New regular black hole solutions
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zanchin, Vilson T.
2011-01-01
In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.
SAR image regularization with fast approximate discrete minimization.
Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc
2009-07-01
Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.
Capped Lp approximations for the composite L0 regularization problem
Li, Qia; Zhang, Na
2017-01-01
The composite L0 function serves as a sparse regularizer in many applications. The algorithmic difficulty caused by the composite L0 regularization (the L0 norm composed with a linear mapping) is usually bypassed through approximating the L0 norm. We consider in this paper capped Lp approximations with $p>0$ for the composite L0 regularization problem. For each $p>0$, the capped Lp function converges to the L0 norm pointwisely as the approximation parameter tends to infinity. We point out tha...
Pairing renormalization and regularization within the local density approximation
International Nuclear Information System (INIS)
Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.
2006-01-01
We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications
International Nuclear Information System (INIS)
Glazov, V.M.; Pavlova, L.M.; Moskvinova, N.A.
1975-01-01
A general solution was obtained for the Prigozhin and Defey equation on the basis of which a liquidus equation was derived describing the primary crystallization of Asub(m)Bsub(n)-type compounds. The Prigozhin and Defey equation described a general case of the melting process of having a narrow homogeneity region at a certain temperature T:(Asub(m)Bsub(n))sub(s) reversible m(A)sub(L) n(B)sub(L). They have obtained a differential equation for the liquids curve describing the equilibrium state between the primary Asub(m)Bsub(n) crystals and the liquid solution. The obtained equation was tested by a comparison with the experimental liquidus curves corresponding to the primary crystallization of gallium and indium sesquitellurides in Ga-Te and In-Te systems. The liquidus curves were made more precise by means of a detailed thermographic study of a series of melts located to the right and left of Ga 2 Te 3 and In 2 Te 3 compounds. Computer calculations of liquidus curves corresponding to the primary crystallization of Ga 2 Te 3 and In 2 Te 3 were carried out with the aid of the last of the above-mentioned equations. The obtained results show that the derived equations can be used in studying the nature of intermolecular reactions in systems in which congruent intermediate phases of complex composition are present
Approximate solutions to Mathieu's equation
Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.
2018-06-01
Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.
Regular and conformal regular cores for static and rotating solutions
Energy Technology Data Exchange (ETDEWEB)
Azreg-Aïnou, Mustapha
2014-03-07
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Regular and conformal regular cores for static and rotating solutions
International Nuclear Information System (INIS)
Azreg-Aïnou, Mustapha
2014-01-01
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Approximate Noether symmetries and collineations for regular perturbative Lagrangians
Paliathanasis, Andronikos; Jamal, Sameerah
2018-01-01
Regular perturbative Lagrangians that admit approximate Noether symmetries and approximate conservation laws are studied. Specifically, we investigate the connection between approximate Noether symmetries and collineations of the underlying manifold. In particular we determine the generic Noether symmetry conditions for the approximate point symmetries and we find that for a class of perturbed Lagrangians, Noether symmetries are related to the elements of the Homothetic algebra of the metric which is defined by the unperturbed Lagrangian. Moreover, we discuss how exact symmetries become approximate symmetries. Finally, some applications are presented.
Low-rank matrix approximation with manifold regularization.
Zhang, Zhenyue; Zhao, Keke
2013-07-01
This paper proposes a new model of low-rank matrix factorization that incorporates manifold regularization to the matrix factorization. Superior to the graph-regularized nonnegative matrix factorization, this new regularization model has globally optimal and closed-form solutions. A direct algorithm (for data with small number of points) and an alternate iterative algorithm with inexact inner iteration (for large scale data) are proposed to solve the new model. A convergence analysis establishes the global convergence of the iterative algorithm. The efficiency and precision of the algorithm are demonstrated numerically through applications to six real-world datasets on clustering and classification. Performance comparison with existing algorithms shows the effectiveness of the proposed method for low-rank factorization in general.
Pade approximants for entire functions with regularly decreasing Taylor coefficients
International Nuclear Information System (INIS)
Rusak, V N; Starovoitov, A P
2002-01-01
For a class of entire functions the asymptotic behaviour of the Hadamard determinants D n,m as 0≤m≤m(n)→∞ and n→∞ is described. This enables one to study the behaviour of parabolic sequences from Pade and Chebyshev tables for many individual entire functions. The central result of the paper is as follows: for some sequences {(n,m(n))} in certain classes of entire functions (with regular Taylor coefficients) the Pade approximants {π n,m(n) }, which provide the locally best possible rational approximations, converge to the given function uniformly on the compact set D={z:|z|≤1} with asymptotically best rate
Approximative solutions of stochastic optimization problem
Czech Academy of Sciences Publication Activity Database
Lachout, Petr
2010-01-01
Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf
Solution path for manifold regularized semisupervised classification.
Wang, Gang; Wang, Fei; Chen, Tao; Yeung, Dit-Yan; Lochovsky, Frederick H
2012-04-01
Traditional learning algorithms use only labeled data for training. However, labeled examples are often difficult or time consuming to obtain since they require substantial human labeling efforts. On the other hand, unlabeled data are often relatively easy to collect. Semisupervised learning addresses this problem by using large quantities of unlabeled data with labeled data to build better learning algorithms. In this paper, we use the manifold regularization approach to formulate the semisupervised learning problem where a regularization framework which balances a tradeoff between loss and penalty is established. We investigate different implementations of the loss function and identify the methods which have the least computational expense. The regularization hyperparameter, which determines the balance between loss and penalty, is crucial to model selection. Accordingly, we derive an algorithm that can fit the entire path of solutions for every value of the hyperparameter. Its computational complexity after preprocessing is quadratic only in the number of labeled examples rather than the total number of labeled and unlabeled examples.
Reducing errors in the GRACE gravity solutions using regularization
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2012-09-01
The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4
Approximated solutions to Born-Infeld dynamics
Energy Technology Data Exchange (ETDEWEB)
Ferraro, Rafael [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Nigro, Mauro [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina)
2016-02-01
The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.
Approximated solutions to Born-Infeld dynamics
International Nuclear Information System (INIS)
Ferraro, Rafael; Nigro, Mauro
2016-01-01
The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.
Approximate radiative solutions of the Einstein equations
International Nuclear Information System (INIS)
Kuusk, P.; Unt, V.
1976-01-01
In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)
Approximated solutions to the Schroedinger equation
International Nuclear Information System (INIS)
Rico, J.F.; Fernandez-Alonso, J.I.
1977-01-01
The authors are currently working on a couple of the well-known deficiencies of the variation method and present here some of the results that have been obtained so far. The variation method does not give information a priori on the trial functions best suited for a particular problem nor does it give information a posteriori on the degree of precision attained. In order to clarify the origin of both difficulties, a geometric interpretation of the variation method is presented. This geometric interpretation is the starting point for the exact formal solution to the fundamental state and for the step-by-step approximations to the exact solution which are also given. Some comments on these results are included. (Auth.)
Regularity of solutions in semilinear elliptic theory
Indrei, Emanuel
2016-07-08
We study the semilinear Poisson equation Δu=f(x,u)inB1. (1) Our main results provide conditions on f which ensure that weak solutions of (1) belong to C1,1(B1/2). In some configurations, the conditions are sharp.
Sakata, Ayaka; Xu, Yingying
2018-03-01
We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida-Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric (RS) solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of \
Save, H.; Bettadpur, S. V.
2013-12-01
It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.
Approximate solution methods in engineering mechanics
International Nuclear Information System (INIS)
Boresi, A.P.; Cong, K.P.
1991-01-01
This is a short book of 147 pages including references and sometimes bibliographies at the end of each chapter, and subject and author indices at the end of the book. The test includes an introduction of 3 pages, 29 pages explaining approximate analysis, 41 pages on finite differences, 36 pages on finite elements, and 17 pages on specialized methods
Approximate solutions of the Wei Hua oscillator using the Pekeris ...
Indian Academy of Sciences (India)
The approximate analytical bound-state solutions of the Schrödinger equation for the. Wei Hua oscillator are carried out in N-dimensional space by taking Pekeris approximation scheme to the orbital centrifugal term. Solutions of the corresponding hyper-radial equation are obtained using the conventional Nikiforov–Uvarov ...
Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations
Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril
2011-01-01
We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...
Rational approximations to solutions of linear differential equations.
Chudnovsky, D V; Chudnovsky, G V
1983-08-01
Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.
Approximation of entropy solutions to degenerate nonlinear parabolic equations
Abreu, Eduardo; Colombeau, Mathilde; Panov, Evgeny Yu
2017-12-01
We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space L^∞, whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and L^1-stability. We prove that the sequence of approximate solutions is strongly L^1-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.
Approximate solution fuzzy pantograph equation by using homotopy perturbation method
Jameel, A. F.; Saaban, A.; Ahadkulov, H.; Alipiah, F. M.
2017-09-01
In this paper, Homotopy Perturbation Method (HPM) is modified and formulated to find the approximate solution for its employment to solve (FDDEs) involving a fuzzy pantograph equation. The solution that can be obtained by using HPM is in the form of infinite series that converge to the actual solution of the FDDE and this is one of the benefits of this method In addition, it can be used for solving high order fuzzy delay differential equations directly without reduction to a first order system. Moreover, the accuracy of HPM can be detected without needing the exact solution. The HPM is studied for fuzzy initial value problems involving pantograph equation. Using the properties of fuzzy set theory, we reformulate the standard approximate method of HPM and obtain the approximate solutions. The effectiveness of the proposed method is demonstrated for third order fuzzy pantograph equation.
Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations
Castrillon, Julio; Nobile, Fabio; Tempone, Raul
2016-01-01
In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem
Approximate variational solutions of the Grad-Shafranov equation
International Nuclear Information System (INIS)
Ludwig, G.O.
2001-01-01
Approximate solutions of the Grad-Schlueter-Shafranov equation based on variational methods are developed. The power series solutions of the Euler-Lagrange equations for equilibrium are compared with direct variational results for a low aspect ratio tokamak equilibrium. (author)
Zeroth order regular approximation approach to electric dipole moment interactions of the electron
Gaul, Konstantin; Berger, Robert
2017-07-01
A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.
Directory of Open Access Journals (Sweden)
Meiting Yu
2018-02-01
Full Text Available The extraction of a valuable set of features and the design of a discriminative classifier are crucial for target recognition in SAR image. Although various features and classifiers have been proposed over the years, target recognition under extended operating conditions (EOCs is still a challenging problem, e.g., target with configuration variation, different capture orientations, and articulation. To address these problems, this paper presents a new strategy for target recognition. We first propose a low-dimensional representation model via incorporating multi-manifold regularization term into the low-rank matrix factorization framework. Two rules, pairwise similarity and local linearity, are employed for constructing multiple manifold regularization. By alternately optimizing the matrix factorization and manifold selection, the feature representation model can not only acquire the optimal low-rank approximation of original samples, but also capture the intrinsic manifold structure information. Then, to take full advantage of the local structure property of features and further improve the discriminative ability, local sparse representation is proposed for classification. Finally, extensive experiments on moving and stationary target acquisition and recognition (MSTAR database demonstrate the effectiveness of the proposed strategy, including target recognition under EOCs, as well as the capability of small training size.
Approximate solutions of some problems of scattering of surface ...
Indian Academy of Sciences (India)
A Choudhary
Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.
Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations
Castrillon, Julio
2016-03-02
In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem is remapped onto a corresponding PDE with a fixed deterministic domain. We show that the solution can be analytically extended to a well defined region in CN with respect to the random variables. A sparse grid stochastic collocation method is then used to compute the mean and variance of the QoI. Finally, convergence rates for the mean and variance of the QoI are derived and compared to those obtained in numerical experiments.
Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables
Directory of Open Access Journals (Sweden)
Yaobing Zhao
2014-01-01
Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.
Approximate solution for the reactor neutron probability distribution
International Nuclear Information System (INIS)
Ruby, L.; McSwine, T.L.
1985-01-01
Several authors have studied the Kolmogorov equation for a fission-driven chain-reacting system, written in terms of the generating function G(x,y,z,t) where x, y, and z are dummy variables referring to the neutron, delayed neutron precursor, and detector-count populations, n, m, and c, respectively. Pal and Zolotukhin and Mogil'ner have shown that if delayed neutrons are neglected, the solution is approximately negative binomial for the neutron population. Wang and Ruby have shown that if the detector effect is neglected, the solution, including the effect of delayed neutrons, is approximately negative binomial. All of the authors assumed prompt-neutron emission not exceeding two neutrons per fission. An approximate method of separating the detector effect from the statistics of the neutron and precursor populations has been proposed by Ruby. In this weak-coupling limit, it is assumed that G(x,y,z,t) = H(x,y)I(z,t). Substitution of this assumption into the Kolmogorov equation separates the latter into two equations, one for H(x,y) and the other for I(z,t). Solution of the latter then gives a generating function, which indicates that in the weak-coupling limit, the detector counts are Poisson distributed. Ruby also showed that if the detector effect is neglected in the equation for H(x,y), i.e., the detector efficiency is set to zero, then the resulting equation is identical with that considered by Wang and Ruby. The authors present here an approximate solution for H(x,y) that does not set the detector efficiency to zero
Born approximation to a perturbative numerical method for the solution of the Schrodinger equation
International Nuclear Information System (INIS)
Adam, Gh.
1978-05-01
A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)
Some approximating formulae to the solution of an abstract evolution problem
International Nuclear Information System (INIS)
Ngongo, M.E.
1991-12-01
We consider discrete semigroups of operators associated with the first two primary sub-families of A-acceptable Norsett's rational approximations to e q , S 1 (γ;q) and S 2 (γ;q) with q is an element of C and γ a real parameter, and construct approximating formulae to the solution of an abstract evolution problem. The study of convergence is reduced to exploiting previous fundamental results of the author for this class of semigroups and this results, for associated numerical schemes, in a convergence independent of the regularity of the data of the problem. (author). 17 refs, 3 tabs
Approximate solution to neutron transport equation with linear anisotropic scattering
International Nuclear Information System (INIS)
Coppa, G.; Ravetto, P.; Sumini, M.
1983-01-01
A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)
Approximate solutions of common fixed-point problems
Zaslavski, Alexander J
2016-01-01
This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space · dynamic string-averaging version of the proximal...
On Approximate Solutions of Functional Equations in Vector Lattices
Directory of Open Access Journals (Sweden)
Bogdan Batko
2014-01-01
Full Text Available We provide a method of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz space (algebra. The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will be applied to prove the stability of an alternative Cauchy functional equation F(x+y+F(x+F(y≠0⇒F(x+y=F(x+F(y in Riesz spaces, the Cauchy equation with squares F(x+y2=(F(x+F(y2 in f-algebras, and the quadratic functional equation F(x+y+F(x-y=2F(x+2F(y in Riesz spaces.
Bessel collocation approach for approximate solutions of Hantavirus infection model
Directory of Open Access Journals (Sweden)
Suayip Yuzbasi
2017-11-01
Full Text Available In this study, a collocation method is introduced to find the approximate solutions of Hantavirus infection model which is a system of nonlinear ordinary differential equations. The method is based on the Bessel functions of the first kind, matrix operations and collocation points. This method converts Hantavirus infection model into a matrix equation in terms of the Bessel functions of first kind, matrix operations and collocation points. The matrix equation corresponds to a system of nonlinear equations with the unknown Bessel coefficients. The reliability and efficiency of the suggested scheme are demonstrated by numerical applications and all numerical calculations have been done by using a program written in Maple.
Magnetic analysis of tokamak plasma with approximate MHD equilibrium solution
International Nuclear Information System (INIS)
Moriyama, Shin-ichi; Hiraki, Naoji
1993-01-01
A magnetic analysis method for determining equilibrium configuration parameters (plasma shape, poloidal beta and internal inductance) on a non-circular tokamak is described. The feature is to utilize an approximate MHD equilibrium solution which explicitly relates the configuration parameters with the magnetic fields picked up by magnetic sensors. So this method is suitable for the real-time analysis performed during a tokamak discharge. A least-squares fitting procedure is added to the analytical algorithm in order to reduce the errors in the magnetic analysis. The validity is investigated through the numerical calculation for a tokamak equilibrium model. (author)
Approximate Solution of LR Fuzzy Sylvester Matrix Equations
Directory of Open Access Journals (Sweden)
Xiaobin Guo
2013-01-01
Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.
A few remarks on Poincare-Perron solutions and regularly varying solutions
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2016-01-01
Roč. 66, č. 6 (2016), s. 1297-1318 ISSN 0139-9918 Institutional support: RVO:67985840 Keywords : Perron theorem * regularly varying solution * linear differential equation Subject RIV: BA - General Mathematics Impact factor: 0.346, year: 2016 https://www.degruyter.com/view/j/ms.2016.66.issue-6/ms-2016-0224/ms-2016-0224. xml ?format=INT
Approximate solutions: ramps and periodic variations. Chapter 5
International Nuclear Information System (INIS)
1998-01-01
The aim of reactor regulation is generally to maintain reactor power at the demand power, or to vary it slowly to attain a new demand power. On the other hand, the purpose of reactor shutdown systems (SDS) is to insert rapidly, on actuation, a large negative reactivity in order to minimize an overpower, or limit the energy released during a transient, so that fuel failure is improbable. Control mechanisms are therefore characterized by: their reactivity worth (mk), which must exceed the reactivity effect which the mechanism is designed to compensate; and their insertion rate (mk/s), which must be at least as fast as the effect to be controlled. Table 5.1 gives a summary of the various control mechanisms in a CANDU 6 reactor. The reactivity worth shown for each mechanism is the static reactivity change associated with full movement of the device. In reality, the dynamic reactivity will vary in a continuous manner, not suddenly, as assumed in the previous chapter. The realistic simulation of a reactivity insertion in the reactor must then take into account the rate of insertion of reactivity, which is governed by the insertion speed of the mechanism. We have seen in the previous chapter that it is possible to solved analytically the point-kinetics equations for constant reactivity. We could generalize these solutions to step-wise reactivity variations by linking together the analytic solutions to for a sequence of step changes. This approach is not necessarily the best from a numerical point of view. By introducing one or more simplifying assumptions, it will be possible to obtain an analytical solution of arbitrary variations in reactivity or in the external source. These assumptions will undoubtedly limit the applicability of the results, but the approximate solutions obtained will allow us to describe the reactor behaviour analytically. (author)
The quasi-diffusive approximation in transport theory: Local solutions
International Nuclear Information System (INIS)
Celaschi, M.; Montagnini, B.
1995-01-01
The one velocity, plane geometry integral neutron transport equation is transformed into a system of two equations, one of them being the equation of continuity and the other a generalized Fick's law, in which the usual diffusion coefficient is replaced by a self-adjoint integral operator. As the kernel of this operator is very close to the Green function of a diffusion equation, an approximate inversion by means of a second order differential operator allows to transform these equations into a purely differential system which is shown to be equivalent, in the simplest case, to a diffusion-like equation. The method, the principles of which have been exposed in a previous paper, is here extended and applied to a variety of problems. If the inversion is properly performed, the quasi-diffusive solutions turn out to be quite accurate, even in the vicinity of the interface between different material regions, where elementary diffusion theory usually fails. 16 refs., 3 tabs
Regularities of radium coprecipitation with barium sulfate from salt solutions
International Nuclear Information System (INIS)
Kudryavskij, Yu.P.; Rakhimova, O.V.
2007-01-01
Coprecipitation of radium with barium sulfate from highly concentrated NaCl solutions is studied, including the effects of the initial solution composition, alkaline reagent (CaO, NaOH), supporting electrolyte (NaCl) concentration, and pH. The process is promoted by high NaCl concentration in the initial solution, which is due to structural transformation and change in the sorption activity of the BaSO 4 precipitate in salt solutions. The results obtained were applied to recovery of radium from process solutions during the development and introduction of improved procedure for disinfection and decontamination of waste yielded by chlorination of loparite concentrates [ru
Regularity of solutions of a phase field model
Amler, Thomas
2013-01-01
Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.
Regularity of solutions of a phase field model
Amler, Thomas; Botkin, Nikolai D.; Hoffmann, Karl Heinz; Ruf, K. A.
