WorldWideScience

Sample records for regular sturm-liouville problems

  1. Sturm-Liouville operators and applications

    CERN Document Server

    Marchenko, Vladimir A

    2011-01-01

    The spectral theory of Sturm-Liouville operators is a classical domain of analysis, comprising a wide variety of problems. Besides the basic results on the structure of the spectrum and the eigenfunction expansion of regular and singular Sturm-Liouville problems, it is in this domain that one-dimensional quantum scattering theory, inverse spectral problems, and the surprising connections of the theory with nonlinear evolution equations first become related. The main goal of this book is to show what can be achieved with the aid of transformation operators in spectral theory as well as in their

  2. Similarities of discrete and continuous Sturm-Liouville problems

    Directory of Open Access Journals (Sweden)

    Kazem Ghanbari

    2007-12-01

    Full Text Available In this paper we present a study on the analogous properties of discrete and continuous Sturm-Liouville problems arising in matrix analysis and differential equations, respectively. Green's functions in both cases have analogous expressions in terms of the spectral data. Most of the results associated to inverse problems in both cases are identical. In particular, in both cases Weyl's m-function determines the Sturm-Liouville operators uniquely. Moreover, the well known Rayleigh-Ritz Theorem in linear algebra can be proved by using the concept of Green's function in discrete case.

  3. Adomian decomposition method for nonlinear Sturm-Liouville problems

    Directory of Open Access Journals (Sweden)

    Sennur Somali

    2007-09-01

    Full Text Available In this paper the Adomian decomposition method is applied to the nonlinear Sturm-Liouville problem-y" + y(tp=λy(t, y(t > 0, t ∈ I = (0, 1, y(0 = y(1 = 0, where p > 1 is a constant and λ > 0 is an eigenvalue parameter. Also, the eigenvalues and the behavior of eigenfuctions of the problem are demonstrated.

  4. Hardy inequality and properties of the quasilinear Sturm-Liouville problem

    Czech Academy of Sciences Publication Activity Database

    Drábek, P.; Kufner, Alois

    2007-01-01

    Roč. 18, č. 1 (2007), s. 125-138 ISSN 1120-6330 Institutional research plan: CEZ:AV0Z10190503 Keywords : Hardy inequality * weighted spaces * Sturm-Liouville problem Subject RIV: BA - General Mathematics

  5. Discontinuous Sturm-Liouville Problems with Eigenvalue Dependent Boundary Condition

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh., E-mail: emirov@cumhuriyet.edu.tr; Ozkan, A. S., E-mail: sozkan@cumhuriyet.edu.tr [Cumhuriyet University, Department of Mathematics Faculty of Art and Science (Turkey)

    2014-12-15

    In this study, an inverse problem for Sturm-Liouville differential operators with discontinuities is studied when an eigenparameter appears not only in the differential equation but it also appears in the boundary condition. Uniqueness theorems of inverse problems according to the Prüfer angle, the Weyl function and two different eigenvalues sets are proved.

  6. An efficient method for solving fractional Sturm-Liouville problems

    International Nuclear Information System (INIS)

    Al-Mdallal, Qasem M.

    2009-01-01

    The numerical approximation of the eigenvalues and the eigenfunctions of the fractional Sturm-Liouville problems, in which the second order derivative is replaced by a fractional derivative, is considered. The present results can be implemented on the numerical solution of the fractional diffusion-wave equation. The results show the simplicity and efficiency of the numerical method.

  7. Half-linear Sturm-Liouville problem with weights: asymptotic behavior of eigenfunctions

    Czech Academy of Sciences Publication Activity Database

    Drábek, P.; Kufner, Alois; Kuliev, K.

    2014-01-01

    Roč. 284, č. 1 (2014), s. 148-154 ISSN 0081-5438 Institutional support: RVO:67985840 Keywords : Sturm-Liouville problem * spectral problems * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.302, year: 2014 http://link.springer.com/article/10.1134%2FS008154381401009X

  8. Spectral theory of Sturm-Liouville differential operators: proceedings of the 1984 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kaper, H.G.; Zettl, A. (eds.)

    1984-12-01

    This report contains the proceedings of the workshop which was held at Argonne during the period May 14 through June 15, 1984. The report contains 22 articles, authored or co-authored by the participants in the workshop. Topics covered at the workshop included the asymptotics of eigenvalues and eigenfunctions; qualitative and quantitative aspects of Sturm-Liouville eigenvalue problems with discrete and continuous spectra; polar, indefinite, and nonselfadjoint Sturm-Liouville eigenvalue problems; and systems of differential equations of Sturm-Liouville type.

  9. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type

    International Nuclear Information System (INIS)

    Gorbachev, D V; Ivanov, V I

    2015-01-01

    Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles

  10. Theory of a higher-order Sturm-Liouville equation

    CERN Document Server

    Kozlov, Vladimir

    1997-01-01

    This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis.

  11. Accurate high-lying eigenvalues of Schroedinger and Sturm-Liouville problems

    International Nuclear Information System (INIS)

    Vanden Berghe, G.; Van Daele, M.; De Meyer, H.

    1994-01-01

    A modified difference and a Numerov-like scheme have been introduced in a shooting algorithm for the determination of the (higher-lying) eigenvalues of Schroedinger equations and Sturm-Liouville problems. Some numerical experiments are introduced. Time measurements have been performed. The proposed algorithms are compared with other previously introduced shooting schemes. The structure of the eigenvalue error is discussed. ((orig.))

  12. Sturm-Liouville BVPs with Caratheodory nonlinearities

    Directory of Open Access Journals (Sweden)

    Abdelhamid Benmezai

    2016-11-01

    Full Text Available In this article we study the existence and multiplicity of solutions for several classes of Sturm-Liouville boundary value problems having Caratheodory nonlinearities. Many results existing in the literature for such boundary value problems in the continuous framework will find in this work their extensions to the Caratheodory setting.

  13. A Numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Muhammed I. Syam

    2017-11-01

    Full Text Available This article is devoted to both theoretical and numerical studies of eigenvalues of regular fractional $2\\alpha $-order Sturm-Liouville problem where $\\frac{1}{2}< \\alpha \\leq 1$. In this paper, we implement the reproducing kernel method RKM to approximate the eigenvalues. To find the eigenvalues, we force the approximate solution produced by the RKM satisfy the boundary condition at $x=1$. The fractional derivative is described in the Caputo sense. Numerical results demonstrate the accuracy of the present algorithm. In addition, we prove the existence of the eigenfunctions of the proposed problem. Uniformly convergence of the approximate eigenfunctions produced by the RKM to the exact eigenfunctions is proven.

  14. On the singular Sturm-Liouville problems that have the same spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Gulsen, Tuba [Department of Mathematics, Firat University, 23119, Elazig (Turkey); Ulusoy, Ismail [Department of Mathematics, Adiyaman University, 02040,Adiyaman (Turkey)

    2016-06-08

    The problem of efficaciously constucting the potential q (x) and the numbers h and H was solved in [1]. Trubowitz [2] investigated the isospectrality problem which have the same spectrum with other same type of problems. Then Jodeit and Levitan [3] considered this problem with a different approach, based on transmutation operators and integral equation. In this work, we discussed this problem for singular Sturm-Liouville operator and obtained some important formulas for the number H, the potential q (x) and the norming constants α{sub n}.

  15. The Sturm-Liouville spectrum problem: quartic oscillator case

    International Nuclear Information System (INIS)

    Voros, Andre.

    1982-11-01

    The Sturm-Liouville eigenvalue problem given by the steady-state Schroedinger equation in quantum mechanics is considered on the real axis. There are, however, exact expressions available only for a harmonic oscillator (the Hermite equation); consequently, semi-classical asymptotic methods (in powers of the Planck's constant), which yield very good approximations, have been much studied analytically and as regards their relationships to geometrical optics. These methods relate the asymptotic form of the spectrum to the closed orbits of the Hamiltonian vector field of the function H(p,q) = p 2 + V(q) in the phase space R 2 . We seek to show that these supposedly approximate methods are in fact an exact way of solving the problem. The quartic oscillator, with V(q) = q 4 , is used as an example [fr

  16. Sturm--Liouville eigenvalue problem

    International Nuclear Information System (INIS)

    Bailey, P.B.

    1977-01-01

    The viewpoint is taken that Sturn--Liouville problem is specified and the problem of computing one or more of the eigenvalues and possibly the corresponding eigenfunctions is presented for solution. The procedure follows the construction of a computer code, although such a code is not constructed, intended to solve Sturn--Liouville eigenvalue problems whether singular or nonsingular

  17. The Sturm-Liouville inverse spectral problem with boundary conditions depending on the spectral parameter

    Directory of Open Access Journals (Sweden)

    Cornelis van der Mee

    2005-01-01

    Full Text Available We present the complete version including proofs of the results announced in [van der Mee C., Pivovarchik V.: A Sturm-Liouville spectral problem with boundary conditions depending on the spectral parameter. Funct. Anal. Appl. 36 (2002, 315–317 [Funkts. Anal. Prilozh. 36 (2002, 74–77 (Russian

  18. Spectral inversion of an indefinite Sturm-Liouville problem due to Richardson

    International Nuclear Information System (INIS)

    Shanley, Paul E

    2009-01-01

    We study an indefinite Sturm-Liouville problem due to Richardson whose complicated eigenvalue dependence on a parameter has been a puzzle for decades. In atomic physics a process exists that inverts the usual Schroedinger situation of an energy eigenvalue depending on a coupling parameter into the so-called Sturmian problem where the coupling parameter becomes the eigenvalue which then depends on the energy. We observe that the Richardson equation is of the Sturmian type. This means that the Richardson and its related Schroedinger eigenvalue functions are inverses of each other and that the Richardson spectrum is therefore no longer a puzzle

  19. An anisotropic standing wave braneworld and associated Sturm-Liouville problem

    International Nuclear Information System (INIS)

    Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto

    2012-01-01

    We present a consistent derivation of the recently proposed 5D anisotropic standing wave braneworld generated by gravity coupled to a phantom-like scalar field. We explicitly solve the corresponding junction conditions, a fact that enables us to give a physical interpretation to the anisotropic energy-momentum tensor components of the brane. So matter on the brane represents an oscillating fluid which emits anisotropic waves into the bulk. We also analyze the Sturm-Liouville problem associated with the correct localization condition of the transverse to the brane metric and scalar fields. It is shown that this condition restricts the physically meaningful space of solutions for the localization of the fluctuations of the model. (paper)

  20. Green's functions and trace formulas for generalized Sturm-Liouville problems related by Darboux transformations

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2010-01-01

    We study Green's functions of the generalized Sturm-Liouville problems that are related to each other by Darboux -equivalently, supersymmetrical - transformations. We establish an explicit relation between the corresponding Green's functions and derive a simple formula for their trace. The class of equations considered here includes the conventional Schroedinger equation and generalizations, such as for position-dependent mass and with linearly energy-dependent potential, as well as the stationary Fokker-Planck equation.

  1. Expansions with respect to squares, symplectic and Poisson structures associated with the Sturm-Liouville problem. II

    International Nuclear Information System (INIS)

    Arkad'ev, V.A.; Pogrebkov, A.K.; Polivanov, M.K.

    1988-01-01

    The concept of tangent vector is made more precise to meet the specific nature of the Sturm-Liouville problem, and on this basis a Poisson bracket that is modified compared with the Gardner form by special boundary terms is derived from the Zakharov-Faddeev symplectic form. This bracket is nondegenerate, and in it the variables of the discrete and continuous spectra are separated

  2. A bifurcation result for Sturm-Liouville problems with a set-valued term

    Directory of Open Access Journals (Sweden)

    Georg Hetzer

    1998-11-01

    Full Text Available It is established in this note that $-(ku''+g(cdot,uin mu F(cdot,u$, $u'(0=0=u'(1$, has a multiple bifurcation point at $ (0, 0}$ in the sense that infinitely many continua meet at $(0,0$. $F$ is a ``set-valued representation'' of a function with jump discontinuities along the line segment $[0,1]imes{0}$. The proof relies on a Sturm-Liouville version of Rabinowitz's bifurcation theorem and an approximation procedure.

  3. On the completeness of systems of eigenfunctions of the Sturm-Liouville operator with a potential depending on the spectral parameter and a nonlinear problem

    International Nuclear Information System (INIS)

    Zhidkov, P.E.

    1996-01-01

    First, the eigenvalue problem on the segment [0,1] for the Sturm-Liouville operator with a potential depending on the spectral parameter with the zero Dirichlet boundary conditions is considered. For this problem, under some hypotheses on the potential, it is proved that the necessary and sufficient condition for an arbitrary system of eigenfunctions, possessing a unique function with n roots in the interval (0,1) for an arbitrary non-negative integer number n, being complete in the space L 2 (0,1) is the linear independence of the functions from this system in the space L 2 (0,1). Then, this result is applied to the investigation of an eigenvalue problem for a nonlinear operator on the Sturm-Liouville type. For this problem, the completeness of the system of its eigenfunctions in the space L 2 (0,1) is proved. (author). 12 refs

  4. Existence of 2m-1 Positive Solutions for Sturm-Liouville Boundary Value Problems with Linear Functional Boundary Conditions on the Half-Line

    Directory of Open Access Journals (Sweden)

    Yanmei Sun

    2012-01-01

    Full Text Available By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.

  5. SLIPM - a MAPLE package for numerical solution of Sturm-Liouville partial problems based on a continuous analog of Newton's method. II. Program realization

    International Nuclear Information System (INIS)

    Puzynin, I.V.; Puzynina, T.P.; Tkhak, V.Ch.

    2010-01-01

    SLIPM (Sturm-LIouville Problem in MAPLE) is a program complex written in the language of the computer algebras system MAPLE. It consists of the main program SLIPM.mw and of some procedures. It is intended for a numerical solution with the help of the continuous analog of Newton's method (CANM) of Sturm-Liouville partial problems, i.e. for calculating some eigenvalue of linear second-order differential operator and a corresponding eigenfunction satisfying homogeneous boundary conditions of the general type. SLIPM is the development of the program complexes SLIP1 and SLIPH4 written in the Fortran language. It is added by two new ways of calculating the initial value of iterative parameter τ 0 , by a procedure for calculating a higher precision solution (eigenvalue and corresponding eigenfunction) with the help of Richardson's extrapolation method, by graphical visualization procedures of intermediate and final results of the iterative process and by saving of the results on a disk file. The descriptions of the procedures purposes and their parameters are given

  6. Comparison between the Variational Iteration Method and the Homotopy Perturbation Method for the Sturm-Liouville Differential Equation

    OpenAIRE

    Darzi R; Neamaty A

    2010-01-01

    We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.

  7. Comparison between the Variational Iteration Method and the Homotopy Perturbation Method for the Sturm-Liouville Differential Equation

    Directory of Open Access Journals (Sweden)

    R. Darzi

    2010-01-01

    Full Text Available We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.

  8. An inverse Sturm–Liouville problem with a fractional derivative

    KAUST Repository

    Jin, Bangti; Rundell, William

    2012-01-01

    In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical

  9. Charles François Sturm and Differential Equations

    DEFF Research Database (Denmark)

    Lützen, Jesper; Mingarelli, Angelo

    2008-01-01

    An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established......An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established...

  10. Some mathematical aspects of the Sturm-Liouville expansion with special reference to the nucleon-nucleus potential

    International Nuclear Information System (INIS)

    Bang, J.M.; Gareev, F.A.

    1977-01-01

    Different convergence properties of the Sturm-Liouville expansion are investigated with particular attention to the case of states which satisfy Schroedinger-like equations with a fixed energy and different depths of a potential, particulary of the Woods-Saxon used in nuclear physics

  11. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti; Lazarov, Raytcho; Lu, Xiliang; Zhou, Zhi

    2016-01-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  12. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti

    2016-02-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  13. An inverse Sturm–Liouville problem with a fractional derivative

    KAUST Repository

    Jin, Bangti

    2012-05-01

    In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order . α∈. (1,. 2) of fractional derivative is sufficiently away from 2. © 2012 Elsevier Inc.

  14. Inequalities among eigenvalues of Sturm–Liouville problems

    Directory of Open Access Journals (Sweden)

    Kong Q

    1999-01-01

    Full Text Available There are well-known inequalities among the eigenvalues of Sturm–Liouville problems with periodic, semi-periodic, Dirichlet and Neumann boundary conditions. In this paper, for an arbitrary coupled self-adjoint boundary condition, we identify two separated boundary conditions corresponding to the Dirichlet and Neumann conditions in the classical case, and establish analogous inequalities. It is also well-known that the lowest periodic eigenvalue is simple; here we prove a similar result for the general case. Moreover, we show that the algebraic and geometric multiplicities of the eigenvalues of self-adjoint regular Sturm–Liouville problems with coupled boundary conditions are the same. An important step in our approach is to obtain a representation of the fundamental solutions for sufficiently negative values of the spectral parameter. Our approach yields the existence and boundedness from below of the eigenvalues of arbitrary self-adjoint regular Sturm–Liouville problems without using operator theory.

  15. On the Similarity of Sturm-Liouville Operators with Non-Hermitian Boundary Conditions to Self-Adjoint and Normal Operators

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Siegl, Petr; Železný, Jakub

    2014-01-01

    Roč. 8, č. 1 (2014), s. 255-281 ISSN 1661-8254 R&D Projects: GA MŠk LC06002; GA MŠk LC527; GA ČR GAP203/11/0701 Grant - others:GA ČR(CZ) GD202/08/H072 Institutional support: RVO:61389005 Keywords : Sturm-Liouville operators * non-symmetric Robin boundary conditions * similarity to normal or self-adjoint operators * discrete spectral operator * complex symmetric operator * PT-symmetry * metric operator * C operator * Hilbert- Schmidt operators Subject RIV: BE - Theoretical Physics Impact factor: 0.545, year: 2014

  16. Symplectic finite element scheme: application to a driven problem with a regular singularity

    Energy Technology Data Exchange (ETDEWEB)

    Pletzer, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-02-01

    A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear `tent` elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs.

  17. Symplectic finite element scheme: application to a driven problem with a regular singularity

    International Nuclear Information System (INIS)

    Pletzer, A.

    1996-02-01

    A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear 'tent' elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs

  18. Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions

    OpenAIRE

    Guliyev, Namig J.

    2008-01-01

    International audience; Inverse problems of recovering the coefficients of Sturm–Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.

  19. Calculating the Price for Derivative Financial Assets of Bessel Processes Using the Sturm-Liouville Theory

    Directory of Open Access Journals (Sweden)

    Burtnyak Ivan V.

    2017-06-01

    Full Text Available In the paper we apply the spectral theory to find the price for derivatives of financial assets assuming that the processes described are Markov processes and such that can be considered in the Hilbert space L^2 using the Sturm-Liouville theory. Bessel diffusion processes are used in studying Asian options. We consider the financial flows generated by the Bessel diffusions by expressing them in terms of the system of Bessel functions of the first kind, provided that they take into account the linear combination of the flow and its spatial derivative. Such expression enables calculating the size of the market portfolio and provides a measure of the amount of internal volatility in the market at any given moment, allows investigating the dynamics of the equity market. The expansion of the Green function in terms of the system of Bessel functions is expressed by an analytic formula that is convenient in calculating the volume of financial flows. All assumptions are natural, result in analytic formulas that are consistent with the empirical data and, when applied in practice, adequately reflect the processes in equity markets.

  20. WKB analysis of PT-symmetric Sturm–Liouville problems

    International Nuclear Information System (INIS)

    Bender, Carl M; Jones, Hugh F

    2012-01-01

    Most studies of PT-symmetric quantum-mechanical Hamiltonians have considered the Schrödinger eigenvalue problem on an infinite domain. This paper examines the consequences of imposing the boundary conditions on a finite domain. As is the case with regular Hermitian Sturm–Liouville problems, the eigenvalues of the PT-symmetric Sturm–Liouville problem grow like n 2 for large n. However, the novelty is that a PT eigenvalue problem on a finite domain typically exhibits a sequence of critical points at which pairs of eigenvalues cease to be real and become complex conjugates of one another. For the potentials considered here this sequence of critical points is associated with a turning point on the imaginary axis in the complex plane. WKB analysis is used to calculate the asymptotic behaviours of the real eigenvalues and the locations of the critical points. The method turns out to be surprisingly accurate even at low energies. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  1. The inverse spectral problem for pencils of differential operators

    International Nuclear Information System (INIS)

    Guseinov, I M; Nabiev, I M

    2007-01-01

    The inverse problem of spectral analysis for a quadratic pencil of Sturm-Liouville operators on a finite interval is considered. A uniqueness theorem is proved, a solution algorithm is presented, and sufficient conditions for the solubility of the inverse problem are obtained. Bibliography: 31 titles.

  2. An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra

    KAUST Repository

    Rundell, William; Sacks, Paul

    2013-01-01

    A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative

  3. Periodic Sturm-Liouville problems related to two Riccati equations of constant coefficients

    International Nuclear Information System (INIS)

    Khmelnytskaya, K.V.; Rosu, H.C.; Gonzalez, A.

    2010-01-01

    We consider two closely related Riccati equations of constant parameters whose particular solutions are used to construct the corresponding class of supersymmetrically coupled second-order differential equations. We solve analytically these parametric periodic problems along the whole real axis. Next, the analytically solved model is used as a case study for a powerful numerical approach that is employed here for the first time in the investigation of the energy band structure of periodic not necessarily regular potentials. The approach is based on the well-known self-matching procedure of James (1949) and implements the spectral parameter power series solutions introduced by Kravchenko (2008). We obtain additionally an efficient series representation of the Hill discriminant based on Kravchenko's series.

  4. Sturm solutions of the two-centre problem in quantum mechanics

    International Nuclear Information System (INIS)

    Truskova, N.F.

    1984-01-01

    Algorithm of computer calculation of the Sturm solutions of the two-body problem in quantum mechanics has been presented for different magnitudes of internuclear distance R and at energies E<0, which correspond to a definite term of the above problem or to a constants. Formulae of transition from spherical quantum numbers to parabolic ones have been presented, and asymptotics of eigen values at R→0 and R→infinity have been obtained. Calculation results are presented in a graphical form

  5. Lagrangian Differentiation, Integration and Eigenvalues Problems

    International Nuclear Information System (INIS)

    Durand, L.

    1983-01-01

    Calogero recently proposed a new and very powerful method for the solution of Sturm-Liouville eigenvalue problems based on Lagrangian differentiation. In this paper, some results of a numerical investigation of Calogero's method for physical interesting problems are presented. It is then shown that one can 'invert' his differentiation technique to obtain a flexible, factorially convergent Lagrangian integration scheme which should be useful in a variety of problems, e.g. solution of integral equations

  6. Essentially isospectral transformations and their applications

    OpenAIRE

    Guliyev , Namig

    2017-01-01

    We define and study the properties of Darboux-type transformations between Sturm--Liouville problems with boundary conditions containing rational Herglotz--Nevanlinna functions of the eigenvalue parameter (including the Dirichlet boundary conditions). Using these transformations, we obtain various direct and inverse spectral results for these problems in a unified manner, such as asymptotics of eigenvalues and norming constants, oscillation of eigenfunctions, regularized trace formulas, and i...

  7. On Euler's problem

    International Nuclear Information System (INIS)

    Egorov, Yurii V

    2013-01-01

    We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.

  8. Sturm-Picone type theorems for second-order nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    Aydin Tiryaki

    2014-06-01

    Full Text Available The aim of this article is to give Sturm-Picone type theorems for the pair of second-order nonlinear differential equations $$\\displaylines{ (p_1(t|x'|^{\\alpha-1}x''+q_1(tf_1(x=0 \\cr (p_2(t|y'|^{\\alpha-1}y''+q_2(tf_2(y=0,\\quad t_1regular and singular cases. Our results include some earlier results and generalize the well-known comparison theorems given by Sturm [19], Picone [18] and Leighton [5] which play a key role in the qualitative behaviour of the solutions.

  9. Relations between transfer matrices and numerical stability analysis to avoid the $\\Omega d$ problem

    OpenAIRE

    Pérez-Álvarez, R.; Pernas-Salomón, R.; Velasco, V. R.

    2015-01-01

    The transfer matrix method is usually employed to study problems described by $N$ equations of matrix Sturm-Liouville (MSL) kind. In some cases a numerical degradation (the so called $\\Omega d$ problem) appears thus impairing the performance of the method. We present here a procedure that can overcome this problem in the case of multilayer systems having piecewise constant coefficients. This is performed by studying the relations between the associated transfer matrix and other transfer matri...

  10. On Euler's problem

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, Yurii V [Institute de Mathematique de Toulouse, Toulouse (France)

    2013-04-30

    We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.

  11. NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS

    OpenAIRE

    NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI

    2017-01-01

    In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...

  12. Johann Christoph Sturm's universal mathematics and metaphysics (German Title: Universalmathematik und Metaphysik bei Johann Christoph Sturm)

    Science.gov (United States)

    Leinsle, Ulrich G.

    In order to understand Sturm's concept of a universal mathematics as a replacement or complement of metaphysics, one first has to examine the evolution of the idea of a mathesis universalis up to Sturm, and his concept of metaphysics. According to the understanding of those times, natural theology belongs to metaphysics. The last section is concerned with Sturm's statements on the existence of God and his assessments for a physico-theology.

  13. Physics-based models for measurement correlations: application to an inverse Sturm–Liouville problem

    International Nuclear Information System (INIS)

    Bal, Guillaume; Ren Kui

    2009-01-01

    In many inverse problems, the measurement operator, which maps objects of interest to available measurements, is a smoothing (regularizing) operator. Its inverse is therefore unbounded and as a consequence, only the low-frequency component of the object of interest is accessible from inevitably noisy measurements. In many inverse problems however, the neglected high-frequency component may significantly affect the measured data. Using simple scaling arguments, we characterize the influence of the high-frequency component. We then consider situations where the correlation function of such an influence may be estimated by asymptotic expansions, for instance as a random corrector in homogenization theory. This allows us to consistently eliminate the high-frequency component and derive a closed form, more accurate, inverse problem for the low-frequency component of the object of interest. We present the asymptotic expression of the correlation matrix of the eigenvalues in a Sturm–Liouville problem with unknown potential. We propose an iterative algorithm for the reconstruction of the potential from knowledge of the eigenvalues and show that using the approximate correlation matrix significantly improves the reconstructions

  14. Liouville's theorem and the method of the inverse problem

    International Nuclear Information System (INIS)

    Its, A.R.

    1985-01-01

    An approach to the investigation of the Zakharov-Shabat equations is developed. This approach is based on a classical theorem of Liouville and is the synthesis of ''finite-zone'' integration, the matrix Riemann problem method and the theory of isomonodromy deformations of differential equations. The effectiveness of the proposed scheme is demonstrated by developing ''dressing procedures'' for the Bullough-Dodd equation

  15. Brief communication. An indefinite Sturm theory

    OpenAIRE

    Portaluri, Alessandro

    2008-01-01

    Sturm theory for second order differential equations was generalized to systems and higher order equations with positive leading coefficient by several authors. Here we propose a Sturm oscillation theorem for indefinite systems of even order and with Dirichlet boundary conditions having strongly indefinite leading term.

  16. Super-Liouville — double Liouville correspondence

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    2014-05-01

    The AGT motivated relation between the tensor product of the = 1 super-Liouville field theory with the imaginary free fermion (SL) and a certain projected tensor product of the real and the imaginary Liouville field theories (LL) is analyzed. Using conformal field theory techniques we give a complete proof of the equivalence in the NS sector. It is shown that the SL-LL correspondence is based on the equivalence of chiral objects including suitably chosen chiral structure constants of all the three Liouville theories involved.

  17. Super-Liouville — double Liouville correspondence

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskólski, Zbigniew

    2014-01-01

    The AGT motivated relation between the tensor product of the N=1 super-Liouville field theory with the imaginary free fermion (SL) and a certain projected tensor product of the real and the imaginary Liouville field theories (LL) is analyzed. Using conformal field theory techniques we give a complete proof of the equivalence in the NS sector. It is shown that the SL-LL correspondence is based on the equivalence of chiral objects including suitably chosen chiral structure constants of all the three Liouville theories involved.

  18. Super-Liouville — double Liouville correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,W. Reymonta 4, 30-059 Kraków (Poland); Jaskólski, Zbigniew [Institute of Theoretical Physics, University of Wrocław,pl. M. Borna 1, 95-204 Wrocław (Poland)

    2014-05-27

    The AGT motivated relation between the tensor product of the N=1 super-Liouville field theory with the imaginary free fermion (SL) and a certain projected tensor product of the real and the imaginary Liouville field theories (LL) is analyzed. Using conformal field theory techniques we give a complete proof of the equivalence in the NS sector. It is shown that the SL-LL correspondence is based on the equivalence of chiral objects including suitably chosen chiral structure constants of all the three Liouville theories involved.

  19. On the Hochstadt-Lieberman theorem

    Science.gov (United States)

    Martinyuk, O.; Pivovarchik, V.

    2010-03-01

    A method of recovering the potential of the Sturm-Liouville equation on a half-interval using a known potential on another half-interval and the spectrum of the Dirichlet-Dirichlet problem on the whole interval is proposed.

  20. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques

    Science.gov (United States)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.

  1. A Liouville Problem for the Stationary Fractional Navier-Stokes-Poisson System

    Science.gov (United States)

    Wang, Y.; Xiao, J.

    2017-06-01

    This paper deals with a Liouville problem for the stationary fractional Navier-Stokes-Poisson system whose special case k=0 covers the compressible and incompressible time-independent fractional Navier-Stokes systems in R^{N≥2} . An essential difficulty raises from the fractional Laplacian, which is a non-local operator and thus makes the local analysis unsuitable. To overcome the difficulty, we utilize a recently-introduced extension-method in Wang and Xiao (Commun Contemp Math 18(6):1650019, 2016) which develops Caffarelli-Silvestre's technique in Caffarelli and Silvestre (Commun Partial Diff Equ 32:1245-1260, 2007).

  2. H3+-WZNW correlators from Liouville theory

    International Nuclear Information System (INIS)

    Ribault, Sylvain; Teschner, Joerg

    2005-01-01

    We prove that arbitrary correlation functions of the H 3 + -WZNW model on a sphere have a simple expression in terms of Liouville theory correlation functions. This is based on the correspondence between the KZ and BPZ equations, and on relations between the structure constants of Liouville theory and the H 3 + -WZNW model. In the critical level limit, these results imply a direct link between eigenvectors of the Gaudin hamiltonians and the problem of uniformization of Riemann surfaces. We also present an expression for correlation functions of the SL(2)/U(1) gauged WZNW model in terms of correlation functions in Liouville theory

  3. Cauchy problem for a parabolic equation with Bessel operator and Riemann–Liouville partial derivative

    Directory of Open Access Journals (Sweden)

    Fatima G. Khushtova

    2016-03-01

    Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.

  4. Force-free fields in the vicinity of a Reissner-Nordstroem black hole

    International Nuclear Information System (INIS)

    Evangelidis, E.

    1978-01-01

    The behaviour of a force-free field has been studied in a Reissner-Nordstroem metric. An expansion in tensor harmonics of even-odd parity reduced the radial equations in a differential equation of the Sturm-Liouville system which was solved asymptotically in a conveniently defined space coordinate. Further, it has been possible to regularize the singular behaviour of the Reissner-Nordstroem metric at the event horizon and the modified metric to be given explicitly. (Auth.)

