WorldWideScience

Sample records for regularized long-wave equation

  1. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Inc, Mustafa [Department of Mathematics, Firat University, 23119 Elazig (Turkey)], E-mail: minc@firat.edu.tr; Ugurlu, Yavuz [Department of Mathematics, Firat University, 23119 Elazig (Turkey)

    2007-09-17

    In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.

  2. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

    International Nuclear Information System (INIS)

    Inc, Mustafa; Ugurlu, Yavuz

    2007-01-01

    In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions

  3. A Galerkin Finite Element Method for Numerical Solutions of the Modified Regularized Long Wave Equation

    Directory of Open Access Journals (Sweden)

    Liquan Mei

    2014-01-01

    Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.

  4. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  5. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques

    Science.gov (United States)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.

  6. The Method of Lines Solution of the Regularized Long-Wave Equation Using Runge-Kutta Time Discretization Method

    Directory of Open Access Journals (Sweden)

    H. O. Bakodah

    2013-01-01

    Full Text Available A method of lines approach to the numerical solution of nonlinear wave equations typified by the regularized long wave (RLW is presented. The method developed uses a finite differences discretization to the space. Solution of the resulting system was obtained by applying fourth Runge-Kutta time discretization method. Using Von Neumann stability analysis, it is shown that the proposed method is marginally stable. To test the accuracy of the method some numerical experiments on test problems are presented. Test problems including solitary wave motion, two-solitary wave interaction, and the temporal evaluation of a Maxwellian initial pulse are studied. The accuracy of the present method is tested with and error norms and the conservation properties of mass, energy, and momentum under the RLW equation.

  7. Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods

    Directory of Open Access Journals (Sweden)

    Özkan Güner

    2014-01-01

    Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.

  8. On a functional equation related to the intermediate long wave equation

    International Nuclear Information System (INIS)

    Hone, A N W; Novikov, V S

    2004-01-01

    We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)

  9. Travelling wave solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations

    Directory of Open Access Journals (Sweden)

    M. Arshad

    Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method

  10. Generalized internal long wave equations: construction, hamiltonian structure and conservation laws

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1982-01-01

    Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu

  11. Quasiclassical deformation in KP hierarchy and Benney's long wave equations

    International Nuclear Information System (INIS)

    Kolokol'tsov, V.N.; Lebedev, D.R.

    1987-01-01

    In the paper by means of the formal variant of Zakharov-Shabat ''dressing'' method various formulas are obtained for the generating functions of the conservation laws of Kadomtsev-Petvias hierarchy which turn into analogous formulas for Benney hierarchy in the quasiclassical limit. The generating fucntion of the conservation laws of Miura type is constructed for higher Benney equations and the simple proof of the related identities is given

  12. The modified extended Fan's sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2005-01-01

    By using a modified extended Fan's sub-equation method, we have obtained new and more general solutions including a series of non-travelling wave and coefficient function solutions namely: soliton-like solutions, triangular-like solutions, single and combined non-degenerative Jacobi elliptic wave function-like solutions for the (2 + 1)-dimensional dispersive long wave equation. The most important achievement of this method lies on the fact that, we have succeeded in one move to give all the solutions which can be previously obtained by application of at least four methods (method using Riccati equation, or first kind elliptic equation, or auxiliary ordinary equation, or generalized Riccati equation as mapping equation)

  13. New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method

    International Nuclear Information System (INIS)

    Kong Cuicui; Wang Dan; Song Lina; Zhang Hongqing

    2009-01-01

    In this paper, with the aid of symbolic computation and a general ansaetz, we presented a new extended rational expansion method to construct new rational formal exact solutions to nonlinear partial differential equations. In order to illustrate the effectiveness of this method, we apply it to the MKDV-Burgers equation and the (2 + 1)-dimensional dispersive long wave equation, then several new kinds of exact solutions are successfully obtained by using the new ansaetz. The method can also be applied to other nonlinear partial differential equations.

  14. The investigation for (2+1)-dimensional Eckhaus-type extension of the dispersive long wave equation

    International Nuclear Information System (INIS)

    Yan Zhenya

    2004-01-01

    The (2+1)-dimensional Eckhaus-type extension of the dispersive long wave (EEDLW) equation is investigated, which was obtained in the appropriate approximation from the basic equations of hydrodynamics. Though it has no Painleve property, we gain an auto-Baecklund transformation (aBT) by truncating the Laurent series expansion at O(w 0 ). In particular, the special one of the aBT establishes a relationship between the EEDLW equation and a set of three linear partial differential equations involving the well-known heat equation. Finally many types of new exact solutions of the EEDLW equation are found from the obtained aBT and some proper ansaetze, which may be useful to explain some physical phenomena

  15. An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Wang Qi; Chen Yong; Zhang Hongqing

    2005-01-01

    With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansatz, in which periodic solutions of nonlinear partial differential equations that can be expressed as a finite Laurent series of some of 12 Jacobi elliptic functions, is more powerful than exiting Jacobi elliptic function methods and is very powerful to uniformly construct more new exact periodic solutions in terms of rational formal Jacobi elliptic function solution of nonlinear partial differential equations. As an application of the method, we choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition

  16. Regularity of difference equations on Banach spaces

    CERN Document Server

    Agarwal, Ravi P; Lizama, Carlos

    2014-01-01

    This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semigroup and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.

  17. To the complete integrability of long-wave short-wave interaction equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Chanda, P.K.

    1984-10-01

    We show that the non-linear partial differential equations governing the interaction of long and short waves are completely integrable. The methodology we use is that of Ablowitz et al. though in the last section of our paper we have discussed the problem also in the light of the procedure due to Weiss et al. and have obtained a Baecklund transformation. (author)

  18. A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Yong Chen; Qi Wang

    2005-01-01

    In this paper, we extend the algebraic method proposed by Fan (Chaos, Solitons and Fractals 20 (2004) 609) and the improved extended tanh method by Yomba (Chaos, Solitons and Fractals 20 (2004) 1135) to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). Some new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation are obtained

  19. The collision of multimode dromions and a firewall in the two-component long-wave-short-wave resonance interaction equation

    International Nuclear Information System (INIS)

    Radha, R; Kumar, C Senthil; Lakshmanan, M; Gilson, C R

    2009-01-01

    In this communication, we investigate the two-component long-wave-short-wave resonance interaction equation and show that it admits the Painleve property. We then suitably exploit the recently developed truncated Painleve approach to generate exponentially localized solutions for the short-wave components S (1) and S (2) while the long wave L admits a line soliton only. The exponentially localized solutions driving the short waves S (1) and S (2) in the y-direction are endowed with different energies (intensities) and are called 'multimode dromions'. We also observe that the multimode dromions suffer from intramodal inelastic collision while the existence of a firewall across the modes prevents the switching of energy between the modes. (fast track communication)

  20. Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations

    OpenAIRE

    Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril

    2011-01-01

    We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...

  1. Analysis of regularized Navier-Stokes equations, 2

    Science.gov (United States)

    Ou, Yuh-Roung; Sritharan, S. S.

    1989-01-01

    A practically important regularization of the Navier-Stokes equations was analyzed. As a continuation of the previous work, the structure of the attractors characterizing the solutins was studied. Local as well as global invariant manifolds were found. Regularity properties of these manifolds are analyzed.

  2. Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions

    International Nuclear Information System (INIS)

    Lin, Hongxia; Du, Lili

    2013-01-01

    In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263–74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier–Stokes equations Indiana Univ. Math. J. 57 2643–61; 2011 Gobal regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919–32) for 3D incompressible Navier–Stokes equations. (paper)

  3. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-05-13

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.

  4. Viscous Regularization of the Euler Equations and Entropy Principles

    KAUST Repository

    Guermond, Jean-Luc

    2014-03-11

    This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.

  5. Traveling waves of the regularized short pulse equation

    International Nuclear Information System (INIS)

    Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J

    2014-01-01

    The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)

  6. Hidden regularity for a strongly nonlinear wave equation

    International Nuclear Information System (INIS)

    Rivera, J.E.M.

    1988-08-01

    The nonlinear wave equation u''-Δu+f(u)=v in Q=Ωx]0,T[;u(0)=u 0 ,u'(0)=u 1 in Ω; u(x,t)=0 on Σ= Γx]0,T[ where f is a continuous function satisfying, lim |s| sup →+∞ f(s)/s>-∞, and Ω is a bounded domain of R n with smooth boundary Γ, is analysed. It is shown that there exist a solution for the presented nonlinear wave equation that satisfies the regularity condition: |∂u/∂ η|ε L 2 (Σ). Moreover, it is shown that there exist a constant C>0 such that, |∂u/∂ η|≤c{ E(0)+|v| 2 Q }. (author) [pt

  7. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-01-01

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular

  8. Regularity of the 3D Navier-Stokes equations with viewpoint of 2D flow

    Science.gov (United States)

    Bae, Hyeong-Ohk

    2018-04-01

    The regularity of 2D Navier-Stokes flow is well known. In this article we study the relationship of 3D and 2D flow, and the regularity of the 3D Naiver-Stokes equations with viewpoint of 2D equations. We consider the problem in the Cartesian and in the cylindrical coordinates.

  9. Maximal Regularity of the Discrete Harmonic Oscillator Equation

    Directory of Open Access Journals (Sweden)

    Airton Castro

    2009-01-01

    Full Text Available We give a representation of the solution for the best approximation of the harmonic oscillator equation formulated in a general Banach space setting, and a characterization of lp-maximal regularity—or well posedness—solely in terms of R-boundedness properties of the resolvent operator involved in the equation.

  10. On the regularization in the Callan-Symanzik equation

    International Nuclear Information System (INIS)

    Fujii, Yasunori; Takahashi, Yasushi

    1975-01-01

    The conservative approach of canonical theory of broken scale invariance to the Callan-Symanzik equation is pushed further with the Pauli-Villars regulators. The authors confirm that the Callan-Symanzik equation is derived in a completely general manner. (BMS) [de

  11. Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains

    KAUST Repository

    Bonito, Andrea

    2013-12-01

    This note establishes regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coefficients and minimal regularity assumptions. The argumentation relies on elliptic regularity estimates for the Poisson problem with non-smooth coefficients. © 2013 Elsevier Ltd.

  12. Regularity criteria for the 3D magneto-micropolar fluid equations via ...

    Indian Academy of Sciences (India)

    3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations. Keywords. Magneto-micropolar fluid equations; regularity criteria; direction of velocity. 2010 Mathematics Subject Classification. 35Q35, 76W05 ...

  13. Regularity and energy conservation for the compressible Euler equations

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.; Wiedemann, E.

    2017-01-01

    Roč. 223, č. 3 (2017), s. 1375-1395 ISSN 0003-9527 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.392, year: 2016 http://link.springer.com/article/10.1007%2Fs00205-016-1060-5

  14. Loss of regularity in the {K(m, n)} equations

    Science.gov (United States)

    Zilburg, Alon; Rosenau, Philip

    2018-06-01

    Using a priori estimates we prove that initially nonnegative, smooth and compactly supported solutions of the equations must lose their smoothness within a finite time. Formation of a singularity is a prerequisite for the subsequent emergence of compactons. Numerical studies are presented that demonstrate two manifestations of the emerging singularity: either propagation of the right front downstream or the formation of an oscillatory tail upstream. Formation of one type of motion does not preclude the possible formation of the other at a later time.

  15. Integral equations of the first kind, inverse problems and regularization: a crash course

    International Nuclear Information System (INIS)

    Groetsch, C W

    2007-01-01

    This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided

  16. Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge

    Directory of Open Access Journals (Sweden)

    Nikolaos Bournaveas

    2009-09-01

    Full Text Available We prove local well-posedness for the 2+1-dimensional Chern-Simons-Higgs equations in the Lorentz gauge with initial data of low regularity. Our result improves earlier results by Huh [10, 11].

  17. Regularization algorithm within two-parameters for identification heat-coefficient in the parabolic equation

    International Nuclear Information System (INIS)

    Hinestroza Gutierrez, D.

    2006-08-01

    In this work a new and promising algorithm based on the minimization of especial functional that depends on two regularization parameters is considered for the identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)

  18. Regularization algorithm within two-parameters for identification heat-coefficient in the parabolic equation

    International Nuclear Information System (INIS)

    Hinestroza Gutierrez, D.

    2006-12-01

    In this work a new and promising algorithm based in the minimization of especial functional that depends on two regularization parameters is considered for identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)

  19. On the regularity criterion of weak solutions for the 3D MHD equations

    Science.gov (United States)

    Gala, Sadek; Ragusa, Maria Alessandra

    2017-12-01

    The paper deals with the 3D incompressible MHD equations and aims at improving a regularity criterion in terms of the horizontal gradient of velocity and magnetic field. It is proved that the weak solution ( u, b) becomes regular provided that ( \

  20. The behaviour of hydrogen-like atoms in an intense long-wave field

    International Nuclear Information System (INIS)

    Brodsky, A.M.

    1979-01-01

    The equations, which permit the calculation by means of regular operations of multiphoton photoionisation cross sections and the dynamic polarisabilities in an intense classical long-wave electromagnetic field, are considered for a hydrogen atom. The calculations have been performed for a circularly polarised field. A quantitative expression has been derived for the Lamb shift analogue, which can be verified experimentally. Within the framework of the problem the interaction at small distances is self-compensated and reduced to a constant potential. This conclusion is of general interest for the theory of strong interactions. (author)

  1. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations

    International Nuclear Information System (INIS)

    EL Safadi, M.

    2007-03-01

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C ∞ regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  2. Regular and chaotic behaviors of plasma oscillations modeled by a modified Duffing equation

    International Nuclear Information System (INIS)

    Enjieu Kadji, H.G.; Chabi Orou, J.B.; Woafo, P.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2005-07-01

    The regular and chaotic behavior of plasma oscillations governed by a modified Duffing equation is studied. The plasma oscillations are described by a nonlinear differential equation of the form x + w 0 2 x + βx 2 + αx 3 = 0 which is similar to a Duffing equation. By focusing on the quadratic term, which is mainly the term modifying the Duffing equation, the harmonic balance method and the fourth order Runge-Kutta algorithm are used to derive regular and chaotic motions respectively. A strong chaotic behavior exhibited by the system in that event when the system is subjected to an external periodic forcing oscillation is reported as β varies. (author)

  3. A Regularized Approach for Solving Magnetic Differential Equations and a Revised Iterative Equilibrium Algorithm

    International Nuclear Information System (INIS)

    Hudson, S.R.

    2010-01-01

    A method for approximately solving magnetic differential equations is described. The approach is to include a small diffusion term to the equation, which regularizes the linear operator to be inverted. The extra term allows a 'source-correction' term to be defined, which is generally required in order to satisfy the solvability conditions. The approach is described in the context of computing the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic equilibria.

  4. Fibonacci-regularization method for solving Cauchy integral equations of the first kind

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Fariborzi Araghi

    2017-09-01

    Full Text Available In this paper, a novel scheme is proposed to solve the first kind Cauchy integral equation over a finite interval. For this purpose, the regularization method is considered. Then, the collocation method with Fibonacci base function is applied to solve the obtained second kind singular integral equation. Also, the error estimate of the proposed scheme is discussed. Finally, some sample Cauchy integral equations stem from the theory of airfoils in fluid mechanics are presented and solved to illustrate the importance and applicability of the given algorithm. The tables in the examples show the efficiency of the method.

  5. Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations

    Science.gov (United States)

    Athanassoulis, Agissilaos

    2018-03-01

    We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1  +  1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.

  6. A regularization of the Burgers equation using a filtered convective velocity

    International Nuclear Information System (INIS)

    Norgard, Greg; Mohseni, Kamran

    2008-01-01

    This paper examines the properties of a regularization of the Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as the convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation which are shown to be shared with the viscous and inviscid Burgers equations. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of the inviscid Burgers equation with the correct wave speed. Numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness and kinetic energy decay are examined. Energy spectra are also examined and are shown to be related to the smoothness of the solutions. This approach is presented with the hope of being extended to shock regularization of compressible Euler equations

  7. Regularity criteria for the Navier–Stokes equations based on one component of velocity

    Czech Academy of Sciences Publication Activity Database

    Guo, Z.; Caggio, M.; Skalák, Zdeněk

    2017-01-01

    Roč. 35, June (2017), s. 379-396 ISSN 1468-1218 R&D Projects: GA ČR GA14-02067S Grant - others:Západočeská univerzita(CZ) SGS-2016-003; National Natural Science Foundation of China (CN) 11301394 Institutional support: RVO:67985874 Keywords : Navier–Stokes equations * regularity of solutions * regularity criteria * Anisotropic Lebesgue spaces Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.659, year: 2016

  8. An Iterative Regularization Method for Identifying the Source Term in a Second Order Differential Equation

    Directory of Open Access Journals (Sweden)

    Fairouz Zouyed

    2015-01-01

    Full Text Available This paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. This problem is ill-posed; that is, the solution (if it exists does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.

  9. Regularity criteria for the Navier–Stokes equations based on one component of velocity

    Czech Academy of Sciences Publication Activity Database

    Guo, Z.; Caggio, M.; Skalák, Zdeněk

    2017-01-01

    Roč. 35, June (2017), s. 379-396 ISSN 1468-1218 R&D Projects: GA ČR GA14-02067S Grant - others:Západočeská univerzita(CZ) SGS-2016-003; National Natural Science Foundation of China(CN) 11301394 Institutional support: RVO:67985874 Keywords : Navier–Stokes equations * regularity of solutions * regularity criteria * Anisotropic Lebesgue spaces Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.659, year: 2016

  10. Mixed Total Variation and L1 Regularization Method for Optical Tomography Based on Radiative Transfer Equation

    Directory of Open Access Journals (Sweden)

    Jinping Tang

    2017-01-01

    Full Text Available Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE. It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method.

  11. On the regularity of mild solutions to complete higher order differential equations on Banach spaces

    Directory of Open Access Journals (Sweden)

    Nezam Iraniparast

    2015-09-01

    Full Text Available For the complete higher order differential equation u(n(t=Σk=0n-1Aku(k(t+f(t, t∈ R (* on a Banach space E, we give a new definition of mild solutions of (*. We then characterize the regular admissibility of a translation invariant subspace al M of BUC(R, E with respect to (* in terms of solvability of the operator equation Σj=0n-1AjXal Dj-Xal Dn = C. As application, almost periodicity of mild solutions of (* is proved.

  12. Asymptotic approach for the nonlinear equatorial long wave interactions

    International Nuclear Information System (INIS)

    Ramirez Gutierrez, Enver; Silva Dias, Pedro L; Raupp, Carlos

    2011-01-01

    In the present work we use an asymptotic approach to obtain the long wave equations. The shallow water equation is put as a function of an external parameter that is a measure of both the spatial scales anisotropy and the fast to slow time ratio. The values given to the external parameters are consistent with those computed using typical values of the perturbations in tropical dynamics. Asymptotically, the model converge toward the long wave model. Thus, it is possible to go toward the long wave approximation through intermediate realizable states. With this approach, the resonant nonlinear wave interactions are studied. To simplify, the reduced dynamics of a single resonant triad is used for some selected equatorial trios. It was verified by both theoretical and numerical results that the nonlinear energy exchange period increases smoothly as we move toward the long wave approach. The magnitude of the energy exchanges is also modified, but in this case depends on the particular triad used and also on the initial energy partition among the triad components. Some implications of the results for the tropical dynamics are discussed. In particular, we discuss the implications of the results for El Nino and the Madden-Julian in connection with other scales of time and spatial variability.

  13. A multiresolution method for solving the Poisson equation using high order regularization

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Walther, Jens Honore

    2016-01-01

    We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches and regulari......We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches...... and regularized Green's functions corresponding to the difference in the spatial resolution between the patches. The full solution is obtained utilizing the linearity of the Poisson equation enabling super-position of solutions. We show that the multiresolution Poisson solver produces convergence rates...