2013-01-01
are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.
Regular black holes: electrically charged solutions, Reissner-Nordstroem outside a De Sitter core
Energy Technology Data Exchange (ETDEWEB)
Lemos, Jose P.S. [Universidade Tecnica de Lisboa (CENTRA/IST/UTL) (Portugal). Instituto Superior Tecnico. Centro Multidisciplinar de Astrofisica; Zanchin, Vilson T. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas
2011-07-01
Full text: The understanding of the inside of a black hole is of crucial importance in order to have the correct picture of a black hole as a whole. The singularities that lurk inside of the usual black hole solutions are things to avoid. Their substitution by a regular part is of great interest, the process generating regular black holes. In the present work regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several solutions: the regular nonextremal black holes with a null matter boundary, the regular nonextremal black holes with a timelike matter boundary, the regular extremal black holes with a timelike matter boundary, and the regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed. (author)
Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia
2016-02-01
The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates. Copyright © 2015 Elsevier Inc. All rights reserved.
Regularity of solutions to the liquid crystals systems in R2 and R3
International Nuclear Information System (INIS)
Dai, Mimi; Qing, Jie; Schonbek, Maria
2012-01-01
In this paper, we establish regularity and uniqueness for solutions to density dependent nematic liquid crystals systems. The results presented extend the regularity and uniqueness for constant density liquid crystals systems, obtained by Lin and Liu (1995 Commun. Pure Appl. Math. XLVIII 501–37)
On the regularity criterion of weak solutions for the 3D MHD equations
Gala, Sadek; Ragusa, Maria Alessandra
2017-12-01
The paper deals with the 3D incompressible MHD equations and aims at improving a regularity criterion in terms of the horizontal gradient of velocity and magnetic field. It is proved that the weak solution ( u, b) becomes regular provided that ( \
International Nuclear Information System (INIS)
Jiang, R.
2009-01-01
It is difficult to find the optimal solution of the sequential age replacement policy for a finite-time horizon. This paper presents an accurate approximation to find an approximate optimal solution of the sequential replacement policy. The proposed approximation is computationally simple and suitable for any failure distribution. Their accuracy is illustrated by two examples. Based on the approximate solution, an approximate estimate for the total cost is derived.
Variation Iteration Method for The Approximate Solution of Nonlinear ...
African Journals Online (AJOL)
In this study, we considered the numerical solution of the nonlinear Burgers equation using the Variational Iteration Method (VIM). The method seeks to examine the convergence of solutions of the Burgers equation at the expense of the parameters x and t of which the amount of errors depends. Numerical experimentation ...
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr
Efficient solution of parabolic equations by Krylov approximation methods
Gallopoulos, E.; Saad, Y.
1990-01-01
Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.
Canards in stiction: on solutions of a friction oscillator by regularization
DEFF Research Database (Denmark)
Bossolini, Elena; Brøns, Morten; Kristiansen, Kristian Uldall
2017-01-01
We study the solutions of a friction oscillator subject to stiction. This discontinuous model is nonFilippov, and the concept of Filippov solution cannot be used. Furthermore some Carath´eodory solutions are unphysical. Therefore we introduce the concept of stiction solutions: these are the Carat...... that this family has a saddle stability and that it connects, in the rigid body limit, the two regular, slip-stick branches of the discontinuous problem, that were otherwise disconnected....
Shuler, Harrey Jeong
center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could significantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in several climate zones in California. Results show that water-side economizers consistently provide less energy savings than air-side economizers, though the difference in savings varies by location. Model results also show that conventional limits on humidity levels in data centers can restrict the energy benefits of economizers. The modeling efforts are then extended to estimate national data center energy use. Different size data centers are modeled to represent the national variation in efficiency and operation of associated mechanical equipment. Results indicate increased energy efficiency opportunities with larger data centers and highlight the importance of temperature setpoints in maximizing economizer efficiency. A bottom-up modeling approach is used to estimate current (2008) United States data center energy use at nearly 62--70 billion kWh annually. The model indicates that more about 65--70% of this energy demand can be avoided through energy efficient IT and cooling infrastructure design, equivalent to an annual energy efficiency resource of approximately 40--50 billion kWh available at a national level. Within the context of greenhouse
Approximation solutions for indifference pricing under general utility functions
Chen, An; Pelsser, Antoon; Vellekoop, M.H.
2008-01-01
With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners
Approximate Solutions for Indifference Pricing under General Utility Functions
Chen, A.; Pelsser, A.; Vellekoop, M.
2007-01-01
With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners
Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering
DEFF Research Database (Denmark)
Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng
2007-01-01
Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...
Partial regularity of weak solutions to a PDE system with cubic nonlinearity
Liu, Jian-Guo; Xu, Xiangsheng
2018-04-01
In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.
International Nuclear Information System (INIS)
Chen, C.S.; Yates, S.R.
1989-01-01
In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. It has been reported that by treating the radioactive decay constant as the appropriate first-order rate constant, these solutions can also be used to study injection problems of a similar nature subject to first-order chemical or biological reactions. The fracture is idealized by a pair of parallel, smooth plates separated by an aperture of constant thickness. Groundwater was assumed to be immobile in the underlying and overlying porous formations due to their low permeabilities. However, the injected radionuclides were able to move from the fracture into the porous matrix by molecular diffusion (the matrix diffusion) due to possible concentration gradients across the interface between the fracture and the porous matrix. Calculation of the transient solutions is not straightforward, and the paper documents a contained Fortran program, which computes the Stehfest inversion, the Airy functions, and gives the concentration distributions in the fracture as well as in the porous matrix for both transient and steady-state cases
Kataev, A. L.; Kazantsev, A. E.; Stepanyantz, K. V.
2018-01-01
We calculate the Adler D-function for N = 1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N = 1 SQCD is found in this scheme to the order O (αs2). The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.
Directory of Open Access Journals (Sweden)
A.L. Kataev
2018-01-01
Full Text Available We calculate the Adler D-function for N=1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N=1 SQCD is found in this scheme to the order O(αs2. The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.
Analytical approximate solutions for a general class of nonlinear delay differential equations.
Căruntu, Bogdan; Bota, Constantin
2014-01-01
We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.
International Nuclear Information System (INIS)
Sanchez, Richard
1977-01-01
A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the Interface Current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding and water, or homogenized structural material. The cells are divided into zones which are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is made by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: the first uses a cylindrical cell model and one or three terms for the flux expansion; the second uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark pr
Cockrell, C. R.
1989-01-01
Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.
International Nuclear Information System (INIS)
Zhidkov, E.P.; Nguen Mong; Khoromskij, B.N.
1979-01-01
The ways of enhancement of the accuracy of approximate solutions of the Chew-Low type equation are considered. Difference schemes are proposed which allow one to obtain solution expansion in degrees of lattice step. On the basis of the expansion by the Richardson method the refinement of approximated solutions is made. Besides, the iteration process is constructed which reduces immediately to the solution of enhanced accuracy. The efficiency of the methods proposed is illustrated by numerical examples
Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation
International Nuclear Information System (INIS)
Ye, Caier; Zhang, Weiguo
2015-01-01
Highlights: • Analyze the dynamical behavior of the planar dynamical system corresponding to the perturbed Klein–Gordon equation. • Present the relations between the properties of traveling wave solutions and the perturbation coefficient. • Obtain all explicit expressions of approximate damped oscillatory solutions. • Investigate error estimates between exact damped oscillatory solutions and the approximate solutions and give some numerical simulations. - Abstract: The influence of perturbation on traveling wave solutions of the perturbed Klein–Gordon equation is studied by applying the bifurcation method and qualitative theory of dynamical systems. All possible approximate damped oscillatory solutions for this equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. The results of numerical simulations also establish our analysis
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Matucci, S.
2014-01-01
Roč. 193, č. 3 (2014), s. 837-858 ISSN 0373-3114 Institutional support: RVO:67985840 Keywords : decreasing solution * quasilinear system * Emden-Fowler system * Lane-Emden system * regular variation Subject RIV: BA - General Mathematics Impact factor: 1.065, year: 2014 http://link.springer.com/article/10.1007%2Fs10231-012-0303-9
Asymptotic properties of spherically symmetric, regular and static solutions to Yang-Mills equations
International Nuclear Information System (INIS)
Cronstrom, C.
1987-01-01
In this paper the author discusses the asymptotic properties of solutions to Yang-Mills equations with the gauge group SU(2), for spherically symmetric, regular and static potentials. It is known, that the pure Yang-Mills equations cannot have nontrivial regular solutions which vanish rapidly at space infinity (socalled finite energy solutions). So, if regular solutions exist, they must have non-trivial asymptotic properties. However, if the asymptotic behaviour of the solutions is non-trivial, then the fact must be explicitly taken into account in constructing the proper action (and energy) for the theory. The elucidation of the appropriate surface correction to the Yang-Mills action (and hence the energy-momentum tensor density) is one of the main motivations behind the present study. In this paper the author restricts to the asymptotic behaviour of the static solutions. It is shown that this asymptotic behaviour is such that surface corrections (at space-infinity) are needed in order to obtain a well-defined (classical) theory. This is of relevance in formulating a quantum Yang-Mills theory
Directory of Open Access Journals (Sweden)
Berenguer MI
2010-01-01
Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .
International Nuclear Information System (INIS)
Sato, M.
1991-01-01
The Saha equation for a plasma in thermodynamic equilibrium (TE) is approximately solved to give the temperature as an explicit function of population densities. It is shown that the derived expressions for the Saha temperature are valid approximations to the exact solution. An application of the approximate temperature to the calculation of TE plasma parameters is also described. (orig.)
Decay property of regularity-loss type for solutions in elastic solids with voids
Djouamai, Leila; Said-Houari, Belkacem
2014-01-01
In this paper, we consider the Cauchy problem for a system of elastic solids with voids. First, we show that a linear porous dissipation leads to decay rates of regularity-loss type of the solution. We show some decay estimates for initial data in Hs(R)∩L1(R). Furthermore, we prove that by restricting the initial data to be in Hs(R)∩L1,γ(R) and γ. ∈. [0, 1], we can derive faster decay estimates of the solution. Second, we show that by adding a viscoelastic damping term, then we gain the regularity of the solution and obtain the optimal decay rate. © 2013 Elsevier Ltd.
Regularity of the solutions to a nonlinear boundary problem with indefinite weight
Directory of Open Access Journals (Sweden)
Aomar Anane
2011-01-01
Full Text Available In this paper we study the regularity of the solutions to the problemDelta_p u = |u|^{p−2}u in the bounded smooth domainOmega ⊂ R^N,with|∇u|^{p−2} partial_{nu} u = lambda V (x|u|^{p−2}u + h as a nonlinear boundary condition, where partial Omega is C^{2,beta}, with beta ∈]0, 1[, and V is a weight in L^s(partial Omega and h ∈ L^s(partial Omega for some s ≥ 1. We prove that all solutions are in L^{infty}(Omega cap L^{infty}(Omega, and using the D.Debenedetto’s theorem of regularity in [1] we conclude that those solutions are in C^{1,alpha} overline{Omega} for some alpha ∈ ]0, 1[.
International Nuclear Information System (INIS)
Green, Timothy F. G.; Yates, Jonathan R.
2014-01-01
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, 1 J(P-Ag) and 2 J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW
International Nuclear Information System (INIS)
Basak, K C; Ray, P C; Bera, R K
2009-01-01
The aim of the present analysis is to apply the Adomian decomposition method and He's variational method for the approximate analytical solution of a nonlinear ordinary fractional differential equation. The solutions obtained by the above two methods have been numerically evaluated and presented in the form of tables and also compared with the exact solution. It was found that the results obtained by the above two methods are in excellent agreement with the exact solution. Finally, a surface plot of the approximate solutions of the fractional differential equation by the above two methods is drawn for 0≤t≤2 and 1<α≤2.
Einstein-Maxwell-axion theory: dyon solution with regular electric field
Energy Technology Data Exchange (ETDEWEB)
Balakin, Alexander B.; Zayats, Alexei E. [Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)
2017-08-15
In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)
Einstein-Maxwell-axion theory: dyon solution with regular electric field
International Nuclear Information System (INIS)
Balakin, Alexander B.; Zayats, Alexei E.
2017-01-01
In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
Finster, Felix; Smoller, Joel
2010-09-01
A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.
On the regularity of mild solutions to complete higher order differential equations on Banach spaces
Directory of Open Access Journals (Sweden)
Nezam Iraniparast
2015-09-01
Full Text Available For the complete higher order differential equation u(n(t=Σk=0n-1Aku(k(t+f(t, t∈ R (* on a Banach space E, we give a new definition of mild solutions of (*. We then characterize the regular admissibility of a translation invariant subspace al M of BUC(R, E with respect to (* in terms of solvability of the operator equation Σj=0n-1AjXal Dj-Xal Dn = C. As application, almost periodicity of mild solutions of (* is proved.
Logical gaps in the approximate solutions of the social learning game and an exact solution.
Dai, Wenjie; Wang, Xin; Di, Zengru; Wu, Jinshan
2014-01-01
After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.
Directory of Open Access Journals (Sweden)
Xiao-Ying Qin
2014-01-01
Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.
International Nuclear Information System (INIS)
Shvets', D.V.
2009-01-01
By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.
International Nuclear Information System (INIS)
Chen Changyuan; Sun Dongsheng; Lu Falin
2007-01-01
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of bound states are attained for different l. The analytical energy equation and the unnormalized radial wave functions expressed in terms of hypergeometric polynomials are given
International Nuclear Information System (INIS)
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary
Tang, Yuehao; Jiang, Qinghui; Zhou, Chuangbing
2016-04-01
An approximate solution is presented to the 1-D Boussinesq equation (BEQ) characterizing transient groundwater flow in an unconfined aquifer subject to a constant water variation at the sloping water-land boundary. The flow equation is decomposed to a linearized BEQ and a head correction equation. The linearized BEQ is solved using a Laplace transform. By means of the frozen-coefficient technique and Gauss function method, the approximate solution for the head correction equation can be obtained, which is further simplified to a closed-form expression under the condition of local energy equilibrium. The solutions of the linearized and head correction equations are discussed from physical concepts. Especially for the head correction equation, the well posedness of the approximate solution obtained by the frozen-coefficient method is verified to demonstrate its boundedness, which can be further embodied as the upper and lower error bounds to the exact solution of the head correction by statistical analysis. The advantage of this approximate solution is in its simplicity while preserving the inherent nonlinearity of the physical phenomenon. Comparisons between the analytical and numerical solutions of the BEQ validate that the approximation method can achieve desirable precisions, even in the cases with strong nonlinearity. The proposed approximate solution is applied to various hydrological problems, in which the algebraic expressions that quantify the water flow processes are derived from its basic solutions. The results are useful for the quantification of stream-aquifer exchange flow rates, aquifer response due to the sudden reservoir release, bank storage and depletion, and front position and propagation speed.
Directory of Open Access Journals (Sweden)
Hua Yang
2012-01-01
Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.
Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems
Directory of Open Access Journals (Sweden)
Daniel Olvera
2014-01-01
Full Text Available We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM that is based on the homotopy perturbation method (HPM and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM. At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves.
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
Solution of the Chew-Low equations in the quadratic approximation
International Nuclear Information System (INIS)
Gerdt, V.P.; Zharkov, A.Yu.
1982-01-01
Within the framework of the iteration scheme for constructing the general solution of the Chew-Low equations as suggested earlier the second order power contributions are found. In contrast to the linear approximation obtained before the quadratic approximation includes an infinite number of poles on the complex plane of the uniformizing variable w. It is shown that taking into account the second order corrections in the general solution allows us to select the class of solutions possessing the Born pole at w=0. The most cumbersome part of analytical computations has been carried out by computer using the algebraic system REDUCE-2
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (orig./RW) [de
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (author)
Directory of Open Access Journals (Sweden)
Jose Luiz Boldrini
2003-11-01
Full Text Available We study the existence and regularity of weak solutions of a phase field type model for pure material solidification in presence of natural convection. We assume that the non-stationary solidification process occurs in a two dimensional bounded domain. The governing equations of the model are the phase field equation coupled with a nonlinear heat equation and a modified Navier-Stokes equation. These equations include buoyancy forces modelled by Boussinesq approximation and a Carman-Koseny term to model the flow in mushy regions. Since these modified Navier-Stokes equations only hold in the non-solid regions, which are not known a priori, we have a free boundary-value problem.
International Nuclear Information System (INIS)
Caraballo, T.; Kloeden, P.E.
2006-01-01
Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions
Decay property of regularity-loss type of solutions in elastic solids with voids
Said-Houari, Belkacem; Messaoudi, Salim A.
2013-01-01
In this article, we consider two porous systems of nonclassical thermoelasticity in the whole real line. We discuss the long-time behaviour of the solutions in the presence of a strong damping acting, together with the heat effect, on the elastic equation and establish several decay results. Those decay results are shown to be very slow and of regularity-loss type. Some improvements of the decay rates have also been given, provided that the initial data belong to some weighted spaces. © 2013 Copyright Taylor and Francis Group, LLC.
Decay property of regularity-loss type of solutions in elastic solids with voids
Said-Houari, Belkacem
2013-12-01
In this article, we consider two porous systems of nonclassical thermoelasticity in the whole real line. We discuss the long-time behaviour of the solutions in the presence of a strong damping acting, together with the heat effect, on the elastic equation and establish several decay results. Those decay results are shown to be very slow and of regularity-loss type. Some improvements of the decay rates have also been given, provided that the initial data belong to some weighted spaces. © 2013 Copyright Taylor and Francis Group, LLC.
Directory of Open Access Journals (Sweden)
Hamid A. Jalab
2014-01-01
Full Text Available The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters. The performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are competent with the standard Gaussian filter and Wiener filter.
Time-Homogeneous Parabolic Wick-Anderson Model in One Space Dimension: Regularity of Solution
Kim, Hyun-Jung; Lototsky, Sergey V
2017-01-01
Even though the heat equation with random potential is a well-studied object, the particular case of time-independent Gaussian white noise in one space dimension has yet to receive the attention it deserves. The paper investigates the stochastic heat equation with space-only Gaussian white noise on a bounded interval. The main result is that the space-time regularity of the solution is the same for additive noise and for multiplicative noise in the Wick-It\\^o-Skorokhod interpretation.
A Method for Generating Approximate Similarity Solutions of Nonlinear Partial Differential Equations
Directory of Open Access Journals (Sweden)
Mazhar Iqbal
2014-01-01
Full Text Available Standard application of similarity method to find solutions of PDEs mostly results in reduction to ODEs which are not easily integrable in terms of elementary or tabulated functions. Such situations usually demand solving reduced ODEs numerically. However, there are no systematic procedures available to utilize these numerical solutions of reduced ODE to obtain the solution of original PDE. A practical and tractable approach is proposed to deal with such situations and is applied to obtain approximate similarity solutions to different cases of an initial-boundary value problem of unsteady gas flow through a semi-infinite porous medium.
Directory of Open Access Journals (Sweden)
Shaheed N. Huseen
2013-01-01
Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Regular Bulk Solutions in Brane-Worlds with Inhomogeneous Dust and Generalized Dark Radiation
International Nuclear Information System (INIS)
Rocha, Roldão da; Kuerten, A. M.; Herrera-Aguilar, A.
2015-01-01
From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the soft physical singularities
Approximate solution of generalized Ginzburg-Landau-Higgs system via homotopy perturbation method
Energy Technology Data Exchange (ETDEWEB)
Lu Juhong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Dept. of Information Engineering, Coll. of Lishui Professional Tech., Zhejiang (China); Zheng Chunlong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Shanghai Inst. of Applied Mathematics and Mechanics, Shanghai Univ., SH (China)
2010-04-15
Using the homotopy perturbation method, a class of nonlinear generalized Ginzburg-Landau-Higgs systems (GGLH) is considered. Firstly, by introducing a homotopic transformation, the nonlinear problem is changed into a system of linear equations. Secondly, by selecting a suitable initial approximation, the approximate solution with arbitrary degree accuracy to the generalized Ginzburg-Landau-Higgs system is derived. Finally, another type of homotopic transformation to the generalized Ginzburg-Landau-Higgs system reported in previous literature is briefly discussed. (orig.)
