would benefit most from continuous motion tracking and gating. Those in the medial lobe might be at moderate risk. The upper lobes have limited motion. These results can guide different motion management strategies

  7. Respiratory motion tracking using Microsoft’s Kinect v2 camera

    Directory of Open Access Journals (Sweden)

    Ernst Floris

    2015-09-01

    Full Text Available In image-guided radiotherapy, monitoring and compensating for respiratory motion is of high importance. We have analysed the possibility to use Microsoft’s Kinect v2 sensor as a low-cost tracking camera. In our experiment, eleven circular markers were printed onto a Lycra shirt and were tracked in the camera’s color image using cross correlation-based template matching. The 3D position of the marker was determined using this information and the mean distance of all template pixels from the sensor. In an experiment with four volunteers (male and female we could demonstrate that real time position tracking is possible in 3D. By averaging over the depth values inside the template, it was possible to increase the Kinect’s depth resolution from 1 mm to 0.1 mm. The noise level was reduced to a standard deviation of 0.4 mm. Temperature sensitivity of the measured depth values was observed for about 10-15 minutes after system start.

  8. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    Science.gov (United States)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  9. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography

    Directory of Open Access Journals (Sweden)

    Thomas Sturmberger

    2016-05-01

    Full Text Available We present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient’s clinical signs resolved along with normalization of serum creatine kinase (CK levels, and the patient was discharged on the third day after admission. Learning points: • Acute myocarditis can mimic acute coronary syndromes. • Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities. • 2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis.

  10. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    Science.gov (United States)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  11. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NARCIS (Netherlands)

    Tangelder, J.W.H.; Lebert, E.; Burghouts, G.J.; Zon, K. van; Den Uyl, M.J.

    2014-01-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is

  12. Geocenter Motion Derived from GNSS and SLR Tracking Data of LEO

    Science.gov (United States)

    Li, Y. S.; Ning, F. S.; Tseng, K. H.; Tseng, T. P.; Wu, J. M.; Chen, K. L.

    2017-12-01

    Space geodesy techniques can provide the monitoring data of global variations with high precision and large coverage through the satellites. Geocenter motion (GM) describes the difference of CF (Center of Figure) respect to CM (Center of Mass of the Earth System) due to the re-distribution and deformation of the earth system. Because satellite tracking data between ground stations and satellites orbit around the CM, geocenter motion is related to the realization of the ITRF (International Terrestrial Reference Frame) origin. In this study, GPS (Global Positioning System) observation data of IGS (International GNSS Service) and SLR (Satellite Laser Ranging) tracking data are applied to estimate the coordinates of observing sites on Earth's surface. The GPS observing sites are distributed deliberately and globally by 15° ×15° grids. Meanwhile, two different global ocean tide models are applied here. The model used in ITRF comparison and combination is parameter transformation, which is a mathematical formula allowing to transform the different frames between ITRF and CM system. Following the parameter transformation, the results of geocenter motion can be determined. The FORMOSAT-7/COSMIC-2 (F7C2) mission is a constellation of LEO (Low-Earth-Orbit) satellites, which will be launched in 2018. Besides the observing system for Meteorology, Ionosphere, and Climate, the F7C2 will be equipped with LRR (Laser Ranging Retroreflector). This work is a pilot survey to study the application of LEO SLR data in Taiwan.

  13. Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.

    Science.gov (United States)

    Ting, Lai-Lei; Chuang, Ho-Chiao; Liao, Ai-Ho; Kuo, Chia-Chun; Yu, Hsiao-Wei; Zhou, Yi-Liang; Tien, Der-Chi; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2018-05-01

    This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm 2 to 351.11 mm 2 (uncompensated), which reduced to from 17.72 mm 2 to 66.17 mm 2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    Science.gov (United States)

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  15. Binocular eye movement control and motion perception: what is being tracked?

    Science.gov (United States)

    van der Steen, Johannes; Dits, Joyce

    2012-10-19

    We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking.

  16. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  17. Using the Theory of Combined Friction when Making Mathematical Models of Curvilinear Motion of Tracked Vehicles

    Directory of Open Access Journals (Sweden)

    M. V. Vyaznikov

    2014-01-01

    Full Text Available The paper presents study results of the nonlinear interaction processes between the supporting surface of the track Assembly and the ground in the contact patch, using the mathematical models of friction. For the case blaskapelle motion of a caterpillar, when the resultant of the elementary friction forces is limited by the coupling due to the sliding tracks on the ground, it appears that the increase of the lateral component leads to a decrease of the longitudinal component and the change of direction of the resulting force. As a result, with increasing angular velocity of the tracked vehicle a longitudinal component of the friction force decreases, which is the geometric factor and is defined by the locus of friction for a given type of soil. In the development of this well-known model is considered the general case of friction, which describes the effect of reducing the coefficient of friction in the contact patch at increasing the angular velocity of rotation. To describe this process is used the model of the combined friction which occurs when the surface of the body is doing at the same time the rotational and translational motion. The resulting expression for the resultant of forces of friction and the moment of resistance to rotation based on the decomposition of the first order Pade for a flat spot track Assembly with ground of rectangular shape. With combined friction any arbitrarily small perturbation force acting parallel to the surface of the contact spot, leads to slip. The paper considers the possibility of using the model of the combined friction to research a sustainability curvilinear motion of tracked vehicles. The proposed motion of the machine in the mode of skidding on the basis of the frictionslip. The interpretation of the physical processes occurring in the contact area, on the basis of the theory of the combined friction would allow using this mathematical model in the algorithm structure of automatic traffic control

  18. Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains

    Science.gov (United States)

    Zaal, P. M. T; Pool, D. M.

    2014-01-01

    In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.

  19. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely...... on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with $^{11}{\\rm C}$-racolopride on the high resolution research tomograph (HRRT) PET...... in contrast recovery of small structures....

  20. Development of an Embedded Solar Tracking System with LabVIEW Motion Control

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Hyun, Jun Ho; Oh, Won Jong; Kim, Yeong Min; Lee, Yoon Joon; Chun, Won Gee

    2010-01-01

    Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator, or an electric motor. The motion control is widely used in the packaging, printing, textile, semiconductor production, and power plants. National Instruments LabVIEW is a graphical programming language that has its roots in automation control and data acquisition. Its graphical representation, similar to a process flow diagram, was created to provide an intuitive programming environment for scientist and engineers. Crystal River Nuclear Plant engineers developed automated testing system of nuclear plant control modules in an aging nuclear power plant using LabVIEW to improve performance and reliability and reduce cost. In this study, an embedded two-axis solar tracking system was developed using LabVIEW motion control module

  1. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  2. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  3. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    Science.gov (United States)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  4. Respiratory liver motion tracking during transcatheter procedures using guidewire detection

    International Nuclear Information System (INIS)

    Vanegas Orozco, Maria-Carolina; Gorges, Sebastien; Pescatore, Jeremie

    2008-01-01

    Transcatheter chemoembolization of liver tumors is performed under X-ray fluoroscopic image guidance. This is a difficult procedure because the vessels of the liver are constantly moving due to respiration and they are not visible in the X-ray image unless a contrast medium is injected. In order to help the interventional radiologist during the treatment, we propose to superimpose on to the fluoroscopic image a pre-acquired contrast-enhanced 2D or 3D image while accounting for liver motion. Our approach proposes to track the guidewire from frame to frame. Our proposed method can be split into two steps. First the guidewire is automatically detected; then the motion between two frames is estimated using a robust ICP (iterative closest point) algorithm. We have tested our method on simulated X-ray fluoroscopic images of a moving guidewire and applied it on 4 clinical sequences. Simulation demonstrated that the mean precision of our method is inferior to 1 mm. On clinical data, preliminary results demonstrated that this method allows for respiratory motion compensation of liver vessels with a mean accuracy inferior to 3 mm. (orig.)

  5. A Smart Assistant for Shooting Virtual Cinematography with Motion-Tracked Cameras

    OpenAIRE

    Lino , Christophe; Christie , Marc; Ranon , Roberto; Bares , William

    2011-01-01

    International audience; This demonstration shows how an automated assistant encoded with knowledge of cinematography practice can off er suggested viewpoints to a fi lmmaker operating a hand-held motion-tracked virtual camera device. Our system, called Director's Lens, uses an intelligent cinematography engine to compute, at the request of the lmmaker, a set of suitable camera placements for starting a shot that represent semantically and cinematically distinct choices for visualizing the cur...

  6. Ultrasound motion tracking for radiation therapy; Ultraschallbewegungstracking fuer die Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, J. [Fraunhofer-Institut fuer Bildgestuetzte Medizin MEVIS, Bremen (Germany); Mediri GmbH, Heidelberg (Germany); Schwaab, J. [Mediri GmbH, Heidelberg (Germany)

    2015-11-15

    In modern radiotherapy the radiation dose can be applied with an accuracy in the range of 1-2 mm provided that the exact position of the target is known. If, however, the target (the tumor) is located in the lungs or the abdomen, respiration or peristalsis can cause substantial movement of the target. Various methods for intrafractional motion detection and compensation are currently under consideration or are already applied in clinical practice. Sonography is one promising option, which is now on the brink of clinical implementation. Ultrasound is particularly suited for this purpose due to the high soft tissue contrast, real-time capability, the absence of ionizing radiation and low acquisition costs. Ultrasound motion tracking is an image-based approach, i.e. the target volume or an adjacent structure is directly monitored and the motion is tracked automatically on the ultrasound image. Diverse algorithms are presently available that provide the real-time target coordinates from 2D as well as 3D images. Definition of a suitable sonographic window is not, however, trivial and a gold standard for positioning and mounting of the transducer has not yet been developed. Furthermore, processing of the coordinate information in the therapy unit and the dynamic adaptation of the radiation field are challenging tasks. It is not clear whether ultrasound motion tracking will become established in the clinical routine although all technical prerequisites can be considered as fulfilled, such that exciting progress in this field of research is still to be expected. (orig.) [German] In der modernen Strahlentherapie kann die Dosis mit einer Genauigkeit von 1-2 mm appliziert werden, sofern die Position der Zielstruktur genau bekannt ist. Liegt diese Zielstruktur (der Tumor) jedoch in der Lunge oder im Abdomen, koennen u. a. die Atmung oder die Peristaltik zu einer substanziellen Bewegung des Zielvolumens fuehren. Verschiedene Methoden zur intrafraktionellen Bewegungsdetektion

  7. Implementation and performance of an optical motion tracking system for high resolution brain PET imaging

    Science.gov (United States)

    Lopresti, B. J.; Russo, A.; Jones, W. F.; Fisher, T.; Crouch, D. G.; Altenburger, D. E.; Townsend, D. W.

    1999-12-01

    Head motion during PET scanning is widely regarded as a source of image degradation and resolution loss. Recent improvements in the spatial resolution of state-of-the-art tomographs may be compromised by patient motion during scanning, as these high resolution data will be increasingly susceptible to smaller movements of the head. The authors have developed an opto-electronic motion tracking system based on commercially-available technology that is capable of very accurate real-time measurements of the position and orientation of the patient's head. These positions are transformed to the reference frame of the PET scanner, and could potentially be used to provide motion correction of list-mode emission data on an event-by-event basis.

  8. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Chen, H; Zhen, X; Zhou, L; Gu, X

    2016-01-01

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yield the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation

  9. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Zhen, X; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yield the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation

  10. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam 3000 CA (Netherlands); Salles, Sébastien; Liebgott, Hervé; Vray, Didier [Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Lyon 69100 (France); Sérusclat, André [Department of Radiology, Louis Pradel Hospital, Lyon 69500 (France); Moulin, Philippe [Department of Endocrinology, Louis Pradel Hospital, Hospices Civils de Lyon, Université Lyon 1, Lyon 69100, France and INSERM UMR 1060, Lyon 69500 (France)

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  11. Tri-track: free software for large-scale particle tracking.

    Science.gov (United States)

    Vallotton, Pascal; Olivier, Sandra

    2013-04-01

    The ability to correctly track objects in time-lapse sequences is important in many applications of microscopy. Individual object motions typically display a level of dynamic regularity reflecting the existence of an underlying physics or biology. Best results are obtained when this local information is exploited. Additionally, if the particle number is known to be approximately constant, a large number of tracking scenarios may be rejected on the basis that they are not compatible with a known maximum particle velocity. This represents information of a global nature, which should ideally be exploited too. Some time ago, we devised an efficient algorithm that exploited both types of information. The tracking task was reduced to a max-flow min-cost problem instance through a novel graph structure that comprised vertices representing objects from three consecutive image frames. The algorithm is explained here for the first time. A user-friendly implementation is provided, and the specific relaxation mechanism responsible for the method's effectiveness is uncovered. The software is particularly competitive for complex dynamics such as dense antiparallel flows, or in situations where object displacements are considerable. As an application, we characterize a remarkable vortex structure formed by bacteria engaged in interstitial motility.

  12. Real-time circumferential mapping catheter tracking for motion compensation in atrial fibrillation ablation procedures

    Science.gov (United States)

    Brost, Alexander; Bourier, Felix; Wimmer, Andreas; Koch, Martin; Kiraly, Atilla; Liao, Rui; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2012-02-01

    Atrial fibrillation (AFib) has been identified as a major cause of stroke. Radiofrequency catheter ablation has become an increasingly important treatment option, especially when drug therapy fails. Navigation under X-ray can be enhanced by using augmented fluoroscopy. It renders overlay images from pre-operative 3-D data sets which are then fused with X-ray images to provide more details about the underlying soft-tissue anatomy. Unfortunately, these fluoroscopic overlay images are compromised by respiratory and cardiac motion. Various methods to deal with motion have been proposed. To meet clinical demands, they have to be fast. Methods providing a processing frame rate of 3 frames-per-second (fps) are considered suitable for interventional electrophysiology catheter procedures if an acquisition frame rate of 2 fps is used. Unfortunately, when working at a processing rate of 3 fps, the delay until the actual motion compensated image can be displayed is about 300 ms. More recent algorithms can achieve frame rates of up to 20 fps, which reduces the lag to 50 ms. By using a novel approach involving a 3-D catheter model, catheter segmentation and a distance transform, we can speed up motion compensation to 25 fps which results in a display delay of only 40 ms on a standard workstation for medical applications. Our method uses a constrained 2-D/3-D registration to perform catheter tracking, and it obtained a 2-D tracking error of 0.61 mm.

  13. A software-based tool for video motion tracking in the surgical skills assessment landscape

    NARCIS (Netherlands)

    Ganni, S.; Botden, Sanne M.B.I.; Chmarra, M.K.; Goossens, R.H.M.; Jakimowicz, J.J.

    2018-01-01

    Background: The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine

  14. Wall-motion tracking in fetal echocardiography-Influence of frame rate on longitudinal strain analysis assessed by two-dimensional speckle tracking.

    Science.gov (United States)

    Enzensberger, Christian; Achterberg, Friederike; Graupner, Oliver; Wolter, Aline; Herrmann, Johannes; Axt-Fliedner, Roland

    2017-06-01

    Frame rates (FR) used for strain analysis assessed by speckle tracking in fetal echocardiography show a considerable variation. The aim of this study was to investigate the influence of the FR on strain analysis in 2D speckle tracking. Fetal echocardiography was performed prospectively on a Toshiba Aplio 500 system and a Toshiba Artida system, respectively. Based on an apical or basal four-chamber view of the fetal heart, cine loops were stored with a FR of 30 fps (Aplio 500) and 60 fps (Artida/Aplio 500). For both groups (30fps and 60fps), global and segmental longitudinal peak systolic strain (LPSS) values of both, left (LV) and right ventricle (RV), were assessed by 2D wall-motion tracking. A total of 101 fetuses, distributed to three study groups, were included. The mean gestational age was 25.2±5.0 weeks. Mean global LPSS values for RV in the 30 fps group and in the 60 fps group were -16.07% and -16.47%, respectively. Mean global LPSS values for LV in the 30 fps group and in the 60 fps group were -17.54% and -17.06%, respectively. Comparing global and segmental LPSS values of both, the RV and LV, did not show any statistically significant differences within the two groups. Performance of myocardial 2D strain analysis by wall-motion tracking was feasible with 30 and 60 fps. Obtained global and segmental LPSS values of both ventricles were relatively independent from acquisition rate. © 2017, Wiley Periodicals, Inc.

  15. Mitigation of motion artifacts in CBCT of lung tumors based on tracked tumor motion during CBCT acquisition

    International Nuclear Information System (INIS)

    Lewis, John H; Li Ruijiang; Jia Xun; Watkins, W Tyler; Song, William Y; Jiang, Steve B; Lou, Yifei

    2011-01-01

    An algorithm capable of mitigating respiratory motion blurring artifacts in cone-beam computed tomography (CBCT) lung tumor images based on the motion of the tumor during the CBCT scan is developed. The tumor motion trajectory and probability density function (PDF) are reconstructed from the acquired CBCT projection images using a recently developed algorithm Lewis et al (2010 Phys. Med. Biol. 55 2505-22). Assuming that the effects of motion blurring can be represented by convolution of the static lung (or tumor) anatomy with the motion PDF, a cost function is defined, consisting of a data fidelity term and a total variation regularization term. Deconvolution is performed through iterative minimization of this cost function. The algorithm was tested on digital respiratory phantom, physical respiratory phantom and patient data. A clear qualitative improvement is evident in the deblurred images as compared to the motion-blurred images for all cases. Line profiles show that the tumor boundaries are more accurately and clearly represented in the deblurred images. The normalized root-mean-squared error between the images used as ground truth and the motion-blurred images are 0.29, 0.12 and 0.30 in the digital phantom, physical phantom and patient data, respectively. Deblurring reduces the corresponding values to 0.13, 0.07 and 0.19. Application of a -700 HU threshold to the digital phantom results in tumor dimension measurements along the superior-inferior axis of 2.8, 1.8 and 1.9 cm in the motion-blurred, ground truth and deblurred images, respectively. Corresponding values for the physical phantom are 3.4, 2.7 and 2.7 cm. A threshold of -500 HU applied to the patient case gives measurements of 3.1, 1.6 and 1.7 cm along the SI axis in the CBCT, 4DCT and deblurred images, respectively. This technique could provide more accurate information about a lung tumor's size and shape on the day of treatment.

  16. Real-time 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy.

    Science.gov (United States)

    Furtado, Hugo; Steiner, Elisabeth; Stock, Markus; Georg, Dietmar; Birkfellner, Wolfgang

    2013-10-01

    Intra-fractional respiratory motion during radiotherapy leads to a larger planning target volume (PTV). Real-time tumor motion tracking by two-dimensional (2D)/3D registration using on-board kilo-voltage (kV) imaging can allow for a reduction of the PTV though motion along the imaging beam axis cannot be resolved using only one projection image. We present a retrospective patient study investigating the impact of paired portal mega-voltage (MV) and kV images on registration accuracy. Material and methods. We used data from 10 patients suffering from non-small cell lung cancer (NSCLC) undergoing stereotactic body radiation therapy (SBRT) lung treatment. For each patient we acquired a planning computed tomography (CT) and sequences of kV and MV images during treatment. We compared the accuracy of motion tracking in six degrees-of-freedom (DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. Results. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 2.9 mm to 1.5 mm and the motion along AP was successfully extracted. Mean registration time was 188 ms. Conclusion. Our evaluation shows that using kV-MV image pairs leads to improved motion extraction in six DOF and is suitable for real-time tumor motion tracking with a conventional LINAC.

  17. Automated cloud tracking system for the Akatsuki Venus Climate Orbiter data

    Science.gov (United States)

    Ogohara, Kazunori; Kouyama, Toru; Yamamoto, Hiroki; Sato, Naoki; Takagi, Masahiro; Imamura, Takeshi

    2012-02-01

    Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude-latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude-latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude-latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude-latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude-latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.

  18. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  19. Audiovisual associations alter the perception of low-level visual motion

    Directory of Open Access Journals (Sweden)

    Hulusi eKafaligonul

    2015-03-01

    Full Text Available Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role.

  20. Body-Part Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Motion tracking is a widely used technique to analyze and measure adult human movement. However, these methods cannot be transferred directly to motion tracking of infants due to the big differences in the underlying human model. However, motion tracking of infants can be used for automatic...

  1. Time-Lapse and Slow-Motion Tracking of Temperature Changes: Response Time of a Thermometer

    Science.gov (United States)

    Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.

    2017-01-01

    We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure…

  2. MO-F-CAMPUS-J-02: Commissioning of Radiofrequency Tracking for Gated SBRT of the Liver Using Novel Motion System

    International Nuclear Information System (INIS)

    James, J; Cetnar, A; Nguyen, V; Wang, B

    2015-01-01

    Purpose: Tracking soft tissue targets has recently been approved as a new application of the Calypso radiofrequency tracking system allowing for gated treatment of the liver based on the motion of the target volume itself. As part of the commissioning process, an end-to-end test was performed using a 3D diode array and 6D motion platform to verify the dosimetric accuracy and establish the workflow of gated SBRT treatment of the liver using Calypso. Methods: A 4DCT scan of the ScandiDos Delta4 phantom was acquired using the HexaMotion motion platform to simulate realistic breathing motion. A VMAT plan was optimized on the end of inspiration phase of the 4DCT scan and delivered to the Delta4 phantom using the Varian TrueBeam. The treatment beam was gated by Calypso to deliver dose at the end of inspiration. The expected dose was compared to the delivered dose using gamma analysis. In addition, gating limits were investigated to determine how large the gating range can be while still maintaining dosimetric accuracy. Results: The 3%/3mm and 2%/2mm gamma pass rate for the gated treatment delivery was 100% and 98.4%, respectively. When increasing the gating limits beyond the known extent of planned motion from the 4DCT, the gamma pass rates decreased as expected. The 3%/3mm gamma pass rate for a 1, 2, and 3mm increase in gating limits were measured to be 96.0%, 92.7%, and 78.8%, respectively. Conclusion: Radiofrequency tracking was shown to be an effective way to provide gated SBRT treatment of the liver. Baseline gating limits should be determined by measuring the extent of target motion during the respiratory phases used for planning. We recommend adding 1mm to the baseline limits to provide the proper balance between treatment efficiency and dosimetric accuracy

  3. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  4. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  5. SU-E-T-570: New Quality Assurance Method Using Motion Tracking for 6D Robotic Couches

    International Nuclear Information System (INIS)

    Cheon, W; Cho, J; Ahn, S; Han, Y; Choi, D

    2015-01-01

    Purpose: To accommodate geometrically accurate patient positioning, a robotic couch that is capable of 6-degrees of freedom has been introduced. However, conventional couch QA methods are not sufficient to enable the necessary accuracy of tests. Therefore, we have developed a camera based motion detection and geometry calibration system for couch QA. Methods: Employing a Visual-Tracking System (VTS, BonitaB10, Vicon, UK) which tracks infrared reflective(IR) markers, camera calibration was conducted using a 5.7 × 5.7 × 5.7 cm 3 cube attached with IR markers at each corner. After positioning a robotic-couch at the origin with the cube on the table top, 3D coordinates of the cube’s eight corners were acquired by VTS in the VTS coordinate system. Next, positions in reference coordinates (roomcoordinates) were assigned using the known relation between each point. Finally, camera calibration was completed by finding a transformation matrix between VTS and reference coordinate systems and by applying a pseudo inverse matrix method. After the calibration, the accuracy of linear and rotational motions as well as couch sagging could be measured by analyzing the continuously acquired data of the cube while the couch moves to a designated position. Accuracy of the developed software was verified through comparison with measurement data when using a Laser tracker (FARO, Lake Mary, USA) for a robotic-couch installed for proton therapy. Results: VTS system could track couch motion accurately and measured position in room-coordinates. The VTS measurements and Laser tracker data agreed within 1% of difference for linear and rotational motions. Also because the program analyzes motion in 3-Dimension, it can compute couch sagging. Conclusion: Developed QA system provides submillimeter/ degree accuracy which fulfills the high-end couch QA. This work was supported by the National Research Foundation of Korea funded by Ministry of Science, ICT & Future Planning. (2013M2A2A7043507

  6. Three-dimensional motion tracking correlates with skill level in upper gastrointestinal endoscopy

    DEFF Research Database (Denmark)

    Arnold, Sif H.; Svendsen, Morten Bo Søndergaard; Konge, Lars

    2015-01-01

    untrained medical students) were tested using a virtual reality simulator. A motion sensor was used to collect data regarding the distance between the hands, and height and movement of the scope hand. Test characteristics between groups were explored using Kruskal-Wallis H and Man-Whitney U exact tests......Background and study aim: Feedback is an essential part of training in upper gastrointestinal endoscopy. Virtual reality simulators provide limited feedback, focusing only on visual recognition with no feedback on the procedural part of training. Motion tracking identifies patterns of movement......, and this study aimed to explore the correlation between skill level and operator movement using an objective automated tool. Methods: In this medical education study, 37 operators (12 senior doctors who performed endoscopic retrograde cholangiopancreatography, 13 doctors with varying levels of experience, and 12...