  14. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    Science.gov (United States)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  15. Boundary Equations and Regularity Theory for Geometric Variational Systems with Neumann Data

    Science.gov (United States)

    Schikorra, Armin

    2018-02-01

    We study boundary regularity of maps from two-dimensional domains into manifolds which are critical with respect to a generic conformally invariant variational functional and which, at the boundary, intersect perpendicularly with a support manifold. For example, harmonic maps, or H-surfaces, with a partially free boundary condition. In the interior it is known, by the celebrated work of Rivière, that these maps satisfy a system with an antisymmetric potential, from which one can derive the interior regularity of the solution. Avoiding a reflection argument, we show that these maps satisfy along the boundary a system of equations which also exhibits a (nonlocal) antisymmetric potential that combines information from the interior potential and the geometric Neumann boundary condition. We then proceed to show boundary regularity for solutions to such systems.

  16. On Landweber–Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces

    International Nuclear Information System (INIS)

    Leitão, A; Alves, M Marques

    2012-01-01

    In this paper, iterative regularization methods of Landweber–Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case). (paper)

  17. Asymptotic properties of spherically symmetric, regular and static solutions to Yang-Mills equations

    International Nuclear Information System (INIS)

    Cronstrom, C.

    1987-01-01

    In this paper the author discusses the asymptotic properties of solutions to Yang-Mills equations with the gauge group SU(2), for spherically symmetric, regular and static potentials. It is known, that the pure Yang-Mills equations cannot have nontrivial regular solutions which vanish rapidly at space infinity (socalled finite energy solutions). So, if regular solutions exist, they must have non-trivial asymptotic properties. However, if the asymptotic behaviour of the solutions is non-trivial, then the fact must be explicitly taken into account in constructing the proper action (and energy) for the theory. The elucidation of the appropriate surface correction to the Yang-Mills action (and hence the energy-momentum tensor density) is one of the main motivations behind the present study. In this paper the author restricts to the asymptotic behaviour of the static solutions. It is shown that this asymptotic behaviour is such that surface corrections (at space-infinity) are needed in order to obtain a well-defined (classical) theory. This is of relevance in formulating a quantum Yang-Mills theory

  18. On Regularly Varying and History-Dependent Convergence Rates of Solutions of a Volterra Equation with Infinite Memory

    Directory of Open Access Journals (Sweden)

    Appleby JohnAD

    2010-01-01

    Full Text Available We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. The result is considered both for a linear Volterra integrodifferential equation as well as for the delay logistic equation from population biology.

  19. Regularized Fractional Power Parameters for Image Denoising Based on Convex Solution of Fractional Heat Equation

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2014-01-01

    Full Text Available The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters. The performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are competent with the standard Gaussian filter and Wiener filter.

  20. Singular pontentials and analytic regularization in classical Yang-Mills equations

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1978-11-01

    The class of instanton solutions with 'extension' parameter lambda 2 positive is extended to lambda 2 negative. The nature of the singular sphere of radius 'lambda' is analized in the light of the analytical regularization method. This leads to well defined solutions of the Yang-Mills equations. Some of them are sourceless ('+-io' and 'Vp'), others correspond to currents concentrated on the sphere of singularity ('+' and '-'). Although the equations are non-linear, the 'Vp' solution turns out to be real part of the '+-io' solutions. The anzats of t'Hooft for the superposition of instantons is used to sum the contributions corresponding to lambda 2 with positive and negative signs. A subsequent limiting process allows then the construction of solutions of the 'multipole' type. The general situation of potentials having a denominator D, with a corresponding surface of singularity at D=0, is also considered in the same light [pt

  1. Singular potentials and analytic regularization in classical Yang-Mills equations

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1978-10-01

    The class of instanton solutions with 'extension' parameter Λ 2 positive is extended to Λ 2 negative. The nature of the singular sphere of radius |Λ| is analized in the light of the analytical regularization method. This leads to well defined solutions of the Yang - Mills equations. Some of them are sourceless ('+- i o' and 'Vp'), others correspond to currents concentrated on the sphere of singularity ('+' and '-'). Although the equations are non-linear, the 'Vp' solutions turns out to be the real part of the '+- i o' solutions. The anzats of t'Hooft for the superposition of instantons is used to sum the contributions corresponding to Λ 2 with positive and negative signs. A subsequent limiting process allows then the construction of solutions of the 'multipole' type. The general situation of potentials having a denominator D, with a corresponding surface of singularity at D=0, is also considered in the same light. (Author) [pt

  2. A constrained regularization method for inverting data represented by linear algebraic or integral equations

    Science.gov (United States)

    Provencher, Stephen W.

    1982-09-01

    CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.

  3. Regularity for 3D Navier-Stokes equations in terms of two components of the vorticity

    Directory of Open Access Journals (Sweden)

    Sadek Gala

    2010-10-01

    Full Text Available We establish regularity conditions for the 3D Navier-Stokes equation via two components of the vorticity vector. It is known that if a Leray-Hopf weak solution $u$ satisfies $$ ilde{omega}in L^{2/(2-r}(0,T;L^{3/r}(mathbb{R}^3quad hbox{with }0regularity of Leray-Hopf weak solution $u$ under each of the following two (weaker conditions: $$displaylines{ ilde{omega}in L^{2/(2-r}(0,T;dot {mathcal{M}}_{2, 3/r}(mathbb{R}^3quad hbox{for }0regularity criterion improves the results in Chae-Choe [5].

  4. On Regularly Varying and History-Dependent Convergence Rates of Solutions of a Volterra Equation with Infinite Memory

    OpenAIRE

    John A. D. Appleby

    2010-01-01

    We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. ...

  5. A regularity criterion for the Navier-Stokes equations based on the gradient of one velocity component

    Czech Academy of Sciences Publication Activity Database

    Skalák, Zdeněk

    2016-01-01

    Roč. 437, č. 1 (2016), s. 474-484 ISSN 0022-247X R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985874 Keywords : Navier - Stokes equations * regularity of solutions * regularity criteria Subject RIV: BK - Fluid Dynamics Impact factor: 1.064, year: 2016

  6. Regularity theory for quasilinear elliptic systems and Monge—Ampère equations in two dimensions

    CERN Document Server

    Schulz, Friedmar

    1990-01-01

    These lecture notes have been written as an introduction to the characteristic theory for two-dimensional Monge-Ampère equations, a theory largely developed by H. Lewy and E. Heinz which has never been presented in book form. An exposition of the Heinz-Lewy theory requires auxiliary material which can be found in various monographs, but which is presented here, in part because the focus is different, and also because these notes have an introductory character. Self-contained introductions to the regularity theory of elliptic systems, the theory of pseudoanalytic functions and the theory of conformal mappings are included. These notes grew out of a seminar given at the University of Kentucky in the fall of 1988 and are intended for graduate students and researchers interested in this area.

  7. Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn

    Science.gov (United States)

    Gu, Anhui; Li, Dingshi; Wang, Bixiang; Yang, Han

    2018-06-01

    We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction-diffusion equations in Hs (Rn) with s ∈ (0 , 1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs (Rn) and attracts all tempered random subsets of L2 (Rn) with respect to the norm of Hs (Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs (Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.

  8. Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion

    KAUST Repository

    Cañizo, J.A.

    2010-03-01

    We present a new a priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case. © 2009 Elsevier Masson SAS. All rights reserved.

  9. A delay differential equation model for dengue transmission with regular visits to a mosquito breeding site

    Science.gov (United States)

    Yaacob, Y.; Yeak, S. H.; Lim, R. S.; Soewono, E.

    2015-03-01

    Dengue disease has been known as one of widely transmitted vector-borne diseases which potentially affects millions of people throughout the world especially in tropical and sub-tropical countries. One of the main factors contributing in the complication of the transmission process is the mobility of people in which people may get infection in the places far from their home. Here we construct a delay differential equation model for dengue transmission in a closed population where regular visits of people to a mosquito breeding site out of their residency such as traditional market take place daily. Basic reproductive ratio of the system is obtained and depends on the ratio between the outgoing rates of susceptible human and infective human. It is shown that the increase of mobility with different variation of mobility rates may contribute to different level of basic reproductive ratio as well as different level of outbreaks.

  10. Regularization and error estimates for asymmetric backward nonhomogeneous heat equations in a ball

    Directory of Open Access Journals (Sweden)

    Le Minh Triet

    2016-09-01

    Full Text Available The backward heat problem (BHP has been researched by many authors in the last five decades; it consists in recovering the initial distribution from the final temperature data. There are some articles [1,2,3] related the axi-symmetric BHP in a disk but the study in spherical coordinates is rare. Therefore, we wish to study a backward problem for nonhomogenous heat equation associated with asymmetric final data in a ball. In this article, we modify the quasi-boundary value method to construct a stable approximate solution for this problem. As a result, we obtain regularized solution and a sharp estimates for its error. At the end, a numerical experiment is provided to illustrate our method.

  11. Quadratic PBW-Algebras, Yang-Baxter Equation and Artin-Schelter Regularity

    International Nuclear Information System (INIS)

    Gateva-Ivanova, Tatiana

    2010-08-01

    We study quadratic algebras over a field k. We show that an n-generated PBW-algebra A has finite global dimension and polynomial growth iff its Hilbert series is H A (z) = 1/(1-z) n . A surprising amount can be said when the algebra A has quantum binomial relations, that is the defining relations are binomials xy - c xy zt, c xy is an element of k x , which are square-free and nondegenerate. We prove that in this case various good algebraic and homological properties are closely related. The main result shows that for an n-generated quantum binomial algebra A the following conditions are equivalent: (i) A is a PBW-algebra with finite global dimension; (ii) A is PBW and has polynomial growth; (iii) A is an Artin-Schelter regular PBW-algebra; (iv) A is a Yang-Baxter algebra; (v) H A (z) = 1/(1-z) n ; (vi) The dual A ! is a quantum Grassman algebra; (vii) A is a binomial skew polynomial ring. This implies that the problem of classification of Artin-Schelter regular PBW-algebras of global dimension n is equivalent to the classification of square-free set-theoretic solutions of the Yang-Baxter equation (X,r), on sets X of order n.| (author)

  12. Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations

    Science.gov (United States)

    Hou, Thomas Y.; Liu, Pengfei; Wang, Fei

    2018-05-01

    We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.

  13. Regularity criterion for solutions to the Navier Stokes equations in the whole 3D space based on two vorticity components

    Czech Academy of Sciences Publication Activity Database

    Guo, Z.; Kučera, P.; Skalák, Zdeněk

    2018-01-01

    Roč. 458, č. 1 (2018), s. 755-766 ISSN 0022-247X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985874 Keywords : Navier Stokes equations * conditional regularity * regularity criteria * vorticity * Besov spaces * bony decomposition Subject RIV: BA - General Mathematics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.064, year: 2016

  14. The Role of the Pressure in the Partial Regularity Theory for Weak Solutions of the Navier-Stokes Equations

    Science.gov (United States)

    Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther

    2018-04-01

    We study the role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. By introducing the notion of dissipative solutions, due to D uchon and R obert (Nonlinearity 13:249-255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin's local regularity criterion.

  15. Renormalization group equation for interacting Thirring fields in dimensional regularization scheme

    International Nuclear Information System (INIS)

    Chowdhury, A.R.; Roy, T.; Kar, S.

    1976-01-01

    The dynamics of two interacting Thirring fields has been investigated within the dimensional regularization framework. The coupling constants are renormalized in the same way as observed in the non-perturbative approach of Ansel'm et al (Sov. Phys. - JETP 36: 608 (1959)). Functionsβsub(i)(g 1 , g 2 , g 3 ) and γsub(i)(g 1 , g 2 , g 3 ), pertaining to the stability and anomalous behaviour of the problem, are computed up to a third order in the coupling parameters. With the help of these, subsidiary non-linear differential equations of the renormalization group are studied in 2-epsilon dimension. The results show up some peculiar features of the theory: a zero of βsub(i)(g 1 , g 2 , g 3 ) corresponding to g 2 approximately α√epsilon, a characteristic of phi theory. The scale invariant limit is reached when g 2 → 0 (i.e. the two Thirring fields are decoupled) and also when g 1 = xg 2 = g 3 , where x is a root of 2x 3 + 2x 2 - 1 = 0. The branch-point zero makes the transition to the epsilon tends to 0 limit non-unique. The anomalous dimensions are obtained and seen to match that of the Dashen-Frishman model (Phys. Lett.; 46B 439 (1973)). The existence of a non-trivial scale invariant limit distinguishes the model from many simple field theories. (author)

  16. Derivation of regularized Grad's moment system from kinetic equations: modes, ghosts and non-Markov fluxes

    Science.gov (United States)

    Karlin, Ilya

    2018-04-01

    Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.

  17. Long wave polar modes in semiconductor heterostructures

    CERN Document Server

    Trallero-Giner, C; García-Moliner, F; Garc A-Moliner, F; Perez-Alvarez, R; Garcia-Moliner, F

    1998-01-01

    Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentatio...

  18. Regularity of a weak solution to the Navier--Stokes equations via one component of a spectral projection of vorticity

    Czech Academy of Sciences Publication Activity Database

    Neustupa, Jiří; Penel, P.

    2014-01-01

    Roč. 46, č. 2 (2014), s. 1681-1700 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations * weak solution * regularity criteria Subject RIV: BA - General Mathematics Impact factor: 1.265, year: 2014 http://epubs.siam.org/doi/abs/10.1137/120874874

  19. Global Regularity and Time Decay for the 2D Magnetohydrodynamic Equations with Fractional Dissipation and Partial Magnetic Diffusion

    Science.gov (United States)

    Dong, Bo-Qing; Jia, Yan; Li, Jingna; Wu, Jiahong

    2018-05-01

    This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation given by the fractional operator (-Δ )^α and the magnetic diffusion by partial Laplacian. We are able to show that this system with any α >0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.

  20. Hölder Regularity of the 2D Dual Semigeostrophic Equations via Analysis of Linearized Monge-Ampère Equations

    Science.gov (United States)

    Le, Nam Q.

    2018-05-01

    We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.

  1. Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion

    KAUST Repository

    Cañ izo, J.A.; Desvillettes, L.; Fellner, K.

    2010-01-01

    We present a new a priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a priori

  2. Regularity criteria for the 3D magneto-micropolar fluid equations via ...

    Indian Academy of Sciences (India)

    We consider sufficient conditions to ensure the smoothness of solutions to 3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations.

  3. Analysis and regularization of the thin-wire integral equation with reduced kernel

    NARCIS (Netherlands)

    Beurden, van M.C.; Tijhuis, A.G.

    2007-01-01

    For the straight wire, modeled as a hollow tube, we establish a conditional equivalence relation between the integral equations with exact and reduced kernel. This relation allows us to examine the existence and uniqueness conditions for the integral equation with reduced kernel, based on a local

  4. A regularization method for solving the Poisson equation for mixed unbounded-periodic domains

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Mølholm Hejlesen, Mads; Walther, Jens Honoré

    2018-01-01

    the regularized unbounded-periodic Green's functions can be implemented in an FFT-based Poisson solver to obtain a convergence rate corresponding to the regularization order of the Green's function. The high order is achieved without any additional computational cost from the conventional FFT-based Poisson solver...... and enables the calculation of the derivative of the solution to the same high order by direct spectral differentiation. We illustrate an application of the FFT-based Poisson solver by using it with a vortex particle mesh method for the approximation of incompressible flow for a problem with a single periodic...

  5. On invariant measures for the Vlasov equation with a regular potential

    International Nuclear Information System (INIS)

    Zhidkov, P.E.

    2003-01-01

    We consider a Vlasov equation with a smooth bounded potential of interaction between particles in a class of measure-valued solutions and construct a measure which is invariant for this problem in a sense

  6. Long Wave Infrared Cavity Enhanced Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2005-12-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.

  7. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.

    Science.gov (United States)

    Gibbon, John D; Pal, Nairita; Gupta, Anupam; Pandit, Rahul

    2016-12-01

    We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced, incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes (CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential development of singularities (blow-up) in the contours of the order parameter ϕ is an open problem. To address this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]. By taking an L^{∞} norm of the energy of the full binary system, designated as E_{∞}, we have shown that ∫_{0}^{t}E_{∞}(τ)dτ governs the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with 128^{3} to 512^{3} collocation points and over the duration of our DNSs confirm that E_{∞} remains bounded as far as our computations allow.

  8. Ito's formula in UMD Banach spaces and regularity of solution of the Zakai equation

    NARCIS (Netherlands)

    Brzezniak, Z.; Van Neerven, J.M.A.M.; Veraar, M.C.; Weis, L.

    2008-01-01

    Using the theory of stochastic integration for processes with values in a UMD Banach space developed recently by the authors, an Itô formula is proved which is applied to prove the existence of strong solutions for a class of stochastic evolution equations in UMD Banach spaces. The abstract results

  9. Solutions of differential equations with regular coefficients by the methods of Richmond and Runge-Kutta

    Science.gov (United States)

    Cockrell, C. R.

    1989-01-01

    Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.

  10. Hysteresis and Phase Transitions in a Lattice Regularization of an Ill-Posed Forward-Backward Diffusion Equation

    Science.gov (United States)

    Helmers, Michael; Herrmann, Michael

    2018-03-01

    We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.

  11. Soliton solution for nonlinear partial differential equations by cosine-function method

    International Nuclear Information System (INIS)

    Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.

    2007-01-01

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations

  12. Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schroedinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Sana Hadj, E-mail: sana_hadjamor@yahoo.fr [Ecole Nationale d' Ingenieurs de Monastir (Tunisia)

    2012-12-15

    Starting from results already obtained for quasi-periodic co-cycles in SL(2, R), we show that the rotation number of the one-dimensional time-continuous Schroedinger equation with Diophantine frequencies and a small analytic potential has the behavior of a 1/2-Hoelder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.

  13. Existence, regularity and representation of solutions of time fractional wave equations

    Directory of Open Access Journals (Sweden)

    Valentin Keyantuo

    2017-09-01

    Full Text Available We study the solvability of the fractional order inhomogeneous Cauchy problem $$ \\mathbb{D}_t^\\alpha u(t=Au(t+f(t, \\quad t>0,\\;1<\\alpha\\le 2, $$ where A is a closed linear operator in some Banach space X and $f:[0,\\infty\\to X$ a given function. Operator families associated with this problem are defined and their regularity properties are investigated. In the case where A is a generator of a $\\beta$-times integrated cosine family $(C_\\beta(t$, we derive explicit representations of mild and classical solutions of the above problem in terms of the integrated cosine family. We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary conditions on $L^p$-spaces and on the space of continuous functions.

  14. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    Science.gov (United States)

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  15. Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in R^1

    Directory of Open Access Journals (Sweden)

    Henri Schurz

    2010-09-01

    Full Text Available Semilinear stochastic heat equations perturbed by cubic-type nonlinearities and additive space-time noise with homogeneous boundary conditions are discussed in R^1. The space-time noise is supposed to be Gaussian in time and possesses a Fourier expansion in space along the eigenfunctions of underlying Lapace operators. We follow the concept of approximate strong (classical Fourier solutions. The existence of unique continuous L^2-bounded solutions is proved. Furthermore, we present a procedure for its numerical approximation based on nonstandard methods (linear-implicit and justify their stability and consistency. The behavior of related total energy functional turns out to be crucial in the presented analysis.

  16. General characteristics of long waves around the South African Coast

    CSIR Research Space (South Africa)

    Rossouw, M

    2013-09-01

    Full Text Available Long-period waves are almost invisible waves due to the long wave-lengths of several hundreds of metres and heights of only decimetres. The effect of these long waves can, however, be devastating in the form of harbour basin oscillations...

  17. A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation

    Science.gov (United States)

    Smith, David J.

    2018-04-01

    The method of regularized stokeslets is extensively used in biological fluid dynamics due to its conceptual simplicity and meshlessness. This simplicity carries a degree of cost in computational expense and accuracy because the number of degrees of freedom used to discretise the unknown surface traction is generally significantly higher than that required by boundary element methods. We describe a meshless method based on nearest-neighbour interpolation that significantly reduces the number of degrees of freedom required to discretise the unknown traction, increasing the range of problems that can be practically solved, without excessively complicating the task of the modeller. The nearest-neighbour technique is tested against the classical problem of rigid body motion of a sphere immersed in very viscous fluid, then applied to the more complex biophysical problem of calculating the rotational diffusion timescales of a macromolecular structure modelled by three closely-spaced non-slender rods. A heuristic for finding the required density of force and quadrature points by numerical refinement is suggested. Matlab/GNU Octave code for the key steps of the algorithm is provided, which predominantly use basic linear algebra operations, with a full implementation being provided on github. Compared with the standard Nyström discretisation, more accurate and substantially more efficient results can be obtained by de-refining the force discretisation relative to the quadrature discretisation: a cost reduction of over 10 times with improved accuracy is observed. This improvement comes at minimal additional technical complexity. Future avenues to develop the algorithm are then discussed.