An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
International Nuclear Information System (INIS)
Belendez, A.; Mendez, D.I.; Fernandez, E.; Marini, S.; Pascual, I.
2009-01-01
The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.
The soliton solution of the PHI24 field theory in the Hartree approximation
International Nuclear Information System (INIS)
Altenbokum, M.
1984-01-01
In this thesis in a simple model which possesses at the classical level a soliton solution a quantum-mechanical soliton sector shall be constructed in a Hartree-Fock approximation without application of semiclassical procedures. To this belongs beside the determination of the excitation spectrum of the applied Hamiltonian the knowledge of the corresponding infinitely-much eigenfunctions. The existing translational invariance of a classical soliton solution which implies the existence of a degenerated ground state by presence of a massless excitation is removed by quantum fluctuations. By removing of this degeneration conventional approximation procedures for this sector of the Hilbert space become for the first time immediately possible. (HSI) [de
Approximate solution to the Kolmogorov equation for a fission chain-reacting system
International Nuclear Information System (INIS)
Ruby, L.; McSwine, T.L.
1986-01-01
An approximate solution has been obtained for the Kolmogorov equation describing a fission chain-reacting system. The method considers the population of neutrons, delayed-neutron precursors, and detector counts. The effect of the detector is separated from the statistics of the chain reaction by a weak coupling assumption that predicts that the detector responds to the average rather than to the instantaneous neutron population. An approximate solution to the remaining equation, involving the populations of neutrons and precursors, predicts a negative-binomial behaviour for the neutron probability distribution
Determinant formula for solutions of the Garnier system and Padé approximation
International Nuclear Information System (INIS)
Mano, Toshiyuki
2012-01-01
It is known that a class of special solutions of the Garnier system is expressed by a determinant formula in terms of a certain specialization of the Schur functions with rectangular-shape partitions. Y Yamada showed that such a determinant formula for rational solutions of Riccati type can be derived by making use of the Padé approximation. In this paper, we extend Yamada’s method. We derive a determinant formula for transcendental solutions of Riccati type by showing that the Padé approximation can be utilized in order to construct a Schlesinger transformation between isomonodromic deformations. In addition, we show that this method is effective in generic solutions of the Garnier system and derive a determinant structure of them. (paper)
Directory of Open Access Journals (Sweden)
Ratchata Theinchai
2016-01-01
Full Text Available We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM. The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.
Theinchai, Ratchata; Chankan, Siriwan; Yukunthorn, Weera
2016-01-01
We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.
A multi scale approximation solution for the time dependent Boltzmann-transport equation
International Nuclear Information System (INIS)
Merk, B.
2004-03-01
The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is
Energy Distribution of a Regular Black Hole Solution in Einstein-Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
I. Radinschi
2015-01-01
Full Text Available A study about the energy momentum of a new four-dimensional spherically symmetric, static and charged, regular black hole solution developed in the context of general relativity coupled to nonlinear electrodynamics is presented. Asymptotically, this new black hole solution behaves as the Reissner-Nordström solution only for the particular value μ=4, where μ is a positive integer parameter appearing in the mass function of the solution. The calculations are performed by use of the Einstein, Landau-Lifshitz, Weinberg, and Møller energy momentum complexes. In all the aforementioned prescriptions, the expressions for the energy of the gravitating system considered depend on the mass M of the black hole, its charge q, a positive integer α, and the radial coordinate r. In all these pseudotensorial prescriptions, the momenta are found to vanish, while the Landau-Lifshitz and Weinberg prescriptions give the same result for the energy distribution. In addition, the limiting behavior of the energy for the cases r→∞, r→0, and q=0 is studied. The special case μ=4 and α=3 is also examined. We conclude that the Einstein and Møller energy momentum complexes can be considered as the most reliable tools for the study of the energy momentum localization of a gravitating system.
Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther
2018-04-01
We study the role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. By introducing the notion of dissipative solutions, due to D uchon and R obert (Nonlinearity 13:249-255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin's local regularity criterion.
Fall with linear drag and Wien's displacement law: approximate solution and Lambert function
International Nuclear Information System (INIS)
Vial, Alexandre
2012-01-01
We present an approximate solution for the downward time of travel in the case of a mass falling with a linear drag force. We show how a quasi-analytical solution implying the Lambert function can be found. We also show that solving the previous problem is equivalent to the search for Wien's displacement law. These results can be of interest for undergraduate students, as they show that some transcendental equations found in physics may be solved without purely numerical methods. Moreover, as will be seen in the case of Wien's displacement law, solutions based on series expansion can be very accurate even with few terms. (paper)
Numerical solution of the ekpyrotic scenario in the moduli space approximation
International Nuclear Information System (INIS)
Soerensen, Torquil MacDonald
2005-01-01
A numerical solution to the equations of motion for the ekpyrotic bulk brane scenario in the moduli space approximation is presented. The visible universe brane has positive tension, and we use a potential that goes to zero exponentially at large distance, and also goes to zero at small distance. In the case considered, no bulk brane, visible brane collision occurs in the solution. This property and the general behavior of the solution is qualitatively the same when the visible brane tension is negative, and for many different parameter choices
Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin
2016-01-01
This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.
Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid
Puay, How Tion; Hosoda, Takashi
In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.
Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method
Directory of Open Access Journals (Sweden)
De-Gang Wang
2012-01-01
Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.
International Nuclear Information System (INIS)
Buckel, G.; Wouters, R. de; Pilate, S.
1977-01-01
The synthesis code KASY for an approximate solution of the three-dimensional neutron diffusion equation is described; the state of the art as well as envisaged program extensions and the application to tasks from the field of reactor designing are dealt with. (RW) [de
International Nuclear Information System (INIS)
Jakab, J.
1979-05-01
Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)
International Nuclear Information System (INIS)
Garibotti, C.R.; Grinstein, F.F.
1978-01-01
Previous theorems on the convergence of the [n,n+m] punctual Pade approximants to the scattering amplitude are extended. The new proofs include the cases of nonforward and backward scattering corresponding to potentials having 1/r and 1/r 2 long-range behaviors, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long-range potentials of interest in potential scattering
International Nuclear Information System (INIS)
Garibotti, C.R.; Grinstein, F.F.
1978-01-01
Previous theorems on the convergence of the [n, n+m] Punctual Pade Approximants to the scattering amplitude are extended. The new proofs include the cases of non-forward and backward scattering corresponding to potentials having 1/r and 1/r 2 long range behaviours, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long range potentials of interest in potential scattering [pt
Existence, regularity and representation of solutions of time fractional wave equations
Directory of Open Access Journals (Sweden)
Valentin Keyantuo
2017-09-01
Full Text Available We study the solvability of the fractional order inhomogeneous Cauchy problem $$ \\mathbb{D}_t^\\alpha u(t=Au(t+f(t, \\quad t>0,\\;1<\\alpha\\le 2, $$ where A is a closed linear operator in some Banach space X and $f:[0,\\infty\\to X$ a given function. Operator families associated with this problem are defined and their regularity properties are investigated. In the case where A is a generator of a $\\beta$-times integrated cosine family $(C_\\beta(t$, we derive explicit representations of mild and classical solutions of the above problem in terms of the integrated cosine family. We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary conditions on $L^p$-spaces and on the space of continuous functions.
Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander
2015-04-22
Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.
International Nuclear Information System (INIS)
Kowsary, F.; Pooladvand, K.; Pourshaghaghy, A.
2007-01-01
In this paper, an appropriate distribution of the heating elements' strengths in a radiation furnace is estimated using inverse methods so that a pre-specified temperature and heat flux distribution is attained on the design surface. Minimization of the sum of the squares of the error function is performed using the variable metric method (VMM), and the results are compared with those obtained by the conjugate gradient method (CGM) established previously in the literature. It is shown via test cases and a well-founded validation procedure that the VMM, when using a 'regularized' estimator, is more accurate and is able to reach at a higher quality final solution as compared to the CGM. The test cases used in this study were two-dimensional furnaces filled with an absorbing, emitting, and scattering gas
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2013-01-01
The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad
Approximate solution of the transport equation by methods of Galerkin type
International Nuclear Information System (INIS)
Pitkaranta, J.
1977-01-01
Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form
Energy Technology Data Exchange (ETDEWEB)
Silva, Julio M.; Marchesin, Dan [Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, RJ (Brazil)
2008-07-01
The deep bed filtration problem is closely related to secondary oil recovery. In this work we derive explicit solutions to two filtration problems. The filtration function varies non-linearly with the Darcy speed and linearly with the deposition, but very little. The first solution is built by the method of perturbations and although it is only an approximation it is available in multiple symmetries, including the radial geometry used in the field. The main motivation is the validation of numerical methods. The second solution is exact but it is only available in the linear symmetry, i.e., laboratory geometry. We use it to verify the accuracy of the first solution, but it can also be used to simulate the deposition in experiments. (author)
Criteria for the reliability of numerical approximations to the solution of fluid flow problems
International Nuclear Information System (INIS)
Foias, C.
1986-01-01
The numerical approximation of the solutions of fluid flows models is a difficult problem in many cases of energy research. In all numerical methods implementable on digital computers, a basic question is if the number N of elements (Galerkin modes, finite-difference cells, finite-elements, etc.) is sufficient to describe the long time behavior of the exact solutions. It was shown using several approaches that some of the estimates based on physical intuition of N are rigorously valid under very general conditions and follow directly from the mathematical theory of the Navier-Stokes equations. Among the mathematical approaches to these estimates, the most promising (which can be and was already applied to many other dissipative partial differential systems) consists in giving upper estimates to the fractal dimension of the attractor associated to one (or all) solution(s) of the respective partial differential equations. 56 refs
Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method
International Nuclear Information System (INIS)
Belendez, A; Pascual, C; Alvarez, M L; Mendez, D I; Yebra, M S; Hernandez, A
2009-01-01
A modified He's homotopy perturbation method is used to calculate the periodic solutions of a nonlinear pendulum. The method has been modified by truncating the infinite series corresponding to the first-order approximate solution and substituting a finite number of terms in the second-order linear differential equation. As can be seen, the modified homotopy perturbation method works very well for high values of the initial amplitude. Excellent agreement of the analytical approximate period with the exact period has been demonstrated not only for small but also for large amplitudes A (the relative error is less than 1% for A < 152 deg.). Comparison of the result obtained using this method with the exact ones reveals that this modified method is very effective and convenient.
Solutions to the linearized Navier-Stokes equations for channel flow via the WKB approximation
Leonard, Anthony
2017-11-01
Progress on determining semi-analytical solutions to the linearized Navier-Stokes equations for incompressible channel flow, laminar and turbulent, is reported. Use of the WKB approximation yields, e.g., solutions to initial-value problem for the inviscid Orr-Sommerfeld equation in terms of the Bessel functions J+ 1 / 3 ,J- 1 / 3 ,J1 , and Y1 and their modified counterparts for any given wave speed c = ω /kx and k⊥ ,(k⊥2 =kx2 +kz2) . Of particular note to be discussed is a sequence i = 1 , 2 , . . . of homogeneous inviscid solutions with complex k⊥ i for each speed c, (0 < c <=Umax), in the downstream direction. These solutions for the velocity component normal to the wall v are localized in the plane parallel to the wall. In addition, for limited range of negative c, (- c * <= c <= 0) , we have found upstream-traveling homogeneous solutions with real k⊥(c) . In both cases the solutions for v serve as a source for corresponding solutions to the inviscid Squire equation for the vorticity component normal to the wall ωy.
A method for the approximate solutions of the unsteady boundary layer equations
International Nuclear Information System (INIS)
Abdus Sattar, Md.
1990-12-01
The approximate integral method proposed by Bianchini et al. to solve the unsteady boundary layer equations is considered here with a simple modification to the scale function for the similarity variable. This is done by introducing a time dependent length scale. The closed form solutions, thus obtained, give satisfactory results for the velocity profile and the skin friction to a limiting case in comparison with the results of the past investigators. (author). 7 refs, 2 figs
Directory of Open Access Journals (Sweden)
Jorge I. Castaño–Bedoya
2009-12-01
Full Text Available En este artículo se propone encontrar una solución aproximada para problemas de valor en la frontera y problemas de valor inicial de un sistema diferencial utilizando el método de los desarrollos de Fer.In this paper we propose to find an approximate solution to boundary value problems and initial value differential system problems using the method of Fer developments.
Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian
Directory of Open Access Journals (Sweden)
Lunyov A.V.
2016-01-01
Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.
Using trees to compute approximate solutions to ordinary differential equations exactly
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
Ford, Neville J.; Connolly, Joseph A.
2009-07-01
We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.
Fagioli, Simone; Radici, Emanuela
2018-01-01
We investigate the existence of weak type solutions for a class of aggregation-diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to nonnegative initial data in $L^{\\infty} \\cap BV$ away from vacuum and supported in a closed interval with zero-velocity boundary conditions. The main novelti...
Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens
International Nuclear Information System (INIS)
Yildirim, A.; Gökdoğan, A.; Merdan, M.; Lakshminarayanan, V.
2012-01-01
An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed, using the multi-step differential transform method based on the classical differential transformation method. Numerical results are compared to those obtained by the fourth-order Runge—Kutta method to illustrate the precision and effectiveness of the proposed method. Results are given in explicit and graphical forms. (fundamental areas of phenomenology(including applications))
An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.
Burden, Conrad J; Tang, Yurong
2016-12-01
We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.
Regularization and computational methods for precise solution of perturbed orbit transfer problems
Woollands, Robyn Michele
The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these
Complete heat transfer solutions of an insulated regular polygonal pipe by using a PWTR model
International Nuclear Information System (INIS)
Wong, K.-L.; Chou, H.-M.; Li, Y.-H.
2004-01-01
The heat transfer characteristics for insulated long regular polygonal (including circular) pipes are analyzed by using the same PWRT model in the present study as that used by Chou and Wong previously [Energy Convers. Manage. 44 (4) (2003) 629]. The thermal resistance of the inner convection term and the pipe conduction term in the heat transfer rate are not neglected in the present study. Thus, the complete heat transfer solution will be obtained. The present results can be applied more extensively to practical situations, such as heat exchangers. The results of the critical thickness t cr and the neutral thickness t e are independent of the values of J (generated by the combined effect of the inner convection term and the pipe conduction term). However, the heat transfer rates are dependent on the values of J. The present study shows that the thermal resistance of the inner convection term and the pipe conduction term cannot be neglected in the heat transfer equation in situations of low to medium inner convection coefficients h i and/or low to medium pipe conductivities K, especially in situations with large pipe sizes or/and great outer convection coefficients h 0
Directory of Open Access Journals (Sweden)
Wei Wang
2013-01-01
Full Text Available The precipitation of wax/solid paraffin during production, transportation, and processing of crude oil is a serious problem. It is essential to have a reliable model to predict the wax appearance temperature and the amount of solid precipitated at different conditions. This paper presents a work to predict the solid precipitation based on solid-liquid equilibrium with regular solution-molecular thermodynamic theory and characterization of the crude oil plus fraction. Due to the differences of solubility characteristics between solid and liquid phase, the solubility parameters of liquid and solid phase are calculated by a modified model. The heat capacity change between solid and liquid phase is considered and estimated in the thermodynamic model. An activity coefficient based thermodynamic method combined with two characteristic methods to calculate wax precipitation in crude oil, especially heavy oil, has been tested with experimental data. The results show that the wax appearance temperature and the amount of weight precipitated can be predicted well with the experimental data.
Approximate N-Player Nonzero-Sum Game Solution for an Uncertain Continuous Nonlinear System.
Johnson, Marcus; Kamalapurkar, Rushikesh; Bhasin, Shubhendu; Dixon, Warren E
2015-08-01
An approximate online equilibrium solution is developed for an N -player nonzero-sum game subject to continuous-time nonlinear unknown dynamics and an infinite horizon quadratic cost. A novel actor-critic-identifier structure is used, wherein a robust dynamic neural network is used to asymptotically identify the uncertain system with additive disturbances, and a set of critic and actor NNs are used to approximate the value functions and equilibrium policies, respectively. The weight update laws for the actor neural networks (NNs) are generated using a gradient-descent method, and the critic NNs are generated by least square regression, which are both based on the modified Bellman error that is independent of the system dynamics. A Lyapunov-based stability analysis shows that uniformly ultimately bounded tracking is achieved, and a convergence analysis demonstrates that the approximate control policies converge to a neighborhood of the optimal solutions. The actor, critic, and identifier structures are implemented in real time continuously and simultaneously. Simulations on two and three player games illustrate the performance of the developed method.
Boschi, Lapo
2006-10-01
I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.
Iterative approximation of the solution of a monotone operator equation in certain Banach spaces
International Nuclear Information System (INIS)
Chidume, C.E.
1988-01-01
Let X=L p (or l p ), p ≥ 2. The solution of the equation Ax=f, f is an element of X is approximated in X by an iteration process in each of the following two cases: (i) A is a bounded linear mapping of X into itself which is also bounded below; and, (ii) A is a nonlinear Lipschitz mapping of X into itself and satisfies ≥ m |x-y| 2 , for some constant m > 0 and for all x, y in X, where j is the single-valued normalized duality mapping of X into X* (the dual space of X). A related result deals with the iterative approximation of the fixed point of a Lipschitz strictly pseudocontractive mapping in X. (author). 12 refs
Tao, Wanghai; Wang, Quanjiu; Lin, Henry
2018-03-01
Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2012-01-01
The Adomian decomposition method (ADM) is one of the most effective methods for constructing analytic approximate solutions of nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, and the two-step Adomian decomposition method (TSADM) combined with the Padé technique, a new algorithm is proposed to construct accurate analytic approximations of nonlinear differential equations with initial conditions. Furthermore, a MAPLE package is developed, which is user-friendly and efficient. One only needs to input a system, initial conditions and several necessary parameters, then our package will automatically deliver analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the validity of the package. Our program provides a helpful and easy-to-use tool in science and engineering to deal with initial value problems. Program summaryProgram title: NAPA Catalogue identifier: AEJZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4060 No. of bytes in distributed program, including test data, etc.: 113 498 Distribution format: tar.gz Programming language: MAPLE R13 Computer: PC Operating system: Windows XP/7 RAM: 2 Gbytes Classification: 4.3 Nature of problem: Solve nonlinear differential equations with initial conditions. Solution method: Adomian decomposition method and Padé technique. Running time: Seconds at most in routine uses of the program. Special tasks may take up to some minutes.
Born approximation to a perturbative numerical method for the solution of the Schroedinger equation
International Nuclear Information System (INIS)
Adam, Gh.
1978-01-01
A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)
Chardon, Gilles; Daudet, Laurent
2013-11-01
This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.
Accuracy of approximations of solutions to Fredholm equations by kernel methods
Czech Academy of Sciences Publication Activity Database
Gnecco, G.; Kůrková, Věra; Sanguineti, M.
2012-01-01
Roč. 218, č. 14 (2012), s. 7481-7497 ISSN 0096-3003 R&D Projects: GA ČR GAP202/11/1368; GA MŠk OC10047 Grant - others:CNR-AV ČR(CZ-IT) Project 2010–2012 “Complexity of Neural -Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : approximate solutions to integral equations * radial and kernel-based networks * Gaussian kernels * model complexity * analysis of algorithms Subject RIV: IN - Informatics, Computer Science Impact factor: 1.349, year: 2012
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni
2002-01-01
Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.
Approximate Solution of Nonlinear Klein-Gordon Equation Using Sobolev Gradients
Directory of Open Access Journals (Sweden)
Nauman Raza
2016-01-01
Full Text Available The nonlinear Klein-Gordon equation (KGE models many nonlinear phenomena. In this paper, we propose a scheme for numerical approximation of solutions of the one-dimensional nonlinear KGE. A common approach to find a solution of a nonlinear system is to first linearize the equations by successive substitution or the Newton iteration method and then solve a linear least squares problem. Here, we show that it can be advantageous to form a sum of squared residuals of the nonlinear problem and then find a zero of the gradient. Our scheme is based on the Sobolev gradient method for solving a nonlinear least square problem directly. The numerical results are compared with Lattice Boltzmann Method (LBM. The L2, L∞, and Root-Mean-Square (RMS values indicate better accuracy of the proposed method with less computational effort.