  7. Group of Hexagonal Search Patterns for Motion Estimation and Object Tracking

    International Nuclear Information System (INIS)

    Elazm, A.A.; Mahmoud, I.I; Hashima, S.M.

    2010-01-01

    This paper presents a group of fast block matching algorithms based on the hexagon pattern search .A new predicted one point hexagon (POPHEX) algorithm is proposed and compared with other well known algorithms. The comparison of these algorithms and our proposed one is performed for both motion estimation and object tracking. Test video sequences are used to demonstrate the behavior of studied algorithms. All algorithms are implemented in MATLAB environment .Experimental results showed that the proposed algorithm posses less number of search points however its computational overhead is little increased due to prediction procedure.

  8. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes.

    Science.gov (United States)

    Xie, Ping

    2009-09-16

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  9. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes

    International Nuclear Information System (INIS)

    Xie Ping

    2009-01-01

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  10. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  11. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    International Nuclear Information System (INIS)

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. (author)

  12. Regular and chaotic motion of two dimensional electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Bar-Lev, Oded; Levit, Shimon.

    1992-05-01

    For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)

  13. An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking

    Directory of Open Access Journals (Sweden)

    Jože Guna

    2014-02-01

    Full Text Available We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller’s sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller’s surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.

  14. An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.

    Science.gov (United States)

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-02-21

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.

  15. SU-G-BRA-10: Marker Free Lung Tumor Motion Tracking by An Active Contour Model On Cone Beam CT Projections for Stereotactic Body Radiation Therapy of Lung Cancer

    International Nuclear Information System (INIS)

    Chao, M; Yuan, Y; Lo, Y; Wei, J

    2016-01-01

    Purpose: To develop a novel strategy to extract the lung tumor motion from cone beam CT (CBCT) projections by an active contour model with interpolated respiration learned from diaphragm motion. Methods: Tumor tracking on CBCT projections was accomplished with the templates derived from planning CT (pCT). There are three major steps in the proposed algorithm: 1) The pCT was modified to form two CT sets: a tumor removed pCT and a tumor only pCT, the respective digitally reconstructed radiographs DRRtr and DRRto following the same geometry of the CBCT projections were generated correspondingly. 2) The DRRtr was rigidly registered with the CBCT projections on the frame-by-frame basis. Difference images between CBCT projections and the registered DRRtr were generated where the tumor visibility was appreciably enhanced. 3) An active contour method was applied to track the tumor motion on the tumor enhanced projections with DRRto as templates to initialize the tumor tracking while the respiratory motion was compensated for by interpolating the diaphragm motion estimated by our novel constrained linear regression approach. CBCT and pCT from five patients undergoing stereotactic body radiotherapy were included in addition to scans from a Quasar phantom programmed with known motion. Manual tumor tracking was performed on CBCT projections and was compared to the automatic tracking to evaluate the algorithm accuracy. Results: The phantom study showed that the error between the automatic tracking and the ground truth was within 0.2mm. For the patients the discrepancy between the calculation and the manual tracking was between 1.4 and 2.2 mm depending on the location and shape of the lung tumor. Similar patterns were observed in the frequency domain. Conclusion: The new algorithm demonstrated the feasibility to track the lung tumor from noisy CBCT projections, providing a potential solution to better motion management for lung radiation therapy.

  16. SU-G-BRA-10: Marker Free Lung Tumor Motion Tracking by An Active Contour Model On Cone Beam CT Projections for Stereotactic Body Radiation Therapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M; Yuan, Y; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel strategy to extract the lung tumor motion from cone beam CT (CBCT) projections by an active contour model with interpolated respiration learned from diaphragm motion. Methods: Tumor tracking on CBCT projections was accomplished with the templates derived from planning CT (pCT). There are three major steps in the proposed algorithm: 1) The pCT was modified to form two CT sets: a tumor removed pCT and a tumor only pCT, the respective digitally reconstructed radiographs DRRtr and DRRto following the same geometry of the CBCT projections were generated correspondingly. 2) The DRRtr was rigidly registered with the CBCT projections on the frame-by-frame basis. Difference images between CBCT projections and the registered DRRtr were generated where the tumor visibility was appreciably enhanced. 3) An active contour method was applied to track the tumor motion on the tumor enhanced projections with DRRto as templates to initialize the tumor tracking while the respiratory motion was compensated for by interpolating the diaphragm motion estimated by our novel constrained linear regression approach. CBCT and pCT from five patients undergoing stereotactic body radiotherapy were included in addition to scans from a Quasar phantom programmed with known motion. Manual tumor tracking was performed on CBCT projections and was compared to the automatic tracking to evaluate the algorithm accuracy. Results: The phantom study showed that the error between the automatic tracking and the ground truth was within 0.2mm. For the patients the discrepancy between the calculation and the manual tracking was between 1.4 and 2.2 mm depending on the location and shape of the lung tumor. Similar patterns were observed in the frequency domain. Conclusion: The new algorithm demonstrated the feasibility to track the lung tumor from noisy CBCT projections, providing a potential solution to better motion management for lung radiation therapy.

  17. A strategy to minimize errors from differential intrafraction organ motion using a single configuration for a 'breathing' multileaf collimator

    International Nuclear Information System (INIS)

    Webb, S; Binnie, D M

    2006-01-01

    Intensity-modulated radiation therapy (IMRT) can be delivered by the 'sliding-leaves' dynamic multileaf collimator (DMLC) technique. Intrafraction organ motion can be accommodated by arranging an identical tracking motion for 'breathing leaves'. However, this is only possible for very specific circumstances such as regular, mathematically parameterizable, rigid-body, density-conserving, one-dimensional translations. In this paper, we investigate what happens when planes of tissue in the line of sight of the MLC have differential motion with respect to the moving leaves. In this situation, there is no solution to the problem and a perfect tracking motion cannot be arranged. However, an iterative minimization-of-errors 'solution' (or strategy) can be found and the technique is presented for this. From this, under certain mathematically simple differential motions it is possible to obtain some elegant algebraic solutions which are presented. In general, however, a lengthy computational minimization is required and results of examples of these are presented

  18. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    Science.gov (United States)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  19. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex

    2012-01-01

    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  20. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, Kouhei; Sasaki, Yuji C. [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Nishijima, Masaki; Inoue, Yoshihisa [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yagi, Naoto [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-10-15

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (△E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  1. Influence of long-wavelength track irregularities on the motion of a high-speed train

    Science.gov (United States)

    Hung, C. F.; Hsu, W. L.

    2018-01-01

    Vertical track irregularities over viaducts in high-speed rail systems could be possibly caused by concrete creep if pre-stressed concrete bridges are used. For bridge spans that are almost uniformly distributed, track irregularity exhibits a near-regular wave profile that excites car bodies as a high-speed train moves over the bridge system. A long-wavelength irregularity induces low-frequency excitation that may be close to the natural frequencies of the train suspension system, thereby causing significant vibration of the car body. This paper investigates the relationship between the levels of car vibration, bridge vibration, track irregularity, and the train speed. First, this study investigates the vibration levels of a high-speed train and bridge system using 3D finite-element (FE) transient dynamic analysis, before and after adjustment of vertical track irregularities by means of installing shimming plates under rail pads. The analysis models are validated by in situ measurements and on-board measurement. Parametric studies of car body vibration and bridge vibration under three different levels of track irregularity at five train speeds and over two bridge span lengths are conducted using the FE model. Finally, a discontinuous shimming pattern is proposed to avoid vehicle suspension resonance.

  2. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests

    Directory of Open Access Journals (Sweden)

    Ayanori Yorozu

    2015-09-01

    Full Text Available Falling is a common problem in the growing elderly population, and fall-risk assessment systems are needed for community-based fall prevention programs. In particular, the timed up and go test (TUG is the clinical test most often used to evaluate elderly individual ambulatory ability in many clinical institutions or local communities. This study presents an improved leg tracking method using a laser range sensor (LRS for a gait measurement system to evaluate the motor function in walk tests, such as the TUG. The system tracks both legs and measures the trajectory of both legs. However, both legs might be close to each other, and one leg might be hidden from the sensor. This is especially the case during the turning motion in the TUG, where the time that a leg is hidden from the LRS is longer than that during straight walking and the moving direction rapidly changes. These situations are likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve these problems, a novel data association considering gait phase and a Catmull–Rom spline-based interpolation during the occlusion are proposed. From the experimental results with young people, we confirm   that the proposed methods can reduce the chances of false tracking. In addition, we verify the measurement accuracy of the leg trajectory compared to a three-dimensional motion analysis system (VICON.

  3. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.

    Science.gov (United States)

    Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E; Angiolini, Juan F; Benseñor, Lorena; Despósito, Marcelo A; Bruno, Luciana

    2014-06-17

    The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells

  4. Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei

    2013-01-01

    Purpose: To assess the prostate intrafraction motion in volumetric modulated arc therapy treatments using cine megavoltage (MV) images acquired with an electronic portal imaging device (EPID). Methods and Materials: Ten prostate cancer patients were treated with volumetric modulated arc therapy using a Varian TrueBeam linear accelerator equipped with an EPID for acquiring cine MV images during treatment. Cine MV images acquisition was scheduled for single or multiple treatment fractions (between 1 and 8). A novel automatic fiducial detection algorithm that can handle irregular multileaf collimator apertures, field edges, fast leaf and gantry movement, and MV image noise and artifacts in patient anatomy was used. All sets of images (approximately 25,000 images in total) were analyzed to measure the positioning accuracy of implanted fiducial markers and assess the prostate movement. Results: Prostate motion can vary greatly in magnitude among different patients. Different motion patterns were identified, showing its unpredictability. The mean displacement and standard deviation of the intrafraction motion was generally less than 2.0 ± 2.0 mm in each of the spatial directions. In certain patients, however, the percentage of the treatment time in which the prostate is displaced more than 5 mm from its planned position in at least 1 spatial direction was 10% or more. The maximum prostate displacement observed was 13.3 mm. Conclusion: Prostate tracking and motion assessment was performed with MV imaging and an EPID. The amount of prostate motion observed suggests that patients will benefit from its real-time monitoring. Megavoltage imaging can provide the basis for real-time prostate tracking using conventional linear accelerators

  5. Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.

    Science.gov (United States)

    Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun

    2018-02-27

    The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.

  6. Application of an Image Tracking Algorithm in Fire Ant Motion Experiment

    Directory of Open Access Journals (Sweden)

    Lichuan Gui

    2009-04-01

    Full Text Available An image tracking algorithm, which was originally used with the particle image velocimetry (PIV to determine velocities of buoyant solid particles in water, is modified and applied in the presented work to detect motion of fire ant on a planar surface. A group of fire ant workers are put to the bottom of a tub and excited with vibration of selected frequency and intensity. The moving fire ants are captured with an image system that successively acquires image frames of high digital resolution. The background noise in the imaging recordings is extracted by averaging hundreds of frames and removed from each frame. The individual fire ant images are identified with a recursive digital filter, and then they are tracked between frames according to the size, brightness, shape, and orientation angle of the ant image. The speed of an individual ant is determined with the displacement of its images and the time interval between frames. The trail of the individual fire ant is determined with the image tracking results, and a statistical analysis is conducted for all the fire ants in the group. The purpose of the experiment is to investigate the response of fire ants to the substrate vibration. Test results indicate that the fire ants move faster after being excited, but the number of active ones are not increased even after a strong excitation.

  7. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    Science.gov (United States)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  8. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    International Nuclear Information System (INIS)

    Xie Yaoqin; Gu Jia; Xing Lei; Liu Wu

    2013-01-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow. (paper)

  9. A comparison of Lagrangian/Eulerian approaches for tracking the kinematics of high deformation solid motion.

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Thomas L.; Farnsworth, Grant V.; Ketcheson, David Isaac; Robinson, Allen Conrad

    2009-09-01

    The modeling of solids is most naturally placed within a Lagrangian framework because it requires constitutive models which depend on knowledge of the original material orientations and subsequent deformations. Detailed kinematic information is needed to ensure material frame indifference which is captured through the deformation gradient F. Such information can be tracked easily in a Lagrangian code. Unfortunately, not all problems can be easily modeled using Lagrangian concepts due to severe distortions in the underlying motion. Either a Lagrangian/Eulerian or a pure Eulerian modeling framework must be introduced. We discuss and contrast several Lagrangian/Eulerian approaches for keeping track of the details of material kinematics.

  10. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    Science.gov (United States)

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  11. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET

    International Nuclear Information System (INIS)

    Noonan, P J; Gunn, R N; Howard, J; Hallett, W A

    2015-01-01

    Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting  ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown. (paper)

  12. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET

    Science.gov (United States)

    Noonan, P. J.; Howard, J.; Hallett, W. A.; Gunn, R. N.

    2015-11-01

    Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting  ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown.

  13. Particle Tracking in Circular Accelerators Using the Exact Hamiltonian in SixTrack

    CERN Document Server

    Fjellstrom, Mattias; Hansson, Johan

    2013-12-13

    Particle motion in accelerators is in general complex. Tracking codes are developed to simulate beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at CERN, the European Organization for Nuclear Research. A particle accelerator consists of a large number of magnets and other electromagnetic devices that guide the particle through the accelerator. Each device defines its own equation of motion, which often cannot be solved exactly. For this purpose, a number of approximations are introduced in order to facilitate the solution and to speed up the computation. In a high-energy accelerator, the particle has small transverse momentum components. This is exploited in the small-angle approximation. In this approximation the equations of motion are expanded to a low order in the transverse momentum components. In low-energy particle accelerators, or in tracking with large momentum deviations, this approximation is invalid. The equations of motion of a particle passing through a f...

  14. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    Science.gov (United States)

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  15. A software-based tool for video motion tracking in the surgical skills assessment landscape

    OpenAIRE

    Ganni, S.; Botden, Sanne M.B.I.; Chmarra, M.K.; Goossens, R.H.M.; Jakimowicz, J.J.

    2018-01-01

    Background: The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine the possibility of using a software-based solution to extract the data. Methods: 6 expert and 23 novice participants performed a basic laparoscopic cholecystectomy procedure in the operating room. The...

  16. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Keun, E-mail: ykkim@handong.edu [Department of Mechanical and Control Engineering, Handong Global University, Pohang (Korea, Republic of); Kim, Kyung-Soo [Department of Mechanical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  17. Forecasting pulsatory motion for non-invasive cardiac radiosurgery: an analysis of algorithms from respiratory motion prediction.

    Science.gov (United States)

    Ernst, Floris; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim

    2011-01-01

    Recently, radiosurgical treatment of cardiac arrhythmia, especially atrial fibrillation, has been proposed. Using the CyberKnife, focussed radiation will be used to create ablation lines on the beating heart to block unwanted electrical activity. Since this procedure requires high accuracy, the inevitable latency of the system (i.e., the robotic manipulator following the motion of the heart) has to be compensated for. We examine the applicability of prediction algorithms developed for respiratory motion prediction to the prediction of pulsatory motion. We evaluated the MULIN, nLMS, wLMS, SVRpred and EKF algorithms. The test data used has been recorded using external infrared position sensors, 3D ultrasound and the NavX catheter systems. With this data, we have shown that the error from latency can be reduced by at least 10 and as much as 75% (44% average), depending on the type of signal. It has also been shown that, although the SVRpred algorithm was successful in most cases, it was outperformed by the simple nLMS algorithm, the EKF or the wLMS algorithm in a number of cases. We have shown that prediction of cardiac motion is possible and that the algorithms known from respiratory motion prediction are applicable. Since pulsation is more regular than respiration, more research will have to be done to improve frequency-tracking algorithms, like the EKF method, which performed better than expected from their behaviour on respiratory motion traces.

  18. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each m...

  19. High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner.

    Science.gov (United States)

    Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui

    2017-08-01

    For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.

  20. Dynamic tracking of a nano-particle in fluids under Brownian motions

    International Nuclear Information System (INIS)

    Wu, X C; Zhang, W J; Sammynaiken, R

    2008-01-01

    Most previous studies on H 2 S were devoted to its toxic effects. However, recently there have been increasing evidences which show that endogenously generated H 2 S in specific mammalian tissues has certain significant positive physiological effects such as a neuromodulator and vasorelaxant in a membrane receptor-independent manner. In order to know the functions of endogenous H 2 S, low concentration and high accuracy measurement of H 2 S is a must. Furthermore, this measurement is desired to be real-time and non-invasive. It is reported that low concentration and nano quantity of H 2 S can be detected in water solutions and sera using carbon nanotubes with the fluorescence by confocal laser scanning microscopy. However, because of the Brownian motion of the small particle (carbon nanotube), a control system must be developed to track the movement of the particle in fluids. In this paper, we present a study to track a carbon nanotube which absorbs H 2 S in water or serum using a Raman microscope or confocal laser scanning microscope. In particular, we developed a novel control system for this task. Simulation has shown that our system works very well.

  1. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  2. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J [City College of New York, New York, NY (United States); Chao, M [The Mount Sinai Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  3. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    International Nuclear Information System (INIS)

    Wei, J; Chao, M

    2016-01-01

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  4. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S; Bruder, R; Schweikard, A [University of Luebeck, Luebeck, DE (United States); O’Brien, R; Keall, P [University of Sydney, Sydney (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark)

    2016-06-15

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker was rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the

  5. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.

    Science.gov (United States)

    Tombu, Michael; Seiffert, Adriane E

    2011-04-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.

  6. Adaptive vehicle motion estimation and prediction

    Science.gov (United States)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  7. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    Science.gov (United States)

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  8. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    Science.gov (United States)

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-10-27

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  9. Particle Filter Tracking without Dynamics

    Directory of Open Access Journals (Sweden)

    Jaime Ortegon-Aguilar

    2007-01-01

    Full Text Available People tracking is an interesting topic in computer vision. It has applications in industrial areas such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people tracking; challenging situations occur when the target's motion is poorly modelled or with unexpected motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict future locations of particles. The algorithm is able to track people in omnidirectional sequences with a low frame rate (one or two frames per second. Our approach can tackle unexpected discontinuities and changes in the direction of the motion. The main goal of the paper is to track people from laboratories, but it has applications in surveillance, mainly in controlled environments.

  10. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  11. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    International Nuclear Information System (INIS)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS 2 algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  12. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    International Nuclear Information System (INIS)

    Jiang, J; Hall, T J

    2007-01-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows (registered) system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s -1 ) that exceed our previous methods

  13. Cone-Beam Computed Tomography Internal Motion Tracking Should Be Used to Validate 4-Dimensional Computed Tomography for Abdominal Radiation Therapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Rankine, Leith; Wan, Hanlin; Parikh, Parag; Maughan, Nichole [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Poulsen, Per [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); DeWees, Todd; Klein, Eric [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Santanam, Lakshmi, E-mail: lsantanam@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2016-06-01

    Purpose: To demonstrate that fiducial tracking during pretreatment Cone-Beam CT (CBCT) can accurately measure tumor motion and that this method should be used to validate 4-dimensional CT (4DCT) margins before each treatment fraction. Methods and Materials: For 31 patients with abdominal tumors and implanted fiducial markers, tumor motion was measured daily with CBCT and fluoroscopy for 202 treatment fractions. Fiducial tracking and maximum-likelihood algorithms extracted 3-dimensional fiducial trajectories from CBCT projections. The daily internal margin (IM) (ie, range of fiducial motion) was calculated for CBCT and fluoroscopy as the 5th-95th percentiles of displacement in each cardinal direction. The planning IM from simulation 4DCT (IM{sub 4DCT}) was considered adequate when within ±1.2 mm (anterior–posterior, left–right) and ±3 mm (superior–inferior) of the daily measured IM. We validated CBCT fiducial tracking as an accurate predictive measure of intrafraction motion by comparing the daily measured IM{sub CBCT} with the daily IM measured by pretreatment fluoroscopy (IM{sub pre-fluoro}); these were compared with pre- and posttreatment fluoroscopy (IM{sub fluoro}) to identify those patients who could benefit from imaging during treatment. Results: Four-dimensional CT could not accurately predict intrafractional tumor motion for ≥80% of fractions in 94% (IM{sub CBCT}), 97% (IM{sub pre-fluoro}), and 100% (IM{sub fluoro}) of patients. The IM{sub CBCT} was significantly closer to IM{sub pre-fluoro} than IM{sub 4DCT} (P<.01). For patients with median treatment time t < 7.5 minutes, IM{sub CBCT} was in agreement with IM{sub fluoro} for 93% of fractions (superior–inferior), compared with 63% for the t > 7.5 minutes group, demonstrating the need for patient-specific intratreatment imaging. Conclusions: Tumor motion determined from 4DCT simulation does not accurately predict the daily motion observed on CBCT or fluoroscopy. Cone-beam CT could

  14. A finite state model for respiratory motion analysis in image guided radiation therapy

    International Nuclear Information System (INIS)

    Wu Huanmei; Sharp, Gregory C; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B

    2004-01-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates

  15. A finite state model for respiratory motion analysis in image guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2004-12-07

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  16. Motion tracking-enhanced MART for tomographic PIV

    International Nuclear Information System (INIS)

    Novara, Matteo; Scarano, Fulvio; Batenburg, Kees Joost

    2010-01-01

    A novel technique to increase the accuracy of multiplicative algebraic reconstruction technique (MART) reconstruction from tomographic particle image velocimetry (PIV) recordings at higher seeding density than currently possible is presented. The motion tracking enhancement (MTE) method is based on the combined utilization of images from two or more exposures to enhance the reconstruction of individual intensity fields. The working principle is first introduced qualitatively, and the mathematical background is given that explains how the MART reconstruction can be improved on the basis of an improved first guess object obtained from the combination of non-simultaneous views reduced to the same time instant deforming the 3D objects by an estimate of the particle motion field. The performances of MTE are quantitatively evaluated by numerical simulation of the imaging, reconstruction and image correlation processes. The cases of two or more exposures obtained from time-resolved experiments are considered. The iterative application of MTE appears to significantly improve the reconstruction quality, first by decreasing the intensity of the ghost images and second, by increasing the intensity and the reconstruction precision for the actual particles. Based on computer simulations, the maximum imaged seeding density that can be dealt with is tripled with respect to the MART analysis applied to a single exposure. The analysis also illustrates that the maximum effect of the MTE method is comparable to that of doubling the number of cameras in the tomographic system. Experiments performed on a transitional jet at Re = 5000 apply the MTE method to double-frame recordings. The velocity measurement precision is increased for a system with fewer views (two or three cameras compared with four cameras). The ghost particles' intensity is also visibly reduced although to a lesser extent with respect to the computer simulations. The velocity and vorticity field obtained from a three

  17. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    Science.gov (United States)

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  18. External motion tracking for brain imaging: structured light tracking with invisible light

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    The importance of motion correction in 3D medical imaging increases with increasing scanner resolution. It is necessary for scanners with long image acquisition and low contrast images to correct for patient motion in order to optimize image quality. We present a near infrared structured light...... stereo depth map system for head motion estimation inside 3D medical scanners with limited space....