  5. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  6. Liouvilles's imaginary shadow

    International Nuclear Information System (INIS)

    Schomerus, Volker; Suchanek, Paulina; Univ. of Wroclaw

    2012-10-01

    N=1 super Liouville field theory is one of the simplest non-rational conformal field theories. It possesses various important extensions and interesting applications, e.g. to the AGT relation with 4D gauge theory or the construction of the OSP(1 vertical stroke 2) WZW model. In both setups, the N=1 Liouville field is accompanied by an additional free fermion. Recently, Belavin et al. suggested a bosonization of the product theory in terms of two bosonic Liouville fields. While one of these Liouville fields is standard, the second turns out to be imaginary (or time-like). We extend the proposal to the R sector and perform extensive checks based on detailed comparison of 3-point functions involving several super-conformal primaries and descendants. On the basis of such strong evidence we sketch a number of interesting potential applications of this intriguing bozonization.

  7. An asymptotic formula for Weyl solutions of the dirac equations

    International Nuclear Information System (INIS)

    Misyura, T.V.

    1995-01-01

    In the spectral analysis of differential operators and its applications an important role is played by the investigation of the behavior of the Weyl solutions of the corresponding equations when the spectral parameter tends to infinity. Elsewhere an exact asymptotic formula for the Weyl solutions of a large class of Sturm-Liouville equations has been obtained. A decisve role in the proof of this formula has been the semiboundedness property of the corresponding Sturm-Liouville operators. In this paper an analogous formula is obtained for the Weyl solutions of the Dirac equations

  8. Uniqueness theorems for differential pencils with eigenparameter boundary conditions and transmission conditions

    Science.gov (United States)

    Yang, Chuan-Fu

    Inverse spectral problems are considered for differential pencils with boundary conditions depending polynomially on the spectral parameter and with a finite number of transmission conditions. We give formulations of the associated inverse problems such as Titchmarsh-Weyl theorem, Hochstadt-Lieberman theorem and Mochizuki-Trooshin theorem, and prove corresponding uniqueness theorems. The obtained results are generalizations of the similar results for the classical Sturm-Liouville operator on a finite interval.

  9. Finite elements for partial differential equations: An introductory survey

    International Nuclear Information System (INIS)

    Succi, S.

    1988-03-01

    After presentation of the basic ideas behind the theory of the Finite Element Method, the application of the method to three equations of particular interest in Physics and Engineering is discussed in some detail, namely, a one-dimensional Sturm-Liouville problem, a two-dimensional linear Fokker-Planck equation and a two-dimensional nonlinear Navier-Stokes equation. 6 refs, 8 figs

  10. The Levinson theorem

    International Nuclear Information System (INIS)

    Ma Zhongqi

    2006-01-01

    The Levinson theorem is a fundamental theorem in quantum scattering theory, which shows the relation between the number of bound states and the phase shift at zero momentum for the Schroedinger equation. The Levinson theorem was established and developed mainly with the Jost function, with the Green function and with the Sturm-Liouville theorem. In this review, we compare three methods of proof, study the conditions of the potential for the Levinson theorem and generalize it to the Dirac equation. The method with the Sturm-Liouville theorem is explained in some detail. References to development and application of the Levinson theorem are introduced. (topical review)

  11. Gauge theory loop operators and Liouville theory

    International Nuclear Information System (INIS)

    Drukker, Nadav; Teschner, Joerg

    2009-10-01

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  12. Gauge theory loop operators and Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-10-15

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  13. Liouvilles's imaginary shadow

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Suchanek, Paulina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. of Wroclaw (Poland). Inst. for Theoretical Physics

    2012-10-15

    N=1 super Liouville field theory is one of the simplest non-rational conformal field theories. It possesses various important extensions and interesting applications, e.g. to the AGT relation with 4D gauge theory or the construction of the OSP(1 vertical stroke 2) WZW model. In both setups, the N=1 Liouville field is accompanied by an additional free fermion. Recently, Belavin et al. suggested a bosonization of the product theory in terms of two bosonic Liouville fields. While one of these Liouville fields is standard, the second turns out to be imaginary (or time-like). We extend the proposal to the R sector and perform extensive checks based on detailed comparison of 3-point functions involving several super-conformal primaries and descendants. On the basis of such strong evidence we sketch a number of interesting potential applications of this intriguing bozonization.

  14. BSATOM - package of programs for calculating the energy levels and wave functions of helium-like systems taking into account isotope effects

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Vinitskij, S.I.; Puzynin, I.V.

    1989-01-01

    Description of package BCATOM for calculating the energy levels and wave functions of helium-like systems in the hyperspherical adiabatic approach taking into account the isotopic effects is given. The corresponding Sturm-Liouville problems are approximated by the difference method and the high order accuracy finite element method. The obtained generalized algebraic eigenvalue problems are solved by subspace iteration method. Possibilities of the package are demonstrated by calculating the ground state characteristics of a negative hydrogen ion. 33 refs.; 1 fig

  15. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  16. Reconstruction of the residual stresses in a hyperelastic body using ultrasound techniques

    KAUST Repository

    Joshi, Sunnie

    2013-09-01

    This paper focuses on a novel approach for characterizing the residual stress field in soft tissue using ultrasound interrogation. A nonlinear inverse spectral technique is developed that makes fundamental use of the finite strain nonlinear response of the material to a quasi-static loading. The soft tissue is modeled as a nonlinear, prestressed and residually stressed, isotropic, slightly compressible elastic body with a rectangular geometry. A boundary value problem is formulated for the residually stressed and prestressed soft tissue, the boundary of which is subjected to a quasi-static pressure, and then an idealized model for the ultrasound interrogation is constructed by superimposing small amplitude time harmonic infinitesimal vibrations on static finite deformation via an asymptotic construction. The model is studied, through a semi-inverse approach, for a specific class of deformations that leads to a system of second order differential equations with homogeneous boundary conditions of Sturm-Liouville type. By making use of the classical theory of inverse Sturm-Liouville problems, and root finding and optimization techniques, several inverse spectral algorithms are developed to approximate the residual stress distribution in the body, given the first few eigenfrequencies of several induced static pressures. © 2013 Elsevier Ltd. All rights reserved.

  17. A Note on Upper Tail Behavior of Liouville Copulas

    Directory of Open Access Journals (Sweden)

    Lei Hua

    2016-11-01

    Full Text Available The family of Liouville copulas is defined as the survival copulas of multivariate Liouville distributions, and it covers the Archimedean copulas constructed by Williamson’s d-transform. Liouville copulas provide a very wide range of dependence ranging from positive to negative dependence in the upper tails, and they can be useful in modeling tail risks. In this article, we study the upper tail behavior of Liouville copulas through their upper tail orders. Tail orders of a more general scale mixture model that covers Liouville distributions is first derived, and then tail order functions and tail order density functions of Liouville copulas are derived. Concrete examples are given after the main results.

  18. An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra

    KAUST Repository

    Rundell, William

    2013-04-23

    A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative: the Dirichlet spectrum from the clamped end-point conditions is insufficient. There are many known ways to add additional information to gain a positive answer, and these include changing one of the boundary conditions and recomputing the spectrum or giving the energy in each eigenmode-the so-called norming constants. We make the assumption that neither of these changes are possible. Instead we will add known mass-densities to the string in a way we can prescribe and remeasure the Dirichlet spectrum. We will not be able to answer the uniqueness question in its most general form, but will give some insight to what "added masses" should be chosen and how this can lead to a reconstruction of the original string density. © 2013 Society for Industrial and Applied Mathematics.

  19. General inverse problems for regular variation

    DEFF Research Database (Denmark)

    Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan

    2014-01-01

    Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...

  20. Existence and Nonexistence of Positive Solutions for Coupled Riemann-Liouville Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Johnny Henderson

    2016-01-01

    Full Text Available We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with two parameters, subject to coupled integral boundary conditions.

  1. Spectral function for a nonsymmetric differential operator on the half line

    Directory of Open Access Journals (Sweden)

    Wuqing Ning

    2017-05-01

    Full Text Available In this article we study the spectral function for a nonsymmetric differential operator on the half line. Two cases of the coefficient matrix are considered, and for each case we prove by Marchenko's method that, to the boundary value problem, there corresponds a spectral function related to which a Marchenko-Parseval equality and an expansion formula are established. Our results extend the classical spectral theory for self-adjoint Sturm-Liouville operators and Dirac operators.

  2. The unbounded solution of a periodic mixed Sturm–Liouville problem in an infinite strip for the Laplacian

    Directory of Open Access Journals (Sweden)

    M.G. Elsheikh

    2013-10-01

    Full Text Available The unbounded solution, at the points where the boundary conditions change, for a mixed Sturm–Liouville problem of the Dirichlet–Neumann type can be obtained using the method of the integral equation formulation. Since this formulation is usually reduced to an infinite algebraic system in which the unknowns are the Fourier coefficients of the unknown unbounded entity, a study of ℓp-solutions imposes itself concerning the influence of the truncation on such systems. This study is achieved and the well-known theorem on the ℓ2-solutions of the infinite algebraic systems is generalized.

  3. Sibelius: Der Sturm, Op. 109, Neeme Järvi / Gerhard Pätzig

    Index Scriptorium Estoniae

    Pätzig, Gerhard

    1990-01-01

    Uuest heliplaadist "Sibelius: Der Sturm, Op. 109, (Vorspiel und Konzertsuiten zu Shakespeares Drama), Cassazione, Op.6, Preludio, Tiera. Sinfonieorchester Göteborg, Neeme Järvi". BIS/ Disco-Center CD 448 71'43") DDD

  4. Exact solution of super Liouville model

    International Nuclear Information System (INIS)

    Yang Zhanying; Zhao Liu; Zhen Yi

    2000-01-01

    Using Leznov-Saveliev algebraic analysis and Drinfeld-Sokolov construction, the authors obtained the explicit solutions to the super Liouville system in super covariant form and component form. The explicit solution in component form reduces naturally into the Egnchi-Hanson instanton solution of the usual Liouville equation if all the Grassmann odd components are set equal to zero

  5. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity.

    Science.gov (United States)

    Duplantier, Bertrand; Sheffield, Scott

    2009-04-17

    We present a (mathematically rigorous) probabilistic and geometrical proof of the Knizhnik-Polyakov-Zamolodchikov relation between scaling exponents in a Euclidean planar domain D and in Liouville quantum gravity. It uses the properly regularized quantum area measure dmicro_{gamma}=epsilon;{gamma;{2}/2}e;{gammah_{epsilon}(z)}dz, where dz is the Lebesgue measure on D, gamma is a real parameter, 02 is shown to be related to the quantum measure dmu_{gamma;{'}}, gamma;{'}<2, by the fundamental duality gammagamma;{'}=4.

  6. Liouville theory with a central charge less than one

    Energy Technology Data Exchange (ETDEWEB)

    Ribault, Sylvain [CEA Saclay, Institut de Physique Théorique,F-91191, Gif-sur-Yvette (France); Santachiara, Raoul [LPTMS, Université Paris Sud,15 rue Georges Clemenceau, Orsay (France)

    2015-08-21

    We determine the spectrum and correlation functions of Liouville theory with a central charge less than (or equal) one. This completes the definition of Liouville theory for all complex values of the central charge. The spectrum is always spacelike, and there is no consistent timelike Liouville theory. We also study the non-analytic conformal field theories that exist at rational values of the central charge. Our claims are supported by numerical checks of crossing symmetry. We provide Python code for computing Virasoro conformal blocks, and correlation functions in Liouville theory and (generalized) minimal models.

  7. Hilpoltstein at Johann Christoph Sturm's times (German Title: Hilpoltstein zu Zeiten Johann Christoph Sturms)

    Science.gov (United States)

    Platz, Kai Thomas

    After an overview on the foundations of research, the conditions inside the town of Hilpoltstein in the first half of the 17th century are described. Since Hilpoltstein was situated at the road from Nuremberg to Munich, and thus at one of the most important north-south trading routes of medieval times, the town florished in economic terms at the beginning of the 17th century. Afterwards, however, the inhabitants had to suffer religious troubles, since the count palatine Wolfgang Wilhelm converted to catholicism. We collect the traces of the Sturm family in Hilpoltstein that still exist today, and complete the picture by giving an overview of the architectural, commercial and social conditions of those times.

  8. Touching random surfaces and Liouville gravity

    International Nuclear Information System (INIS)

    Klebanov, I.R.

    1995-01-01

    Large N matrix models modified by terms of the form g(TrΦ n ) 2 generate random surfaces which touch at isolated points. Matrix model results indicate that, as g is increased to a special value g t , the string susceptibility exponent suddenly jumps from its conventional value γ to γ/(γ-1). We study this effect in Liouville gravity and attribute it to a change of the interaction term from Oe α + φ for g t to Oe α - φ for g=g t (α + and α - are the two roots of the conformal invariance condition for the Liouville dressing of a matter operator O). Thus, the new critical behavior is explained by the unconventional branch of Liouville dressing in the action

  9. Connections of the Liouville model and XXZ spin chain

    Science.gov (United States)

    Faddeev, Ludvig D.; Tirkkonen, Olav

    1995-02-01

    The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin- {1}/{2} XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ = πν/( ν + 1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kač table parameterized by a string length K, and the remnant of the chain length mod ( ν + 1).

  10. Connections of the Liouville model and XXZ spin chain

    International Nuclear Information System (INIS)

    Faddeev, L.D.; Tirkkonen, O.

    1995-01-01

    The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin-1/2 XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ= πν/(ν+1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kac table parameterized by a string length K, and the remnant of the chain length mod (ν+1). (orig.)

  11. Oscillation theory of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Došlý, Ondřej

    2000-01-01

    Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics

  12. Noncritical String Liouville Theory and Geometric Bootstrap Hypothesis

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The applications of the existing Liouville theories for the description of the longitudinal dynamics of noncritical Nambu-Goto string are analyzed. We show that the recently developed DOZZ solution to the Liouville theory leads to the cut singularities in tree string amplitudes. We propose a new version of the Polyakov geometric approach to Liouville theory and formulate its basic consistency condition — the geometric bootstrap equation. Also in this approach the tree amplitudes develop cut singularities.

  13. Quasi-equilibria in reduced Liouville spaces.

    Science.gov (United States)

    Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon

    2012-06-14

    The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.

  14. Incremental projection approach of regularization for inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)

    2016-10-15

    This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.

  15. On the solution of the Liouville equation over a rectangle

    Directory of Open Access Journals (Sweden)

    A. M. Arthurs

    1996-01-01

    Full Text Available Methods for integral equations are used to derive pointwise bounds for the solution of a boundary value problem for the nonlinear Liouville partial differential equation over a rectangle. Several test calculations are performed and the resulting solutions are more accurate than those obtained previously by other methods.

  16. Liouville's theorem and phase-space cooling

    International Nuclear Information System (INIS)

    Mills, R.L.; Sessler, A.M.

    1993-01-01

    A discussion is presented of Liouville's theorem and its consequences for conservative dynamical systems. A formal proof of Liouville's theorem is given. The Boltzmann equation is derived, and the collisionless Boltzmann equation is shown to be rigorously true for a continuous medium. The Fokker-Planck equation is derived. Discussion is given as to when the various equations are applicable and, in particular, under what circumstances phase space cooling may occur

  17. The Solution Construction of Heterotic Super-Liouville Model

    Science.gov (United States)

    Yang, Zhan-Ying; Zhen, Yi

    2001-12-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.

  18. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  19. Liouville quantum gravity on complex tori

    Energy Technology Data Exchange (ETDEWEB)

    David, François [Institut de Physique Théorique, CNRS, URA 2306, CEA, IPhT, Gif-sur-Yvette (France); Rhodes, Rémi [Université Paris-Est Marne la Vallée, LAMA, Champs sur Marne (France); Vargas, Vincent [ENS Paris, DMA, 45 rue d’Ulm, 75005 Paris (France)

    2016-02-15

    In this paper, we construct Liouville Quantum Field Theory (LQFT) on the toroidal topology in the spirit of the 1981 seminal work by Polyakov [Phys. Lett. B 103, 207 (1981)]. Our approach follows the construction carried out by the authors together with Kupiainen in the case of the Riemann sphere [“Liouville quantum gravity on the Riemann sphere,” e-print arXiv:1410.7318]. The difference is here that the moduli space for complex tori is non-trivial. Modular properties of LQFT are thus investigated. This allows us to integrate the LQFT on complex tori over the moduli space, to compute the law of the random Liouville modulus, therefore recovering (and extending) formulae obtained by physicists, and make conjectures about the relationship with random planar maps of genus one, eventually weighted by a conformal field theory and conformally embedded onto the torus.

  20. Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations

    International Nuclear Information System (INIS)

    Xu Xixiang

    2012-01-01

    A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectic map and a completely integrable finite-dimensional Hamiltonian system. (general)

  1. Sparsity regularization for parameter identification problems

    International Nuclear Information System (INIS)

    Jin, Bangti; Maass, Peter

    2012-01-01

    The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some

  2. Classical Liouville action on the sphere with three hyperbolic singularities

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew E-mail: jask@ift.uniwroc.pl

    2004-08-30

    The classical solution to the Liouville equation in the case of three hyperbolic singularities of its energy-momentum tensor is derived and analyzed. The recently proposed classical Liouville action is explicitly calculated in this case. The result agrees with the classical limit of the three-point function in the DOZZ solution of the quantum Liouville theory.

  3. Classical Liouville action on the sphere with three hyperbolic singularities

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    2004-08-01

    The classical solution to the Liouville equation in the case of three hyperbolic singularities of its energy-momentum tensor is derived and analyzed. The recently proposed classical Liouville action is explicitly calculated in this case. The result agrees with the classical limit of the three-point function in the DOZZ solution of the quantum Liouville theory.

  4. Classical Liouville action on the sphere with three hyperbolic singularities

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew

    2004-01-01

    The classical solution to the Liouville equation in the case of three hyperbolic singularities of its energy-momentum tensor is derived and analyzed. The recently proposed classical Liouville action is explicitly calculated in this case. The result agrees with the classical limit of the three-point function in the DOZZ solution of the quantum Liouville theory

  5. The Interaction of Physics, Mechanics and Mathematics in Joseph Liouville's Research

    DEFF Research Database (Denmark)

    Lützen, Jesper

    2013-01-01

    Som for mange af hans samtidige var fysik og mekanik en stor inspirationskilde for Liouville's matematiske forskning. Laplaces tilgang til fysik var oprindelsen til Liouvilles teori om differentiation af vilkårlig orden, Kelvins elektrostatiske forskning var oprindelsen til Liouvilles sætning om ...

  6. Two- and three-point functions in Liouville theory

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1994-04-01

    Based on our generalization of the Goulian-Li continuation in the power of the 2D cosmological term we construct the two and three-point correlation functions for Liouville exponentials with generic real coefficients. As a strong argument in favour of the procedure we prove the Liouville equation of motion on the level of three-point functions. The analytical structure of the correlation functions as well as some of its consequences for string theory are discussed. This includes a conjecture on the mass shell condition for excitations of noncritical strings. We also make a comment concerning the correlation functions of the Liouville field itself. (orig.)

  7. Inner-shell correlations and Sturm expansions in coupled perturbation calculations of atomic systems

    International Nuclear Information System (INIS)

    Sherstyuk, A.I.; Solov'eva, G.S.

    1995-01-01

    It is shown that virtual Hartree-Fock orbitals in Sturm-type expansions can be used to calculate the response of atomic systems to an external field within the framework of the coupled perturbation theory with allowance for correlation effects. The corrected electron-electron interaction in a system with field-distorted orbitals is considered by adding a nonlocal potential to a one-electron Hartree-Fock operator within each group of equivalent elections. The remaining correlation effects are calculated by solving a system of equations for corrections to the radial functions. The system is solved iteratively, with each subsequent iteration corresponding to a correction of an increasingly higher order in the electron--electron interaction. The explicit expression derived for the polarizability contains one-and two-particle radial integrals of the Sturm functions

  8. The many faces of the quantum Liouville exponentials

    Science.gov (United States)

    Gervais, Jean-Loup; Schnittger, Jens

    1994-01-01

    First, it is proven that the three main operator approaches to the quantum Liouville exponentials—that is the one of Gervais-Neveu (more recently developed further by Gervais), Braaten-Curtright-Ghandour-Thorn, and Otto-Weigt—are equivalent since they are related by simple basis transformations in the Fock space of the free field depending upon the zero-mode only. Second, the GN-G expressions for quantum Liouville exponentials, where the U q( sl(2)) quantum-group structure is manifest, are shown to be given by q-binomial sums over powers of the chiral fields in the J = {1}/{2} representation. Third, the Liouville exponentials are expressed as operator tau functions, whose chiral expansion exhibits a q Gauss decomposition, which is the direct quantum analogue of the classical solution of Leznov and Saveliev. It involves q exponentials of quantum-group generators with group "parameters" equal to chiral components of the quantum metric. Fourth, we point out that the OPE of the J = {1}/{2} Liouville exponential provides the quantum version of the Hirota bilinear equation.

  9. Online learning of a Dirichlet process mixture of Beta-Liouville distributions via variational inference.

    Science.gov (United States)

    Fan, Wentao; Bouguila, Nizar

    2013-11-01

    A large class of problems can be formulated in terms of the clustering process. Mixture models are an increasingly important tool in statistical pattern recognition and for analyzing and clustering complex data. Two challenging aspects that should be addressed when considering mixture models are how to choose between a set of plausible models and how to estimate the model's parameters. In this paper, we address both problems simultaneously within a unified online nonparametric Bayesian framework that we develop to learn a Dirichlet process mixture of Beta-Liouville distributions (i.e., an infinite Beta-Liouville mixture model). The proposed infinite model is used for the online modeling and clustering of proportional data for which the Beta-Liouville mixture has been shown to be effective. We propose a principled approach for approximating the intractable model's posterior distribution by a tractable one-which we develop-such that all the involved mixture's parameters can be estimated simultaneously and effectively in a closed form. This is done through variational inference that enjoys important advantages, such as handling of unobserved attributes and preventing under or overfitting; we explain that in detail. The effectiveness of the proposed work is evaluated on three challenging real applications, namely facial expression recognition, behavior modeling and recognition, and dynamic textures clustering.

  10. Semiclassical limit of the FZZT Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators

  11. Semiclassical limit of the FZZT Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    2006-11-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  12. Semiclassical limit of the FZZT Liouville theory

    OpenAIRE

    Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: one bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  13. Semiclassical limit of the FZZT Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universitaet, Nussallee 12, 53115 Bonn (Germany); M. Smoluchowski Institute of Physics, Jagiellonian University, W. Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna 9, 50-204 Wroclaw (Poland)]. E-mail: jask@ift.uni.wroc.pl

    2006-11-27

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  14. A covariant canonical description of Liouville field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1993-03-01

    This paper presents a new parametrisation of the space of solutions of Liouville field theory on a cylinder. In this parametrisation, the solutions are well-defined and manifestly real functions over all space-time and all of parameter space. It is shown that the resulting covariant phase space of the Liouville theory is diffeomorphic to the Hamiltonian one, and to the space of initial data of the theory. The Poisson brackets are derived and shown to be those of the co-tangent bundle of the loop group of the real line. Using Hamiltonian reduction, it is shown that this covariant phase space formulation of Liouville theory may also be obtained from the covariant phase space formulation of the Wess-Zumino-Witten model. 19 refs

  15. Dressing symmetry of the uniformization solution of Liouville equation

    International Nuclear Information System (INIS)

    Shen Jianmin.

    1994-10-01

    In this paper, the relations between monodromy group and dressing group for Liouville equation in uniformization theorem are discussed. The representation of monodromy transformation, acting on the chiral components of the solution of Liouville equation, is obtained. The non-trivial exchange algebra for monodromy transformation is calculated. (author). 14 refs

  16. Minimal Liouville gravity correlation numbers from Douglas string equation

    International Nuclear Information System (INIS)

    Belavin, Alexander; Dubrovin, Boris; Mukhametzhanov, Baur

    2014-01-01

    We continue the study of (q,p) Minimal Liouville Gravity with the help of Douglas string equation. We generalize the results of http://dx.doi.org/10.1016/0550-3213(91)90548-Chttp://dx.doi.org/10.1088/1751-8113/42/30/304004, where Lee-Yang series (2,2s+1) was studied, to (3,3s+p 0 ) Minimal Liouville Gravity, where p 0 =1,2. We demonstrate that there exist such coordinates τ m,n on the space of the perturbed Minimal Liouville Gravity theories, in which the partition function of the theory is determined by the Douglas string equation. The coordinates τ m,n are related in a non-linear fashion to the natural coupling constants λ m,n of the perturbations of Minimal Lioville Gravity by the physical operators O m,n . We find this relation from the requirement that the correlation numbers in Minimal Liouville Gravity must satisfy the conformal and fusion selection rules. After fixing this relation we compute three- and four-point correlation numbers when they are not zero. The results are in agreement with the direct calculations in Minimal Liouville Gravity available in the literature http://dx.doi.org/10.1103/PhysRevLett.66.2051http://dx.doi.org/10.1007/s11232-005-0003-3http://dx.doi.org/10.1007/s11232-006-0075-8

  17. Regularization method for solving the inverse scattering problem

    International Nuclear Information System (INIS)

    Denisov, A.M.; Krylov, A.S.

    1985-01-01

    The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table

  18. A Lax integrable hierarchy, bi-Hamiltonian structure and finite-dimensional Liouville integrable involutive systems

    International Nuclear Information System (INIS)

    Xia Tiecheng; Chen Xiaohong; Chen Dengyuan

    2004-01-01

    An eigenvalue problem and the associated new Lax integrable hierarchy of nonlinear evolution equations are presented in this paper. As two reductions, the generalized nonlinear Schroedinger equations and the generalized mKdV equations are obtained. Zero curvature representation and bi-Hamiltonian structure are established for the whole hierarchy based on a pair of Hamiltonian operators (Lenard's operators), and it is shown that the hierarchy of nonlinear evolution equations is integrable in Liouville's sense. Thus the hierarchy of nonlinear evolution equations has infinitely many commuting symmetries and conservation laws. Moreover the eigenvalue problem is nonlinearized as a finite-dimensional completely integrable system under the Bargmann constraint between the potentials and the eigenvalue functions. Finally finite-dimensional Liouville integrable system are found, and the involutive solutions of the hierarchy of equations are given. In particular, the involutive solutions are developed for the system of generalized nonlinear Schroedinger equations

  19. Regularization Techniques for Linear Least-Squares Problems

    KAUST Repository

    Suliman, Mohamed

    2016-04-01

    Linear estimation is a fundamental branch of signal processing that deals with estimating the values of parameters from a corrupted measured data. Throughout the years, several optimization criteria have been used to achieve this task. The most astonishing attempt among theses is the linear least-squares. Although this criterion enjoyed a wide popularity in many areas due to its attractive properties, it appeared to suffer from some shortcomings. Alternative optimization criteria, as a result, have been proposed. These new criteria allowed, in one way or another, the incorporation of further prior information to the desired problem. Among theses alternative criteria is the regularized least-squares (RLS). In this thesis, we propose two new algorithms to find the regularization parameter for linear least-squares problems. In the constrained perturbation regularization algorithm (COPRA) for random matrices and COPRA for linear discrete ill-posed problems, an artificial perturbation matrix with a bounded norm is forced into the model matrix. This perturbation is introduced to enhance the singular value structure of the matrix. As a result, the new modified model is expected to provide a better stabilize substantial solution when used to estimate the original signal through minimizing the worst-case residual error function. Unlike many other regularization algorithms that go in search of minimizing the estimated data error, the two new proposed algorithms are developed mainly to select the artifcial perturbation bound and the regularization parameter in a way that approximately minimizes the mean-squared error (MSE) between the original signal and its estimate under various conditions. The first proposed COPRA method is developed mainly to estimate the regularization parameter when the measurement matrix is complex Gaussian, with centered unit variance (standard), and independent and identically distributed (i.i.d.) entries. Furthermore, the second proposed COPRA

  20. STURM: Resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: Design and Applications

    Science.gov (United States)

    Sanford, L. P.; Porter, E.; Porter, F. S.; Mason, R. P.

    2016-02-01

    Shear TUrbulence Resuspension Mesocosm (STURM) tanks, with high instantaneous bottom shear stress and realistic water column mixing in a single system, allow more realistic benthic-pelagic coupling studies that include sediment resuspension. The 1 m3 tanks can be programmed to produce tidal or episodic sediment resuspension over extended time periods (e.g. 4 weeks), over muddy sediments with or without infaunal organisms. The STURM tanks use a resuspension paddle that produces uniform bottom shear stress across the sediment surface while gently mixing a 1 m deep overlying water column. The STURM tanks can be programmed to different magnitudes, frequencies, and durations of bottom shear stress (and thus resuspension) with proportional water column turbulence levels over a wide range of mixing settings for benthic-pelagic coupling experiments. Over eight STURM calibration settings, turbulence intensity ranged from 0.55 to 4.52 cm s-1, energy dissipation rate from 0.0032 to 2.65 cm2 s-3, the average bottom shear stress from 0.0068 to 0.19 Pa, and the instantaneous bottom shear stress from 0.07 to 2.0 Pa. Mixing settings can be chosen as desired and/or varied over the experiment, based on the scientific question at hand. We have used the STURM tanks for four 4-week benthic-pelagic coupling ecosystem experiments with tidal resuspension with or without infaunal bivalves, for stepwise erosion experiments with and without infaunal bivalves, for experiments on oyster biodeposit resuspension, to mimic storms overlain on tidal resuspension, and for experiments on the effects of varying frequency and duration of resuspension on the release of sedimentary contaminants. The large size of the tanks allows water quality and particle measurements using standard oceanographic instrumentation. The realistic scale and complexity of the contained ecosystems has revealed indirect feedbacks and responses that are not observable in smaller, less complex experimental systems.

  1. Liouville theory and uniformization of four-punctured sphere

    OpenAIRE

    Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    Few years ago Zamolodchikov and Zamolodchikov proposed an expression for the 4-point classical Liouville action in terms of the 3-point actions and the classical conformal block. In this paper we develop a method of calculating the uniformizing map and the uniformizing group from the classical Liouville action on n-punctured sphere and discuss the consequences of Zamolodchikovs conjecture for an explicit construction of the uniformizing map and the uniformizing group for the sphere with four ...

  2. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  3. A quantum group approach to cL > 1 Liouville gravity

    International Nuclear Information System (INIS)

    Suzuki, Takashi.

    1995-03-01

    A candidate of c L > 1 Liouville gravity is studied via infinite dimensional representations of U q sl(2, C) with q at a root of unity. We show that vertex operators in this Liouville theory are factorized into classical vertex operators and those which are constructed from finite dimensional representations of U q sl(2, C). Expressions of correlation functions and transition amplitudes are presented. We discuss about our results and find an intimate relation between our quantization of the Liouville theory and the geometric quantization of moduli space of Riemann surfaces. An interpretation of quantum space-time is also given within this formulation. (author)

  4. Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, V. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Department of Theoretical Physics, National Research Nuclear University MEPhI,Kashirskoe shosse 31, 115409 Moscow (Russian Federation)

    2015-02-10

    We continue to study minimal Liouville gravity (MLG) using a dual approach based on the idea that the MLG partition function is related to the tau function of the A{sub q} integrable hierarchy via the resonance transformations, which are in turn fixed by conformal selection rules. One of the main problems in this approach is to choose the solution of the Douglas string equation that is relevant for MLG. The appropriate solution was recently found using connection with the Frobenius manifolds. We use this solution to investigate three- and four-point correlators in the unitary MLG models. We find an agreement with the results of the original approach in the region of the parameters where both methods are applicable. In addition, we find that only part of the selection rules can be satisfied using the resonance transformations. The physical meaning of the nonzero correlators, which before coupling to Liouville gravity are forbidden by the selection rules, and also the modification of the dual formulation that takes this effect into account remains to be found.