Approximate solutions of the hyperchaotic Rössler system by using the Bessel collocation scheme
Directory of Open Access Journals (Sweden)
Şuayip Yüzbaşı
2015-02-01
Full Text Available The purpose of this study is to give a Bessel polynomial approximation for the solutions of the hyperchaotic Rössler system. For this purpose, the Bessel collocation method applied to different problems is developed for the mentioned system. This method is based on taking the truncated Bessel expansions of the functions in the hyperchaotic Rössler systems. The suggested secheme converts the problem into a system of nonlinear algebraic equations by means of the matrix operations and collocation points, The accuracy and efficiency of the proposed approach are demonstrated by numerical applications and performed with the help of a computer code written in Maple. Also, comparison between our method and the differential transformation method is made with the accuracy of solutions.
Approximate solution of space and time fractional higher order phase field equation
Shamseldeen, S.
2018-03-01
This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.
An approximate JKR solution for a general contact, including rough contacts
Ciavarella, M.
2018-05-01
In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.
Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong
2011-12-01
We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.
A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří
2013-01-01
Roč. 6, č. 5 (2013), s. 1391-1400 ISSN 1937-1632 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations * suitable weak solution * regularity Subject RIV: BA - General Mathematics http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8344
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří; Penel, P.
2014-01-01
Roč. 46, č. 2 (2014), s. 1681-1700 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations * weak solution * regularity criteria Subject RIV: BA - General Mathematics Impact factor: 1.265, year: 2014 http://epubs.siam.org/doi/abs/10.1137/120874874
Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation
International Nuclear Information System (INIS)
Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi
2015-01-01
Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM
Approximate solutions of dual fuzzy polynomials by feed-back neural networks
Directory of Open Access Journals (Sweden)
Ahmad Jafarian
2012-11-01
Full Text Available Recently, artificial neural networks (ANNs have been extensively studied and used in different areas such as pattern recognition, associative memory, combinatorial optimization, etc. In this paper, we investigate the ability of fuzzy neural networks to approximate solution of a dual fuzzy polynomial of the form $a_{1}x+ ...+a_{n}x^n =b_{1}x+ ...+b_{n}x^n+d,$ where $a_{j},b_{j},d epsilon E^1 (for j=1,...,n.$ Since the operation of fuzzy neural networks is based on Zadeh's extension principle. For this scope we train a fuzzified neural network by back-propagation-type learning algorithm which has five layer where connection weights are crisp numbers. This neural network can get a crisp input signal and then calculates its corresponding fuzzy output. Presented method can give a real approximate solution for given polynomial by using a cost function which is defined for the level sets of fuzzy output and target output. The simulation results are presented to demonstrate the efficiency and effectiveness of the proposed approach.
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
International Nuclear Information System (INIS)
Polivanskij, V.P.
1989-01-01
The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs
Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge
Directory of Open Access Journals (Sweden)
Nikolaos Bournaveas
2009-09-01
Full Text Available We prove local well-posedness for the 2+1-dimensional Chern-Simons-Higgs equations in the Lorentz gauge with initial data of low regularity. Our result improves earlier results by Huh [10, 11].
A regularized stationary mean-field game
Yang, Xianjin
2016-01-01
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
A regularized stationary mean-field game
Yang, Xianjin
2016-04-19
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.
2017-12-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.
Barrett, Steven R. H.; Britter, Rex E.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean
DEFF Research Database (Denmark)
Pedersen, Thomas Quistgaard
In this paper we derive an approximate analytical solution to the optimal con- sumption and portfolio choice problem of an infinitely-lived investor with power utility defined over the difference between consumption and an external habit. The investor is assumed to have access to two tradable......-linearized surplus consumption ratio. The "difference habit model" implies that the relative risk aversion is time-varying which is in line with recent ev- idence from the asset pricing literature. We show that accounting for habit a¤ects both the myopic and intertemporal hedge component of optimal asset demand......, and introduces an additional component that works as a hedge against changes in the investor's habit level. In an empirical application, we calibrate the model to U.S. data and show that habit formation has significant effects on both the optimal consumption and portfolio choice compared to a standard CRRA...
Exact solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED
International Nuclear Information System (INIS)
Kernemann, A.; Stefanis, N.G.
1989-01-01
A set of new closed-form solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED is presented. A manifestly covariant phase-space path-integral method is applied for calculating the n-fermion Green's function in a classical external field. In the case of one and two fermions, explicit expressions for the full Green's functions are analytically obtained, with renormalization carried out in the modified minimal subtraction scheme. The renormalization constants and the corresponding anomalous dimensions are determined. The mass-shell behavior of the two-fermion Green's function is investigated in detail. No assumptions are made concerning the structure of asymptotic states and no IR cutoff is used in the calculations
Directory of Open Access Journals (Sweden)
M. I. Popov
2016-01-01
Full Text Available The approximate analytical solution of a problem about nonstationary free convection in the conductive and laminar mode of the Newtonian liquid in square area at the instantaneous change of temperature of a sidewall and lack of heat fluxes is submitted on top and bottom the bases. The equations of free convection in an approximation of Oberbeka-Bussinesk are linearized due to neglect by convective items. For reduction of number of hydrothermal parameters the system is given to the dimensionless look by introduction of scales for effect and explanatory variables. Transition from classical variables to the variables "whirlwind-a flow function" allowed to reduce system to a nonstationary heat conduction equation and a nonstationary nonuniform biharmonic equation, and the first is not dependent on the second. The decision in the form of a flow function is received by application integral a sine - Fourier transforms with terminating limits to a biharmonic equation at first on a variable x, and then on a variable y. The flow function has an appearance of a double series of Fourier on sine with coefficients in an integral form. Coefficients of a row represent integrals from unknown functions. On the basis of a hypothesis of an express type of integrals coefficients are calculated from the linear equation system received from boundary conditions on partial derivatives of function. Dependence of structure of a current on Prandtl's number is investigated. The cards of streamlines and isolines of components of speed describing development of a current from the moment of emergence before transition to a stationary state are received. The schedules of a field of vectors of speeds in various time illustrating dynamics of a current are provided. Reliability of a hypothesis of an express type of integral coefficients is confirmed by adequacy to physical sense and coherence of the received results with the numerical solution of a problem.
Hesford, Andrew J.; Waag, Robert C.
2010-10-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
Directory of Open Access Journals (Sweden)
Meina Sun
2016-05-01
Full Text Available We study the Riemann problem for a non-strictly hyperbolic system of conservation laws under the linear approximations of flux functions with three parameters. The approximated system also belongs to the type of triangular systems of conservation laws and this approximation does not change the structure of Riemann solutions to the original system. Furthermore, it is proven that the Riemann solutions to the approximated system converge to the corresponding ones to the original system as the perturbation parameter tends to zero.
Approximate solutions for radial travel time and capture zone in unconfined aquifers.
Zhou, Yangxiao; Haitjema, Henk
2012-01-01
Radial time-of-travel (TOT) capture zones have been evaluated for unconfined aquifers with and without recharge. The solutions of travel time for unconfined aquifers are rather complex and have been replaced with much simpler approximate solutions without significant loss of accuracy in most practical cases. The current "volumetric method" for calculating the radius of a TOT capture zone assumes no recharge and a constant aquifer thickness. It was found that for unconfined aquifers without recharge, the volumetric method leads to a smaller and less protective wellhead protection zone when ignoring drawdowns. However, if the saturated thickness near the well is used in the volumetric method a larger more protective TOT capture zone is obtained. The same is true when the volumetric method is used in the presence of recharge. However, for that case it leads to unreasonableness over the prediction of a TOT capture zone of 5 years or more. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
International Nuclear Information System (INIS)
Belendez, A; Pascual, C; Fernandez, E; Neipp, C; Belendez, T
2008-01-01
A modified He's homotopy perturbation method is used to calculate higher-order analytical approximate solutions to the relativistic and Duffing-harmonic oscillators. The He's homotopy perturbation method is modified by truncating the infinite series corresponding to the first-order approximate solution before introducing this solution in the second-order linear differential equation, and so on. We find this modified homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. The approximate formulae obtained show excellent agreement with the exact solutions, and are valid for small as well as large amplitudes of oscillation, including the limiting cases of amplitude approaching zero and infinity. For the relativistic oscillator, only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate frequency of less than 1.6% for small and large values of oscillation amplitude, while this relative error is 0.65% for two iterations with two harmonics and as low as 0.18% when three harmonics are considered in the second approximation. For the Duffing-harmonic oscillator the relative error is as low as 0.078% when the second approximation is considered. Comparison of the result obtained using this method with those obtained by the harmonic balance methods reveals that the former is very effective and convenient
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
Energy Technology Data Exchange (ETDEWEB)
Jacques, R.
1975-03-15
Integrating the linearized Navier-Stokes equations linearized along the whole length of the centrifuge, we get a differential relation between the mean axial velocity and the centrifugal and viscosity forces on the ends. Then, these equations are integrated near the ends by a boundary layer approximation method. We assume that outside the boundary layer, the axial velocity reaches its mean value. So we obtain on the first hand the repartition of all physical quantities in the boundary layer, on the second hand a differential equation between the mean axial velocity and the boundary conditions imposed on the ends. This equation, valid both for the mechanical and thermal counter-current is solved numerically. Its solution shows the existence of a second boundary layer close to the wall of the tube. The present theory extends Martin's one in that it takes into account: (1) the action of pressure forces; (2) zero velocity on the wall with no transport; (3) the interaction between mechanical and thermal effects which tend to decrease the efficiency and the intensity of the counter-current. (author)
Directory of Open Access Journals (Sweden)
G. H. Gudmundsson
2008-07-01
Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.
International Nuclear Information System (INIS)
Burde, G.I.
2002-01-01
A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
International Nuclear Information System (INIS)
Zaslawsky, M.; Kennedy, W.N.
1992-01-01
Mathematical solutions to the problem consisting of a partially-full waste tank subjected to seismic loading, embedded in soil, is classically difficult in that one has to address: soil-structure interaction, fluid-structure interaction, non-linear behavior of material, dynamic effects. Separating the problem and applying numerous assumptions will yield approximate solutions. This paper explores methods for generating these solutions accurately
Analytical Structuring of Periodic and Regular Cascading Solutions in Self-Pulsing Lasers
Directory of Open Access Journals (Sweden)
Belkacem Meziane
2008-01-01
Full Text Available A newly proposed strong harmonic-expansion method is applied to the laser-Lorenz equations to analytically construct a few typical solutions, including the first few expansions of the well-known period-doubling cascade that characterizes the system in its self-pulsing regime of operation. These solutions are shown to evolve in accordance with the driving frequency of the permanent solution that we recently reported to illustrate the system. The procedure amounts to analytically construct the signal Fourier transform by applying an iterative algorithm that reconstitutes the first few terms of its development.
Directory of Open Access Journals (Sweden)
Liquan Mei
2014-01-01
Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.
International Nuclear Information System (INIS)
Hasegawa, Hideo
2004-01-01
By extending a dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E 67, 041903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy N-unit FitzHugh-Nagumo neurons with couplings whose average coordination number Z may change from local (Z<< N) to global couplings (Z=N-1) and/or whose concentration of random couplings p is allowed to vary from regular (p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair, and that for a pair without direct couplings. The original 2N-dimensional stochastic differential equations are transformed to 13-dimensional deterministic differential equations expressed in terms of means, variances, and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of Z and p. Our calculations have shown that with increasing p, the synchronization is worse because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by our theory are in good agreement with those by direct simulations
International Nuclear Information System (INIS)
Kotler, Z.; Neria, E.; Nitzan, A.
1991-01-01
The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)
International Nuclear Information System (INIS)
Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.
1978-01-01
Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions
Directory of Open Access Journals (Sweden)
Özkan Güner
2014-01-01
Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.
Quantum theory of atom-surface scattering: exact solutions and evaluation of approximations
International Nuclear Information System (INIS)
Chiroli, C.; Levi, A.C.
1976-01-01
In a recent article a hard corrugated surface was proposed as a simple model for atom-surface scattering. The problem was not solved exactly, however, but several alternative approximations were considered. Since these three similar, but inequivalent, approximations were proposed, the problem arose to evaluate these approximations in order to choose between them. In the present letter some exact calculations are presented which make this choice rationally possible. (Auth.)
Tugay, A. V.; Zakordonskiy, V. P.
2006-06-01
The association of cationogenic benzethonium chloride with polymethacrylic acid in aqueous solutions was studied by nephelometry, conductometry, tensiometry, viscometry, and pH-metry. The critical concentrations of aggregation and polymer saturation with the surface-active substance were determined. A model describing processes in such systems step by step was suggested.
Ito's formula in UMD Banach spaces and regularity of solution of the Zakai equation
Brzezniak, Z.; Van Neerven, J.M.A.M.; Veraar, M.C.; Weis, L.
2008-01-01
Using the theory of stochastic integration for processes with values in a UMD Banach space developed recently by the authors, an Itô formula is proved which is applied to prove the existence of strong solutions for a class of stochastic evolution equations in UMD Banach spaces. The abstract results
Directory of Open Access Journals (Sweden)
D. Olvera
2015-01-01
Full Text Available We expand the application of the enhanced multistage homotopy perturbation method (EMHPM to solve delay differential equations (DDEs with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.
Goldstein, M; Haussmann, W; Hayman, W; Rogge, L
1992-01-01
This volume consists of the proceedings of the NATO Advanced Research Workshop on Approximation by Solutions of Partial Differential Equations, Quadrature Formulae, and Related Topics, which was held at Hanstholm, Denmark. These proceedings include the main invited talks and contributed papers given during the workshop. The aim of these lectures was to present a selection of results of the latest research in the field. In addition to covering topics in approximation by solutions of partial differential equations and quadrature formulae, this volume is also concerned with related areas, such as Gaussian quadratures, the Pompelu problem, rational approximation to the Fresnel integral, boundary correspondence of univalent harmonic mappings, the application of the Hilbert transform in two dimensional aerodynamics, finely open sets in the limit set of a finitely generated Kleinian group, scattering theory, harmonic and maximal measures for rational functions and the solution of the classical Dirichlet problem. In ...
An approximate solution of the two-group critical problem for reflected slabs
International Nuclear Information System (INIS)
Ishiguro, Y.; Garcia, R.D.M.
1977-01-01
A new approximation is developed to solve two group slab problems involving two media where one of the media is infinite. The method consists in combining the P sub(L) approximation with invariance principles. Several numerical results are reported for the critical slab problem [pt
Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions
Khajehtourian, Romik
Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The
Global Existence and Uniqueness of Weak and Regular Solutions of Shallow Shells with Thermal Effects
Energy Technology Data Exchange (ETDEWEB)
Menzala, G. Perla, E-mail: perla@lncc.br [National Laboratory of Scientific Computation, (LNCC/MCTI) (Brazil); Cezaro, F. Travessini De, E-mail: fabianacezaro@furg.br [Federal University of Rio Grande (FURG/IMEF), Institute of Mathematics, Statistics and Physics (Brazil)
2016-10-15
We study a dynamical thin shallow shell whose elastic deformations are described by a nonlinear system of Marguerre–Vlasov’s type under the presence of thermal effects. Our main result is the proof of a global existence and uniqueness of a weak solution in the case of clamped boundary conditions. Standard techniques for uniqueness do not work directly in this case. We overcame this difficulty using recent work due to Lasiecka (Appl Anal 4:1376–1422, 1998).
Energy Technology Data Exchange (ETDEWEB)
Spitsyn, V. I.; Balukova, V. D.; Gromov, V. V.; Zakharov, S. I.; Zhagin, B. P.; Spiridonov, F. M.
1960-07-01
Research on the sorption of radioisotopes under natural conditions employing the controlled filtration process was performed. Radioisotopes were introduced into the solution as soon as filtration had become steady and the process continued for four months. Soil samples were then taken by drilling at different depths and analysed to determine their radioisotope content. Diffusion of radioisotopes was observed at depths of up to 10 m; two distinct boundaries of soil-activity decrease were ascertained: at the surface of the site and at the depth of the solution filtration front. In addition, the radiostrontium absorption by natural sorbents, principally pure minerals widely distributed in soils and subsoils, was investigated separately. The presence of calcium ions, even in small quantities, sharply reduces the degree of radiostrontium sorption. However, other conditions being equal, strontium may be absorbed to a greater extent than calcium, according to the composition of the sorbent. The field investigations of radiostrontium sorption and migration showed that when filtering radioactive solutions two possible variants have to be taken into account. In the first case the solutions are discharged into soil unaffected by any flow of ground water. In this situation the radiostrontium is retained by the soil. In the second case, the radioisotopes proceed directly into the water-bearing horizon. The radiostrontium will then migrate with the ground water flow and through the soil and this migration will be further affected by the sorption and desorption processes occurring. The experiments performed demonstrate the ease with which long-lived radioisotopes migrate under natural conditions and call attention to the need for thorough study of ground water problems in connexion with various methods of disposing of radioactive waste into ground. (author)
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Directory of Open Access Journals (Sweden)
H. O. Bakodah
2013-01-01
Full Text Available A method of lines approach to the numerical solution of nonlinear wave equations typified by the regularized long wave (RLW is presented. The method developed uses a finite differences discretization to the space. Solution of the resulting system was obtained by applying fourth Runge-Kutta time discretization method. Using Von Neumann stability analysis, it is shown that the proposed method is marginally stable. To test the accuracy of the method some numerical experiments on test problems are presented. Test problems including solitary wave motion, two-solitary wave interaction, and the temporal evaluation of a Maxwellian initial pulse are studied. The accuracy of the present method is tested with and error norms and the conservation properties of mass, energy, and momentum under the RLW equation.
International Nuclear Information System (INIS)
Kyed, Mads
2014-01-01
The existence, uniqueness and regularity of time-periodic solutions to the Navier–Stokes equations in the three-dimensional whole space are investigated. We consider the Navier–Stokes equations with a non-zero drift term corresponding to the physical model of a fluid flow around a body that moves with a non-zero constant velocity. The existence of a strong time-periodic solution is shown for small time-periodic data. It is further shown that this solution is unique in a large class of weak solutions that can be considered physically reasonable. Finally, we establish regularity properties for any strong solution regardless of its size. (paper)
Directory of Open Access Journals (Sweden)
Alsaedi Ahmed
2009-01-01
Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.
Directory of Open Access Journals (Sweden)
A. A. Fonarev
2014-01-01
Full Text Available Possibility of use of a projective iterative method for search of approximations to the closed set of not trivial generalised solutions of a boundary value problem for Ginzburg - Landau's equations of the phenomenological theory of superconduction is investigated. The projective iterative method combines a projective method and iterative process. The generalised solutions of a boundary value problem for Ginzburg - Landau's equations are critical points of a functional of a superconductor free energy.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
Frolov, Maxim; Chistiakova, Olga
2017-06-01
Paper is devoted to a numerical justification of the recent a posteriori error estimate for Reissner-Mindlin plates. This majorant provides a reliable control of accuracy of any conforming approximate solution of the problem including solutions obtained with commercial software for mechanical engineering. The estimate is developed on the basis of the functional approach and is applicable to several types of boundary conditions. To verify the approach, numerical examples with mesh refinements are provided.
Approximate, analytic solutions of the Bethe equation for charged particle range
Swift, Damian C.; McNaney, James M.
2009-01-01
By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges match reference data to the expected accuracy of the Bethe model. In the non-relativistic limit, the energy deposition rate was also found analytically. The analytic relations can be used to complement and validate numerical solu...
A single continuum approximation of the solute transport in fractured porous media
International Nuclear Information System (INIS)
Jeong, J.T.; Lee, K.J.