  19. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  20. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.

    Science.gov (United States)

    Makarava, Natallia; Menz, Stephan; Theves, Matthias; Huisinga, Wilhelm; Beta, Carsten; Holschneider, Matthias

    2014-10-01

    Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.

  1. Image motion compensation by area correlation and centroid tracking of solar surface features

    International Nuclear Information System (INIS)

    Nein, M.E.; Mcintosh, W.R.; Cumings, N.P.

    1983-07-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz

  2. Image motion compensation by area correlation and centroid tracking of solar surface features

    Science.gov (United States)

    Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.

    1983-01-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.

  3. Evaluation of motion management strategies based on required margins

    International Nuclear Information System (INIS)

    Sawkey, D; Svatos, M; Zankowski, C

    2012-01-01

    Strategies for delivering radiation to a moving lesion each require a margin to compensate for uncertainties in treatment. These motion margins have been determined here by separating the total uncertainty into components. Probability density functions for the individual sources of uncertainty were calculated for ten motion traces obtained from the literature. Motion margins required to compensate for the center of mass motion of the clinical treatment volume were found by convolving the individual sources of uncertainty. For measurements of position at a frequency of 33 Hz, system latency was the dominant source of positional uncertainty. Averaged over the ten motion traces, the motion margin for tracking with a latency of 200 ms was 4.6 mm. Gating with a duty cycle of 33% required a mean motion margin of 3.2–3.4 mm, and tracking with a latency of 100 ms required a motion margin of 3.1 mm. Feasible reductions in the effects of the sources of uncertainty, for example by using a simple prediction algorithm to anticipate the lesion position at the end of the latency period, resulted in a mean motion margin of 1.7 mm for tracking with a latency of 100 ms, 2.4 mm for tracking with a latency of 200 ms, and 2.1–2.2 mm for the gating strategies with duty cycles of 33%. A crossover tracking latency of 150 ms was found, below which tracking strategies could take advantage of narrower motion margins than gating strategies. The methods described here provide a means to guide selection of a motion management strategy for a given patient. (paper)

  4. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    Science.gov (United States)

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Motion tracking to enable pre-surgical margin mapping in basal cell carcinoma using optical imaging modalities: initial feasibility study using optical coherence tomography

    Science.gov (United States)

    Duffy, M.; Richardson, T. J.; Craythorne, E.; Mallipeddi, R.; Coleman, A. J.

    2014-02-01

    A system has been developed to assess the feasibility of using motion tracking to enable pre-surgical margin mapping of basal cell carcinoma (BCC) in the clinic using optical coherence tomography (OCT). This system consists of a commercial OCT imaging system (the VivoSight 1500, MDL Ltd., Orpington, UK), which has been adapted to incorporate a webcam and a single-sensor electromagnetic positional tracking module (the Flock of Birds, Ascension Technology Corp, Vermont, USA). A supporting software interface has also been developed which allows positional data to be captured and projected onto a 2D dermoscopic image in real-time. Initial results using a stationary test phantom are encouraging, with maximum errors in the projected map in the order of 1-2mm. Initial clinical results were poor due to motion artefact, despite attempts to stabilise the patient. However, the authors present several suggested modifications that are expected to reduce the effects of motion artefact and improve the overall accuracy and clinical usability of the system.

  6. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  7. Regular Aerobic Training Combined with Range of Motion Exercises in Juvenile Idiopathic Arthritis

    Directory of Open Access Journals (Sweden)

    Mine Doğru Apti

    2014-01-01

    Full Text Available Objective. To assess the effects of regular aerobic training combined with range of motion (ROM exercises on aerobic capacity, quality of life, and function in children with juvenile idiopathic arthritis (JIA. Methods. Thirty patients with JIA and 20 healthy age-matched controls (mean age ± SD, 11.3 ± 2.4 versus 11.0 ± 2.3, resp.; P>0.05 were included. All patients performed aerobic walking (4 days a week for 8 weeks and active and passive ROM exercises of involved joints. All patients completed the childhood health assessment questionnaire (CHAQ and the child health questionnaire. ROM measurements of joints were performed by using universal goniometer. Aerobic capacity was determined by measuring peak oxygen uptake (VO2peak during an incremental treadmill test. Results. Peak oxygen uptake and exercise duration were significantly lower in JIA group than in controls (32.5 ± 6.6 versus 35.9 ± 5.8 and 13.9 ± 1.9 versus 15.0 ± 2.0, resp.; P<0.05 for both. Eight-week combined exercise program significantly improved exercise parameters of JIA patients (baseline versus postexercise VO2peak and exercise duration, 32.5 ± 6.6 to 35.3 ± 7.9 and 13.9 ± 1.9 to 16.3 ± 2.2, resp.; P<0.001 for both. Exercise intervention significantly improved CHAQ scores in JIA patients (0.77 ± 0.61 to 0.20 ± 0.28, P<0.001. Conclusion. We suggest that regular aerobic exercise combined with ROM exercises may be an important part of treatment in patients with JIA.

  8. Evaluation of the Effectiveness of the Stereotactic Body Frame in Reducing Respiratory Intrafractional Organ Motion Using the Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Bengua, Gerard; Ishikawa, Masayori; Sutherland, Kenneth; Horita, Kenji; Yamazaki, Rie; Fujita, Katsuhisa; Onimaru, Rikiya; Katoh, Noriwo; Inoue, Tetsuya; Onodera, Shunsuke; Shirato, Hiroki

    2010-01-01

    Purpose: To evaluate the effectiveness of the stereotactic body frame (SBF), with or without a diaphragm press or a breathing cycle monitoring device (Abches), in controlling the range of lung tumor motion, by tracking the real-time position of fiducial markers. Methods and Materials: The trajectories of gold markers in the lung were tracked with the real-time tumor-tracking radiotherapy system. The SBF was used for patient immobilization and the diaphragm press and Abches were used to actively control breathing and for self-controlled respiration, respectively. Tracking was performed in five setups, with and without immobilization and respiration control. The results were evaluated using the effective range, which was defined as the range that includes 95% of all the recorded marker positions in each setup. Results: The SBF, with or without a diaphragm press or Abches, did not yield effective ranges of marker motion which were significantly different from setups that did not use these materials. The differences in the effective marker ranges in the upper lobes for all the patient setups were less than 1mm. Larger effective ranges were obtained for the markers in the middle or lower lobes. Conclusion: The effectiveness of controlling respiratory-induced organ motion by using the SBF+diaphragm press or SBF + Abches patient setups were highly dependent on the individual patient reaction to the use of these materials and the location of the markers. They may be considered for lung tumors in the lower lobes, but are not necessary for tumors in the upper lobes.

  9. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator

    DEFF Research Database (Denmark)

    Hansen, Rune; Ravkilde, Thomas; Worm, Esben Schjødt

    2016-01-01

    Purpose: Couch and MLC tracking are two promising methods for real-time motion compensation during radiation therapy. So far, couch and MLC tracking experiments have mainly been performed by different research groups, and no direct comparison of couch and MLC tracking of volumetric modulated arc...... to characterize the geometric and dosimetric performance of electromagnetic guided couch and MLC tracking on a TrueBeam accelerator equipped with a Millennium MLC. The tracking system latency was determined without motion prediction as the time lag between sinusoidal target motion and the compensating motion...

  10. Elastic collisions of classical point particles on a finite frictionless linear track with perfectly reflecting endpoints

    Science.gov (United States)

    DeLuca, R.

    2006-03-01

    Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.

  11. Quantitation of respiratory motion during 4D-PET/CT acquisition

    International Nuclear Information System (INIS)

    Nehmeh, S.A.; Erdi, Y.E.; Pan, T.; Yorke, E.; Mageras, G.S.; Rosenzweig, K.E.; Schoder, H.; Mostafavi, H.; Squire, O.; Pevsner, A.; Larson, S.M.; Humm, J.L.

    2004-01-01

    We report on the variability of the respiratory motion during 4D-PET/CT acquisition. The respiratory motion for five lung cancer patients was monitored by tracking external markers placed on the abdomen. CT data were acquired over an entire respiratory cycle at each couch position. The x-ray tube status was recorded by the tracking system, for retrospective sorting of the CT data as a function of respiration phase. Each respiratory cycle was sampled in ten equal bins. 4D-PET data were acquired in gated mode, where each breathing cycle was divided into ten 500 ms bins. For both CT and PET acquisition, patients received audio prompting to regularize breathing. The 4D-CT and 4D-PET data were then correlated according to their respiratory phases. The respiratory periods, and average amplitude within each phase bin, acquired in both modality sessions were then analyzed. The average respiratory motion period during 4D-CT was within 18% from that in the 4D-PET sessions. This would reflect up to 1.8% fluctuation in the duration of each 4D-CT bin. This small uncertainty enabled good correlation between CT and PET data, on a phase-to-phase basis. Comparison of the average-amplitude within the respiration trace, between 4D-CT and 4D- PET, on a bin-by-bin basis show a maximum deviation of ∼15%. This study has proved the feasibility of performing 4D-PET/CT acquisition. Respiratory motion was in most cases consistent between PET and CT sessions, thereby improving both the attenuation correction of PET images, and co-registration of PET and CT images. On the other hand, in two patients, there was an increased partial irregularity in their breathing motion, which would prevent accurately correlating the corresponding PET and CT images

  12. A discriminative structural similarity measure and its application to video-volume registration for endoscope three-dimensional motion tracking.

    Science.gov (United States)

    Luo, Xiongbiao; Mori, Kensaku

    2014-06-01

    Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.

  13. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish P., E-mail: Amish.Shah@orlandohealth.com [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States); Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L. [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States)

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still

  14. Planning Study Comparison of Real-Time Target Tracking and Four-Dimensional Inverse Planning for Managing Patient Respiratory Motion

    International Nuclear Information System (INIS)

    Zhang Peng; Hugo, Geoffrey D.; Yan Di

    2008-01-01

    Purpose: Real-time target tracking (RT-TT) and four-dimensional inverse planning (4D-IP) are two potential methods to manage respiratory target motion. In this study, we evaluated each method using the cumulative dose-volume criteria in lung cancer radiotherapy. Methods and Materials: Respiration-correlated computed tomography scans were acquired for 4 patients. Deformable image registration was applied to generate a displacement mapping for each phase image of the respiration-correlated computed tomography images. First, the dose distribution for the organs of interest obtained from an idealized RT-TT technique was evaluated, assuming perfect knowledge of organ motion and beam tracking. Inverse planning was performed on each phase image separately. The treatment dose to the organs of interest was then accumulated from the optimized plans. Second, 4D-IP was performed using the probability density function of respiratory motion. The beam arrangement, prescription dose, and objectives were consistent in both planning methods. The dose-volume and equivalent uniform dose in the target volume, lung, heart, and spinal cord were used for the evaluation. Results: The cumulative dose in the target was similar for both techniques. The equivalent uniform dose of the lung, heart, and spinal cord was 4.6 ± 2.2, 11 ± 4.4, and 11 ± 6.6 Gy for RT-TT with a 0-mm target margin, 5.2 ± 3.1, 12 ± 5.9, and 12 ± 7.8 Gy for RT-TT with a 2-mm target margin, and 5.3 ± 2.3, 11.9 ± 5.0, and 12 ± 5.6 Gy for 4D-IP, respectively. Conclusion: The results of our study have shown that 4D-IP can achieve plans similar to those achieved by RT-TT. Considering clinical implementation, 4D-IP could be a more reliable and practical method to manage patient respiration-induced motion

  15. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  16. Absolute plate motions and true polar wander in the absence of hotspot tracks.

    Science.gov (United States)

    Steinberger, Bernhard; Torsvik, Trond H

    2008-04-03

    The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).

  17. Hierarchical regular small-world networks

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan

    2008-01-01

    Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)

  18. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    Science.gov (United States)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  19. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  20. Tracking errors in a prototype real-time tumour tracking system

    International Nuclear Information System (INIS)

    Sharp, Gregory C; Jiang, Steve B; Shimizu, Shinichi; Shirato, Hiroki

    2004-01-01

    In motion-compensated radiation therapy, radio-opaque markers can be implanted in or near a tumour and tracked in real-time using fluoroscopic imaging. Tracking these implanted markers gives highly accurate position information, except when tracking fails due to poor or ambiguous imaging conditions. This study investigates methods for automatic detection of tracking errors, and assesses the frequency and impact of tracking errors on treatments using the prototype real-time tumour tracking system. We investigated four indicators for automatic detection of tracking errors, and found that the distance between corresponding rays was most effective. We also found that tracking errors cause a loss of gating efficiency of between 7.6 and 10.2%. The incidence of treatment beam delivery during tracking errors was estimated at between 0.8% and 1.25%

  1. Cone-beam computed tomography internal motion tracking should be used to validate 4-dimensional computed tomography for abdominal radiation therapy patients

    DEFF Research Database (Denmark)

    Rankine, Leith; Wan, Hanlin; Parikh, Parag

    2016-01-01

    Purpose To demonstrate that fiducial tracking during pretreatment Cone-Beam CT (CBCT) can accurately measure tumor motion and that this method should be used to validate 4-dimensional CT (4DCT) margins before each treatment fraction. Methods and Materials For 31 patients with abdominal tumors and...

  2. Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms.

    Science.gov (United States)

    Sothmann, T; Blanck, O; Poels, K; Werner, R; Gauer, T

    2016-02-21

    The purpose of this study was to evaluate and compare two clinical tracking systems for radiosurgery with regard to their dosimetric and geometrical accuracy in liver SBRT: the robot-based CyberKnife and the gimbal-based Vero. Both systems perform real-time tumour tracking by correlating internal tumour and external surrogate motion. CyberKnife treatment plans were delivered to a high resolution 2D detector array mounted on a 4D motion platform, with the platform simulating (a) tumour motion trajectories extracted from the corresponding CyberKnife predictor log files and (b) the tumour motion trajectories with superimposed baseline-drift. Static reference and tracked dose measurements were compared and dosimetric as well as geometrical uncertainties analyzed by a planning structure-based evaluation. For (a), γ-passing rates inside the CTV (γ-criteria of 1% / 1 mm) ranged from 95% to 100% (CyberKnife) and 98% to 100% (Vero). However, dosimetric accuracy decreases in the presence of the baseline-drift. γ-passing rates for (b) ranged from 26% to 92% and 94% to 99%, respectively; i.e. the effect was more pronounced for CyberKnife. In contrast, the Vero system led to maximum dose deviations in the OAR between  +1.5 Gy to +6.0 Gy (CyberKnife: +0.5 Gy to +3.5 Gy). Potential dose shifts were interpreted as motion-induced geometrical tracking errors. Maximum observed shift ranges were  -1.0 mm to  +0.7 mm (lateral) /-0.6 mm to +0.1 mm (superior-inferior) for CyberKnife and  -0.8 mm to +0.2 mm /-0.8 mm to +0.4 mm for Vero. These values illustrate that CyberKnife and Vero provide high precision tracking of regular breathing patterns. Even for the modified motion trajectory, the obtained dose distributions appear to be clinical acceptable with regard to literature QA γ-criteria of 3% / 3 mm.

  3. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view

    International Nuclear Information System (INIS)

    McQuaid, D; Webb, S

    2006-01-01

    A new modification of the dynamic multileaf collimator (dMLC) delivery technique for intensity-modulated therapy (IMRT) is outlined. This technique enables the tracking of a target moving through rigid-body translations in a 2D trajectory in the beam's eye view. The accuracy of the delivery versus that of deliveries with no tracking and of 1D tracking techniques is quantified with clinically derived intensity-modulated beams (IMBs). Leaf trajectories calculated in the target-reference frame were iteratively synchronized assuming regular target motion. This allowed the leaves defined in the lab-reference frame to simultaneously follow the target motion and to deliver the required IMB without violation of the leaf maximum-velocity constraint. The leaves are synchronized until the gradient of the leaf position at every instant is less than a calculated maximum. The delivered fluence in the target-reference frame was calculated with a simple primary-fluence model. The new 2D tracking technique was compared with the delivered fluence produced by no-tracking deliveries and by 1D tracking deliveries for 33 clinical IMBs. For the clinical IMBs normalized to a maximum fluence of 200 MUs, the rms difference between the desired and the delivered IMB was 15.6 ± 3.3 MU for the case of a no-tracking delivery, 7.9 ± 1.6 MU for the case where only the primary component of motion was corrected and 5.1 ± 1.1 MU for the 2D tracking delivery. The residual error is due to interpolation and sampling effects. The 2D tracking delivery technique requires an increase in the delivery time evaluated as between 0 and 50% of the unsynchronized delivery time for each beam with a mean increase of 13% for the IMBs tested. The 2D tracking dMLC delivery technique allows an optimized IMB to be delivered to moving targets with increased accuracy and with acceptable increases in delivery time. When combined with real-time knowledge of the target motion at delivery time, this technique facilitates

  4. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  5. Hybrid method for consistent model of the Pacific absolute plate motion and a test for inter-hotspot motion since 70Ma

    Science.gov (United States)

    Harada, Y.; Wessel, P.; Sterling, A.; Kroenke, L.

    2002-12-01

    Inter-hotspot motion within the Pacific plate is one of the most controversial issues in recent geophysical studies. However, it is a fact that many geophysical and geological data including ages and positions of seamount chains in the Pacific plate can largely be explained by a simple model of absolute motion derived from assumptions of rigid plates and fixed hotspots. Therefore we take the stand that if a model of plate motion can explain the ages and positions of Pacific hotspot tracks, inter-hotspot motion would not be justified. On the other hand, if any discrepancies between the model and observations are found, the inter-hotspot motion may then be estimated from these discrepancies. To make an accurate model of the absolute motion of the Pacific plate, we combined two different approaches: the polygonal finite rotation method (PFRM) by Harada and Hamano (2000) and the hot-spotting technique developed by Wessel and Kroenke (1997). The PFRM can determine accurate positions of finite rotation poles for the Pacific plate if the present positions of hotspots are known. On the other hand, the hot-spotting technique can predict present positions of hotspots if the absolute plate motion is given. Therefore we can undertake iterative calculations using the two methods. This hybrid method enables us to determine accurate finite rotation poles for the Pacific plate solely from geometry of Hawaii, Louisville and Easter(Crough)-Line hotspot tracks from around 70 Ma to present. Information of ages can be independently assigned to the model after the poles and rotation angles are determined. We did not detect any inter-hotspot motion from the geometry of these Pacific hotspot tracks using this method. The Ar-Ar ages of Pacific seamounts including new age data of ODP Leg 197 are used to test the newly determined model of the Pacific plate motion. The ages of Hawaii, Louisville, Easter(Crough)-Line, and Cobb hotspot tracks are quite consistent with each other from 70 Ma to

  6. SU-G-BRA-12: Development of An Intra-Fractional Motion Tracking and Dose Reconstruction System for Adaptive Stereotactic Body Radiation Therapy in High-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, N Hassan; Chi, Y; Tian, Z; Jiang, S; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: A clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer is undergoing at our institution. In addition to escalating dose to the prostate, we have increased dose to intra-prostatic lesions. Intra-fractional prostate motion deteriorates well planned radiation dose, especially for the small intra-prostatic lesions. To solve this problem, we have developed a motion tracking and 4D dose-reconstruction system to facilitate adaptive re-planning. Methods: Patients in the clinical trial were treated with VMAT using four arcs and 10 FFF beam. KV triggered x-ray projections were taken every 3 sec during delivery to acquire 2D projections of 3D anatomy at the direction orthogonal to the therapeutic beam. Each patient had three implanted prostate markers. Our developed system first determined 2D projection locations of these markers and then 3D prostate translation and rotation via 2D/3D registration of the markers. Using delivery log files, our GPU-based Monte Carlo tool (goMC) reconstructed dose corresponding to each triggered image. The calculated 4D dose distributions were further aggregated to yield the delivered dose. Results: We first tested each module in our system. MC dose engine were commissioned to our treatment planning system with dose difference of <0.5%. For motion tracking, 1789 kV projections from 7 patients were acquired. The 2D marker location error was <1 mm. For 3D motion tracking, root mean square (RMS) errors along LR, AP, and CC directions were 0.26mm, 0.36mm, and 0.01mm respectively in simulation studies and 1.99mm, 1.37mm, and 0.22mm in phantom studies. We also tested the entire system workflow. Our system was able to reconstruct delivered dose. Conclusion: We have developed a functional intra-fractional motion tracking and 4D dose re-construction system to support our clinical trial on adaptive high-risk prostate cancer SBRT. Comprehensive evaluations have shown the capability and accuracy of our system.

  7. Incremental projection approach of regularization for inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)

    2016-10-15

    This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.

  8. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Asnafi, Alireza [Hydro-Aeronautical Research Center, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of); Mahzoon, Mojtaba [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of)

    2011-09-15

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  9. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    International Nuclear Information System (INIS)

    Asnafi, Alireza; Mahzoon, Mojtaba

    2011-01-01

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  10. Visual recognition and tracking of objects for robot sensing

    International Nuclear Information System (INIS)

    Lowe, D.G.

    1994-01-01

    An overview is presented of a number of techniques used for recognition and motion tracking of articulated 3-D objects. With recent advances in robust methods for model-based vision and improved performance of computer systems, it will soon be possible to build low-cost, high-reliability systems for model-based motion tracking. Such systems can be expected to open up a wide range of applications in robotics by providing machines with real-time information about their environment. This paper describes a number of techniques for efficiently matching parameterized 3-D models to image features. The matching methods are robust with respect to missing and ambiguous features as well as measurement errors. Unlike most previous work on model-based motion tracking, this system provides for the integrated treatment of matching and measurement errors during motion tracking. The initial application is in a system for real-time motion tracking of articulated 3-D objects. With the future addition of an indexing component, these same techniques can also be used for general model-based recognition. The current real-time implementation is based on matching straight line segments, but some preliminary experiments on matching arbitrary curves are also described. (author)

  11. Performance of a Motion Tracking System During Cyberknife Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Cavedon, Carlo; Francescon, Paolo; Cora, Stefania; Moschini, Giuliano; Rossi, Paolo

    2009-01-01

    Cyberknife (Accuracy Inc., Ca) is a robotic radio-surgery system that includes a compact 6 MV linac delivering up to 800 cGy per minute, and an automate arm to aim at any part of the body from any angle. An essential tool is the guidance system based on x-ray imaging cameras located on supports around the patient. A Cyberknife system has been operational at the Vicenza (Italy) Hospital for years and is mainly employed for treating benign and malignant tumors, and Arterior-Venous Malformations. In radiation therapy, delivery of high doses to targets that move with respiration is challenging because of possible spatial inaccuracies. The purpose of this work was to estimate the accuracy of the prediction algorithm used to compensate for system latency in a real-time respiratory tracking system. We have analyzed respiratory signals of 30 patients who had lung or liver Cyberknife treatments. The 'Synchrony'(Accuracy Inc.) motion tracking system we use is based on the correlation between the position of LED markers, detected in real time, and the position of internal markers, sampled through x-ray imaging. The position of the external LED signals, though read in real time, must be predicted to compensate for a few hundred ms time lag in the feedback loop that redirects the beam to the current target position. The respiratory signals were described by employing their frequency power spectrum, as recently proposed by other authors. Prediction errors above 1.5 mm, lasting for periods longer than 5 seconds were observed for irregular breathers. These episodes correlate to the presence of a bimodal distribution in the power spectral density, and of very low frequencies contribution. A more refined approach would include a personalized choice of the prediction algorithm based on the very first minutes of treatment. Patient training aimed at reducing breathing irregularities might also result in improved spatial accuracy.