  5. On the MSE Performance and Optimization of Regularized Problems

    KAUST Repository

    Alrashdi, Ayed

    2016-11-01

    The amount of data that has been measured, transmitted/received, and stored in the recent years has dramatically increased. So, today, we are in the world of big data. Fortunately, in many applications, we can take advantages of possible structures and patterns in the data to overcome the curse of dimensionality. The most well known structures include sparsity, low-rankness, block sparsity. This includes a wide range of applications such as machine learning, medical imaging, signal processing, social networks and computer vision. This also led to a specific interest in recovering signals from noisy compressed measurements (Compressed Sensing (CS) problem). Such problems are generally ill-posed unless the signal is structured. The structure can be captured by a regularizer function. This gives rise to a potential interest in regularized inverse problems, where the process of reconstructing the structured signal can be modeled as a regularized problem. This thesis particularly focuses on finding the optimal regularization parameter for such problems, such as ridge regression, LASSO, square-root LASSO and low-rank Generalized LASSO. Our goal is to optimally tune the regularizer to minimize the mean-squared error (MSE) of the solution when the noise variance or structure parameters are unknown. The analysis is based on the framework of the Convex Gaussian Min-max Theorem (CGMT) that has been used recently to precisely predict performance errors.

  6. Dynamics and constraints of the Dissipative Liouville Cosmology

    CERN Document Server

    Basilakos, Spyros; Mitsou, Vasiliki A; Plionis, Manolis

    2012-01-01

    In this article we investigate the properties of the FLRW flat cosmological models in which the cosmic expansion of the Universe is affected by a dilaton dark energy (Liouville scenario). In particular, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent supernovae type Ia data (SNIa), the differential ages of passively evolving galaxies, and the Baryonic Acoustic Oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS), we put tight constraints on the main cosmological parameters. Furthermore, we study the linear matter fluctuation field of the above Liouville cosmological models. In this framework, we compare the observed growth rate of clustering measured from the optical galaxies with those predicted by the current Liouville models. Performing vari...

  7. Liouville theory and uniformization of four-punctured sphere

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    2006-08-01

    A few years ago Zamolodchikov and Zamolodchikov proposed an expression for the four-point classical Liouville action in terms of the three-point actions and the classical conformal block [Nucl. Phys. B 477, 577 (1996)]. In this paper we develop a method of calculating the uniformizing map and the uniformizing group from the classical Liouville action on n-punctured sphere and discuss the consequences of Zamolodchikovs conjecture for an explicit construction of the uniformizing map and the uniformizing group for the sphere with four punctures.

  8. Isomonodromic tau-functions from Liouville conformal blocks

    International Nuclear Information System (INIS)

    Iorgov, N.; Lisovyy, O.

    2014-01-01

    The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic functions with SL(2,C)-valued monodromy on Riemann surfaces of genus zero with n punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at c=1. This implies a similar representation for the isomonodromic tau-function. In the case n=4 we thereby get a proof of the relation between tau-functions and conformal blocks discovered in O. Gamayun, N. Iorgov, and O. Lisovyy (2012). We briefly discuss a possible application of our results to the study of relations between certain N=2 supersymmetric gauge theories and conformal field theory.

  9. A Liouville integrable hierarchy, symmetry constraint, new finite-dimensional integrable systems, involutive solution and expanding integrable models

    International Nuclear Information System (INIS)

    Sun Yepeng; Chen Dengyuan

    2006-01-01

    A new spectral problem and the associated integrable hierarchy of nonlinear evolution equations are presented in this paper. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the hierarchy. Moreover, the corresponding Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, new finite-dimensional completely integrable Hamiltonian systems in the Liouville sense. Further, an involutive representation of solution of each equation in the hierarchy is given. Finally, expanding integrable models of the hierarchy are constructed by using a new Loop algebra

  10. Regularization theory for ill-posed problems selected topics

    CERN Document Server

    Lu, Shuai

    2013-01-01

    Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects.He demonstrates new,differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory,such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs

  11. A quantum group approach to c{sub L} > 1 Liouville gravity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takashi

    1995-03-01

    A candidate of c{sub L} > 1 Liouville gravity is studied via infinite dimensional representations of U{sub q}sl(2, C) with q at a root of unity. We show that vertex operators in this Liouville theory are factorized into classical vertex operators and those which are constructed from finite dimensional representations of U{sub q}sl(2, C). Expressions of correlation functions and transition amplitudes are presented. We discuss about our results and find an intimate relation between our quantization of the Liouville theory and the geometric quantization of moduli space of Riemann surfaces. An interpretation of quantum space-time is also given within this formulation. (author).

  12. H+3 WZNW model from Liouville field theory

    International Nuclear Information System (INIS)

    Hikida, Yasuaki; Schomerus, Volker

    2007-01-01

    There exists an intriguing relation between genus zero correlation functions in the H + 3 WZNW model and in Liouville field theory. We provide a path integral derivation of the correspondence and then use our new approach to generalize the relation to surfaces of arbitrary genus g. In particular we determine the correlation functions of N primary fields in the WZNW model explicitly through Liouville correlators with N+2g-2 additional insertions of certain degenerate fields. The paper concludes with a list of interesting further extensions and a few comments on the relation to the geometric Langlands program

  13. Defects and permutation branes in the Liouville field theory

    DEFF Research Database (Denmark)

    Sarkissian, Gor

    2009-01-01

    The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families.......The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families....

  14. Integrability of Liouville system on high genus Riemann surface: Pt. 1

    International Nuclear Information System (INIS)

    Chen Yixin; Gao Hongbo

    1992-01-01

    By using the theory of uniformization of Riemann-surfaces, we study properties of the Liouville equation and its general solution on a Riemann surface of genus g>1. After obtaining Hamiltonian formalism in terms of free fields and calculating classical exchange matrices, we prove the classical integrability of Liouville system on high genus Riemann surface

  15. Semi-analytic modeling of tokamak particle transport

    International Nuclear Information System (INIS)

    Shi Bingren; Long Yongxing; Li Jiquan

    2000-01-01

    The linear particle transport equation of tokamak plasma is analyzed. Particle flow consists of an outward diffusion and an inward convection. General solution is expressed in terms of a Green function constituted by eigen-functions of corresponding Sturm-Liouville problem. For a particle source near the plasma edge (shadow fueling), a well-behaved solution in terms of Fourier series can be constituted by using the complementarity relation. It can be seen from the lowest eigen-function that the particle density becomes peaked when the wall recycling reduced. For a transient point source in the inner region, a well-behaved solution can be obtained by the complementarity as well

  16. Unitarity relations in c=1 Liouville theory

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1992-01-01

    In this paper, the authors consider the S-matrix of c = 1 Liouville theory with vanishing cosmological constant. The authors examine some of the constraints imposed by unitarity. These completely determine (N,2) amplitudes at tree level in terms of the (N,1) amplitudes when the plus tachyon momenta take generic values. A surprising feature of the matrix model results is the lack of particle creation branch cuts in the higher genus amplitudes. In fact, the authors show that the naive field theory limit of Liouville theory would predict such branch cuts. However, unitarity in the full string theory ensures that such cuts do not appear in genus one (N,1) amplitudes. The authors conclude with some comments about the genus one (N,2) amplitudes

  17. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  18. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  19. Existence and Solution-representation of IVP for LFDE with Generalized Riemann-Liouville fractional derivatives and $n$ terms

    OpenAIRE

    Kim, Myong-Ha; Ri, Guk-Chol; O, Hyong-Chol

    2013-01-01

    This paper provides the existence and representation of solution to an initial value problem for the general multi-term linear fractional differential equation with generalized Riemann-Liouville fractional derivatives and constant coefficients by using operational calculus of Mikusinski's type. We prove that the initial value problem has the solution of if and only if some initial values should be zero.

  20. Deformed type 0A matrix model and super-Liouville theory for fermionic black holes

    International Nuclear Information System (INIS)

    Ahn, Changrim; Kim, Chanju; Park, Jaemo; Suyama, Takao; Yamamoto, Masayoshi

    2006-01-01

    We consider a c-circumflex = 1 model in the fermionic black hole background. For this purpose we consider a model which contains both the N 1 and the N = 2 super-Liouville interactions. We propose that this model is dual to a recently proposed type 0A matrix quantum mechanics model with vortex deformations. We support our conjecture by showing that non-perturbative corrections to the free energy computed by both the matrix model and the super-Liouville theories agree exactly by treating the N = 2 interaction as a small perturbation. We also show that a two-point function on sphere calculated from the deformed type 0A matrix model is consistent with that of the N = 2 super-Liouville theory when the N = 1 interaction becomes small. This duality between the matrix model and super-Liouville theories leads to a conjecture for arbitrary n-point correlation functions of the N = 1 super-Liouville theory on the sphere

  1. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    Science.gov (United States)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  2. The local structure of a Liouville vector field

    International Nuclear Information System (INIS)

    Ciriza, E.

    1990-05-01

    In this work we investigate the local structure of a Liouville vector field ξ of a Kaehler manifold (P,Ω) which vanishes on an isotropic submanifold Q of P. Some of the eigenvalues of its linear part at the singular points are zero and the remaining ones are in resonance. We show that there is a C 1 -smooth linearizing conjugation between the Liouville vector field ξ and its linear part. To do this we construct Darboux coordinates adapted to the unstable foliation which is provided by the Centre Manifold Theorem. We then apply recent linearization results due to G. Sell. (author). 11 refs

  3. The exchange algebra for Liouville theory on punctured Riemann sphere

    International Nuclear Information System (INIS)

    Shen Jianmin; Sheng Zhengmao

    1991-11-01

    We consider in this paper the classical Liouville field theory on the Riemann sphere with n punctures. In terms of the uniformization theorem of Riemann surface, we show explicitly the classical exchange algebra (CEA) for the chiral components of the Liouville fields. We find that the matrice which dominate the CEA is related to the symmetry of the Lie group SL(n) in a nontrivial manner with n>3. (author). 10 refs

  4. Essay on Fractional Riemann-Liouville Integral Operator versus Mikusinski’s

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available This paper presents the representation of the fractional Riemann-Liouville integral by using the Mikusinski operators. The Mikusinski operators discussed in the paper may yet provide a new view to describe and study the fractional Riemann-Liouville integral operator. The present result may be useful for applying the Mikusinski operational calculus to the study of fractional calculus in mathematics and to the theory of filters of fractional order in engineering.

  5. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao

    2014-01-01

    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  6. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  7. Total variation regularization for a backward time-fractional diffusion problem

    International Nuclear Information System (INIS)

    Wang, Liyan; Liu, Jijun

    2013-01-01

    Consider a two-dimensional backward problem for a time-fractional diffusion process, which can be considered as image de-blurring where the blurring process is assumed to be slow diffusion. In order to avoid the over-smoothing effect for object image with edges and to construct a fast reconstruction scheme, the total variation regularizing term and the data residual error in the frequency domain are coupled to construct the cost functional. The well posedness of this optimization problem is studied. The minimizer is sought approximately using the iteration process for a series of optimization problems with Bregman distance as a penalty term. This iteration reconstruction scheme is essentially a new regularizing scheme with coupling parameter in the cost functional and the iteration stopping times as two regularizing parameters. We give the choice strategy for the regularizing parameters in terms of the noise level of measurement data, which yields the optimal error estimate on the iterative solution. The series optimization problems are solved by alternative iteration with explicit exact solution and therefore the amount of computation is much weakened. Numerical implementations are given to support our theoretical analysis on the convergence rate and to show the significant reconstruction improvements. (paper)

  8. The equivalence problem for LL- and LR-regular grammars

    NARCIS (Netherlands)

    Nijholt, Antinus; Gecsec, F.

    It will be shown that the equivalence problem for LL-regular grammars is decidable. Apart from extending the known result for LL(k) grammar equivalence to LLregular grammar equivalence, we obtain an alternative proof of the decidability of LL(k) equivalence. The equivalence prob]em for LL-regular

  9. Modular bootstrap in Liouville field theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Suchanek, Paulina

    2010-01-01

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  10. Modular bootstrap in Liouville field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek, E-mail: hadasz@th.if.uj.edu.p [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Jaskolski, Zbigniew, E-mail: jask@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland); Suchanek, Paulina, E-mail: paulina@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland)

    2010-02-22

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  11. Modular bootstrap in Liouville field theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Suchanek, Paulina

    2010-02-01

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  12. H+3 WZNW model from Liouville field theory

    International Nuclear Information System (INIS)

    Hikida, Y.; Schomerus, V.

    2007-06-01

    There exists an intriguing relation between genus zero correlation functions in the H + 3 WZNW model and in Liouville field theory. This was found by Ribault and Teschner based in part on earlier ideas by Stoyanovsky. We provide a path integral derivation of the correspondence and then use our new approach to generalize the relation to surfaces of arbitrary genus g. In particular we determine the correlation functions of N primary fields in the WZNW model explicitly through Liouville correlators with N+2g-2 additional insertions of certain degenerate fields. The paper concludes with a list of interesting further extensions and a few comments on the relation to the geometric Langlands program. (orig.)

  13. Inverse problems with Poisson data: statistical regularization theory, applications and algorithms

    International Nuclear Information System (INIS)

    Hohage, Thorsten; Werner, Frank

    2016-01-01

    Inverse problems with Poisson data arise in many photonic imaging modalities in medicine, engineering and astronomy. The design of regularization methods and estimators for such problems has been studied intensively over the last two decades. In this review we give an overview of statistical regularization theory for such problems, the most important applications, and the most widely used algorithms. The focus is on variational regularization methods in the form of penalized maximum likelihood estimators, which can be analyzed in a general setup. Complementing a number of recent convergence rate results we will establish consistency results. Moreover, we discuss estimators based on a wavelet-vaguelette decomposition of the (necessarily linear) forward operator. As most prominent applications we briefly introduce Positron emission tomography, inverse problems in fluorescence microscopy, and phase retrieval problems. The computation of a penalized maximum likelihood estimator involves the solution of a (typically convex) minimization problem. We also review several efficient algorithms which have been proposed for such problems over the last five years. (topical review)

  14. REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM

    DEFF Research Database (Denmark)

    Knudsen, Kim; Lassas, Matti; Mueller, Jennifer

    2009-01-01

    A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...... the convergence of the reconstructed conductivity to the true conductivity as the noise level tends to zero. The results provide a link between two traditions of inverse problems research: theory of regularization and inversion methods based on complex geometrical optics. Also, the procedure is a novel...

  15. Symmetric duality for left and right Riemann–Liouville and Caputo fractional differences

    Directory of Open Access Journals (Sweden)

    Thabet Abdeljawad

    2017-07-01

    Full Text Available A discrete version of the symmetric duality of Caputo–Torres, to relate left and right Riemann–Liouville and Caputo fractional differences, is considered. As a corollary, we provide an evidence to the fact that in case of right fractional differences, one has to mix between nabla and delta operators. As an application, we derive right fractional summation by parts formulas and left fractional difference Euler–Lagrange equations for discrete fractional variational problems whose Lagrangians depend on right fractional differences.

  16. Lavrentiev regularization method for nonlinear ill-posed problems

    International Nuclear Information System (INIS)

    Kinh, Nguyen Van

    2002-10-01

    In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)

  17. Brany Liouville inflation

    International Nuclear Information System (INIS)

    Ellis, John; Mavromatos, Nikolaos; Nanopoulos, Dimitri; Sakharov, Alexander

    2004-01-01

    We present a specific model for cosmological inflation driven by the Liouville field in a non-critical supersymmetric string framework, in which the departure from criticality is due to open strings stretched between two moving Type-II 5-branes. We use WMAP and other data on fluctuations in the cosmic microwave background to fix the parameters of the model, such as the relative separation and velocity of the 5-branes, respecting also the constraints imposed by data on light propagation from distant gamma-ray bursters. The model also suggests a small, relaxing component in the present vacuum energy that may accommodate the breaking of supersymmetry

  18. Liouville gravity on bordered surfaces

    International Nuclear Information System (INIS)

    Jaskolski, Z.

    1991-11-01

    The functional quantization of the Liouville gravity on bordered surfaces in the conformal gauge is developed. It was shown that the geometrical interpretation of the Polyakov path integral as a sum over bordered surfaces uniquely determines the boundary conditions for the fields involved. The gravitational scaling dimensions of boundary and bulk operators and the critical exponents are derived. In particular, the boundary Hausdorff dimension is calculated. (author). 21 refs

  19. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2016-01-01

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  20. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-11-29

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  1. Minimal Liouville gravity on the torus via the Douglas string equation

    International Nuclear Information System (INIS)

    Spodyneiko, Lev

    2015-01-01

    In this paper we assume that the partition function in minimal Liouville gravity (MLG) obeys the Douglas string equation. This conjecture makes it possible to compute the torus correlation numbers in (3,p) MLG. We perform this calculation using also the resonance relations between the coupling constants in the KdV frame and in the Liouville frame. We obtain explicit expressions for the torus partition function and for the one- and two-point correlation numbers. (paper)

  2. Quantitative theory of channeling particle diffusion in transverse energy in the presence of nuclear scattering and direct evaluation of dechanneling length

    Energy Technology Data Exchange (ETDEWEB)

    Tikhomirov, Victor V. [Belarusian State University, Institute for Nuclear Problems, Minsk (Belarus)

    2017-07-15

    A refined equation for channeling particle diffusion in transverse energy taking into consideration large-angle scattering by nuclei is suggested. This equation is reduced to the Sturm-Liouville problem, allowing one to reveal both the origin and the limitations of the dechanneling length notion. The values of the latter are evaluated for both positively and negatively charged particles of various energies. New features of the dechanneling dynamics of positively charged particles are also revealed. First, it is demonstrated that the dechanneling length notion is completely inapplicable for their nuclear dechanneling process. Second, the effective electron dechanneling length of positively charged particle varies more than twice converging to a constant asymptotic value only at the depth exceeding the latter. (orig.)

  3. Classical and quantum Liouville theory on the Riemann sphere with n>3 punctures (III)

    International Nuclear Information System (INIS)

    Shen Jianmin; Sheng Zhengmao; Wang Zhonghua

    1992-02-01

    We study the Classical and Quantum Liouville theory on the Riemann sphere with n>3 punctures. We get the quantum exchange algebra relations between the chiral components in the Liouville theory from our assumption on the principle of quantization. (author). 5 refs

  4. Efficient approximations of dispersion relations in optical waveguides with varying refractive-index profiles.

    Science.gov (United States)

    Li, Yutian; Zhu, Jianxin

    2015-05-04

    In this paper we consider the problem of computing the eigen-modes for the varying refractive-index profile in an open waveguide. We first approximate the refractive-index by a piecewise polynomial of degree two, and the corresponding Sturm-Liouville problem (eigenvalue problem) of the Helmholtz operator in each layer can be solved analytically by the Kummer functions. Then, analytical approximate dispersion equations are established for both TE and TM cases. Furthermore, the approximate dispersion equations converge fast to the exact ones for the continuous refractive-index function as the maximum value of the subinterval sizes tends to zero. Suitable numerical methods, such as Müller's method or the chord secant method, may be applied to the dispersion relations to compute the eigenmodes. Numerical simulations show that our method is very practical and efficient for computing eigenmodes.

  5. Applicability and limits of Sturm modified method for evaluation of polymer biodegradability. Applicabilita' e limiti del metodo di Sturm modificato per valutare biodegradabilita' di polimeri plastici

    Energy Technology Data Exchange (ETDEWEB)

    Musmeci, L.; Volterra, L.; Gucci, P.M.B.; Semproni, M.; Coccia, A.M. (Istituto Superiore di Sanita, Rome (Italy))

    1993-01-01

    The admission of 'biodegradable' plastics on the market has determined the development of analytical methods for measuring and controlling their biodegradation. The Modified Sturm Test was selected as a method. This paper presents the results of two experiments in which different and acclimatized/acclimatization microorganisms were used as inocula. The pre-acclimatization was performed on polyethylene alone or with starch additions, respectively. Starch addition in the acclimatization phase induces the selection of a population able to speed up the starch mineralization but not equally able to further biodegrade plastic polymers.

  6. Liouville action in cone gauge

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1989-01-01

    The effective action of the conformally invariant field theory in the curved background space is considered in the light cone gauge. The effective potential in the classical background stress is defined as the Legendre transform of the Liouville action. This potential is tightly connected with the sl(2) current algebra. The series of the covariant differential operators is constructed and the anomalies of their determinants are reduced to this effective potential. 7 refs

  7. Regularization of Hamilton-Lagrangian guiding center theories

    International Nuclear Information System (INIS)

    Correa-Restrepo, D.; Wimmel, H.K.

    1985-04-01

    The Hamilton-Lagrangian guiding-center (G.C.) theories of Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields with non-vanishing parallel curl at a critical value of vsub(parallel), which complicates applications. The singularity is related to a sudden breakdown, at a critical vsub(parallel), of gyration in the exact particle mechanics. While the latter is a real effect, the G.C. singularity can be removed. To this end a regularization method is defined that preserves the Hamilton-Lagrangian structure and the conservation theorems. For demonstration this method is applied to the standard G.C. theory (without polarization drift). Liouville's theorem and G.C. kinetic equations are also derived in regularized form. The method could equally well be applied to the case with polarization drift and to relativistic G.C. theory. (orig.)

  8. Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems

    International Nuclear Information System (INIS)

    Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris

    2011-01-01

    Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)

  9. State-dependent impulses boundary value problems on compact interval

    CERN Document Server

    Rachůnková, Irena

    2015-01-01

    This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary...

  10. Regularization and error estimates for nonhomogeneous backward heat problems

    Directory of Open Access Journals (Sweden)

    Duc Trong Dang

    2006-01-01

    Full Text Available In this article, we study the inverse time problem for the non-homogeneous heat equation which is a severely ill-posed problem. We regularize this problem using the quasi-reversibility method and then obtain error estimates on the approximate solutions. Solutions are calculated by the contraction principle and shown in numerical experiments. We obtain also rates of convergence to the exact solution.

  11. Sturm und Drang na música para teclado de Wilhelm Friedemann Bach: evidências reveladas na Polonaise No.4 em Ré menor Sturm und Drang in the keyboard music of Wilhelm Friedemann Bach: detected evidences in Polonaise N.4, in D minor

    Directory of Open Access Journals (Sweden)

    Stella Almeida Rosa

    2011-12-01

    Full Text Available Este trabalho propõese a revelar elementos contextuais e musicais, especialmente aqueles ligados à expressividade, que aproximem a obra para teclado de Wilhelm Friedemann Bach ao movimento Sturm und Drang, ocorrido na Alemanha no início da segunda metade do século XVIII, através do reconhecimento dos procedimentos literários e musicais envolvidos e da análise da Polonaise nº 4, em Ré menor, como obra representativa do que se pretende demonstrar.This paper intends to point out contextual and musical elements, especially those relative to expressiveness, that brings Wilhelm Friedemann Bach's keyboard works close to German Sturm und Drang, that happened during the beginning of the second half of the eighteenth century, through the identification of the literary and musical procedures and the analysis of the Polonaise number 4, in D minor, as a representative work of this style.

  12. An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid

    KAUST Repository

    Bazhlekova, Emilia

    2014-11-26

    © 2014, The Author(s). We study the Rayleigh–Stokes problem for a generalized second-grade fluid which involves a Riemann–Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data v, including v∈L2(Ω). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.

  13. An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid

    KAUST Repository

    Bazhlekova, Emilia; Jin, Bangti; Lazarov, Raytcho; Zhou, Zhi

    2014-01-01

    © 2014, The Author(s). We study the Rayleigh–Stokes problem for a generalized second-grade fluid which involves a Riemann–Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data v, including v∈L2(Ω). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.

  14. Capped Lp approximations for the composite L0 regularization problem

    OpenAIRE

    Li, Qia; Zhang, Na

    2017-01-01

    The composite L0 function serves as a sparse regularizer in many applications. The algorithmic difficulty caused by the composite L0 regularization (the L0 norm composed with a linear mapping) is usually bypassed through approximating the L0 norm. We consider in this paper capped Lp approximations with $p>0$ for the composite L0 regularization problem. For each $p>0$, the capped Lp function converges to the L0 norm pointwisely as the approximation parameter tends to infinity. We point out tha...

  15. Covariant currents in N=2 super-Liouville theory

    International Nuclear Information System (INIS)

    Gomis, J.; Suzuki, Hiroshi

    1993-01-01

    Based on a path-integral prescription for anomaly calculation, we analyze an effective theory of the two-dimensional N=2 supergravity, i.e. N=2 super-Liouville theory. We calculate the anomalies associated with the BRST supercurrent and the ghost-number supercurrent. From those expressions of anomalies, we construct covariant BRST and ghost-number supercurrents in the effective theory. We then show that the (super-)coordinate BRST current algebra forms a superfield extension of the topological conformal algebra for an arbitrary type of conformal matter or, in terms of the string theory, for an arbitrary number of space-time dimensions. This fact is in great contrast with N=0 and N=1 (super-)Liouville theory, where the topological algebra singles out a particular value of dimensions. Our observation suggests a topological nature of the two-dimensional N=2 supergravity as a quantum theory. (orig.)

  16. Bosonic Liouville string theory in conformal gauge

    International Nuclear Information System (INIS)

    Schnittger, J.

    1990-01-01

    The object of the present thesis are the so-called Liouville theories as possibilities for the consistent formulation of string theories beyond the critical dimension. First we discuss the general framework for the quantum theory and explain common properties and differences of different approaches. These considerations lead us to the main demand of the thesis, the formulation of a unified quantum theory for open and closed strings. Of central importance is thereby the construction of the field operator for the Weyl degree of freedom on a suitably defined Hilbert space, so that also in the quantum theory locality and Hermiticity of the Energy-Momentum tensor are respected. In the study of the allowed ground states of the Hilbert space an interesting particularity in comparison to the structure of usual conformal field theories comes across, the importance and consequences of which we intensively study. In the last section we enter the consistence of the theory on the 1-loop level and come then to the final consideration, where we indicate some still open questions of the Liouville theory. (orig.) [de

  17. Recovery of material parameters of soft hyperelastic tissue by an inverse spectral technique

    KAUST Repository

    Gou, Kun

    2012-07-01

    An inverse spectral method is developed for recovering a spatially inhomogeneous shear modulus for soft tissue. The study is motivated by a novel use of the intravascular ultrasound technique to image arteries. The arterial wall is idealized as a nonlinear isotropic cylindrical hyperelastic body. A boundary value problem is formulated for the response of the arterial wall within a specific class of quasistatic deformations reflective of the response due to imposed blood pressure. Subsequently, a boundary value problem is developed via an asymptotic construction modeling intravascular ultrasound interrogation which generates small amplitude, high frequency time harmonic vibrations superimposed on the static finite deformation. This leads to a system of second order ordinary Sturm-Liouville boundary value problems that are then employed to reconstruct the shear modulus through a nonlinear inverse spectral technique. Numerical examples are demonstrated to show the viability of the method. © 2012 Elsevier Ltd. All rights reserved.

  18. H{sup +}{sub 3} WZNW model from Liouville field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Y.; Schomerus, V.

    2007-06-15

    There exists an intriguing relation between genus zero correlation functions in the H{sup +}{sub 3} WZNW model and in Liouville field theory. This was found by Ribault and Teschner based in part on earlier ideas by Stoyanovsky. We provide a path integral derivation of the correspondence and then use our new approach to generalize the relation to surfaces of arbitrary genus g. In particular we determine the correlation functions of N primary fields in the WZNW model explicitly through Liouville correlators with N+2g-2 additional insertions of certain degenerate fields. The paper concludes with a list of interesting further extensions and a few comments on the relation to the geometric Langlands program. (orig.)

  19. Singularities of the transmission coefficient and anomalous scattering by a dielectric slab

    Science.gov (United States)

    Shestopalov, Yury

    2018-03-01

    We prove the existence and describe the distribution on the complex plane of the singularities, resonant states (RSs), of the transmission coefficient in the problem of the plane wave scattering by a parallel-plate dielectric slab in free space. It is shown that the transmission coefficient has isolated poles all with nonzero imaginary parts that form countable sets in the complex plane of the refraction index or permittivity of the slab with the only accumulation point at infinity. The transmission coefficient never vanishes and anomalous scattering, when its modulus exceeds unity, occurs at arbitrarily small loss of the dielectric filling the layer. These results are extended to the cases of scattering by arbitrary multi-layer parallel-plane media. Connections are established between RSs, spectral singularities, eigenvalues of the associated Sturm-Liouville problems on the line, and zeros of the corresponding Jost function.

  20. Sesquilinear forms corresponding to a non-semibounded Sturm-Liouville operator

    NARCIS (Netherlands)

    Fleige, Andreas; Hassi, Seppo; de Snoo, Henk; Winkler, Henrik

    2010-01-01

    Let - DpD be a differential operator on the compact interval [-b, b] whose leading coefficient is positive on (0, b] and negative on [b,0), with fixed, separated, self-adjoint boundary conditions at h and b and an additional interface condition at 0. The self-adjoint extensions of the corresponding

  1. Nonadiabatic dynamics in the semiclassical Liouville representation: Locality, transformation theory, and the energy budget

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu

    2016-12-20

    In this paper, we revisit the semiclassical Liouville approach to describing molecular dynamics with electronic transitions using classical trajectories. Key features of the formalism are highlighted. The locality in phase space and presence of nonclassical terms in the generalized Liouville equations are emphasized and discussed in light of trajectory surface hopping methodology. The representation dependence of the coupled semiclassical Liouville equations in the diabatic and adiabatic bases are discussed and new results for the transformation theory of the Wigner functions representing the corresponding density matrix elements given. We show that the diagonal energies of the state populations are not conserved during electronic transitions, as energy is stored in the electronic coherence. We discuss the implications of this observation for the validity of imposing strict energy conservation in trajectory based methods for simulating nonadiabatic processes.

  2. Analytic semigroups and optimal regularity in parabolic problems

    CERN Document Server

    Lunardi, Alessandra

    2012-01-01

    The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p

  3. L-1 constraint in Liouville gravity

    International Nuclear Information System (INIS)

    Kitazawa, Y.

    1992-01-01

    In this paper, the authors study recursion relations among the amplitudes which involve discrete states in c = 1 Liouville gravity on the sphere. The authors find that the spin J = 1/2 discrete state gives rise to the L -1 type recursion relation. Multiple point correlation functions are determined recursively from fewer point functions by this recursion relation. The authors further point out that the analogs of J = 1/2 state exist in c -1 type recursion relation

  4. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    Science.gov (United States)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  5. Global regularization method for planar restricted three-body problem

    Directory of Open Access Journals (Sweden)

    Sharaf M.A.