1992-01-01
Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium model. In this model, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 o to the regional groundwater flow direction. Governing equations are solved by the finite element method, and an upstream weighting technique is used in order to prevent the oscillation of the solution in the case of highly advection dominated transport. Breakthrough curves, similar to those of the one-dimensional solute transport problem in ordinary porous media, are obtained as a function of time according to volume or flux averaging of the concentration profile across the width of the flow region. The equivalent parameters, i.e., porosity and overall coefficient of longitudinal dispersivity, are obtained by a trial-and-error method. Analyses for the non-sorbing solute transport case show that within the range of considered parameters, and except for the region very close to the source, application of the single continuum model in the idealized fracture system is sufficient for modeling solute transport in fractured porous media. This numerical scheme is shown to be applicable to a sorbing solute and radionuclide transport. (author)
Approximate analytical solutions to the condensation-coagulation equation of aerosols
DEFF Research Database (Denmark)
Smith, Naftali R.; Shaviv, Nir J.; Svensmark, Henrik
2016-01-01
to the coagulation limit plus a condensation correction. Our solutions are then compared with numerical results. We show that the solutions can be used to estimate the sensitivity of the cloud condensation nuclei number density to the nucleation rate of small condensation nuclei and to changes in the formation rate...
Regularities of growth, condensation, solution of vapour and gaseous bubbles in turbulent flows
International Nuclear Information System (INIS)
Avdeev, A.A.
1988-01-01
Corrections for interphase transfer exchange intensity and for bubbles dynamics in the forced turbulent flow as well are obtained on the basis of the surface periodical restoration model. Analysis of the effects, caused by turbulence additional generation due to bubbles floating-up within gravity field, is carried out. Formulae for calculating interphase heat and mass transfer at bubbling are suggested. Application limits for the developed model are determined. Comparison of calculation results according to the derived universal dependence with experimental data on growth rates and condensation of vapour bubble, and on solution rates of gaseous bubbles in water (Re=8x10 3 -2x10 6 ; Pr0.83-568, pressure up to 10 MPa) has revealed their good agreeme nt
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Rashidi
2008-01-01
Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.
Solutions of the Low equation in the no-crossing approximation
International Nuclear Information System (INIS)
Kumar, K.S.; Nogami, Y.
1979-01-01
In solving the Low equation for the Chew-Low model, if the crossing term is dropped a ghost state appears in the repulsive channels for a sufficiently large coupling constant. Ernst et al. suggested recently that this difficulty could be avoided by adopting a solution with a Castillejo-Dalitz-Dyson (CDD) pole in its denominator. Contrary to this suggestion, we show that the inclusion of the CDD pole, rather than avoiding the difficulty, only compounds it. We also reexamine Dyson's interpretation of the ''redundant'' CDD solutions, and point out that the Low equation we study possesses solutions to which Dyson's interpretation does not seem to apply
International Nuclear Information System (INIS)
Song Lina; Wang Weiguo
2010-01-01
In this Letter, an enhanced Adomian decomposition method which introduces the h-curve of the homotopy analysis method into the standard Adomian decomposition method is proposed. Some examples prove that this method can derive successfully approximate rational Jacobi elliptic function solutions of the fractional differential equations.
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
Directory of Open Access Journals (Sweden)
Ishak Altun
2016-01-01
Full Text Available We provide sufficient conditions for the existence of a unique common fixed point for a pair of mappings T,S:X→X, where X is a nonempty set endowed with a certain metric. Moreover, a numerical algorithm is presented in order to approximate such solution. Our approach is different to the usual used methods in the literature.
An approximate and an analytical solution to the carousel-pendulum problem
Energy Technology Data Exchange (ETDEWEB)
Vial, Alexandre [Pole Physique, Mecanique, Materiaux et Nanotechnologies, Universite de technologie de Troyes, 12, rue Marie Curie BP-2060, F-10010 Troyes Cedex (France)], E-mail: alexandre.vial@utt.fr
2009-09-15
We show that an improved solution to the carousel-pendulum problem can be easily obtained through a first-order Taylor expansion, and its accuracy is determined after the obtention of an unusable analytical exact solution, advantageously replaced by a numerical one. It is shown that the accuracy is unexpectedly high, even when the ratio length of the pendulum to carousel radius approaches unity. (letters and comments)
Directory of Open Access Journals (Sweden)
Norhasimah Mahiddin
2014-01-01
Full Text Available The modified decomposition method (MDM and homotopy perturbation method (HPM are applied to obtain the approximate solution of the nonlinear model of tumour invasion and metastasis. The study highlights the significant features of the employed methods and their ability to handle nonlinear partial differential equations. The methods do not need linearization and weak nonlinearity assumptions. Although the main difference between MDM and Adomian decomposition method (ADM is a slight variation in the definition of the initial condition, modification eliminates massive computation work. The approximate analytical solution obtained by MDM logically contains the solution obtained by HPM. It shows that HPM does not involve the Adomian polynomials when dealing with nonlinear problems.
Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun
2014-01-01
This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.
Directory of Open Access Journals (Sweden)
Qianqian Duan
2014-01-01
Full Text Available This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.
Loglinear Approximate Solutions to Real-Business-Cycle Models: Some Observations
Lau, Sau-Him Paul; Ng, Philip Hoi-Tak
2007-01-01
Following the analytical approach suggested in Campbell, the authors consider a baseline real-business-cycle (RBC) model with endogenous labor supply. They observe that the coefficients in the loglinear approximation of the dynamic equations characterizing the equilibrium are related to the fundamental parameters in a relatively simple manner.…
Directory of Open Access Journals (Sweden)
S. A. Eftekhari
Full Text Available AbstractThe differential quadrature method (DQM is one of the most elegant and efficient methods for the numerical solution of partial differential equations arising in engineering and applied sciences. It is simple to use and also straightforward to implement. However, the DQM is well-known to have some difficulty when applied to partial differential equations involving singular functions like the Dirac-delta function. This is caused by the fact that the Dirac-delta function cannot be directly discretized by the DQM. To overcome this difficulty, this paper presents a simple differential quadrature procedure in which the Dirac-delta function is replaced by regularized smooth functions. By regularizing the Dirac-delta function, such singular function is treated as non-singular functions and can be easily and directly discretized using the DQM. To demonstrate the applicability and reliability of the proposed method, it is applied here to solve some moving load problems of beams and rectangular plates, where the location of the moving load is described by a time-dependent Dirac-delta function. The results generated by the proposed method are compared with analytical and numerical results available in the literature. Numerical results reveal that the proposed method can be used as an efficient tool for dynamic analysis of beam- and plate-type structures traversed by moving dynamic loads.
Peculiarities of solutions to the Chew Low equation in the no crossing approximation
International Nuclear Information System (INIS)
Ernst, D.J.
1978-01-01
We show that the canonical presciption for finding a solution to the static Chew-Low theory of the pion-nucleon interaction breaks down for physically acceptable values of the coupling constant and form factor, if crossing symmetry is dropped. The difficulty is associated with the appearance of a pole (whose behavior is similar to a 'ghost state' pole) in the scattering amplitude in repulsive channels. We show that solutions without this pole can be obtained by including CDD poles in the denominator function, giving rise to a zero in the amplitude or the positive real axis. (orig.) [de
International Nuclear Information System (INIS)
Ofoedu, Eric U.; Malonza, David M.
2010-07-01
In this paper we study the hybrid iterative scheme to find a common element of a set of solutions of generalized mixed equilibrium problem, a set of common fixed points of finite family of weak relatively nonexpansive mapping, and null spaces of finite family of γ-inverse strongly monotone mappings in a 2-uniformly convex and uniformly smooth real Banach space. Our results extend, improve and generalize the results of several authors which were announced recently. An application of our theorem to the solution of equations of Hammerstein-type is of independent interest. (author)
DEFF Research Database (Denmark)
Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Pontil, Massimiliano
2014-01-01
We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured...... sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized functional that includes the ℓ21-norm of the coding...... matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios...
Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun
2014-01-01
This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand unc...
Solution of the kinetic equation in the P3-approximation in a plane geometry
International Nuclear Information System (INIS)
Vlasov, Yu.A.
1975-01-01
A method and a program are described for solving single-velocity kinetic equations of neutron transfer for the plane geometry in the finite-difference approximation. A difference high-accuracy scheme and a matrix factorization method are used for the differential-difference equation systems. The program is written in the ALGOL-60 language and is adapted for M-20, M-220, M-222 and BESM-4 computers
Andrei, R.M.; Smith, C.S.; Fraanje, P.R.; Verhaegen, M.; Korkiakoski, V.A.; Keller, C.U.; Doelman, N.J.
2012-01-01
In this paper we give a new wavefront estimation technique that overcomes the main disadvantages of the phase diversity (PD) algorithms, namely the large computational complexity and the fact that the solutions can get stuck in a local minima. Our approach gives a good starting point for an
Directory of Open Access Journals (Sweden)
Decio Levi
2013-10-01
Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.
The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...
Approximate treatment of two soliton solutions of the sine-Gordon equation
International Nuclear Information System (INIS)
Mihaly, L.
1979-05-01
The so called breather solution of the sine-Gordon equation is phenomenologically described by an appropri.ately choosen potential acting between two particles. For some applications the method proves to be equivalent to other classical and quantum calculations. (author)
Directory of Open Access Journals (Sweden)
David Heimann
2007-08-01
Full Text Available In supply chains, domestic and global, a producer must decide on an optimal quantity of items to order from suppliers and at what inventory level to place this order (the EOQ problem. We discuss how to modify the EOQ in the face of failures and recoveries by the supplier. This is the EOQ with disruption problem (EOQD. The supplier makes transitions between being capable and not being capable of filling an order in a Markov failure and recovery process. The producer adjusts the reorder point and the inventories to provide a margin of safety. Numerical solutions to the EOQD problem have been developed. In addition, a closed-form approximate solution has been developed for the zero inventory option (ZIO, where the inventory level on reordering is set to be zero. This paper develops a closed-form approximate solution for the EOQD problem when the reorder point can be non-zero, obtaining for that situation an optimal reorder quantity and optimal reorder point that represents an improvement on the optimal ZIO solution. The paper also supplies numerical examples demonstrating the cost savings against the ZIO situation, as well as the accuracy of the approximation technique.
Energy Technology Data Exchange (ETDEWEB)
Kotler, Z.; Neria, E.; Nitzan, A. (Tel Aviv Univ. (Israel). School of Chemistry)
1991-02-01
The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.).
International Nuclear Information System (INIS)
Wei Gaofeng; Dong Shihai
2008-01-01
In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential
International Nuclear Information System (INIS)
Yang Pei; Li Zhibin; Chen Yong
2010-01-01
In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)
Directory of Open Access Journals (Sweden)
Mohammad Sirousazar
2017-07-01
Full Text Available Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was modeled on the basis of diffusion mechanism, using the Fick’s second law. The model was developed by taking into account the influences of the fruit geometrical characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the water concentration in hypertonic solution. Based on the obtained model, it was shown that the water diffusion coefficient and the initial water concentration of fruit have direct effects on the dehydration rate and also inverse influence on the dehydration duration. The geometrical parameters of fruit and water concentration in hypertonic solution showed direct effect on the dehydration duration as well as inverse effect on the dehydration rate. The presented model seems to be useful tool to predict the dehydration kinetics of cone-shaped fruit during osmotic dehydration process and to optimize the process prior to perform the experiments.
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
Approximation of Fixed Points of Nonexpansive Mappings and Solutions of Variational Inequalities
Directory of Open Access Journals (Sweden)
Chidume CO
2008-01-01
Full Text Available Abstract Let be a real -uniformly smooth Banach space with constant , . Let and be a nonexpansive map and an -strongly accretive map which is also -Lipschitzian, respectively. Let be a real sequence in that satisfies the following condition: and . For and , define a sequence iteratively in by , , . Then, converges strongly to the unique solution of the variational inequality problem (search for such that for all , where . A convergence theorem related to finite family of nonexpansive maps is also proved.
Czech Academy of Sciences Publication Activity Database
Haslinger, Jaroslav; Kučera, R.; Šátek, V.
2017-01-01
Roč. 22, October 2017 (2017), s. 1-14 ISSN 1081-2865 R&D Projects: GA MŠk LQ1602; GA ČR(CZ) GA17-01747S Institutional support: RVO:68145535 Keywords : Stokes system * threshold slip boundary conditions * solution dependent slip function Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/abs/10.1177/1081286517716222
International Nuclear Information System (INIS)
Czubek, J.A.; Woznicka, U.
1997-01-01
A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n + 2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R 1 surrounded by the intermediate region (e.g. mud cake) of thickness (R 2 -R 1 ) and finally surrounded by the geological formation which spreads from R 2 up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author)
Energy Technology Data Exchange (ETDEWEB)
Czubek, J.A.; Woznicka, U. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)
1997-12-31
A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n{sup +}2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R{sub 1} surrounded by the intermediate region (e.g. mud cake) of thickness (R{sub 2}-R{sub 1}) and finally surrounded by the geological formation which spreads from R{sub 2} up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author) 6 refs, 2 figs
Mohammad Sirousazar
2017-01-01
Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was modeled on the basis of diffusion mechanism, using the Fick’s second law. The model was developed by taking into account the influences of the fruit geometrical characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the water concentration in hypertonic solution. Based on the obtained model, it was shown that the water diffusion coefficient and the initial water concentratio...
Czech Academy of Sciences Publication Activity Database
Haslinger, Jaroslav; Kučera, R.; Šátek, V.
2017-01-01
Roč. 22, October 2017 (2017), s. 1-14 ISSN 1081-2865 R&D Projects: GA MŠk LQ1602; GA ČR(CZ) GA17-01747S Institutional support: RVO:68145535 Keywords : Stokes system * threshold slip boundary conditions * solution dependent slip function Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/abs/10.1177/1081286517716222
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Approximation of a solution for a K-positive definite operator equation
International Nuclear Information System (INIS)
Chidume, C.E.; Osilike, M.O.
1994-11-01
Let E be a separable q-uniformly smooth Banach space, q > 1, and let A : D(A) is contained in-bar E → E be a K-positive definite operator. Let f is an element of E be arbitrary. An iterative method is constructed which converges strongly to the unique solution of the equation Ax = f. Our result resolves two questions raised in Chidume and Aneke (Applicable Analysis Vol. 50 (1993), p. 293). (author). 13 refs
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
Energy Technology Data Exchange (ETDEWEB)
Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be
2009-06-19
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.
International Nuclear Information System (INIS)
Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien
2009-01-01
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential
International Nuclear Information System (INIS)
Feizi, H.; Rajabi, A.A.; Shojaei, M.R.
2011-01-01
In this work, the three dimensional Woods-Saxon potential is studied within the context of Supersymmetry Quantum Mechanics. We have applied the SUSY method by using the Pekeris approximation to the centrifugal potential l ≠ 0 states. By application of this method, it is possible to solve the Schroedinger equation for this potential. We obtain exactly bound state spectrum and wave function of Woods-Saxon potential for nonzero angular momentum. Hamiltonian hierarchy method and the shape invariance property are used in the calculations. (authors)
A maintenance policy for a system with multi-state components: an approximate solution
International Nuclear Information System (INIS)
Guerler, Uelkue; Kaya, Alev
2002-01-01
For maintenance and quality assessment purposes, various performance levels for both systems and components are identified, usually as a function of the deterioration. In this study, we consider a multicomponent system where the lifetime of each component is described by several stages, (0,...,S), which are further classified as good, doubtful, preventive maintenance due (PM due) and down. A control policy is suggested where the system is replaced when a component enters a PM due or a down state and the number of components in the doubtful states (K,...,S-2) is at least N. All maintenance activities are assumed to take negligible time. The exact description of the underlying stochastic model under the policy is very complicated. We therefore propose some approximations, which allow an explicit expression for the long run average cost function, which is minimized w.r.t. (K,N) by numerical methods. Sensitivity of the model to system parameters and the performance of the approximation are investigated through several examples
International Nuclear Information System (INIS)
Bahar, M.K.; Yasuk, F.
2012-01-01
The solutions of the effective mass Dirac equation for the Manning-Rosen potential with the centrifugal term are studied approximately in N dimension. The relativistic energy spectrum and two-component spinor eigenfunctions are obtained by the asymptotic iteration method. We have also investigated eigenvalues of the effective mass Dirac-Manning-Rosen problem for α = 0 or α = 1. In this case, the Manning-Rosen potential reduces to the Hulthen potential. (author)
Directory of Open Access Journals (Sweden)
Lyakhovich Leonid
2017-01-01
Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.
International Nuclear Information System (INIS)
Nalesso, G.F.; Jacobson, A.R.
1991-01-01
A solution to the problem of a plane electromagnetic wave traveling parallel to a constant magnetic field in a horizontally stratified ionosphere was developed assuming that the permittivity of the medium can be represented as the sum of an unperturbed component and a perturbed component. The method is successfully applied to the case of a linearly varying permittivity of a lossless ionosphere with a superimposed Gaussian perturbing term. The feasibility of applying the method in the presence of an odd number of turning points is discussed. 13 refs
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels
Xie, Z.
2018-05-01
The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr
Approximate analytical solutions in the analysis of elastic structures of complex geometry
Goloskokov, Dmitriy P.; Matrosov, Alexander V.
2018-05-01
A method of analytical decomposition for analysis plane structures of a complex configuration is presented. For each part of the structure in the form of a rectangle all the components of the stress-strain state are constructed by the superposition method. The method is based on two solutions derived in the form of trigonometric series with unknown coefficients using the method of initial functions. The coefficients are determined from the system of linear algebraic equations obtained while satisfying the boundary conditions and the conditions for joining the structure parts. The components of the stress-strain state of a bent plate with holes are calculated using the analytical decomposition method.
International Nuclear Information System (INIS)
Obradovic, D.
1970-04-01
In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)
Domínguez, Luis F.
2012-06-25
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).
International Nuclear Information System (INIS)
Otero, F A; Frontini, G L; Elicabe, G E
2011-01-01
An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
Directory of Open Access Journals (Sweden)
L.L. Glazyrina
2016-12-01
Full Text Available In this paper, the initial-boundary problem for two nonlinear parabolic combined equations has been considered. One of the equations is set on the bounded domain Ω from R2, another equation is set along the curve lying in Ω. Both of the equations are parabolic equations with double degeneration. The degeneration can be present at the space operator. Furthermore, the nonlinear function which is under the sign of partial derivative with respect to the variable t, can be bound to zero. This problem has an applied character: such structure is needed to describe the process of surface and ground water combined movement. In this case, the desired function determines the level of water above the given impenetrable bottom, the section simulates the riverbed. The Bussinesk equation has been used for mathematical description of the groundwater filtration process in the domain Ω; a diffusion analogue of the Saint-Venant's system has been used on the section for description of the process of water level change in the open channel. Earlier, the authors proved the theorems of generalized solution existence and uniqueness for the considered problem from the functions classes which are called strengthened Sobolev spaces in the literature. To obtain these results, we used the technique which was created by the German mathematicians (H.W. Alt, S. Luckhaus, F. Otto to establish the correctness of the problems with a double degeneration. In this paper, we have proposed and investigated an approximate solution method for the above-stated problem. This method has been constructed using semidiscretization with respect to the variable t and the finite element method for space variables. Triangulation of the domain has been accomplished by triangles. The mesh has been set on the section line. On each segment of the line section lying between the nearby mesh points, on both side of this segment we have constructed the triangles with a common side which matches with
Directory of Open Access Journals (Sweden)
Ituen B. Okon
2017-01-01
Full Text Available We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP. We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2, lithium hydride molecule (LiH, hydrogen chloride molecule (HCl, and carbon (II oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.
International Nuclear Information System (INIS)
Monticelli, Cintia O.; Wortmann, Sergio; Segatto, Cynthia F.