  12. Canonical harmonic tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Kvardakov, V.; Levichev, E.

    2006-01-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed

  13. Canonical harmonic tracking of charged particles in circular accelerators

    Science.gov (United States)

    Kvardakov, V.; Levichev, E.

    2006-03-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed.

  14. Unexpected Regularity in Swimming Behavior of Clausocalanus furcatus Revealed by a Telecentric 3D Computer Vision System.

    Directory of Open Access Journals (Sweden)

    Giuseppe Bianco

    Full Text Available Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought.

  15. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    Science.gov (United States)

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  16. A dynamic model-based approach to motion and deformation tracking of prosthetic valves from biplane x-ray images.

    Science.gov (United States)

    Wagner, Martin G; Hatt, Charles R; Dunkerley, David A P; Bodart, Lindsay E; Raval, Amish N; Speidel, Michael A

    2018-04-16

    Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we propose a novel technique to track the motion and deformation of the prosthetic valve in three dimensions based on biplane fluoroscopic image sequences. The tracking approach uses a parameterized point cloud model of the valve stent which can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid elements of the model are individually rotated and translated in three dimensions to approximate the motions of the stent. Tracking is performed using an iterative 2D-3D registration procedure which estimates the model parameters by minimizing the mean-squared image values at the positions of the forward-projected model points. Additionally, an initialization technique is proposed, which locates clusters of salient features to determine the initial position and orientation of the model. The proposed algorithms were evaluated based on simulations using a digital 4D CT phantom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with anatomical background features. The target registration error was 0.12 ± 0.04 mm in the simulations and 0.64 ± 0.09 mm in the experimental data. The proposed algorithm could be used to generate 3D visualization of the prosthetic valve from two projections. In combination with soft-tissue sensitive-imaging techniques like transesophageal echocardiography, this technique could enable 3D image guidance during TAVR procedures. © 2018 American Association of Physicists in Medicine.

  17. Validation of the Leap Motion Controller using markered motion capture technology.

    Science.gov (United States)

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  19. Single-Photon Tracking for High-Speed Vision

    Directory of Open Access Journals (Sweden)

    Istvan Gyongy

    2018-01-01

    Full Text Available Quanta Imager Sensors provide photon detections at high frame rates, with negligible read-out noise, making them ideal for high-speed optical tracking. At the basic level of bit-planes or binary maps of photon detections, objects may present limited detail. However, through motion estimation and spatial reassignment of photon detections, the objects can be reconstructed with minimal motion artefacts. We here present the first demonstration of high-speed two-dimensional (2D tracking and reconstruction of rigid, planar objects with a Quanta Image Sensor, including a demonstration of depth-resolved tracking.

  20. Target Response Adaptation for Correlation Filter Tracking

    KAUST Repository

    Bibi, Adel Aamer

    2016-09-16

    Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %-13.5% in precision and 3.2 %-13% in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.). © Springer International Publishing AG 2016.

  1. Effect of the track potential on the motion and energy flow of secondary electrons created from heavy-ion irradiation

    Science.gov (United States)

    Moribayashi, Kengo

    2018-05-01

    Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.

  2. Brownian Motion of Boomerang Colloidal Particles

    Science.gov (United States)

    Wei, Qi-Huo; Konya, Andrew; Wang, Feng; Selinger, Jonathan V.; Sun, Kai; Chakrabarty, Ayan

    2014-03-01

    We present experimental and theoretical studies on the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.

  3. The Seismic Response of High-Speed Railway Bridges Subjected to Near-Fault Forward Directivity Ground Motions Using a Vehicle-Track-Bridge Element

    Directory of Open Access Journals (Sweden)

    Chen Ling-kun

    2014-01-01

    Full Text Available Based on the Next Generation Attenuation (NGA project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of sprung masses concentrated at the axle positions. For the short period railway bridge, the results from the case study demonstrate that directivity pulse effect tends to increase the seismic responses of the bridge compared with far-fault ground motions or nonpulse-like motions and the directivity pulse effect and high values of the vertical acceleration component can notably influence the hysteretic behaviour of piers.

  4. Evolution of the regions of the 3D particle motion in the regular polygon problem of (N+1) bodies with a quasi-homogeneous potential

    Science.gov (United States)

    Fakis, Demetrios; Kalvouridis, Tilemahos

    2017-09-01

    The regular polygon problem of (N+1) bodies deals with the dynamics of a small body, natural or artificial, in the force field of N big bodies, the ν=N-1 of which have equal masses and form an imaginary regular ν -gon, while the Nth body with a different mass is located at the center of mass of the system. In this work, instead of considering Newtonian potentials and forces, we assume that the big bodies create quasi-homogeneous potentials, in the sense that we insert to the inverse square Newtonian law of gravitation an inverse cube corrective term, aiming to approximate various phenomena due to their shape or to the radiation emitting from the primaries. Based on this new consideration, we apply a general methodology in order to investigate by means of the zero-velocity surfaces, the regions where 3D motions of the small body are allowed, their evolutions and parametric variations, their topological bifurcations, as well as the existing trapping domains of the particle. Here we note that this process is definitely a fundamental step of great importance in the study of many dynamical systems characterized by a Jacobian-type integral of motion in the long way of searching for solutions of any kind.

  5. Apparatus and method for tracking a molecule or particle in three dimensions

    Science.gov (United States)

    Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM

    2009-03-03

    An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.

  6. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue.

    Science.gov (United States)

    Wang, Yikun K; Nash, Martyn P; Pullan, Andrew J; Kieser, Jules A; Röhrle, Oliver

    2013-04-01

    Electromagnetic articulography (EMA) is designed to track facial and tongue movements. In practice, the EMA sensors for tracking the movement of the tongue's surface are placed heuristically. No recommendation exists. Within this paper, a model-based approach providing a mathematical analysis and a computational-based recommendation for the placement of sensors, which is based on the tongue's envelope of movement, is proposed. For this purpose, an anatomically detailed Finite Element (FE) model of the tongue has been employed to determine the envelope of motion for retraction and elongation using a forward simulation. Two optimality criteria have been proposed to identify a set of optimal sensor locations based on the pre-computed envelope of motion. The first one is based on the assumption that locations exhibiting large displacements contain the most information regarding the tongue's movement and are less susceptible to measurement errors. The second one selects sensors exhibiting each the largest displacements in the anterior-posterior, superior-inferior, medial-lateral and overall direction. The quality of the two optimality criteria is analysed based on their ability to deduce from the respective sensor locations the corresponding muscle activation parameters of the relevant muscle fibre groups during retraction and elongation by solving the corresponding inverse problem. For this purpose, a statistical analysis has been carried out, in which sensor locations for two different modes of deformation have been subjected to typical measurement errors. Then, for tongue retraction and elongation, the expectation value, the standard deviation, the averaged bias and the averaged coefficient of variation have been computed based on 41 different error-afflicted sensor locations. The results show that the first optimality criteria is superior to the second one and that the averaged bias and averaged coefficient of variation decrease when the number of sensors is

  7. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, J; Zheng, C; Czito, B; Palta, M; Yin, F [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Wang, H [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Bashir, M [Department of Radiology, Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficient (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC

  8. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  9. Multiple-object permanence tracking: limitation in maintenance and transformation of perceptual objects.

    Science.gov (United States)

    Saiki, Jun

    2002-01-01

    Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.

  10. Dynamic chaos phenomenon and coherent radiation accompanying high energy particle motion through crystals

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Truten', V.I.; Shul'ga, N.F.

    1991-01-01

    A crystal has a regular structure, therefore every motion in such a structure seems to be regular. However, it is not actually so and even in perfect crystals the particle motion may be either regular or chaotic. Everything depends on the number of integrals of motion determining a particle trajectory. The character of particle motion in a crystal, i.e. its regularity or chaoticity, affects many physical processes accompanying the particle's motion. In this paper we shall consider the effect of dynamic chaos on the coherent radiation of fast particles in a crystal. We also consider the validity conditions of coherent radiation theory results, the role of the second and higher Born approximations in the radiation theory of fast particles in crystals, the continuous string approximation in this theory, the coherent radiation in the model of random strings, and the multiple scattering effect on the coherent radiation. (author)

  11. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator–prey interaction

    International Nuclear Information System (INIS)

    Adhikari, Deepak; Longmire, Ellen K

    2013-01-01

    Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator–prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success. (paper)

  12. Straight-Line Target Tracking for Unmanned Surface Vehicles

    Directory of Open Access Journals (Sweden)

    Morten Breivik

    2008-10-01

    Full Text Available This paper considers the subject of straight-line target tracking for unmanned surface vehicles (USVs. Target-tracking represents motion control scenarios where no information about the target behavior is known in advance, i.e., the path that the target traverses is not defined apriori. Specifically, this work presents the design of a motion control system which enables an underactuated USV to track a target that moves in a straight line at high speed. The motion control system employs a guidance principle originally developed for interceptor missiles, as well as a novel velocity controller inspired by maneuverability and agility concepts found in fighter aircraft literature. The performance of the suggested design is illustrated through full-scale USV experiments in the Trondheimsfjord.

  13. First online real-time evaluation of motion-induced 4D dose errors during radiotherapy delivery

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Skouboe, Simon; Hansen, Rune

    2018-01-01

    PURPOSE: In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real......-time motion-including 4D dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS: Five volumetric modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying...... a Delta4 dosimeter. The VMAT plans have previously been used for (non-tracking) liver SBRT with intra-treatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in 3D while optical monitoring guided the MLC tracking. Linac...

  14. Systems for tracking minimally invasive surgical instruments.

    Science.gov (United States)

    Chmarra, M K; Grimbergen, C A; Dankelman, J

    2007-01-01

    Minimally invasive surgery (e.g. laparoscopy) requires special surgical skills, which should be objectively assessed. Several studies have shown that motion analysis is a valuable assessment tool of basic surgical skills in laparoscopy. However, to use motion analysis as the assessment tool, it is necessary to track and record the motions of laparoscopic instruments. This article describes the state of the art in research on tracking systems for laparoscopy. It gives an overview on existing systems, on how these systems work, their advantages, and their shortcomings. Although various approaches have been used, none of the tracking systems to date comes out as clearly superior. A great number of systems can be used in training environment only, most systems do not allow the use of real laparoscopic instruments, and only a small number of systems provide force feedback.

  15. Detecting multiple moving objects in crowded environments with coherent motion regions

    Science.gov (United States)

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  16. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Dolly, S; Anastasio, M; Li, H; Wooten, H; Gay, H; Mutic, S; Thorstad, W; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Victoria, J; Dempsey, J [ViewRay incorporated, Oakwood Village, Ohio (United States); Ruan, S [University of Rouen, QuantIF - EA 4108 LITIS, Rouen (France); Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) was first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first

  17. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    International Nuclear Information System (INIS)

    Chen, H; Dolly, S; Anastasio, M; Li, H; Wooten, H; Gay, H; Mutic, S; Thorstad, W; Li, H; Victoria, J; Dempsey, J; Ruan, S; Low, D

    2015-01-01

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) was first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first

  18. First Demonstration of Combined kV/MV Image-Guided Real-Time Dynamic Multileaf-Collimator Target Tracking

    International Nuclear Information System (INIS)

    Cho, Byungchul; Poulsen, Per R.; Sloutsky, Alex; Sawant, Amit; Keall, Paul J.

    2009-01-01

    Purpose: For intrafraction motion management, a real-time tracking system was developed by combining fiducial marker-based tracking via simultaneous kilovoltage (kV) and megavoltage (MV) imaging and a dynamic multileaf collimator (DMLC) beam-tracking system. Methods and Materials: The integrated tracking system employed a Varian Trilogy system equipped with kV/MV imaging systems and a Millennium 120-leaf MLC. A gold marker in elliptical motion (2-cm superior-inferior, 1-cm left-right, 10 cycles/min) was simultaneously imaged by the kV and MV imagers at 6.7 Hz and segmented in real time. With these two-dimensional projections, the tracking software triangulated the three-dimensional marker position and repositioned the MLC leaves to follow the motion. Phantom studies were performed to evaluate time delay from image acquisition to MLC adjustment, tracking error, and dosimetric impact of target motion with and without tracking. Results: The time delay of the integrated tracking system was ∼450 ms. The tracking error using a prediction algorithm was 0.9 ± 0.5 mm for the elliptical motion. The dose distribution with tracking showed better target coverage and less dose to surrounding region over no tracking. The failure rate of the gamma test (3%/3-mm criteria) was 22.5% without tracking but was reduced to 0.2% with tracking. Conclusion: For the first time, a complete tracking system combining kV/MV image-guided target tracking and DMLC beam tracking was demonstrated. The average geometric error was less than 1 mm, and the dosimetric error was negligible. This system is a promising method for intrafraction motion management.

  19. Three-Dimensional Intrafractional Motion of Breast During Tangential Breast Irradiation Monitored With High-Sampling Frequency Using a Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Kinoshita, Rumiko; Shimizu, Shinichi; Taguchi, Hiroshi; Katoh, Norio; Fujino, Masaharu; Onimaru, Rikiya; Aoyama, Hidefumi; Katoh, Fumi; Omatsu, Tokuhiko; Ishikawa, Masayori; Shirato, Hiroki

    2008-01-01

    Purpose: To evaluate the three-dimensional intrafraction motion of the breast during tangential breast irradiation using a real-time tracking radiotherapy (RT) system with a high-sampling frequency. Methods and Materials: A total of 17 patients with breast cancer who had received breast conservation RT were included in this study. A 2.0-mm gold marker was placed on the skin near the nipple of the breast for RT. A fluoroscopic real-time tumor-tracking RT system was used to monitor the marker. The range of motion of each patient was calculated in three directions. Results: The mean ± standard deviation of the range of respiratory motion was 1.0 ± 0.6 mm (median, 0.9; 95% confidence interval [CI] of the marker position, 0.4-2.6), 1.3 ± 0.5 mm (median, 1.1; 95% CI, 0.5-2.5), and 2.6 ± 1.4 (median, 2.3; 95% CI, 1.0-6.9) for the right-left, craniocaudal, and anteroposterior direction, respectively. No correlation was found between the range of motion and the body mass index or respiratory function. The mean ± standard deviation of the absolute value of the baseline shift in the right-left, craniocaudal, and anteroposterior direction was 0.2 ± 0.2 mm (range, 0.0-0.8 mm), 0.3 ± 0.2 mm (range, 0.0-0.7 mm), and 0.8 ± 0.7 mm (range, 0.1-1.8 mm), respectively. Conclusion: Both the range of motion and the baseline shift were within a few millimeters in each direction. As long as the conventional wedge-pair technique and the proper immobilization are used, the intrafraction three-dimensional change in the breast surface did not much influence the dose distribution

  20. Teaching Motion with the Global Positioning System

    Science.gov (United States)

    Budisa, Marko; Planinsic, Gorazd

    2003-01-01

    We have used the GPS receiver and a PC interface to track different types of motion. Various hands-on experiments that enlighten the physics of motion at the secondary school level are suggested (visualization of 2D and 3D motion, measuring car drag coefficient and fuel consumption). (Contains 8 figures.)

  1. Real-Time Motion Management of Prostate Cancer Radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias

    , and for prostate cancer treatments, the proximity of the bladder and rectum makes radiotherapy treatment of this site a challenging task. Furthermore, the prostate may move during the radiation delivery and treatment margins are necessary to ensure that it is still receiving the intended dose. The main aim...... of the MLC on the performance of DMLC tracking were investigated. We found that for prostate motion, the main tracking error arose from the finite leaf width affecting the MLCs ability to construct the desired shape. Furthermore, we also attempted to model prostate motion using a random walk model. We found...... that for the slow and drifting motion, the model could satisfactory replicate the motion of the prostate, while the rapid and transient prostate motion observed in some cases was challenging for the model. We therefore added simulated transient motion to the random walk model, which slightly improved the results...

  2. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

    International Nuclear Information System (INIS)

    Ng, SK; Armour, E; Su, L; Zhang, Y; Wong, J; Ding, K; Iordachita, I; Sen, H Tutkun; Kazanzides, P; Bell, M Lediju

    2015-01-01

    Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid gold marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment

  3. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Ng, SK; Armour, E; Su, L; Zhang, Y; Wong, J; Ding, K [Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD (United States); Iordachita, I [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Sen, H Tutkun; Kazanzides, P; Bell, M Lediju [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid gold marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment.

  4. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society

  5. The Application of Leap Motion in Astronaut Virtual Training

    Science.gov (United States)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  6. A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZuTao; ZHANG JiaShu

    2009-01-01

    Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.

  7. Slushy weightings for the optimal pilot model. [considering visual tracking task

    Science.gov (United States)

    Dillow, J. D.; Picha, D. G.; Anderson, R. O.

    1975-01-01

    A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.

  8. An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity.

    Science.gov (United States)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.e., extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both simulation and practice. Three instances of each stimulus are employed, differing in their movement velocities-0.5°/time step, 1.0°/time step and 1.5°/time step. To validate the approach in practice, we implement the proposed neural mechanism on a wheeled mobile robot and evaluate its performance in auditory tracking.

  9. ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES

    OpenAIRE

    Brouard , Olivier; Delannay , Fabrice; Ricordel , Vincent; Barba , Dominique

    2007-01-01

    4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...

  10. Orbital and angular motion construction for low thrust interplanetary flight

    Science.gov (United States)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  11. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  12. Regularized Adaptive Notch Filters for Acoustic Howling Suppression

    DEFF Research Database (Denmark)

    Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc

    2009-01-01

    In this paper, a method for the suppression of acoustic howling is developed, based on adaptive notch filters (ANF) with regularization (RANF). The method features three RANFs working in parallel to achieve frequency tracking, howling detection and suppression. The ANF-based approach to howling...

  13. Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking

    International Nuclear Information System (INIS)

    Zu-Tao, Zhang; Jia-Shu, Zhang

    2010-01-01

    The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n + 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions. (classical areas of phenomenology)

  14. [Study on method of tracking the active cells in image sequences based on EKF-PF].

    Science.gov (United States)

    Tang, Chunming; Liu, Ying

    2013-02-01

    In cell image sequences, due to the nonlinear and nonGaussian motion characteristics of active cells, the accurate prediction and tracking is still an unsolved problem. We applied extended Kalman particle filter (EKF-PF) here in our study, attempting to solve the problem. Firstly we confirmed the existence and positions of the active cells. Then we established a motion model and improved it via adding motion angle estimation. Next we predicted motion parameters, such as displacement, velocity, accelerated velocity and motion angle, in region centers of the cells being tracked. Finally we obtained the motion traces of active cells. There were fourteen active cells in three image sequences which have been tracked. The errors were less than 2.5 pixels when the prediction values were compared with actual values. It showed that the presented algorithm may basically reach the solution of accurate predition and tracking of the active cells.

  15. GND-PCA-based statistical modeling of diaphragm motion extracted from 4D MRI.

    Science.gov (United States)

    Swastika, Windra; Masuda, Yoshitada; Xu, Rui; Kido, Shoji; Chen, Yen-Wei; Haneishi, Hideaki

    2013-01-01

    We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.

  16. Regular transport dynamics produce chaotic travel times.

    Science.gov (United States)

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  17. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  18. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    International Nuclear Information System (INIS)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-01-01

    Research highlights: → We develop a method to track a quantum dot-conjugated protein in yeast cells. → We incorporate the conjugated quantum dot proteins into yeast spheroplasts. → We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  19. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  20. Vehicle ego-motion estimation with geometric algebra

    NARCIS (Netherlands)

    Mark, W. van der; Fontijne, D.; Dorst, L.; Groen, F.C.A.

    2003-01-01

    A method for estimating ego-motion with vehicle mounted stereo cameras is presented. This approach is based on finding corresponding features in stereo images and tracking them between succeeding stereo frames. Our approach estimates stereo ego-motion with geometric algebra techniques. Starting with

  1. Sustained attention to objects' motion sharpens position representations: Attention to changing position and attention to motion are distinct.

    Science.gov (United States)

    Howard, Christina J; Rollings, Victoria; Hardie, Amy

    2017-06-01

    In tasks where people monitor moving objects, such the multiple object tracking task (MOT), observers attempt to keep track of targets as they move amongst distracters. The literature is mixed as to whether observers make use of motion information to facilitate performance. We sought to address this by two means: first by superimposing arrows on objects which varied in their informativeness about motion direction and second by asking observers to attend to motion direction. Using a position monitoring task, we calculated mean error magnitudes as a measure of the precision with which target positions are represented. We also calculated perceptual lags versus extrapolated reports, which are the times at which positions of targets best match position reports. We find that the presence of motion information in the form of superimposed arrows made no difference to position report precision nor perceptual lag. However, when we explicitly instructed observers to attend to motion, we saw facilitatory effects on position reports and in some cases reports that best matched extrapolated rather than lagging positions for small set sizes. The results indicate that attention to changing positions does not automatically recruit attention to motion, showing a dissociation between sustained attention to changing positions and attention to motion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Temporal dynamics of 2D motion integration for ocular following in macaque monkeys.

    Science.gov (United States)

    Barthélemy, Fréderic V; Fleuriet, Jérome; Masson, Guillaume S

    2010-03-01

    Several recent studies have shown that extracting pattern motion direction is a dynamical process where edge motion is first extracted and pattern-related information is encoded with a small time lag by MT neurons. A similar dynamics was found for human reflexive or voluntary tracking. Here, we bring an essential, but still missing, piece of information by documenting macaque ocular following responses to gratings, unikinetic plaids, and barber-poles. We found that ocular tracking was always initiated first in the grating motion direction with ultra-short latencies (approximately 55 ms). A second component was driven only 10-15 ms later, rotating tracking toward pattern motion direction. At the end the open-loop period, tracking direction was aligned with pattern motion direction (plaids) or the average of the line-ending motion directions (barber-poles). We characterized the dependency on contrast of each component. Both timing and direction of ocular following were quantitatively very consistent with the dynamics of neuronal responses reported by others. Overall, we found a remarkable consistency between neuronal dynamics and monkey behavior, advocating for a direct link between the neuronal solution of the aperture problem and primate perception and action.

  3. Improved nano-particle tracking analysis

    International Nuclear Information System (INIS)

    Walker, John G

    2012-01-01

    Nano-particle tracking is a method to estimate a particle size distribution by tracking the movements of individual particles, using multiple images of particles moving under Brownian motion. A novel method to recover a particle size distribution from nano-particle tracking data is described. Unlike a simple histogram-based method, the method described is able to account for the finite number of steps in each particle track and consequently for the measurement uncertainty in the step-length data. Computer simulation and experimental results are presented to demonstrate the performance of the approach compared with the current method. (paper)

  4. Hand Gesture Recognition with Leap Motion

    OpenAIRE

    Du, Youchen; Liu, Shenglan; Feng, Lin; Chen, Menghui; Wu, Jie

    2017-01-01

    The recent introduction of depth cameras like Leap Motion Controller allows researchers to exploit the depth information to recognize hand gesture more robustly. This paper proposes a novel hand gesture recognition system with Leap Motion Controller. A series of features are extracted from Leap Motion tracking data, we feed these features along with HOG feature extracted from sensor images into a multi-class SVM classifier to recognize performed gesture, dimension reduction and feature weight...