    2015-01-01

    Full Text Available In this paper, global regularization method for planar restricted three-body problem is purposed by using the transformation z = x+iy = ν cos n(u+iv, where i = √−1, 0 < ν ≤ 1 and n is a positive integer. The method is developed analytically and computationally. For the analytical developments, analytical solutions in power series of the pseudotime τ are obtained for positions and velocities (u, v, u', v' and (x, y, x˙, y˙ in both regularized and physical planes respectively, the physical time t is also obtained as power series in τ. Moreover, relations between the coefficients of the power series are obtained for two consequent values of n. Also, we developed analytical solutions in power series form for the inverse problem of finding τ in terms of t. As typical examples, three symbolic expressions for the coefficients of the power series were developed in terms of initial values. As to the computational developments, the global regularized equations of motion are developed together with their initial values in forms suitable for digital computations using any differential equations solver. On the other hand, for numerical evolutions of power series, an efficient method depending on the continued fraction theory is provided.

  6. Quantization of bosonic closed strings and the Liouville model

    International Nuclear Information System (INIS)

    Paycha, S.

    1988-01-01

    The author shows that by means of a reasonable interpretation of the Lebesgue measure describing the partition function the quantization of closed bosonic strings described by compact surfaces of genus p>1 can be related to that of the Liouville model. (HSI)

  7. Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2007-01-01

    This paper considers two new multifractional stochastic processes, namely the Weyl multifractional Ornstein-Uhlenbeck process and the Riemann-Liouville multifractional Ornstein-Uhlenbeck process. Basic properties of these processes such as locally self-similar property and Hausdorff dimension are studied. The relationship between the multifractional Ornstein-Uhlenbeck processes and the corresponding multifractional Brownian motions is established

  8. Liouville and Painleve equations and Yang--Mills strings

    International Nuclear Information System (INIS)

    Saclioglu, C.K.

    1984-01-01

    Stringlike solutions of the self-dual Yang--Mills equations (dimensionally reduced to R 2 ) are sought. A multistring Ansatz results in the sinh--Gordon and Liouville equations. According to a general theorem, the solutions must be either real and singular and have infinite action, or complex and nonsingular, with zero action. In the Liouville case, explicit arbitrarily separated n-string solutions of both classes are given. The magnetic flux for these solutions is found to be the Chern class of a Kaehler manifold, and it consequently assumes quantized values 4πn/e. The axisymmetric version of the sinh--Gordon is solved by the third Painleve transcendent P 3 , using the results on P 3 by Wu et al. [Phys. Rev. B 13, 316 (1976)] and McCoy et al. [J. Math. Phys. 18, 10 (1977)]. The axisymmetric case can be cast into the Ernst equation framework for the generation of further solutions. In the Appendix, the Euclideanized Ernst equation is shown to give self-dual Gibbons--Hawking gravitational instantons

  9. Selfadjointness of the Liouville operator for infinite classical systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchioro, C [Camerino Univ. (Italy). Istituto di Matematica; Pellegrinotti, A [Rome Univ. (Italy). Istituto di Matematica; Pulvirenti, M [Ancona Univ. (Italy). Istituto di Matematica

    1978-02-01

    We study some properties of the time evolution of an infinite one dimensional hard core system with singular two body interaction. We show that the Liouville operator is essentially antiselfadjoint an the algebra of local observables. Some consequences of this result are also discussed.

  10. Weyl transforms associated with the Riemann-Liouville operator

    Directory of Open Access Journals (Sweden)

    N. B. Hamadi

    2006-01-01

    Full Text Available For the Riemann-Liouville transform ℛα, α∈ℝ+, associated with singular partial differential operators, we define and study the Weyl transforms Wσ connected with ℛα, where σ is a symbol in Sm, m∈ℝ. We give criteria in terms of σ for boundedness and compactness of the transform Wσ.

  11. Selfadjointness of the Liouville operator for infinite classical systems

    International Nuclear Information System (INIS)

    Marchioro, C.; Pellegrinotti, A.; Pulvirenti, M.

    1978-01-01

    We study some properties of the time evolution of an infinite one dimensional hard core system with singular two body interaction. We show that the Liouville operator is essentially antiselfadjoint an the algebra of local observables. Some consequences of this result are also discussed. (orig.) [de

  12. A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.

    Science.gov (United States)

    Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas

    2015-12-01

    Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.

  13. An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group

    International Nuclear Information System (INIS)

    Wang, S.J.

    1993-04-01

    An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)

  14. Symmetry-adapted Liouville space. Pt. 7

    International Nuclear Information System (INIS)

    Temme, F.P.

    1990-01-01

    In examining nuclear spin dynamics of NMR spin clusters in density operator/generalized torque formalisms over vertical strokekqv>> operator bases of Liouville space, it is necessary to consider the symmetry mappings and carrier spaces under a specialized group for such (k i = 1) nuclear spin clusters. The SU2 X S n group provides the essential mappings and the form of H carrier space, which allows one to: (a) draw comparisons with Hilbert space duality, and (b) outline the form of the Coleman-Kotani genealogical hierarchy under induced S n -symmetry. (orig.)

  15. On Multi-Point Liouville Field Theory

    International Nuclear Information System (INIS)

    Zarrinkamar, S.; Rajabi, A. A.; Hassanabadi, H.

    2013-01-01

    In many cases, the classical or semi-classical Liouville field theory appears in the form of Fuchsian or Riemann differential equations whose solutions cannot be simply found, or at least require a comprehensive knowledge on analytical techniques of differential equations of mathematical physics. Here, instead of other cumbersome methodologies such as treating with the Heun functions, we use the quasi-exact ansatz approach and thereby solve the so-called resulting two- and three-point differential equations in a very simple manner. We apply the approach to two recent papers in the field. (author)

  16. Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2010-05-15

    It was in particular recently argued that the gauge theory in the presence of a certain one-parameter deformation can at low energies effectively be described in terms the quantization of an algebraically integrable system, which is canonically associated to this theory. It seems, however, that the deeper reasons for this relationship between a two- and a fourdimensional theory remain to be understood. A clue in this direction may be seen in the fact that the instanton partition functions which represent the building blocks of the partition functions are obtained by specializing a two-parameter family Z(a,{epsilon}{sub 1},{epsilon}{sub 2};q) of instanton partition functions. These functions were identified with the conformal blocks of Liouville theory. This indicates that the relationship between certain gauge theories and Liouville theory involves in particular a two-parametric deformation of the algebraically integrable model associated to the gauge theories on R{sup 4} which ultimately produces Liouville theory as a result. One of my intentions in this paper is to clarify in which sense this point of view is correct. Another piece of motivation comes from relations between fourdimensional gauge theories and the geometric Langlands correspondence. The author feels that the mentioned relations between gauge theory and conformal field theory offer new clues in this regard. It is therefore my second main aim to clarify the relations between the quantization of the Hitchin system, the geometric Langlands correspondence and the Liouville conformal field theory. (orig.)

  17. Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I

    International Nuclear Information System (INIS)

    Teschner, J.

    2010-05-01

    It was in particular recently argued that the gauge theory in the presence of a certain one-parameter deformation can at low energies effectively be described in terms the quantization of an algebraically integrable system, which is canonically associated to this theory. It seems, however, that the deeper reasons for this relationship between a two- and a fourdimensional theory remain to be understood. A clue in this direction may be seen in the fact that the instanton partition functions which represent the building blocks of the partition functions are obtained by specializing a two-parameter family Z(a,ε 1 ,ε 2 ;q) of instanton partition functions. These functions were identified with the conformal blocks of Liouville theory. This indicates that the relationship between certain gauge theories and Liouville theory involves in particular a two-parametric deformation of the algebraically integrable model associated to the gauge theories on R 4 which ultimately produces Liouville theory as a result. One of my intentions in this paper is to clarify in which sense this point of view is correct. Another piece of motivation comes from relations between fourdimensional gauge theories and the geometric Langlands correspondence. The author feels that the mentioned relations between gauge theory and conformal field theory offer new clues in this regard. It is therefore my second main aim to clarify the relations between the quantization of the Hitchin system, the geometric Langlands correspondence and the Liouville conformal field theory. (orig.)

  18. A function space framework for structural total variation regularization with applications in inverse problems

    Science.gov (United States)

    Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas

    2018-06-01

    In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.

  19. A Modified Groundwater Flow Model Using the Space Time Riemann-Liouville Fractional Derivatives Approximation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method.

  20. Modified Strum functions method in the nuclear three body problem

    International Nuclear Information System (INIS)

    Nasyrov, M.; Abdurakhmanov, A.; Yunusova, M.

    1997-01-01

    Fadeev-Hahn equations in the nuclear three-body problem were solved by modified Sturm functions method. Numerical calculations were carried out the square well potential. It was shown that the convergence of the method is high and the binding energy value is in agreement with experimental one (A.A.D.)

  1. Existence and Global Asymptotic Behavior of Positive Solutions for Nonlinear Fractional Dirichlet Problems on the Half-Line

    Directory of Open Access Journals (Sweden)

    Imed Bachar

    2014-01-01

    Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0⁡t2-αu(t=0, limt→∞⁡t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.

  2. Selection of regularization parameter for l1-regularized damage detection

    Science.gov (United States)

    Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing

    2018-06-01

    The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.

  3. Pseudospin symmetry in the relativistic Manning-Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2010-01-01

    Based on the Sturm-Liouville theorem and shape invariance formalism, we study by applying a Pekeris-type approximation to the pseudo-centrifugal term the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector Manning-Rosen potentials including the spin-orbit coupling term. A quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The bound states are calculated numerically. The relativistic Manning-Rosen potential could not trap a Dirac nucleon in the limit case β→∞.

  4. Sectors of solutions and minimal energies in classical Liouville theories for strings

    International Nuclear Information System (INIS)

    Johansson, L.; Kihlberg, A.; Marnelius, R.

    1984-01-01

    All classical solutions of the Liouville theory for strings having finite stable minimum energies are calculated explicitly together with their minimal energies. Our treatment automatically includes the set of natural solitonlike singularities described by Jorjadze, Pogrebkov, and Polivanov. Since the number of such singularities is preserved in time, a sector of solutions is not only characterized by its boundary conditions but also by its number of singularities. Thus, e.g., the Liouville theory with periodic boundary conditions has three different sectors of solutions with stable minimal energies containing zero, one, and two singularities. (Solutions with more singularities have no stable minimum energy.) It is argued that singular solutions do not make the string singular and therefore may be included in the string quantization

  5. Schramm-Loewner evolution and Liouville quantum gravity.

    Science.gov (United States)

    Duplantier, Bertrand; Sheffield, Scott

    2011-09-23

    We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal welding maps related to Schramm-Loewner evolution. As an application, we construct quantum length and boundary intersection measures on the Schramm-Loewner evolution curve itself.

  6. Liouville equation with boundary conditions derived from classical strings

    International Nuclear Information System (INIS)

    Marnelius, R.

    1983-01-01

    It is shown in terms of the classical string theory that a breaking of the Weyl invariance necessarily requires the Liouville equation for the variable phi=1n rho, where rho is the variable that appears in the conformal gauge gsub(α#betta#)=rhoetasub(α#betta#). Appropriate boundary conditions on phi for open and closed strings are then derived. (orig.)

  7. Memoria sobre el papel de Liouville en la historia de las funciones elípticas

    Directory of Open Access Journals (Sweden)

    Leonardo Solanilla Chavarro

    2014-06-01

    Full Text Available Este artículo recoge las principales conclusiones de una investigación sobre las contribuciones de J. Liouville a la teoría contemporánea de las funciones elípticas. Cubre la mayor parte de los resultados de una colaboración entre el grupo SUMMA del Departamento de Ciencias Básicas de la Universidad de Medellín y el grupo Mat del Departamento de Matemáticas y Estadística de la Universidad del Tolima. El proyecto ha sido financiado parcialmente por la Vicerrectoría de Investigaciones de la Universidad de Medellín y la Facultad de Ciencias de la Universidad del Tolima. Comienza con una descripción de la circunstancia histórica de Liouville, luego de la emergencia del concepto moderno de función elíptica en los trabajos de Abel y Jacobi. Después se discuten ciertos pormenores de las Leçons impartidas por el célebre matemático francés en el año de 1847. Ellos cubren el teorema que hemos llamado de Liouville-Borchardt, las proposiciones fundamentales sobre el número de ceros de las funciones meromorfas doblemente periódicas y los resultados sobre la relación entre los ceros y los polos. Al final, se esbozan importantes conclusiones sobre el legado de Liouville a la teoría de las funciones elípticas de hoy.

  8. The pattern of eigenfrequencies of radial overtones which is predicted for a specified Earth-model

    Directory of Open Access Journals (Sweden)

    E. R. LAPWOOD

    1977-06-01

    Full Text Available In 1974 Anderssen and Cleary examined the distribution of eigenfrequencies
    of radial overtones in torsional oscillations of Earth-models.
    They pointed out that according to Sturm-Liouville theory this distribution
    should approach asymptotically, for large overtone number m,
    the value nnz/y, where y is the time taken by a shear-wave to travel
    along a radius from the core-mantle interface to the surface, provided
    elastic parameters vary continuously along the radius. They found that,
    for all the models which they considered, the distributions of eigenfrequencies
    deviated from the asymptote by amounts which depended on
    the existence and size of internal discontinuities. Lapwood (1975 showed
    that such deviations were to be expected from Sturm-Liouville theory,
    and McNabb, Anderssen and Lapwood (1976 extended Sturm-Liouville
    theory to apply to differential equations with discontinuous coefficients.
    Anderssen (1977 used their results to show how to predict the pattern
    of deviations —called by McNabb et al. the solotone effect— for a
    given discontinuity in an Earth-model.
    Recently Sato and Lapwood (1977, in a series of papers which will
    be referred to here simply as I, II, III, have explored the solotone effect
    for layered spherical shells, using approximations derived from an exacttheory which holds for uniform layering. They have shown how the
    form of the pattern of eigenfrequencies, which is the graph of
    S — YMUJI/N — m against m, where ,„CJI is the frequency of the m"'
    overtone in the I"' (Legendre mode of torsional oscillation, is determined
    as to periodicity (or quasi-periodicity by the thicknesses and velocities
    of the layers, and as to amplitude by the amounts of the discontinuities
    (III. The pattern of eigenfrequencies proves to be extremely sensitive
    to small changes in layer-thicknesses in a model.
    In

  9. A New Method for Optimal Regularization Parameter Determination in the Inverse Problem of Load Identification

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2016-01-01

    Full Text Available According to the regularization method in the inverse problem of load identification, a new method for determining the optimal regularization parameter is proposed. Firstly, quotient function (QF is defined by utilizing the regularization parameter as a variable based on the least squares solution of the minimization problem. Secondly, the quotient function method (QFM is proposed to select the optimal regularization parameter based on the quadratic programming theory. For employing the QFM, the characteristics of the values of QF with respect to the different regularization parameters are taken into consideration. Finally, numerical and experimental examples are utilized to validate the performance of the QFM. Furthermore, the Generalized Cross-Validation (GCV method and the L-curve method are taken as the comparison methods. The results indicate that the proposed QFM is adaptive to different measuring points, noise levels, and types of dynamic load.

  10. Phase transition in anisotropic holographic superfluids with arbitrary dynamical critical exponent z and hyperscaling violation factor α

    Energy Technology Data Exchange (ETDEWEB)

    Park, Miok [Korea Institute for Advanced Study, Seoul (Korea, Republic of); Park, Jiwon; Oh, Jae-Hyuk [Hanyang University, Department of Physics, Seoul (Korea, Republic of)

    2017-11-15

    Einstein-scalar-U(2) gauge field theory is considered in a spacetime characterized by α and z, which are the hyperscaling violation factor and the dynamical critical exponent, respectively. We consider a dual fluid system of such a gravity theory characterized by temperature T and chemical potential μ. It turns out that there is a superfluid phase transition where a vector order parameter appears which breaks SO(3) global rotation symmetry of the dual fluid system when the chemical potential becomes a certain critical value. To study this system for arbitrary z and α, we first apply Sturm-Liouville theory and estimate the upper bounds of the critical values of the chemical potential. We also employ a numerical method in the ranges of 1 ≤ z ≤ 4 and 0 ≤ α ≤ 4 to check if the Sturm-Liouville method correctly estimates the critical values of the chemical potential. It turns out that the two methods are agreed within 10 percent error ranges. Finally, we compute free energy density of the dual fluid by using its gravity dual and check if the system shows phase transition at the critical values of the chemical potential μ{sub c} for the given parameter region of α and z. Interestingly, it is observed that the anisotropic phase is more favored than the isotropic phase for relatively small values of z and α. However, for large values of z and α, the anisotropic phase is not favored. (orig.)

  11. Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition

    Science.gov (United States)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2018-04-01

    We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.

  12. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    Science.gov (United States)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  13. Regularization methods for ill-posed problems in multiple Hilbert scales

    International Nuclear Information System (INIS)

    Mazzieri, Gisela L; Spies, Ruben D

    2012-01-01

    Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. (paper)

  14. Parent-reported problem behavior among children with sensory disabilities attending elementary regular schools

    NARCIS (Netherlands)

    Maes, B; Grietens, H

    2004-01-01

    Parent-reported problem behaviors of 94 children with visual and auditory disabilities, attending elementary regular schools, were compared with problems reported in a general population sample of nondisabled children. Both samples were matched by means of a pairwise matching procedure, taking into

  15. Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston E

    2003-06-07

    The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.

  16. Integral equations of the first kind, inverse problems and regularization: a crash course

    International Nuclear Information System (INIS)

    Groetsch, C W

    2007-01-01

    This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided

  17. The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators

    Science.gov (United States)

    Ahmedov, Anvarjon

    2018-03-01

    In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral

  18. The Problems of Novice Classroom Teachers having Regular and Alternative Certificates

    OpenAIRE

    Taneri, Pervin Oya; Ok, Ahmet

    2014-01-01

    The purposes of this study are to understand the problems of classroom teachers in their first three years of teaching, and to scrutinize whether these problems differ according to having regular or alternative teacher certification. The sample of this study was 275 Classroom Teachers in the Public Elementary Schools in districts of Ordu, Samsun, and Sinop in the Black Sea region. The data gathered through the questionnaire were subject to descriptive and inferential statistical analysis. Res...

  19. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, D. [Institute for Advanced Study (IAS), Princeton, NJ (United States); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S{sup 4}. (orig.)

  20. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    International Nuclear Information System (INIS)

    Gaiotto, D.; Teschner, J.

    2012-03-01

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S 4 . (orig.)

  1. Effects of backreaction on power-Maxwell holographic superconductors in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Hamid Reza; Montakhab, Afshin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-10-15

    We analytically and numerically investigate the properties of s-wave holographic superconductors by considering the effects of scalar and gauge fields on the background geometry in five-dimensional Einstein-Gauss-Bonnet gravity. We assume the gauge field to be in the form of the power-Maxwell nonlinear electrodynamics. We employ the Sturm-Liouville eigenvalue problem for analytical calculation of the critical temperature and the shooting method for the numerical investigation. Our numerical and analytical results indicate that higher curvature corrections affect condensation of the holographic superconductors with backreaction. We observe that the backreaction can decrease the critical temperature of the holographic superconductors, while the power-Maxwell electrodynamics and Gauss-Bonnet coefficient term may increase the critical temperature of the holographic superconductors. We find that the critical exponent has the mean-field value β = 1/2, regardless of the values of Gauss-Bonnet coefficient, backreaction and power-Maxwell parameters. (orig.)

  2. Trajectories of problem video gaming among adult regular gamers: an 18-month longitudinal study.

    Science.gov (United States)

    King, Daniel L; Delfabbro, Paul H; Griffiths, Mark D

    2013-01-01

    A three-wave, longitudinal study examined the long-term trajectory of problem gaming symptoms among adult regular video gamers. Potential changes in problem gaming status were assessed at two intervals using an online survey over an 18-month period. Participants (N=117) were recruited by an advertisement posted on the public forums of multiple Australian video game-related websites. Inclusion criteria were being of adult age and having a video gaming history of at least 1 hour of gaming every week over the past 3 months. Two groups of adult video gamers were identified: those players who did (N=37) and those who did not (N=80) identify as having a serious gaming problem at the initial survey intake. The results showed that regular gamers who self-identified as having a video gaming problem at baseline reported more severe problem gaming symptoms than normal gamers, at all time points. However, both groups experienced a significant decline in problem gaming symptoms over an 18-month period, controlling for age, video gaming activity, and psychopathological symptoms.

  3. Extended Riemann-Liouville type fractional derivative operator with applications

    Directory of Open Access Journals (Sweden)

    Agarwal P.

    2017-12-01

    Full Text Available The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by defining the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox’s H-function are also presented.

  4. Diverse Regular Employees and Non-regular Employment (Japanese)

    OpenAIRE

    MORISHIMA Motohiro

    2011-01-01

    Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...

  5. An Invariance Principle to Ferrari-Spohn Diffusions

    Science.gov (United States)

    Ioffe, Dmitry; Shlosman, Senya; Velenik, Yvan

    2015-06-01

    We prove an invariance principle for a class of tilted 1 + 1-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in . The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarithmic derivatives of the ground states of associated singular Sturm-Liouville operators. In the case of a linear area tilt, we recover the Ferrari-Spohn diffusion with log-Airy drift, which was derived in Ferrari and Spohn (Ann Probab 33(4):1302—1325, 2005) in the context of Brownian motions conditioned to stay above circular and parabolic barriers.

  6. The causal boundary of wave-type spacetimes

    International Nuclear Information System (INIS)

    Flores, J.L.; Sanchez, M.

    2008-01-01

    A complete and systematic approach to compute the causal boundary of wave-type spacetimes is carried out. The case of a 1-dimensional boundary is specially analyzed and its critical appearance in pp-wave type spacetimes is emphasized. In particular, the corresponding results obtained in the framework of the AdS/CFT correspondence for holography on the boundary, are reinterpreted and very widely generalized. Technically, a recent new definition of causal boundary is used and stressed. Moreover, a set of mathematical tools is introduced (analytical functional approach, Sturm-Liouville theory, Fermat-type arrival time, Busemann-type functions)

  7. Adaptive regularization of noisy linear inverse problems

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue

    2006-01-01

    In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....

  8. Analysis of geometric phase effects in the quantum-classical Liouville formalism.

    Science.gov (United States)

    Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  9. Analysis of geometric phase effects in the quantum-classical Liouville formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ryabinkin, Ilya G.; Izmaylov, Artur F. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4 (Canada); Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Hsieh, Chang-Yu; Kapral, Raymond [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  10. On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs

    Science.gov (United States)

    Kaltenbacher, Barbara; Klassen, Andrej

    2018-05-01

    In this paper we provide a convergence analysis of some variational methods alternative to the classical Tikhonov regularization, namely Ivanov regularization (also called the method of quasi solutions) with some versions of the discrepancy principle for choosing the regularization parameter, and Morozov regularization (also called the method of the residuals). After motivating nonequivalence with Tikhonov regularization by means of an example, we prove well-definedness of the Ivanov and the Morozov method, convergence in the sense of regularization, as well as convergence rates under variational source conditions. Finally, we apply these results to some linear and nonlinear parameter identification problems in elliptic boundary value problems.

  11. C1,1 regularity for degenerate elliptic obstacle problems

    Science.gov (United States)

    Daskalopoulos, Panagiota; Feehan, Paul M. N.

    2016-03-01

    The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.

  12. Higher equations of motion in N=2 superconformal Liouville field theory

    International Nuclear Information System (INIS)

    Ahn, Changrim; Stanishkov, Marian; Stoilov, Michail

    2011-01-01

    We present an infinite set of higher equations of motion in N=2 supersymmetric Liouville field theory. They are in one to one correspondence with the degenerate representations and are enumerated in addition to the U(1) charge ω by the positive integers m or (m,n) respectively. We check that in the classical limit these equations hold as relations among the classical fields.

  13. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    Science.gov (United States)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  14. The Euler anomaly and scale factors in Liouville/Toda CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Aswin [Theory Group, Department of Physics, University of Texas at Austin,2515 Speedway Stop C1608, Austin, TX 78712-1197 (United States)

    2014-04-22

    The role played by the Euler anomaly in the dictionary relating sphere partition functions of four dimensional theories of class S and two dimensional non rational CFTs is clarified. On the two dimensional side, this involves a careful treatment of scale factors in Liouville/Toda correlators. Using ideas from tinkertoy constructions for Gaiotto duality, a framework is proposed for evaluating these scale factors. The representation theory of Weyl groups plays a critical role in this framework.

  15. Quantum kinetic field theory in curved spacetime: Covariant Wigner function and Liouville-Vlasov equations

    International Nuclear Information System (INIS)

    Calzetta, E.; Habib, S.; Hu, B.L.

    1988-01-01

    We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe

  16. A Laplace type problem for regular lattices with circular section obstacles

    Directory of Open Access Journals (Sweden)

    D. Barilla

    2013-12-01

    Full Text Available In this paper, we compute the probability that a segment of random position and of constant length intersects a side of a regular lattice with circular sections obstacles. In particular, we obtain the formula of a probability already computed by Caristi and Stoka, as well as the formula of the Laplace probability. The results can be used for possible applications in economy and engineering, in particular for transportation problems.

  17. An algorithmic framework for Mumford–Shah regularization of inverse problems in imaging

    International Nuclear Information System (INIS)

    Hohm, Kilian; Weinmann, Andreas; Storath, Martin

    2015-01-01

    The Mumford–Shah model is a very powerful variational approach for edge preserving regularization of image reconstruction processes. However, it is algorithmically challenging because one has to deal with a non-smooth and non-convex functional. In this paper, we propose a new efficient algorithmic framework for Mumford–Shah regularization of inverse problems in imaging. It is based on a splitting into specific subproblems that can be solved exactly. We derive fast solvers for the subproblems which are key for an efficient overall algorithm. Our method neither requires a priori knowledge of the gray or color levels nor of the shape of the discontinuity set. We demonstrate the wide applicability of the method for different modalities. In particular, we consider the reconstruction from Radon data, inpainting, and deconvolution. Our method can be easily adapted to many further imaging setups. The relevant condition is that the proximal mapping of the data fidelity can be evaluated a within reasonable time. In other words, it can be used whenever classical Tikhonov regularization is possible. (paper)

  18. Comments on fusion matrix in N=1 super Liouville field theory

    Directory of Open Access Journals (Sweden)

    Hasmik Poghosyan

    2016-08-01

    Full Text Available We study several aspects of the N=1 super Liouville theory. We show that certain elements of the fusion matrix in the Neveu–Schwarz sector are related to the structure constants according to the same rules which we observe in rational conformal field theory. We collect some evidences that these relations should hold also in the Ramond sector. Using them the Cardy–Lewellen equation for defects is studied, and defects are constructed.

  19. A Highly Accurate Regular Domain Collocation Method for Solving Potential Problems in the Irregular Doubly Connected Domains

    Directory of Open Access Journals (Sweden)

    Zhao-Qing Wang

    2014-01-01

    Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.

  20. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  1. Regularity of the solutions to a nonlinear boundary problem with indefinite weight

    Directory of Open Access Journals (Sweden)

    Aomar Anane

    2011-01-01

    Full Text Available In this paper we study the regularity of the solutions to the problemDelta_p u = |u|^{p−2}u in the bounded smooth domainOmega ⊂ R^N,with|∇u|^{p−2} partial_{nu} u = lambda V (x|u|^{p−2}u + h as a nonlinear boundary condition, where partial Omega is C^{2,beta}, with beta ∈]0, 1[, and V is a weight in L^s(partial Omega and h ∈ L^s(partial Omega for some s ≥ 1. We prove that all solutions are in L^{infty}(Omega cap L^{infty}(Omega, and using the D.Debenedetto’s theorem of regularity in [1] we conclude that those solutions are in C^{1,alpha} overline{Omega} for some alpha ∈ ]0, 1[.

  2. A novel scheme for Liouville's equation with a discontinuous Hamiltonian and applications to geometrical optics

    NARCIS (Netherlands)

    Lith, van B.S.; Thije Boonkkamp, ten J.H.M.; IJzerman, W.L.; Tukker, T.W.

    2015-01-01

    We compute numerical solutions of Liouville's equation with a discontinuous Hamiltonian. We assume that the underlying Hamiltonian system has a well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity yields the familiar Snell's law or

  3. Bypassing the Limits of Ll Regularization: Convex Sparse Signal Processing Using Non-Convex Regularization

    Science.gov (United States)

    Parekh, Ankit

    Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal

  4. An iterative method for Tikhonov regularization with a general linear regularization operator

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.

    2010-01-01

    Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan

  5. On the almost everywhere convergence of the eigenfunction expansions from Liouville classes L_1^\\alpha ({T^N})

    Science.gov (United States)

    Ahmedov, Anvarjon; Materneh, Ehab; Zainuddin, Hishamuddin

    2017-09-01

    The relevance of waves in quantum mechanics naturally implies that the decomposition of arbitrary wave packets in terms of monochromatic waves plays an important role in applications of the theory. When eigenfunction expansions does not converge, then the expansions of the functions with certain smoothness should be considered. Such functions gained prominence primarily through their application in quantum mechanics. In this work we study the almost everywhere convergence of the eigenfunction expansions from Liouville classes L_p^α ({T^N}), related to the self-adjoint extension of the Laplace operator in torus TN . The sufficient conditions for summability is obtained using the modified Poisson formula. Isomorphism properties of the elliptic differential operators is applied in order to obtain estimation for the Fourier series of the functions from the classes of Liouville L_p^α .

  6. A general approach to regularizing inverse problems with regional data using Slepian wavelets

    Science.gov (United States)

    Michel, Volker; Simons, Frederik J.

    2017-12-01

    Slepian functions are orthogonal function systems that live on subdomains (for example, geographical regions on the Earth’s surface, or bandlimited portions of the entire spectrum). They have been firmly established as a useful tool for the synthesis and analysis of localized (concentrated or confined) signals, and for the modeling and inversion of noise-contaminated data that are only regionally available or only of regional interest. In this paper, we consider a general abstract setup for inverse problems represented by a linear and compact operator between Hilbert spaces with a known singular-value decomposition (svd). In practice, such an svd is often only given for the case of a global expansion of the data (e.g. on the whole sphere) but not for regional data distributions. We show that, in either case, Slepian functions (associated to an arbitrarily prescribed region and the given compact operator) can be determined and applied to construct a regularization for the ill-posed regional inverse problem. Moreover, we describe an algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The obtained Slepian functions can be used to derive an svd for the combination of the regionalizing projection and the compact operator. As a result, standard regularization techniques relying on a known svd become applicable also to those inverse problems where the data are regionally given only. In particular, wavelet-based multiscale techniques can be used. An example for the latter case is elaborated theoretically and tested on two synthetic numerical examples.