2005-01-01
In this work is obtained a hybrid solution to the Fokker-Planck equation with energy dependency, very used in ion implantation problems. The main idea relies on the application of Laplace transform in the energy variable, and finite-difference in the spatial variable and in the angular variable. This procedure leads to a symbolic matrix problem for the transformed energy. To solve this system, is needed to do the Laplace inverse of the (sI+A) matrix, where s is a complex parameter, I is the identity matrix and A is a square matrix that was proceeded from the finite-difference in the spatial variable and in the angular variable. The matrix A is not defective, then is taken decomposition of A in a sum of two others matrices, where one is defective. It leads a iterative inversion method, similar the source fixed method combined with the diagonalization method, then is obtained the values to the angular flux. Hereafter we can to determine the energy deposited into the electronic system and in the nuclear system of the target. To comprove the results obtained, the simulation of implantation of B into Si at energies ranging from 1 KeV to 50 MeV was carried out and compared with the results by software SRIM2003. (author)
Lawson, A C; Lashley, J C
2011-09-14
In this paper we apply the Aptekar-Ponyatovsky (AP) regular solution thermodynamic model to the analysis of experimental data for the coefficient of thermal expansion (CTE) and determine the AP model parameters for unalloyed cerium metal, Ce-Th-La alloys, and Pu-Ga alloys. We find that the high temperature CTE of cerium metal follows the predictions of the AP model based on low temperature, high pressure data. For Ce-Th-La alloys we use the AP parameters to track the suppression of the first-order γ-α cerium transition. We show the AP model accounts for the negative CTE observed for Pu-Ga alloys and is equivalent to an earlier invar model. Finally, we apply the AP parameters obtained for Pu-Ga alloys to rationalize the observed δ-α transformation pressures of these alloys. We show that the anomalous values of the Grüneisen and Grüneisen-Anderson parameters are important features of the thermal properties of plutonium. A strong analogy between the properties of plutonium and cerium is confirmed.
Gibbon, John D; Pal, Nairita; Gupta, Anupam; Pandit, Rahul
2016-12-01
We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced, incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes (CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential development of singularities (blow-up) in the contours of the order parameter ϕ is an open problem. To address this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]. By taking an L^{∞} norm of the energy of the full binary system, designated as E_{∞}, we have shown that ∫_{0}^{t}E_{∞}(τ)dτ governs the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with 128^{3} to 512^{3} collocation points and over the duration of our DNSs confirm that E_{∞} remains bounded as far as our computations allow.
John A. D. Appleby
2010-01-01
We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. ...
39 (APPROXIMATE ANALYTICAL SOLUTION)
African Journals Online (AJOL)
Rotating machines like motors, turbines, compressors etc. are generally subjected to periodic forces and the system parameters remain more or less constant. ... parameters change and, consequently, the natural frequencies too, due to reasons of changing gyroscopic moments, centrifugal forces, bearing characteristics,.
Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis
2007-07-01
This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.
Zhang, Yongfang; Wu, Peng; Guo, Bo; Lü, Yanjun; Liu, Fuxi; Yu, Yingtian
2015-01-01
The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half-speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational efforts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, which are suitable for high eccentricity ratios and heavy loads.
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří
2014-01-01
Roč. 139, č. 4 (2014), s. 685-698 ISSN 0862-7959 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * suitable weak solution * regularity Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144145
Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur
2018-03-01
Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.
Directory of Open Access Journals (Sweden)
Appleby JohnAD
2010-01-01
Full Text Available We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. The result is considered both for a linear Volterra integrodifferential equation as well as for the delay logistic equation from population biology.
Czech Academy of Sciences Publication Activity Database
Guo, Z.; Kučera, P.; Skalák, Zdeněk
2018-01-01
Roč. 458, č. 1 (2018), s. 755-766 ISSN 0022-247X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985874 Keywords : Navier Stokes equations * conditional regularity * regularity criteria * vorticity * Besov spaces * bony decomposition Subject RIV: BA - General Mathematics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.064, year: 2016
DEFF Research Database (Denmark)
Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.; Thomsen, Kaj
2012-01-01
The thermodynamics of electrolyte solutions has been investigated by many scientists throughout the last century. While several theories have been presented, the most popular models for the electrostatic interactions are based on the Debye–Hückel and mean spherical approximation (MSA) theories....... In this paper we investigate the differences between the Debye–Hückel and the MSA theories, and comparisons of the numerical results for the Helmholtz energy and its derivatives with respect to temperature, volume and composition are presented. The investigation shows that the nonrestricted primitive MSA...... theory performs similarly to Debye–Hückel, despite the differences in the derivation. We furthermore show that the static permittivity is a key parameter for both models and that in many cases it completely dominates the results obtained from the two models. Consequently, we conclude that the simpler...
International Nuclear Information System (INIS)
Guo Boling.
1988-08-01
The existence and uniqueness of the global smooth solution for the initial-boundary value problem of the system of multi-dimensions SRWE are proved. The sufficient conditions of ''blowing up'' of the solution are given. (author). 6 refs
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
International Nuclear Information System (INIS)
Vorob'ev, A.F.; Monaenkova, A.S.; AlekseeV, G.I.
1987-01-01
In an air-tight tilting calorimeter with an isothermal casing enthalpies of praseodymium chloride solution in water, dimethyl sulfoxide (DMSO) - water mixtures, contaning 3.86 and 18.53 mol.% DMSO, and propylene carbonate (PC) - water mixtures, containing 1.85 and 3.23 mol.% PC are measured. The enthalpies of praseodymium chloride solution in the given mixtures in case of infinite solution dilution are determined. Solvation enthalpies of praseodymium and neodymium chlorides, as well as alkali earth metal and magnesium chlorides in water and DMSO - water and PC - water mixtures are calculated. Regularities in thermochemical characteristics of solutions of the given salts in DMSO - water and PC - water mixtures are discussed
Directory of Open Access Journals (Sweden)
Bisheng Wu
2017-01-01
Full Text Available Approximate solutions are found for a mathematical model developed to predict the heat extraction from a closed-loop geothermal system which consists of two vertical wells (one for injection and the other for production and one horizontal well which connects the two vertical wells. Based on the feature of slow heat conduction in rock formation, the fluid flow in the well is divided into three stages, that is, in the injection, horizontal, and production wells. The output temperature of each stage is regarded as the input of the next stage. The results from the present model are compared with those obtained from numerical simulator TOUGH2 and show first-order agreement with a temperature difference less than 4°C for the case where the fluid circulated for 2.74 years. In the end, a parametric study shows that (1 the injection rate plays dominant role in affecting the output performance, (2 higher injection temperature produces larger output temperature but decreases the total heat extracted given a specific time, (3 the output performance of geothermal reservoir is insensitive to fluid viscosity, and (4 there exists a critical point that indicates if the fluid releases heat into or absorbs heat from the surrounding formation.
International Nuclear Information System (INIS)
Zhang Yongde.
1987-03-01
In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs
Directory of Open Access Journals (Sweden)
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Directory of Open Access Journals (Sweden)
Hayk Ghazaryan
2010-06-01
Full Text Available In this paper it is proved that all distributional solutions of the non-degenerate, almost hypoelliptic (hypoelliptic by the one of variables equation $P(Du = P(D_{1},D_{2}u = 0$ are infinitely differentiable in the certain strip in $E^{2}$ under a priori assumption that they and its certain derivatives are square integrable with a certain exponential weight.
Regularization methods in Banach spaces
Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S
2012-01-01
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B
Reerink, T.J.|info:eu-repo/dai/nl/304831905; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Borsboom, P.-P.
2009-01-01
To overcome the mechanical coupling of an ice sheet with an ice shelf, one single set of velocity equations is presented covering both the sheet and the shelf. This set is obtained by applying shared sheet-shelf approximations. The hydrostatic approximation and a constant density are the only
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-03-01
Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when
Schneider, André; Lin, Zhongbing; Sterckeman, Thibault; Nguyen, Christophe
2018-04-01
The dissociation of metal complexes in the soil solution can increase the availability of metals for root uptake. When it is accounted for in models of bioavailability of soil metals, the number of partial differential equations (PDEs) increases and the computation time to numerically solve these equations may be problematic when a large number of simulations are required, for example for sensitivity analyses or when considering root architecture. This work presents analytical solutions for the set of PDEs describing the bioavailability of soil metals including the kinetics of complexation for three scenarios where the metal complex in solution was fully inert, fully labile, or partially labile. The analytical solutions are only valid i) at steady-state when the PDEs become ordinary differential equations, the transient phase being not covered, ii) when diffusion is the major mechanism of transport and therefore, when convection is negligible, iii) when there is no between-root competition. The formulation of the analytical solutions is for cylindrical geometry but the solutions rely on the spread of the depletion profile around the root, which was modelled assuming a planar geometry. The analytical solutions were evaluated by comparison with the corresponding PDEs for cadmium in the case of the French agricultural soils. Provided that convection was much lower than diffusion (Péclet's number<0.02), the cumulative uptakes calculated from the analytic solutions were in very good agreement with those calculated from the PDEs, even in the case of a partially labile complex. The analytic solutions can be used instead of the PDEs to predict root uptake of metals. The analytic solutions were also used to build an indicator of the contribution of a complex to the uptake of the metal by roots, which can be helpful to predict the effect of soluble organic matter on the bioavailability of soil metals. Copyright © 2017 Elsevier B.V. All rights reserved.
Domí nguez, Luis F.; Pistikopoulos, Efstratios N.
2012-01-01
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear
International Nuclear Information System (INIS)
Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.
2015-01-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Solonenko, A. P.
2018-01-01
Research aimed at developing new bioactive materials for the repair of defects in bone tissues, do not lose relevance due to the strengthening of the regenerative approach in medicine. From this point of view, materials based on calcium phosphates, including silicate ions, consider as one of the most promising group of substances. Methods of synthesis and properties of hydroxyapatite doped with various amounts of SiO4 4- ions are described in literature. In the present work synthesis of a solid phase in the systems Ca(NO3)2 - (NH4)2HPO4 - Na2SiO3 - NH4OH - H2O (Cca/CP = 1.70) performed with a wide range of sodium silicate additive concentration (y = CSi/CP = 0 ÷ 5). It is established that under the studied conditions at y ≥ 0.3 highly dispersed poorly crystallized apatite containing isomorphic impurities of CO3 2- and SiO4 4- precipitates in a mixture with calcium hydrosilicate and SiO2. It is shown that the resulting composites can gradually dissolve in physiological solution and initiate passive formation of the mineral component of hard tissues.
International Nuclear Information System (INIS)
Aboanber, A E; Nahla, A A
2002-01-01
A method based on the Pade approximations is applied to the solution of the point kinetics equations with a time varying reactivity. The technique consists of treating explicitly the roots of the inhour formula. A significant improvement has been observed by treating explicitly the most dominant roots of the inhour equation, which usually would make the Pade approximation inaccurate. Also the analytical inversion method which permits a fast inversion of polynomials of the point kinetics matrix is applied to the Pade approximations. Results are presented for several cases of Pade approximations using various options of the method with different types of reactivity. The formalism is applicable equally well to non-linear problems, where the reactivity depends on the neutron density through temperature feedback. It was evident that the presented method is particularly good for cases in which the reactivity can be represented by a series of steps and performed quite well for more general cases
International Nuclear Information System (INIS)
Meszaros, P.; Nagel, W.; Ventura, J.
1979-11-01
Theoretical studies of the radiation from hot, strongly magnetized plasmas, as encountered in pulsars, require a knowledge of solutions to the transfer equations for polarized radiation. We present here an analytic solution of the radiative transfer equations for one-dimensional propagation across a homogeneous slab of finite depth, as well as for a semi-infinite atmosphere. Absorption, scattering and mode-exchange between the two polarizations is included, the role of this latter being crucial. A physical discussion of the solutions for certain limiting cases, and an interpretation in terms of probabilistic (quantum escape approach) arguments, fully corrobrates these solutions, and provides a better intuitive feel for the behaviour of the radiated spectra. Whereas our analytic solutions are valid for any birefringent medium (not necessarily magnetic), our numerical examples and the qualitative discussion presented refer to the particular problem of the radiation from X-ray pulsars. Large scale qualitative changes from the nonmagnetic spectra aae found, which affect both the continum and the spectral lines. (orig.) 891 WL/orig. 892 RDG
Regularization and error estimates for nonhomogeneous backward heat problems
Directory of Open Access Journals (Sweden)
Duc Trong Dang
2006-01-01
Full Text Available In this article, we study the inverse time problem for the non-homogeneous heat equation which is a severely ill-posed problem. We regularize this problem using the quasi-reversibility method and then obtain error estimates on the approximate solutions. Solutions are calculated by the contraction principle and shown in numerical experiments. We obtain also rates of convergence to the exact solution.
International Nuclear Information System (INIS)
Kaiser, H.G.
1985-01-01
The author is concerned with the flow conditions in case of narrow fuel element grids of pressurised-water reactors. Starting from the mathematical formulation of the flow processes for incompressible, isothermal flows, models of the turbulence characteristics are being developed. Besides turbulence models, and network structure the finite element method is treated as numeric solution process. Finally the results are summarized and discussed. (HAG) [de
Salama, Amgad
2013-09-01
In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.
International Nuclear Information System (INIS)
Xuan Fuzhen; Liu Changjun; Li Peining
2005-01-01
This paper is concerned with the prediction of limit load of the piping branch junctions with circumferential crack under internal pressure. Recently, we have developed a new approach for predicting the limit load of two-cylinder intersection structures with diameter ratio larger than 0.5, which has been successfully applied to defect free cases under various loading conditions. In the present work, we consider the extension of the approach to cover cracked piping branch junctions. On the basis of stress analysis in the vicinity of intersection line, a closed form of limit load solution for piping branch junctions with circumferential crack was developed. Then, 36 finite element (FE) models of piping branch junction with various dimensions of structure and crack were analyzed by using nonlinear finite element software. The limit loads from FE analysis and the proposed solution are compared with each other. Overall good agreement between the estimated solutions and the FE results provides confidence in the use of the proposed formulae for defect assessment of piping branch junctions in practice
Vitanov, Nikolay K.
2011-03-01
We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.
Approximate Solution of Schrödinger Equation with Pseudo-Gaussian Potential Viewed as a Perturbation
Directory of Open Access Journals (Sweden)
Iacob Theodor-Felix
2015-12-01
Full Text Available We consider the Schrödinger equation with pseudo-Gaussian potential and point out that it is basically made up by a term representing the harmonic oscillator potential and an additional term, which is actually a power series that converges rapidly. Based on this observation the system can be considered as a perturbation of harmonic oscillator. The perturbation method is used to approximate the energy levels of pseudo- Gaussian oscillator. The results are compared with those obtained in the analytic and numeric case.
Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W
2012-08-31
We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.
Box, M. A.; Deepak, A.
1981-01-01
The propagation of photons in a medium with strongly anisotropic scattering is a problem with a considerable history. Like the propagation of electrons in metal foils, it may be solved in the small-angle scattering approximation by the use of Fourier-transform techniques. In certain limiting cases, one may even obtain analytic expressions. This paper presents some of these results in a model-independent form and also illustrates them by the use of four different phase-function models. Sample calculations are provided for comparison purposes
Directory of Open Access Journals (Sweden)
Ali Belhocine
2018-01-01
Full Text Available In the thermal entrance region, a thermal boundary layer develops and also reaches the circular tube center. The fully developed region is the zone in which the flow is both hydrodynamically and thermally developed. The heat flux will be higher near the inlet because the heat transfer coefficient is highest at the tube inlet where the thickness of the thermal boundary layer is zero and decreases gradually to the fully developed value. In this paper, the assumptions implicit in Leveque's approximation are re-examined, and the analytical solution of the problem with additional boundary conditions, for the temperature field and the boundary layer thickness through the long tube is presented. By defining a similarity variable, the governing equations are reduced to a dimensionless equation with an analytic solution in the entrance region. This report gives justification for the similarity variable via scaling analysis, details the process of converting to a similarity form, and presents a similarity solution. The analytical solutions are then checked against numerical solution programming by Fortran code obtained via using Runge-Kutta fourth order (RK4 method. Finally, others important thermal results obtained from this analysis, such as; approximate Nusselt number in the thermal entrance region was discussed in detail.
International Nuclear Information System (INIS)
Hamman, E.; Zorgati, R.
1995-01-01
Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an 'optimization' type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append
Dariescu, Marina-Aura; Dariescu, Ciprian
2012-10-01
Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.
Harris, W F
1989-03-01
The exact equation for sagitta of spherical surfaces is generalized to toric surfaces which include spherical and cylindrical surfaces as special cases. Lens thickness, therefore, can be calculated accurately anywhere on a lens even in cases of extreme spherical and cylindrical powers and large diameters. The sagittae of tire- and barrel-form toric surfaces differ off the principal meridians, as is shown by a numerical example. The same holds for pulley- and capstan-form toric surfaces. A general expression is given for thickness at an arbitrary point on a toric lens. Approximate expressions are derived and re-expressed in terms of matrices. The matrix provides an elegant means of generalizing equations for spherical surfaces and lenses to toric surfaces and lenses.
International Nuclear Information System (INIS)
Okita, Taishi; Takagi, Toshiyuki
2010-01-01
We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequency excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
International Nuclear Information System (INIS)
Esguerra A, A.; Arteaga, N. A.; Ipaz, L.; Aguilar, Y.; Amaya, C.; Alba de Sanchez, N.
2014-01-01
Due to their excellent properties, Ti-Al-N coatings have become attractive for biomedical applications. In this paper, friction and wear properties of Ti 1-x Al x N films having various aluminum contents, x, have been studied. Adhesion was measured by the scratch test technique; friction was carried out by a pin-on-disk tribometer using an animal bone-pin as counterpart and Ringer solution as simulated body fluid; and wear mechanisms were identified by scanning electron microscopy and Energy Dispersive X-ray Spectroscopy (EDS). It was found that the coating with x = 0.41 exhibited the highest CO F, conserves its integrity as a coating, and causes the lowest wear on the bone in Ringers solution. EDS analysis was performed to determine the contents of Ti, Al and N. An X-ray diffraction study was carried out using and X pert High Score Plus diffractometer with Cu-Kα radiation (α = 1.5406 A) at grazing angle of 0.5 grades. (Author)
Van Gorder, Robert A
2013-04-01
We provide a formulation of the local induction approximation (LIA) for the motion of a vortex filament in the Cartesian reference frame (the extrinsic coordinate system) which allows for scaling of the reference coordinate. For general monotone scalings of the reference coordinate, we derive an equation for the planar solution to the derivative nonlinear Schrödinger equation governing the LIA. We proceed to solve this equation perturbatively in small amplitude through an application of multiple-scales analysis, which allows for accurate computation of the period of the planar vortex filament. The perturbation result is shown to agree strongly with numerical simulations, and we also relate this solution back to the solution obtained in the arclength reference frame (the intrinsic coordinate system). Finally, we discuss nonmonotone coordinate scalings and their application for finding self-intersections of vortex filaments. These self-intersecting vortex filaments are likely unstable and collapse into other structures or dissipate completely.
DEFF Research Database (Denmark)
Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.
1994-01-01
Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...
Selection of regularization parameter for l1-regularized damage detection
Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing
2018-06-01
The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Chudnovsky, A.; Dolgopolsky, A.; Kachanov, M.
1987-01-01
The elastic interactions of a two-dimensional configuration consisting of a crack with an array of microcracks located near the tip are studied. The general form of the solution is based on the potential representations and approximations of tractions on the microcracks by polynomials. In the second part, the technique is applied to two simple two-dimensional configurations involving one and two microcracks. The problems of stress shielding and stress amplification (the reduction or increase of the effective stress intensity factor due to the presence of microcracks) are discussed, and the refinements introduced by higher order polynomial approximations are illustrated.
Directory of Open Access Journals (Sweden)
Pabst W.
2013-06-01
Full Text Available A new closed-form expression is presented for estimating the real-in-line transmission of ceramics consisting of non-absorbing phases in dependence of the inclusion or pore size. The classic approximations to the exact Mie solution of the scattering problem for spheres are recalled (Rayleigh, Fraunhofer, Rayleigh-Gans-Debye/RGD, van de Hulst, and it is recalled that the large-size variant of the RGD approximation is the basis of the Apetz-van-Bruggen approach. All approximations and our closed-form expression are compared mutually and vis-a-vis the exact Mie solution. A parametric study is performed for monochromatic light in the visible range (600 nm for two model systems corresponding to composites of yttrium aluminum garnet (YAG, refractive index 1.832 with spherical alumina inclusions (refractive index 1.767, and to porous YAG ceramics with spherical pores (refractive index 1. It is shown that for the YAG-alumina composites to achieve maximum transmission with inclusion volume fractions of 1 % (and slab thickness 1 mm, inclusion sizes of up to 100 nm can be tolerated, while pore sizes of 100 nm will be completely detrimental for porosities as low as 0.1 %. While the van-de-Hulst approximation is excellent for small phase contrast and low concentration of inclusions, it fails for principal reasons for small inclusion or pore sizes. Our closed-form expression, while less precise in the aforementioned special case, is always the safer choice and performs better in most cases of practical interest, including high phase contrasts and high concentrations of inclusions or pores.