  18. Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane

    International Nuclear Information System (INIS)

    Krivosheev, A S

    2000-01-01

    In this paper we introduce the notion of regular growth for a system of entire functions of finite order and type. This is a direct and natural generalization of the classical completely regular growth of an entire function. We obtain sufficient and necessary conditions for the solubility of a system of non-homogeneous convolution equations in convex domains of the complex plane. These conditions depend on whether the system of Laplace transforms of the analytic functionals that generate the convolution equations has regular growth. In the case of smooth convex domains, these solubility conditions form a criterion

  19. Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows

    Energy Technology Data Exchange (ETDEWEB)

    Marc O Delchini; Jean E. Ragusa; Ray A. Berry

    2015-07-01

    We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.

  20. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations; Application de la decomposition de Littlewood-Paley a la regularite pour des equations cinetiques de type Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    EL Safadi, M

    2007-03-15

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  1. The existence and regularity of time-periodic solutions to the three-dimensional Navier–Stokes equations in the whole space

    International Nuclear Information System (INIS)

    Kyed, Mads

    2014-01-01

    The existence, uniqueness and regularity of time-periodic solutions to the Navier–Stokes equations in the three-dimensional whole space are investigated. We consider the Navier–Stokes equations with a non-zero drift term corresponding to the physical model of a fluid flow around a body that moves with a non-zero constant velocity. The existence of a strong time-periodic solution is shown for small time-periodic data. It is further shown that this solution is unique in a large class of weak solutions that can be considered physically reasonable. Finally, we establish regularity properties for any strong solution regardless of its size. (paper)

  2. A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations

    Czech Academy of Sciences Publication Activity Database

    Neustupa, Jiří

    2014-01-01

    Roč. 139, č. 4 (2014), s. 685-698 ISSN 0862-7959 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * suitable weak solution * regularity Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144145

  3. Extended Long Wave Hindcast inside Port Solutions to Minimize Resonance

    Directory of Open Access Journals (Sweden)

    Gabriel Diaz-Hernandez

    2016-02-01

    Full Text Available The present study shows a methodology to carry out a comprehensive study of port agitation and resonance analysis in Geraldton Harbor (Western Australia. The methodology described and applied here extends the short and long wave hindcast outside the harbor and towards the main basin. To perform such an analysis, and as the first stage of the methodology, it is necessary to determine, in detail, both the long and short wave characteristics, through a comprehensive methodology to obtain and to hindcast the full spectral data (short waves + long waves, for frequencies between 0.005 and 1 Hz. Twelve-year spectral hindcast wave data, at a location before the reef, have been modified analytically to include the energy input associated with infragravity waves. A decomposition technique based on the energy balance of the radiation stress of short waves is followed. Predictions for long wave heights and periods at different harbor locations are predicted and validated with data recorded during 2004 to 2009. This new database will ensure an accurate and reliable assessment of long wave hourly data (height, period and currents in any area within the main basin of the Port of Geraldton, for its present geometry. With this information, two main task will be completed: (1 undertake a forensic diagnosis of the present response of the harbor, identifying those forcing characteristics related to inoperability events; and (2 propose any layout solutions to minimize, change, dissipate/fade/vanish or positively modify the effects of long waves in the harbor, proposing different harbor geometry modifications. The goal is to identify all possible combinations of solutions that would minimize the current inoperability in the harbor. Different pre-designs are assessed in this preliminary study in order to exemplify the potential of the methodology.

  4. Derivation of Grad’s Thirteen Regularized Moment Equations Using a Hermite Polynomial Representation of Velocity Distribution Function (Preprint)

    Science.gov (United States)

    2010-06-16

    B4) Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs...B9) Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs. (15...Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs. (15) and (16), into Eq. (B13) and then dropping all

  5. The interior regularity of pressure associated with a weak solution to the Navier-Stokes equations with the Navier-type boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Neustupa, Jiří; Al Baba, Hind

    2018-01-01

    Roč. 463, č. 1 (2018), s. 222-234 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * Navier-type boundary conditions * interior regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 https://www. science direct.com/ science /article/pii/S0022247X18302233?via%3Dihub

  6. The interior regularity of pressure associated with a weak solution to the Navier-Stokes equations with the Navier-type boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Neustupa, Jiří; Al Baba, Hind

    2018-01-01

    Roč. 463, č. 1 (2018), s. 222-234 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * Navier-type boundary conditions * interior regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 https://www.sciencedirect.com/science/article/pii/S0022247X18302233?via%3Dihub

  7. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.

    Science.gov (United States)

    Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats

    2014-05-01

    In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Extended Jacobi Elliptic Function Rational Expansion Method and Its Application to (2+1)-Dimensional Stochastic Dispersive Long Wave System

    International Nuclear Information System (INIS)

    Song Lina; Zhang Hongqing

    2007-01-01

    In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.

  9. Propagation of Tsunami-like Surface Long Waves in the Bays of a Variable Depth

    Directory of Open Access Journals (Sweden)

    A.Yu. Bazykina

    2016-08-01

    Full Text Available Within the framework of the nonlinear long wave theory the regularities of solitary long wave propagation in the semi-closed bays of model and real geometry are numerically studied. In the present article the zones of wave amplification in the bay are found. The first one is located near the wave running-up on the beach (in front of the bay entrance and the other one – in the middle part of the sea basin. Wave propagation in these zones is accompanied both by significant rise and considerable fall of the sea level. Narrowing of the bay entrance and increase of the entering wave length result in decrease of the sea level maximum rises and falls. The Feodosiya Gulf in the Black Sea is considered as a real basin. In general the dynamics of the waves in the gulf is similar to wave dynamics in the model bay. Four zones of the strongest wave amplification in the Feodosiya Gulf are revealed in the article. The sea level maximum rises and extreme falls which tend to grow with decrease of the entering wave length are observed in these zones. The distance traveled by the wave before the collapse (due to non-linear effects, was found to reduce with decreasing wavelength of the entrance to the bay (gulf.

  10. Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter

    Science.gov (United States)

    Degasperis, A.; Lebedev, D.; Olshanetsky, M.; Pakuliak, S.; Perelomov, A.; Santini, P. M.

    1992-11-01

    The simplest generalization of the intermediate long-wave hierarchy (ILW) is considered to show how to extend the Zakharov-Shabat dressing method to nonlocal, i.e., integro-partial differential, equations. The purpose is to give a procedure of constructing the zero-curvature representation of this class of equations. This result obtains by combining the Drinfeld-Sokolov formalism together with the introduction of an operator-valued spectral parameter, namely, a spectral parameter that does not commute with the space variable x. This extension provides a connection between the ILWk hierarchy and the Saveliev-Vershik continuum graded Lie algebras. In the case of ILW2 the Fairlie-Zachos sinh-algebra was found.

  11. Regularity for a clamped grid equation $u_{xxxx}+u_{yyyy}=f $ on a domain with a corner

    Directory of Open Access Journals (Sweden)

    Tymofiy Gerasimov

    2009-04-01

    Full Text Available The operator $L=frac{partial ^{4}}{partial x^{4}} +frac{partial ^{4}}{partial y^{4}}$ appears in a model for the vertical displacement of a two-dimensional grid that consists of two perpendicular sets of elastic fibers or rods. We are interested in the behaviour of such a grid that is clamped at the boundary and more specifically near a corner of the domain. Kondratiev supplied the appropriate setting in the sense of Sobolev type spaces tailored to find the optimal regularity. Inspired by the Laplacian and the Bilaplacian models one expect, except maybe for some special angles that the optimal regularity improves when angle decreases. For the homogeneous Dirichlet problem with this special non-isotropic fourth order operator such a result does not hold true. We will show the existence of an interval $( frac{1}{2}pi ,omega _{star }$, $omega _{star }/pi approx 0.528dots$ (in degrees $omega _{star }approx 95.1dots^{circ} $, in which the optimal regularity improves with increasing opening angle.

  12. Kondratiev cycles and so-called long waves. The early research

    NARCIS (Netherlands)

    J. Tinbergen (Jan)

    1981-01-01

    textabstractThis paper recalls some early work of the Dutch pioneers of long-wave research which anticipated many of the contemporary debates. Various explanations which have been advanced for the existence of long waves are reviewed, and the applicability of long-wave theories in a number of

  13. On interior regularity of solutions of a class of almost-hypoelliptic equations. Armenian Journal of Mathematics

    Directory of Open Access Journals (Sweden)

    Hayk Ghazaryan

    2010-06-01

    Full Text Available In this paper it is proved that all distributional solutions of the non-degenerate, almost hypoelliptic (hypoelliptic by the one of variables equation $P(Du = P(D_{1},D_{2}u = 0$ are infinitely differentiable in the certain strip in $E^{2}$ under a priori assumption that they and its certain derivatives are square integrable with a certain exponential weight.

  14. On regularity of a weak solution to the Navier–Stokes equations with the generalized Navier slip boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Neustupa, Jiří; Penel, P.

    2018-01-01

    Roč. 2018, March (2018), č. článku 4617020. ISSN 1687-9120 R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 https://www.hindawi.com/journals/amp/2018/4617020/

  15. Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise

    Science.gov (United States)

    Debussche, A.; Glatt-Holtz, N.; Temam, R.; Ziane, M.

    2012-07-01

    The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.

  16. Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise

    International Nuclear Information System (INIS)

    Debussche, A; Glatt-Holtz, N; Temam, R; Ziane, M

    2012-01-01

    The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L p t L q x estimates on the pressure and stopping time arguments

  17. Cultural Artifact Detection in Long Wave Infrared Imagery.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dylan Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craven, Julia M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ramon, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    Detection of cultural artifacts from airborne remotely sensed data is an important task in the context of on-site inspections. Airborne artifact detection can reduce the size of the search area the ground based inspection team must visit, thereby improving the efficiency of the inspection process. This report details two algorithms for detection of cultural artifacts in aerial long wave infrared imagery. The first algorithm creates an explicit model for cultural artifacts, and finds data that fits the model. The second algorithm creates a model of the background and finds data that does not fit the model. Both algorithms are applied to orthomosaic imagery generated as part of the MSFE13 data collection campaign under the spectral technology evaluation project.

  18. Symmetries and casimir of an extended classical long wave system

    Indian Academy of Sciences (India)

    Keywords. Dispersionless equations; symmetries; casimir; conserved quantities. ... Application of Lie symmetry analysis to integro-differential equations or infinite systems ..... The financial support in the form of Senior Research Fellowship.

  19. An economic policy for the fifth long wave

    Directory of Open Access Journals (Sweden)

    Angelo Reati

    2004-12-01

    Full Text Available The paper starts by reviewing some recent contributions on long waves, arguing that the present technological revolution in ICT is part of the broad phenomenon of a newlong wave. It follows that the main focus of economic policy should be to support the diffusion of the new technology and to favour the institutional changes required by such an objective. Four broad guidelines are suggested: i a Keynesian policy for demand going beyond the straitjacket of the Maastricht criteria and improving the income distribution in favour of employees; i a policy to re-establish the primacy of productive capital through systematic concerted open market operations to regulate financial liquidity; iii a reconstruction of the employment relationship that preserves the essential features of the "European social model" and a targeted flexibility of labour, that contrasts with the neoclassical all-out market flexibility; and iv a regime for intellectual property rights that avoids the drawbacks--both ethical and economic--of current US practices.

  20. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    Science.gov (United States)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  1. Long-wave model for strongly anisotropic growth of a crystal step.

    Science.gov (United States)

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  2. Mathematical investigation of tsunami-like long waves interaction with submerge dike of different thickness

    Science.gov (United States)

    Zhiltsov, Konstantin; Kostyushin, Kirill; Kagenov, Anuar; Tyryshkin, Ilya

    2017-11-01

    This paper presents a mathematical investigation of the interaction of a long tsunami-type wave with a submerge dike. The calculations were performed by using the freeware package OpenFOAM. Unsteady two-dimensional Navier-Stokes equations were used for mathematical modeling of incompressible two-phase medium. The Volume of Fluid (VOF) method is used to capture the free surface of a liquid. The effects caused by long wave of defined amplitude motion through a submerged dike of varying thickness were discussed in detail. Numerical results show that after wave passing through the barrier, multiple vortex structures were formed behind. Intensity of vortex depended on the size of the barrier. The effectiveness of the submerge barrier was estimated by evaluating the wave reflection and transmission coefficients using the energy integral method. Then, the curves of the dependences of the reflection and transmission coefficients were obtained for the interaction of waves with the dike. Finally, it was confirmed that the energy of the wave could be reduced by more than 50% when it passed through the barrier.

  3. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  4. Imaging of the internal structure of comet 67P/Churyumov-Gerasimenko from radiotomography CONSERT Data (Rosetta Mission) through a full 3D regularized inversion of the Helmholtz equations on functional spaces

    Science.gov (United States)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie; Benna, Mehdi; Kofman, Wlodek; Herique, Alain

    We investigate the inverse problem of imaging the internal structure of comet 67P/ Churyumov-Gerasimenko from radiotomography CONSERT data by using a coupled regularized inversion of the Helmholtz equations. A first set of Helmholtz equations, written w.r.t a basis of 3D Hankel functions describes the wave propagation outside the comet at large distances, a second set of Helmholtz equations, written w.r.t. a basis of 3D Zernike functions describes the wave propagation throughout the comet with avariable permittivity. Both sets are connected by continuity equations over a sphere that surrounds the comet. This approach, derived from GPS water vapor tomography of the atmosphere,will permit a full 3D inversion of the internal structure of the comet, contrary to traditional approaches that use a discretization of space at a fraction of the radiowave wavelength.

  5. Equation of liquidus curve of primary crystallization of congruently melting of Asub(m)Bsub(n) compound in regular solutions approximation

    International Nuclear Information System (INIS)

    Glazov, V.M.; Pavlova, L.M.; Moskvinova, N.A.

    1975-01-01

    A general solution was obtained for the Prigozhin and Defey equation on the basis of which a liquidus equation was derived describing the primary crystallization of Asub(m)Bsub(n)-type compounds. The Prigozhin and Defey equation described a general case of the melting process of having a narrow homogeneity region at a certain temperature T:(Asub(m)Bsub(n))sub(s) reversible m(A)sub(L) n(B)sub(L). They have obtained a differential equation for the liquids curve describing the equilibrium state between the primary Asub(m)Bsub(n) crystals and the liquid solution. The obtained equation was tested by a comparison with the experimental liquidus curves corresponding to the primary crystallization of gallium and indium sesquitellurides in Ga-Te and In-Te systems. The liquidus curves were made more precise by means of a detailed thermographic study of a series of melts located to the right and left of Ga 2 Te 3 and In 2 Te 3 compounds. Computer calculations of liquidus curves corresponding to the primary crystallization of Ga 2 Te 3 and In 2 Te 3 were carried out with the aid of the last of the above-mentioned equations. The obtained results show that the derived equations can be used in studying the nature of intermolecular reactions in systems in which congruent intermediate phases of complex composition are present

  6. Inherent Limitations in Mid-Wave and Long-Wave-IR Upconversion Detector

    DEFF Research Database (Denmark)

    Barh, Ajanta; Tseng, Yu-Pei; Pedersen, Christian

    2017-01-01

    Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper.......Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper....

  7. Quality regularities of dynamic X-ray diffraction in superlattices and films with variable gradient of deformation based on analysis of types of Takagi equation solutions

    International Nuclear Information System (INIS)

    Dyshekov, A.A.; Khapachev, Yu.P.

    1997-01-01

    It is proposed to use qualitative investigation methods of the differential Takagi equation solutions for the analysis of general properties of wave fields in deformed crystals. The physical interpretation of possible types of the Takagi equation solutions is considered briefly from the viewpoint of the stability theory. The type of solutions are defined by ratios between parameters involved in the equations set. For the Takagi equation these parameters are prescribed by the angular tuning from the precise Bragg angle as well as structural characteristics of the crystal and the deformation profile. The qualitative analysis for the problem of the dynamic X-ray diffraction is carried out for films with the variable deformation gradient and superlattices [ru

  8. Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit

    Science.gov (United States)

    Balsa, Thomas F.; Gartside, James

    1995-01-01

    The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.

  9. Variability In Long-Wave Runup as a Function of Nearshore Bathymetric Features

    Energy Technology Data Exchange (ETDEWEB)

    Dunkin, Lauren McNeill [Texas A & M Univ., College Station, TX (United States)

    2010-05-01

    Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regions to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.

  10. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    Science.gov (United States)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882

  11. Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Tarikul Islam

    2018-03-01

    Full Text Available In this article, the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW equation are successfully examined by the recently established rational (G′/G-expansion method. The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform. Consequently, the theories of the ordinary differential equations are implemented effectively. Three types closed form traveling wave solutions, such as hyperbolic function, trigonometric function and rational, are constructed by using the suggested method in the sense of conformable fractional derivative. The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel. It is observed that the performance of the rational (G′/G-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.

  12. Adaptive regularization

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.

    1994-01-01

    Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...

  13. Exhaustive Classification of the Invariant Solutions for a Specific Nonlinear Model Describing Near Planar and Marginally Long-Wave Unstable Interfaces for Phase Transition

    Science.gov (United States)

    Ahangari, Fatemeh

    2018-05-01

    Problems of thermodynamic phase transition originate inherently in solidification, combustion and various other significant fields. If the transition region among two locally stable phases is adequately narrow, the dynamics can be modeled by an interface motion. This paper is devoted to exhaustive analysis of the invariant solutions for a modified Kuramoto-Sivashinsky equation in two spatial and one temporal dimensions is presented. This nonlinear partial differential equation asymptotically characterizes near planar interfaces, which are marginally long-wave unstable. For this purpose, by applying the classical symmetry method for this model the classical symmetry operators are attained. Moreover, the structure of the Lie algebra of symmetries is discussed and the optimal system of subalgebras, which yields the preliminary classification of group invariant solutions is constructed. Mainly, the Lie invariants corresponding to the infinitesimal symmetry generators as well as associated similarity reduced equations are also pointed out. Furthermore, the nonclassical symmetries of this nonlinear PDE are also comprehensively investigated.

  14. Net radiation of mountain cultivated Norway spruce [Picea abies (L.) Karst.] stand: evaluation of shortand long-wave radiation ratio

    Czech Academy of Sciences Publication Activity Database

    Marková, I.; Marek, Michal V.

    2011-01-01

    Roč. 53, č. 2 (2011), s. 114-122 ISSN 0071-6677 Institutional research plan: CEZ:AV0Z60870520 Keywords : downward short- and long-wave radiation * upward short- and long-wave radiation * sun elevation * clearness index Subject RIV: GK - Forestry

  15. Estimativa da radiação de onda longa atmosférica em áreas de floresta e de pastagem no sudoeste da Amazônia Estimate of the atmospheric long wave radiation in forest and pasture area in south west amazon

    Directory of Open Access Journals (Sweden)

    Leonardo José Gonçalves Aguiar

    2011-06-01

    Full Text Available A radiação de onda longa proveniente da atmosfera (Lin é a componente do balanço de radiação mais difícil de ser medida. Na Amazônia praticamente não existem medidas regulares dessa componente, mesmo sendo uma importante variável no cálculo do balanço de radiação à superfície e muito usada para alimentar modelos climáticos. Tendo em vista a necessidade desses dados, o objetivo do presente trabalho é avaliar o desempenho de sete equações na estimativa da Lin para dias de céu claro em áreas de floresta (Reserva Biológica do Jaru, 10º4'48''S; 61º55'48''W e de pastagem (Fazenda Nossa Senhora, 10º45'S; 62º21'W no sudoeste da Amazônia. Medidas de radiação de onda longa atmosférica realizadas no período de junho de 2005 a maio de 2006 foram comparadas com as estimativas. As equações testadas tiveram desempenho satisfatório apenas durante a estação seca. As condições de alta nebulosidade, dominantes na estação chuvosa, restringiram a quantidade de dados utilizados na avaliação das equações. As equações que utilizam informações de temperatura do ar e pressão de vapor d'água para a estimativa da Lin tiveram melhor desempenho em relação às que utilizam apenas a temperatura do ar. As equações de Brutsaert (1975, Idso (1981 e Prata (1996 foram as que apresentaram melhor desempenho, apresentando os maiores índices de concordância, e sendo, portanto, as equações mais indicadas para a estimativa da radiação de onda longa atmosférica no sudoeste da Amazônia.Atmospheric long wave radiation (Lin is the most difficult component of the radiation budget to be measured. In Amazonia there are very few regular measurements of this component, even though it is an important variable in the calculation of the surface radiation balance and frequently used in climate models. Given the need for such data, the objective of this study is to evaluate the performance of seven equations used for the estimation of Lin

  16. Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer

    Science.gov (United States)

    Messiter, A. F.