  7. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  8. Difference equations theory, applications and advanced topics

    CERN Document Server

    Mickens, Ronald E

    2015-01-01

    THE DIFFERENCE CALCULUS GENESIS OF DIFFERENCE EQUATIONS DEFINITIONS DERIVATION OF DIFFERENCE EQUATIONS EXISTENCE AND UNIQUENESS THEOREM OPERATORS ∆ AND E ELEMENTARY DIFFERENCE OPERATORS FACTORIAL POLYNOMIALS OPERATOR ∆−1 AND THE SUM CALCULUS FIRST-ORDER DIFFERENCE EQUATIONS INTRODUCTION GENERAL LINEAR EQUATION CONTINUED FRACTIONS A GENERAL FIRST-ORDER EQUATION: GEOMETRICAL METHODS A GENERAL FIRST-ORDER EQUATION: EXPANSION TECHNIQUES LINEAR DIFFERENCE EQUATIONSINTRODUCTION LINEARLY INDEPENDENT FUNCTIONS FUNDAMENTAL THEOREMS FOR HOMOGENEOUS EQUATIONSINHOMOGENEOUS EQUATIONS SECOND-ORDER EQUATIONS STURM-LIOUVILLE DIFFERENCE EQUATIONS LINEAR DIFFERENCE EQUATIONS INTRODUCTION HOMOGENEOUS EQUATIONS CONSTRUCTION OF A DIFFERENCE EQUATION HAVING SPECIFIED SOLUTIONS RELATIONSHIP BETWEEN LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS INHOMOGENEOUS EQUATIONS: METHOD OF UNDETERMINED COEFFICIENTS INHOMOGENEOUS EQUATIONS: OPERATOR METHODS z-TRANSFORM METHOD SYSTEMS OF DIFFERENCE EQUATIONS LINEAR PARTIAL DIFFERENCE EQUATI...

  9. Modified truncated randomized singular value decomposition (MTRSVD) algorithms for large scale discrete ill-posed problems with general-form regularization

    Science.gov (United States)

    Jia, Zhongxiao; Yang, Yanfei

    2018-05-01

    In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).

  10. The cosmological constant as an eigenvalue of the Hamiltonian constraint in a varying speed of light theory

    Energy Technology Data Exchange (ETDEWEB)

    Garattini, Remo [Univ. degli Studi di Bergamo, Dalmine (Italy). Dept. of Engineering and Applied Sciences; I.N.F.N., Sezione di Milano, Milan (Italy); De Laurentis, Mariafelicia [Tomsk State Pedagogical Univ. (Russian Federation). Dept. of Theoretical Physics; INFN, Sezione di Napoli (Italy); Complutense Univ. di Monte S. Angelo, Napoli (Italy)

    2017-01-15

    In the framework of a Varying Speed of Light theory, we study the eigenvalues associated with the Wheeler-DeWitt equation representing the vacuum expectation values associated with the cosmological constant. We find that the Wheeler-DeWitt equation for the Friedmann-Lemaitre-Robertson-Walker metric is completely equivalent to a Sturm-Liouville problem provided that the related eigenvalue and the cosmological constant be identified. The explicit calculation is performed with the help of a variational procedure with trial wave functionals related to the Bessel function of the second kind K{sub ν}(x). After having verified that in ordinary General Relativity no eigenvalue appears, we find that in a Varying Speed of Light theory this is not the case. Nevertheless, instead of a single eigenvalue, we discover the existence of a family of eigenvalues associated to a negative power of the scale. A brief comment on what happens at the inflationary scale is also included. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Sinh-Gordon, cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes

    International Nuclear Information System (INIS)

    Larsen, A.L.; Sanchez, N.

    1996-01-01

    We find that the fundamental quadratic form of classical string propagation in (2+1)-dimensional constant curvature spacetimes solves the sinh-Gordon equation, the cosh-Gordon equation, or the Liouville equation. We show that in both de Sitter and anti endash de Sitter spacetimes (as well as in the 2+1 black hole anti endash de Sitter spacetime), all three equations must be included to cover the generic string dynamics. The generic properties of the string dynamics are directly extracted from the properties of these three equations and their associated potentials (irrespective of any solution). These results complete and generalize earlier discussions on this topic (until now, only the sinh-Gordon sector in de Sitter spacetime was known). We also construct new classes of multistring solutions, in terms of elliptic functions, to all three equations in both de Sitter and anti endash de Sitter spacetimes. Our results can be straightforwardly generalized to constant curvature spacetimes of arbitrary dimension, by replacing the sinh-Gordon equation, the cosh-Gordon equation, and the Liouville equation by their higher dimensional generalizations. copyright 1996 The American Physical Society

  12. Riemann-Liouville integrals of fractional order and extended KP hierarchy

    International Nuclear Information System (INIS)

    Kamata, Masaru; Nakamula, Atsushi

    2002-01-01

    An attempt to formulate the extensions of the KP hierarchy by introducing fractional-order pseudo-differential operators is given. In the case of the extension with the half-order pseudo-differential operators, a system analogous to the supersymmetric extensions of the KP hierarchy is obtained. Unlike the supersymmetric extensions, no Grassmannian variable appears in the hierarchy considered here. More general hierarchies constructed by the 1/Nth-order pseudo-differential operators, their integrability and the reduction procedure are also investigated. In addition to finding the new extensions of the KP hierarchy, a brief introduction to the Riemann-Liouville integral is provided to yield a candidate for the fractional-order pseudo-differential operators

  13. Structure constants in the N=1 super-Liouville field theory

    International Nuclear Information System (INIS)

    Poghossian, R.H.

    1997-01-01

    The symmetry algebra of N=1 super-Liouville field theory in two dimensions is the infinite-dimensional N=1 superconformal algebra, which allows one to prove that correlation functions containing degenerated fields obey some partial linear differential equations. In the special case of four-point function, including a primary field degenerated at the first level, these differential equations can be solved via hypergeometric functions. Taking into account mutual locality properties of fields and investigating s- and t-channel singularities we obtain some functional relations for three-point correlation functions. Solving this functional equations we obtain three-point functions in both Neveu-Schwarz and Ramond sectors. (orig.)

  14. Learning regularization parameters for general-form Tikhonov

    International Nuclear Information System (INIS)

    Chung, Julianne; Español, Malena I

    2017-01-01

    Computing regularization parameters for general-form Tikhonov regularization can be an expensive and difficult task, especially if multiple parameters or many solutions need to be computed in real time. In this work, we assume training data is available and describe an efficient learning approach for computing regularization parameters that can be used for a large set of problems. We consider an empirical Bayes risk minimization framework for finding regularization parameters that minimize average errors for the training data. We first extend methods from Chung et al (2011 SIAM J. Sci. Comput. 33 3132–52) to the general-form Tikhonov problem. Then we develop a learning approach for multi-parameter Tikhonov problems, for the case where all involved matrices are simultaneously diagonalizable. For problems where this is not the case, we describe an approach to compute near-optimal regularization parameters by using operator approximations for the original problem. Finally, we propose a new class of regularizing filters, where solutions correspond to multi-parameter Tikhonov solutions, that requires less data than previously proposed optimal error filters, avoids the generalized SVD, and allows flexibility and novelty in the choice of regularization matrices. Numerical results for 1D and 2D examples using different norms on the errors show the effectiveness of our methods. (paper)

  15. Regular energy drink consumption is associated with the risk of health and behavioural problems in adolescents

    NARCIS (Netherlands)

    Holubcikova, Jana; Kolarcik, Peter; Geckova, Andrea Madarasova; Reijneveld, Sijmen A.; van Dijk, Jitse P.

    Consumption of energy drinks has become popular and frequent among adolescents across Europe. Previous research showed that regular consumption of these drinks was associated with several health and behavioural problems. The aim of the present study was to determine the socio-demographic groups at

  16. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig

    2017-10-18

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.

  17. D-branes in N=2 Liouville theory and its mirror

    International Nuclear Information System (INIS)

    Israel, Dan; Pakman, Ari; Troost, Jan

    2005-01-01

    We study D-branes in the mirror pair N=2 Liouville/supersymmetric SL(2,R)/U(1) coset superconformal field theories. We build D0-, D1- and D2-branes, on the basis of the boundary state construction for the H 3 + conformal field theory. We also construct D0-branes in an orbifold that rotates the angular direction of the cigar. We show how the poles of correlators associated to localized states and bulk interactions naturally decouple in the one-point functions of localized and extended branes. We stress the role played in the analysis of D-brane spectra by primaries in SL(2,R)/U(1) which are descendents of the parent theory

  18. Topological regularizations of the triple collision singularity in the 3-vortex problem

    International Nuclear Information System (INIS)

    Hiraoka, Yasuaki

    2008-01-01

    The triple collision singularity in the 3-vortex problem is studied in this paper. Under the necessary condition k 1 -1 +k 2 -1 +k 3 -1 =0 for vorticities to have the triple collision, the main results are summarized as follows: (i) For k 1 = k 2 , the triple collision singularity is topologically regularizable. (ii) For 0 1 − k 2 | < ε with a sufficiently small ε, the triple collision singularity is not topologically regularizable. First of all, in order to prove these statements, all singularities in the 3-vortex problem are classified. Then, we introduce a dynamical system by blowing up the triple collision singularity with an appropriate time scaling. Roughly speaking, it corresponds to pasting an invariant manifold at the triple collision singularity on the original phase space. This technique is well known as McGehee's collision manifold (1974 Inventions Math. 27 191–227) in the N-body problem of celestial mechanics. Finally, by adopting the viewpoint of Easton (1971 J. Diff. Eqns 10 92–9), topological regularizations of the triple collision singularity are studied in detail

  19. Estimates of azimuthal numbers associated with elementary elliptic cylinder wave functions

    Science.gov (United States)

    Kovalev, V. A.; Radaev, Yu. N.

    2014-05-01

    The paper deals with issues related to the construction of solutions, 2 π-periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.

  20. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  1. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  2. Iterative Regularization with Minimum-Residual Methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2007-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  3. Iterative regularization with minimum-residual methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2006-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  4. Inverse Spectral Results for AKNS Systems with Partial Information on the Potentials

    International Nuclear Information System (INIS)

    Rio, R. del; Grebert, B.

    2001-01-01

    For the AKNS operator on L 2 ([0,1],C 2 ) it is well known that the data of two spectra uniquely determine the corresponding potential φ a.e. on [0,1] (Borg's type Theorem). We prove that, in the case where φ is a-priori known on [a,1], then only a part (depending on a) of two spectra determine φ on [0,1]. Our results include generalizations for Dirac systems of classical results obtained by Hochstadt and Lieberman for the Sturm-Liouville case, where they showed that half of the potential and one spectrum determine all the potential functions. An important ingredient in our strategy is the link between the rate of growth of an entire function and the distribution of its zeros

  5. Analysis of the Forward-Backward Trajectory Solution for the Mixed Quantum-Classical Liouville Equation

    OpenAIRE

    Hsieh, Chang-Yu; Kapral, Raymond

    2013-01-01

    Mixed quantum-classical methods provide powerful algorithms for the simulation of quantum processes in large and complex systems. The forward-backward trajectory solution of the mixed quantum-classical Liouville equation in the mapping basis [J. Chem. Phys. 137, 22A507 (2012)] is one such scheme. It simulates the dynamics via the propagation of forward and backward trajectories of quantum coherent state variables, and the propagation of bath trajectories on a mean-field potential determined j...

  6. Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem

    Science.gov (United States)

    Nomikos, D. G.; Papageorgiou, V. G.

    2009-02-01

    We study the Anisotropic Stormer Problem (ASP) and the Isosceles Three-Body Problem (IP), from the viewpoint of integrability, using Morales-Ramis theory and its generalization. The study of their integrability presents particular interest since they model important physical phenomena. Both problems can be reduced with respect to the S1 symmetry. Almeida and Stuchi [M.A. Almeida, T.J. Stuchi, Non-integrability of the anisotropic Stormer problem with angular momentum, Physica D 189 (2004) 219-233] proved that the reduced ASP is non-integrable for almost all values of the parameters. In this paper we establish the non-integrability (in the extended Liouville sense) of the remaining cases. The IP is a special case of the three-body problem and it can be considered as a generalization of the Sitnikov problem. Here we prove that the complexified reduced IP does not admit an additional independent meromorphic first integral.

  7. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    Science.gov (United States)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  8. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  9. Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae

    International Nuclear Information System (INIS)

    Bleher, P.M.; Kosygin, D.V.; Sinai, Y.G.

    1995-01-01

    We consider the Weyl asymptotic formula [{E n ≤R 2 }=Area Q.R 2 /(4π)+n(R), for eigenvalues of the Laplace-Beltrami operator on a two-dimensional torus Q with a Liouville metric which is in a sense the most general case of an integrable metric. We prove that if the surface Q is non-degenerate then the remainder term n(R) has the form n(R)=R 1/2 θ(R), where θ(R) is an almost periodic function of the Besicovitch class B 1 , and the Fourier amplitudes and the Fourier frequencies of θ(R) can be expressed via lengths of closed geodesics on Q and other simple geometric characteristics of these geodesics. We prove then that if the surface Q is generic then the limit distribution of θ(R) has a density p(t), which is an entire function of t possessing an asymptotics on a real line, logp(t)∝-C ± t 4 as t→±∞. An explicit expression for the Fourier transform of p(t) via Fourier amplitudes of θ(R) is also given. We obtain the analogue of the Guillemin-Duistermaat trace formula for the Liouville surfaces and discuss its accuracy. (orig.)

  10. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    International Nuclear Information System (INIS)

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  11. Regularizing portfolio optimization

    International Nuclear Information System (INIS)

    Still, Susanne; Kondor, Imre

    2010-01-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  12. Regularizing portfolio optimization

    Science.gov (United States)

    Still, Susanne; Kondor, Imre

    2010-07-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  13. Multiscale analysis for ill-posed problems with semi-discrete Tikhonov regularization

    International Nuclear Information System (INIS)

    Zhong, Min; Lu, Shuai; Cheng, Jin

    2012-01-01

    Using compactly supported radial basis functions of varying radii, Wendland has shown how a multiscale analysis can be applied to the approximation of Sobolev functions on a bounded domain, when the available data are discrete and noisy. Here, we examine the application of this analysis to the solution of linear moderately ill-posed problems using semi-discrete Tikhonov–Phillips regularization. As in Wendland’s work, the actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. The convergence of the algorithm for noise-free data is given. Based on the Morozov discrepancy principle, a posteriori parameter choice rule and error estimates for the noisy data are derived. Two numerical examples are presented to illustrate the appropriateness of the proposed method. (paper)

  14. Low-Complexity Regularization Algorithms for Image Deblurring

    KAUST Repository

    Alanazi, Abdulrahman

    2016-11-01

    Image restoration problems deal with images in which information has been degraded by blur or noise. In practice, the blur is usually caused by atmospheric turbulence, motion, camera shake, and several other mechanical or physical processes. In this study, we present two regularization algorithms for the image deblurring problem. We first present a new method based on solving a regularized least-squares (RLS) problem. This method is proposed to find a near-optimal value of the regularization parameter in the RLS problems. Experimental results on the non-blind image deblurring problem are presented. In all experiments, comparisons are made with three benchmark methods. The results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and structural similarity, as well as the visual quality of the deblurred images. To reduce the complexity of the proposed algorithm, we propose a technique based on the bootstrap method to estimate the regularization parameter in low and high-resolution images. Numerical results show that the proposed technique can effectively reduce the computational complexity of the proposed algorithms. In addition, for some cases where the point spread function (PSF) is separable, we propose using a Kronecker product so as to reduce the computations. Furthermore, in the case where the image is smooth, it is always desirable to replace the regularization term in the RLS problems by a total variation term. Therefore, we propose a novel method for adaptively selecting the regularization parameter in a so-called square root regularized total variation (SRTV). Experimental results demonstrate that our proposed method outperforms the other benchmark methods when applied to smooth images in terms of PSNR, SSIM and the restored image quality. In this thesis, we focus on the non-blind image deblurring problem, where the blur kernel is assumed to be known. However, we developed algorithms that also work

  15. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  16. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  17. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  18. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane

    International Nuclear Information System (INIS)

    Liu, Jian; Zhang, Zhijun

    2016-01-01

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems

  19. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  20. On the method of inverse scattering problem and Baecklund transformations for supersymmetric equations

    International Nuclear Information System (INIS)

    Chaichian, M.; Kulish, P. P.

    1978-04-01

    Supersymmetric Liouville and sine-Gordon equations are studied. We write down for these models the system of linear equations for which the method of inverse scattering problem should be applicable. Expressions for an infinite set of conserved currents are explicitly given. Supersymmetric Baecklund transformations and generalized conservation laws are constructed. (author)

  1. Condition Number Regularized Covariance Estimation.

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2013-06-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.

  2. Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity

    CERN Document Server

    Amelino-Camelia, G; Mavromatos, Nikolaos E; Nanopoulos, Dimitri V

    1997-01-01

    Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space-time foam effects would give rise to an error in the measurement of distance comparable to that independently obtained in some recent heuristic quantum-gravity analyses. We also briefly compare these error estimates with the precision of astrophysical measurements.

  3. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  4. Rank deficiency and Tikhonov regularization in the inverse problem for gravitational-wave bursts

    International Nuclear Information System (INIS)

    Rakhmanov, M

    2006-01-01

    Coherent techniques for searches of gravitational-wave bursts effectively combine data from several detectors, taking into account differences in their responses. The efforts are now focused on the maximum likelihood principle as the most natural way to combine data, which can also be used without prior knowledge of the signal. Recent studies however have shown that straightforward application of the maximum likelihood method to gravitational waves with unknown waveforms can lead to inconsistencies and unphysical results such as discontinuity in the residual functional, or divergence of the variance of the estimated waveforms for some locations in the sky. So far the solutions to these problems have been based on rather different physical arguments. Following these investigations, we now find that all these inconsistencies stem from the rank deficiency of the underlying network response matrix. In this paper we show that the detection of gravitational-wave bursts with a network of interferometers belongs to the category of ill-posed problems. We then apply the method of Tikhonov regularization to resolve the rank deficiency and introduce a minimal regulator which yields a well-conditioned solution to the inverse problem for all locations on the sky

  5. Condition Number Regularized Covariance Estimation*

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2012-01-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197

  6. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    Science.gov (United States)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  7. Fast and compact regular expression matching

    DEFF Research Database (Denmark)

    Bille, Philip; Farach-Colton, Martin

    2008-01-01

    We study 4 problems in string matching, namely, regular expression matching, approximate regular expression matching, string edit distance, and subsequence indexing, on a standard word RAM model of computation that allows logarithmic-sized words to be manipulated in constant time. We show how...... to improve the space and/or remove a dependency on the alphabet size for each problem using either an improved tabulation technique of an existing algorithm or by combining known algorithms in a new way....

  8. Liouville's equation and radiative acceleration in general relativity

    International Nuclear Information System (INIS)

    Keane, A.J.

    1999-01-01

    This thesis examines thoroughly the general motion of a material charged particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. Such a test particle will be pulled in by the gravitational attraction of the compact object and pushed out by the radiation pressure force, therefore the types of trajectory admitted will depend the gravitational field, the radiation field and the particle cross-section. The presence of a strong gravitational field demands a fully general relativistic treatment of the problem. This type of calculation is interesting not only as a formal problem in general relativity but also since it has important astrophysical implications, for example, application to astrophysical discs and jets. In chapter 1 we review the classical radiation force problem and outline the transition to a fully general relativistic scenario. We discuss the method for obtaining the radiation pressure force and calculating the particle trajectories. We review previous work in this area and outline the aims of the thesis. Then we consider some astrophysical applications and discuss how realistic our calculations are. In chapter 2 we give an introduction and overview of differential geometry as this is necessary for an accurate description of tensors on a curved manifold. Then we review the general theory of relativity and in particular obtain the Schwarzschild metric describing a static spherically symmetric vacuum spacetime. Chapter 3 deals with test particle motion through a curved spacetime. Liouville's equation describes the statistical distribution in phase space of a collection of test particles and is based upon a Hamiltonian formulation of the dynamical system - this material also relies heavily upon the concepts of differential geometry introduced in chapter 2. In particular we are interested in photon transport and find the general solutions for some symmetric

  9. Regularized Regression and Density Estimation based on Optimal Transport

    KAUST Repository

    Burger, M.; Franek, M.; Schonlieb, C.-B.

    2012-01-01

    for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations

  10. Closedness type regularity conditions in convex optimization and beyond

    Directory of Open Access Journals (Sweden)

    Sorin-Mihai Grad

    2016-09-01

    Full Text Available The closedness type regularity conditions have proven during the last decade to be viable alternatives to their more restrictive interiority type counterparts, in both convex optimization and different areas where it was successfully applied. In this review article we de- and reconstruct some closedness type regularity conditions formulated by means of epigraphs and subdifferentials, respectively, for general optimization problems in order to stress that they arise naturally when dealing with such problems. The results are then specialized for constrained and unconstrained convex optimization problems. We also hint towards other classes of optimization problems where closedness type regularity conditions were successfully employed and discuss other possible applications of them.

  11. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  12. Near-Regular Structure Discovery Using Linear Programming

    KAUST Repository

    Huang, Qixing

    2014-06-02

    Near-regular structures are common in manmade and natural objects. Algorithmic detection of such regularity greatly facilitates our understanding of shape structures, leads to compact encoding of input geometries, and enables efficient generation and manipulation of complex patterns on both acquired and synthesized objects. Such regularity manifests itself both in the repetition of certain geometric elements, as well as in the structured arrangement of the elements. We cast the regularity detection problem as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both these aspects are captured by our near-regular structure extraction framework, which alternates between discrete and continuous optimizations. We demonstrate the effectiveness of our framework on a variety of problems including near-regular structure extraction, structure-preserving pattern manipulation, and markerless correspondence detection. Robustness results with respect to geometric and topological noise are presented on synthesized, real-world, and also benchmark datasets. © 2014 ACM.

  13. Riemann-Hilbert treatment of Liouville theory on the torus: the general case

    International Nuclear Information System (INIS)

    Menotti, Pietro

    2011-01-01

    We extend the previous treatment of Liouville theory on the torus to the general case in which the distribution of charges is not necessarily symmetric. This requires the concept of Fuchsian differential equation on Riemann surfaces. We show through a group theoretic argument that the Heun parameter and a weight constant are sufficient to satisfy all monodromy conditions. We then apply the technique of differential equations on a Riemann surface to the two-point function on the torus in which one source is arbitrary and the other small. As a byproduct, we give in terms of quadratures the exact Green function on the square and on the rhombus with opening angle 2π/6 in the background of the field generated by an arbitrary charge.

  14. Regularization Tools Version 3.0 for Matlab 5.2

    DEFF Research Database (Denmark)

    Hansen, Per Christian

    1999-01-01

    This communication describes Version 3.0 of Regularization Tools, a Matlab package for analysis and solution of discrete ill-posed problems.......This communication describes Version 3.0 of Regularization Tools, a Matlab package for analysis and solution of discrete ill-posed problems....

  15. Cotangent Models for Integrable Systems

    Science.gov (United States)

    Kiesenhofer, Anna; Miranda, Eva

    2017-03-01

    We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/ b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville-Mineur-Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839-1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66-85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.

  16. Beamforming Through Regularized Inverse Problems in Ultrasound Medical Imaging.

    Science.gov (United States)

    Szasz, Teodora; Basarab, Adrian; Kouame, Denis

    2016-12-01

    Beamforming (BF) in ultrasound (US) imaging has significant impact on the quality of the final image, controlling its resolution and contrast. Despite its low spatial resolution and contrast, delay-and-sum (DAS) is still extensively used nowadays in clinical applications, due to its real-time capabilities. The most common alternatives are minimum variance (MV) method and its variants, which overcome the drawbacks of DAS, at the cost of higher computational complexity that limits its utilization in real-time applications. In this paper, we propose to perform BF in US imaging through a regularized inverse problem based on a linear model relating the reflected echoes to the signal to be recovered. Our approach presents two major advantages: 1) its flexibility in the choice of statistical assumptions on the signal to be beamformed (Laplacian and Gaussian statistics are tested herein) and 2) its robustness to a reduced number of pulse emissions. The proposed framework is flexible and allows for choosing the right tradeoff between noise suppression and sharpness of the resulted image. We illustrate the performance of our approach on both simulated and experimental data, with in vivo examples of carotid and thyroid. Compared with DAS, MV, and two other recently published BF techniques, our method offers better spatial resolution, respectively contrast, when using Laplacian and Gaussian priors.

  17. Application of Turchin's method of statistical regularization

    Science.gov (United States)

    Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey

    2018-04-01

    During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.

  18. Iterative regularization in intensity-modulated radiation therapy optimization

    International Nuclear Information System (INIS)

    Carlsson, Fredrik; Forsgren, Anders

    2006-01-01

    A common way to solve intensity-modulated radiation therapy (IMRT) optimization problems is to use a beamlet-based approach. The approach is usually employed in a three-step manner: first a beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and have to be regularized in order to produce smooth fluence profiles that are suitable for conversion. The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial Hessian estimate, and second, to empirically show that beamlet-weight optimization problems should be solved in relatively few iterations when using this optimization method. The explanation of the suitability is based on viewing the optimization method as an iterative regularization method. In iterative regularization, the optimization problem is solved approximately by iterating long enough to obtain a solution close to the optimal one, but terminating before too much noise occurs. Iterative regularization requires an optimization method that initially proceeds in smooth directions and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume objectives and bounds on the beamlet-weights, we find that the considered optimization method fulfills the requirements for performing iterative regularization. After segment-weight optimization, the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We conclude that iterating too long may in fact deteriorate the quality of the deliverable plan

  19. The discrete spectrum in azimuthally dependent transport theory

    International Nuclear Information System (INIS)

    Garcia, R.D.M.; Siewert, C.E.

    1989-01-01

    The discrete spectrum for each component of a Fourier decomposition of the azimuthally dependent transport equation is analyzed. For a non-multiplying medium described by an L th -order scattering law, the problem of determining the zeros of the dispersion function for the m th Fourier component is formulated in terms of Sturm sequences. In particular, a straightforward application of the Sturm-sequence property is used to compute the number of discrete eigenvalue pairs κ m and to show that either κ m = γ m or κ m = γ m + 1, where γ m denotes the number of zeros of the Chandrasekhar polynomial g m L+1 (ξ) which are greater than unity. It is also shown how Sturm sequences can be used to construct effective algorithms to compute and to refine estimates of the discrete eigenvalues. Results are presented for a test problem. (author) [pt

  20. Remarks on the Liouville type results for the compressible Navier–Stokes equations in RN

    International Nuclear Information System (INIS)

    Chae, Dongho

    2012-01-01

    In this paper, we prove Liouville type result for the stationary solutions to the compressible Navier–Stokes equations (NS) and the compressible Navier–Stokes–Poisson (NSP) equations and in R N , N ≥ 2. Assuming suitable integrability and the uniform boundedness conditions for the solutions we are led to the conclusion that v = 0. In the case of (NS) we deduce that the similar integrability conditions imply v = 0 and ρ = constant on R N . This shows that if we impose the the non-vacuum boundary condition at spatial infinity for (NS), v → 0 and ρ → ρ ∞ > 0, then v = 0, ρ = ρ ∞ are the solutions

  1. Effect of trapping on transport coherence III: Dissipation in the stochastic Liouville equation approach

    Energy Technology Data Exchange (ETDEWEB)

    Barvik, I [International Centre for Theoretical Physics, Trieste (Italy); Polasek, M [Charles Univ., Prague (Czech Republic). Inst. of Physics; Herman, P [Pedagogical Univ., Hradec Kralove (Czech Republic)

    1995-08-01

    We used the formal stochastic Liouville equations within Haken-Strobl-Reineker parametrization for the description of the influence of the bath on the memory functions entering the GME for a dimer and a linear trimer with a trap (here modeled as a sink). The often used inclusion of the noncoherent regime in the MF by an exponentially damped prefactor (after Kenkre`s prescription) does not hold for finite systems. The analytical form of the MF is changed more pronouncely and the influence of the sink in the center of the trimer runs parallel with the influence of the bath in destroying the coherence. (author). 60 refs.

  2. The Liouville equation for flavour evolution of neutrinos and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-12-01

    We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.

  3. Regularization parameter estimation for underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion

    International Nuclear Information System (INIS)

    Vatankhah, Saeed; Ardestani, Vahid E; Renaut, Rosemary A

    2014-01-01

    The χ 2 principle generalizes the Morozov discrepancy principle to the augmented residual of the Tikhonov regularized least squares problem. For weighting of the data fidelity by a known Gaussian noise distribution on the measured data, when the stabilizing, or regularization, term is considered to be weighted by unknown inverse covariance information on the model parameters, the minimum of the Tikhonov functional becomes a random variable that follows a χ 2 -distribution with m+p−n degrees of freedom for the model matrix G of size m×n, m⩾n, and regularizer L of size p × n. Then, a Newton root-finding algorithm, employing the generalized singular value decomposition, or singular value decomposition when L = I, can be used to find the regularization parameter α. Here the result and algorithm are extended to the underdetermined case, m 2 algorithms when m 2 and unbiased predictive risk estimator of the regularization parameter are used for the first time in this context. For a simulated underdetermined data set with noise, these regularization parameter estimation methods, as well as the generalized cross validation method, are contrasted with the use of the L-curve and the Morozov discrepancy principle. Experiments demonstrate the efficiency and robustness of the χ 2 principle and unbiased predictive risk estimator, moreover showing that the L-curve and Morozov discrepancy principle are outperformed in general by the other three techniques. Furthermore, the minimum support stabilizer is of general use for the χ 2 principle when implemented without the desirable knowledge of the mean value of the model. (paper)

  4. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin

    2014-01-01

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse

  5. PET regularization by envelope guided conjugate gradients

    International Nuclear Information System (INIS)

    Kaufman, L.; Neumaier, A.

    1996-01-01

    The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations

  6. On geodesics in low regularity

    Science.gov (United States)

    Sämann, Clemens; Steinbauer, Roland

    2018-02-01

    We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.

  7. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig; Suliman, Mohamed Abdalla Elhag; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded

  8. Reducing errors in the GRACE gravity solutions using regularization

    Science.gov (United States)

    Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.

    2012-09-01

    The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4

  9. Stabilization, pole placement, and regular implementability

    NARCIS (Netherlands)

    Belur, MN; Trentelman, HL

    In this paper, we study control by interconnection of linear differential systems. We give necessary and sufficient conditions for regular implementability of a-given linear, differential system. We formulate the problems of stabilization and pole placement as problems of finding a suitable,

  10. Learning Sparse Visual Representations with Leaky Capped Norm Regularizers

    OpenAIRE

    Wangni, Jianqiao; Lin, Dahua

    2017-01-01

    Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of $\\ell_1$ regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and...

  11. Strong Bisimilarity and Regularity of Basic Parallel Processes is PSPACE-Hard

    DEFF Research Database (Denmark)

    Srba, Jirí

    2002-01-01

    We show that the problem of checking whether two processes definable in the syntax of Basic Parallel Processes (BPP) are strongly bisimilar is PSPACE-hard. We also demonstrate that there is a polynomial time reduction from the strong bisimilarity checking problem of regular BPP to the strong...... regularity (finiteness) checking of BPP. This implies that strong regularity of BPP is also PSPACE-hard....

  12. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  13. Regularized Regression and Density Estimation based on Optimal Transport

    KAUST Repository

    Burger, M.

    2012-03-11

    The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).

  14. Automatic Constraint Detection for 2D Layout Regularization.

    Science.gov (United States)

    Jiang, Haiyong; Nan, Liangliang; Yan, Dong-Ming; Dong, Weiming; Zhang, Xiaopeng; Wonka, Peter

    2016-08-01

    In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans or images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior performance to the state of the art.