Fymat, A. L.; Smith, C. B.
1979-01-01
It is shown that the inverse analytical solutions, provided separately by Fymat and Box-McKellar, for reconstructing particle size distributions from remote spectral transmission measurements under the anomalous diffraction approximation can be derived using a cosine and a sine transform, respectively. Sufficient conditions of validity of the two formulas are established. Their comparison shows that the former solution is preferable to the latter in that it requires less a priori information (knowledge of the particle number density is not needed) and has wider applicability. For gamma-type distributions, and either a real or a complex refractive index, explicit expressions are provided for retrieving the distribution parameters; such expressions are, interestingly, proportional to the geometric area of the polydispersion.
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
International Nuclear Information System (INIS)
Belendez, A.; Belendez, T.; Neipp, C.; Hernandez, A.; Alvarez, M.L.
2009-01-01
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ≤ λ ≤ 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.
International Nuclear Information System (INIS)
Zhang, Xiaoshun; Yu, Tao; Yang, Bo; Zheng, Limin; Huang, Linni
2015-01-01
Highlights: • A novel optimal carbon-energy combined-flow (OCECF) model is firstly established. • A novel approximate ideal multi-objective solution Q(λ) learning is designed. • The proposed algorithm has a high convergence stability and reliability. • The proposed algorithm can be applied for OCECF in a large-scale power grid. - Abstract: This paper proposes a novel approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems. The carbon emissions, fuel cost, active power loss, voltage deviation and carbon emission loss are chosen as the optimization objectives, which are simultaneously optimized by five different Q-value matrices. The dynamic optimal weight of each objective is calculated online from the entire Q-value matrices such that the greedy action policy can be obtained. Case studies are carried out to evaluate the optimization performance for carbon-energy combined-flow in an IEEE 118-bus system and the regional power grid of southern China.
Learning regularization parameters for general-form Tikhonov
International Nuclear Information System (INIS)
Chung, Julianne; Español, Malena I
2017-01-01
Computing regularization parameters for general-form Tikhonov regularization can be an expensive and difficult task, especially if multiple parameters or many solutions need to be computed in real time. In this work, we assume training data is available and describe an efficient learning approach for computing regularization parameters that can be used for a large set of problems. We consider an empirical Bayes risk minimization framework for finding regularization parameters that minimize average errors for the training data. We first extend methods from Chung et al (2011 SIAM J. Sci. Comput. 33 3132–52) to the general-form Tikhonov problem. Then we develop a learning approach for multi-parameter Tikhonov problems, for the case where all involved matrices are simultaneously diagonalizable. For problems where this is not the case, we describe an approach to compute near-optimal regularization parameters by using operator approximations for the original problem. Finally, we propose a new class of regularizing filters, where solutions correspond to multi-parameter Tikhonov solutions, that requires less data than previously proposed optimal error filters, avoids the generalized SVD, and allows flexibility and novelty in the choice of regularization matrices. Numerical results for 1D and 2D examples using different norms on the errors show the effectiveness of our methods. (paper)
Goličnik, Marko
2011-01-01
The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.
Traveling waves of the regularized short pulse equation
International Nuclear Information System (INIS)
Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J
2014-01-01
The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)
On geodesics in low regularity
Sämann, Clemens; Steinbauer, Roland
2018-02-01
We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.
Regularizing portfolio optimization
International Nuclear Information System (INIS)
Still, Susanne; Kondor, Imre
2010-01-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regularizing portfolio optimization
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA
Directory of Open Access Journals (Sweden)
IONIŢĂ Elena
2015-06-01
Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.
International Nuclear Information System (INIS)
Thomas, P.D.; Basus, V.J.; James, T.L.
1991-01-01
Solution structures for many proteins have been determined to date utilizing interproton distance constraints estimated from two-dimensional nuclear Overhauser effect (2D NOE) spectra. Although the simple isolated spin pair approximation (ISPA) generally used can result in systematic errors in distances, the large number of constraints enables proteins structure to be defined with reasonably high resolution. Effects of these systematic errors on the resulting protein structure are examined. Iterative relaxation matrix calculations, which account for dipolar interactions between all protons in a molecule, can accurately determine internuclear distances with little or no a priori knowledge of the molecular structure. The value of this additional complexity is also addressed. To assess these distance determination methods, hypothetical experimental data, including random noise and peak overlap, are calculated for an arbitrary true protein structure. Three methods of obtaining distance constraints from 2D NOE peak intensities are examined: one entails a conservative use of ISPA, one assumes the ISPA to be fairly accurate, and on utilizes an iterative relaxation matrix method called MARDIGRAS (matrix analysis of relaxation for discerning the geometry of an aqueous structure), developed in this laboratory. An R factor for evaluating fit between experimental and calculated 2D NOE intensities is proposed
International Nuclear Information System (INIS)
Pirouzmand, Ahmad; Hadad, Kamal
2011-01-01
Highlights: → This paper describes the solution of time-independent neutron transport equation. → Using a novel method based on cellular neural networks (CNNs) coupled with P N method. → Utilize the CNN model to simulate spatial scalar flux distribution in steady state. → The accuracy, stability, and capabilities of CNN model are examined in x-y geometry. - Abstract: This paper describes a novel method based on using cellular neural networks (CNN) coupled with spherical harmonics method (P N ) to solve the time-independent neutron transport equation in x-y geometry. To achieve this, an equivalent electrical circuit based on second-order form of neutron transport equation and relevant boundary conditions is obtained using CNN method. We use the CNN model to simulate spatial response of scalar flux distribution in the steady state condition for different order of spherical harmonics approximations. The accuracy, stability, and capabilities of CNN model are examined in 2D Cartesian geometry for fixed source and criticality problems.
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří; Al Baba, Hind
2018-01-01
Roč. 463, č. 1 (2018), s. 222-234 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * Navier-type boundary conditions * interior regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 https://www. science direct.com/ science /article/pii/S0022247X18302233?via%3Dihub
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří; Al Baba, Hind
2018-01-01
Roč. 463, č. 1 (2018), s. 222-234 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * Navier-type boundary conditions * interior regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 https://www.sciencedirect.com/science/article/pii/S0022247X18302233?via%3Dihub
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Novel Harmonic Regularization Approach for Variable Selection in Cox’s Proportional Hazards Model
Directory of Open Access Journals (Sweden)
Ge-Jin Chu
2014-01-01
Full Text Available Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2regularizations, to select key risk factors in the Cox’s proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL, the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.
Matrix regularization of 4-manifolds
Trzetrzelewski, M.
2012-01-01
We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...
Approximating distributions from moments
Pawula, R. F.
1987-11-01
A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.
Directory of Open Access Journals (Sweden)
Fairouz Zouyed
2015-01-01
Full Text Available This paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. This problem is ill-posed; that is, the solution (if it exists does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.
International Nuclear Information System (INIS)
El Sawi, M.
1983-07-01
A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
International Nuclear Information System (INIS)
Dyshekov, A.A.; Khapachev, Yu.P.
1997-01-01
It is proposed to use qualitative investigation methods of the differential Takagi equation solutions for the analysis of general properties of wave fields in deformed crystals. The physical interpretation of possible types of the Takagi equation solutions is considered briefly from the viewpoint of the stability theory. The type of solutions are defined by ratios between parameters involved in the equations set. For the Takagi equation these parameters are prescribed by the angular tuning from the precise Bragg angle as well as structural characteristics of the crystal and the deformation profile. The qualitative analysis for the problem of the dynamic X-ray diffraction is carried out for films with the variable deformation gradient and superlattices [ru
Spectral Regularization Algorithms for Learning Large Incomplete Matrices.
Mazumder, Rahul; Hastie, Trevor; Tibshirani, Robert
2010-03-01
We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a simple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound on the nuclear norm. Our algorithm Soft-Impute iteratively replaces the missing elements with those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute an entire regularization path of solutions on a grid of values of the regularization parameter. The computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix. Exploiting the problem structure, we show that the task can be performed with a complexity linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to large matrices: for example it can obtain a rank-80 approximation of a 10(6) × 10(6) incomplete matrix with 10(5) observed entries in 2.5 hours, and can fit a rank 40 approximation to the full Netflix training set in 6.6 hours. Our methods show very good performance both in training and test error when compared to other competitive state-of-the art techniques.
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
Ensemble manifold regularization.
Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng
2012-06-01
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.
Variational regularization of 3D data experiments with Matlab
Montegranario, Hebert
2014-01-01
Variational Regularization of 3D Data provides an introduction to variational methods for data modelling and its application in computer vision. In this book, the authors identify interpolation as an inverse problem that can be solved by Tikhonov regularization. The proposed solutions are generalizations of one-dimensional splines, applicable to n-dimensional data and the central idea is that these splines can be obtained by regularization theory using a trade-off between the fidelity of the data and smoothness properties.As a foundation, the authors present a comprehensive guide to the necessary fundamentals of functional analysis and variational calculus, as well as splines. The implementation and numerical experiments are illustrated using MATLAB®. The book also includes the necessary theoretical background for approximation methods and some details of the computer implementation of the algorithms. A working knowledge of multivariable calculus and basic vector and matrix methods should serve as an adequat...
Bounded Perturbation Regularization for Linear Least Squares Estimation
Ballal, Tarig
2017-10-18
This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.
Scattered data approximation by regular grid weighted smoothing
Indian Academy of Sciences (India)
Bibin Francis
2018-02-07
Feb 7, 2018 ... proposed method earlier, is one of the recent advancements in developing ... Department of Science and Technology, Government of. India, under Grant .... Springer Science & Business Media, New York, USA. [35] Harten A ...
A regularization method for extrapolation of solar potential magnetic fields
Gary, G. A.; Musielak, Z. E.
1992-01-01
The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.
Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule
Jin, Qinian; Wang, Wei
2018-03-01
The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.
Sparsity regularization for parameter identification problems
International Nuclear Information System (INIS)
Jin, Bangti; Maass, Peter
2012-01-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
DEFF Research Database (Denmark)
Sneskov, Kristian; Gras, Eduard Matito; Kongsted, Jacob
2010-01-01
as being applicable for averaging over many solvent configurations derived from, for example, molecular simulations. We test the proposed model using as a benchmark the two lowest-lying valence singlet excitations (n → π* and π → π*) of acrolein, formamide, and N-methylacetamide in aqueous solution as well...
Sandberg, Mattias
2015-01-07
The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with log normal distributed diffusion coefficients, e.g. modelling ground water flow. Typical models use log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. This talk will address how the total error can be estimated by the computable error.
Hall, Eric
2016-01-09
The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with lognormal distributed diffusion coefficients, e.g. modeling ground water flow. Typical models use lognormal diffusion coefficients with H´ older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. We address how the total error can be estimated by the computable error.
Broeckhoven, Ken; Desmet, Gert
2007-11-16
Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.
Van Vlaenderen, Ilse; Van Bellinghen, Laure-Anne; Meier, Genevieve; Nautrup, Barbara Poulsen
2013-01-22
Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2) for other age groups not targeted (e
2013-01-01
Background Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Methods Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. Results The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. Conclusions This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2
Directory of Open Access Journals (Sweden)
Van Vlaenderen Ilse
2013-01-01
Full Text Available Abstract Background Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Methods Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. Results The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. Conclusions This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1 for the age group targeted by the childhood vaccination strategy
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Numerical simulation of the regularized long wave equation by He's homotopy perturbation method
Energy Technology Data Exchange (ETDEWEB)
Inc, Mustafa [Department of Mathematics, Firat University, 23119 Elazig (Turkey)], E-mail: minc@firat.edu.tr; Ugurlu, Yavuz [Department of Mathematics, Firat University, 23119 Elazig (Turkey)
2007-09-17
In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.
Numerical simulation of the regularized long wave equation by He's homotopy perturbation method
International Nuclear Information System (INIS)
Inc, Mustafa; Ugurlu, Yavuz
2007-01-01
In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Nijholt, Antinus
1980-01-01
Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular
Asgharzadeh, Hafez; Borazjani, Iman
2014-11-01
Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Energy Technology Data Exchange (ETDEWEB)
Esguerra A, A.; Arteaga, N. A.; Ipaz, L.; Aguilar, Y. [Universidad del Valle, TPMR, Grupo de Investigacion en Tribologia, Polimeros, Metalurgia de Polvos y Residuos Solidos, Calle 13 No. 100-00, A. A. 25360 Cali (Colombia); Amaya, C. [Centro Nacional de Asistencia Tecnica a la Industria ASTIN, SENA, Calle 52 No. 2 Bis-15, Salomia Cali (Colombia); Alba de Sanchez, N., E-mail: adriana.esguerra.arce@gmail.com [Universidad Autonoma de Occidente, Grupo de Investigacion en Ciencia e Ingenieria de Materiales, Calle 25 No. 115-85, A. A. 2790 Cali (Colombia)
2014-07-01
Due to their excellent properties, Ti-Al-N coatings have become attractive for biomedical applications. In this paper, friction and wear properties of Ti{sub 1-x}Al{sub x}N films having various aluminum contents, x, have been studied. Adhesion was measured by the scratch test technique; friction was carried out by a pin-on-disk tribometer using an animal bone-pin as counterpart and Ringer solution as simulated body fluid; and wear mechanisms were identified by scanning electron microscopy and Energy Dispersive X-ray Spectroscopy (EDS). It was found that the coating with x = 0.41 exhibited the highest CO F, conserves its integrity as a coating, and causes the lowest wear on the bone in Ringers solution. EDS analysis was performed to determine the contents of Ti, Al and N. An X-ray diffraction study was carried out using and X pert High Score Plus diffractometer with Cu-Kα radiation (α = 1.5406 A) at grazing angle of 0.5 grades. (Author)
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-01
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-07
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Regular Expression Pocket Reference
Stubblebine, Tony
2007-01-01
This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp
Regularization by fractional filter methods and data smoothing
International Nuclear Information System (INIS)
Klann, E; Ramlau, R
2008-01-01
This paper is concerned with the regularization of linear ill-posed problems by a combination of data smoothing and fractional filter methods. For the data smoothing, a wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the reconstruction, an approximation to the solution of the operator equation is computed from the data estimate by fractional filter methods. These fractional methods are based on the classical Tikhonov and Landweber method, but avoid, at least partially, the well-known drawback of oversmoothing. Convergence rates as well as numerical examples are presented
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.; Franek, M.; Schonlieb, C.-B.
2012-01-01
for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations
Regularization by External Variables
DEFF Research Database (Denmark)
Bossolini, Elena; Edwards, R.; Glendinning, P. A.
2016-01-01
Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...
Goyvaerts, Jan
2009-01-01
This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-15
diagonal of the Jacobian further improves the performance by 42 - 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.
Asgharzadeh, Hafez; Borazjani, Iman
2016-01-01
diagonal of the Jacobian further improves the performance by 42 – 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80–90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future. PMID:28042172
A Regularization SAA Scheme for a Stochastic Mathematical Program with Complementarity Constraints
Directory of Open Access Journals (Sweden)
Yu-xin Li
2014-01-01
Full Text Available To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints (MPCC have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a regularization sample average approximation (SAA method for solving a stochastic mathematical program with complementarity constraints (SMPCC. The analysis of this regularization method is carried out in three steps: First, the almost sure convergence of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed.
International Nuclear Information System (INIS)
Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.
2004-01-01
We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)
An improved saddlepoint approximation.
Gillespie, Colin S; Renshaw, Eric
2007-08-01
Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Physical model of dimensional regularization
Energy Technology Data Exchange (ETDEWEB)
Schonfeld, Jonathan F.
2016-12-15
We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)
An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography
Energy Technology Data Exchange (ETDEWEB)
Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)
2011-11-15
Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...
Directory of Open Access Journals (Sweden)
Pavel A. Akimov
2017-12-01
Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.
Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents
Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene
2016-01-01
Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.
Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents
Athanassoulis, Agissilaos
2016-08-30
Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.
RES: Regularized Stochastic BFGS Algorithm
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
A regularized vortex-particle mesh method for large eddy simulation
DEFF Research Database (Denmark)
Spietz, Henrik Juul; Walther, Jens Honore; Hejlesen, Mads Mølholm
We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible ﬂuid ﬂow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green’s function...... solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the ﬁltered Navier Stokes equations, hence we use the method for Large Eddy...
Regularities of Multifractal Measures
Indian Academy of Sciences (India)
First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...
Stochastic analytic regularization
International Nuclear Information System (INIS)
Alfaro, J.
1984-07-01
Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)
Regularization Techniques for Linear Least-Squares Problems
Suliman, Mohamed
2016-04-01
Linear estimation is a fundamental branch of signal processing that deals with estimating the values of parameters from a corrupted measured data. Throughout the years, several optimization criteria have been used to achieve this task. The most astonishing attempt among theses is the linear least-squares. Although this criterion enjoyed a wide popularity in many areas due to its attractive properties, it appeared to suffer from some shortcomings. Alternative optimization criteria, as a result, have been proposed. These new criteria allowed, in one way or another, the incorporation of further prior information to the desired problem. Among theses alternative criteria is the regularized least-squares (RLS). In this thesis, we propose two new algorithms to find the regularization parameter for linear least-squares problems. In the constrained perturbation regularization algorithm (COPRA) for random matrices and COPRA for linear discrete ill-posed problems, an artificial perturbation matrix with a bounded norm is forced into the model matrix. This perturbation is introduced to enhance the singular value structure of the matrix. As a result, the new modified model is expected to provide a better stabilize substantial solution when used to estimate the original signal through minimizing the worst-case residual error function. Unlike many other regularization algorithms that go in search of minimizing the estimated data error, the two new proposed algorithms are developed mainly to select the artifcial perturbation bound and the regularization parameter in a way that approximately minimizes the mean-squared error (MSE) between the original signal and its estimate under various conditions. The first proposed COPRA method is developed mainly to estimate the regularization parameter when the measurement matrix is complex Gaussian, with centered unit variance (standard), and independent and identically distributed (i.i.d.) entries. Furthermore, the second proposed COPRA
A regularization method for solving the Poisson equation for mixed unbounded-periodic domains
DEFF Research Database (Denmark)
Spietz, Henrik Juul; Mølholm Hejlesen, Mads; Walther, Jens Honoré
2018-01-01
the regularized unbounded-periodic Green's functions can be implemented in an FFT-based Poisson solver to obtain a convergence rate corresponding to the regularization order of the Green's function. The high order is achieved without any additional computational cost from the conventional FFT-based Poisson solver...... and enables the calculation of the derivative of the solution to the same high order by direct spectral differentiation. We illustrate an application of the FFT-based Poisson solver by using it with a vortex particle mesh method for the approximation of incompressible flow for a problem with a single periodic...
Improvements in GRACE Gravity Fields Using Regularization
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
Energy functions for regularization algorithms
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
Fast and compact regular expression matching
DEFF Research Database (Denmark)
Bille, Philip; Farach-Colton, Martin
2008-01-01
We study 4 problems in string matching, namely, regular expression matching, approximate regular expression matching, string edit distance, and subsequence indexing, on a standard word RAM model of computation that allows logarithmic-sized words to be manipulated in constant time. We show how...... to improve the space and/or remove a dependency on the alphabet size for each problem using either an improved tabulation technique of an existing algorithm or by combining known algorithms in a new way....
Online Manifold Regularization by Dual Ascending Procedure
Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui
2013-01-01
We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...
Approximation of Bayesian Inverse Problems for PDEs
Cotter, S. L.; Dashti, M.; Stuart, A. M.