    1995-01-01

    For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.

  17. A simple formula for the net long-wave radiation flux in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tomasz Zapadka

    2001-09-01

    Full Text Available This paper discusses problems of estimating the net long-wave radiation flux at the sea surface on the basis of easily measurable meteorological quantities (air and sea surface temperatures, near-surface water vapour pressure, cloudiness. Empirical data and existing formulae are compared. Additionally, an improved formula for the southern Baltic region is introduced, with a systematic error of less than 1 W -2 and a statistical error of less than 20 W -2.

  18. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  19. Technical considerations for designing low-cost, long-wave infrared objectives

    Science.gov (United States)

    Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise

    2014-06-01

    With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.

  20. Calibrated Mid-wave Infrared (IR) (MidIR) and Long-wave IR (LWIR) Stokes and Degree-of-Liner Polarization (DOLP)

    Science.gov (United States)

    2008-09-01

    radiance from natural surfaces, was recorded continuously using an Eppley long-wave pyranometer . The long-wave pyranometer is designed to measure radiance...meteorological parameters as well as the ambient radiant loading experienced during the test recorded by the Eppley long-wave pyranometer . Tables 1

  1. Dispersion relation for long-wave neutrons and the possibility of its precise experimental verification

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1995-01-01

    Modern theoretical concepts concerning the dispersion relation for slow neutrons in matter are considered. The generally accepted optical-potential model is apparently not quite accurate and should be supplemented with some small corrections in the energy range attainable in experiments. For ultracold neutrons, these corrections are related to the proximity of the applicability boundary of the theory; for cold neutrons, these corrections are due to correlations in the positions of scatters. The accuracy of existing experiments is insufficient for confirmation or refutation these conclusions. A precision experiment is proposed to verify the dispersion relation for long-wave neutrons. 30 refs., 3 figs

  2. Advances in low-cost long-wave infrared polymer windows

    Science.gov (United States)

    Weimer, Wayne A.; Klocek, Paul

    1999-07-01

    Recent improvements in engineered polymeric material compositions and advances in processing methodologies developed and patented at Raytheon Systems Company have produced long wave IR windows at exceptionally low costs. These UV stabilized, high strength windows incorporating subwavelength structured antireflection surfaces are enabling IR imaging systems to penetrate commercial markets and will reduce the cost of systems delivered to the military. The optical and mechanical properties of these windows will be discussed in detail with reference to the short and long-term impact on military IR imaging systems.

  3. Regular variation on measure chains

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel; Vitovec, J.

    2010-01-01

    Roč. 72, č. 1 (2010), s. 439-448 ISSN 0362-546X R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : regularly varying function * regularly varying sequence * measure chain * time scale * embedding theorem * representation theorem * second order dynamic equation * asymptotic properties Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09008475

  4. On geodesics in low regularity

    Science.gov (United States)

    Sämann, Clemens; Steinbauer, Roland

    2018-02-01

    We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.

  5. Post-Colonial Africa and the World Economy: The Long Waves of Uneven Development

    Directory of Open Access Journals (Sweden)

    Fouad Makki

    2015-08-01

    Full Text Available The aim of this article is to examine the interactive dynamics of "Africa" and the "world economy" over the past half century. By relating the overarching developmental trajectory of the continent to the long-wave rhythms of the world economy, the article identifies three relatively articulated periods in the political economy of postcolonial Africa. The first, from circa 1960 to the late 1970s, was a period of state-led developmentalism enabled by the long postwar boom in the world economy and the embedded liberalism of the Bretton Woods system. A second period from circa 1980 to the turn of the new century was conditioned by the long downturn in the world-economy and a neo-li beral regime of accumulation that sought to re-structure and re-integrate Africa into a deregulated world market. The turn of the new millennium constitutes a new period in which neither the deep structural springs of the long downturn nor the neo-liberal project as such have been overcome; but their impact on Africa has been relativized by the emergence of East Asia as the new center of accumulation in the world economy. The resulting de-synchronization of the long-wave rhythms of the world economy has permitted a modest economic expansion in Africa within a largely extractive regime of accumulation and a wave of new enclosures that are profoundly reconstituting the social universe of Africa's primary producers.

  6. Satellite Based Downward Long Wave Radiation by Various Models in Northeast Asia

    Directory of Open Access Journals (Sweden)

    Chanyang Sur

    2014-01-01

    Full Text Available Satellite-based downward long wave radiation measurement under clear sky conditions in Northeast Asia was conducted using five well-known physical models (Brunt 1932, Idso and Jackson 1969, Brutsaert 1975, Satterlund 1979, Prata 1996 with a newly proposed global Rld model (Abramowitz et al. 2012. Data from two flux towers in South Korea were used to validate downward long wave radiation. Moderate resolution imaging spectroradiometer (MODIS atmospheric profile products were used to develop the Rld models. The overall root mean square error (RMSE of MODIS Rld with respect to two ecosystem-type flux towers was determined to be ≈ 20 W m-2. Based on the statistical analyses, MODIS Rld estimates with Brutsaert (1975 and Abramowitz et al. (2012 models were the most applicable for evaluating Rld for clear sky conditions in Northeast Asia. The Abramowitz Rld maps with MODIS Ta and ea showed reasonable seasonal patterns, which were well-aligned with other biophysical variables reported by previous studies. The MODIS Rld map developed in this study will be very useful for identifying spatial patterns that are not detectable from ground-based Rld measurement sites.

  7. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  8. Long-wave theory for a new convective instability with exponential growth normal to the wall.

    Science.gov (United States)

    Healey, J J

    2005-05-15

    A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.

  9. Amplitude equations for a sub-diffusive reaction-diffusion system

    International Nuclear Information System (INIS)

    Nec, Y; Nepomnyashchy, A A

    2008-01-01

    A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points

  10. UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA

    Directory of Open Access Journals (Sweden)

    IONIŢĂ Elena

    2015-06-01

    Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.

  11. Drying of Agricultural Products Using Long Wave Infrared Radiation(Part 2). Drying of Welsh Onion

    International Nuclear Information System (INIS)

    Itoh, K.; Han, C.S.

    1995-01-01

    The investigation was carried out to clarify the intermittent drying characteristics for welsh onion use of long-wave infrared radiation. When compared with two other methods: use of air and vacuum freezing, this method showed significantly high rate of drying. The experiments were carried out analyzing the influence of different lengths of the welsh onion, different rate of radiation and different temperature of the airflow. The obtained results were as follows: 1. The rate of drying increases as the length of welsh onion decrease and the rate of radiation increase. 2. The airflow, temperature does not influence to the rate of drying. 3. The increasing of the drying time considerably aggravate the quality the dried welsh onion

  12. Biologic changes due to long-wave ultraviolet irradiation on human skin: ultrastructural study

    International Nuclear Information System (INIS)

    Kumakiri, M.; Hashimoto, K.; Willis, I.

    1977-01-01

    Alteration of the skin induced by single and repeated long-wave ultraviolet (UVA) exposures was studied. Following a single exposure to relatively large doses of UVA, pronounced dermal damage was observed. In the papillary dermis, superficial dermal vessels showed widely open endothelial gaps and extravasation of blood cells. Marked changes of fibroblasts were also seen in the superficial dermis. In the reticular dermis, extravascular fibrin deposition was seen. After repeated exposures to UVA the formation of cross-banded filamentous aggregations (''Zebra bodies'') was observed in the superficial and reticular dermis. These were often found in amorphous masses surrounding the blood vessels. These striking dermal alterations were absent in skin irradiated by solar stimulating radiation and in control skin. Dyskeratotic ''sunburn cells'' were occasionally seen in the epidermis after single as well as repeated exposures to UVA. The number of these cells was less than that seen after a single exposure to solar simulating radiation

  13. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    Science.gov (United States)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  14. A simulation model for the actual, long wave and net solar radiation computing

    International Nuclear Information System (INIS)

    Kolev, B.; Stoilov, A.; Lyubomirov, L.

    2004-01-01

    The main purpose of this study is to present a calculating procedure for the components of the radiation balance - actual, long-wave and net radiation calculation, using the sunshine duration and the standard meteorological information, through a previously prepared program product.To calculate the actual solar radiation using the total cloudiness only, an empirical regression model has been developed. The results of the coefficient of correlation R(0.75-0.88), respectively for the spring and summer periods (March-May; June-August) show the adequacy of the chosen model. The verification of the model on the independent experimental material prove that the approach that authors suggested, can be successfully applied to the calculation of the actual radiation of the current place

  15. Interval matrices: Regularity generates singularity

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Shary, S.P.

    2018-01-01

    Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  16. TRAVELING WAVE SOLUTIONS OF SOME FRACTIONAL DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    SERIFE MUGE EGE

    2016-07-01

    Full Text Available The modified Kudryashov method is powerful, efficient and can be used as an alternative to establish new solutions of different type of fractional differential equations applied in mathematical physics. In this article, we’ve constructed new traveling wave solutions including symmetrical Fibonacci function solutions, hyperbolic function solutions and rational solutions of the space-time fractional Cahn Hillihard equation D_t^α u − γD_x^α u − 6u(D_x^α u^2 − (3u^2 − 1D_x^α (D_x^α u + D_x^α(D_x^α(D_x^α(D_x^α u = 0 and the space-time fractional symmetric regularized long wave (SRLW equation D_t^α(D_t^α u + D_x^α(D_x^α u + uD_t^α(D_x^α u + D_x^α u D_t^α u + D_t^α(D_t^α(D_x^α(D_x^α u = 0 via modified Kudryashov method. In addition, some of the solutions are described in the figures with the help of Mathematica.

  17. Coordinate-invariant regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-01-01

    A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc

  18. Long-wave ultraviolet light induces phospholipase activation in cultured human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Hanson, D.; DeLeo, V.

    1990-01-01

    Long wave ultraviolet radiation (UVA) has been shown to play an important role in the overall response of skin to solar radiation, including sunburn, tanning, premature aging, and non-melanoma skin cancer. UVA induction of inflammation in human skin is thought to be mediated by membrane lipid derived products. In order to investigate the mechanism of this response we examined the effect of UVA on phospholipid metabolism of human epidermal keratinocytes in culture. Keratinocytes were grown in serum free low calcium medium. The cells were prelabeled with [3H] arachidonic acid or [3H] choline and irradiated with UVA (Honle 2002-Hg vapor lamp). Identification and quantitation of specific membrane phospholipid-derived components was achieved using high-performance liquid chromatography, paper chromatography, and radioimmunoassay. UVA resulted in a linear dose dependent release of [3H] arachidonic acid into medium between 1 and 20 joule/cm2. This response was inhibited in an oxygen-reduced environment. The radiolabel released was predominantly free arachidonate and cyclooxygenase metabolites. Cyclooxygenase metabolites prostaglandin E2 and prostacyclin derivative, 6-keto-prostaglandin F1a, were stimulated following UVA irradiation, but the lipoxygenase metabolite, leukotriene B was not detected. Maximal release was measured immediately after irradiation and changed little over 24 h post-irradiation. UVA stimulated an increase of [3H] choline metabolites glycerophosphorylcholine and phosphorylcholine in media extracts suggesting UVA activation of phospholipase C and phospholipase A2 or diacylglyceride lipase

  19. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  20. Modelling of long-wave chaotic radar system for anti-stealth applications

    Science.gov (United States)

    Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi

    2018-04-01

    Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.

  1. Mutagenicity of 8-methoxypsoralen and long-wave ultraviolet irradiation in V-79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Burger, P.M.; Simons, J.W.I.M.

    1979-01-01

    The effect of 8-methoxypsoralen (8-MOP) and long-wave ultraviolet irradiation (UVA) on cell killing and mutation induction was studied in V-79 Chinese hamster cells. No effect was observed after treatment with 8-MOP alone (50 μg/ml, 4 h), UVA alone (9000 J/m 2 ), or 8-MOP metobolized by rat-liver microsomes. Combined treatment with 8-MOP and UVA induced both cell killing and mutation. This was also observed under conditins approaching patient treatment with PUVA photochemotherapy with respect to the concentration of 8-MOP in the skin and the amount of UVA received by the epidermal cells. A simple relation proved to apply for mutation induction under different treatment conditions: 5.5 X 10 -8 per J/m 2 per μg 8-MOP/ml. On this basis the mutation induction in dividing cells per session of PUVA-photochemotherapy amounts to 12.4 X 10 -5 , which is probably an over-estimation. (Auth.)

  2. Long-wave-instability-induced pattern formation in an evaporating sessile or pendent liquid layer

    Science.gov (United States)

    Wei, Tao; Duan, Fei

    2018-03-01

    We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative or positive gravity combined with buoyancy effects in the lubrication approximation. Using linear theory, we identify the mechanisms of finite-time rupture, independent of thermocapillarity and direction of gravity, and predict the effective growth rate of an interfacial perturbation which reveals competition among the mechanisms. A stability diagram is predicted for the onset of long-wave (LW) evaporative convection. In the two-dimensional simulation, we observe well-defined capillary ridges on both sides of the valley under positive gravity and main and secondary droplets under negative gravity, while a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution and rupture time but makes contributions to the evaporation-driven convection and heat transfer. The average Nusselt number is found to increase with a stronger buoyancy effect. The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard convection under positive gravity and the LW Marangoni convection under negative gravity. In the three-dimensional simulation of moderate evaporation with a random perturbation, the rupture patterns are characterized by irregular ridge networks with distinct height scales for positive and negative gravity. A variety of interfacial and internal dynamics are displayed, depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling. Reasonable agreement is found between the present results and the reported experiments and simulations. The concept of dissipative compacton also sheds light on the properties of interfacial fractalization.

  3. On genus-two solutions for the ILW equation

    Science.gov (United States)

    Tutiya, Y.

    2018-02-01

    The existence of theta function solutions of genus two for the intermediate long-wave equation is established. A numerical example is also presented. The method basically goes along with Krichever's construction of theta function solutions for soliton equations, such as the Kronecker product equation. This idea leads us to a question whether a Riemann surface exists which allows a peculiar abelian integral of the third kind. The answer is affirmative at least for genus-two curves.

  4. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  5. LL-regular grammars

    NARCIS (Netherlands)

    Nijholt, Antinus

    1980-01-01

    Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular

  6. On a correspondence between regular and non-regular operator monotone functions

    DEFF Research Database (Denmark)

    Gibilisco, P.; Hansen, Frank; Isola, T.

    2009-01-01

    We prove the existence of a bijection between the regular and the non-regular operator monotone functions satisfying a certain functional equation. As an application we give a new proof of the operator monotonicity of certain functions related to the Wigner-Yanase-Dyson skew information....

  7. Regular Expression Pocket Reference

    CERN Document Server

    Stubblebine, Tony

    2007-01-01

    This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp

  8. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR

  9. Temporally and spatially pulsating solitons in a nonlinear stage of the long-wave Buneman instability

    International Nuclear Information System (INIS)

    Kono, M.; Kawakita, M.

    1990-01-01

    A nonlinear equation describing the development of the Buneman instability has been derived and solved with the aid of Hirota's bilinear transform [J. Math. Phys. 14, 810 (1973)] to give a variety of stationary solutions, such as pulsating solitons, temporally localized and spatially periodic solutions, as well as ordinary solitons

  10. Accreting fluids onto regular black holes via Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)

    2017-08-15

    We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)

  11. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Regularization methods in Banach spaces

    CERN Document Server

    Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S

    2012-01-01

    Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B

  14. Thermal and ghost reflection modeling for a 180-deg. field-of-view long-wave infrared lens

    Science.gov (United States)

    Shi, Weimin; Couture, Michael E.

    2001-03-01

    Optics 1, Inc. has successfully designed and developed a 180 degree(s) field of view long wave infrared lens for USAF/AFRL under SBIR phase I and II funded projects in support of the multi-national Programmable Integrated Ordinance Suite (PIOS) program. In this paper, a procedure is presented on how to evaluate image degradation caused by asymmetric aerodynamic dome heating. In addition, a thermal gradient model is proposed to evaluate degradation caused by axial temperature gradient throughout the entire PIOS lens. Finally, a ghost reflection analysis is demonstrated with non-sequential model.

  15. Long-wave analysis and control of the viscous Rayleigh-Taylor instability with electric fields

    Science.gov (United States)

    Cimpeanu, Radu; Anderson, Thomas; Petropoulos, Peter; Papageorgiou, Demetrios

    2016-11-01

    We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a solid surface in the presence of a horizontally acting electric field. The competition between gravity, surface tension and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semi-spectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations and assess the accuracy of the obtained solutions when varying the electric field strength from zero up to the point when complete stabilization at the target finite wavelengths occurs. We employ DNS to examine the limitations of the asymptotically derived behavior in the context of increasing liquid film heights, with agreement found to be excellent even beyond the target lengthscales. Regimes in which the thin film assumption is no longer valid and droplet pinch-off occurs are then analyzed. Finally, the asymptotic and computational approaches are used in conjunction to identify efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.

  16. Regularization by External Variables

    DEFF Research Database (Denmark)

    Bossolini, Elena; Edwards, R.; Glendinning, P. A.

    2016-01-01

    Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...

  17. Regular expressions cookbook

    CERN Document Server

    Goyvaerts, Jan

    2009-01-01

    This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a

  18. Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons.

    Science.gov (United States)

    Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M

    2014-11-01

    We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.

  19. Long-wave Irradiance Measurement and Modeling during Snowmelt, a Case Study in the Yukon Territory, Canada

    Science.gov (United States)

    Sicart, J.; Essery, R.; Pomeroy, J.

    2004-12-01

    At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.

  20. Regularities of Multifractal Measures

    Indian Academy of Sciences (India)

    First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...

  1. Stochastic analytic regularization

    International Nuclear Information System (INIS)

    Alfaro, J.

    1984-07-01

    Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)

  2. A short proof of increased parabolic regularity

    Directory of Open Access Journals (Sweden)

    Stephen Pankavich

    2015-08-01

    Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.

  3. Accretion onto some well-known regular black holes

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2016-01-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  4. Accretion onto some well-known regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  5. Accretion onto some well-known regular black holes

    Science.gov (United States)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  6. Evolution of long wave disturbances in horizontal gas-liquid flows

    International Nuclear Information System (INIS)

    Kuru, W.C.; Montalbano, E.D.; Brennecke, J.F.; McCready, M.J.