  15. Automatic Constraint Detection for 2D Layout Regularization

    KAUST Repository

    Jiang, Haiyong

    2015-09-18

    In this paper, we address the problem of constraint detection for layout regularization. As layout we consider a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important for digitizing plans or images, such as floor plans and facade images, and for the improvement of user created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate the layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm to automatically detect constraints. In our results, we evaluate the proposed framework on a variety of input layouts from different applications, which demonstrates our method has superior performance to the state of the art.

  16. A new operational approach for solving fractional variational problems depending on indefinite integrals

    Science.gov (United States)

    Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.

    2018-04-01

    In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm

  17. 3D first-arrival traveltime tomography with modified total variation regularization

    Science.gov (United States)

    Jiang, Wenbin; Zhang, Jie

    2018-02-01

    Three-dimensional (3D) seismic surveys have become a major tool in the exploration and exploitation of hydrocarbons. 3D seismic first-arrival traveltime tomography is a robust method for near-surface velocity estimation. A common approach for stabilizing the ill-posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a 3D first-arrival traveltime tomography method with modified total variation (MTV) regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total variation problem. We apply the conjugate gradient method and split-Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization. We apply the technique to field data. The stacking section shows significant improvements with static corrections from the MTV traveltime tomography.

  18. Solvability, regularity, and optimal control of boundary value problems for pdes in honour of Prof. Gianni Gilardi

    CERN Document Server

    Favini, Angelo; Rocca, Elisabetta; Schimperna, Giulio; Sprekels, Jürgen

    2017-01-01

    This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.

  19. Variational analysis of regular mappings theory and applications

    CERN Document Server

    Ioffe, Alexander D

    2017-01-01

    This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory. The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, whic...

  20. A trick loop algebra and a corresponding Liouville integrable hierarchy of evolution equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Xu Xixiang

    2004-01-01

    A subalgebra of loop algebra A-bar 2 is first constructed, which has its own special feature. It follows that a new Liouville integrable hierarchy of evolution equations is obtained, possessing a tri-Hamiltonian structure, which is proved by us in this paper. Especially, three symplectic operators are constructed directly from recurrence relations. The conjugate operator of a recurrence operator is a hereditary symmetry. As reduction cases of the hierarchy presented in this paper, the celebrated MKdV equation and heat-conduction equation are engendered, respectively. Therefore, we call the hierarchy a generalized MKdV-H system. At last, a high-dimension loop algebra G-bar is constructed by making use of a proper scalar transformation. As a result, a type expanding integrable model of the MKdV-H system is given

  1. Projected interaction picture of field operators and memory superoperators. A master equation for the single-particle Green's function in a Liouville space

    International Nuclear Information System (INIS)

    Grinberg, H.

    1983-11-01

    The projection operator method of Zwanzig and Feshbach is used to construct the time-dependent field operators in the interaction picture. The formula developed to describe the time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators, from which a master equation for the interaction-picture single-particle Green's function in a Liouville space is derived. (author)

  2. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  3. Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models

    Science.gov (United States)

    Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul

    2018-04-01

    We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.

  4. UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA

    Directory of Open Access Journals (Sweden)

    IONIŢĂ Elena

    2015-06-01

    Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.

  5. A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian

    Science.gov (United States)

    Quaas, Alexander; Xia, Aliang

    2016-08-01

    We establish a Liouville type theorem for the fractional Lane-Emden system: {(-Δ)αu=vqin  RN,(-Δ)αv=upin  RN, where α \\in (0,1) , N>2α and p, q are positive real numbers and in an appropriate new range. To prove our result we will use the local realization of fractional Laplacian, which can be constructed as a Dirichlet-to-Neumann operator of a degenerate elliptic equation in the spirit of Caffarelli and Silvestre (2007 Commun. PDE 32 1245-60). Our proof is based on a monotonicity argument for suitable transformed functions and the method of moving planes in a half infinite cylinder ({IR}× S+N , where S+N is the half unit sphere in {{{R}}N+1} ) based on maximum principles which are obtained by barrier functions and a coupling argument using a fractional Sobolev trace inequality.

  6. Regularization and computational methods for precise solution of perturbed orbit transfer problems

    Science.gov (United States)

    Woollands, Robyn Michele

    The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these

  7. A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem

    DEFF Research Database (Denmark)

    Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Pontil, Massimiliano

    2014-01-01

    We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured...... sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized functional that includes the ℓ21-norm of the coding...... matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios...

  8. Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers

    Czech Academy of Sciences Publication Activity Database

    Adam, Lukáš; Branda, Martin

    2016-01-01

    Roč. 170, č. 2 (2016), s. 419-436 ISSN 0022-3239 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Chance constrained programming * Optimality conditions * Regularization * Algorithms * Free MATLAB codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.289, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0460909.pdf

  9. Image deblurring using a perturbation-basec regularization approach

    KAUST Repository

    Alanazi, Abdulrahman

    2017-11-02

    The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.

  10. Image deblurring using a perturbation-basec regularization approach

    KAUST Repository

    Alanazi, Abdulrahman; Ballal, Tarig; Masood, Mudassir; Al-Naffouri, Tareq Y.

    2017-01-01

    The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.

  11. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  12. Factors influencing the type of health problems presented by women in general practice: differences between women's health care and regular health care.

    NARCIS (Netherlands)

    Brink-Muinen, A. van den; Bensing, J.M.

    1996-01-01

    Objective: Differences between health problems presented by women (aged 20-45) to female "women's health care" doctors and both female and male regular health care doctors were investigated. This article explores the relationship of patients' roles (worker, partner, or parent) and the type of health

  13. Dimensional regularization in configuration space

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1995-09-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs

  14. Poisson image reconstruction with Hessian Schatten-norm regularization.

    Science.gov (United States)

    Lefkimmiatis, Stamatios; Unser, Michael

    2013-11-01

    Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.

  15. Regularization of Nonmonotone Variational Inequalities

    International Nuclear Information System (INIS)

    Konnov, Igor V.; Ali, M.S.S.; Mazurkevich, E.O.

    2006-01-01

    In this paper we extend the Tikhonov-Browder regularization scheme from monotone to rather a general class of nonmonotone multivalued variational inequalities. We show that their convergence conditions hold for some classes of perfectly and nonperfectly competitive economic equilibrium problems

  16. Faster 2-regular information-set decoding

    NARCIS (Netherlands)

    Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.

    2011-01-01

    Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and

  17. Bulk-boundary correlators in the hermitian matrix model and minimal Liouville gravity

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile; Ishiki, Goro; Rim, Chaiho

    2012-01-01

    We construct the one matrix model (MM) correlators corresponding to the general bulk-boundary correlation numbers of the minimal Liouville gravity (LG) on the disc. To find agreement between both discrete and continuous approach, we investigate the resonance transformation mixing boundary and bulk couplings. It leads to consider two sectors, depending on whether the matter part of the LG correlator is vanishing due to the fusion rules. In the vanishing case, we determine the explicit transformation of the boundary couplings at the first order in bulk couplings. In the non-vanishing case, no bulk-boundary resonance is involved and only the first order of pure boundary resonances have to be considered. Those are encoded in the matrix polynomials determined in our previous paper. We checked the agreement for the bulk-boundary correlators of MM and LG in several non-trivial cases. In this process, we developed an alternative method to derive the boundary resonance encoding polynomials.

  18. Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains

    KAUST Repository

    Bonito, Andrea

    2013-12-01

    This note establishes regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coefficients and minimal regularity assumptions. The argumentation relies on elliptic regularity estimates for the Poisson problem with non-smooth coefficients. © 2013 Elsevier Ltd.

  19. Regularization methods in Banach spaces

    CERN Document Server

    Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S

    2012-01-01

    Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B

  20. Preconditioners for regularized saddle point problems with an application for heterogeneous Darcy flow problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Byczanski, Petr; Karátson, J.; Ahmad, B.

    2015-01-01

    Roč. 280, č. 280 (2015), s. 141-157 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : preconditioners * heterogeneous coefficients * regularized saddle point Inner–outer iterations * Darcy flow Subject RIV: BA - General Mathematics Impact factor: 1.328, year: 2015 http://www.sciencedirect.com/science/article/pii/S0377042714005238

  1. Regularizations: different recipes for identical situations

    International Nuclear Information System (INIS)

    Gambin, E.; Lobo, C.O.; Battistel, O.A.

    2004-03-01

    We present a discussion where the choice of the regularization procedure and the routing for the internal lines momenta are put at the same level of arbitrariness in the analysis of Ward identities involving simple and well-known problems in QFT. They are the complex self-interacting scalar field and two simple models where the SVV and AVV process are pertinent. We show that, in all these problems, the conditions to symmetry relations preservation are put in terms of the same combination of divergent Feynman integrals, which are evaluated in the context of a very general calculational strategy, concerning the manipulations and calculations involving divergences. Within the adopted strategy, all the arbitrariness intrinsic to the problem are still maintained in the final results and, consequently, a perfect map can be obtained with the corresponding results of the traditional regularization techniques. We show that, when we require an universal interpretation for the arbitrariness involved, in order to get consistency with all stated physical constraints, a strong condition is imposed for regularizations which automatically eliminates the ambiguities associated to the routing of the internal lines momenta of loops. The conclusion is clean and sound: the association between ambiguities and unavoidable symmetry violations in Ward identities cannot be maintained if an unique recipe is required for identical situations in the evaluation of divergent physical amplitudes. (author)

  2. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    Science.gov (United States)

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  3. Solution path for manifold regularized semisupervised classification.

    Science.gov (United States)

    Wang, Gang; Wang, Fei; Chen, Tao; Yeung, Dit-Yan; Lochovsky, Frederick H

    2012-04-01

    Traditional learning algorithms use only labeled data for training. However, labeled examples are often difficult or time consuming to obtain since they require substantial human labeling efforts. On the other hand, unlabeled data are often relatively easy to collect. Semisupervised learning addresses this problem by using large quantities of unlabeled data with labeled data to build better learning algorithms. In this paper, we use the manifold regularization approach to formulate the semisupervised learning problem where a regularization framework which balances a tradeoff between loss and penalty is established. We investigate different implementations of the loss function and identify the methods which have the least computational expense. The regularization hyperparameter, which determines the balance between loss and penalty, is crucial to model selection. Accordingly, we derive an algorithm that can fit the entire path of solutions for every value of the hyperparameter. Its computational complexity after preprocessing is quadratic only in the number of labeled examples rather than the total number of labeled and unlabeled examples.

  4. Occupational concerns associated with regular use of microscope.

    Science.gov (United States)

    Jain, Garima; Shetty, Pushparaja

    2014-08-01

    Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. a questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11-15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15-30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  5. A Regularization SAA Scheme for a Stochastic Mathematical Program with Complementarity Constraints

    Directory of Open Access Journals (Sweden)

    Yu-xin Li

    2014-01-01

    Full Text Available To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints (MPCC have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a regularization sample average approximation (SAA method for solving a stochastic mathematical program with complementarity constraints (SMPCC. The analysis of this regularization method is carried out in three steps: First, the almost sure convergence of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed.

  6. Occupational concerns associated with regular use of microscope

    Directory of Open Access Journals (Sweden)

    Garima Jain

    2014-08-01

    Full Text Available Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Results: Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11–15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15–30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. Conclusions: The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  7. Partial differential equations & boundary value problems with Maple

    CERN Document Server

    Articolo, George A

    2009-01-01

    Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations.  Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327  Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...

  8. A projection-based approach to general-form Tikhonov regularization

    DEFF Research Database (Denmark)

    Kilmer, Misha E.; Hansen, Per Christian; Espanol, Malena I.

    2007-01-01

    We present a projection-based iterative algorithm for computing general-form Tikhonov regularized solutions to the problem minx| Ax-b |2^2+lambda2| Lx |2^2, where the regularization matrix L is not the identity. Our algorithm is designed for the common case where lambda is not known a priori...

  9. Use of Dirac-Coulomb Sturmians of the first-order for relativistic calculations of two-photon bound-bound transition amplitudes in hydrogenic-like ions

    International Nuclear Information System (INIS)

    Tetchou Nganso, H.M.; Kwato Njock, M.G.

    2005-08-01

    A fully relativistic treatment of the S-matrix elements describing two-photon bound-bound transition amplitudes in hydrogenic-like ions is undertaken in the present work. Several selected transitions from the ground state vertical bar 1 2 S> towards the L and M shells (vertical bar 2 2 S>, vertical bar 3 2 S>,vertical bar 3 2 D 1/2 >, and vertical bar 3 2 D 5/2 ) are described. For that purpose, we use the complete set of relativistic Sturmian functions derived by Szmytkowski from the first-order Sturm- Liouville problems for the Dirac equation. The method followed consists in writing the matrix elements in terms of Green functions expanded over the first-order Dirac-Coulomb Sturmians. Previous approaches used the Sturmian basis associated with the Gell-Mann-Feynman equation. However these latter second-order Sturmian functions do not form a complete set and cannot rigorously describe the process under study. On the other hand, a distinctive feature of our tensor treatment is that the expressions derived are quite general and could be applied to any multipole of the two photon bound-bound transitions. In the case of dipole transitions considered by Szymanowski et al., in their calculations, the selection rules derived from our method lead to two additional terms related to l lp =2 and l 2p =2. (author)

  10. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    International Nuclear Information System (INIS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-01-01

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d≥4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  11. Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-10-06

    In this work, we propose a new regularization approach for linear least-squares problems with random matrices. In the proposed constrained perturbation regularization approach, an artificial perturbation matrix with a bounded norm is forced into the system model matrix. This perturbation is introduced to improve the singular-value structure of the model matrix and, hence, the solution of the estimation problem. Relying on the randomness of the model matrix, a number of deterministic equivalents from random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various estimated signal characteristics. In addition, simulations show that our approach is robust in the presence of model uncertainty.

  12. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.

    Science.gov (United States)

    Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats

    2014-05-01

    In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Manifestly scale-invariant regularization and quantum effective operators

    CERN Document Server

    Ghilencea, D.M.

    2016-01-01

    Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...

  14. Ensemble Kalman filter regularization using leave-one-out data cross-validation

    KAUST Repository

    Rayo Schiappacasse, Lautaro Jeró nimo; Hoteit, Ibrahim

    2012-01-01

    In this work, the classical leave-one-out cross-validation method for selecting a regularization parameter for the Tikhonov problem is implemented within the EnKF framework. Following the original concept, the regularization parameter is selected

  15. The impact of comorbid cannabis and methamphetamine use on mental health among regular ecstasy users.

    Science.gov (United States)

    Scott, Laura A; Roxburgh, Amanda; Bruno, Raimondo; Matthews, Allison; Burns, Lucy

    2012-09-01

    Residual effects of ecstasy use induce neurotransmitter changes that make it biologically plausible that extended use of the drug may induce psychological distress. However, there has been only mixed support for this in the literature. The presence of polysubstance use is a confounding factor. The aim of this study was to investigate whether regular cannabis and/or regular methamphetamine use confers additional risk of poor mental health and high levels of psychological distress, beyond regular ecstasy use alone. Three years of data from a yearly, cross-sectional, quantitative survey of Australian regular ecstasy users was examined. Participants were divided into four groups according to whether they regularly (at least monthly) used ecstasy only (n=936), ecstasy and weekly cannabis (n=697), ecstasy and weekly methamphetamine (n=108) or ecstasy, weekly cannabis and weekly methamphetamine (n=180). Self-reported mental health problems and Kessler Psychological Distress Scale (K10) were examined. Approximately one-fifth of participants self-reported at least one mental health problem, most commonly depression and anxiety. The addition of regular cannabis and/or methamphetamine use substantially increases the likelihood of self-reported mental health problems, particularly with regard to paranoia, over regular ecstasy use alone. Regular cannabis use remained significantly associated with self reported mental health problems even when other differences between groups were accounted for. Regular cannabis and methamphetamine use was also associated with earlier initiation to ecstasy use. These findings suggest that patterns of drug use can help identify at risk groups that could benefit from targeted approaches in education and interventions. Given that early initiation to substance use was more common in those with regular cannabis and methamphetamine use and given that this group had a higher likelihood of mental health problems, work around delaying onset of initiation

  16. A New Method for Determining Optimal Regularization Parameter in Near-Field Acoustic Holography

    Directory of Open Access Journals (Sweden)

    Yue Xiao

    2018-01-01

    Full Text Available Tikhonov regularization method is effective in stabilizing reconstruction process of the near-field acoustic holography (NAH based on the equivalent source method (ESM, and the selection of the optimal regularization parameter is a key problem that determines the regularization effect. In this work, a new method for determining the optimal regularization parameter is proposed. The transfer matrix relating the source strengths of the equivalent sources to the measured pressures on the hologram surface is augmented by adding a fictitious point source with zero strength. The minimization of the norm of this fictitious point source strength is as the criterion for choosing the optimal regularization parameter since the reconstructed value should tend to zero. The original inverse problem in calculating the source strengths is converted into a univariate optimization problem which is solved by a one-dimensional search technique. Two numerical simulations with a point driven simply supported plate and a pulsating sphere are investigated to validate the performance of the proposed method by comparison with the L-curve method. The results demonstrate that the proposed method can determine the regularization parameter correctly and effectively for the reconstruction in NAH.

  17. Energy functions for regularization algorithms

    Science.gov (United States)

    Delingette, H.; Hebert, M.; Ikeuchi, K.

    1991-01-01

    Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.

  18. The G′G-expansion method using modified Riemann–Liouville derivative for some space-time fractional differential equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-09-01

    Full Text Available In this paper, the fractional partial differential equations are defined by modified Riemann–Liouville fractional derivative. With the help of fractional derivative and traveling wave transformation, these equations can be converted into the nonlinear nonfractional ordinary differential equations. Then G′G-expansion method is applied to obtain exact solutions of the space-time fractional Burgers equation, the space-time fractional KdV-Burgers equation and the space-time fractional coupled Burgers’ equations. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. These results reveal that the proposed method is very effective and simple in performing a solution to the fractional partial differential equation.

  19. An algorithm for total variation regularized photoacoustic imaging

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Görner, Torsten; Kunis, Stefan

    2014-01-01

    Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During the iter......Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During...... the iteration, each matrix vector multiplication is realized in an efficient way using a recently proposed spectral discretization of the spherical mean value operator. All theoretical results are illustrated by numerical experiments....

  20. Analysis of regularized inversion of data corrupted by white Gaussian noise

    International Nuclear Information System (INIS)

    Kekkonen, Hanne; Lassas, Matti; Siltanen, Samuli

    2014-01-01

    Tikhonov regularization is studied in the case of linear pseudodifferential operator as the forward map and additive white Gaussian noise as the measurement error. The measurement model for an unknown function u(x) is m(x) = Au(x) + δ ε (x), where δ > 0 is the noise magnitude. If ε was an L 2 -function, Tikhonov regularization gives an estimate T α (m) = u∈H r arg min { ||Au-m|| L 2 2 + α||u|| H r 2 } for u where α = α(δ) is the regularization parameter. Here penalization of the Sobolev norm ||u|| H r covers the cases of standard Tikhonov regularization (r = 0) and first derivative penalty (r = 1). Realizations of white Gaussian noise are almost never in L 2 , but do belong to H s with probability one if s < 0 is small enough. A modification of Tikhonov regularization theory is presented, covering the case of white Gaussian measurement noise. Furthermore, the convergence of regularized reconstructions to the correct solution as δ → 0 is proven in appropriate function spaces using microlocal analysis. The convergence of the related finite-dimensional problems to the infinite-dimensional problem is also analysed. (paper)

  1. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-04-17

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.

  2. Spectral Regularization Algorithms for Learning Large Incomplete Matrices.

    Science.gov (United States)

    Mazumder, Rahul; Hastie, Trevor; Tibshirani, Robert

    2010-03-01

    We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a simple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound on the nuclear norm. Our algorithm Soft-Impute iteratively replaces the missing elements with those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute an entire regularization path of solutions on a grid of values of the regularization parameter. The computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix. Exploiting the problem structure, we show that the task can be performed with a complexity linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to large matrices: for example it can obtain a rank-80 approximation of a 10(6) × 10(6) incomplete matrix with 10(5) observed entries in 2.5 hours, and can fit a rank 40 approximation to the full Netflix training set in 6.6 hours. Our methods show very good performance both in training and test error when compared to other competitive state-of-the art techniques.

  3. Higher order total variation regularization for EIT reconstruction.

    Science.gov (United States)

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut

    2018-01-08

    Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.

  4. Consistent Partial Least Squares Path Modeling via Regularization.

    Science.gov (United States)

    Jung, Sunho; Park, JaeHong

    2018-01-01

    Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  5. Consistent Partial Least Squares Path Modeling via Regularization

    Directory of Open Access Journals (Sweden)

    Sunho Jung

    2018-02-01

    Full Text Available Partial least squares (PLS path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc, designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  6. Regularization of the Boundary-Saddle-Node Bifurcation

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2018-01-01

    Full Text Available In this paper we treat a particular class of planar Filippov systems which consist of two smooth systems that are separated by a discontinuity boundary. In such systems one vector field undergoes a saddle-node bifurcation while the other vector field is transversal to the boundary. The boundary-saddle-node (BSN bifurcation occurs at a critical value when the saddle-node point is located on the discontinuity boundary. We derive a local topological normal form for the BSN bifurcation and study its local dynamics by applying the classical Filippov’s convex method and a novel regularization approach. In fact, by the regularization approach a given Filippov system is approximated by a piecewise-smooth continuous system. Moreover, the regularization process produces a singular perturbation problem where the original discontinuous set becomes a center manifold. Thus, the regularization enables us to make use of the established theories for continuous systems and slow-fast systems to study the local behavior around the BSN bifurcation.

  7. Regularized Label Relaxation Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  8. Supervised scale-regularized linear convolutionary filters

    DEFF Research Database (Denmark)

    Loog, Marco; Lauze, Francois Bernard

    2017-01-01

    also be solved relatively efficient. All in all, the idea is to properly control the scale of a trained filter, which we solve by introducing a specific regularization term into the overall objective function. We demonstrate, on an artificial filter learning problem, the capabil- ities of our basic...

  9. Regularity of difference equations on Banach spaces

    CERN Document Server

    Agarwal, Ravi P; Lizama, Carlos

    2014-01-01

    This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semigroup and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.

  10. Extending the D’alembert solution to space–time Modified Riemann–Liouville fractional wave equations

    International Nuclear Information System (INIS)

    Godinho, Cresus F.L.; Weberszpil, J.; Helayël-Neto, J.A.

    2012-01-01

    In the realm of complexity, it is argued that adequate modeling of TeV-physics demands an approach based on fractal operators and fractional calculus (FC). Non-local theories and memory effects are connected to complexity and the FC. The non-differentiable nature of the microscopic dynamics may be connected with time scales. Based on the Modified Riemann–Liouville definition of fractional derivatives, we have worked out explicit solutions to a fractional wave equation with suitable initial conditions to carefully understand the time evolution of classical fields with a fractional dynamics. First, by considering space–time partial fractional derivatives of the same order in time and space, a generalized fractional D’alembertian is introduced and by means of a transformation of variables to light-cone coordinates, an explicit analytical solution is obtained. To address the situation of different orders in the time and space derivatives, we adopt different approaches, as it will become clear throughout this paper. Aspects connected to Lorentz symmetry are analyzed in both approaches.

  11. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  12. Finite Element Quadrature of Regularized Discontinuous and Singular Level Set Functions in 3D Problems

    Directory of Open Access Journals (Sweden)

    Nicola Ponara

    2012-11-01

    Full Text Available Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance with respect to the discontinuity interface are exploited. Tornberg and Engquist (Journal of Scientific Computing, 2003, 19: 527–552 proved that the use of compact support weight function is not suitable because it leads to errors that do not vanish for decreasing mesh size. They proposed the adoption of non-compact support weight functions. In the present contribution, the relationship between the Fourier transform of the weight functions and the accuracy of the regularization procedure is exploited. The proposed regularized approach was implemented in the eXtended Finite Element Method. As a three-dimensional example, we study a slender solid characterized by an inclined interface across which the displacement is discontinuous. The accuracy is evaluated for varying position of the discontinuity interfaces with respect to the underlying mesh. A procedure for the choice of the regularization parameters is proposed.

  13. arXiv Bose enhancement, the Liouville effective action and the high multiplicity tail in p-A collisions

    CERN Document Server

    Kovner, Alex

    In the framework of dense-dilute CGC approach we study fluctuations in the multiplicity of produced particles in p-A collisions. We show that the leading effect that drives the fluctuations is the Bose enhancement of gluons in the proton wave function. We explicitly calculate the moment generating function that resums the effects of Bose enhancement. We show that it can be understood in terms of the Liouville effective action for the composite field which is identified with the fluctuating density, or saturation momentum of the proton. The resulting probability distribution turns out to be very close to the gamma-distribution. We also calculate the first correction to this distribution which is due to pairwise Hanbury Brown-Twiss correlations of produced gluons.

  14. RES: Regularized Stochastic BFGS Algorithm

    Science.gov (United States)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  15. The problem of oxidation state stabilisation and some regularities of a Periodic system of the elements

    International Nuclear Information System (INIS)

    Kiselev, Yurii M; Tretyakov, Yuri D

    1999-01-01

    The general principles of the concept of oxidation state stabilisation are formulated. Problems associated with the preparation and provision of the highest valent forms of transition elements are considered. The empirical data concerning the synthesis of new compounds of rare-earth elements and d elements in unusually high oxidation states are analysed. The possibility of occurrence of the oxidation states + 9 and + 10 for some elements (for example, for iridium and platinum in tetraoxo ions) are discussed. Approaches to the realisation of these states are outlined and it is demonstrated that solid phases or matrices containing alkali metal cations are the most promising systems for the stabilisation of these high oxidation states. Selected thermodynamic features typical of metal halides and oxides and the regularities of the changes in the extreme oxidation states of d elements are considered. The bibliography includes 266 references.

  16. A Soliton Hierarchy Associated with a Spectral Problem of 2nd Degree in a Spectral Parameter and Its Bi-Hamiltonian Structure

    Directory of Open Access Journals (Sweden)

    Yuqin Yao

    2016-01-01

    Full Text Available Associated with so~(3,R, a new matrix spectral problem of 2nd degree in a spectral parameter is proposed and its corresponding soliton hierarchy is generated within the zero curvature formulation. Bi-Hamiltonian structures of the presented soliton hierarchy are furnished by using the trace identity, and thus, all presented equations possess infinitely commuting many symmetries and conservation laws, which implies their Liouville integrability.

  17. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    Science.gov (United States)

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  18. Dose domain regularization of MLC leaf patterns for highly complex IMRT plans

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dan; Yu, Victoria Y.; Ruan, Dan; Cao, Minsong; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States); O’Connor, Daniel [Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-04-15

    Purpose: The advent of automated beam orientation and fluence optimization enables more complex intensity modulated radiation therapy (IMRT) planning using an increasing number of fields to exploit the expanded solution space. This has created a challenge in converting complex fluences to robust multileaf collimator (MLC) segments for delivery. A novel method to regularize the fluence map and simplify MLC segments is introduced to maximize delivery efficiency, accuracy, and plan quality. Methods: In this work, we implemented a novel approach to regularize optimized fluences in the dose domain. The treatment planning problem was formulated in an optimization framework to minimize the segmentation-induced dose distribution degradation subject to a total variation regularization to encourage piecewise smoothness in fluence maps. The optimization problem was solved using a first-order primal-dual algorithm known as the Chambolle-Pock algorithm. Plans for 2 GBM, 2 head and neck, and 2 lung patients were created using 20 automatically selected and optimized noncoplanar beams. The fluence was first regularized using Chambolle-Pock and then stratified into equal steps, and the MLC segments were calculated using a previously described level reducing method. Isolated apertures with sizes smaller than preset thresholds of 1–3 bixels, which are square units of an IMRT fluence map from MLC discretization, were removed from the MLC segments. Performance of the dose domain regularized (DDR) fluences was compared to direct stratification and direct MLC segmentation (DMS) of the fluences using level reduction without dose domain fluence regularization. Results: For all six cases, the DDR method increased the average planning target volume dose homogeneity (D95/D5) from 0.814 to 0.878 while maintaining equivalent dose to organs at risk (OARs). Regularized fluences were more robust to MLC sequencing, particularly to the stratification and small aperture removal. The maximum and

  19. Coordinate-invariant regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-01-01

    A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc

  20. Regularized forecasting of chaotic dynamical systems

    International Nuclear Information System (INIS)

    Bollt, Erik M.

    2017-01-01

    While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.

  1. On a continuation approach in Tikhonov regularization and its application in piecewise-constant parameter identification

    International Nuclear Information System (INIS)

    Melicher, V; Vrábel’, V

    2013-01-01

    We present a new approach to the convexification of the Tikhonov regularization using a continuation method strategy. We embed the original minimization problem into a one-parameter family of minimization problems. Both the penalty term and the minimizer of the Tikhonov functional become dependent on a continuation parameter. In this way we can independently treat two main roles of the regularization term, which are the stabilization of the ill-posed problem and introduction of the a priori knowledge. For zero continuation parameter we solve a relaxed regularization problem, which stabilizes the ill-posed problem in a weaker sense. The problem is recast to the original minimization by the continuation method and so the a priori knowledge is enforced. We apply this approach in the context of topology-to-shape geometry identification, where it allows us to avoid the convergence of gradient-based methods to a local minima. We present illustrative results for magnetic induction tomography which is an example of PDE-constrained inverse problem. (paper)

  2. Psychosocial functioning among regular cannabis users with and without cannabis use disorder.

    Science.gov (United States)

    Foster, Katherine T; Arterberry, Brooke J; Iacono, William G; McGue, Matt; Hicks, Brian M

    2017-11-27

    In the United States, cannabis accessibility has continued to rise as the perception of its harmfulness has decreased. Only about 30% of regular cannabis users develop cannabis use disorder (CUD), but it is unclear if individuals who use cannabis regularly without ever developing CUD experience notable psychosocial impairment across the lifespan. Therefore, psychosocial functioning was compared across regular cannabis users with or without CUD and a non-user control group during adolescence (age 17; early risk) and young adulthood (ages 18-25; peak CUD prevalence). Weekly cannabis users with CUD (n = 311), weekly users without CUD (n = 111), and non-users (n = 996) were identified in the Minnesota Twin Family Study. Groups were compared on alcohol and illicit drug use, psychiatric problems, personality, and social functioning at age 17 and from ages 18 to 25. Self-reported cannabis use and problem use were independently verified using co-twin informant report. In both adolescence and young adulthood, non-CUD users reported significantly higher levels of substance use problems and externalizing behaviors than non-users, but lower levels than CUD users. High agreement between self- and co-twin informant reports confirmed the validity of self-reported cannabis use problems. Even in the absence of CUD, regular cannabis use was associated with psychosocial impairment in adolescence and young adulthood. However, regular users with CUD endorsed especially high psychiatric comorbidity and psychosocial impairment. The need for early prevention and intervention - regardless of CUD status - was highlighted by the presence of these patterns in adolescence.

  3. A splitting algorithm for directional regularization and sparsification

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Nielsen, Mads

    2012-01-01

    We present a new split-type algorithm for the minimization of a p-harmonic energy with added data fidelity term. The half-quadratic splitting reduces the original problem to two straightforward problems, that can be minimized efficiently. The minimizers to the two sub-problems can typically...... be computed pointwise and are easily implemented on massively parallel processors. Furthermore the splitting method allows for the computation of solutions to a large number of more advanced directional regularization problems. In particular we are able to handle robust, non-convex data terms, and to define...