  5. The internal-external respiratory motion correlation is unaffected by audiovisual biofeedback.

    Science.gov (United States)

    Steel, Harry; Pollock, Sean; Lee, Danny; Keall, Paul; Kim, Taeho

    2014-03-01

    This study evaluated if an audiovisual (AV) biofeedback causes variation in the level of external and internal correlation due to its interactive intervention in natural breathing. The internal (diaphragm) and external (abdominal wall) respiratory motion signals of 15 healthy human subjects under AV biofeedback and free breathing (FB) were analyzed and measures of correlation and regularity taken. Regularity metrics (root mean square error and spectral power dispersion metric) were obtained and the correlation between these metrics and the internal and external correlation was investigated. For FB and AV biofeedback assisted breathing the mean correlations found between internal and external respiratory motion were 0.96±0.02 and 0.96±0.03, respectively. This means there is no evidence to suggest (p-value=0.88) any difference in the correlation between internal and external respiratory motion with the use of AV biofeedback. Our results confirmed the hypothesis that the internal-external correlation with AV biofeedback is the same as for free breathing. Should this correlation be maintained for patients, AV biofeedback can be implemented in the clinic with confidence as regularity improvements using AV biofeedback with an external signal will be reflected in increased internal motion regularity.

  6. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    Science.gov (United States)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  7. Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors

    Directory of Open Access Journals (Sweden)

    Chang Thomas

    2007-10-01

    Full Text Available Abstract Background Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors. Methods Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5 were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months. Results Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease. Conclusion Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.

  8. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.

    Science.gov (United States)

    Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang

    2017-11-01

    Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Real-time dynamic MLC tracking for inversely optimized arc radiotherapy

    DEFF Research Database (Denmark)

    Falk, Marianne; af Rosenschöld, Per Munck; Keall, Paul

    2010-01-01

    Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory.......Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory....

  10. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  11. An encoder for the measurement of relative motions between two objects

    International Nuclear Information System (INIS)

    Saro, M.

    1995-01-01

    The motion encoder is composed of a measuring rule, mounted on one of the object, which bears at least two tracks (X, Y) with multiple simple marks distributed following a similar pattern on the two tracks, and at least one specific mark (each mark limit is defining a step variation on the rule), and at least two mark readers, mounted on the second object, each one associated to a track. Data processing means are used to estimate distance and motion direction. Application to robotics and metrology

  12. On the use of EPID-based implanted marker tracking for 4D radiotherapy

    International Nuclear Information System (INIS)

    Keall, P.J.; Todor, A.D.; Vedam, S.S.; Bartee, C.L.; Siebers, J.V.; Kini, V.R.; Mohan, R.

    2004-01-01

    Four-dimensional (4D) radiotherapy delivery to dynamically moving tumors requires a real-time signal of the tumor position as a function of time so that the radiation beam can continuously track the tumor during the respiration cycle. The aim of this study was to develop and evaluate an electronic portal imaging device (EPID)-based marker-tracking system that can be used for real-time tumor targeting, or 4D radiotherapy. Three gold cylinders, 3 mm in length and 1 mm in diameter, were implanted in a dynamic lung phantom. The phantom range of motion was 4 cm with a 3-s 'breathing' period. EPID image acquisition parameters were modified, allowing image acquisition in 0.1 s. Images of the stationary and moving phantom were acquired. Software was developed to segment automatically the marker positions from the EPID images. Images acquired in 0.1 s displayed higher noise and a lower signal-noise ratio than those obtained using regular (>1 s) acquisition settings. However, the markers were still clearly visible on the 0.1-s images. The motion of the phantom blurred the images of the markers and further reduced the signal-noise ratio, though they could still be successfully segmented from the images in 10-30 ms of computation time. The positions of gold markers placed in the lung phantom were detected successfully, even for phantom velocities substantially higher than those observed for typical lung tumors. This study shows that using EPID-based marker tracking for 4D radiotherapy is feasible, however, changes in linear accelerator technology and EPID-based image acquisition as well as patient studies are required before this method can be implemented clinically

  13. Unscented Kalman filtering for articulated human tracking

    DEFF Research Database (Denmark)

    Boesen Lindbo Larsen, Anders; Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    We present an articulated tracking system working with data from a single narrow baseline stereo camera. The use of stereo data allows for some depth disambiguation, a common issue in articulated tracking, which in turn yields likelihoods that are practically unimodal. While current state...... with superior results. Tracking quality is measured by comparing with ground truth data from a marker-based motion capture system....

  14. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    Science.gov (United States)

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  15. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  16. Occlusion Handling in Videos Object Tracking: A Survey

    International Nuclear Information System (INIS)

    Lee, B Y; Liew, L H; Cheah, W S; Wang, Y C

    2014-01-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  17. Occlusion Handling in Videos Object Tracking: A Survey

    Science.gov (United States)

    Lee, B. Y.; Liew, L. H.; Cheah, W. S.; Wang, Y. C.

    2014-02-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  18. MO-DE-210-05: Improved Accuracy of Liver Feature Motion Estimation in B-Mode Ultrasound for Image-Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)

    2015-06-15

    Purpose: In similarity-measure based motion estimation incremental tracking (or template update) is challenging due to quantization, bias and accumulation of tracking errors. A method is presented which aims to improve the accuracy of incrementally tracked liver feature motion in long ultrasound sequences. Methods: Liver ultrasound data from five healthy volunteers under free breathing were used (15 to 17 Hz imaging rate, 2.9 to 5.5 minutes in length). A normalised cross-correlation template matching algorithm was implemented to estimate tissue motion. Blood vessel motion was manually annotated for comparison with three tracking code implementations: (i) naive incremental tracking (IT), (ii) IT plus a similarity threshold (ST) template-update method and (iii) ST coupled with a prediction-based state observer, known as the alpha-beta filter (ABST). Results: The ABST method produced substantial improvements in vessel tracking accuracy for two-dimensional vessel motion ranging from 7.9 mm to 40.4 mm (with mean respiratory period: 4.0 ± 1.1 s). The mean and 95% tracking errors were 1.6 mm and 1.4 mm, respectively (compared to 6.2 mm and 9.1 mm, respectively for naive incremental tracking). Conclusions: High confidence in the output motion estimation data is required for ultrasound-based motion estimation for radiation therapy beam tracking and gating. The method presented has potential for monitoring liver vessel translational motion in high frame rate B-mode data with the required accuracy. This work is support by Cancer Research UK Programme Grant C33589/A19727.

  19. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    International Nuclear Information System (INIS)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S; Fast, M; Nill, S; Oelfke, U; Denis de Senneville, B

    2016-01-01

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), the cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or

  20. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S [University Medical Center Utrecht, Utrecht (Netherlands); Fast, M; Nill, S; Oelfke, U [The Institute of Cancer Research, London (United Kingdom); Denis de Senneville, B [University Medical Center Utrecht, Utrecht (Netherlands); IMB, UMR 5251 CNRS/University of Bordeaux, Talence, FR (France)

    2016-06-15

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), the cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or

  1. Respiratory guiding system for respiratory motion management in respiratory gated radiotherapy

    International Nuclear Information System (INIS)

    Kang, Seong Hee; Kim, Dong Su; Kim, Tae Ho; Suh, Tae Suk

    2013-01-01

    Respiratory guiding systems have been shown to improve the respiratory regularity. This, in turn, improves the efficiency of synchronized moving aperture radiation therapy, and it reduces the artifacts caused by irregular breathing in imaging techniques such as four-dimensional computed tomography (4D CT), which is used for treatment planning in RGRT. We have previously developed a respiratory guiding system that incorporates an individual-specific guiding waveform, which is easy to follow for each volunteer, to improve the respiratory regularity. The present study evaluates the application of this system to improve the respiratory regularity for respiratory-gated radiation therapy (RGRT). In this study, we evaluated the effectiveness of an in-house-developed respiratory guiding system incorporating an individual specific guiding waveform to improve the respiratory regularity for RGRT. Most volunteers showed significantly less residual motion at each phase during guided breathing owing to the improvement in respiratory regularity. Therefore, the respiratory guiding system can clearly reduce the residual, or respiratory, motion in each phase. From the result, the CTV and the PTV margins during RGRT can be reduced by using the respiratory guiding system, which reduces the residual motions, thus improving the accuracy of RGRT

  2. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy

    Science.gov (United States)

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Roberts, Heather; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2014-01-01

    Abstract. Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images. PMID:26157980

  3. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Rottmann, J; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  4. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    International Nuclear Information System (INIS)

    Yip, S; Rottmann, J; Berbeco, R

    2014-01-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  5. Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy

    Directory of Open Access Journals (Sweden)

    Stendel Rüdiger

    2006-04-01

    Full Text Available Abstract Background Tracking of post-registration head motion is one of the major problems in frameless stereotaxy. Various attempts in detecting and compensating for this phenomenon rely on a fixed reference device rigidly attached to the patient's head. However, most of such reference tools are either based on an invasive fixation technique or have physical limitations which allow mobility of the head only in a restricted range of motion after completion of the registration procedure. Methods A new sensor-based reference tool, the so-called Dynamic Reference Frame (DRF which is designed to allow an unrestricted, 360° range of motion for the intraoperative use in pulsed DC magnetic navigation was tested in 40 patients. Different methods of non-invasive attachment dependent on the clinical need and type of procedure, as well as the resulting accuracies in the clinical application have been analyzed. Results Apart from conventional, completely rigid immobilization of the head (type A, four additional modes of head fixation and attachment of the DRF were distinguished on clinical grounds: type B1 = pin fixation plus oral DRF attachment; type B2 = pin fixation plus retroauricular DRF attachment; type C1 = free head positioning with oral DRF; and type C2 = free head positioning with retroauricular DRF. Mean fiducial registration errors (FRE were as follows: type A interventions = 1.51 mm, B1 = 1.56 mm, B2 = 1.54 mm, C1 = 1.73 mm, and C2 = 1.75 mm. The mean position errors determined at the end of the intervention as a measure of application accuracy were: 1.45 mm in type A interventions, 1.26 mm in type B1, 1.44 mm in type B2, 1.86 mm in type C1, and 1.68 mm in type C2. Conclusion Rigid head immobilization guarantees most reliable accuracy in various types of frameless stereotaxy. The use of an additional DRF, however, increases the application scope of frameless stereotaxy to include e.g. procedures in which rigid pin fixation of the cranium is

  6. Track treeing mechanism and its application

    International Nuclear Information System (INIS)

    Li Boyang

    1993-01-01

    Based on electrostriction and fracture mechanics, experiment observation and data-processing, two models (restriction among tree tracks and induction of tree track onto stress concentrated spots) and factors (restriction and induction) are proposed; The existence of four types of plastic zone (spot-block pz, single crack isolate pz, transition from isolate to block pz and crack-block pz) and two types of annex (plastic zone and crack zone) are pointed out. The development regularities of Gp (diameter of plastic zone), G(diameter of tree track), S(tree track density) and total areal of tree track (SG 2 ) in two basic experiments (H=H+dH, H=Hc H-field strength) are described by using four basic formulae. (author)

  7. Fast particle tracking with wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Floettmann, K.; Henning, C.

    2012-01-15

    Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)

  8. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    Science.gov (United States)

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  9. An improved Bayesian tensor regularization and sampling algorithm to track neuronal fiber pathways in the language circuit.

    Science.gov (United States)

    Mishra, Arabinda; Anderson, Adam W; Wu, Xi; Gore, John C; Ding, Zhaohua

    2010-08-01

    The purpose of this work is to design a neuronal fiber tracking algorithm, which will be more suitable for reconstruction of fibers associated with functionally important regions in the human brain. The functional activations in the brain normally occur in the gray matter regions. Hence the fibers bordering these regions are weakly myelinated, resulting in poor performance of conventional tractography methods to trace the fiber links between them. A lower fractional anisotropy in this region makes it even difficult to track the fibers in the presence of noise. In this work, the authors focused on a stochastic approach to reconstruct these fiber pathways based on a Bayesian regularization framework. To estimate the true fiber direction (propagation vector), the a priori and conditional probability density functions are calculated in advance and are modeled as multivariate normal. The variance of the estimated tensor element vector is associated with the uncertainty due to noise and partial volume averaging (PVA). An adaptive and multiple sampling of the estimated tensor element vector, which is a function of the pre-estimated variance, overcomes the effect of noise and PVA in this work. The algorithm has been rigorously tested using a variety of synthetic data sets. The quantitative comparison of the results to standard algorithms motivated the authors to implement it for in vivo DTI data analysis. The algorithm has been implemented to delineate fibers in two major language pathways (Broca's to SMA and Broca's to Wernicke's) across 12 healthy subjects. Though the mean of standard deviation was marginally bigger than conventional (Euler's) approach [P. J. Basser et al., "In vivo fiber tractography using DT-MRI data," Magn. Reson. Med. 44(4), 625-632 (2000)], the number of extracted fibers in this approach was significantly higher. The authors also compared the performance of the proposed method to Lu's method [Y. Lu et al., "Improved fiber tractography with Bayesian

  10. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, T; Harris, E; Bamber, J [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Greater London (United Kingdom); Evans, P [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom)

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  11. Precise Object Tracking under Deformation

    International Nuclear Information System (INIS)

    Saad, M.H.

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results. xiiiThe precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high

  12. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  13. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  14. Optimizing experimental parameters for tracking of diffusing particles

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.

    2016-01-01

    We describe how a single-particle tracking experiment should be designed in order for its recorded trajectories to contain the most information about a tracked particle's diffusion coefficient. The precision of estimators for the diffusion coefficient is affected by motion blur, limited photon st...

  15. Tracking and Counting Motion for Monitoring Food Intake Based-On Depth Sensor and UDOO Board: A Comprehensive Review

    Science.gov (United States)

    Kassim, Muhammad Fuad bin; Norzali Haji Mohd, Mohd

    2017-08-01

    Technology is all about helping people, which created a new opportunity to take serious action in managing their health care. Moreover, Obesity continues to be a serious public health concern in the Malaysia and continuing to rise. Obesity has been a serious health concern among people. Nearly half of Malaysian people overweight. Most of dietary approach is not tracking and detecting the right calorie intake for weight loss, but currently used tools such as food diaries require users to manually record and track the food calories, making them difficult for daily use. We will be developing a new tool that counts the food intake bite by monitoring hand gesture and face jaw motion movement of caloric intake. The Bite count method showed a good significant that can lead to a successful weight loss by simply monitoring the bite taken during eating. The device used was Kinect Xbox One which used a depth camera to detect the motion on person hand and face during food intake. Previous studies showed that most of the method used to count bite device is worn type. The recent trend is now going towards non-wearable devices due to the difficulty when wearing devices and it has high false alarm ratio. The proposed system gets data from the Kinect that will be monitoring the hand and face gesture of the user while eating. Then, the gesture of hand and face data is sent to the microcontroller board to recognize and start counting bite taken by the user. The system recognizes the patterns of bite taken from user by following the algorithm of basic eating type either using hand or chopstick. This system can help people who are trying to follow a proper way to reduce overweight or eating disorders by monitoring their meal intake and controlling eating rate.

  16. Human-like object tracking and gaze estimation with PKD android.

    Science.gov (United States)

    Wijayasinghe, Indika B; Miller, Haylie L; Das, Sumit K; Bugnariu, Nicoleta L; Popa, Dan O

    2016-05-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

  17. Human-like object tracking and gaze estimation with PKD android

    Science.gov (United States)

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.

    2016-05-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

  18. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    Science.gov (United States)

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Suzuki, Keishiro; Sharp, Gregory C.; Fujita, Katsuhisa R.T.; Onimaru, Rikiya; Fujino, Masaharu; Kato, Norio; Osaka, Yasuhiro; Kinoshita, Rumiko; Taguchi, Hiroshi; Onodera, Shunsuke; Miyasaka, Kazuo

    2006-01-01

    Background: To reduce the uncertainty of registration for lung tumors, we have developed a four-dimensional (4D) setup system using a real-time tumor-tracking radiotherapy system. Methods and Materials: During treatment planning and daily setup in the treatment room, the trajectory of the internal fiducial marker was recorded for 1 to 2 min at the rate of 30 times per second by the real-time tumor-tracking radiotherapy system. To maximize gating efficiency, the patient's position on the treatment couch was adjusted using the 4D setup system with fine on-line remote control of the treatment couch. Results: The trajectory of the marker detected in the 4D setup system was well visualized and used for daily setup. Various degrees of interfractional and intrafractional changes in the absolute amplitude and speed of the internal marker were detected. Readjustments were necessary during each treatment session, prompted by baseline shifting of the tumor position. Conclusion: The 4D setup system was shown to be useful for reducing the uncertainty of tumor motion and for increasing the efficiency of gated irradiation. Considering the interfractional and intrafractional changes in speed and amplitude detected in this study, intercepting radiotherapy is the safe and cost-effective method for 4D radiotherapy using real-time tracking technology

  20. Algorithms for tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Iselin, F.Ch.

    1986-01-01

    An important problem in accelerator design is the determination of the largest stable betatron amplitude. This stability limit is also known as the dynamic aperture. The equations describing the particle motion are non-linear, and the Linear Lattice Functions cannot be used to compute the stability limits. The stability limits are therefore usually searched for by particle tracking. One selects a set of particles with different betatron amplitudes and tracks them for many turns around the machine. The particles which survive a sufficient number of turns are termed stable. This paper concentrates on conservative systems. For this case the particle motion can be described by a Hamiltonian, i.e. tracking particles means application of canonical transformations. Canonical transformations are equivalent to symplectic mappings, which implies that there exist invariants. These invariants should not be destroyed in tracking

  1. Development of a railway wagon-track interaction model: Case studies on excited tracks

    Science.gov (United States)

    Xu, Lei; Chen, Xianmai; Li, Xuwei; He, Xianglin

    2018-02-01

    In this paper, a theoretical framework for modeling the railway wagon-ballast track interactions is presented, in which the dynamic equations of motion of wagon-track systems are constructed by effectively coupling the linear and nonlinear dynamic characteristics of system components. For the linear components, the energy-variational principle is directly used to derive their dynamic matrices, while for the nonlinear components, the dynamic equilibrium method is implemented to deduce the load vectors, based on which a novel railway wagon-ballast track interaction model is developed, and being validated by comparing with the experimental data measured from a heavy haul railway and another advanced model. With this study, extensive contributions in figuring out the critical speed of instability, limits and localizations of track irregularities over derailment accidents are presented by effectively integrating the dynamic simulation model, the track irregularity probabilistic model and time-frequency analysis method. The proposed approaches can provide crucial information to guarantee the running safety and stability of the wagon-track system when considering track geometries and various running speeds.

  2. Synchronisation phenomenon in three blades rotor driven by regular or chaotic oscillations

    Directory of Open Access Journals (Sweden)

    Szmit Zofia

    2018-01-01

    Full Text Available The goal of the paper is to analysed the influence of the different types of excitation on the synchronisation phenomenon in case of the rotating system composed of a rigid hub and three flexible composite beams. In the model is assumed that two blades, due to structural differences, are de-tuned. Numerical calculation are divided on two parts, firstly the rotating system is exited by a torque given by regular harmonic function, than in the second part the torque is produced by chaotic Duffing oscillator. The synchronisation phenomenon between the beams is analysed both either for regular or chaotic motions. Partial differential equations of motion are solved numerically and resonance curves, time series and Poincaré maps are presented for selected excitation torques.

  3. Randomness control of vehicular motion through a sequence of traffic signals at irregular intervals

    International Nuclear Information System (INIS)

    Nagatani, Takashi

    2010-01-01

    We study the regularization of irregular motion of a vehicle moving through the sequence of traffic signals with a disordered configuration. Each traffic signal is controlled by both cycle time and phase shift. The cycle time is the same for all signals, while the phase shift varies from signal to signal by synchronizing with intervals between a signal and the next signal. The nonlinear dynamic model of the vehicular motion is presented by the stochastic nonlinear map. The vehicle exhibits the very complex behavior with varying both cycle time and strength of irregular intervals. The irregular motion induced by the disordered configuration is regularized by adjusting the phase shift within the regularization regions.

  4. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    Science.gov (United States)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O'Brien, Ricky T.; Meidahl Petersen, Peter; Rosenschöld, Per Munck af

    2013-04-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7-100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7-99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with >3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf position

  5. A batch Algorithm for Implicit Non-Rigid Shape and Motion Recovery

    DEFF Research Database (Denmark)

    Bartoli, Adrien; Olsen, Søren Ingvor

    2005-01-01

    The recovery of 3D shape and camera motion for non-rigid scenes from single-camera video footage is a very important problem in computer vision. The low-rank shape model consists in regarding the deformations as linear combinations of basis shapes. Most algorithms for reconstructing the parameters...... of this model along with camera motion are based on three main steps. Given point tracks and the rank, or equivalently the number of basis shapes, they factorize a measurement matrix containing all point tracks, from which the camera motion and basis shapes are extracted and refined in a bundle adjustment...

  6. Regularity and chaos in cavity QED

    International Nuclear Information System (INIS)

    Bastarrachea-Magnani, Miguel Angel; López-del-Carpio, Baldemar; Chávez-Carlos, Jorge; Lerma-Hernández, Sergio; Hirsch, Jorge G

    2017-01-01

    The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside it can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through the use of coherent states, a semiclassical description in phase space, where the non-integrable Dicke model has regions associated with regular and chaotic motion. The appearance of classical chaos can be quantified calculating the largest Lyapunov exponent over the whole available phase space for a given energy. In the quantum regime, employing efficient diagonalization techniques, we are able to perform a detailed quantitative study of the regular and chaotic regions, where the quantum participation ratio (P R ) of coherent states on the eigenenergy basis plays a role equivalent to the Lyapunov exponent. It is noted that, in the thermodynamic limit, dividing the participation ratio by the number of atoms leads to a positive value in chaotic regions, while it tends to zero in the regular ones. (paper)

  7. A comparison of gantry-mounted x-ray-based real-time target tracking methods.

    Science.gov (United States)

    Montanaro, Tim; Nguyen, Doan Trang; Keall, Paul J; Booth, Jeremy; Caillet, Vincent; Eade, Thomas; Haddad, Carol; Shieh, Chun-Chien

    2018-03-01

    Most modern radiotherapy machines are built with a 2D kV imaging system. Combining this imaging system with a 2D-3D inference method would allow for a ready-made option for real-time 3D tumor tracking. This work investigates and compares the accuracy of four existing 2D-3D inference methods using both motion traces inferred from external surrogates and measured internally from implanted beacons. Tumor motion data from 160 fractions (46 thoracic/abdominal patients) of Synchrony traces (inferred traces), and 28 fractions (7 lung patients) of Calypso traces (internal traces) from the LIGHT SABR trial (NCT02514512) were used in this study. The motion traces were used as the ground truth. The ground truth trajectories were used in silico to generate 2D positions projected on the kV detector. These 2D traces were then passed to the 2D-3D inference methods: interdimensional correlation, Gaussian probability density function (PDF), arbitrary-shape PDF, and the Kalman filter. The inferred 3D positions were compared with the ground truth to determine tracking errors. The relationships between tracking error and motion magnitude, interdimensional correlation, and breathing periodicity index (BPI) were also investigated. Larger tracking errors were observed from the Calypso traces, with RMS and 95th percentile 3D errors of 0.84-1.25 mm and 1.72-2.64 mm, compared to 0.45-0.68 mm and 0.74-1.13 mm from the Synchrony traces. The Gaussian PDF method was found to be the most accurate, followed by the Kalman filter, the interdimensional correlation method, and the arbitrary-shape PDF method. Tracking error was found to strongly and positively correlate with motion magnitude for both the Synchrony and Calypso traces and for all four methods. Interdimensional correlation and BPI were found to negatively correlate with tracking error only for the Synchrony traces. The Synchrony traces exhibited higher interdimensional correlation than the Calypso traces especially in the anterior

  8. Real-Time Motion Management of Prostate Cancer Radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias

    of this thesis is to manage prostate motion in real-time by aligning the radiation beam to the prostate using the novel dynamic multileaf collimator (DMLC) tracking method. Specifically, the delivered dose with tracking was compared to the planned dose, and the impact of treatment plan complexity and limitations...