    1993-01-01

    Coherent nonlinear interactions between linearly stable, long wavelength modes and modes that are near the peak of the growth rate are observed in experiments. These open-quotes side-bandclose quotes interactions are suggested as the mechanism for initiation of long wavelength modes that are otherwise predicted to be stable from linear stability theory. Quadratic interaction theory is used to provide insight into when long wavelength modes will appear and how their frequency will be selected. The present work differs from previous side band analyses in that a low frequency mode is retained as a dominant mode (consistent with observations). Because of its relevance to continued growth of long wavelength disturbances and possibly slug formation and owing to its importance in modeling flow regime transitions, a discussion of the validity of the one-dimensional macroscopic equations and the boundary-layer equations as models of long wavelength disturbances for the two-layer stability problem is given in the context of laminar flow of a fluid over a solid wavy surface

  7. Well posedness and regularity for heat equation with the initial condition in weighted Orlitz-Slobodetskii space subordinated to Orlicz space like lambda (log lambda0alpha and the logarithmic weight

    Czech Academy of Sciences Publication Activity Database

    Kałamajska, A.; Krbec, Miroslav

    2015-01-01

    Roč. 28, č. 3 (2015), s. 677-713 ISSN 1139-1138 R&D Projects: GA ČR GAP201/10/1920 Institutional research plan: CEZ:AV0Z1019905 Keywords : evolution problems * heat equation * Orlitz-Slobodetskii spaces * Orlitz-Sobolev spaces Subject RIV: BA - General Mathematics Impact factor: 0.631, year: 2015 http://link.springer.com/article/10.1007%2Fs13163-014-0164-4

  8. Analytic stochastic regularization and gange invariance

    International Nuclear Information System (INIS)

    Abdalla, E.; Gomes, M.; Lima-Santos, A.

    1986-05-01

    A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt

  9. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin

    2014-01-01

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse

  10. Regular expression containment

    DEFF Research Database (Denmark)

    Henglein, Fritz; Nielsen, Lasse

    2011-01-01

    We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...

  11. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  12. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  13. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  14. Comparative analysis of different approaches to the computation of long-wave radiation balance of water air systems

    International Nuclear Information System (INIS)

    Zhukovskii, K.; Nourani, Y.; Monte, L.

    1999-01-01

    In the present paper, the net long-wave radiation balance of the water-air environmental systems is analysed on the base of several semi-empirical approaches. Various theoretical models of infrared atmospheric radiation are reviewed. Factors, affecting their behavior are considered. Special attention is paid to physical conditions under which those models are applicable. Atmospheric and net infrared radiation fluxes are computed and compared under clear and cloudy sky. Results are presented in graphical form. Conclusions are made on the applicability of models considered for evaluating infrared radiation fluxes in environmental conditions of Central Italy. On the base of present analysis Anderson's model is chosen for future calculations of heat budget of lakes in Central Italy [it

  15. Geometric regularizations and dual conifold transitions

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Lazaroiu, Calin I.

    2003-01-01

    We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)

  16. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    . The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  17. Continuum regularized Yang-Mills theory

    International Nuclear Information System (INIS)

    Sadun, L.A.

    1987-01-01

    Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions

  18. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  19. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  20. Regularity conditions of the field on a toroidal magnetic surface

    International Nuclear Information System (INIS)

    Bouligand, M.

    1985-06-01

    We show that a field B vector which is derived from an analytic canonical potential on an ordinary toroidal surface is regular on this surface when the potential satisfies an elliptic equation (owing to the conservative field) subject to certain conditions of regularity of its coefficients [fr

  1. Effect of long-wave ultraviolet light on the lens. I. Model systems for detecting and measuring effect on the lens in vitro

    International Nuclear Information System (INIS)

    Kuck, J.F.R. Jr.

    1976-01-01

    Rat, mouse, and chick lenses incubated with 3-aminotriazole under long-wave ultraviolet (UV) show reduced accumulation and incorporation of leucine and a loss of glutathione. The effect on leucine incorporation is strikingly enhanced when capsule-epithelium pools are incubated. The procedure may identify photosensitizers or metabolic inhibitors which are cataractogenic when acting in conjunction with UV

  2. Reduction operators of Burgers equation.

    Science.gov (United States)

    Pocheketa, Oleksandr A; Popovych, Roman O

    2013-02-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.

  3. Diverse Regular Employees and Non-regular Employment (Japanese)

    OpenAIRE

    MORISHIMA Motohiro

    2011-01-01

    Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...

  4. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-04-17

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.

  5. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  6. Regularization of divergent integrals

    OpenAIRE

    Felder, Giovanni; Kazhdan, David

    2016-01-01

    We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.

  7. Regularizing portfolio optimization

    International Nuclear Information System (INIS)

    Still, Susanne; Kondor, Imre

    2010-01-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  8. Regularizing portfolio optimization

    Science.gov (United States)

    Still, Susanne; Kondor, Imre

    2010-07-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  9. Fractional Regularization Term for Variational Image Registration

    Directory of Open Access Journals (Sweden)

    Rafael Verdú-Monedero

    2009-01-01

    Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.

  10. A nonlinear wave equation in nonadiabatic flame propagation

    International Nuclear Information System (INIS)

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-01-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time

  11. Regular Single Valued Neutrosophic Hypergraphs

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Malik

    2016-12-01

    Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.

  12. The geometry of continuum regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-03-01

    This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations

  13. Analytic stochastic regularization and gauge theories

    International Nuclear Information System (INIS)

    Abdalla, E.; Gomes, M.; Lima-Santos, A.

    1987-04-01

    We prove that analytic stochatic regularization braks gauge invariance. This is done by an explicit one loop calculation of the two three and four point vertex functions of the gluon field in scalar chromodynamics, which turns out not to be geuge invariant. We analyse the counter term structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization. (author) [pt

  14. Annotation of Regular Polysemy

    DEFF Research Database (Denmark)

    Martinez Alonso, Hector

    Regular polysemy has received a lot of attention from the theory of lexical semantics and from computational linguistics. However, there is no consensus on how to represent the sense of underspecified examples at the token level, namely when annotating or disambiguating senses of metonymic words...... and metonymic. We have conducted an analysis in English, Danish and Spanish. Later on, we have tried to replicate the human judgments by means of unsupervised and semi-supervised sense prediction. The automatic sense-prediction systems have been unable to find empiric evidence for the underspecified sense, even...

  15. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  16. Regularities of radiation heredity

    International Nuclear Information System (INIS)

    Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    One analyzed regularities of radiation heredity in metals and alloys. One made conclusion about thermodynamically irreversible changes in structure of materials under irradiation. One offers possible ways of heredity transmittance of radiation effects at high-temperature transformations in the materials. Phenomenon of radiation heredity may be turned to practical use to control structure of liquid metal and, respectively, structure of ingot via preliminary radiation treatment of charge. Concentration microheterogeneities in material defect structure induced by preliminary irradiation represent the genetic factor of radiation heredity [ru

  17. Differential equations and finite groups

    NARCIS (Netherlands)

    Put, Marius van der; Ulmer, Felix

    2000-01-01

    The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois

  18. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera

    Science.gov (United States)

    Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian

    2018-02-01

    For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.

  19. Viscous Regularization of the Euler Equations and Entropy Principles

    KAUST Repository

    Guermond, Jean-Luc; Popov, Bojan

    2014-01-01

    ), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.

  20. Effective field theory dimensional regularization

    International Nuclear Information System (INIS)

    Lehmann, Dirk; Prezeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed

  1. Effective field theory dimensional regularization

    Science.gov (United States)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  2. 75 FR 76006 - Regular Meeting

    Science.gov (United States)

    2010-12-07

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...

  3. Sparsity regularization for parameter identification problems

    International Nuclear Information System (INIS)

    Jin, Bangti; Maass, Peter

    2012-01-01

    The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some

  4. Analysis of the Electronic Crosstalk Effect in Terra MODIS Long-Wave Infrared Photovoltaic Bands Using Lunar Images

    Science.gov (United States)

    Wilson, Truman; Wu, Aisheng; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space-view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the in-band and out-of-band contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27- 30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and correct

  5. An inverse problem in a parabolic equation

    Directory of Open Access Journals (Sweden)

    Zhilin Li

    1998-11-01

    Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.

  6. Selection of regularization parameter for l1-regularized damage detection

    Science.gov (United States)

    Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing

    2018-06-01

    The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.

  7. Ensemble manifold regularization.

    Science.gov (United States)

    Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng

    2012-06-01

    We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.

  8. Least square regularized regression in sum space.

    Science.gov (United States)

    Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu

    2013-04-01

    This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.

  9. Regularization method for solving the inverse scattering problem

    International Nuclear Information System (INIS)

    Denisov, A.M.; Krylov, A.S.

    1985-01-01

    The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table

  10. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  11. Adaptive Regularization of Neural Classifiers

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai

    1997-01-01

    We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...

  12. Rogue periodic waves of the modified KdV equation

    Science.gov (United States)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-05-01

    Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.

  13. Likelihood ratio decisions in memory: three implied regularities.

    Science.gov (United States)

    Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T

    2009-06-01

    We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.

  14. Consistent Partial Least Squares Path Modeling via Regularization.

    Science.gov (United States)

    Jung, Sunho; Park, JaeHong

    2018-01-01

    Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  15. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    International Nuclear Information System (INIS)

    Ablowitz, Mark J; Curtis, Christopher W

    2011-01-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  16. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    Science.gov (United States)

    Ablowitz, Mark J.; Curtis, Christopher W.

    2011-05-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  17. Efficient Long Wave IR Laser from Ho:YAG 2 {mu}m Pumped ZnGeP{sub 2} Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li-Gang,; Bao-Quan, Yao; Xiao-Ming, Duan; Guo-Li, Zhu; Yue-Zhu, Wang; You-Lun, Ju [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2010-01-15

    An efficient high power long wave infrared laser based on ZnGeP{sub 2} optical parametric oscillator pumped by a 2.09 {mu}m Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6 W Ho pump power level and a quantum efficiency of 31 % when the 1'idler wavelength is tuned at 8.08 {mu}m. The wavelength tuning range from 8-9.1 {mu}m is also achieved by rotating the ZGP crystal. (fundamental areas of phenomenology(including applications))

  18. 75 FR 53966 - Regular Meeting

    Science.gov (United States)

    2010-09-02

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...

  19. Online co-regularized algorithms

    NARCIS (Netherlands)

    Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.

    2012-01-01

    We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks

  20. An imbedding theorem and its applications in degenerate elliptic equations

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1988-06-01

    We improve the Rellich-Kondrachov theorem and apply it to study strongly degenerate and singular elliptic equations. We obtain the maximum principle, Harnacks's inequality and global regularity for solutions of those equations. (author). 11 refs

  1. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  2. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system.

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  3. Continuum-regularized quantum gravity

    International Nuclear Information System (INIS)

    Chan Huesum; Halpern, M.B.

    1987-01-01

    The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)

  4. Regular Riemann-Hilbert transforms, Baecklund transformations and hidden symmetry algebra for some linearization systems

    International Nuclear Information System (INIS)

    Chau Ling-Lie; Ge Mo-Lin; Teh, Rosy.

    1984-09-01

    The Baecklund Transformations and the hidden symmetry algebra for Self-Dual Yang-Mills Equations, Landau-Lifshitz equations and the Extended Super Yang-Mills fields (N>2) are discussed on the base of the Regular Riemann-Hilbert Transform and the linearization equations. (author)

  5. Fast regularizing sequential subspace optimization in Banach spaces

    International Nuclear Information System (INIS)

    Schöpfer, F; Schuster, T

    2009-01-01

    We are concerned with fast computations of regularized solutions of linear operator equations in Banach spaces in case only noisy data are available. To this end we modify recently developed sequential subspace optimization methods in such a way that the therein employed Bregman projections onto hyperplanes are replaced by Bregman projections onto stripes whose width is in the order of the noise level

  6. Linear operator inequalities for strongly stable weakly regular linear systems

    NARCIS (Netherlands)

    Curtain, RF

    2001-01-01

    We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov

  7. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  8. Small data global solutions for the Camassa–Choi equations

    Science.gov (United States)

    Harrop-Griffiths, Benjamin; Marzuola, Jeremy L.

    2018-05-01

    We consider solutions to the Cauchy problem for an internal-wave model derived by Camassa–Choi (1996 J. Fluid Mech. 313 83–103). This model is a natural generalization of the Benjamin–Ono and intermediate long wave equations for weak transverse effects as in the case of the Kadomtsev–Petviashvili equations for the Korteweg-de Vries equation. For that reason they are often referred to as the KP-ILW or the KP–Benjamin–Ono equations regarding finite or infinite depth respectively. We prove the existence and long-time dynamics of global solutions from small, smooth, spatially localized initial data on . The techniques applied here involve testing by wave packet techniques developed by Ifrim and Tataru in (2015 Nonlinearity 28 2661–75 2016 Bull. Soc. Math. France 144 369–94).

  9. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  10. Analytic semigroups and optimal regularity in parabolic problems

    CERN Document Server

    Lunardi, Alessandra

    2012-01-01

    The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p

  11. New regular black hole solutions

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-01-01

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  12. Manifold Regularized Correlation Object Tracking

    OpenAIRE

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2017-01-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...

  13. Condition Number Regularized Covariance Estimation.

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2013-06-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.

  14. Condition Number Regularized Covariance Estimation*

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2012-01-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197

  15. Lavrentiev regularization method for nonlinear ill-posed problems

    International Nuclear Information System (INIS)

    Kinh, Nguyen Van

    2002-10-01

    In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)

  16. Geometric continuum regularization of quantum field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  17. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  18. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  19. Regularization destriping of remote sensing imagery

    Science.gov (United States)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle

    2017-07-01

    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  20. The Regularity of Optimal Irrigation Patterns

    Science.gov (United States)

    Morel, Jean-Michel; Santambrogio, Filippo

    2010-02-01

    A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.

  1. Generalized Bregman distances and convergence rates for non-convex regularization methods

    International Nuclear Information System (INIS)

    Grasmair, Markus

    2010-01-01

    We generalize the notion of Bregman distance using concepts from abstract convexity in order to derive convergence rates for Tikhonov regularization with non-convex regularization terms. In particular, we study the non-convex regularization of linear operator equations on Hilbert spaces, showing that the conditions required for the application of the convergence rates results are strongly related to the standard range conditions from the convex case. Moreover, we consider the setting of sparse regularization, where we show that a rate of order δ 1/p holds, if the regularization term has a slightly faster growth at zero than |t| p

  2. Creation and annihilation of solitons in the string nonlinear equation

    International Nuclear Information System (INIS)

    Aguero G, M.A.; Espinosa G, A.A.; Martinez O, J.

    1997-01-01

    Starting from the cubic-quintic Schroedinger equation it is obtained the nonlinear string equation. This system supports regular and singular solitons. It is shown that two singular solitons could be generated after the interaction of two regular solitons and viceversa. (Author)

  3. Remarks about singular solutions to the Dirac equation

    International Nuclear Information System (INIS)

    Uhlir, M.

    1975-01-01

    In the paper singular solutions of the Dirac equation are investigated. They are derived in the Lorentz-covariant way of functions proportional to static multipole fields of scalar and (or) electromagnetic fields and of regular solutions of the Dirac equations. The regularization procedure excluding divergences of total energy, momentum and angular momentum of the spinor field considered is proposed

  4. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  5. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone

    Science.gov (United States)

    Ke, Ziming; Yankovsky, Alexander E.

    2011-06-01

    A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.

  6. Metric regularity and subdifferential calculus

    International Nuclear Information System (INIS)

    Ioffe, A D

    2000-01-01

    The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces

  7. Manifold Regularized Correlation Object Tracking.

    Science.gov (United States)

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2018-05-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.

  8. Dimensional regularization in configuration space

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1995-09-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs

  9. Regular algebra and finite machines

    CERN Document Server

    Conway, John Horton

    2012-01-01

    World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg

  10. Matrix regularization of 4-manifolds

    OpenAIRE

    Trzetrzelewski, M.

    2012-01-01

    We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...

  11. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  12. Regularization of Nonmonotone Variational Inequalities

    International Nuclear Information System (INIS)

    Konnov, Igor V.; Ali, M.S.S.; Mazurkevich, E.O.

    2006-01-01

    In this paper we extend the Tikhonov-Browder regularization scheme from monotone to rather a general class of nonmonotone multivalued variational inequalities. We show that their convergence conditions hold for some classes of perfectly and nonperfectly competitive economic equilibrium problems

  13. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  14. 76 FR 3629 - Regular Meeting

    Science.gov (United States)

    2011-01-20

    ... Meeting SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held at the offices of the Farm... meeting of the Board will be open to the [[Page 3630

  15. Forcing absoluteness and regularity properties

    NARCIS (Netherlands)

    Ikegami, D.

    2010-01-01

    For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over L and the core model K. We use our results to answer open questions from set theory of the reals.

  16. Globals of Completely Regular Monoids

    Institute of Scientific and Technical Information of China (English)

    Wu Qian-qian; Gan Ai-ping; Du Xian-kun

    2015-01-01

    An element of a semigroup S is called irreducible if it cannot be expressed as a product of two elements in S both distinct from itself. In this paper we show that the class C of all completely regular monoids with irreducible identity elements satisfies the strong isomorphism property and so it is globally determined.

  17. Fluid queues and regular variation

    NARCIS (Netherlands)

    Boxma, O.J.

    1996-01-01

    This paper considers a fluid queueing system, fed by N independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index ¿. We show that its fat tail gives rise to an even

  18. Fluid queues and regular variation

    NARCIS (Netherlands)

    O.J. Boxma (Onno)

    1996-01-01

    textabstractThis paper considers a fluid queueing system, fed by $N$ independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index $zeta$. We show that its fat tail

  19. Empirical laws, regularity and necessity

    NARCIS (Netherlands)

    Koningsveld, H.

    1973-01-01

    In this book I have tried to develop an analysis of the concept of an empirical law, an analysis that differs in many ways from the alternative analyse's found in contemporary literature dealing with the subject.

    1 am referring especially to two well-known views, viz. the regularity and

  20. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can

  1. Geometrical bucklings for two-dimensional regular polygonal regions using the finite Fourier transformation

    International Nuclear Information System (INIS)

    Mori, N.; Kobayashi, K.

    1996-01-01

    A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)

  2. Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations.

    Science.gov (United States)

    Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S

    2014-05-01

    We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.

  3. Regular and conformal regular cores for static and rotating solutions

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Aïnou, Mustapha

    2014-03-07

    Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.

  4. Regular and conformal regular cores for static and rotating solutions

    International Nuclear Information System (INIS)

    Azreg-Aïnou, Mustapha

    2014-01-01

    Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.

  5. Regularization ambiguities in loop quantum gravity

    International Nuclear Information System (INIS)

    Perez, Alejandro

    2006-01-01

    One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find

  6. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig

    2017-10-18

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.

  7. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  8. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  9. Energy functions for regularization algorithms

    Science.gov (United States)

    Delingette, H.; Hebert, M.; Ikeuchi, K.

    1991-01-01

    Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.

  10. Physical model of dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Schonfeld, Jonathan F.

    2016-12-15

    We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)

  11. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  12. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  13. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  14. Regularized strings with extrinsic curvature

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.

    1987-07-01

    We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)

  15. Circuit complexity of regular languages

    Czech Academy of Sciences Publication Activity Database

    Koucký, Michal

    2009-01-01

    Roč. 45, č. 4 (2009), s. 865-879 ISSN 1432-4350 R&D Projects: GA ČR GP201/07/P276; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : regular languages * circuit complexity * upper and lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.726, year: 2009

  16. Consistent three-equation model for thin films

    Science.gov (United States)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  17. Bardeen regular black hole with an electric source

    Science.gov (United States)

    Rodrigues, Manuel E.; Silva, Marcos V. de S.

    2018-06-01

    If some energy conditions on the stress-energy tensor are violated, is possible construct regular black holes in General Relativity and in alternative theories of gravity. This type of solution has horizons but does not present singularities. The first regular black hole was presented by Bardeen and can be obtained from Einstein equations in the presence of an electromagnetic field. E. Ayon-Beato and A. Garcia reinterpreted the Bardeen metric as a magnetic solution of General Relativity coupled to a nonlinear electrodynamics. In this work, we show that the Bardeen model may also be interpreted as a solution of Einstein equations in the presence of an electric source, whose electric field does not behave as a Coulomb field. We analyzed the asymptotic forms of the Lagrangian for the electric case and also analyzed the energy conditions.

  18. Variational analysis of regular mappings theory and applications

    CERN Document Server

    Ioffe, Alexander D

    2017-01-01

    This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory. The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, whic...

  19. General inverse problems for regular variation

    DEFF Research Database (Denmark)

    Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan

    2014-01-01

    Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...

  20. Sound Attenuation in Elliptic Mufflers Using a Regular Perturbation Method

    OpenAIRE

    Banerjee, Subhabrata; Jacobi, Anthony M.