  4. Manifold Based Low-rank Regularization for Image Restoration and Semi-supervised Learning

    OpenAIRE

    Lai, Rongjie; Li, Jia

    2017-01-01

    Low-rank structures play important role in recent advances of many problems in image science and data science. As a natural extension of low-rank structures for data with nonlinear structures, the concept of the low-dimensional manifold structure has been considered in many data processing problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear approximation of manifold dimension. This regularization is less restricted than the global low-rank regu...

  5. STRUCTURE OPTIMIZATION OF RESERVATION BY PRECISE QUADRATIC REGULARIZATION

    Directory of Open Access Journals (Sweden)

    KOSOLAP A. I.

    2015-11-01

    Full Text Available The problem of optimization of the structure of systems redundancy elements. Such problems arise in the design of complex systems. To improve the reliability of operation of such systems of its elements are duplicated. This increases system cost and improves its reliability. When optimizing these systems is maximized probability of failure of the entire system while limiting its cost or the cost is minimized for a given probability of failure-free operation. A mathematical model of the problem is a discrete backup multiextremal. To search for the global extremum of currently used methods of Lagrange multipliers, coordinate descent, dynamic programming, random search. These methods guarantee a just and local solutions are used in the backup tasks of small dimension. In the work for solving redundancy uses a new method for accurate quadratic regularization. This method allows you to convert the original discrete problem to the maximization of multi vector norm on a convex set. This means that the diversity of the tasks given to the problem of redundancy maximize vector norm on a convex set. To solve the problem, a reformed straightdual interior point methods. Currently, it is the best method for local optimization of nonlinear problems. Transformed the task includes a new auxiliary variable, which is determined by dichotomy. There have been numerous comparative numerical experiments in problems with the number of redundant subsystems to one hundred. These experiments confirm the effectiveness of the method of precise quadratic regularization for solving problems of redundancy.

  6. Information-theoretic semi-supervised metric learning via entropy regularization.

    Science.gov (United States)

    Niu, Gang; Dai, Bo; Yamada, Makoto; Sugiyama, Masashi

    2014-08-01

    We propose a general information-theoretic approach to semi-supervised metric learning called SERAPH (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize SERAPH by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that SERAPH compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.

  7. A convergence analysis of the iteratively regularized Gauss–Newton method under the Lipschitz condition

    International Nuclear Information System (INIS)

    Jin Qinian

    2008-01-01

    In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense

  8. Robust regularized least-squares beamforming approach to signal estimation

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2017-05-12

    In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill-conditioned covariance matrix of the received signals. Secondly, the steering vector pertaining to the direction of arrival of the signal of interest is not known precisely. To tackle these two challenges, the standard capon beamformer is manipulated to a form where the beamformer output is obtained as a scaled version of the inner product of two vectors. The two vectors are linearly related to the steering vector and the received signal snapshot, respectively. The linear operator, in both cases, is the square root of the covariance matrix. A regularized least-squares (RLS) approach is proposed to estimate these two vectors and to provide robustness without exploiting prior information. Simulation results show that the RLS beamformer using the proposed regularization algorithm outperforms state-of-the-art beamforming algorithms, as well as another RLS beamformers using a standard regularization approaches.

  9. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  10. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction.

    Science.gov (United States)

    Duan, Jizhong; Liu, Yu; Jing, Peiguang

    2018-02-01

    Self-consistent parallel imaging (SPIRiT) is an auto-calibrating model for the reconstruction of parallel magnetic resonance imaging, which can be formulated as a regularized SPIRiT problem. The Projection Over Convex Sets (POCS) method was used to solve the formulated regularized SPIRiT problem. However, the quality of the reconstructed image still needs to be improved. Though methods such as NonLinear Conjugate Gradients (NLCG) can achieve higher spatial resolution, these methods always demand very complex computation and converge slowly. In this paper, we propose a new algorithm to solve the formulated Cartesian SPIRiT problem with the JTV and JL1 regularization terms. The proposed algorithm uses the operator splitting (OS) technique to decompose the problem into a gradient problem and a denoising problem with two regularization terms, which is solved by our proposed split Bregman based denoising algorithm, and adopts the Barzilai and Borwein method to update step size. Simulation experiments on two in vivo data sets demonstrate that the proposed algorithm is 1.3 times faster than ADMM for datasets with 8 channels. Especially, our proposal is 2 times faster than ADMM for the dataset with 32 channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Holographic conductivity of holographic superconductors with higher-order corrections

    Energy Technology Data Exchange (ETDEWEB)

    Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghazanfari, Afsoon; Dehyadegari, Amin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2018-02-15

    We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω/T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature. (orig.)

  12. Total variation regularization in measurement and image space for PET reconstruction

    KAUST Repository

    Burger, M

    2014-09-18

    © 2014 IOP Publishing Ltd. The aim of this paper is to test and analyse a novel technique for image reconstruction in positron emission tomography, which is based on (total variation) regularization on both the image space and the projection space. We formulate our variational problem considering both total variation penalty terms on the image and on an idealized sinogram to be reconstructed from a given Poisson distributed noisy sinogram. We prove existence, uniqueness and stability results for the proposed model and provide some analytical insight into the structures favoured by joint regularization. For the numerical solution of the corresponding discretized problem we employ the split Bregman algorithm and extensively test the approach in comparison to standard total variation regularization on the image. The numerical results show that an additional penalty on the sinogram performs better on reconstructing images with thin structures.

  13. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation

    International Nuclear Information System (INIS)

    Bardsley, Johnathan M; Goldes, John

    2009-01-01

    In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness

  14. Quantum resonances and regularity islands in quantum maps

    Science.gov (United States)

    Sokolov; Zhirov; Alonso; Casati

    2000-05-01

    We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of an order q. The map is embedded into a continuous unitary transformation generated by a time-independent quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transformation described by the unitary unimodular group SU(q). The resonant energy growth is attributed to the zero Liouville eigenmodes of the generator in the adjoint representation of the group while the nonzero modes yield saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the form of power expansion with respect to the detuning from the resonance. The problem is related in this way to the motion along a circle in a (q2 - 1)-component inhomogeneous "magnetic" field of a quantum particle with q intrinsic degrees of freedom described by the SU(q) group. This motion is in parallel with the classical phase oscillations near a nonlinear resonance. The most important role is played by the resonances with the orders much smaller than the typical localization length q < l. Such resonances master for exponentially long though finite times the motion in some domains around them. Explicit analytical solution is possible for a few lowest and strongest resonances.

  15. A Differential Quadrature Procedure with Regularization of the Dirac-delta Function for Numerical Solution of Moving Load Problem

    Directory of Open Access Journals (Sweden)

    S. A. Eftekhari

    Full Text Available AbstractThe differential quadrature method (DQM is one of the most elegant and efficient methods for the numerical solution of partial differential equations arising in engineering and applied sciences. It is simple to use and also straightforward to implement. However, the DQM is well-known to have some difficulty when applied to partial differential equations involving singular functions like the Dirac-delta function. This is caused by the fact that the Dirac-delta function cannot be directly discretized by the DQM. To overcome this difficulty, this paper presents a simple differential quadrature procedure in which the Dirac-delta function is replaced by regularized smooth functions. By regularizing the Dirac-delta function, such singular function is treated as non-singular functions and can be easily and directly discretized using the DQM. To demonstrate the applicability and reliability of the proposed method, it is applied here to solve some moving load problems of beams and rectangular plates, where the location of the moving load is described by a time-dependent Dirac-delta function. The results generated by the proposed method are compared with analytical and numerical results available in the literature. Numerical results reveal that the proposed method can be used as an efficient tool for dynamic analysis of beam- and plate-type structures traversed by moving dynamic loads.

  16. Cultural and Mathematical Meanings of Regular Octagons in Mesopotamia: Examining Islamic Art Designs

    Directory of Open Access Journals (Sweden)

    Jeanam Park

    2018-03-01

    Full Text Available The most common regular polygon in Islamic art design is the octagon. Historical evidence of the use of an 8-star polygon and an 8-fold rosette dates back to Jemdet Nasr (3100-2900 B.C. in Mesopotamia. Additionally, in ancient Egypt, octagons can be found in mathematical problem (Ahmose papyrus, Problem number 48, household goods (papyrus storage, architecture (granite columns and decorations (palace decorations. The regular octagon which is a fundamentally important element of Islamic art design, is widely used as arithmetic objects in metric algebra along with other regular polygons in Mesopotamia. The 8-point star polygon has long been a symbol of the ancient Sumerian goddess Inanna and her East Semitic counterpart Ishtar. During the Neo-Assyrian period, the 8-fold rosette occasionally replaced the star as the symbol of Ishtar. In this paper, we discuss how octagonal design prevailed in the Islamic region since the late ninth century, and has existed in Mesopotamia from Jemdet Nasr to the end of third century B.C. We describe reasons why the geometric pattern of regular polygons, including regular octagons, developed in the Islamic world. Furthermore, we also discuss mathematical meanings of regular polygons.

  17. Occupational concerns associated with regular use of microscope

    OpenAIRE

    Garima Jain; Pushparaja Shetty

    2014-01-01

    Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire...

  18. Anxiety, Depression and Emotion Regulation Among Regular Online Poker Players.

    Science.gov (United States)

    Barrault, Servane; Bonnaire, Céline; Herrmann, Florian

    2017-12-01

    Poker is a type of gambling that has specific features, including the need to regulate one's emotion to be successful. The aim of the present study is to assess emotion regulation, anxiety and depression in a sample of regular poker players, and to compare the results of problem and non-problem gamblers. 416 regular online poker players completed online questionnaires including sociodemographic data, measures of problem gambling (CPGI), anxiety and depression (HAD scale), and emotion regulation (ERQ). The CPGI was used to divide participants into four groups according to the intensity of their gambling practice (non-problem, low risk, moderate risk and problem gamblers). Anxiety and depression were significantly higher among severe-problem gamblers than among the other groups. Both significantly predicted problem gambling. On the other hand, there was no difference between groups in emotion regulation (cognitive reappraisal and expressive suppression), which was linked neither to problem gambling nor to anxiety and depression (except for cognitive reappraisal, which was significantly correlated to anxiety). Our results underline the links between anxiety, depression and problem gambling among poker players. If emotion regulation is involved in problem gambling among poker players, as strongly suggested by data from the literature, the emotion regulation strategies we assessed (cognitive reappraisal and expressive suppression) may not be those involved. Further studies are thus needed to investigate the involvement of other emotion regulation strategies.

  19. Gamma regularization based reconstruction for low dose CT

    International Nuclear Information System (INIS)

    Zhang, Junfeng; Chen, Yang; Hu, Yining; Luo, Limin; Shu, Huazhong; Li, Bicao; Liu, Jin; Coatrieux, Jean-Louis

    2015-01-01

    Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution is flexible and provides a good balance between the regularizations based on l 0 -norm and l 1 -norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other norms. (paper)

  20. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene

    2016-01-01

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  1. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos

    2016-08-30

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  2. Robust Seismic Normal Modes Computation in Radial Earth Models and A Novel Classification Based on Intersection Points of Waveguides

    Science.gov (United States)

    Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal

  3. Regular graph construction for semi-supervised learning

    International Nuclear Information System (INIS)

    Vega-Oliveros, Didier A; Berton, Lilian; Eberle, Andre Mantini; Lopes, Alneu de Andrade; Zhao, Liang

    2014-01-01

    Semi-supervised learning (SSL) stands out for using a small amount of labeled points for data clustering and classification. In this scenario graph-based methods allow the analysis of local and global characteristics of the available data by identifying classes or groups regardless data distribution and representing submanifold in Euclidean space. Most of methods used in literature for SSL classification do not worry about graph construction. However, regular graphs can obtain better classification accuracy compared to traditional methods such as k-nearest neighbor (kNN), since kNN benefits the generation of hubs and it is not appropriate for high-dimensionality data. Nevertheless, methods commonly used for generating regular graphs have high computational cost. We tackle this problem introducing an alternative method for generation of regular graphs with better runtime performance compared to methods usually find in the area. Our technique is based on the preferential selection of vertices according some topological measures, like closeness, generating at the end of the process a regular graph. Experiments using the global and local consistency method for label propagation show that our method provides better or equal classification rate in comparison with kNN

  4. Mixed Total Variation and L1 Regularization Method for Optical Tomography Based on Radiative Transfer Equation

    Directory of Open Access Journals (Sweden)

    Jinping Tang

    2017-01-01

    Full Text Available Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE. It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method.

  5. A regularization method for extrapolation of solar potential magnetic fields

    Science.gov (United States)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  6. Ensemble Kalman filter regularization using leave-one-out data cross-validation

    KAUST Repository

    Rayo Schiappacasse, Lautaro Jerónimo

    2012-09-19

    In this work, the classical leave-one-out cross-validation method for selecting a regularization parameter for the Tikhonov problem is implemented within the EnKF framework. Following the original concept, the regularization parameter is selected such that it minimizes the predictive error. Some ideas about the implementation, suitability and conceptual interest of the method are discussed. Finally, what will be called the data cross-validation regularized EnKF (dCVr-EnKF) is implemented in a 2D 2-phase synthetic oil reservoir experiment and the results analyzed.

  7. Injection, injectivity and injectability in geothermal operations: problems and possible solutions. Phase I. Definition of the problems

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, O.J.; Crichlow, H.B.

    1979-02-14

    The following topics are covered: thermodynamic instability of brine, injectivity loss during regular production and injection operations, injectivity loss caused by measures other than regular operations, heat mining and associated reservoir problems in reinjection, pressure maintenance through imported make-up water, suggested solutions to injection problems, and suggested solutions to injection problems: remedial and stimulation measures. (MHR)

  8. Nekrasov and Argyres–Douglas theories in spherical Hecke algebra representation

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chaiho, E-mail: rimpine@sogang.ac.kr; Zhang, Hong, E-mail: kilar@itp.ac.cn

    2017-06-15

    AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres–Douglas theory, which involves summation of functions over Young diagrams.

  9. Nekrasov and Argyres-Douglas theories in spherical Hecke algebra representation

    Science.gov (United States)

    Rim, Chaiho; Zhang, Hong

    2017-06-01

    AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres-Douglas theory, which involves summation of functions over Young diagrams.

  10. Use of regularization method in the determination of ring parameters and orbit correction

    International Nuclear Information System (INIS)

    Tang, Y.N.; Krinsky, S.

    1993-01-01

    We discuss applying the regularization method of Tikhonov to the solution of inverse problems arising in accelerator operations. This approach has been successfully used for orbit correction on the NSLS storage rings, and is presently being applied to the determination of betatron functions and phases from the measured response matrix. The inverse problem of differential equation often leads to a set of integral equations of the first kind which are ill-conditioned. The regularization method is used to combat the ill-posedness

  11. Integrating the Toda Lattice with Self-Consistent Source via Inverse Scattering Method

    International Nuclear Information System (INIS)

    Urazboev, Gayrat

    2012-01-01

    In this work, there is shown that the solutions of Toda lattice with self-consistent source can be found by the inverse scattering method for the discrete Sturm-Liuville operator. For the considered problem the one-soliton solution is obtained.

  12. Wavelet domain image restoration with adaptive edge-preserving regularization.

    Science.gov (United States)

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.

  13. MAXIMUM r-REGULAR INDUCED SUBGRAPH PROBLEM: FAST EXPONENTIAL ALGORITHMS AND COMBINATORIAL BOUNDS

    DEFF Research Database (Denmark)

    Gupta, S.; Raman, V.; Saurabh, S.

    2012-01-01

    We show that for a fixed r, the number of maximal r-regular induced subgraphs in any graph with n vertices is upper bounded by O(c(n)), where c is a positive constant strictly less than 2. This bound generalizes the well-known result of Moon and Moser, who showed an upper bound of 3(n/3) on the n...

  14. X-ray computed tomography using curvelet sparse regularization.

    Science.gov (United States)

    Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias

    2015-04-01

    Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  15. Strong Bisimilarity and Regularity of Basic Parallel Processes is PSPACE-Hard

    DEFF Research Database (Denmark)

    Srba, Jirí

    2002-01-01

    We show that the problem of checking whether two processes definable in the syntax of Basic Parallel Processes (BPP) are strongly bisimilar is PSPACE-hard. We also demonstrate that there is a polynomial time reduction from the strong bisimilarity checking problem of regular BPP to the strong...

  16. A Variance Minimization Criterion to Feature Selection Using Laplacian Regularization.

    Science.gov (United States)

    He, Xiaofei; Ji, Ming; Zhang, Chiyuan; Bao, Hujun

    2011-10-01

    In many information processing tasks, one is often confronted with very high-dimensional data. Feature selection techniques are designed to find the meaningful feature subset of the original features which can facilitate clustering, classification, and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenarios, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. Based on Laplacian regularized least squares, which finds a smooth function on the data manifold and minimizes the empirical loss, we propose two novel feature selection algorithms which aim to minimize the expected prediction error of the regularized regression model. Specifically, we select those features such that the size of the parameter covariance matrix of the regularized regression model is minimized. Motivated from experimental design, we use trace and determinant operators to measure the size of the covariance matrix. Efficient computational schemes are also introduced to solve the corresponding optimization problems. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithms.

  17. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  18. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  19. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    Science.gov (United States)

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  20. Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    R. Darzi

    2013-01-01

    Full Text Available We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional boundary value problem D0+αut+ft,ut=0, 0Liouville fractional derivative, β is positive real number, βξα−1≥2Γα, and f is continuous on 0,1×0,∞. As an application, one example is given to illustrate the main result.

  1. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    Science.gov (United States)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  2. Ensemble manifold regularization.

    Science.gov (United States)

    Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng

    2012-06-01

    We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.

  3. Phase reconstruction by a multilevel iteratively regularized Gauss–Newton method

    International Nuclear Information System (INIS)

    Langemann, Dirk; Tasche, Manfred

    2008-01-01

    In this paper we consider the numerical solution of a phase retrieval problem for a compactly supported, linear spline f : R → C with the Fourier transform f-circumflex, where values of |f| and |f-circumflex| at finitely many equispaced nodes are given. The unknown phases of complex spline coefficients fulfil a well-structured system of nonlinear equations. Thus the phase reconstruction leads to a nonlinear inverse problem, which is solved by a multilevel strategy and iterative Tikhonov regularization. The multilevel strategy concentrates the main effort of the solution of the phase retrieval problem in the coarse, less expensive levels and provides convenient initial guesses at the next finer level. On each level, the corresponding nonlinear system is solved by an iteratively regularized Gauss–Newton method. The multilevel strategy is motivated by convergence results of IRGN. This method is applicable to a wide range of examples as shown in several numerical tests for noiseless and noisy data

  4. Regularized inversion of controlled source and earthquake data

    International Nuclear Information System (INIS)

    Ramachandran, Kumar

    2012-01-01

    Estimation of the seismic velocity structure of the Earth's crust and upper mantle from travel-time data has advanced greatly in recent years. Forward modelling trial-and-error methods have been superseded by tomographic methods which allow more objective analysis of large two-dimensional and three-dimensional refraction and/or reflection data sets. The fundamental purpose of travel-time tomography is to determine the velocity structure of a medium by analysing the time it takes for a wave generated at a source point within the medium to arrive at a distribution of receiver points. Tomographic inversion of first-arrival travel-time data is a nonlinear problem since both the velocity of the medium and ray paths in the medium are unknown. The solution for such a problem is typically obtained by repeated application of linearized inversion. Regularization of the nonlinear problem reduces the ill posedness inherent in the tomographic inversion due to the under-determined nature of the problem and the inconsistencies in the observed data. This paper discusses the theory of regularized inversion for joint inversion of controlled source and earthquake data, and results from synthetic data testing and application to real data. The results obtained from tomographic inversion of synthetic data and real data from the northern Cascadia subduction zone show that the velocity model and hypocentral parameters can be efficiently estimated using this approach. (paper)

  5. An Iterative Regularization Method for Identifying the Source Term in a Second Order Differential Equation

    Directory of Open Access Journals (Sweden)

    Fairouz Zouyed

    2015-01-01

    Full Text Available This paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. This problem is ill-posed; that is, the solution (if it exists does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.

  6. A tutorial on inverse problems for anomalous diffusion processes

    International Nuclear Information System (INIS)

    Jin, Bangti; Rundell, William

    2015-01-01

    Over the last two decades, anomalous diffusion processes in which the mean squares variance grows slower or faster than that in a Gaussian process have found many applications. At a macroscopic level, these processes are adequately described by fractional differential equations, which involves fractional derivatives in time or/and space. The fractional derivatives describe either history mechanism or long range interactions of particle motions at a microscopic level. The new physics can change dramatically the behavior of the forward problems. For example, the solution operator of the time fractional diffusion diffusion equation has only limited smoothing property, whereas the solution for the space fractional diffusion equation may contain weak singularity. Naturally one expects that the new physics will impact related inverse problems in terms of uniqueness, stability, and degree of ill-posedness. The last aspect is especially important from a practical point of view, i.e., stably reconstructing the quantities of interest. In this paper, we employ a formal analytic and numerical way, especially the two-parameter Mittag-Leffler function and singular value decomposition, to examine the degree of ill-posedness of several ‘classical’ inverse problems for fractional differential equations involving a Djrbashian–Caputo fractional derivative in either time or space, which represent the fractional analogues of that for classical integral order differential equations. We discuss four inverse problems, i.e., backward fractional diffusion, sideways problem, inverse source problem and inverse potential problem for time fractional diffusion, and inverse Sturm–Liouville problem, Cauchy problem, backward fractional diffusion and sideways problem for space fractional diffusion. It is found that contrary to the wide belief, the influence of anomalous diffusion on the degree of ill-posedness is not definitive: it can either significantly improve or worsen the conditioning

  7. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    Science.gov (United States)

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  8. DEVELOPMENT OF INNOVATION MANAGEMENT THEORY BASED ON SYSTEM-WIDE REGULARITIES

    Directory of Open Access Journals (Sweden)

    Violetta N. Volkova

    2013-01-01

    Full Text Available The problem of a comprehension of the innovation management theory and an ability of its development on basis of system theory is set up. The authors consider features of management of socio-economic systems as open, self-organising systems with active components and give a classification of the systems’ regularities illustrating these features. The need to take into account the regularities of emergent, hierarchical order, equifinality, Ashby’s law of requisite variety, historicity and self-organization is shown.

  9. A two-way regularization method for MEG source reconstruction

    KAUST Repository

    Tian, Tian Siva; Huang, Jianhua Z.; Shen, Haipeng; Li, Zhimin

    2012-01-01

    The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples. © Institute of Mathematical Statistics, 2012.

  10. A two-way regularization method for MEG source reconstruction

    KAUST Repository

    Tian, Tian Siva

    2012-09-01

    The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples. © Institute of Mathematical Statistics, 2012.

  11. L{sub 1/2} regularization based numerical method for effective reconstruction of bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Yang, Defu; Zhang, Qitan; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an 710071 (China); Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education (China)

    2014-05-14

    Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l{sub 1/2} regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l{sub 1/2} regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l{sub 1} regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise.

  12. A Regular k-Shrinkage Thresholding Operator for the Removal of Mixed Gaussian-Impulse Noise

    Directory of Open Access Journals (Sweden)

    Han Pan

    2017-01-01

    Full Text Available The removal of mixed Gaussian-impulse noise plays an important role in many areas, such as remote sensing. However, traditional methods may be unaware of promoting the degree of the sparsity adaptively after decomposing into low rank component and sparse component. In this paper, a new problem formulation with regular spectral k-support norm and regular k-support l1 norm is proposed. A unified framework is developed to capture the intrinsic sparsity structure of all two components. To address the resulting problem, an efficient minimization scheme within the framework of accelerated proximal gradient is proposed. This scheme is achieved by alternating regular k-shrinkage thresholding operator. Experimental comparison with the other state-of-the-art methods demonstrates the efficacy of the proposed method.

  13. The relationship between lifestyle regularity and subjective sleep quality

    Science.gov (United States)

    Monk, Timothy H.; Reynolds, Charles F 3rd; Buysse, Daniel J.; DeGrazia, Jean M.; Kupfer, David J.

    2003-01-01

    In previous work we have developed a diary instrument-the Social Rhythm Metric (SRM), which allows the assessment of lifestyle regularity-and a questionnaire instrument--the Pittsburgh Sleep Quality Index (PSQI), which allows the assessment of subjective sleep quality. The aim of the present study was to explore the relationship between lifestyle regularity and subjective sleep quality. Lifestyle regularity was assessed by both standard (SRM-17) and shortened (SRM-5) metrics; subjective sleep quality was assessed by the PSQI. We hypothesized that high lifestyle regularity would be conducive to better sleep. Both instruments were given to a sample of 100 healthy subjects who were studied as part of a variety of different experiments spanning a 9-yr time frame. Ages ranged from 19 to 49 yr (mean age: 31.2 yr, s.d.: 7.8 yr); there were 48 women and 52 men. SRM scores were derived from a two-week diary. The hypothesis was confirmed. There was a significant (rho = -0.4, p subjects with higher levels of lifestyle regularity reported fewer sleep problems. This relationship was also supported by a categorical analysis, where the proportion of "poor sleepers" was doubled in the "irregular types" group as compared with the "non-irregular types" group. Thus, there appears to be an association between lifestyle regularity and good sleep, though the direction of causality remains to be tested.

  14. An interior-point method for total variation regularized positron emission tomography image reconstruction

    Science.gov (United States)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  15. Regularity of spectral fractional Dirichlet and Neumann problems

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2016-01-01

    Consider the fractional powers and of the Dirichlet and Neumann realizations of a second-order strongly elliptic differential operator A on a smooth bounded subset Ω of . Recalling the results on complex powers and complex interpolation of domains of elliptic boundary value problems by Seeley in ...

  16. Improvements in GRACE Gravity Fields Using Regularization

    Science.gov (United States)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or

  17. On inverse problem of calculus of variations

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Z-L [College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)], E-mail: zaolingt@nuist.edu.cn

    2008-02-15

    Using the semi-inverse method proposed by Ji-Huan He, variational principles are established for some nonlinear equations arising in physics, including the (p, 2p)-mZK equation, Klein-Gordon equation, sine-Gordon equation, Liouville equation, Dodd- Bullough-Mikhailov equation, and Tzitzeica-Dodd-Bullough equation.

  18. A sparsity-regularized Born iterative method for reconstruction of two-dimensional piecewise continuous inhomogeneous domains

    KAUST Repository

    Sandhu, Ali Imran; Desmal, Abdulla; Bagci, Hakan

    2016-01-01

    A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile's derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.

  19. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  20. "Plug-and-play" edge-preserving regularization

    DEFF Research Database (Denmark)

    Chen, Donghui; Kilmer, Misha E.; Hansen, Per Christian

    2014-01-01

    In many inverse problems it is essential to use regularization methods that preserve edges in the reconstructions, and many reconstruction models have been developed for this task, such as the Total Variation (TV) approach. The associated algorithms are complex and require a good knowledge of large...... cosine transform.hence the term "plug-and-play" . We do not attempt to improve on TV reconstructions, but rather provide an easy-to-use approach to computing reconstructions with similar properties....

  1. Regularization in Hilbert space under unbounded operators and general source conditions

    International Nuclear Information System (INIS)

    Hofmann, Bernd; Mathé, Peter; Von Weizsäcker, Heinrich

    2009-01-01

    The authors study ill-posed equations with unbounded operators in Hilbert space. This setup has important applications, but only a few theoretical studies are available. First, the question is addressed and answered whether every element satisfies some general source condition with respect to a given self-adjoint unbounded operator. This generalizes a previous result from Mathé and Hofmann (2008 Inverse Problems 24 015009). The analysis then proceeds to error bounds for regularization, emphasizing some specific points for regularization under unbounded operators. The study finally reviews two examples within the light of the present study, as these are fractional differentiation and some Cauchy problems for the Helmholtz equation, both studied previously and in more detail by U Tautenhahn and co-authors

  2. A new approach to nonlinear constrained Tikhonov regularization

    KAUST Repository

    Ito, Kazufumi

    2011-09-16

    We present a novel approach to nonlinear constrained Tikhonov regularization from the viewpoint of optimization theory. A second-order sufficient optimality condition is suggested as a nonlinearity condition to handle the nonlinearity of the forward operator. The approach is exploited to derive convergence rate results for a priori as well as a posteriori choice rules, e.g., discrepancy principle and balancing principle, for selecting the regularization parameter. The idea is further illustrated on a general class of parameter identification problems, for which (new) source and nonlinearity conditions are derived and the structural property of the nonlinearity term is revealed. A number of examples including identifying distributed parameters in elliptic differential equations are presented. © 2011 IOP Publishing Ltd.

  3. Partial Regularity for Holonomic Minimisers of Quasiconvex Functionals

    Science.gov (United States)

    Hopper, Christopher P.

    2016-10-01

    We prove partial regularity for local minimisers of certain strictly quasiconvex integral functionals, over a class of Sobolev mappings into a compact Riemannian manifold, to which such mappings are said to be holonomically constrained. Our approach uses the lifting of Sobolev mappings to the universal covering space, the connectedness of the covering space, an application of Ekeland's variational principle and a certain tangential A-harmonic approximation lemma obtained directly via a Lipschitz approximation argument. This allows regularity to be established directly on the level of the gradient. Several applications to variational problems in condensed matter physics with broken symmetries are also discussed, in particular those concerning the superfluidity of liquid helium-3 and nematic liquid crystals.

  4. Laplacian embedded regression for scalable manifold regularization.

    Science.gov (United States)

    Chen, Lin; Tsang, Ivor W; Xu, Dong

    2012-06-01

    Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real

  5. Regular expressions cookbook

    CERN Document Server

    Goyvaerts, Jan

    2009-01-01

    This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a

  6. LL-regular grammars

    NARCIS (Netherlands)

    Nijholt, Antinus

    1980-01-01

    Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular

  7. On norm resolvent convergence of Schroedinger operators with δ'-like potentials

    International Nuclear Information System (INIS)

    Golovaty, Yu D; Hryniv, R O

    2010-01-01

    For a function V:R→R that is integrable and compactly supported, we prove the norm resolvent convergence, as ε → 0, of a family S ε of one-dimensional Schroedinger operators on the line of the form S ε :=-d 2 /dx 2 + 1/ε 2 V(x/ε). If the potential V satisfies the conditions ∫ R V(ξ)dξ=0, ∫ R ξV(ξ)dξ=-1, then the functions ε -2 V(x/ε) converge in the sense of distributions as ε → 0 to δ'(x), and the limit S 0 of S ε might be considered as a 'physically motivated' interpretation of the one-dimensional Schroedinger operator with a potential δ'. In 1985, Seba claimed that the limit operator S 0 is the direct sum of the free Schroedinger operators on positive and negative semi-axes subject to the Dirichlet condition at x = 0, which suggested that in dimension 1 there is no non-trivial Hamiltonian with the potential δ'. In this paper, we show that in fact S 0 essentially depends on V: although the above results are true generically, in the exceptional (or 'resonant') case, the limit S 0 is non-trivial and is determined by the properties of an auxiliary Sturm-Liouville spectral problem associated with V. We then set V(ξ) = αΨ(ξ) with a fixed Ψ and show that there exists a countable set of resonances {α k } ∞ k=-∞ for which a partial transmission of the wave package occurs for S 0 .