  9. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    International Nuclear Information System (INIS)

    Feng, Y; Olsen, J.; Parikh, P.; Noel, C; Wooten, H; Du, D; Mutic, S; Hu, Y; Kawrakow, I; Dempsey, J

    2014-01-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE), along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information

  10. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y; Olsen, J.; Parikh, P.; Noel, C; Wooten, H; Du, D; Mutic, S; Hu, Y [Washington University, St. Louis, MO (United States); Kawrakow, I; Dempsey, J [Washington University, St. Louis, MO (United States); ViewRay Co., Oakwood Village, OH (United States)

    2014-06-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE), along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information

  11. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  12. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    . The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  13. Regularly incremented phase encoding - MR fingerprinting (RIPE-MRF) for enhanced motion artifact suppression in preclinical cartesian MR fingerprinting.

    Science.gov (United States)

    Anderson, Christian E; Wang, Charlie Y; Gu, Yuning; Darrah, Rebecca; Griswold, Mark A; Yu, Xin; Flask, Chris A

    2018-04-01

    The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T 1 ) and transverse relaxation time (T 2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T 1 and T 2 mean and standard deviation, were compared between the two methods (n = 5). RIPE-MRF showed significant ANR reductions in regions of pulsatility (P Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Longitudinal tracking with phase and amplitude modulated rf

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.

    1993-06-01

    Synchrotron motion was induced by phase shifting the rf of the Indiana University Cyclotron Facility (IUCF) cooler-synchrotron. The resulting coherent-bunch motion was tracked in longitudinal phase space for as many as 700,000 turns, or for over 350 synchrotron oscillations. Results of recent experimental studies of longitudinal motion in which the rf phase and amplitude were harmonically modulated are also presented. Comparisons of experimental data with numerical simulations, assuming independent particle motion, are made. Observed multiparticle effects are also discussed

  15. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  16. AUTOMATIC FAST VIDEO OBJECT DETECTION AND TRACKING ON VIDEO SURVEILLANCE SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Arunachalam

    2012-08-01

    Full Text Available This paper describes the advance techniques for object detection and tracking in video. Most visual surveillance systems start with motion detection. Motion detection methods attempt to locate connected regions of pixels that represent the moving objects within the scene; different approaches include frame-to-frame difference, background subtraction and motion analysis. The motion detection can be achieved by Principle Component Analysis (PCA and then separate an objects from background using background subtraction. The detected object can be segmented. Segmentation consists of two schemes: one for spatial segmentation and the other for temporal segmentation. Tracking approach can be done in each frame of detected Object. Pixel label problem can be alleviated by the MAP (Maximum a Posteriori technique.

  17. Real time eye tracking using Kalman extended spatio-temporal context learning

    Science.gov (United States)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  18. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    International Nuclear Information System (INIS)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  19. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  20. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin [Laboratory of Experimental Radiotherapy, KU Leuven Department of Oncology, Herestraat 49, 3000 Leuven (Belgium); Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Defraene, Gilles [Laboratory of Experimental Radiotherapy, KU Leuven Department of Oncology, Herestraat 49, 3000 Leuven, Belgium and KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven (Belgium); Van Herck, Hans [KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven, Belgium and KU Leuven Department of Electrical Engineering (ESAT)–PSI, Center for Processing Speech and Images, 3000 Leuven (Belgium); Maes, Frederik [KU Leuven Medical Imaging Research Center, Herestraat 49, 3000 Leuven (Belgium); KU Leuven Department of Electrical Engineering (ESAT)–PSI, Center for Processing Speech and Images, 3000 Leuven (Belgium); Medical IT Department, KU Leuven iMinds, 3000 Leuven (Belgium); Van den Heuvel, Frank [Department of Oncology, MRC-CR-UK Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford OX1 2JD (United Kingdom)

    2016-05-15

    Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously

  1. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    Science.gov (United States)

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  2. Markerless motion capture systems for tracking of persons in forensic biomechanics

    DEFF Research Database (Denmark)

    Yang, Sylvia; Christiansen, Martin S.; Larsen, Peter Kastmand

    2014-01-01

    the postures from a sagittal viewpoint. Although integrating all three dimensions (3D) might improve the results considerably. The purpose of this paper is to give an overview of the 3D multi-view markerless motion capture systems which could be applicable for 3D gait analysis. This paper contains presentation......Markerless motion capture is a pronounced topic in computer vision. In forensic science, markerless motion capture can be an important tool for identification through gait analysis. Recent studies of gait analysis in forensic science have shown that individuals can be identified when analysing...

  3. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    International Nuclear Information System (INIS)

    Yang, Jaewon; Yamamoto, Tokihiro; Mazin, Samuel R.; Graves, Edward E.; Keall, Paul J.

    2014-01-01

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D-motion

  4. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    Science.gov (United States)

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  5. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Chugh, B; Keller, B [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Sahgal, A; Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm{sup 2} and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should

  6. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    International Nuclear Information System (INIS)

    Soliman, A; Chugh, B; Keller, B; Sahgal, A; Song, W

    2016-01-01

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm 2 and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should focus

  7. Accelerating Large Data Analysis By Exploiting Regularities

    Science.gov (United States)

    Moran, Patrick J.; Ellsworth, David

    2003-01-01

    We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.

  8. Frame based Motion Detection for real-time Surveillance

    OpenAIRE

    Brajesh Patel; Neelam Patel

    2012-01-01

    In this paper a series of algorithm has been formed to track the feature of motion detection under surveillance system. In the proposed work a pixel variant plays a vital role in detection of moving object of a particular clip. If there is a little bit motion in a frame then it is detected very easily by calculating pixel variance. This algorithm detects the zero variation only when there is no motion in a real-time video sequence. It is simple and easier for motion detection in the fames of ...

  9. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    Science.gov (United States)

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  10. TH-AB-202-11: Spatial and Rotational Quality Assurance of 6DOF Patient Tracking Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, AH; Liu, X; Grelewicz, Z; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: External tracking systems used for patient positioning and motion monitoring during radiotherapy are now capable of detecting both translations and rotations (6DOF). In this work, we develop a novel technique to evaluate the 6DOF performance of external motion tracking systems. We apply this methodology to an infrared (IR) marker tracking system and two 3D optical surface mapping systems in a common tumor 6DOF workspace. Methods: An in-house designed and built 6DOF parallel kinematics robotic motion phantom was used to follow input trajectories with sub-millimeter and sub-degree accuracy. The 6DOF positions of the robotic system were then tracked and recorded independently by three optical camera systems. A calibration methodology which associates the motion phantom and camera coordinate frames was first employed, followed by a comprehensive 6DOF trajectory evaluation, which spanned a full range of positions and orientations in a 20×20×16 mm and 5×5×5 degree workspace. The intended input motions were compared to the calibrated 6DOF measured points. Results: The technique found the accuracy of the IR marker tracking system to have maximal root mean square error (RMSE) values of 0.25 mm translationally and 0.09 degrees rotationally, in any one axis, comparing intended 6DOF positions to positions measured by the IR camera. The 6DOF RSME discrepancy for the first 3D optical surface tracking unit yielded maximal values of 0.60 mm and 0.11 degrees over the same 6DOF volume. An earlier generation 3D optical surface tracker was observed to have worse tracking capabilities than both the IR camera unit and the newer 3D surface tracking system with maximal RMSE of 0.74 mm and 0.28 degrees within the same 6DOF evaluation space. Conclusion: The proposed technique was effective at evaluating the performance of 6DOF patient tracking systems. All systems examined exhibited tracking capabilities at the sub-millimeter and sub-degree level within a 6DOF workspace.

  11. A new way of adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion

    International Nuclear Information System (INIS)

    Webb, S; Bortfeld, T

    2008-01-01

    In this paper a technique is presented for adaptive therapy to compensate for variable intrafraction tissue motion. So long as the motion can be measured or deduced for each fraction the technique modifies the fluence profile for the subsequent fractions in a repeatable cyclic way. The fluence modification is based on projecting the dose discrepancies between the cumulative delivered dose after each fraction and the expected planned dose at the same stage. It was shown that, in general, it is best to adapt the fluence profile to moving leaves that also have been modified to 'breathe' according to some regular default motion. However, it is important to point out that, if this regular default motion were to differ too much from the variable motion at each fraction, then the result can be worse than adapting to non-breathing leaves in a dynamic MLC technique. Furthermore, in general it should always be possible to improve results by starting the adaptation process with a constrained deconvolution of the regular default motion

  12. An experimental comparison of conventional two-bank and novel four-bank dynamic MLC tracking

    International Nuclear Information System (INIS)

    Davies, G A; Clowes, P; McQuaid, D; Evans, P M; Webb, S; Poludniowski, G

    2013-01-01

    The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel. (paper)

  13. [A review of progress of real-time tumor tracking radiotherapy technology based on dynamic multi-leaf collimator].

    Science.gov (United States)

    Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen

    2017-02-01

    While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.

  14. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-06-15

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  15. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    International Nuclear Information System (INIS)

    Yip, Stephen; Rottmann, Joerg; Berbeco, Ross

    2014-01-01

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  16. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  17. Exit from Synchrony in Joint Improvised Motion.

    Directory of Open Access Journals (Sweden)

    Assi Dahan

    Full Text Available Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction.

  18. ANNOTATION SUPPORTED OCCLUDED OBJECT TRACKING

    Directory of Open Access Journals (Sweden)

    Devinder Kumar

    2012-08-01

    Full Text Available Tracking occluded objects at different depths has become as extremely important component of study for any video sequence having wide applications in object tracking, scene recognition, coding, editing the videos and mosaicking. The paper studies the ability of annotation to track the occluded object based on pyramids with variation in depth further establishing a threshold at which the ability of the system to track the occluded object fails. Image annotation is applied on 3 similar video sequences varying in depth. In the experiment, one bike occludes the other at a depth of 60cm, 80cm and 100cm respectively. Another experiment is performed on tracking humans with similar depth to authenticate the results. The paper also computes the frame by frame error incurred by the system, supported by detailed simulations. This system can be effectively used to analyze the error in motion tracking and further correcting the error leading to flawless tracking. This can be of great interest to computer scientists while designing surveillance systems etc.

  19. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    OpenAIRE

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2016-01-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in micro-fluidic devices. The system is based on real-time image processing, determining the displacement of a x,y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displ...

  20. Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows.

    Science.gov (United States)

    Novara, Matteo; Scarano, Fulvio

    The motion tracking enhancement technique (MTE) is a recently introduced method to improve the accuracy of tomographic PIV measurements at seeding density higher than currently practiced. The working principle is based on the fact that the particle field and its projections are correlated between the two exposures. Therefore, information from subsequent exposures can be shared within the tomographic reconstruction process of a single object, which largely reduces the energy lost into ghost particles . The study follows a previous work based on synthetic particle images, showing that the MTE technique has an effect similar to that of increasing the number of cameras. In the present analysis, MTE is applied to Tomographic PIV data from two time-resolved experiments on turbulent shear flows: a round jet at Re  = 5,000 ( f acq  = 1,000 Hz) and a turbulent boundary layer at the trailing edge of an airfoil ( Re c  = 370,000) measured at 12,000 Hz. The application of MTE is extended to the case of more than two recordings. The performance is assessed comparing the results from a lowered number of cameras with respect to the full tomographic imaging system. The analysis of the jet flow agrees with the findings of numerical simulations provided the results are scaled taking into account the concept of MTE efficiency based on the volume fraction where ghost - pairs (Elsinga et al. 2010a) are produced. When a large fraction of fluid has uniform motion (stagnant fluid surrounding the jet), only a moderate reduction in ghost intensity is expected by MTE. Nevertheless, a visible recovery of reconstruction quality is observed for the 3-cameras system when MTE is applied making use of 3 recordings. In the turbulent boundary layer, the objective is set to increase the seeding density beyond current practice, and the experiments are performed at approximately 200,000 particles/megapixel. The measurement robustness is monitored with the signal-to-noise ratio S/N for the cross

  1. ADAPTIVE BACKGROUND DENGAN METODE GAUSSIAN MIXTURE MODELS UNTUK REAL-TIME TRACKING

    Directory of Open Access Journals (Sweden)

    Silvia Rostianingsih

    2008-01-01

    Full Text Available Nowadays, motion tracking application is widely used for many purposes, such as detecting traffic jam and counting how many people enter a supermarket or a mall. A method to separate background and the tracked object is required for motion tracking. It will not be hard to develop the application if the tracking is performed on a static background, but it will be difficult if the tracked object is at a place with a non-static background, because the changing part of the background can be recognized as a tracking area. In order to handle the problem an application can be made to separate background where that separation can adapt to change that occur. This application is made to produce adaptive background using Gaussian Mixture Models (GMM as its method. GMM method clustered the input pixel data with pixel color value as it’s basic. After the cluster formed, dominant distributions are choosen as background distributions. This application is made by using Microsoft Visual C 6.0. The result of this research shows that GMM algorithm could made adaptive background satisfactory. This proofed by the result of the tests that succeed at all condition given. This application can be developed so the tracking process integrated in adaptive background maker process. Abstract in Bahasa Indonesia : Saat ini, aplikasi motion tracking digunakan secara luas untuk banyak tujuan, seperti mendeteksi kemacetan dan menghitung berapa banyak orang yang masuk ke sebuah supermarket atau sebuah mall. Sebuah metode untuk memisahkan antara background dan obyek yang di-track dibutuhkan untuk melakukan motion tracking. Membuat aplikasi tracking pada background yang statis bukanlah hal yang sulit, namun apabila tracking dilakukan pada background yang tidak statis akan lebih sulit, dikarenakan perubahan background dapat dikenali sebagai area tracking. Untuk mengatasi masalah tersebut, dapat dibuat suatu aplikasi untuk memisahkan background dimana aplikasi tersebut dapat

  2. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    Science.gov (United States)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  3. A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons

    Directory of Open Access Journals (Sweden)

    Kevin eMachino

    2014-07-01

    Full Text Available Multi-Worm Tracker (MWT is a real-time computer vision system that can simultaneously quantify motional patterns of multiple worms. MWT provides several behavioral parameters, including analysis of accurate real-time locomotion speed in the nematode, Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer’s disease (AD transgenic strain that over-expresses human beta-amyloid1-42 (Aβ in the neurons. The MWT analysis showed that the AD strain logged a slower average speed than the wild type worms. The results may be consistent with the observation that the AD patients with dementia tend to show deficits in physical activities, including frequent falls. The AD strain showed reduced ability of the eggs to hatch and slowed hatching of the eggs. Thus, over-expression of Aβ in neurons causes negative effects on locomotion and hatchability. This study sheds light on new examples of detrimental effects that Aβ deposits can exhibit using C. elegans as a model system. The information gathered from this study indicates that the motion tracking analysis is a cost-effective, efficient way to assess the deficits of Aβ over-expression in the C. elegans system.

  4. Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach.

    Science.gov (United States)

    Reader, Arran T; Holmes, Nicholas P

    2015-01-01

    Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

  5. UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA

    Directory of Open Access Journals (Sweden)

    IONIŢĂ Elena

    2015-06-01

    Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.

  6. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-05-01

    Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm-0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure similarity index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction

  7. Fall detection in the elderly by head-tracking

    OpenAIRE

    Yu, Miao; Naqvi, Syed Mohsen; Chambers, Jonathan

    2009-01-01

    In the paper, we propose a fall detection method based on head tracking within a smart home environment equipped with video cameras. A motion history image and code-book background subtraction are combined to determine whether large movement occurs within the scene. Based on the magnitude of the movement information, particle filters with different state models are used to track the head. The head tracking procedure is performed in two video streams taken bytwoseparatecamerasandthree-dimension...

  8. Online image guided tumour tracking with scanned proton beams : a comprehensive simulation study

    NARCIS (Netherlands)

    Zhang, Ye; Knopf, A; Tanner, Colby; Lomax, Antony J.

    2014-01-01

    Tumour tracking with scanned particle beams potentially requires accurate 3D information on both tumour motion and related density variations. We have previously developed a model-based motion reconstruction method, which allows for the prediction of deformable motions from sparsely sampled

  9. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    Directory of Open Access Journals (Sweden)

    Michiaki Inoue

    2017-10-01

    Full Text Available This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time.

  10. A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video

    Directory of Open Access Journals (Sweden)

    Zhang Liangpei

    2007-01-01

    Full Text Available Super-resolution (SR reconstruction technique is capable of producing a high-resolution image from a sequence of low-resolution images. In this paper, we study an efficient SR algorithm for digital video. To effectively deal with the intractable problems in SR video reconstruction, such as inevitable motion estimation errors, noise, blurring, missing regions, and compression artifacts, the total variation (TV regularization is employed in the reconstruction model. We use the fixed-point iteration method and preconditioning techniques to efficiently solve the associated nonlinear Euler-Lagrange equations of the corresponding variational problem in SR. The proposed algorithm has been tested in several cases of motion and degradation. It is also compared with the Laplacian regularization-based SR algorithm and other TV-based SR algorithms. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  11. Initial validations for pursuing irradiation using a gimbals tracking system

    International Nuclear Information System (INIS)

    Takayama, Kenji; Mizowaki, Takashi; Kokubo, Masaki; Kawada, Noriyuki; Nakayama, Hiroshi; Narita, Yuichiro; Nagano, Kazuo; Kamino, Yuichiro; Hiraoka, Masahiro

    2009-01-01

    Our newly designed image-guided radiotherapy (IGRT) system enables the dynamic tracking irradiation with a gimbaled X-ray head and a dual on-board kilovolt imaging subsystem for real-time target localization. Examinations using a computer-controlled three-dimensionally movable phantom demonstrated that our gimbals tracking system significantly reduced motion blurring effects in the dose distribution compared to the non-tracking state.

  12. Simultaneous Tracking of Multiple Points Using a Wiimote

    Science.gov (United States)

    Skeffington, Alex; Scully, Kyle

    2012-01-01

    This paper reviews the construction of an inexpensive motion tracking and data logging system, which can be used for a wide variety of teaching experiments ranging from entry-level physics courses to advanced courses. The system utilizes an affordable infrared camera found in a Nintendo Wiimote to track IR LEDs mounted to the objects to be…

  13. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  14. Motion tracking and electromyography assist the removal of mirror hand contributions to fNIRS images acquired during a finger tapping task performed by children with cerebral palsy

    Science.gov (United States)

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2013-03-01

    Functional neurological imaging has been shown to be valuable in evaluating brain plasticity in children with cerebral palsy (CP). In recent studies it has been demonstrated that functional near-infrared spectroscopy (fNIRS) is a viable and sensitive method for imaging motor cortex activities in children with CP. However, during unilateral finger tapping tasks children with CP often exhibit mirror motions (unintended motions in the non-tapping hand), and current fNIRS image formation techniques do not account for this. Therefore, the resulting fNIRS images contain activation from intended and unintended motions. In this study, cortical activity was mapped with fNIRS on four children with CP and five controls during a finger tapping task. Finger motion and arm muscle activation were concurrently measured using motion tracking cameras and electromyography (EMG). Subject-specific regressors were created from motion capture and EMG data and used in a general linear model (GLM) analysis in an attempt to create fNIRS images representative of different motions. The analysis provided an fNIRS image representing activation due to motion and muscle activity for each hand. This method could prove to be valuable in monitoring brain plasticity in children with CP by providing more consistent images between measurements. Additionally, muscle effort versus cortical effort was compared between control and CP subjects. More cortical effort was required to produce similar muscle effort in children with CP. It is possible this metric could be a valuable diagnostic tool in determining response to treatment.

  15. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.

    Science.gov (United States)

    Depuydt, Tom; Verellen, Dirk; Haas, Olivier; Gevaert, Thierry; Linthout, Nadine; Duchateau, Michael; Tournel, Koen; Reynders, Truus; Leysen, Katrien; Hoogeman, Mischa; Storme, Guy; De Ridder, Mark

    2011-03-01

    VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Manifolds for pose tracking from monocular video

    Science.gov (United States)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  17. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    Science.gov (United States)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  18. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  19. A Statistical Approach to Continuous Self-Calibrating Eye Gaze Tracking for Head-Mounted Virtual Reality Systems

    OpenAIRE

    Tripathi, Subarna; Guenter, Brian

    2016-01-01

    We present a novel, automatic eye gaze tracking scheme inspired by smooth pursuit eye motion while playing mobile games or watching virtual reality contents. Our algorithm continuously calibrates an eye tracking system for a head mounted display. This eliminates the need for an explicit calibration step and automatically compensates for small movements of the headset with respect to the head. The algorithm finds correspondences between corneal motion and screen space motion, and uses these to...

  20. Receptive fields for smooth pursuit eye movements and motion perception.

    Science.gov (United States)

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    Science.gov (United States)

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  2. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view

    International Nuclear Information System (INIS)

    McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech

    2008-01-01

    An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (1D) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated

  3. Multiradar tracking for theater missile defense

    Science.gov (United States)

    Sviestins, Egils

    1995-09-01

    A prototype system for tracking tactical ballistic missiles using multiple radars has been developed. The tracking is based on measurement level fusion (`true' multi-radar) tracking. Strobes from passive sensors can also be used. We describe various features of the system with some emphasis on the filtering technique. This is based on the Interacting Multiple Model framework where the states are Free Flight, Drag, Boost, and Auxiliary. Measurement error modeling includes the signal to noise ratio dependence; outliers and miscorrelations are handled in the same way. The launch point is calculated within one minute from the detection of the missile. The impact point, and its uncertainty region, is calculated continually by extrapolating the track state vector using the equations of planetary motion.

  4. Features of single tracks in coaxial laser cladding of a NIbased self-fluxing alloy

    Directory of Open Access Journals (Sweden)

    Feldshtein Eugene

    2017-01-01

    Full Text Available In the present paper, the influence of coaxial laser cladding conditions on the dimensions, microstructure, phases and microhardness of Ni-based self-fluxing alloy single tracks is studied. The height and width of single tracks depend on the speed and distance of the laser cladding: increasing the nozzle distance from the deposited surface 1.4 times reduces the width of the track 1.2 - 1.3 times and increases its height 1.2 times. The increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height in 1.5 - 1.6 times. At the same time, the increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height 1.5 - 1.6 times. Regularities in the formation of single tracks microstructure with different cladding conditions are defined, as well as regularity of distribution of elements over the track depth and in the transient zone. The patterns of microhardness distribution over the track depth for different cladding conditions are found.

  5. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang Deshan; Li, H. Harold [Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States); Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States)

    2010-12-15

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  6. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    Science.gov (United States)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  7. Video motion detection for physical security applications

    International Nuclear Information System (INIS)

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost-effectiveness. In recent years, significant advances in image-processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Early video motion detectors (VMDs) were useful for interior applications of volumetric sensing. Success depended on having a relatively well-controlled environment. Attempts to use these systems outdoors frequently resulted in an unacceptable number of nuisance alarms. Currently, Sandia National Laboratories (SNL) is developing several advanced systems that employ image-processing techniques for a broader set of safeguards and security applications. The Target Cueing and Tracking System (TCATS), the Video Imaging System for Detection, Tracking, and Assessment (VISDTA), the Linear Infrared Scanning Array (LISA); the Mobile Intrusion Detection and Assessment System (MIDAS), and the Visual Artificially Intelligent Surveillance (VAIS) systems are described briefly

  8. An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration

    International Nuclear Information System (INIS)

    Seo, Jung Min; Lee, Chang Yeol; Huh, Hyun Do; Kim, Wan Sun

    2015-01-01

    error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average 1.14 ± 0.13 mm, 1.05 ± 0.20 mm, with 2.37 ± 0.17 mm, suddenly for it is variations in breathing, respective average 1.87 ± 0.19 mm, 2.15 ± 0.21 mm, and analyzed with 2.44 ± 0.26 mm. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average 0.84 ± 0.01 mm, 0.70 ± 0.13 mm, with 1.63 ± 0.10 mm, if it is a variant of sudden breathing respective average 0.97 ± 0.06 mm, 1.44 ± 0.11 mm, and analyzed with 1.98 ± 0.10 mm. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the

  9. An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Min; Lee, Chang Yeol; Huh, Hyun Do; Kim, Wan Sun [Dept. of Radiation Oncology, Inha university hospital, Incheon (Korea, Republic of)

    2015-12-15

    error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average 1.14 ± 0.13 mm, 1.05 ± 0.20 mm, with 2.37 ± 0.17 mm, suddenly for it is variations in breathing, respective average 1.87 ± 0.19 mm, 2.15 ± 0.21 mm, and analyzed with 2.44 ± 0.26 mm. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average 0.84 ± 0.01 mm, 0.70 ± 0.13 mm, with 1.63 ± 0.10 mm, if it is a variant of sudden breathing respective average 0.97 ± 0.06 mm, 1.44 ± 0.11 mm, and analyzed with 1.98 ± 0.10 mm. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the

  10. Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy

    DEFF Research Database (Denmark)

    Falk, Marianne

    Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra-fraction...