    2012-01-01

    The study of sound attenuation in an elliptical chamber involves the solution of the Helmholtz equation in elliptic coordinate systems. The Eigen solutions for such problems involve the Mathieu and the modified Mathieu functions. The computation of such functions poses considerable challenge. An alternative method to solve such problems had been proposed in this paper. The elliptical cross-section of the muffler has been treated as a perturbed circle, enabling the use of a regular perturbatio...

  1. Differential operators associated with Gegenbauer polynomials - 3. The regular case

    International Nuclear Information System (INIS)

    Onyango-Otieno, V.P.

    1989-07-01

    We study the regular case of the Gegenbauer differential equation - ((1-x 2 ) v+1/2 y 1 (x)) 1 +v 2 (1-x 2 ) v-1/2 y(x) = λ(1-x 2 ) v-1/2 y(x), (x is an element of (-1,1),-1/2 w 2 (-1,1) and H p,q 2 (-1,1). (author). 13 refs

  2. Regularization and error estimates for nonhomogeneous backward heat problems

    Directory of Open Access Journals (Sweden)

    Duc Trong Dang

    2006-01-01

    Full Text Available In this article, we study the inverse time problem for the non-homogeneous heat equation which is a severely ill-posed problem. We regularize this problem using the quasi-reversibility method and then obtain error estimates on the approximate solutions. Solutions are calculated by the contraction principle and shown in numerical experiments. We obtain also rates of convergence to the exact solution.

  3. Regular behaviors in SU(2) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Xu Xiaoming

    1997-01-01

    In order to study regular behaviors in high-energy nucleon-nucleon collisions, a representation of the vector potential A i a is defined with respect to the (a,i)-dependence in the SU(2) Yang-Mills classical mechanics. Equations of the classical infrared field as well as effective potentials are derived for the elastic or inelastic collision of two plane wave in a three-mode model and the decay of an excited spherically-symmetric field

  4. On the theory of drainage area for regular and non-regular points

    Science.gov (United States)

    Bonetti, S.; Bragg, A. D.; Porporato, A.

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  5. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene

    2016-01-01

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  6. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos

    2016-08-30

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  7. Thin-shell wormholes from the regular Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Halilsoy, M.; Ovgun, A.; Mazharimousavi, S.H. [Eastern Mediterranean University, Department of Physics, Mersin 10 (Turkey)

    2014-03-15

    We revisit the regular black hole found by Hayward in 4-dimensional static, spherically symmetric spacetime. To find a possible source for such a spacetime we resort to the nonlinear electrodynamics in general relativity. It is found that a magnetic field within this context gives rise to the regular Hayward black hole. By employing such a regular black hole we construct a thin-shell wormhole for the case of various equations of state on the shell. We abbreviate a general equation of state by p = ψ(σ) where p is the surface pressure which is a function of the mass density (σ). In particular, linear, logarithmic, Chaplygin, etc. forms of equations of state are considered. In each case we study the stability of the thin shell against linear perturbations.We plot the stability regions by tuning the parameters of the theory. It is observed that the role of the Hayward parameter is to make the TSW more stable. Perturbations of the throat with small velocity condition are also studied. The matter of our TSWs, however, remains exotic. (orig.)

  8. Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation

    Science.gov (United States)

    Zou, Li; Tian, Shou-Fu; Feng, Lian-Li

    2017-12-01

    In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.

  9. Hamilton-Jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle

    Science.gov (United States)

    Wang, Hong

    2017-09-01

    In this paper, some of formulations of Hamilton-Jacobi equations for Hamiltonian system and regular reduced Hamiltonian systems are given. At first, an important lemma is proved, and it is a modification for the corresponding result of Abraham and Marsden (1978), such that we can prove two types of geometric Hamilton-Jacobi theorem for a Hamiltonian system on the cotangent bundle of a configuration manifold, by using the symplectic form and dynamical vector field. Then these results are generalized to the regular reducible Hamiltonian system with symmetry and momentum map, by using the reduced symplectic form and the reduced dynamical vector field. The Hamilton-Jacobi theorems are proved and two types of Hamilton-Jacobi equations, for the regular point reduced Hamiltonian system and the regular orbit reduced Hamiltonian system, are obtained. As an application of the theoretical results, the regular point reducible Hamiltonian system on a Lie group is considered, and two types of Lie-Poisson Hamilton-Jacobi equation for the regular point reduced system are given. In particular, the Type I and Type II of Lie-Poisson Hamilton-Jacobi equations for the regular point reduced rigid body and heavy top systems are shown, respectively.

  10. Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates.

    Science.gov (United States)

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C

    2017-04-01

    Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

  11. Cell cycle analysis of cultured mammalian cells after exposure to 4,5',8-trimethylpsoralen and long-wave ultraviolet light

    International Nuclear Information System (INIS)

    Cohen, S.R.; Burkholder, D.E.; Varga, J.M.; Carter, D.M.; Bartholomew, J.C.

    1981-01-01

    Cell cycle analysis was used to study the the effect of 4,5'8-trimethylpsoralen (TMP) and long-wave ultraviolet light (UV-A) on cultured mammalian cells. DNA distribution patterns were measured for murine melanoma cells (a cloned line of Cloudman S91) and a strain of diploid human skin fibroblasts (CRL 1295) using both a microfluorimetry procedure and flow cytometry. The untreated cells and those receiving TMP along and UV-A alone had identical DNA content as assessed at several posttreatment intervals (0-72 hr). The majority of cells in control groups contained a G1 DNA content, whereas exposure to TMP (2 x 10(-7) M) plus UV-A (1 Joule/cm2) led to the accumulation of cells in the G2 phase. These observations were similar for each cell type and both analytical techniques were in excellent agreement. The finding that psoralen plus UV-A induces a phase-specific G2 blockade in cultured cells has important implications for understanding the mechanisms which account for enhanced pigmentation and suppression of cellular proliferation following exposure to these agents in vivo

  12. Comparative investigation of long-wave infrared generation based on ZnGeP{sub 2} and CdSe optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Gang, Li; Guo-Li, Zhu; Pei-Bei, Meng; You-Lun, Ju; Wang Yue-Zhu, E-mail: yaobq08@hit.edu.cn [National Key Laboratory of Tunable Laser Technology Harbin Institute of Technology Harbin 150001 (China)

    2012-03-15

    Long-wave infrared (IR) generation based on type-II (o{yields}e+o) phase matching ZnGeP{sub 2} (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05 {mu}m Tm,Ho:GdVO{sub 4} laser is reported. The comparisons of the bire-fringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 {mu}m is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 {mu}m. For the CdSe OPO, we demonstrate a 64 mW output at 8.9 {mu}m with a single crystal 28 mm in length. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  14. Regularized Statistical Analysis of Anatomy

    DEFF Research Database (Denmark)

    Sjöstrand, Karl

    2007-01-01

    This thesis presents the application and development of regularized methods for the statistical analysis of anatomical structures. Focus is on structure-function relationships in the human brain, such as the connection between early onset of Alzheimer’s disease and shape changes of the corpus...... and mind. Statistics represents a quintessential part of such investigations as they are preluded by a clinical hypothesis that must be verified based on observed data. The massive amounts of image data produced in each examination pose an important and interesting statistical challenge...... efficient algorithms which make the analysis of large data sets feasible, and gives examples of applications....

  15. Academic Training Lecture - Regular Programme

    CERN Multimedia

    PH Department

    2011-01-01

    Regular Lecture Programme 9 May 2011 ACT Lectures on Detectors - Inner Tracking Detectors by Pippa Wells (CERN) 10 May 2011 ACT Lectures on Detectors - Calorimeters (2/5) by Philippe Bloch (CERN) 11 May 2011 ACT Lectures on Detectors - Muon systems (3/5) by Kerstin Hoepfner (RWTH Aachen) 12 May 2011 ACT Lectures on Detectors - Particle Identification and Forward Detectors by Peter Krizan (University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia) 13 May 2011 ACT Lectures on Detectors - Trigger and Data Acquisition (5/5) by Dr. Brian Petersen (CERN) from 11:00 to 12:00 at CERN ( Bldg. 222-R-001 - Filtration Plant )

  16. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used

  17. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation

    International Nuclear Information System (INIS)

    Bardsley, Johnathan M; Goldes, John

    2009-01-01

    In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness

  18. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  19. Consistent Partial Least Squares Path Modeling via Regularization

    Directory of Open Access Journals (Sweden)

    Sunho Jung

    2018-02-01

    Full Text Available Partial least squares (PLS path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc, designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  20. RES: Regularized Stochastic BFGS Algorithm

    Science.gov (United States)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  1. Regularized Label Relaxation Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  2. Solitary Wave Solutions of the Boussinesq Equation and Its Improved Form

    Directory of Open Access Journals (Sweden)

    Reza Abazari

    2013-01-01

    Full Text Available This paper presents the general case study of previous works on generalized Boussinesq equations, (Abazari, 2011 and (Kılıcman and Abazari, 2012, that focuses on the application of G′/G-expansion method with the aid of Maple to construct more general exact solutions for the coupled Boussinesq equations. In this work, the mentioned method is applied to construct more general exact solutions of Boussinesq equation and improved Boussinesq equation, which the French scientist Joseph Valentin Boussinesq (1842–1929 described in the 1870s model equations for the propagation of long waves on the surface of water with small amplitude. Our work is motivated by the fact that the G′/G-expansion method provides not only more general forms of solutions but also periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.

  3. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  4. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  5. Wave dynamics of regular and chaotic rays

    International Nuclear Information System (INIS)

    McDonald, S.W.

    1983-09-01

    In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space

  6. From inactive to regular jogger

    DEFF Research Database (Denmark)

    Lund-Cramer, Pernille; Brinkmann Løite, Vibeke; Bredahl, Thomas Viskum Gjelstrup

    study was conducted using individual semi-structured interviews on how a successful long-term behavior change had been achieved. Ten informants were purposely selected from participants in the DANO-RUN research project (7 men, 3 women, average age 41.5). Interviews were performed on the basis of Theory...... of Planned Behavior (TPB) and The Transtheoretical Model (TTM). Coding and analysis of interviews were performed using NVivo 10 software. Results TPB: During the behavior change process, the intention to jogging shifted from a focus on weight loss and improved fitness to both physical health, psychological......Title From inactive to regular jogger - a qualitative study of achieved behavioral change among recreational joggers Authors Pernille Lund-Cramer & Vibeke Brinkmann Løite Purpose Despite extensive knowledge of barriers to physical activity, most interventions promoting physical activity have proven...

  7. Tessellating the Sphere with Regular Polygons

    Science.gov (United States)

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  8. On the equivalence of different regularization methods

    International Nuclear Information System (INIS)

    Brzezowski, S.

    1985-01-01

    The R-circunflex-operation preceded by the regularization procedure is discussed. Some arguments are given, according to which the results may depend on the method of regularization, introduced in order to avoid divergences in perturbation calculations. 10 refs. (author)

  9. The uniqueness of the regularization procedure

    International Nuclear Information System (INIS)

    Brzezowski, S.

    1981-01-01

    On the grounds of the BPHZ procedure, the criteria of correct regularization in perturbation calculations of QFT are given, together with the prescription for dividing the regularized formulas into the finite and infinite parts. (author)

  10. Application of Turchin's method of statistical regularization

    Science.gov (United States)

    Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey

    2018-04-01

    During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.

  11. Regular extensions of some classes of grammars

    NARCIS (Netherlands)

    Nijholt, Antinus

    Culik and Cohen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this report we consider the analogous extension of the LL(k) grammers, called the LL-regular grammars. The relations of this class of grammars to other classes of grammars are shown. Every LL-regular

  12. Global regularization method for planar restricted three-body problem

    Directory of Open Access Journals (Sweden)

    Sharaf M.A.

    2015-01-01

    Full Text Available In this paper, global regularization method for planar restricted three-body problem is purposed by using the transformation z = x+iy = ν cos n(u+iv, where i = √−1, 0 < ν ≤ 1 and n is a positive integer. The method is developed analytically and computationally. For the analytical developments, analytical solutions in power series of the pseudotime τ are obtained for positions and velocities (u, v, u', v' and (x, y, x˙, y˙ in both regularized and physical planes respectively, the physical time t is also obtained as power series in τ. Moreover, relations between the coefficients of the power series are obtained for two consequent values of n. Also, we developed analytical solutions in power series form for the inverse problem of finding τ in terms of t. As typical examples, three symbolic expressions for the coefficients of the power series were developed in terms of initial values. As to the computational developments, the global regularized equations of motion are developed together with their initial values in forms suitable for digital computations using any differential equations solver. On the other hand, for numerical evolutions of power series, an efficient method depending on the continued fraction theory is provided.

  13. Characteristics of phase-averaged equations for modulated wave groups

    NARCIS (Netherlands)

    Klopman, G.; Petit, H.A.H.; Battjes, J.A.

    2000-01-01

    The project concerns the influence of long waves on coastal morphology. The modelling of the combined motion of the long waves and short waves in the horizontal plane is done by phase-averaging over the short wave motion and using intra-wave modelling for the long waves, see e.g. Roelvink (1993).

  14. Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations

    Science.gov (United States)

    Kanoglu, U.; Aydin, B.

    2014-12-01

    The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV

  15. On a Linear Equation Arising in Isometric Embedding of Torus-like Surface

    Institute of Scientific and Technical Information of China (English)

    Chunhe LI

    2009-01-01

    The solvability of a linear equation and the regularity of the solution are discussed.The equation is arising in a geometric problem which is concerned with the realization of Alexandroff's positive annul in R3.

  16. Class of regular bouncing cosmologies

    Science.gov (United States)

    Vasilić, Milovan

    2017-06-01

    In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.

  17. Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian

    Directory of Open Access Journals (Sweden)

    A. Zabrodin

    2018-02-01

    Full Text Available We discuss a self-dual form or the Bäcklund transformations for the continuous (in time variable glN Ruijsenaars–Schneider model. It is based on the first order equations in N+M complex variables which include N positions of particles and M dual variables. The latter satisfy equations of motion of the glM Ruijsenaars–Schneider model. In the elliptic case it holds M=N while for the rational and trigonometric models M is not necessarily equal to N. Our consideration is similar to the previously obtained results for the Calogero–Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars–Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian by means of the simple pole ansatz likewise the Calogero–Moser models arise from ordinary intermediate long wave and Benjamin–Ono equations.

  18. A new approach to nonlinear constrained Tikhonov regularization

    KAUST Repository

    Ito, Kazufumi

    2011-09-16

    We present a novel approach to nonlinear constrained Tikhonov regularization from the viewpoint of optimization theory. A second-order sufficient optimality condition is suggested as a nonlinearity condition to handle the nonlinearity of the forward operator. The approach is exploited to derive convergence rate results for a priori as well as a posteriori choice rules, e.g., discrepancy principle and balancing principle, for selecting the regularization parameter. The idea is further illustrated on a general class of parameter identification problems, for which (new) source and nonlinearity conditions are derived and the structural property of the nonlinearity term is revealed. A number of examples including identifying distributed parameters in elliptic differential equations are presented. © 2011 IOP Publishing Ltd.

  19. Regularization of Hamilton-Lagrangian guiding center theories

    International Nuclear Information System (INIS)

    Correa-Restrepo, D.; Wimmel, H.K.

    1985-04-01

    The Hamilton-Lagrangian guiding-center (G.C.) theories of Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields with non-vanishing parallel curl at a critical value of vsub(parallel), which complicates applications. The singularity is related to a sudden breakdown, at a critical vsub(parallel), of gyration in the exact particle mechanics. While the latter is a real effect, the G.C. singularity can be removed. To this end a regularization method is defined that preserves the Hamilton-Lagrangian structure and the conservation theorems. For demonstration this method is applied to the standard G.C. theory (without polarization drift). Liouville's theorem and G.C. kinetic equations are also derived in regularized form. The method could equally well be applied to the case with polarization drift and to relativistic G.C. theory. (orig.)

  20. A regularization method for extrapolation of solar potential magnetic fields

    Science.gov (United States)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  1. Point-splitting regularization of composite operators and anomalies

    International Nuclear Information System (INIS)

    Novotny, J.; Schnabl, M.

    2000-01-01

    The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to reduce the complexity of the calculations. (orig.)

  2. The extended hyperbolic function method and exact solutions of the long-short wave resonance equations

    International Nuclear Information System (INIS)

    Shang Yadong

    2008-01-01

    The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions

  3. Asymptotics for Large Time of Global Solutions to the Generalized Kadomtsev-Petviashvili Equation

    Science.gov (United States)

    Hayashi, Nakao; Naumkin, Pavel I.; Saut, Jean-Claude

    We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations where σ= 1 or σ=- 1. When ρ= 2 and σ=- 1, (KP) is known as the KPI equation, while ρ= 2, σ=+ 1 corresponds to the KPII equation. The KP equation models the propagation along the x-axis of nonlinear dispersive long waves on the surface of a fluid, when the variation along the y-axis proceeds slowly [10]. The case ρ= 3, σ=- 1 has been found in the modeling of sound waves in antiferromagnetics [15]. We prove that if ρ>= 3 is an integer and the initial data are sufficiently small, then the solution u of (KP) satisfies the following estimates: for all t∈R, where κ= 1 if ρ= 3 and κ= 0 if ρ>= 4. We also find the large time asymptotics for the solution.

  4. Conformable Fractional Bessel Equation and Bessel Functions

    OpenAIRE

    Gökdoğan, Ahmet; Ünal, Emrah; Çelik, Ercan

    2015-01-01

    In this work, we study the fractional power series solutions around regular singular point x=0 of conformable fractional Bessel differential equation and fractional Bessel functions. Then, we compare fractional solutions with ordinary solutions. In addition, we present certain property of fractional Bessel functions.

  5. Asymptotic behavior of the plasma equation

    International Nuclear Information System (INIS)

    Kwong, Y.C.

    1984-01-01

    This paper is concerned with the plasma equation on a bounded smooth domain the N-dimensional Euclidean Space, with non-negative initial data and a homogenous Dirichlet boundary condition. It is known that there exists a finite extinction time T such that the solution decays to zero at T. Berryman and Holland investigated the stability of the profile of the solution as t is approaching T. However, they obtained their results at the expense of some very strong regularity assumptions. By invoking both the nonlinear semi-group theory and a standard regularizing scheme for the equation, the same results are proved without those assumptions by measuring the rate of decay of the solution and estimates are obtained on the time derivative as t is approaching T. As motivated by the regularity assumptions, both the interior and boundary regularities of the solution are studied. Finally, the nonlinearity of the plasma equation is perturbed and the same aspects for the perturbed equation are studied

  6. Partial differential equations and calculus of variations

    CERN Document Server

    Leis, Rolf

    1988-01-01

    This volume contains 18 invited papers by members and guests of the former Sonderforschungsbereich in Bonn (SFB 72) who, over the years, collaborated on the research group "Solution of PDE's and Calculus of Variations". The emphasis is on existence and regularity results, on special equations of mathematical physics and on scattering theory.

  7. Nonlinear anisotropic parabolic equations in Lm

    Directory of Open Access Journals (Sweden)

    Fares Mokhtari

    2014-01-01

    Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].

  8. Regularization Techniques for Linear Least-Squares Problems

    KAUST Repository

    Suliman, Mohamed

    2016-04-01

    method deals with discrete ill-posed problems when the singular values of the linear transformation matrix are decaying very fast to a significantly small value. For the both proposed algorithms, the regularization parameter is obtained as a solution of a non-linear characteristic equation. We provide a details study for the general properties of these functions and address the existence and uniqueness of the root. To demonstrate the performance of the derivations, the first proposed COPRA method is applied to estimate different signals with various characteristics, while the second proposed COPRA method is applied to a large set of different real-world discrete ill-posed problems. Simulation results demonstrate that the two proposed methods outperform a set of benchmark regularization algorithms in most cases. In addition, the algorithms are also shown to have the lowest run time.

  9. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  10. Stochastic dynamic modeling of regular and slow earthquakes

    Science.gov (United States)

    Aso, N.; Ando, R.; Ide, S.