2010-01-01
Inverse problems are often ill posed, with solutions that depend sensitively on data.n any numerical approach to the solution of such problems, regularization of some form is needed to counteract the resulting instability. This paper is based on an approach to regularization, employing a Bayesian formulation of the problem, which leads to a notion of well posedness for inverse problems, at the level of probability measures. The stability which results from this well posedness may be used as t...
Boundary Value Problems and Approximate Solutions
African Journals Online (AJOL)
Tadesse
Department of Mathematics, College of Natural and Computational Scineces, Mekelle ..... In this section, the Variational Iteration Method is applied to different forms of .... Some problems in non-Newtonian fluid mechanics, Ph.D. thesis, Wales.
Efficient automata constructions and approximate automata
Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.
2008-01-01
In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern
Efficient automata constructions and approximate automata
Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.; Holub, J.; Zdárek, J.
2006-01-01
In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Regular expression containment
DEFF Research Database (Denmark)
Henglein, Fritz; Nielsen, Lasse
2011-01-01
We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
Regularized maximum correntropy machine
Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin
2015-01-01
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Matrix regularization of embedded 4-manifolds
International Nuclear Information System (INIS)
Trzetrzelewski, Maciej
2012-01-01
We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).
Iterative regularization in intensity-modulated radiation therapy optimization
International Nuclear Information System (INIS)
Carlsson, Fredrik; Forsgren, Anders
2006-01-01
A common way to solve intensity-modulated radiation therapy (IMRT) optimization problems is to use a beamlet-based approach. The approach is usually employed in a three-step manner: first a beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and have to be regularized in order to produce smooth fluence profiles that are suitable for conversion. The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial Hessian estimate, and second, to empirically show that beamlet-weight optimization problems should be solved in relatively few iterations when using this optimization method. The explanation of the suitability is based on viewing the optimization method as an iterative regularization method. In iterative regularization, the optimization problem is solved approximately by iterating long enough to obtain a solution close to the optimal one, but terminating before too much noise occurs. Iterative regularization requires an optimization method that initially proceeds in smooth directions and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume objectives and bounds on the beamlet-weights, we find that the considered optimization method fulfills the requirements for performing iterative regularization. After segment-weight optimization, the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We conclude that iterating too long may in fact deteriorate the quality of the deliverable plan
Incremental projection approach of regularization for inverse problems
Energy Technology Data Exchange (ETDEWEB)
Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)
2016-10-15
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
An inductive algorithm for smooth approximation of functions
International Nuclear Information System (INIS)
Kupenova, T.N.
2011-01-01
An inductive algorithm is presented for smooth approximation of functions, based on the Tikhonov regularization method and applied to a specific kind of the Tikhonov parametric functional. The discrepancy principle is used for estimation of the regularization parameter. The principle of heuristic self-organization is applied for assessment of some parameters of the approximating function
Approximate Reanalysis in Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole
2009-01-01
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...
All-Norm Approximation Algorithms
Azar, Yossi; Epstein, Leah; Richter, Yossi; Woeginger, Gerhard J.; Penttonen, Martti; Meineche Schmidt, Erik
2002-01-01
A major drawback in optimization problems and in particular in scheduling problems is that for every measure there may be a different optimal solution. In many cases the various measures are different ℓ p norms. We address this problem by introducing the concept of an All-norm ρ-approximation
Diagonal Pade approximations for initial value problems
International Nuclear Information System (INIS)
Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.
1987-06-01
Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab
Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions
Ilgen, Marc R.
This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value
Regularized quasinormal modes for plasmonic resonators and open cavities
Kamandar Dezfouli, Mohsen; Hughes, Stephen
2018-03-01
Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Diverse Regular Employees and Non-regular Employment (Japanese)
MORISHIMA Motohiro
2011-01-01
Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
'Regular' and 'emergency' repair
International Nuclear Information System (INIS)
Luchnik, N.V.
1975-01-01
Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)
Regularization of divergent integrals
Felder, Giovanni; Kazhdan, David
2016-01-01
We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.
Saddlepoint Approximations in Conditional Inference
1990-06-11
Then the inverse transform can be written as (%, Y) = (T, q(T, Z)) for some function q. When the transform is not one to one, the domain should be...general regularity conditions described at the beginning of this section hold and that the solution t1 in (9) exists. Denote the inverse transform by (X, Y...density hn(t 0 l z) are desired. Then the inverse transform (Y, ) = (T, q(T, Z)) exists and the variable v in the cumulant generating function K(u, v
Regular Single Valued Neutrosophic Hypergraphs
Directory of Open Access Journals (Sweden)
Muhammad Aslam Malik
2016-12-01
Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.
The geometry of continuum regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-03-01
This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Total Variation Regularization for Functions with Values in a Manifold
Lellmann, Jan; Strekalovskiy, Evgeny; Koetter, Sabrina; Cremers, Daniel
2013-01-01
While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.
Total Variation Regularization for Functions with Values in a Manifold
Lellmann, Jan
2013-12-01
While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.
Annotation of Regular Polysemy
DEFF Research Database (Denmark)
Martinez Alonso, Hector
Regular polysemy has received a lot of attention from the theory of lexical semantics and from computational linguistics. However, there is no consensus on how to represent the sense of underspecified examples at the token level, namely when annotating or disambiguating senses of metonymic words...... and metonymic. We have conducted an analysis in English, Danish and Spanish. Later on, we have tried to replicate the human judgments by means of unsupervised and semi-supervised sense prediction. The automatic sense-prediction systems have been unable to find empiric evidence for the underspecified sense, even...
Regularity of Minimal Surfaces
Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht
2010-01-01
"Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t
Regularities of radiation heredity
International Nuclear Information System (INIS)
Skakov, M.K.; Melikhov, V.D.
2001-01-01
One analyzed regularities of radiation heredity in metals and alloys. One made conclusion about thermodynamically irreversible changes in structure of materials under irradiation. One offers possible ways of heredity transmittance of radiation effects at high-temperature transformations in the materials. Phenomenon of radiation heredity may be turned to practical use to control structure of liquid metal and, respectively, structure of ingot via preliminary radiation treatment of charge. Concentration microheterogeneities in material defect structure induced by preliminary irradiation represent the genetic factor of radiation heredity [ru
International Nuclear Information System (INIS)
Ginsburg, C.A.
1980-01-01
In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)
Jia, Zhongxiao; Yang, Yanfei
2018-05-01
In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).
Online Manifold Regularization by Dual Ascending Procedure
Directory of Open Access Journals (Sweden)
Boliang Sun
2013-01-01
Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Class of regular bouncing cosmologies
Vasilić, Milovan
2017-06-01
In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.
Shearlets and Optimally Sparse Approximations
DEFF Research Database (Denmark)
Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q
2012-01-01
Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....
Total variation regularization for a backward time-fractional diffusion problem
International Nuclear Information System (INIS)
Wang, Liyan; Liu, Jijun
2013-01-01
Consider a two-dimensional backward problem for a time-fractional diffusion process, which can be considered as image de-blurring where the blurring process is assumed to be slow diffusion. In order to avoid the over-smoothing effect for object image with edges and to construct a fast reconstruction scheme, the total variation regularizing term and the data residual error in the frequency domain are coupled to construct the cost functional. The well posedness of this optimization problem is studied. The minimizer is sought approximately using the iteration process for a series of optimization problems with Bregman distance as a penalty term. This iteration reconstruction scheme is essentially a new regularizing scheme with coupling parameter in the cost functional and the iteration stopping times as two regularizing parameters. We give the choice strategy for the regularizing parameters in terms of the noise level of measurement data, which yields the optimal error estimate on the iterative solution. The series optimization problems are solved by alternative iteration with explicit exact solution and therefore the amount of computation is much weakened. Numerical implementations are given to support our theoretical analysis on the convergence rate and to show the significant reconstruction improvements. (paper)
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
CONTRIBUTIONS TO RATIONAL APPROXIMATION,
Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)
Finite approximations in fluid mechanics
International Nuclear Information System (INIS)
Hirschel, E.H.
1986-01-01
This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems
2010-12-07
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...
A variational regularization of Abel transform for GPS radio occultation
Directory of Open Access Journals (Sweden)
T.-K. Wee
2018-04-01
Full Text Available In the Global Positioning System (GPS radio occultation (RO technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the
A variational regularization of Abel transform for GPS radio occultation
Wee, Tae-Kwon
2018-04-01
In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose
Euclidean shortest paths exact or approximate algorithms
Li, Fajie
2014-01-01
This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.
Steepest descent approximations for accretive operator equations
International Nuclear Information System (INIS)
Chidume, C.E.
1993-03-01
A necessary and sufficient condition is established for the strong convergence of the steepest descent approximation to a solution of equations involving quasi-accretive operators defined on a uniformly smooth Banach space. (author). 49 refs
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Gelation on heating of supercooled gelatin solutions.
Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey
2012-04-23
Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian
International Nuclear Information System (INIS)
Bel, L.; Zia, H.S.
1985-01-01
We consider those relativistic theories of gravitation which generalize Einstein's theory in the sense that their field equations derive from a scalar Lagrangian which, besides the matter term, contains a linear combination of the Ricci scalar, its square, and the square of the Ricci tensor. Using a generalization of a technique which has been used to deal with some dynamical systems, we regularly and covariantly reduce the corresponding fourth-order differential equations to second-order ones. We examine, in particular, at a low order of approximation, these reduced equations in cosmology, and for static and spherically symmetric interior solutions with constant density
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximations of Fuzzy Systems
Directory of Open Access Journals (Sweden)
Vinai K. Singh
2013-03-01
Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions
Potvin, Guy
2015-10-01
We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.
Error estimates in projective solutions of the radon equation
International Nuclear Information System (INIS)
Lubuma, M.S.
1991-04-01
The model Radon equation is the integral equation of the second kind defined by the interior limits of the electrostatic double layer potential relative to a curve with one angular point and characterized by the non compactness of the operator with respect to the maximum norm. It is shown that the solution to this equation is decomposable into a regular part and a finite linear combination of intrinsic singular functions. The maximal regularity of the solution and explicit formulae for the coefficients of the singular functions are given. The regularity permits to specify how slow the convergence of the classical projection method is, while the above mentioned formulae lead to modified projection methods of the Dual Singular Function Method type, with better approximations for the solution and for the coefficients of singularities. (author). 23 refs
Approximate source conditions for nonlinear ill-posed problems—chances and limitations
International Nuclear Information System (INIS)
Hein, Torsten; Hofmann, Bernd
2009-01-01
In the recent past the authors, with collaborators, have published convergence rate results for regularized solutions of linear ill-posed operator equations by avoiding the usual assumption that the solutions satisfy prescribed source conditions. Instead the degree of violation of such source conditions is expressed by distance functions d(R) depending on a radius R ≥ 0 which is an upper bound of the norm of source elements under consideration. If d(R) tends to zero as R → ∞ an appropriate balancing of occurring regularization error terms yields convergence rates results. This approach was called the method of approximate source conditions, originally developed in a Hilbert space setting. The goal of this paper is to formulate chances and limitations of an application of this method to nonlinear ill-posed problems in reflexive Banach spaces and to complement the field of low order convergence rates results in nonlinear regularization theory. In particular, we are going to establish convergence rates for a variant of Tikhonov regularization. To keep structural nonlinearity conditions simple, we update the concept of degree of nonlinearity in Hilbert spaces to a Bregman distance setting in Banach spaces
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
International Nuclear Information System (INIS)
Knobloch, A.F.
1980-01-01
A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de
Singular tachyon kinks from regular profiles
International Nuclear Information System (INIS)
Copeland, E.J.; Saffin, P.M.; Steer, D.A.
2003-01-01
We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Approximation properties of haplotype tagging
Directory of Open Access Journals (Sweden)
Dreiseitl Stephan
2006-01-01
Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Yuste, Santos Bravo; Abad, Enrique
2011-01-01
We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.
2012-03-11
The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).
Regularized Discriminant Analysis: A Large Dimensional Study
Yang, Xiaoke
2018-04-28
In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).
Adaptive Regularization of Neural Classifiers
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai
1997-01-01
We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...
Lavrentiev regularization method for nonlinear ill-posed problems
International Nuclear Information System (INIS)
Kinh, Nguyen Van
2002-10-01
In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)
Extreme values, regular variation and point processes
Resnick, Sidney I
1987-01-01
Extremes Values, Regular Variation and Point Processes is a readable and efficient account of the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors It presents a coherent treatment of the distributional and sample path fundamental properties of extremes and records It emphasizes the core primacy of three topics necessary for understanding extremes the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces The book is self-contained and requires an introductory measure-theoretic course in probability as a prerequisite Almost all sections have an extensive list of exercises which extend developments in the text, offer alternate approaches, test mastery and provide for enj...
On Covering Approximation Subspaces
Directory of Open Access Journals (Sweden)
Xun Ge
2009-06-01
Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.
Approximate maximum parsimony and ancestral maximum likelihood.
Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat
2010-01-01
We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.
2010-09-02
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Prestack wavefield approximations
Alkhalifah, Tariq
2013-01-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
DEFF Research Database (Denmark)
Madsen, Rasmus Elsborg
2005-01-01
The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...
Approximation by Cylinder Surfaces
DEFF Research Database (Denmark)
Randrup, Thomas
1997-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal
WKB approximation in atomic physics
International Nuclear Information System (INIS)
Karnakov, Boris Mikhailovich
2013-01-01
Provides extensive coverage of the Wentzel-Kramers-Brillouin approximation and its applications. Presented as a sequence of problems with highly detailed solutions. Gives a concise introduction for calculating Rydberg states, potential barriers and quasistationary systems. This book has evolved from lectures devoted to applications of the Wentzel-Kramers-Brillouin- (WKB or quasi-classical) approximation and of the method of 1/N -expansion for solving various problems in atomic and nuclear physics. The intent of this book is to help students and investigators in this field to extend their knowledge of these important calculation methods in quantum mechanics. Much material is contained herein that is not to be found elsewhere. WKB approximation, while constituting a fundamental area in atomic physics, has not been the focus of many books. A novel method has been adopted for the presentation of the subject matter, the material is presented as a succession of problems, followed by a detailed way of solving them. The methods introduced are then used to calculate Rydberg states in atomic systems and to evaluate potential barriers and quasistationary states. Finally, adiabatic transition and ionization of quantum systems are covered.
Ghose, Ranajeet; Fushman, David; Cowburn, David
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.
Ghose, R; Fushman, D; Cowburn, D
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.
New regularities in mass spectra of hadrons
International Nuclear Information System (INIS)
Kajdalov, A.B.
1989-01-01
The properties of bosonic and baryonic Regge trajectories for hadrons composed of light quarks are considered. Experimental data agree with an existence of daughter trajectories consistent with string models. It is pointed out that the parity doubling for baryonic trajectories, observed experimentally, is not understood in the existing quark models. Mass spectrum of bosons and baryons indicates to an approximate supersymmetry in the mass region M>1 GeV. These regularities indicates to a high degree of symmetry for the dynamics in the confinement region. 8 refs.; 5 figs
Approximation in two-stage stochastic integer programming
W. Romeijnders; L. Stougie (Leen); M. van der Vlerk
2014-01-01
htmlabstractApproximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value.
Approximation in two-stage stochastic integer programming
Romeijnders, W.; Stougie, L.; van der Vlerk, M.H.
2014-01-01
Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value. However,
Regularizing properties of Complex Monge-Amp\\`ere flows
Tô, Tat Dat
2016-01-01
We study the regularizing properties of complex Monge-Amp\\`ere flows on a K\\"ahler manifold $(X,\\omega)$ when the initial data are $\\omega$-psh functions with zero Lelong number at all points. We prove that the general Monge-Amp\\`ere flow has a solution which is immediately smooth. We also prove the uniqueness and stability of solution.
Sharp Bounds for Symmetric and Asymmetric Diophantine Approximation
Institute of Scientific and Technical Information of China (English)
Cornelis KRAAIKAMP; Ionica SMEETS
2011-01-01
In 2004,Tong found bounds for the approximation quality of a regular continued fraction convergent to a rational number,expressed in bounds for both the previous and next approximation.The authors sharpen his results with a geometric method and give both sharp upper and lower bounds.The asymptotic frequencies that these bounds occur are also calculated.
Approximate Bayesian recursive estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav
2014-01-01
Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf
Approximating Preemptive Stochastic Scheduling
Megow Nicole; Vredeveld Tjark
2009-01-01
We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...
Optimization and approximation
Pedregal, Pablo
2017-01-01
This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.
Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy
International Nuclear Information System (INIS)
Zhou, B.
1997-01-01
The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics
Continuum-regularized quantum gravity
International Nuclear Information System (INIS)
Chan Huesum; Halpern, M.B.
1987-01-01
The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)
Multiscale analysis for ill-posed problems with semi-discrete Tikhonov regularization
International Nuclear Information System (INIS)
Zhong, Min; Lu, Shuai; Cheng, Jin
2012-01-01
Using compactly supported radial basis functions of varying radii, Wendland has shown how a multiscale analysis can be applied to the approximation of Sobolev functions on a bounded domain, when the available data are discrete and noisy. Here, we examine the application of this analysis to the solution of linear moderately ill-posed problems using semi-discrete Tikhonov–Phillips regularization. As in Wendland’s work, the actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. The convergence of the algorithm for noise-free data is given. Based on the Morozov discrepancy principle, a posteriori parameter choice rule and error estimates for the noisy data are derived. Two numerical examples are presented to illustrate the appropriateness of the proposed method. (paper)
Higher order total variation regularization for EIT reconstruction.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut
2018-01-08
Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.
SFU-driven transparent approximation acceleration on GPUs
Li, A.; Song, S.L.; Wijtvliet, M.; Kumar, A.; Corporaal, H.
2016-01-01
Approximate computing, the technique that sacrifices certain amount of accuracy in exchange for substantial performance boost or power reduction, is one of the most promising solutions to enable power control and performance scaling towards exascale. Although most existing approximation designs
Regular variation on measure chains
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Vitovec, J.
2010-01-01
Roč. 72, č. 1 (2010), s. 439-448 ISSN 0362-546X R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : regularly varying function * regularly varying sequence * measure chain * time scale * embedding theorem * representation theorem * second order dynamic equation * asymptotic properties Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09008475
Manifold Regularized Correlation Object Tracking
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2017-01-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...
Cyclic approximation to stasis
Directory of Open Access Journals (Sweden)
Stewart D. Johnson
2009-06-01
Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.
The relaxation time approximation
International Nuclear Information System (INIS)
Gairola, R.P.; Indu, B.D.
1991-01-01
A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs
Polynomial approximation on polytopes
Totik, Vilmos
2014-01-01
Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
The use of regularization in inferential measurements
International Nuclear Information System (INIS)
Hines, J. Wesley; Gribok, Andrei V.; Attieh, Ibrahim; Uhrig, Robert E.
1999-01-01
Inferential sensing is the prediction of a plant variable through the use of correlated plant variables. A correct prediction of the variable can be used to monitor sensors for drift or other failures making periodic instrument calibrations unnecessary. This move from periodic to condition based maintenance can reduce costs and increase the reliability of the instrument. Having accurate, reliable measurements is important for signals that may impact safety or profitability. This paper investigates how collinearity adversely affects inferential sensing by making the results inconsistent and unrepeatable; and presents regularization as a potential solution (author) (ml)
Regularization and error estimates for asymmetric backward nonhomogeneous heat equations in a ball
Directory of Open Access Journals (Sweden)
Le Minh Triet
2016-09-01
Full Text Available The backward heat problem (BHP has been researched by many authors in the last five decades; it consists in recovering the initial distribution from the final temperature data. There are some articles [1,2,3] related the axi-symmetric BHP in a disk but the study in spherical coordinates is rare. Therefore, we wish to study a backward problem for nonhomogenous heat equation associated with asymmetric final data in a ball. In this article, we modify the quasi-boundary value method to construct a stable approximate solution for this problem. As a result, we obtain regularized solution and a sharp estimates for its error. At the end, a numerical experiment is provided to illustrate our method.
Regularized friction and continuation: Comparison with Coulomb's law
Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno
2016-01-01
International audience; Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-freedom system (mass, spring, damper, belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is co...