  8. Two-way regularization for MEG source reconstruction via multilevel coordinate descent

    KAUST Repository

    Siva Tian, Tian

    2013-12-01

    Magnetoencephalography (MEG) source reconstruction refers to the inverse problem of recovering the neural activity from the MEG time course measurements. A spatiotemporal two-way regularization (TWR) method was recently proposed by Tian et al. to solve this inverse problem and was shown to outperform several one-way regularization methods and spatiotemporal methods. This TWR method is a two-stage procedure that first obtains a raw estimate of the source signals and then refines the raw estimate to ensure spatial focality and temporal smoothness using spatiotemporal regularized matrix decomposition. Although proven to be effective, the performance of two-stage TWR depends on the quality of the raw estimate. In this paper we directly solve the MEG source reconstruction problem using a multivariate penalized regression where the number of variables is much larger than the number of cases. A special feature of this regression is that the regression coefficient matrix has a spatiotemporal two-way structure that naturally invites a two-way penalty. Making use of this structure, we develop a computationally efficient multilevel coordinate descent algorithm to implement the method. This new one-stage TWR method has shown its superiority to the two-stage TWR method in three simulation studies with different levels of complexity and a real-world MEG data analysis. © 2013 Wiley Periodicals, Inc., A Wiley Company.

  9. PRIFIRA: General regularization using prior-conditioning for fast radio interferometric imaging†

    Science.gov (United States)

    Naghibzadeh, Shahrzad; van der Veen, Alle-Jan

    2018-06-01

    Image formation in radio astronomy is a large-scale inverse problem that is inherently ill-posed. We present a general algorithmic framework based on a Bayesian-inspired regularized maximum likelihood formulation of the radio astronomical imaging problem with a focus on diffuse emission recovery from limited noisy correlation data. The algorithm is dubbed PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) and is based on a direct embodiment of the regularization operator into the system by right preconditioning. The resulting system is then solved using an iterative method based on projections onto Krylov subspaces. We motivate the use of a beamformed image (which includes the classical "dirty image") as an efficient prior-conditioner. Iterative reweighting schemes generalize the algorithmic framework and can account for different regularization operators that encourage sparsity of the solution. The performance of the proposed method is evaluated based on simulated one- and two-dimensional array arrangements as well as actual data from the core stations of the Low Frequency Array radio telescope antenna configuration, and compared to state-of-the-art imaging techniques. We show the generality of the proposed method in terms of regularization schemes while maintaining a competitive reconstruction quality with the current reconstruction techniques. Furthermore, we show that exploiting Krylov subspace methods together with the proper noise-based stopping criteria results in a great improvement in imaging efficiency.

  10. The regular indefinite linear-quadratic problem with linear endpoint constraints

    NARCIS (Netherlands)

    Soethoudt, J.M.; Trentelman, H.L.

    1989-01-01

    This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that

  11. Regularity of the 3D Navier-Stokes equations with viewpoint of 2D flow

    Science.gov (United States)

    Bae, Hyeong-Ohk

    2018-04-01

    The regularity of 2D Navier-Stokes flow is well known. In this article we study the relationship of 3D and 2D flow, and the regularity of the 3D Naiver-Stokes equations with viewpoint of 2D equations. We consider the problem in the Cartesian and in the cylindrical coordinates.

  12. Approximation of Bayesian Inverse Problems for PDEs

    OpenAIRE

    Cotter, S. L.; Dashti, M.; Stuart, A. M.

    2010-01-01

    Inverse problems are often ill posed, with solutions that depend sensitively on data.n any numerical approach to the solution of such problems, regularization of some form is needed to counteract the resulting instability. This paper is based on an approach to regularization, employing a Bayesian formulation of the problem, which leads to a notion of well posedness for inverse problems, at the level of probability measures. The stability which results from this well posedness may be used as t...

  13. Scattering Theory for Open Quantum Systems with Finite Rank Coupling

    International Nuclear Information System (INIS)

    Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen

    2007-01-01

    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space is used to describe an open quantum system. In this case the minimal self-adjoint dilation of A D can be regarded as the Hamiltonian of a closed system which contains the open system, but since K-tilde is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems

  14. Variational regularization of 3D data experiments with Matlab

    CERN Document Server

    Montegranario, Hebert

    2014-01-01

    Variational Regularization of 3D Data provides an introduction to variational methods for data modelling and its application in computer vision. In this book, the authors identify interpolation as an inverse problem that can be solved by Tikhonov regularization. The proposed solutions are generalizations of one-dimensional splines, applicable to n-dimensional data and the central idea is that these splines can be obtained by regularization theory using a trade-off between the fidelity of the data and smoothness properties.As a foundation, the authors present a comprehensive guide to the necessary fundamentals of functional analysis and variational calculus, as well as splines. The implementation and numerical experiments are illustrated using MATLAB®. The book also includes the necessary theoretical background for approximation methods and some details of the computer implementation of the algorithms. A working knowledge of multivariable calculus and basic vector and matrix methods should serve as an adequat...

  15. A sparsity-regularized Born iterative method for reconstruction of two-dimensional piecewise continuous inhomogeneous domains

    KAUST Repository

    Sandhu, Ali Imran

    2016-04-10

    A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile\\'s derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.

  16. Regular expressions compiler and some applications

    International Nuclear Information System (INIS)

    Saldana A, H.

    1978-01-01

    We deal with high level programming language of a Regular Expressions Compiler (REC). The first chapter is an introduction in which the history of the REC development and the problems related to its numerous applicatons are described. The syntactic and sematic rules as well as the language features are discussed just after the introduction. Concerning the applicatons as examples, an adaptation is given in order to solve numerical problems and another for the data manipulation. The last chapter is an exposition of ideas and techniques about the compiler construction. Examples of the adaptation to numerical problems show the applications to education, vector analysis, quantum mechanics, physics, mathematics and other sciences. The rudiments of an operating system for a minicomputer are the examples of the adaptation to symbolic data manipulaton. REC is a programming language that could be applied to solve problems in almost any human activity. Handling of computer graphics, control equipment, research on languages, microprocessors and general research are some of the fields in which this programming language can be applied and developed. (author)

  17. Sparse reconstruction by means of the standard Tikhonov regularization

    International Nuclear Information System (INIS)

    Lu Shuai; Pereverzev, Sergei V

    2008-01-01

    It is a common belief that Tikhonov scheme with || · ||L 2 -penalty fails in sparse reconstruction. We are going to show, however, that this standard regularization can help if the stability measured in L 1 -norm will be properly taken into account in the choice of the regularization parameter. The crucial point is that now a stability bound may depend on the bases with respect to which the solution of the problem is assumed to be sparse. We discuss how such a stability can be estimated numerically and present the results of computational experiments giving the evidence of the reliability of our approach.

  18. The Air Traffic Controller Work-Shift Scheduling Problem in Spain from a Multiobjective Perspective: A Metaheuristic and Regular Expression-Based Approach

    Directory of Open Access Journals (Sweden)

    Faustino Tello

    2018-01-01

    Full Text Available We address an air traffic control operator (ATCo work-shift scheduling problem. We consider a multiple objective perspective where the number of ATCos is fixed in advance and a set of ATCo labor conditions have to be satisfied. The objectives deal with the ATCo work and rest periods and positions, the structure of the solution, the number of control center changes, or the distribution of the ATCo workloads. We propose a three-phase problem-solving methodology. In the first phase, a heuristic is used to derive infeasible initial solutions on the basis of templates. Then, a multiple independent run of the simulated annealing metaheuristic is conducted aimed at reaching feasible solutions in the second phase. Finally, a multiple independent simulated annealing run is again conducted from the initial feasible solutions to optimize the objective functions. To do this, we transform the multiple to single optimization problem by using the rank-order centroid function. In the search processes in phases 2 and 3, we use regular expressions to check the ATCo labor conditions in the visited solutions. This provides high testing speed. The proposed approach is illustrated using a real example, and the optimal solution which is reached outperforms an existing template-based reference solution.

  19. Shape-constrained regularization by statistical multiresolution for inverse problems: asymptotic analysis

    International Nuclear Information System (INIS)

    Frick, Klaus; Marnitz, Philipp; Munk, Axel

    2012-01-01

    This paper is concerned with a novel regularization technique for solving linear ill-posed operator equations in Hilbert spaces from data that are corrupted by white noise. We combine convex penalty functionals with extreme-value statistics of projections of the residuals on a given set of sub-spaces in the image space of the operator. We prove general consistency and convergence rate results in the framework of Bregman divergences which allows for a vast range of penalty functionals. Various examples that indicate the applicability of our approach will be discussed. We will illustrate in the context of signal and image processing that the presented method constitutes a locally adaptive reconstruction method. (paper)

  20. On multiple level-set regularization methods for inverse problems

    International Nuclear Information System (INIS)

    DeCezaro, A; Leitão, A; Tai, X-C

    2009-01-01

    We analyze a multiple level-set method for solving inverse problems with piecewise constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov functional G α based on TV–H 1 penalization. We define generalized minimizers for our Tikhonov functional and establish an existence result. Moreover, we prove convergence and stability results of the proposed Tikhonov method. A multiple level-set algorithm is derived from the first-order optimality conditions for the Tikhonov functional G α , similarly as the iterated Tikhonov method. The proposed multiple level-set method is tested on an inverse potential problem. Numerical experiments show that the method is able to recover multiple objects as well as multiple contrast levels

  1. Spectral transform and solvability of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Degasperis, A.

    1979-01-01

    These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)

  2. Obtaining sparse distributions in 2D inverse problems

    OpenAIRE

    Reci, A; Sederman, Andrew John; Gladden, Lynn Faith

    2017-01-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxat...

  3. Regularization of the double period method for experimental data processing

    Science.gov (United States)

    Belov, A. A.; Kalitkin, N. N.

    2017-11-01

    In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.

  4. BER analysis of regularized least squares for BPSK recovery

    KAUST Repository

    Ben Atitallah, Ismail; Thrampoulidis, Christos; Kammoun, Abla; Al-Naffouri, Tareq Y.; Hassibi, Babak; Alouini, Mohamed-Slim

    2017-01-01

    This paper investigates the problem of recovering an n-dimensional BPSK signal x0 ∈ {−1, 1}n from m-dimensional measurement vector y = Ax+z, where A and z are assumed to be Gaussian with iid entries. We consider two variants of decoders based on the regularized least squares followed by hard-thresholding: the case where the convex relaxation is from {−1, 1}n to ℝn and the box constrained case where the relaxation is to [−1, 1]n. For both cases, we derive an exact expression of the bit error probability when n and m grow simultaneously large at a fixed ratio. For the box constrained case, we show that there exists a critical value of the SNR, above which the optimal regularizer is zero. On the other side, the regularization can further improve the performance of the box relaxation at low to moderate SNR regimes. We also prove that the optimal regularizer in the bit error rate sense for the unboxed case is nothing but the MMSE detector.

  5. BER analysis of regularized least squares for BPSK recovery

    KAUST Repository

    Ben Atitallah, Ismail

    2017-06-20

    This paper investigates the problem of recovering an n-dimensional BPSK signal x0 ∈ {−1, 1}n from m-dimensional measurement vector y = Ax+z, where A and z are assumed to be Gaussian with iid entries. We consider two variants of decoders based on the regularized least squares followed by hard-thresholding: the case where the convex relaxation is from {−1, 1}n to ℝn and the box constrained case where the relaxation is to [−1, 1]n. For both cases, we derive an exact expression of the bit error probability when n and m grow simultaneously large at a fixed ratio. For the box constrained case, we show that there exists a critical value of the SNR, above which the optimal regularizer is zero. On the other side, the regularization can further improve the performance of the box relaxation at low to moderate SNR regimes. We also prove that the optimal regularizer in the bit error rate sense for the unboxed case is nothing but the MMSE detector.

  6. Iterative Runge–Kutta-type methods for nonlinear ill-posed problems

    International Nuclear Information System (INIS)

    Böckmann, C; Pornsawad, P

    2008-01-01

    We present a regularization method for solving nonlinear ill-posed problems by applying the family of Runge–Kutta methods to an initial value problem, in particular, to the asymptotical regularization method. We prove that the developed iterative regularization method converges to a solution under certain conditions and with a general stopping rule. Some particular iterative regularization methods are numerically implemented. Numerical results of the examples show that the developed Runge–Kutta-type regularization methods yield stable solutions and that particular implicit methods are very efficient in saving iteration steps

  7. SFAK, Unscattered Gamma Self-Absorption from Regular Fuel Rod Assemblies

    International Nuclear Information System (INIS)

    Wand, H.

    1982-01-01

    1 - Description of problem or function: Calculation of the self- absorption of unscattered (gamma-) radiation from fuel assemblies which contain a regular arrangement of identical fuel rods. 2 - Method of solution: The point-kernel is integrated over the radiation sources, i.e. the fuel rods. A uniform mesh of integration points is used for each of the fuel rods. 3 - Restrictions on the complexity of the problem: Number of fuel rods is dynamically allocated

  8. Regular Expression Pocket Reference

    CERN Document Server

    Stubblebine, Tony

    2007-01-01

    This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp

  9. Asymptotic performance of regularized quadratic discriminant analysis based classifiers

    KAUST Repository

    Elkhalil, Khalil

    2017-12-13

    This paper carries out a large dimensional analysis of the standard regularized quadratic discriminant analysis (QDA) classifier designed on the assumption that data arise from a Gaussian mixture model. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that depends only on the covariances and means associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized QDA and can be used to determine the optimal regularization parameter that minimizes the misclassification error probability. Despite being valid only for Gaussian data, our theoretical findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from popular real data bases, thereby making an interesting connection between theory and practice.

  10. Asymptotic analysis of a pile-up of regular edge dislocation walls

    KAUST Repository

    Hall, Cameron L.

    2011-12-01

    The idealised problem of a pile-up of regular dislocation walls (that is, of planes each containing an infinite number of parallel, identical and equally spaced dislocations) was presented by Roy et al. [A. Roy, R.H.J. Peerlings, M.G.D. Geers, Y. Kasyanyuk, Materials Science and Engineering A 486 (2008) 653-661] as a prototype for understanding the importance of discrete dislocation interactions in dislocation-based plasticity models. They noted that analytic solutions for the dislocation wall density are available for a pile-up of regular screw dislocation walls, but that numerical methods seem to be necessary for investigating regular edge dislocation walls. In this paper, we use the techniques of discrete-to-continuum asymptotic analysis to obtain a detailed description of a pile-up of regular edge dislocation walls. To leading order, we find that the dislocation wall density is governed by a simple differential equation and that boundary layers are present at both ends of the pile-up. © 2011 Elsevier B.V.

  11. Asymptotic analysis of a pile-up of regular edge dislocation walls

    KAUST Repository

    Hall, Cameron L.

    2011-01-01

    The idealised problem of a pile-up of regular dislocation walls (that is, of planes each containing an infinite number of parallel, identical and equally spaced dislocations) was presented by Roy et al. [A. Roy, R.H.J. Peerlings, M.G.D. Geers, Y. Kasyanyuk, Materials Science and Engineering A 486 (2008) 653-661] as a prototype for understanding the importance of discrete dislocation interactions in dislocation-based plasticity models. They noted that analytic solutions for the dislocation wall density are available for a pile-up of regular screw dislocation walls, but that numerical methods seem to be necessary for investigating regular edge dislocation walls. In this paper, we use the techniques of discrete-to-continuum asymptotic analysis to obtain a detailed description of a pile-up of regular edge dislocation walls. To leading order, we find that the dislocation wall density is governed by a simple differential equation and that boundary layers are present at both ends of the pile-up. © 2011 Elsevier B.V.

  12. Quasi regular polygons and their duals with Coxeter symmetries Dn represented by complex numbers

    International Nuclear Information System (INIS)

    Koca, M; Koca, N O

    2011-01-01

    This paper deals with tiling of the plane by quasi regular polygons and their duals. The problem is motivated from the fact that the graphene, infinite number of carbon molecules forming a honeycomb lattice, may have states with two bond lengths and equal bond angles or one bond length and different bond angles. We prove that the Euclidean plane can be tiled with two tiles consisting of quasi regular hexagons with two different lengths (isogonal hexagons) and regular hexagons. The dual lattice is constructed with the isotoxal hexagons (equal edges but two different interior angles) and regular hexagons. We also give similar tilings of the plane with the quasi regular polygons along with the regular polygons possessing the Coxeter symmetries D n , n=2,3,4,5. The group elements as well as the vertices of the polygons are represented by the complex numbers.

  13. Attitude-independent magnetometer calibration for marine magnetic surveys: regularization issue

    International Nuclear Information System (INIS)

    Wu, Zhitian; Hu, Xiaoping; Wu, Meiping; Cao, Juliang

    2013-01-01

    We have developed an attitude-independent calibration method for a shipboard magnetometer to estimate the absolute strength of the geomagnetic field from a marine vessel. The three-axis magnetometer to be calibrated is fixed on a rigid aluminium boom ahead of the vessel to reduce the magnetic effect of the vessel. Due to the constrained manoeuvres of the vessel, a linear observational equation system for calibration parameter estimation is severely ill-posed. Consequently, if the issue is not mitigated, traditional calibration methods may result in unreliable or unsuccessful solutions. In this paper, the ill-posed problem is solved by using the truncated total least squares (TTLS) technique. This method takes advantage of simultaneously considering errors on both sides of the observation equation. Furthermore, the TTLS method suits strongly ill-posed problems. Simulations and experiments have been performed to assess the performance of the TTLS method and to compare it with the performance of conventional regularization approaches such as the Tikhonov method and truncated single value decomposition. The results show that the proposed algorithm can effectively mitigate the ill-posed problem and is more stable than the compared regularization methods for magnetometer calibration applications. (paper)

  14. Nonnegative Matrix Factorization with Rank Regularization and Hard Constraint.

    Science.gov (United States)

    Shang, Ronghua; Liu, Chiyang; Meng, Yang; Jiao, Licheng; Stolkin, Rustam

    2017-09-01

    Nonnegative matrix factorization (NMF) is well known to be an effective tool for dimensionality reduction in problems involving big data. For this reason, it frequently appears in many areas of scientific and engineering literature. This letter proposes a novel semisupervised NMF algorithm for overcoming a variety of problems associated with NMF algorithms, including poor use of prior information, negative impact on manifold structure of the sparse constraint, and inaccurate graph construction. Our proposed algorithm, nonnegative matrix factorization with rank regularization and hard constraint (NMFRC), incorporates label information into data representation as a hard constraint, which makes full use of prior information. NMFRC also measures pairwise similarity according to geodesic distance rather than Euclidean distance. This results in more accurate measurement of pairwise relationships, resulting in more effective manifold information. Furthermore, NMFRC adopts rank constraint instead of norm constraints for regularization to balance the sparseness and smoothness of data. In this way, the new data representation is more representative and has better interpretability. Experiments on real data sets suggest that NMFRC outperforms four other state-of-the-art algorithms in terms of clustering accuracy.

  15. Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application

    International Nuclear Information System (INIS)

    Vega, Ian; Detweiler, Steven

    2008-01-01

    We propose an approach for the calculation of self-forces, energy fluxes and waveforms arising from moving point charges in curved spacetimes. As opposed to mode-sum schemes that regularize the self-force derived from the singular retarded field, this approach regularizes the retarded field itself. The singular part of the retarded field is first analytically identified and removed, yielding a finite, differentiable remainder from which the self-force is easily calculated. This regular remainder solves a wave equation which enjoys the benefit of having a nonsingular source. Solving this wave equation for the remainder completely avoids the calculation of the singular retarded field along with the attendant difficulties associated with numerically modeling a delta-function source. From this differentiable remainder one may compute the self-force, the energy flux, and also a waveform which reflects the effects of the self-force. As a test of principle, we implement this method using a 4th-order (1+1) code, and calculate the self-force for the simple case of a scalar charge moving in a circular orbit around a Schwarzschild black hole. We achieve agreement with frequency-domain results to ∼0.1% or better.

  16. Sound Attenuation in Elliptic Mufflers Using a Regular Perturbation Method

    OpenAIRE

    Banerjee, Subhabrata; Jacobi, Anthony M.

    2012-01-01

    The study of sound attenuation in an elliptical chamber involves the solution of the Helmholtz equation in elliptic coordinate systems. The Eigen solutions for such problems involve the Mathieu and the modified Mathieu functions. The computation of such functions poses considerable challenge. An alternative method to solve such problems had been proposed in this paper. The elliptical cross-section of the muffler has been treated as a perturbed circle, enabling the use of a regular perturbatio...

  17. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces

    International Nuclear Information System (INIS)

    Baranov, Anton D; Fedorovskiy, Konstantin Yu

    2011-01-01

    In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form K Θ =H 2 ominus ΘH 2 , where Θ is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.

  18. Abstract Cauchy problems three approaches

    CERN Document Server

    Melnikova, Irina V

    2001-01-01

    Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularization methods. Semigroup and distribution methods restore well-posedness, in a modern weak sense. Regularization methods provide approximate solutions to ill-posed problems. Although these approaches were extensively developed over the last decades by many researchers, nowhere could one find a comprehensive treatment of all three approaches.Abstract Cauchy Problems: Three Approaches provides an innovative, self-contained account of these methods and, furthermore, demonstrates and studies some of the profound connections between them. The authors discuss the application of different methods not only to the Cauchy problem that is not well-posed in the classical sense, b...

  19. Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators

    Science.gov (United States)

    Cho, Yumi

    2018-05-01

    We study nonlinear elliptic problems with nonstandard growth and ellipticity related to an N-function. We establish global Calderón-Zygmund estimates of the weak solutions in the framework of Orlicz spaces over bounded non-smooth domains. Moreover, we prove a global regularity result for asymptotically regular problems which are getting close to the regular problems considered, when the gradient variable goes to infinity.

  20. Sparse regularization for force identification using dictionaries

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  1. On the interplay of basis smoothness and specific range conditions occurring in sparsity regularization

    International Nuclear Information System (INIS)

    Anzengruber, Stephan W; Hofmann, Bernd; Ramlau, Ronny

    2013-01-01

    The convergence rates results in ℓ 1 -regularization when the sparsity assumption is narrowly missed, presented by Burger et al (2013 Inverse Problems 29 025013), are based on a crucial condition which requires that all basis elements belong to the range of the adjoint of the forward operator. Partly it was conjectured that such a condition is very restrictive. In this context, we study sparsity-promoting varieties of Tikhonov regularization for linear ill-posed problems with respect to an orthonormal basis in a separable Hilbert space using ℓ 1 and sublinear penalty terms. In particular, we show that the corresponding range condition is always satisfied for all basis elements if the problems are well-posed in a certain weaker topology and the basis elements are chosen appropriately related to an associated Gelfand triple. The Radon transform, Symm’s integral equation and linear integral operators of Volterra type are examples for such behaviour, which allows us to apply convergence rates results for non-sparse solutions, and we further extend these results also to the case of non-convex ℓ q -regularization with 0 < q < 1. (paper)

  2. Total Variation Regularization for Functions with Values in a Manifold

    KAUST Repository

    Lellmann, Jan

    2013-12-01

    While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.

  3. Total Variation Regularization for Functions with Values in a Manifold

    KAUST Repository

    Lellmann, Jan; Strekalovskiy, Evgeny; Koetter, Sabrina; Cremers, Daniel

    2013-01-01

    While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.

  4. The geometry of continuum regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-03-01

    This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations

  5. Regular expression containment

    DEFF Research Database (Denmark)

    Henglein, Fritz; Nielsen, Lasse

    2011-01-01

    We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...

  6. Regularization by Functions of Bounded Variation and Applications to Image Enhancement

    International Nuclear Information System (INIS)

    Casas, E.; Kunisch, K.; Pola, C.

    1999-01-01

    Optimization problems regularized by bounded variation seminorms are analyzed. The optimality system is obtained and finite-dimensional approximations of bounded variation function spaces as well as of the optimization problems are studied. It is demonstrated that the choice of the vector norm in the definition of the bounded variation seminorm is of special importance for approximating subspaces consisting of piecewise constant functions. Algorithms based on a primal-dual framework that exploit the structure of these nondifferentiable optimization problems are proposed. Numerical examples are given for denoising of blocky images with very high noise

  7. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    Science.gov (United States)

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  8. The equivalence problem for LL- and LR-regular grammars

    NARCIS (Netherlands)

    Nijholt, Antinus

    1982-01-01

    The equivalence problem for context-free grammars is "given two arbitrary grammars, do they generate the same language?" Since this is undecidable in general, attention has been restricted to decidable subclasses of the context-free grammars. For example, the classes of LL(k) grammars and real-time

  9. Near-field acoustic holography using sparse regularization and compressive sampling principles.

    Science.gov (United States)

    Chardon, Gilles; Daudet, Laurent; Peillot, Antoine; Ollivier, François; Bertin, Nancy; Gribonval, Rémi

    2012-09-01

    Regularization of the inverse problem is a complex issue when using near-field acoustic holography (NAH) techniques to identify the vibrating sources. This paper shows that, for convex homogeneous plates with arbitrary boundary conditions, alternative regularization schemes can be developed based on the sparsity of the normal velocity of the plate in a well-designed basis, i.e., the possibility to approximate it as a weighted sum of few elementary basis functions. In particular, these techniques can handle discontinuities of the velocity field at the boundaries, which can be problematic with standard techniques. This comes at the cost of a higher computational complexity to solve the associated optimization problem, though it remains easily tractable with out-of-the-box software. Furthermore, this sparsity framework allows us to take advantage of the concept of compressive sampling; under some conditions on the sampling process (here, the design of a random array, which can be numerically and experimentally validated), it is possible to reconstruct the sparse signals with significantly less measurements (i.e., microphones) than classically required. After introducing the different concepts, this paper presents numerical and experimental results of NAH with two plate geometries, and compares the advantages and limitations of these sparsity-based techniques over standard Tikhonov regularization.

  10. Regularization by External Variables

    DEFF Research Database (Denmark)

    Bossolini, Elena; Edwards, R.; Glendinning, P. A.

    2016-01-01

    Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...

  11. A short proof of increased parabolic regularity

    Directory of Open Access Journals (Sweden)

    Stephen Pankavich

    2015-08-01

    Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.

  12. A self-adapting and altitude-dependent regularization method for atmospheric profile retrievals

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2009-03-01

    Full Text Available MIPAS is a Fourier transform spectrometer, operating onboard of the ENVISAT satellite since July 2002. The online retrieval algorithm produces geolocated profiles of temperature and of volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. In the validation phase, oscillations beyond the error bars were observed in several profiles, particularly in CH4 and N2O.

    To tackle this problem, a Tikhonov regularization scheme has been implemented in the retrieval algorithm. The applied regularization is however rather weak in order to preserve the vertical resolution of the profiles.

    In this paper we present a self-adapting and altitude-dependent regularization approach that detects whether the analyzed observations contain information about small-scale profile features, and determines the strength of the regularization accordingly. The objective of the method is to smooth out artificial oscillations as much as possible, while preserving the fine detail features of the profile when related information is detected in the observations.

    The proposed method is checked for self consistency, its performance is tested on MIPAS observations and compared with that of some other regularization schemes available in the literature. In all the considered cases the proposed scheme achieves a good performance, thanks to its altitude dependence and to the constraints employed, which are specific of the inversion problem under consideration. The proposed method is generally applicable to iterative Gauss-Newton algorithms for the retrieval of vertical distribution profiles from atmospheric remote sounding measurements.

  13. Regular Single Valued Neutrosophic Hypergraphs

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Malik

    2016-12-01

    Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.

  14. Shakeout: A New Approach to Regularized Deep Neural Network Training.

    Science.gov (United States)

    Kang, Guoliang; Li, Jun; Tao, Dacheng

    2018-05-01

    Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. Dropout has played an essential role in many successful deep neural networks, by inducing regularization in the model training. In this paper, we present a new regularized training approach: Shakeout. Instead of randomly discarding units as Dropout does at the training stage, Shakeout randomly chooses to enhance or reverse each unit's contribution to the next layer. This minor modification of Dropout has the statistical trait: the regularizer induced by Shakeout adaptively combines , and regularization terms. Our classification experiments with representative deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that Shakeout deals with over-fitting effectively and outperforms Dropout. We empirically demonstrate that Shakeout leads to sparser weights under both unsupervised and supervised settings. Shakeout also leads to the grouping effect of the input units in a layer. Considering the weights in reflecting the importance of connections, Shakeout is superior to Dropout, which is valuable for the deep model compression. Moreover, we demonstrate that Shakeout can effectively reduce the instability of the training process of the deep architecture.

  15. Quasi-regular impurity distribution driven by charge-density wave

    International Nuclear Information System (INIS)

    Baldea, I.; Badescu, M.

    1991-09-01

    The displacive motion of the impurity distribution immersed into the one-dimensional system has recently been studied in detail as one kind of quasi-regularity driven by CDW. As a further investigation of this problem we develop here a microscopical model for a different kind of quasi-regular impurity distribution driven by CDW, consisting of the modulation in the probability of occupied sites. The dependence on impurity concentration and temperature of relevant CDW quantities is obtained. Data reported in the quasi-1D materials NbSe 3 and Ta 2 NiSe 7 (particularly, thermal hysteresis effects at CDW transition) are interpreted in the framework of the present model. Possible similarities to other physical systems are also suggested. (author). 38 refs, 7 figs

  16. Vragov’s boundary value problem for an implicit equation of mixed type

    Science.gov (United States)

    Egorov, I. E.

    2017-10-01

    We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.

  17. The LPM effect in sequential bremsstrahlung: dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Peter; Chang, Han-Chih [Department of Physics, University of Virginia,382 McCormick Road, Charlottesville, VA 22894-4714 (United States); Iqbal, Shahin [National Centre for Physics,Quaid-i-Azam University Campus, Islamabad, 45320 (Pakistan)

    2016-10-19

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-level amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.

  18. Analysis of Logic Programs Using Regular Tree Languages

    DEFF Research Database (Denmark)

    Gallagher, John Patrick

    2012-01-01

    The eld of nite tree automata provides fundamental notations and tools for reasoning about set of terms called regular or recognizable tree languages. We consider two kinds of analysis using regular tree languages, applied to logic programs. The rst approach is to try to discover automatically...... a tree automaton from a logic program, approximating its minimal Herbrand model. In this case the input for the analysis is a program, and the output is a tree automaton. The second approach is to expose or check properties of the program that can be expressed by a given tree automaton. The input...... to the analysis is a program and a tree automaton, and the output is an abstract model of the program. These two contrasting abstract interpretations can be used in a wide range of analysis and verication problems....

  19. A Large Dimensional Analysis of Regularized Discriminant Analysis Classifiers

    KAUST Repository

    Elkhalil, Khalil

    2017-11-01

    This article carries out a large dimensional analysis of standard regularized discriminant analysis classifiers designed on the assumption that data arise from a Gaussian mixture model with different means and covariances. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under mild assumptions, we show that the asymptotic classification error approaches a deterministic quantity that depends only on the means and covariances associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized discriminant analsysis, in practical large but finite dimensions, and can be used to determine and pre-estimate the optimal regularization parameter that minimizes the misclassification error probability. Despite being theoretically valid only for Gaussian data, our findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from the popular USPS data base, thereby making an interesting connection between theory and practice.

  20. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.