    2017-12-01

    Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal

  11. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  12. Exact RG flow equations and quantum gravity

    Science.gov (United States)

    de Alwis, S. P.

    2018-03-01

    We discuss the different forms of the functional RG equation and their relation to each other. In particular we suggest a generalized background field version that is close in spirit to the Polchinski equation as an alternative to the Wetterich equation to study Weinberg's asymptotic safety program for defining quantum gravity, and argue that the former is better suited for this purpose. Using the heat kernel expansion and proper time regularization we find evidence in support of this program in agreement with previous work.

  13. Thermodynamic Product Relations for Generalized Regular Black Hole

    International Nuclear Information System (INIS)

    Pradhan, Parthapratim

    2016-01-01

    We derive thermodynamic product relations for four-parametric regular black hole (BH) solutions of the Einstein equations coupled with a nonlinear electrodynamics source. The four parameters can be described by the mass (m), charge (q), dipole moment (α), and quadrupole moment (β), respectively. We study its complete thermodynamics. We compute different thermodynamic products, that is, area product, BH temperature product, specific heat product, and Komar energy product, respectively. Furthermore, we show some complicated function of horizon areas that is indeed mass-independent and could turn out to be universal.

  14. Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics

    International Nuclear Information System (INIS)

    Heckathorn, D.

    1979-01-01

    Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)

  15. Regularization by fractional filter methods and data smoothing

    International Nuclear Information System (INIS)

    Klann, E; Ramlau, R

    2008-01-01

    This paper is concerned with the regularization of linear ill-posed problems by a combination of data smoothing and fractional filter methods. For the data smoothing, a wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the reconstruction, an approximation to the solution of the operator equation is computed from the data estimate by fractional filter methods. These fractional methods are based on the classical Tikhonov and Landweber method, but avoid, at least partially, the well-known drawback of oversmoothing. Convergence rates as well as numerical examples are presented

  16. Adaptive regularization of noisy linear inverse problems

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue

    2006-01-01

    In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....

  17. Higher derivative regularization and chiral anomaly

    International Nuclear Information System (INIS)

    Nagahama, Yoshinori.

    1985-02-01

    A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)

  18. Regularity effect in prospective memory during aging

    Directory of Open Access Journals (Sweden)

    Geoffrey Blondelle

    2016-10-01

    Full Text Available Background: Regularity effect can affect performance in prospective memory (PM, but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30, 16 intermediate adults (40–55, and 25 older adults (65–80. The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities. We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding, short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results: A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young, but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion: Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical

  19. Regularity effect in prospective memory during aging

    OpenAIRE

    Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique

    2016-01-01

    Background: Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults.Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 1...

  20. Harmonic R-matrices for scattering amplitudes and spectral regularization

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Livia; Plefka, Jan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Lukowski, Tomasz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Univ. Berlin (Germany). IRIS Adlershof; Meneghelli, Carlo [Hamburg Univ. (Germany). Fachbereich 11 - Mathematik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Staudacher, Matthias [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)

    2012-12-15

    Planar N=4 super Yang-Mills appears to be integrable. While this allows to find this theory's exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes. To remedy this, we deform all scattering amplitudes by a spectral parameter. The deformed tree-level four-point function turns out to be essentially the one-loop R-matrix of the integrable N=4 spin chain satisfying the Yang-Baxter equation. Deformed on-shell three-point functions yield novel three-leg R-matrices satisfying bootstrap equations. Finally, we supply initial evidence that the spectral parameter might find its use as a novel symmetry-respecting regulator replacing dimensional regularization. Its physical meaning is a local deformation of particle helicity, a fact which might be useful for a much larger class of non-integrable four-dimensional field theories.

  1. Regularization of the big bang singularity with random perturbations

    Science.gov (United States)

    Belbruno, Edward; Xue, BingKan

    2018-03-01

    We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.

  2. Use of regularization method in the determination of ring parameters and orbit correction

    International Nuclear Information System (INIS)

    Tang, Y.N.; Krinsky, S.

    1993-01-01

    We discuss applying the regularization method of Tikhonov to the solution of inverse problems arising in accelerator operations. This approach has been successfully used for orbit correction on the NSLS storage rings, and is presently being applied to the determination of betatron functions and phases from the measured response matrix. The inverse problem of differential equation often leads to a set of integral equations of the first kind which are ill-conditioned. The regularization method is used to combat the ill-posedness

  3. Regularization and error assignment to unfolded distributions

    CERN Document Server

    Zech, Gunter

    2011-01-01

    The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.

  4. Iterative Regularization with Minimum-Residual Methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2007-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  5. Iterative regularization with minimum-residual methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2006-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  6. A fractional Dirac equation and its solution

    International Nuclear Information System (INIS)

    Muslih, Sami I; Agrawal, Om P; Baleanu, Dumitru

    2010-01-01

    This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.

  7. INVARIANTS OF GENERALIZED RAPOPORT-LEAS EQUATIONS

    Directory of Open Access Journals (Sweden)

    Elena N. Kushner

    2018-01-01

    its regular orbits, which allow us to classify the generalized Rapoport-Leas equations

  8. Combinatorics of Generalized Bethe Equations

    Science.gov (United States)

    Kozlowski, Karol K.; Sklyanin, Evgeny K.

    2013-10-01

    A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.

  9. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    Science.gov (United States)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  10. A note on a degenerate elliptic equation with applications for lakes and seas

    Directory of Open Access Journals (Sweden)

    Didier Bresch

    2004-03-01

    Full Text Available In this paper, we give an intermediate regularity result on a degenerate elliptic equation with a weight blowing up on the boundary. This kind of equations is encountoured when modelling some phenomena linked to seas or lakes. We give some examples where such regularity is useful.

  11. Subcortical processing of speech regularities underlies reading and music aptitude in children

    Science.gov (United States)

    2011-01-01

    Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input

  12. Subcortical processing of speech regularities underlies reading and music aptitude in children

    Directory of Open Access Journals (Sweden)

    Strait Dana L

    2011-10-01

    Full Text Available Abstract Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to

  13. Subcortical processing of speech regularities underlies reading and music aptitude in children.

    Science.gov (United States)

    Strait, Dana L; Hornickel, Jane; Kraus, Nina

    2011-10-17

    Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings

  14. A Highly Accurate Regular Domain Collocation Method for Solving Potential Problems in the Irregular Doubly Connected Domains

    Directory of Open Access Journals (Sweden)

    Zhao-Qing Wang

    2014-01-01

    Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.

  15. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-01-01

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  16. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-04-19

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  17. On infinite regular and chiral maps

    OpenAIRE

    Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán

    2015-01-01

    We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.

  18. From recreational to regular drug use

    DEFF Research Database (Denmark)

    Järvinen, Margaretha; Ravn, Signe

    2011-01-01

    This article analyses the process of going from recreational use to regular and problematic use of illegal drugs. We present a model containing six career contingencies relevant for young people’s progress from recreational to regular drug use: the closing of social networks, changes in forms...

  19. Automating InDesign with Regular Expressions

    CERN Document Server

    Kahrel, Peter

    2006-01-01

    If you need to make automated changes to InDesign documents beyond what basic search and replace can handle, you need regular expressions, and a bit of scripting to make them work. This Short Cut explains both how to write regular expressions, so you can find and replace the right things, and how to use them in InDesign specifically.

  20. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  1. 29 CFR 779.18 - Regular rate.

    Science.gov (United States)

    2010-07-01

    ... employee under subsection (a) or in excess of the employee's normal working hours or regular working hours... Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... not less than one and one-half times their regular rates of pay. Section 7(e) of the Act defines...

  2. On some functional equations related to Steffensen's inequality

    Directory of Open Access Journals (Sweden)

    Bogdan Choczewski

    2004-05-01

    Full Text Available We consider the problem, proposed by the second author (cf. [1] of solving functional equations stemming from the Steffensen integral inequality (S, which is applicable in actuarial problems, cf. [4]. Imposing some regularity conditions we find solutions of two equations in two variables, one with two and another with three unknown functions.

  3. Monograph - The Numerical Integration of Ordinary Differential Equations.

    Science.gov (United States)

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  4. Null controllability of the viscous Camassa–Holm equation with ...

    Indian Academy of Sciences (India)

    In this paper, we study the null controllability of the viscous Camassa–. Holm equation on the one-dimensional torus. By using a moving distributed control, we obtain that the system is null controllable for a given data with certain regularity. Keywords. Viscous Camassa–Holm equation; null controllability; moving control;.

  5. From the Hartree dynamics to the Vlasov equation

    DEFF Research Database (Denmark)

    Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara

    2016-01-01

    We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...

  6. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  7. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  8. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  9. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  10. An iterative method for Tikhonov regularization with a general linear regularization operator

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.

    2010-01-01

    Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan

  11. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  12. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  13. Hierarchical regular small-world networks

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan

    2008-01-01

    Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)

  14. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  15. Coupling regularizes individual units in noisy populations

    International Nuclear Information System (INIS)

    Ly Cheng; Ermentrout, G. Bard

    2010-01-01

    The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.

  16. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  17. On the Stochastic Wave Equation with Nonlinear Damping

    International Nuclear Information System (INIS)

    Kim, Jong Uhn

    2008-01-01

    We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping

  18. Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems

    International Nuclear Information System (INIS)

    Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris

    2011-01-01

    Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)

  19. Diagrammatic methods in phase-space regularization

    International Nuclear Information System (INIS)

    Bern, Z.; Halpern, M.B.; California Univ., Berkeley

    1987-11-01

    Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)

  20. J-regular rings with injectivities

    OpenAIRE

    Shen, Liang

    2010-01-01

    A ring $R$ is called a J-regular ring if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. It is proved that if R is J-regular, then (i) R is right n-injective if and only if every homomorphism from an $n$-generated small right ideal of $R$ to $R_{R}$ can be extended to one from $R_{R}$ to $R_{R}$; (ii) R is right FP-injective if and only if R is right (J, R)-FP-injective. Some known results are improved.

  1. Nonlinear Schroedinger Approximations for Partial Differential Equations with Quadratic and Quasilinear Terms

    Science.gov (United States)

    Cummings, Patrick

    We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.

  2. Moduli spaces for linear differential equations and the Painlev'e equations

    NARCIS (Netherlands)

    Put, Marius van der; Saito, Masa-Hiko

    2009-01-01

    In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlev´e equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and

  3. Regularization of absorber or doorway states in heavy-particle collisions

    International Nuclear Information System (INIS)

    Errea, L.F.; Riera, A.; Sanchez, P.

    1994-01-01

    We present a unified theoretical basis of the recently proposed regularization method of absorber or doorway states. The theory is applicable to the close-coupling solutions of time-dependent Schroedinger equations corresponding to Hamiltonians containing singular terms and with a partial continuum spectrum. The presentation and illustration are restricted to the treatment of atomic collisions. (author)

  4. Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces

    OpenAIRE

    Barrera, Begoña Barrios; Figalli, Alessio; Valdinoci, Enrico

    2012-01-01

    We prove that $C^{1,\\alpha}$ $s$-minimal surfaces are automatically $C^\\infty$. For this, we develop a new bootstrap regularity theory for solutions of integro-differential equations of very general type, which we believe is of independent interest.

  5. Global scale variability of the mineral dust long-wave refractive index: a new dataset of in situ measurements for climate modeling and remote sensing

    Science.gov (United States)

    Di Biagio, Claudia; Formenti, Paola; Balkanski, Yves; Caponi, Lorenzo; Cazaunau, Mathieu; Pangui, Edouard; Journet, Emilie; Nowak, Sophie; Caquineau, Sandrine; Andreae, Meinrat O.; Kandler, Konrad; Saeed, Thuraya; Piketh, Stuart; Seibert, David; Williams, Earle; Doussin, Jean-François

    2017-02-01

    Modeling the interaction of dust with long-wave (LW) radiation is still a challenge because of the scarcity of information on the complex refractive index of dust from different source regions. In particular, little is known about the variability of the refractive index as a function of the dust mineralogical composition, which depends on the specific emission source, and its size distribution, which is modified during transport. As a consequence, to date, climate models and remote sensing retrievals generally use a spatially invariant and time-constant value for the dust LW refractive index. In this paper, the variability of the mineral dust LW refractive index as a function of its mineralogical composition and size distribution is explored by in situ measurements in a large smog chamber. Mineral dust aerosols were generated from 19 natural soils from 8 regions: northern Africa, the Sahel, eastern Africa and the Middle East, eastern Asia, North and South America, southern Africa, and Australia. Soil samples were selected from a total of 137 available samples in order to represent the diversity of sources from arid and semi-arid areas worldwide and to account for the heterogeneity of the soil composition at the global scale. Aerosol samples generated from soils were re-suspended in the chamber, where their LW extinction spectra (3-15 µm), size distribution, and mineralogical composition were measured. The generated aerosol exhibits a realistic size distribution and mineralogy, including both the sub- and super-micron fractions, and represents in typical atmospheric proportions the main LW-active minerals, such as clays, quartz, and calcite. The complex refractive index of the aerosol is obtained by an optical inversion based upon the measured extinction spectrum and size distribution. Results from the present study show that the imaginary LW refractive index (k) of dust varies greatly both in magnitude and spectral shape from sample to sample, reflecting the

  6. Partial regularity of weak solutions to a PDE system with cubic nonlinearity

    Science.gov (United States)

    Liu, Jian-Guo; Xu, Xiangsheng

    2018-04-01

    In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.

  7. A regularized vortex-particle mesh method for large eddy simulation

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Walther, Jens Honore; Hejlesen, Mads Mølholm

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green’s function...... solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy...

  8. Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian

    International Nuclear Information System (INIS)

    Bel, L.; Zia, H.S.

    1985-01-01

    We consider those relativistic theories of gravitation which generalize Einstein's theory in the sense that their field equations derive from a scalar Lagrangian which, besides the matter term, contains a linear combination of the Ricci scalar, its square, and the square of the Ricci tensor. Using a generalization of a technique which has been used to deal with some dynamical systems, we regularly and covariantly reduce the corresponding fourth-order differential equations to second-order ones. We examine, in particular, at a low order of approximation, these reduced equations in cosmology, and for static and spherically symmetric interior solutions with constant density

  9. Generalized regular genus for manifolds with boundary

    Directory of Open Access Journals (Sweden)

    Paola Cristofori

    2003-05-01

    Full Text Available We introduce a generalization of the regular genus, a combinatorial invariant of PL manifolds ([10], which is proved to be strictly related, in dimension three, to generalized Heegaard splittings defined in [12].

  10. Fast and compact regular expression matching

    DEFF Research Database (Denmark)

    Bille, Philip; Farach-Colton, Martin

    2008-01-01

    We study 4 problems in string matching, namely, regular expression matching, approximate regular expression matching, string edit distance, and subsequence indexing, on a standard word RAM model of computation that allows logarithmic-sized words to be manipulated in constant time. We show how...... to improve the space and/or remove a dependency on the alphabet size for each problem using either an improved tabulation technique of an existing algorithm or by combining known algorithms in a new way....

  11. Regular-fat dairy and human health

    DEFF Research Database (Denmark)

    Astrup, Arne; Bradley, Beth H Rice; Brenna, J Thomas

    2016-01-01

    In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to......, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted....

  12. Deterministic automata for extended regular expressions

    Directory of Open Access Journals (Sweden)

    Syzdykov Mirzakhmet

    2017-12-01

    Full Text Available In this work we present the algorithms to produce deterministic finite automaton (DFA for extended operators in regular expressions like intersection, subtraction and complement. The method like “overriding” of the source NFA(NFA not defined with subset construction rules is used. The past work described only the algorithm for AND-operator (or intersection of regular languages; in this paper the construction for the MINUS-operator (and complement is shown.

  13. Regularities of intermediate adsorption complex relaxation

    International Nuclear Information System (INIS)

    Manukova, L.A.

    1982-01-01

    The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained

  14. Online Manifold Regularization by Dual Ascending Procedure

    OpenAIRE

    Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui

    2013-01-01

    We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...

  15. Nonlinear elliptic equations and nonassociative algebras

    CERN Document Server

    Nadirashvili, Nikolai; Vlăduţ, Serge

    2014-01-01

    This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...

  16. Moving interfaces and quasilinear parabolic evolution equations

    CERN Document Server

    Prüss, Jan

    2016-01-01

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...

  17. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  18. Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term

    International Nuclear Information System (INIS)

    Shang Yadong

    2005-01-01

    In this paper, the evolution equations with strong nonlinear term describing the resonance interaction between the long wave and the short wave are studied. Firstly, based on the qualitative theory and bifurcation theory of planar dynamical systems, all of the explicit and exact solutions of solitary waves are obtained by qualitative seeking the homoclinic and heteroclinic orbits for a class of Lienard equations. Then the singular travelling wave solutions, periodic travelling wave solutions of triangle functions type are also obtained on the basis of the relationships between the hyperbolic functions and that between the hyperbolic functions with the triangle functions. The varieties of structure of exact solutions of the generalized long-short wave equation with strong nonlinear term are illustrated. The methods presented here also suitable for obtaining exact solutions of nonlinear wave equations in multidimensions

  19. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  20. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    Science.gov (United States)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  1. A partial differential equation for pseudocontact shift.

    Science.gov (United States)

    Charnock, G T P; Kuprov, Ilya

    2014-10-07

    It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.

  2. Some Remarks on Stability of Generalized Equations

    Czech Academy of Sciences Publication Activity Database

    Outrata, Jiří; Henrion, R.; Kruger, A.Y.

    2013-01-01

    Roč. 159, č. 3 (2013), s. 681-697 ISSN 0022-3239 R&D Projects: GA AV ČR IAA100750802; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : Parameterized generalized equation * Regular and limiting coderivative * Constant rank CQ * Mathematical program with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.406, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/outrata-some remarks on stability of generalized equations.pdf

  3. Improvements in GRACE Gravity Fields Using Regularization

    Science.gov (United States)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or

  4. Regular Expression Matching and Operational Semantics

    Directory of Open Access Journals (Sweden)

    Asiri Rathnayake

    2011-08-01

    Full Text Available Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.

  5. Regularities, Natural Patterns and Laws of Nature

    Directory of Open Access Journals (Sweden)

    Stathis Psillos

    2014-02-01

    Full Text Available  The goal of this paper is to sketch an empiricist metaphysics of laws of nature. The key idea is that there are regularities without regularity-enforcers. Differently put, there are natural laws without law-makers of a distinct metaphysical kind. This sketch will rely on the concept of a natural pattern and more significantly on the existence of a network of natural patterns in nature. The relation between a regularity and a pattern will be analysed in terms of mereology.  Here is the road map. In section 2, I will briefly discuss the relation between empiricism and metaphysics, aiming to show that an empiricist metaphysics is possible. In section 3, I will offer arguments against stronger metaphysical views of laws. Then, in section 4 I will motivate nomic objectivism. In section 5, I will address the question ‘what is a regularity?’ and will develop a novel answer to it, based on the notion of a natural pattern. In section 6, I will raise the question: ‘what is a law of nature?’, the answer to which will be: a law of nature is a regularity that is characterised by the unity of a natural pattern.

  6. DYE-SENSITIZED PHOTOLYSIS OF o-Cl-HEXAARYLBIIMIDAZOLE AND PHOTOPOLYMERIZATION KINETICS STUDY OF THE LONG WAVE-LENGTH DYE/HEXAARYLBIIMIDAZOLE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Fang Gao; Chun-ying Zhao; Li-dong Li; Shu-jing Feng; Yong-yuan Yang

    2000-01-01

    o-Chloro-hexaarylbiimidazole (o-Cl-HABI) can be sensitized efficiently by the dyes 1-ethyl-3'-methyl thiacyanine bromide (C1), 3,3'-diethyl thiacarbocyanine iodide (C2), and cyclopentanone 2,5-bis[2-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)ethylidene] (C3) through electron transfer proceses. When exposed to a xenon lamp (filtered by Pyrex glass),the photosensitive systems composed of o-Cl-HABI and the above dyes can produce free radicals which initiate the polymerization of MMA. The photopolymerization kinetics equation was obtained for the o-Cl-HABI/C2 system, Rp =K [C2]0.75[o-Cl-HABI]0.44[MTA]0.12[MMA]1.0. A comparison of the influence of different dyes on the conversion of MMA photopolymerization was conducted.