  11. Automated vehicle for railway track fault detection

    Science.gov (United States)

    Bhushan, M.; Sujay, S.; Tushar, B.; Chitra, P.

    2017-11-01

    For the safety reasons, railroad tracks need to be inspected on a regular basis for detecting physical defects or design non compliances. Such track defects and non compliances, if not detected in a certain interval of time, may eventually lead to severe consequences such as train derailments. Inspection must happen twice weekly by a human inspector to maintain safety standards as there are hundreds and thousands of miles of railroad track. But in such type of manual inspection, there are many drawbacks that may result in the poor inspection of the track, due to which accidents may cause in future. So to avoid such errors and severe accidents, this automated system is designed.Such a concept would surely introduce automation in the field of inspection process of railway track and can help to avoid mishaps and severe accidents due to faults in the track.

  12. Nonlinear Model Predictive Control of a Cable-Robot-Based Motion Simulator

    DEFF Research Database (Denmark)

    Katliar, Mikhail; Fischer, Joerg; Frison, Gianluca

    2017-01-01

    In this paper we present the implementation of a model-predictive controller (MPC) for real-time control of a cable-robot-based motion simulator. The controller computes control inputs such that a desired acceleration and angular velocity at a defined point in simulator's cabin are tracked while...... satisfying constraints imposed by working space and allowed cable forces of the robot. In order to fully use the simulator capabilities, we propose an approach that includes the motion platform actuation in the MPC model. The tracking performance and computation time of the algorithm are investigated...

  13. Local regularity analysis of strata heterogeneities from sonic logs

    Directory of Open Access Journals (Sweden)

    S. Gaci

    2010-09-01

    Full Text Available Borehole logs provide geological information about the rocks crossed by the wells. Several properties of rocks can be interpreted in terms of lithology, type and quantity of the fluid filling the pores and fractures.

    Here, the logs are assumed to be nonhomogeneous Brownian motions (nhBms which are generalized fractional Brownian motions (fBms indexed by depth-dependent Hurst parameters H(z. Three techniques, the local wavelet approach (LWA, the average-local wavelet approach (ALWA, and Peltier Algorithm (PA, are suggested to estimate the Hurst functions (or the regularity profiles from the logs.

    First, two synthetic sonic logs with different parameters, shaped by the successive random additions (SRA algorithm, are used to demonstrate the potential of the proposed methods. The obtained Hurst functions are close to the theoretical Hurst functions. Besides, the transitions between the modeled layers are marked by Hurst values discontinuities. It is also shown that PA leads to the best Hurst value estimations.

    Second, we investigate the multifractional property of sonic logs data recorded at two scientific deep boreholes: the pilot hole VB and the ultra deep main hole HB, drilled for the German Continental Deep Drilling Program (KTB. All the regularity profiles independently obtained for the logs provide a clear correlation with lithology, and from each regularity profile, we derive a similar segmentation in terms of lithological units. The lithological discontinuities (strata' bounds and faults contacts are located at the local extrema of the Hurst functions. Moreover, the regularity profiles are compared with the KTB estimated porosity logs, showing a significant relation between the local extrema of the Hurst functions and the fluid-filled fractures. The Hurst function may then constitute a tool to characterize underground heterogeneities.

  14. WE-AB-303-11: Verification of a Deformable 4DCT Motion Model for Lung Tumor Tracking Using Different Driving Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Woelfelschneider, J [University Hospital Erlangen, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); Seregni, M; Fassi, A; Baroni, G; Riboldi, M [Politecnico di Milano, Milano (Italy); Bert, C [University Hospital Erlangen, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); GSI - Helmholtz Centre for Heavy Ion Research, Darmstadt, DE (Germany)

    2015-06-15

    Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the model considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases

  15. KiT: a MATLAB package for kinetochore tracking.

    Science.gov (United States)

    Armond, Jonathan W; Vladimirou, Elina; McAinsh, Andrew D; Burroughs, Nigel J

    2016-06-15

    During mitosis, chromosomes are attached to the mitotic spindle via large protein complexes called kinetochores. The motion of kinetochores throughout mitosis is intricate and automated quantitative tracking of their motion has already revealed many surprising facets of their behaviour. Here, we present 'KiT' (Kinetochore Tracking)-an easy-to-use, open-source software package for tracking kinetochores from live-cell fluorescent movies. KiT supports 2D, 3D and multi-colour movies, quantification of fluorescence, integrated deconvolution, parallel execution and multiple algorithms for particle localization. KiT is free, open-source software implemented in MATLAB and runs on all MATLAB supported platforms. KiT can be downloaded as a package from http://www.mechanochemistry.org/mcainsh/software.php The source repository is available at https://bitbucket.org/jarmond/kit and under continuing development. Supplementary data are available at Bioinformatics online. jonathan.armond@warwick.ac.uk. © The Author 2016. Published by Oxford University Press.

  16. Inertial and Magnetic Tracking of Limb Segment Orientation for Inserting Humans into Synthetic Environments

    National Research Council Canada - National Science Library

    Bachmann, Eric

    2000-01-01

    .... Primarily, this research involves the development of a prototype tracking system to demonstrate the feasibility of MARG sensor body motion tracking Mathematical analysis and computer simulation...

  17. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    International Nuclear Information System (INIS)

    Ingram, S; Rao, A; Wendt, R; Castillo, R; Court, L; Yang, J; Beadle, B

    2014-01-01

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the camera by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination

  18. Academic Training Lecture - Regular Programme

    CERN Multimedia

    PH Department

    2011-01-01

    Regular Lecture Programme 9 May 2011 ACT Lectures on Detectors - Inner Tracking Detectors by Pippa Wells (CERN) 10 May 2011 ACT Lectures on Detectors - Calorimeters (2/5) by Philippe Bloch (CERN) 11 May 2011 ACT Lectures on Detectors - Muon systems (3/5) by Kerstin Hoepfner (RWTH Aachen) 12 May 2011 ACT Lectures on Detectors - Particle Identification and Forward Detectors by Peter Krizan (University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia) 13 May 2011 ACT Lectures on Detectors - Trigger and Data Acquisition (5/5) by Dr. Brian Petersen (CERN) from 11:00 to 12:00 at CERN ( Bldg. 222-R-001 - Filtration Plant )

  19. Avoidance of cigarette pack health warnings among regular cigarette smokers.

    Science.gov (United States)

    Maynard, Olivia M; Attwood, Angela; O'Brien, Laura; Brooks, Sabrina; Hedge, Craig; Leonards, Ute; Munafò, Marcus R

    2014-03-01

    Previous research with adults and adolescents indicates that plain cigarette packs increase visual attention to health warnings among non-smokers and non-regular smokers, but not among regular smokers. This may be because regular smokers: (1) are familiar with the health warnings, (2) preferentially attend to branding, or (3) actively avoid health warnings. We sought to distinguish between these explanations using eye-tracking technology. A convenience sample of 30 adult dependent smokers participated in an eye-tracking study. Participants viewed branded, plain and blank packs of cigarettes with familiar and unfamiliar health warnings. The number of fixations to health warnings and branding on the different pack types were recorded. Analysis of variance indicated that regular smokers were biased towards fixating the branding rather than the health warning on all three pack types. This bias was smaller, but still evident, for blank packs, where smokers preferentially attended the blank region over the health warnings. Time-course analysis showed that for branded and plain packs, attention was preferentially directed to the branding location for the entire 10s of the stimulus presentation, while for blank packs this occurred for the last 8s of the stimulus presentation. Familiarity with health warnings had no effect on eye gaze location. Smokers actively avoid cigarette pack health warnings, and this remains the case even in the absence of salient branding information. Smokers may have learned to divert their attention away from cigarette pack health warnings. These findings have implications for cigarette packaging and health warning policy. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    Science.gov (United States)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  1. Communication: Mode bifurcation of droplet motion under stationary laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takabatake, Fumi [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Ichikawa, Masatoshi, E-mail: ichi@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2014-08-07

    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  2. Robust Real-Time Tracking for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Aguilera Josep

    2007-01-01

    Full Text Available This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i motion detection using a layered background model, (ii object tracking based on local appearance, (iii hierarchical object recognition, and (iv fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed.

  3. Sensing human hand motions for controlling dexterous robots

    Science.gov (United States)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  4. Motion field estimation for a dynamic scene using a 3D LiDAR.

    Science.gov (United States)

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  5. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2014-09-01

    Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  6. Lung tumor tracking in fluoroscopic video based on optical flow

    International Nuclear Information System (INIS)

    Xu Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied.

  7. Surrogate: A Body-Dexterous Mobile Manipulation Robot with a Tracked Base

    Science.gov (United States)

    Kennedy, Brett A. (Inventor); Hebert, Paul (Inventor); Ma, Jeremy C. (Inventor); Borders, James W. (Inventor); Bergh, Charles F. (Inventor); Hudson, Nicolas H. (Inventor)

    2018-01-01

    Robotics platforms in accordance with various embodiments of the invention can be utilized to implement highly dexterous robots capable of whole body motion. Robotics platforms in accordance with one embodiment of the invention include: a memory containing a whole body motion application; a spine, where the spine has seven degrees of freedom and comprises a spine actuator and three spine elbow joints that each include two spine joint actuators; at least one limb, where the at least one limb comprises a limb actuator and three limb elbow joints that each include two limb joint actuators; a tracked base; a connecting structure that connects the at least one limb to the spine; a second connecting structure that connects the spine to the tracked base; wherein the processor is configured by the whole body motion application to move the at least one limb and the spine to perform whole body motion.

  8. Contextual effects on motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2008-08-15

    Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.

  9. On the suitability of Elekta’s Agility 160 MLC for tracked radiation delivery: closed-loop machine performance

    International Nuclear Information System (INIS)

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For motion adaptive radiotherapy, dynamic multileaf collimator tracking can be employed to reduce treatment margins by steering the beam according to the organ motion. The Elekta Agility 160 MLC has hitherto not been evaluated for its tracking suitability. Both dosimetric performance and latency are key figures and need to be assessed generically, independent of the used motion sensor. In this paper, we propose the use of harmonic functions directly fed to the MLC to determine its latency during continuous motion. Furthermore, a control variable is extracted from a camera system and fed to the MLC. Using this setup, film dosimetry and subsequent γ statistics are performed, evaluating the response when tracking (MRI)-based physiologic motion in a closed-loop. The delay attributed to the MLC itself was shown to be a minor contributor to the overall feedback chain as compared to the impact of imaging components such as MRI sequences. Delay showed a linear phase behaviour of the MLC employed in continuously dynamic applications, which enables a general MLC-characterization. Using the exemplary feedback chain, dosimetry showed a vast increase in pass rate employing γ statistics. In this early stage, the tracking performance of the Agility using the test bench yielded promising results, making the technique eligible for translation to tracking using clinical imaging modalities. (paper)

  10. Precise object tracking under deformation

    International Nuclear Information System (INIS)

    Saad, M.H

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This frame-work focuses on the precise object tracking under deformation such as scaling , rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results.

  11. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  12. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  13. Statistical motion vector analysis for object tracking in compressed video streams

    Science.gov (United States)

    Leny, Marc; Prêteux, Françoise; Nicholson, Didier

    2008-02-01

    Compressed video is the digital raw material provided by video-surveillance systems and used for archiving and indexing purposes. Multimedia standards have therefore a direct impact on such systems. If MPEG-2 used to be the coding standard, MPEG-4 (part 2) has now replaced it in most installations, and MPEG-4 AVC/H.264 solutions are now being released. Finely analysing the complex and rich MPEG-4 streams is a challenging issue addressed in that paper. The system we designed is based on five modules: low-resolution decoder, motion estimation generator, object motion filtering, low-resolution object segmentation, and cooperative decision. Our contributions refer to as the statistical analysis of the spatial distribution of the motion vectors, the computation of DCT-based confidence maps, the automatic motion activity detection in the compressed file and a rough indexation by dedicated descriptors. The robustness and accuracy of the system are evaluated on a large corpus (hundreds of hours of in-and outdoor videos with pedestrians and vehicles). The objective benchmarking of the performances is achieved with respect to five metrics allowing to estimate the error part due to each module and for different implementations. This evaluation establishes that our system analyses up to 200 frames (720x288) per second (2.66 GHz CPU).

  14. Point-splitting regularization of composite operators and anomalies

    International Nuclear Information System (INIS)

    Novotny, J.; Schnabl, M.

    2000-01-01

    The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to reduce the complexity of the calculations. (orig.)

  15. A model for the pilot's use of motion cues in roll-axis tracking tasks

    Science.gov (United States)

    Levison, W. H.; Junker, A. M.

    1977-01-01

    Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.

  16. Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception

    OpenAIRE

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2010-01-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adapta...

  17. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry.

    Science.gov (United States)

    Christensen, Gary E; Song, Joo Hyun; Lu, Wei; El Naqa, Issam; Low, Daniel A

    2007-06-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  18. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    International Nuclear Information System (INIS)

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.

    2007-01-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  19. Blind retrospective motion correction of MR images.

    Science.gov (United States)

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  20. WE-G-BRF-06: Positron Emission Tomography (PET)-Guided Dynamic Lung Tumor Tracking for Cancer Radiotherapy: First Patient Simulations

    International Nuclear Information System (INIS)

    Yang, J; Loo, B; Graves, E; Yamamoto, T; Keall, P

    2014-01-01

    Purpose: PET-guided dynamic tumor tracking is a novel concept of biologically targeted image guidance for radiotherapy. A dynamic tumor tracking algorithm based on list-mode PET data has been developed and previously tested on dynamic phantom data. In this study, we investigate if dynamic tumor tracking is clinically feasible by applying the method to lung cancer patient PET data. Methods: PET-guided tumor tracking estimates the target position of a segmented volume in PET images reconstructed continuously from accumulated coincidence events correlated with external respiratory motion, simulating real-time applications, i.e., only data up to the current time point is used to estimate the target position. A target volume is segmented with a 50% threshold, consistently, of the maximum intensity in the predetermined volume of interest. Through this algorithm, the PET-estimated trajectories are quantified from four lung cancer patients who have distinct tumor location and size. The accuracy of the PET-estimated trajectories is evaluated by comparing to external respiratory motion because the ground-truth of tumor motion is not known in patients; however, previous phantom studies demonstrated sub-2mm accuracy using clinically derived 3D tumor motion. Results: The overall similarity of motion patterns between the PET-estimated trajectories and the external respiratory traces implies that the PET-guided tracking algorithm can provide an acceptable level of targeting accuracy. However, there are variations in the tracking accuracy between tumors due to the quality of the segmentation which depends on target-to-background ratio, tumor location and size. Conclusion: For the first time, a dynamic tumor tracking algorithm has been applied to lung cancer patient PET data, demonstrating clinical feasibility of real-time tumor tracking for integrated PET-linacs. The target-to-background ratio is a significant factor determining accuracy: screening during treatment planning would

  1. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet

    International Nuclear Information System (INIS)

    Yan, B.H.; Zhang, G.; Gu, H.Y.

    2012-01-01

    Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.

  2. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab

    2015-11-01

    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  3. Compensating for Quasi-periodic Motion in Robotic Radiosurgery

    CERN Document Server

    Ernst, Floris

    2012-01-01

    Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2,  the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. ...

  4. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)

    2015-06-15

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation template matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion

  5. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    Science.gov (United States)

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  6. A Movable Phantom Design for Quantitative Evaluation of Motion Correction Studies on High Resolution PET Scanners

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Svarer, C.; Sibomana, M.

    2010-01-01

    maximization algorithm with modeling of the point spread function (3DOSEM-PSF), and they were corrected for motions based on external tracking information using the Polaris Vicra real-time stereo motion-tracking system. The new automatic, movable phantom has a robust design and is a potential quality......Head movements during brain imaging using high resolution positron emission tomography (PET) impair the image quality which, along with the improvement of the spatial resolution of PET scanners, in general, raises the importance of motion correction. Here, we present a new design for an automatic...

  7. Jerk derivative feedforward control for motion systems

    NARCIS (Netherlands)

    Boerlage, M.L.G.; Tousain, R.L.; Steinbuch, M.

    2004-01-01

    This work discusses reference trajectory relevant model based feedforward design. For motion systems which contain at least one rigid body mode and which are subject to reference trajectories with mostly low frequency energy, the proposed feedforward controller improves tracking performance

  8. Cerebral palsy characterization by estimating ocular motion

    Science.gov (United States)

    González, Jully; Atehortúa, Angélica; Moncayo, Ricardo; Romero, Eduardo

    2017-11-01

    Cerebral palsy (CP) is a large group of motion and posture disorders caused during the fetal or infant brain development. Sensorial impairment is commonly found in children with CP, i.e., between 40-75 percent presents some form of vision problems or disabilities. An automatic characterization of the cerebral palsy is herein presented by estimating the ocular motion during a gaze pursuing task. Specifically, After automatically detecting the eye location, an optical flow algorithm tracks the eye motion following a pre-established visual assignment. Subsequently, the optical flow trajectories are characterized in the velocity-acceleration phase plane. Differences are quantified in a small set of patients between four to ten years.

  9. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  10. Quasi-regular impurity distribution driven by charge-density wave

    International Nuclear Information System (INIS)

    Baldea, I.; Badescu, M.

    1991-09-01

    The displacive motion of the impurity distribution immersed into the one-dimensional system has recently been studied in detail as one kind of quasi-regularity driven by CDW. As a further investigation of this problem we develop here a microscopical model for a different kind of quasi-regular impurity distribution driven by CDW, consisting of the modulation in the probability of occupied sites. The dependence on impurity concentration and temperature of relevant CDW quantities is obtained. Data reported in the quasi-1D materials NbSe 3 and Ta 2 NiSe 7 (particularly, thermal hysteresis effects at CDW transition) are interpreted in the framework of the present model. Possible similarities to other physical systems are also suggested. (author). 38 refs, 7 figs

  11. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J [University of North Carolina, Chapel Hill, NC (United States); Chao, E [Accuray Incorporated, Madison, WI (United States)

    2016-06-15

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  12. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J; Chao, E

    2016-01-01

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  13. Evaluation of longitudinal loading of tank trains during motion in longitudinal changes of gradient

    Directory of Open Access Journals (Sweden)

    S.V. Myamlin

    2013-06-01

    Full Text Available Purpose. To research the tank train longitudinal loading during motion by track sections with changes of gradient. The trains of different length that consist of bogie tank wagons should be examined. Influence of cargo type on longitudinal loading of train during motion in concave section of track should be evaluated. Methodology. The level of the largest longitudinal forces was estimated by mathematical simulation. It was assumed that change of gradient is formed by two grades with baffle platforms, length 50 meters, so that the algebraic difference of limiting grades vary from 10‰ to 40‰, pitch 10‰. The initial speeds were 40, 60, 80, 100, 120 km/h. For evaluation of the longitudinal loading the regulating braking and motion "by coasting" was considered. For evaluation of buffing loads the entry to the concave gradient change of expanded train is considered, and in order to determine the quasi-static forces the compressed train is considered. Findings. As a result of calculations the dependencies of maximal longitudinal forces in the trains on the cargo type, the algebraic difference of the grades, the number of tank wagons, the initial speed, motion modes, and initial gaps condition in the train were obtained. Originality. The longitudinal loading of freight cars of different length formed by the similar bogie tank wagons with one locomotive was obtained. The locomotive is placed in the train head during motion in concave track sections with various algebraic difference of the grades "on coasting" and during the regulating braking mode. The obtained results can be used for parameters standardization of profile elevation of the track. Practical value. The obtained results show that during operation of tank trains on track sections of complex breakage the most dangerous is regulating braking of preliminary compressed trains during entering on concave parts of track. Level of the greatest buffing and quasi-static longitudinal forces is

  14. A simple microviscometric approach based on Brownian motion tracking

    Czech Academy of Sciences Publication Activity Database

    Hnyluchová, Z.; Bjalončikova, P.; Karas, P.; Mravec, F.; Halasová, T.; Pekar, M.; Kubala, Lukáš; Víteček, Jan

    2015-01-01

    Roč. 86, č. 2 (2015) ISSN 0034-6748 R&D Projects: GA ČR(CZ) GCP305/12/J038 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional support: RVO:68081707 Keywords : MULTIPLE-PARTICLE TRACKING * MICRORHEOLOGY * IMAGE Subject RIV: BO - Biophysics Impact factor: 1.336, year: 2015

  15. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  16. Human motion sensing and recognition a fuzzy qualitative approach

    CERN Document Server

    Liu, Honghai; Ji, Xiaofei; Chan, Chee Seng; Khoury, Mehdi

    2017-01-01

    This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues. These techniques are shown to effectively address the ...

  17. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    International Nuclear Information System (INIS)

    Zhong, X.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  18. TU-F-BRB-00: MRI-Based Motion Management for RT

    International Nuclear Information System (INIS)

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  19. TU-F-BRB-00: MRI-Based Motion Management for RT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  20. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, X. [Siemens (Germany)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  1. Low-Complexity Regularization Algorithms for Image Deblurring

    KAUST Repository

    Alanazi, Abdulrahman

    2016-11-01

    Image restoration problems deal with images in which information has been degraded by blur or noise. In practice, the blur is usually caused by atmospheric turbulence, motion, camera shake, and several other mechanical or physical processes. In this study, we present two regularization algorithms for the image deblurring problem. We first present a new method based on solving a regularized least-squares (RLS) problem. This method is proposed to find a near-optimal value of the regularization parameter in the RLS problems. Experimental results on the non-blind image deblurring problem are presented. In all experiments, comparisons are made with three benchmark methods. The results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and structural similarity, as well as the visual quality of the deblurred images. To reduce the complexity of the proposed algorithm, we propose a technique based on the bootstrap method to estimate the regularization parameter in low and high-resolution images. Numerical results show that the proposed technique can effectively reduce the computational complexity of the proposed algorithms. In addition, for some cases where the point spread function (PSF) is separable, we propose using a Kronecker product so as to reduce the computations. Furthermore, in the case where the image is smooth, it is always desirable to replace the regularization term in the RLS problems by a total variation term. Therefore, we propose a novel method for adaptively selecting the regularization parameter in a so-called square root regularized total variation (SRTV). Experimental results demonstrate that our proposed method outperforms the other benchmark methods when applied to smooth images in terms of PSNR, SSIM and the restored image quality. In this thesis, we focus on the non-blind image deblurring problem, where the blur kernel is assumed to be known. However, we developed algorithms that also work

  2. MR-guided PET motion correction in LOR space using generic projection data for image reconstruction with PRESTO

    International Nuclear Information System (INIS)

    Scheins, J.; Ullisch, M.; Tellmann, L.; Weirich, C.; Rota Kops, E.; Herzog, H.; Shah, N.J.