  7. Existence of weak solutions in lower order Sobolev space for a Camassa-Holm-type equation

    International Nuclear Information System (INIS)

    Lai Shaoyong; Wu Yonghong

    2010-01-01

    A generalized Camassa-Holm equation containing a nonlinear dissipative effect is investigated. The existence of the weak solution of the equation in lower order Sobolev space H s with 1regularization and some a priori estimates derived from the equation itself.

  8. Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.

    Science.gov (United States)

    Saveliev, V L; Gorokhovski, M A

    2005-07-01

    On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.

  9. Regularity theory for mean-field game systems

    CERN Document Server

    Gomes, Diogo A; Voskanyan, Vardan

    2016-01-01

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  10. Regularity Theory for Mean-Field Game Systems

    KAUST Repository

    Gomes, Diogo A.

    2016-09-14

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  11. Differential regularization of a non-relativistic anyon model

    International Nuclear Information System (INIS)

    Freedman, D.Z.; Rius, N.

    1993-07-01

    Differential regularization is applied to a field theory of a non-relativistic charged boson field φ with λ(φ * φ) 2 self-interaction and coupling to a statistics-changing 0(1) Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the φ * φ * φφ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the β-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to β(λ, e) vanish, and β(λ, ε) itself vanishes when the ''self-dual'' condition relating λ to the gauge coupling e is imposed. (author). 12 refs, 1 fig

  12. Regularity Theory for Mean-Field Game Systems

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard A.; Voskanyan, Vardan K.

    2016-01-01

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  13. Regular non-twisting S-branes

    International Nuclear Information System (INIS)

    Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.

    2004-01-01

    We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)

  14. Online Manifold Regularization by Dual Ascending Procedure

    Directory of Open Access Journals (Sweden)

    Boliang Sun

    2013-01-01

    Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.

  15. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  16. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  17. Regular transport dynamics produce chaotic travel times.

    Science.gov (United States)

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  18. PET regularization by envelope guided conjugate gradients

    International Nuclear Information System (INIS)

    Kaufman, L.; Neumaier, A.

    1996-01-01

    The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations

  19. Matrix regularization of embedded 4-manifolds

    International Nuclear Information System (INIS)

    Trzetrzelewski, Maciej

    2012-01-01

    We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).

  20. Gravitational Quasinormal Modes of Regular Phantom Black Hole

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-01-01

    Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.

  1. Properties of regular polygons of coupled microring resonators.

    Science.gov (United States)

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2007-11-01

    The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

  2. A general framework for regularized, similarity-based image restoration.

    Science.gov (United States)

    Kheradmand, Amin; Milanfar, Peyman

    2014-12-01

    Any image can be represented as a function defined on a weighted graph, in which the underlying structure of the image is encoded in kernel similarity and associated Laplacian matrices. In this paper, we develop an iterative graph-based framework for image restoration based on a new definition of the normalized graph Laplacian. We propose a cost function, which consists of a new data fidelity term and regularization term derived from the specific definition of the normalized graph Laplacian. The normalizing coefficients used in the definition of the Laplacian and associated regularization term are obtained using fast symmetry preserving matrix balancing. This results in some desired spectral properties for the normalized Laplacian such as being symmetric, positive semidefinite, and returning zero vector when applied to a constant image. Our algorithm comprises of outer and inner iterations, where in each outer iteration, the similarity weights are recomputed using the previous estimate and the updated objective function is minimized using inner conjugate gradient iterations. This procedure improves the performance of the algorithm for image deblurring, where we do not have access to a good initial estimate of the underlying image. In addition, the specific form of the cost function allows us to render the spectral analysis for the solutions of the corresponding linear equations. In addition, the proposed approach is general in the sense that we have shown its effectiveness for different restoration problems, including deblurring, denoising, and sharpening. Experimental results verify the effectiveness of the proposed algorithm on both synthetic and real examples.

  3. Error estimates in projective solutions of the radon equation

    International Nuclear Information System (INIS)

    Lubuma, M.S.

    1991-04-01

    The model Radon equation is the integral equation of the second kind defined by the interior limits of the electrostatic double layer potential relative to a curve with one angular point and characterized by the non compactness of the operator with respect to the maximum norm. It is shown that the solution to this equation is decomposable into a regular part and a finite linear combination of intrinsic singular functions. The maximal regularity of the solution and explicit formulae for the coefficients of the singular functions are given. The regularity permits to specify how slow the convergence of the classical projection method is, while the above mentioned formulae lead to modified projection methods of the Dual Singular Function Method type, with better approximations for the solution and for the coefficients of singularities. (author). 23 refs

  4. On the hierarchy of partially invariant submodels of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru

    2008-07-04

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  5. On the hierarchy of partially invariant submodels of differential equations

    Science.gov (United States)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  6. On the hierarchy of partially invariant submodels of differential equations

    International Nuclear Information System (INIS)

    Golovin, Sergey V

    2008-01-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given

  7. Darboux transformations and linear parabolic partial differential equations

    International Nuclear Information System (INIS)

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  8. Vragov’s boundary value problem for an implicit equation of mixed type

    Science.gov (United States)

    Egorov, I. E.

    2017-10-01

    We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.

  9. Effective action for scalar fields and generalized zeta-function regularization

    International Nuclear Information System (INIS)

    Cognola, Guido; Zerbini, Sergio

    2004-01-01

    Motivated by the study of quantum fields in a Friedmann-Robertson-Walker space-time, the one-loop effective action for a scalar field defined in the ultrastatic manifold RxH 3 /Γ, H 3 /Γ being the finite volume, noncompact, hyperbolic spatial section, is investigated by a generalization of zeta-function regularization. It is shown that additional divergences may appear at the one-loop level. The one-loop renormalizability of the model is discussed and, making use of a generalization of zeta-function regularization, the one-loop renormalization group equations are derived

  10. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  11. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  12. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  13. Regularity and irreversibility of weekly travel behavior

    NARCIS (Netherlands)

    Kitamura, R.; van der Hoorn, A.I.J.M.

    1987-01-01

    Dynamic characteristics of travel behavior are analyzed in this paper using weekly travel diaries from two waves of panel surveys conducted six months apart. An analysis of activity engagement indicates the presence of significant regularity in weekly activity participation between the two waves.

  14. Regular and context-free nominal traces

    DEFF Research Database (Denmark)

    Degano, Pierpaolo; Ferrari, Gian-Luigi; Mezzetti, Gianluca

    2017-01-01

    Two kinds of automata are presented, for recognising new classes of regular and context-free nominal languages. We compare their expressive power with analogous proposals in the literature, showing that they express novel classes of languages. Although many properties of classical languages hold ...

  15. Faster 2-regular information-set decoding

    NARCIS (Netherlands)

    Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.

    2011-01-01

    Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and

  16. Complexity in union-free regular languages

    Czech Academy of Sciences Publication Activity Database

    Jirásková, G.; Masopust, Tomáš

    2011-01-01

    Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free-path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html

  17. Regular Gleason Measures and Generalized Effect Algebras

    Science.gov (United States)

    Dvurečenskij, Anatolij; Janda, Jiří

    2015-12-01

    We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.

  18. Regularization of finite temperature string theories

    International Nuclear Information System (INIS)

    Leblanc, Y.; Knecht, M.; Wallet, J.C.

    1990-01-01

    The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)

  19. A Sim(2 invariant dimensional regularization

    Directory of Open Access Journals (Sweden)

    J. Alfaro

    2017-09-01

    Full Text Available We introduce a Sim(2 invariant dimensional regularization of loop integrals. Then we can compute the one loop quantum corrections to the photon self energy, electron self energy and vertex in the Electrodynamics sector of the Very Special Relativity Standard Model (VSRSM.

  20. Gravitational lensing by a regular black hole

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F; Sendra, Carlos M

    2011-01-01

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  1. Gravitational lensing by a regular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)

    2011-04-21

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  2. Annotation of regular polysemy and underspecification

    DEFF Research Database (Denmark)

    Martínez Alonso, Héctor; Pedersen, Bolette Sandford; Bel, Núria

    2013-01-01

    We present the result of an annotation task on regular polysemy for a series of seman- tic classes or dot types in English, Dan- ish and Spanish. This article describes the annotation process, the results in terms of inter-encoder agreement, and the sense distributions obtained with two methods...

  3. Stabilization, pole placement, and regular implementability

    NARCIS (Netherlands)

    Belur, MN; Trentelman, HL

    In this paper, we study control by interconnection of linear differential systems. We give necessary and sufficient conditions for regular implementability of a-given linear, differential system. We formulate the problems of stabilization and pole placement as problems of finding a suitable,

  4. 12 CFR 725.3 - Regular membership.

    Science.gov (United States)

    2010-01-01

    ... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit....5(b) of this part, and forwarding with its completed application funds equal to one-half of this... 1, 1979, is not required to forward these funds to the Facility until October 1, 1979. (3...

  5. Supervised scale-regularized linear convolutionary filters

    DEFF Research Database (Denmark)

    Loog, Marco; Lauze, Francois Bernard

    2017-01-01

    also be solved relatively efficient. All in all, the idea is to properly control the scale of a trained filter, which we solve by introducing a specific regularization term into the overall objective function. We demonstrate, on an artificial filter learning problem, the capabil- ities of our basic...

  6. On regular riesz operators | Raubenheimer | Quaestiones ...

    African Journals Online (AJOL)

    The r-asymptotically quasi finite rank operators on Banach lattices are examples of regular Riesz operators. We characterise Riesz elements in a subalgebra of a Banach algebra in terms of Riesz elements in the Banach algebra. This enables us to characterise r-asymptotically quasi finite rank operators in terms of adjoint ...

  7. Regularized Discriminant Analysis: A Large Dimensional Study

    KAUST Repository

    Yang, Xiaoke

    2018-04-28

    In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).

  8. Complexity in union-free regular languages

    Czech Academy of Sciences Publication Activity Database

    Jirásková, G.; Masopust, Tomáš

    2011-01-01

    Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free- path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html

  9. Bit-coded regular expression parsing

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Henglein, Fritz

    2011-01-01

    the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...

  10. Effect of 8-methoxypsoralen plus long-wave ultraviolet (PUVA) radiation on mast cells. II. In vitro PUVA inhibits degranulation of rat peritoneal mast cells induced by compound 48/80

    International Nuclear Information System (INIS)

    Toda, K.; Danno, K.; Tachibana, T.; Horio, T.

    1986-01-01

    Rat peritoneal mast cells incubated with a histamine liberator, compound 48/80, showed a significantly reduced capacity for releasing histamine following in vitro treatment with 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 1-5 J/cm2 of long-wave ultraviolet (UVA) irradiation (PUVA). No remarkable inhibition in histamine release was observed in the cells treated with 8-MOP only. Irradiation with 5 J/cm2 of UVA alone exerted an inhibitory effect on histamine release, to a lesser extent than PUVA. PUVA irradiation did not bring any decrease in cell viability or any spontaneous release of histamine from irradiated cells as shown by phase-contrast microscopy and by histamine assay, respectively. These results suggest that PUVA treatment may cause a noncytotoxic disturbance at mast cell membranes or on surface receptors, leading to a decreased capacity for secreting chemical mediators

  11. Tetravalent one-regular graphs of order 4p2

    DEFF Research Database (Denmark)

    Feng, Yan-Quan; Kutnar, Klavdija; Marusic, Dragan

    2014-01-01

    A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified.......A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified....

  12. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  13. Partial differential equations in several complex variables

    CERN Document Server

    Chen, So-Chin

    2001-01-01

    This book is intended both as an introductory text and as a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the fields of Cauchy-Riemann and tangential Cauchy-Riemann operators. This book gives an up-to-date account of the theories for these equations and their applications. The background material in several complex variables is developed in the first three chapters, leading to the Levi problem. The next three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \\bar\\partial-Neumann problem, including L^2 existence theorems on pseudoconvex domains, \\frac 12-subelliptic estimates for the \\bar\\partial-Neumann problems on strongly pseudoconvex domains, global regularity of \\bar\\partial on more general pseudoconvex domains, boundary ...

  14. Regularization of the path integral measure for anomalies

    International Nuclear Information System (INIS)

    Umezawa, M.

    1989-01-01

    In this paper we show that the variation of the integral measure is fully equivalent to the authentic field theoretical treatment for a two-point function. To do this we first examine various ways of solving the factor A(x) in Fujikawa's expression for the functional integral measure. We define the anomaly as A(x)-A f (x), where A f (x) is the Fujikawa factor for the free field. We then propose a regulator which leads to a finite result for any anomaly. We then show that the A(x) can be defined in terms of the proper-time through a splitting procedure. The original Fujikawa prescription for A(x) is shown to be closely related to the proper-time description of the anomaly, initiated by Schwinger. Its equivalence to the authentic field theoretical treatment will be proven as a consequence of these investigations. The ξ-functional regularization for A(x) is also examined. Then we will examine the way to deduce the anomaly from the effective potential by adopting the Φ 4 model as an example. The renormalization group equation for the effective potential is solved exactly to obtain the precise form of the β-function in terms of which we reexpress the result obtained in a previous section for A(x). We discuss the physical significance of the renormalization group equation for the case of broken symmetry

  15. Symmetry-preserving regularization of wall-bounded turbulent flows

    International Nuclear Information System (INIS)

    Trias, F X; Gorobets, A; Oliva, A; Verstappen, R W C P

    2011-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive term are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces an hyper-viscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. To do so, a new criterion based on the invariants of the local strain tensor is proposed here. Altogether, the proposed method constitutes a parameter-free turbulence model.

  16. Spectrally-consistent regularization modeling of turbulent natural convection flows

    International Nuclear Information System (INIS)

    Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel

    2012-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.

  17. Functional differential equations with unbounded delay in extrapolation spaces

    Directory of Open Access Journals (Sweden)

    Mostafa Adimy

    2014-08-01

    Full Text Available We study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded delay and a Hille-Yosida operator on a Banach space X. We consider two nonlinear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regularity of solutions and we establish a linearization principle for the stability of the equilibria of our equation.

  18. Regularization of Grad’s 13 -Moment-Equations in Kinetic Gas Theory

    Science.gov (United States)

    2011-01-01

    Aji ) − 13Akkδij . Beside the angular brackets normal brackets are used to abbreviate the normalized sum of index-permutated tensor expressions, i.e...A(ij) = 1 2 (Aij + Aji ). An introduction to tensorial operations also on higher order tensors can be find in Struchtrup (2005b). The stress tensor...vary only across the channel, that is, the coordinate y. The red dots indicate schematically what behavior for the fields must be expected. For

  19. Equations in mathematical physics a practical course

    CERN Document Server

    Pikulin, Victor P

    2001-01-01

    This handbook is addressed to students of technology institutf's where a course on mathematical physics of relatively reduced volume is offered, as well as to engineers and scientists. The aim of the handbook is to treat (demonstrate) the basic methods for solving the simplest problems of classical mathematical physics. The most basic among the methods considered hrre i8 the superposition method. It allows one, based on particular linearly indepmdent HolutionH (solution "atoms"), to obtain the solution of a given problem. To that end the "Hupply" of solution atoms must be complete. This method is a development of the well-known method of particular solutions from the theory of ordinar~' differelltial equations. In contrast to the case of ordinary differential equations, where the number of linearly independent 80lutions is always finite, for a linear partial differrntial equation a complete "supply" of solution atoms is always infinite. This infinite set of Holutions may be discrete (for example, for regular ...

  20. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  1. Using Tikhonov Regularization for Spatial Projections from CSR Regularized Spherical Harmonic GRACE Solutions

    Science.gov (United States)

    Save, H.; Bettadpur, S. V.

    2013-12-01

    It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.

  2. Extreme values, regular variation and point processes

    CERN Document Server

    Resnick, Sidney I

    1987-01-01

    Extremes Values, Regular Variation and Point Processes is a readable and efficient account of the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors It presents a coherent treatment of the distributional and sample path fundamental properties of extremes and records It emphasizes the core primacy of three topics necessary for understanding extremes the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces The book is self-contained and requires an introductory measure-theoretic course in probability as a prerequisite Almost all sections have an extensive list of exercises which extend developments in the text, offer alternate approaches, test mastery and provide for enj...

  3. Stream Processing Using Grammars and Regular Expressions

    DEFF Research Database (Denmark)

    Rasmussen, Ulrik Terp

    disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...

  4. Describing chaotic attractors: Regular and perpetual points

    Science.gov (United States)

    Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz

    2018-03-01

    We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.

  5. Chaos regularization of quantum tunneling rates

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward

    2011-01-01

    Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.

  6. Contour Propagation With Riemannian Elasticity Regularization

    DEFF Research Database (Denmark)

    Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.

    2011-01-01

    Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...

  7. Thin accretion disk around regular black hole

    Directory of Open Access Journals (Sweden)

    QIU Tianqi

    2014-08-01

    Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.

  8. Convex nonnegative matrix factorization with manifold regularization.

    Science.gov (United States)

    Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong

    2015-03-01

    Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Time-Homogeneous Parabolic Wick-Anderson Model in One Space Dimension: Regularity of Solution

    OpenAIRE

    Kim, Hyun-Jung; Lototsky, Sergey V

    2017-01-01

    Even though the heat equation with random potential is a well-studied object, the particular case of time-independent Gaussian white noise in one space dimension has yet to receive the attention it deserves. The paper investigates the stochastic heat equation with space-only Gaussian white noise on a bounded interval. The main result is that the space-time regularity of the solution is the same for additive noise and for multiplicative noise in the Wick-It\\^o-Skorokhod interpretation.

  10. Tikhonov regularization method for the numerical inversion of Mellin transforms using splines

    International Nuclear Information System (INIS)

    Iqbal, M.

    2005-01-01

    Mellin transform is an ill-posed problem. These problems arise in many branches of science and engineering. In the typical situation one is interested in recovering the original function, given a finite number of noisy measurements of data. In this paper, we shall convert Mellin transform to Laplace transform and then an integral equation of the first kind of convolution type. We solve the integral equation using Tikhonov regularization with splines as basis function. The method is applied to various test examples in the literature and results are shown in the table

  11. Symmetries of stochastic differential equations: A geometric approach

    Energy Technology Data Exchange (ETDEWEB)

    De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)

    2016-06-15

    A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.

  12. The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Schulze-Halberg, Axel

    2014-01-01

    We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, “Intertwining technique for the one-dimensional stationary Dirac equation,” Ann. Phys. 305, 151–189 (2003)

  13. The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu; Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)

    2014-10-15

    We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, “Intertwining technique for the one-dimensional stationary Dirac equation,” Ann. Phys. 305, 151–189 (2003)].

  14. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  15. Sparse regularization for force identification using dictionaries

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  16. Preconditioners for regularized saddle point matrices

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    2011-01-01

    Roč. 19, č. 2 (2011), s. 91-112 ISSN 1570-2820 Institutional research plan: CEZ:AV0Z30860518 Keywords : saddle point matrices * preconditioning * regularization * eigenvalue clustering Subject RIV: BA - General Mathematics Impact factor: 0.533, year: 2011 http://www.degruyter.com/view/j/jnma.2011.19.issue-2/jnum.2011.005/jnum.2011.005. xml

  17. Analytic stochastic regularization: gauge and supersymmetry theories

    International Nuclear Information System (INIS)

    Abdalla, M.C.B.

    1988-01-01

    Analytic stochastic regularization for gauge and supersymmetric theories is considered. Gauge invariance in spinor and scalar QCD is verified to brak fown by an explicit one loop computation of the two, theree and four point vertex function of the gluon field. As a result, non gauge invariant counterterms must be added. However, in the supersymmetric multiplets there is a cancellation rendering the counterterms gauge invariant. The calculation is considered at one loop order. (author) [pt

  18. Regularized forecasting of chaotic dynamical systems

    International Nuclear Information System (INIS)

    Bollt, Erik M.

    2017-01-01

    While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.

  19. Minimal length uncertainty relation and ultraviolet regularization

    Science.gov (United States)

    Kempf, Achim; Mangano, Gianpiero

    1997-06-01

    Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.

  20. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field