    2013-01-01

    The BrainPET scanner from Siemens, designed as hybrid MR/PET system for simultaneous acquisition of both modalities, provides high-resolution PET images with an optimum resolution of 3 mm. However, significant head motion often compromises the achievable image quality, e.g. in neuroreceptor studies of human brain. This limitation can be omitted when tracking the head motion and accurately correcting measured Lines-of-Response (LORs). For this purpose, we present a novel method, which advantageously combines MR-guided motion tracking with the capabilities of the reconstruction software PRESTO (PET Reconstruction Software Toolkit) to convert motion-corrected LORs into highly accurate generic projection data. In this way, the high-resolution PET images achievable with PRESTO can also be obtained in presence of severe head motion

  3. Validation of a computational method for assessing the impact of intra-fraction motion on helical tomotherapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Meeks, Sanford L; Kupelian, Patrick A; Langen, Katja M [Department of Radiation Oncology, M D Anderson Cancer Center Orlando, 1400 South Orange Avenue, Orlando, FL 32806 (United States); Schnarr, Eric [TomoTherapy, Inc., 1240 Deming Way, Madison, WI 53717 (United States)], E-mail: wilfred.ngwa@orlandohealth.com

    2009-11-07

    In this work, a method for direct incorporation of patient motion into tomotherapy dose calculations is developed and validated. This computational method accounts for all treatment dynamics and can incorporate random as well as cyclical motion data. Hence, interplay effects between treatment dynamics and patient motion are taken into account during dose calculation. This allows for a realistic assessment of intra-fraction motion on the dose distribution. The specific approach entails modifying the position and velocity events in the tomotherapy delivery plan to accommodate any known motion. The computational method is verified through phantom and film measurements. Here, measured prostate motion and simulated respiratory motion tracks were incorporated in the dose calculation. The calculated motion-encoded dose profiles showed excellent agreement with the measurements. Gamma analysis using 3 mm and 3% tolerance criteria showed over 97% and 96% average of points passing for the prostate and breathing motion tracks, respectively. The profile and gamma analysis results validate the accuracy of this method for incorporating intra-fraction motion into the dose calculation engine for assessment of dosimetric effects on helical tomotherapy dose deliveries.

  4. People detection and tracking using RGB-D cameras for mobile robots

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2016-09-01

    Full Text Available People detection and tracking is an essential capability for mobile robots in order to achieve natural human–robot interaction. In this article, a human detection and tracking system is designed and validated for mobile robots using color data with depth information RGB-depth (RGB-D cameras. The whole framework is composed of human detection, tracking and re-identification. Firstly, ground points and ceiling planes are removed to reduce computation effort. A prior-knowledge guided random sample consensus fitting algorithm is used to detect the ground plane and ceiling points. All left points are projected onto the ground plane and subclusters are segmented for candidate detection. Meanshift clustering with an Epanechnikov kernel is conducted to partition different points into subclusters. We propose the new idea of spatial region of interest plan view maps which are employed to identify human candidates from point cloud subclusters. Here, a depth-weighted histogram is extracted online to feature a human candidate. Then, a particle filter algorithm is adopted to track the human’s motion. The integration of the depth-weighted histogram and particle filter provides a precise tool to track the motion of human objects. Finally, data association is set up to re-identify humans who are tracked. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  5. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    Science.gov (United States)

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  6. SU-G-JeP1-02: A New Intra-Fractional Prostate Motion Tracking Method in Volumetric Modulated Arc Therapy (VMAT) Via 2D/3D Registration

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Y; Rezaeian, N Hassan; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Intra-fractional prostate motion leads uncertainty on delivered dose in radiotherapy and may cause significant dose deviation from the planned dose distribution. This is especially a concern in scenarios with a high dose per fraction and hence a long delivery time, e.g. stereotactic body radiotherapy. Knowledge about intra-fractional prostate motion is valuable to address this problem, e.g. by reconstructing delivered dose and performing adaptation. This study proposes a new approach to determine intra-fractional prostate motion in VMAT via 2D/3D maker registration. Methods: At our institution, each patient has three markers implanted in the prostate. During treatment delivery, kV triggered images were taken every three seconds to acquire 2D projection of 3D anatomy at the direction orthogonal to the therapeutic beam. Projected marker locations were identified on each projection image using template matching with geometric constraints. 3D prostate translation and rotation for each triggered image were obtained by solving an optimization problem, such that the calculated marker locations match the measured ones. Inter-image motion smoothness was employed as a constraint. We tested this method in simulation studies with five realistic prostate motion trajectories acquired via Calypso and in real phantom experiments. Results: For the simulation case, the motion range for these patients was 0.5∼6.0 mm. Root mean square (RMS) error of calculated motion along left-right (LR), anterior-posterior (AP) and cranial-caudal (CC) directions were 0.26mm, 0.36mm, and 0.016mm, respectively. The motion range in the phantom study along LR, AP, and CC directions were 15mm, 20mm and 10mm. The mean RMS errors along these directions were 1.99mm, 1.37mm and 0.22mm. Conclusion: A new prostate motion tracking algorithm based on kV triggered images has been developed and validated. Clinically acceptable accuracy has been achieved.

  7. Fast Compressive Tracking.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  8. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed

    Science.gov (United States)

    Tarduno, J. A.; Bono, R. K.

    2017-12-01

    Paleomagnetic study of volcanic rocks remains the gold standard on which to assess hotspot motion, true polar wander and plate motion recorded by oceanic plates. There is remarkable consistency between paleomagnetic results from basaltic lavas recovered by ocean drilling of the Emperor seamounts, and independent predictions of plate circuits. Both reveal greater than 40 mm/yr of southward hotspot motion; thus the dominant reason for the distinct bend morphology the Hawaiian-Emperor track is hotspot motion rather than plate motion. These findings provide the motivation for moving beyond hotspot fixity to understand mantle processes responsible for the observed motions. Global analyses as well as comparisons between the Hawaiian-Emperor and Louisville tracks indicate only a minor (if any) role for true polar wander. Two viable, non-mutually exclusive processes to explain the observed Hawaiian plume motion are: i. plume-ridge and ii plume-LLSVP interaction. Here we further explore these issues by paleomagnetic analyses of basalts from the Cenozoic Hawaiian chain and Late Cretaceous basalts of the southernmost Pacific Plate. The latter yield paleolatitudes consistent with those from the northern Pacific, indicating that long-standing non-dipole fields cannot have been large enough to affect conclusions on hotspot drift. Data from the former suggest some relative motions between the LLSVPs on tens-of-millions of year time scales, which probably record the continual reshaping of these provinces by plume motion in the lower mantle.

  9. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    International Nuclear Information System (INIS)

    Rottmann, Joerg; Berbeco, Ross; Keall, Paul

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time

  10. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    Energy Technology Data Exchange (ETDEWEB)

    Rottmann, Joerg; Berbeco, Ross [Brigham and Women' s Hospital, Dana Farber-Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia)

    2013-09-15

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  11. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy

    International Nuclear Information System (INIS)

    Serpa, Marco; Baier, Kurt; Guckenberger, Matthias; Cremers, Florian; Meyer, Juergen

    2014-01-01

    Purpose: To maximize the benefits of respiratory gated radiotherapy (RGRT) of lung tumors real-time verification of the tumor position is required. This work investigates the feasibility of markerless tracking of lung tumors during beam-on time in electronic portal imaging device (EPID) images of the MV therapeutic beam. Methods: EPID movies were acquired at ∼2 fps for seven lung cancer patients with tumor peak-to-peak motion ranges between 7.8 and 17.9 mm (mean: 13.7 mm) undergoing stereotactic body radiotherapy. The external breathing motion of the abdomen was synchronously measured. Both datasets were retrospectively analyzed inPortalTrack, an in-house developed tracking software. The authors define a three-step procedure to run the simulations: (1) gating window definition, (2) gated-beam delivery simulation, and (3) tumor tracking. First, an amplitude threshold level was set on the external signal, defining the onset of beam-on/-off signals. This information was then mapped onto a sequence of EPID images to generate stamps of beam-on/-hold periods throughout the EPID movies in PortalTrack, by obscuring the frames corresponding to beam-off times. Last, tumor motion in the superior-inferior direction was determined on portal images by the tracking algorithm during beam-on time. The residual motion inside the gating window as well as target coverage (TC) and the marginal target displacement (MTD) were used as measures to quantify tumor position variability. Results: Tumor position monitoring and estimation from beam's-eye-view images during RGRT was possible in 67% of the analyzed beams. For a reference gating window of 5 mm, deviations ranging from 2% to 86% (35% on average) were recorded between the reference and measured residual motion. TC (range: 62%–93%; mean: 77%) losses were correlated with false positives incidence rates resulting mostly from intra-/inter-beam baseline drifts, as well as sudden cycle-to-cycle fluctuations in exhale positions. Both

  12. Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller.

    Science.gov (United States)

    Tan, U-Xuan; Latt, Win Tun; Widjaja, Ferdinan; Shee, Cheng Yap; Riviere, Cameron N; Ang, Wei Tech

    2009-03-16

    With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.

  13. Camera-marker and inertial sensor fusion for improved motion tracking

    NARCIS (Netherlands)

    Roetenberg, D.; Veltink, P.H.

    2005-01-01

    A method for combining a camera-marker based motion analysis system with miniature inertial sensors is proposed. It is used to fill gaps of optical data and can increase the data rate of the optical system.

  14. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    International Nuclear Information System (INIS)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-01-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  15. Development of a 6DOF robotic motion phantom for radiation therapy

    International Nuclear Information System (INIS)

    Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary; Pearson, Erik; Wiersma, Rodney D.

    2014-01-01

    Purpose: The use of medical technology capable of tracking patient motion or positioning patients along 6 degree-of-freedom (6DOF) has steadily increased in the field of radiation therapy. However, due to the complex nature of tracking and performing 6DOF motion, it is critical that such technology is properly verified to be operating within specifications in order to ensure patient safety. In this study, a robotic motion phantom is presented that can be programmed to perform highly accurate motion along any X (left–right), Y (superior–inferior), Z (anterior–posterior), pitch (around X), roll (around Y), and yaw (around Z) axes. In addition, highly synchronized motion along all axes can be performed in order to simulate the dynamic motion of a tumor in 6D. The accuracy and reproducibility of this 6D motion were characterized. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the Stewart–Gough parallel kinematics platform archetype. The device was controlled using an inverse kinematics formulation, and precise movements in all 6 degrees-of-freedom (X, Y, Z, pitch, roll, and yaw) were performed, both simultaneously and separately for each degree-of-freedom. Additionally, previously recorded 6D cranial and prostate motions were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system and the measured trajectories were compared quantitatively to the intended input trajectories. The workspace, maximum 6D velocity, backlash, and weight load capabilities of the system were also established. Results: Evaluation of the 6D platform demonstrated translational root mean square error (RMSE) values of 0.14, 0.22, and 0.08 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.16°, 0.06°, and 0.08° over 10° of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced

  16. MO-B-201-03: MRI-Guided Tracking and Gating

    Energy Technology Data Exchange (ETDEWEB)

    Green, O. [Washington University School of Medicine (United States)

    2016-06-15

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanics of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and

  17. A review of vision-based motion analysis in sport.

    Science.gov (United States)

    Barris, Sian; Button, Chris

    2008-01-01

    Efforts at player motion tracking have traditionally involved a range of data collection techniques from live observation to post-event video analysis where player movement patterns are manually recorded and categorized to determine performance effectiveness. Due to the considerable time required to manually collect and analyse such data, research has tended to focus only on small numbers of players within predefined playing areas. Whilst notational analysis is a convenient, practical and typically inexpensive technique, the validity and reliability of the process can vary depending on a number of factors, including how many observers are used, their experience, and the quality of their viewing perspective. Undoubtedly the application of automated tracking technology to team sports has been hampered because of inadequate video and computational facilities available at sports venues. However, the complex nature of movement inherent to many physical activities also represents a significant hurdle to overcome. Athletes tend to exhibit quick and agile movements, with many unpredictable changes in direction and also frequent collisions with other players. Each of these characteristics of player behaviour violate the assumptions of smooth movement on which computer tracking algorithms are typically based. Systems such as TRAKUS, SoccerMan, TRAKPERFORMANCE, Pfinder and Prozone all provide extrinsic feedback information to coaches and athletes. However, commercial tracking systems still require a fair amount of operator intervention to process the data after capture and are often limited by the restricted capture environments that can be used and the necessity for individuals to wear tracking devices. Whilst some online tracking systems alleviate the requirements of manual tracking, to our knowledge a completely automated system suitable for sports performance is not yet commercially available. Automatic motion tracking has been used successfully in other domains outside

  18. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy

    Directory of Open Access Journals (Sweden)

    Phommahavong Somphong

    2015-09-01

    Full Text Available In physiotherapy, rehabilitation outcome is majorly dependent on the patient to continue exercises at home. To support a continuous and correct execution of exercises composed by the physiotherapist it is important that the patient stays motivated. With the emergence of game consoles such as Nintendo Wii, PlayStation Eye or Microsoft Kinect that employ special controllers or camera based motion recognition as means of user input those technologies have also been found to be interesting for other real-life applications such as providing individual physiotherapy exercises and an encouraging rehabilitation routine. Due to the intended use of those motion tracking systems in a computer-game environment it remains questionable if the accuracy of the skeleton joint tracking hardware and algorithms is suflicient for physiotherapy applications. We present a basic evaluation of the joint tracking accuracy where angles between various body extremities calculated by a Kinect system were compared with a high resolution motion capture system. Results show promising results with tracking deviations between 2.7° and 14.2° with a mean of the absolute deviations of 8.7°.

  19. Free-breathing cardiac MR stress perfusion with real-time slice tracking.

    Science.gov (United States)

    Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.

  20. Star tracking method based on multiexposure imaging for intensified star trackers.

    Science.gov (United States)

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  1. Lattice Boltzmann method used to simulate particle motion in a conduit

    Directory of Open Access Journals (Sweden)

    Dolanský Jindřich

    2017-06-01

    Full Text Available A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.

  2. Diverse Regular Employees and Non-regular Employment (Japanese)

    OpenAIRE

    MORISHIMA Motohiro

    2011-01-01

    Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...

  3. Numerical simulation of bubble motion about a grid spacer in a rod bundle

    International Nuclear Information System (INIS)

    Zhang, Zheng; Hosokawa, Shigeo; Hayashi, Kosuke; Tomiyama, Akio

    2009-01-01

    Numerical simulations based on a three-dimensional two-way bubble tracking method are carried out to predict bubble motions in a square duct with an obstacle and in a two-by-three rod bundle with a grid spacer. Comparisons between measured and predicted bubble motions demonstrate that the two-way bubble tracking method gives good predictions for trajectories of small bubbles in the upstream side of the grid spacer in the rod bundle geometry. The predicted bubble trajectories clearly show that bubbles are apt to migrate toward the rod surface in the vicinity of the bottom of the grid spacer. Analysis of forces acting on the bubbles confirms that pressure gradient force induced by the presence of the spacer is the main cause of the bubble lateral migration toward the rod surface. Motions of steam bubbles at a nominal operating condition of a pressurized water reactor (PWR) are also predicted by using the bubble tracking method, which indicates that steam bubbles also migrate toward the rod surface at the upstream side of the spacer due to the spacer-induced pressure gradient force. (author)

  4. Distributed Systems for Problems in Robust Control and Visual Tracking

    National Research Council Canada - National Science Library

    Tannenbaum, Allen

    2000-01-01

    .... A key application is in controlled active vision, including visual tracking, the control of autonomous vehicles, motion planning, and the utilization of visual information in guidance and control...

  5. Detailed analysis of latencies in image-based dynamic MLC tracking

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2010-01-01

    Purpose: Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC tracking. Methods: A prototype DMLC tracking system integrated with a linear accelerator was used for tracking a phantom with an embedded fiducial marker during treatment delivery. The phantom performed a sinusoidal motion. Real-time target localization was based on x-ray images acquired either with a portal imager or a kV imager mounted orthogonal to the treatment beam. Each image was stored in a file on the imaging workstation. A marker segmentation program opened the image file, determined the marker position in the image, and transferred it to the DMLC tracking program. This program estimated the three-dimensional target position by a single-imager method and adjusted the MLC aperture to the target position. Imaging intervals ΔT image from 150 to 1000 ms were investigated for both kV and MV imaging. After the experiments, the recorded images were synchronized with MLC log files generated by the MLC controller and tracking log files generated by the tracking program. This synchronization allowed temporal analysis of the information flow for each individual image from acquisition to completed MLC adjustment. The synchronization also allowed investigation of the MLC adjustment dynamics on a considerably finer time scale than the 50 ms time resolution of the MLC log files. Results: For ΔT image =150 ms, the total time from image acquisition to completed MLC adjustment was 380±9 ms for MV and 420±12 ms for kV images. The main part of this time was from image acquisition to completed image file writing (272 ms for MV and 309 ms for kV). Image file opening (38 ms), marker segmentation (4 ms), MLC position

  6. Detailed analysis of latencies in image-based dynamic MLC tracking

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Oncology and Department of Medical Physics, Aarhus University Hospital, 8000 Aarhus (Denmark); Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2010-09-15

    Purpose: Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC tracking. Methods: A prototype DMLC tracking system integrated with a linear accelerator was used for tracking a phantom with an embedded fiducial marker during treatment delivery. The phantom performed a sinusoidal motion. Real-time target localization was based on x-ray images acquired either with a portal imager or a kV imager mounted orthogonal to the treatment beam. Each image was stored in a file on the imaging workstation. A marker segmentation program opened the image file, determined the marker position in the image, and transferred it to the DMLC tracking program. This program estimated the three-dimensional target position by a single-imager method and adjusted the MLC aperture to the target position. Imaging intervals {Delta}T{sub image} from 150 to 1000 ms were investigated for both kV and MV imaging. After the experiments, the recorded images were synchronized with MLC log files generated by the MLC controller and tracking log files generated by the tracking program. This synchronization allowed temporal analysis of the information flow for each individual image from acquisition to completed MLC adjustment. The synchronization also allowed investigation of the MLC adjustment dynamics on a considerably finer time scale than the 50 ms time resolution of the MLC log files. Results: For {Delta}T{sub image}=150 ms, the total time from image acquisition to completed MLC adjustment was 380{+-}9 ms for MV and 420{+-}12 ms for kV images. The main part of this time was from image acquisition to completed image file writing (272 ms for MV and 309 ms for kV). Image file opening (38 ms), marker segmentation (4 ms

  7. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    International Nuclear Information System (INIS)

    Glide-Hurst, C.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  8. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C. [Henry Ford Health System (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  9. Random Scenario Generation for a Multiple Target Tracking Environment Evaluation

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    , which were normally crossing targets, was to test the efficiency of the track splitting algorithm for different situations. However this approach only gives a measure of performance for a specific, possibly unrealistic, scenario and it was felt appropriate to develop procedures that would enable a more...... general performance assessment. Therefore, a random target motion scenario is adopted. Its implementation in particular for testing the track splitting algorithm using Kalman filters is used and a couple of tracking performance parameters are computed to investigate such random scenarios....

  10. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W [UT Southwestern Medical Center, Dallas, Texas (United States); Rozario, T; Bereg, S [University of Texas at Dallas, Richardson, Texas (United States); Klash, S [Premier Cancer Centers, Dallas, TX (United States)

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  11. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  12. External respiratory motion for abdominal radiotherapy patients: implications for patient alignment

    International Nuclear Information System (INIS)

    Kearvell, Rachel; Ebert, Martin A.

    2003-01-01

    Conformal external beam radiotherapy relies on accurate spatial positioning of the tumor and normal tissues during treatment. For abdominal patients, this is complicated by the motion of internal organs and the external patient contour due to respiration. As external motion influences the degree of accuracy achievable in patient setup, this motion was studied to provide indication of motions occurring during treatment, as well as to assess the technique of breath-holding at exhale (B-HEX). The motion of external abdominal points (anterior and right lateral) of a series of volunteers was tracked in real-time using an infrared tracking system, with the volunteers in treatment position. The resulting motion data was assessed to evaluate (1) the change in position of each point per breath/breath-hold, (2) the change in position between breaths/breath-holds, and (3) the change in position across the whole recording time. Analysis shows that, for the anterior abdominal point, there is little difference in the variation of position with time for free-breathing as opposed to the B-HEX technique. For the lateral point however, the B-HEX technique reduces the motion during each treatment cycle (i.e., during the breath-hold) and over an extended period (i.e., during a series of breath-holds). The B-HEX technique thus provides greater accuracy for setup to lateral markers and provides the opportunity to reduce systematic and random localization errors

  13. WE-AB-303-05: Breathing Motion of Liver Segments From Fiducial Tracking During Robotic Radiosurgery and Comparison with 4D-CT-Derived Fiducial Motion

    International Nuclear Information System (INIS)

    Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E

    2015-01-01

    Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the

  14. WE-AB-303-05: Breathing Motion of Liver Segments From Fiducial Tracking During Robotic Radiosurgery and Comparison with 4D-CT-Derived Fiducial Motion

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E [The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada)

    2015-06-15

    Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the

  15. MR-guided data framing for PET motion correction in simultaneous MR–PET: A preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, M.G., E-mail: m.ullisch@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Scheins, J.; Weirich, C.; Rota Kops, E.; Celik, A.; Tellmann, L.; Stöcker, T.; Herzog, H.; Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany)

    2013-02-21

    Head motion can significantly degrade image quality of static and dynamic Positron Emission Tomography (PET) of the human brain. One method to regain acceptable image quality in the presence of motion is to include the correction for motion in the reconstruction process. When applying motion correction, the PET data can be segmented into discrete parts of similar head position, referred to as frames. This framing of the data can reduce the computational overhead necessary for motion correction during the reconstruction process by reducing the number of discrete head positions which have to be accounted for. Here a framing algorithm is presented which minimises residual motion in the framed data, while taking full advantage of the additional information provided by Magnetic Resonance Imaging (MRI) in a simultaneous MR–PET acquisition. In the work presented here information on motion is derived from EPI sequences acquired simultaneously with the PET data. A comparison to images reconstructed with regular framing show a more clearly delineated cortex due to increased contrast between grey matter and white matter. This improvement in image quality is achieved as well as a reduction in the number of frames, thereby reducing the reconstruction time. Preliminary data indicates an efficient reduction of residual intra-frame motion compared to regular framing.

  16. Pose Tracking Algorithm of an Endoscopic Surgery Robot Wrist

    International Nuclear Information System (INIS)

    Wang, L; Yin, H L; Meng, Q

    2006-01-01

    In recent two decades, more and more research on the endoscopic surgery has been carried out [2]. Most of the work focuses on the development of the robot in the field of robotics and the navigation of the surgery tools based on computer graphics. But the tracking and locating of the EndoWrist is also a very important aspect. This paper deals with the the tracking algorithm of the EndoWrist's pose (position and orientation). The linear tracking of the position is handled by the Kalman Filter. The quaternion-based nonlinear orientation tracking is implemented with the Extended Kalman Filter. The most innovative point of this paper is the parameterization of the motion model of the Extended Kalman Filter

  17. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    International Nuclear Information System (INIS)

    Jia, J; Cao, R; Pei, X; Wang, H; Hu, L

    2015-01-01

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For the training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy

  18. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jia, J; Cao, R; Pei, X; Wang, H; Hu, L [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, SuZhou (China)

    2015-06-15

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For the training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.

  19. Subatomic tracking finds clues to the unseen universe

    CERN Multimedia

    Glanz, J

    2004-01-01

    "An experiment that tracks subtle motions of subatomic particles called muons has found tantalizing evidence for a vast shadow universe of normally unseen matter existing side by side with ours, scientists at the Brookhaven National Laboratory said yesterday" (1 page)

  20. Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space

    Science.gov (United States)

    Jun, Chen; Wenjun, Hou; Qing, Sheng

    After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.