On infinite regular and chiral maps
Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán
2015-01-01
We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.
International Nuclear Information System (INIS)
Gamboa, J.; Rivelles, V.O.
1989-01-01
Self-dual particles in two-dimensions are presented. They were obtained from chiral boson particle by square root technique. The propagator of spinning self-dual particle is calculated using the BFV formalism. (M.C.K.)
International Nuclear Information System (INIS)
Huang Hualin; Li Libin; Ye Yu
2004-07-01
We study pointed graded self-dual Hopf algebras with a help of the dual Gabriel theorem for pointed Hopf algebras. Quivers of such Hopf algebras are said to be self-dual. An explicit classification of self-dual Hopf quivers is obtained. We also prove that finite dimensional coradically graded pointed self-dual Hopf algebras are generated by group-like and skew-primitive elements as associative algebras. This partially justifies a conjecture of Andruskiewitsch and Schneider and may help to classify finite dimensional self-dual pointed Hopf algebras
International Nuclear Information System (INIS)
Gamboa, J.; Rivelles, V.O.
1989-02-01
We study spinning self-dual particles in two dimensions. They are obtained from the chiral bosonic particle through the square root technique. We show that the resulting field theory can be either fermionic or bosonic and that the associated self-dual field reveals its Lorentz tensor structure which remains hidden in the usual formulations. We also calculate the spinning self-dual particle propagators using the BFV formalism. (author) [pt
Self-dual metrics with self-dual Killing vectors
International Nuclear Information System (INIS)
Tod, K.P.; Ward, R.S.
1979-01-01
Twistor methods are used to derive a class of solutions to Einstein's vacuum equations, with anti-self dual Weyl tensor. In particular, all metrics with a Killing vector whose derivative is anti-self-dual and which admit a real positive-definite section are exhibited and shown to coincide with the metrics of Hawking. (author)
Regularizing mappings of Lévy measures
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Thorbjørnsen, Steen
2006-01-01
the class of selfdecomposable laws onto the so called Thorin class . Further, partly motivated by our previous studies of infinite divisibility in free probability, we introduce a one-parameter family of one-to-one mappings , which interpolates smoothly between ( α=0 ) and the identity mapping on ( α=1...... ). We prove that each of the mappings shares many of the properties of . In particular, they are representable in terms of stochastic integrals with respect to associated Levy processes....
Self-dual monopoles and toda molecules
Ganoulis, N.; Goddard, P.; Olive, D.
1982-07-01
Stable static solutions to a gauge field theory with a Higgs field in the adjoint representation and with vanishing self-coupling are self-dual in the sense of Bogomolny. Leznov and Saveliev showed that a specific form of spherical symmetry reduces these equations to a modified form of the Toda molecule equations associated with the overall gauge symmetry G. Values of the constants of integration are found in terms of the distant Higgs field, guaranteeing regularity of the solution at the origin. The expressions hold for any simple Lie group G, depending on G via its root system.
Euclidean self-dual Yang-Mills field configurations
International Nuclear Information System (INIS)
Sartori, G.
1980-01-01
The determination of a large class of regular and singular Euclidean self-dual Yang-Mills field configurations is reduced to the solution of a set of linear algebraic equations. The matrix of the coefficients is a polynomial functions of x and the rules for its construction are elementary. (author)
Regularity of optimal transport maps on multiple products of spheres
Figalli, Alessio; Kim, Young-Heon; McCann, Robert J.
2010-01-01
This article addresses regularity of optimal transport maps for cost="squared distance" on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain injectivity and continuity of o...
Variational analysis of regular mappings theory and applications
Ioffe, Alexander D
2017-01-01
This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory. The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, whic...
Reduction of 4-dim self dual super Yang-Mills onto super Riemann surfaces
International Nuclear Information System (INIS)
Mendoza, A.; Restuccia, A.; Martin, I.
1990-05-01
Recently self dual super Yang-Mills over a super Riemann surface was obtained as the zero set of a moment map on the space of superconnections to the dual of the super Lie algebra of gauge transformations. We present a new formulation of 4-dim Euclidean self dual super Yang-Mills in terms of constraints on the supercurvature. By dimensional reduction we obtain the same set of superconformal field equations which define self dual connections on a super Riemann surface. (author). 10 refs
Non self-dual Yang-Mills fields
International Nuclear Information System (INIS)
Bor, G.
1991-01-01
The purpose of the thesis is to prove the existence of a new family of non self-dual finite-energy solutions to the Yang-Mills equations on Euclidean four-space, with SU(2) as a gauge group. The approach is that of equivalent geometry: attention is restricted to a special class of fields, those that satisfy a certain kind of rotational symmetry which it is proved that (1) a solution to the Yang-Mills equations exists for among them, and (2) no solution to the self-duality equations exists among them. The first assertion is proved by an application of the direct method of the calculus of variations (existence and regularity of minimizers), and the second assertion by showing that the self-duality equations, linearized at a symmetric self-dual solution, cannot possess the required symmetry
Yang-Mills fields which are not self-dual
International Nuclear Information System (INIS)
Bor, G.
1992-01-01
The purpose of this paper is to prove the existence of a new family of non-self-dual finite-energy solutions to the Yang-Mills equations on Euclidean four-space, with SU(2) as a gauge group. The approach is that of 'equivariant geometry': Attention is restricted to a special class of fields, those that satisfy a certain kind of rotational symmetry, for which it is proved that (1) a solution to the Yang-Mills equations exists among them; and (2) no solution to the self-duality equations exists among them. The first assertion is proved by an application of the direct method of the calculus of variations (existence and regularity of minimizers), and the second assertion by studying the symmetry properties of the linearized-self-duality equations. The same technique yields a new family of non-self-dual solutions on the complex projective plane. (orig.)
International Nuclear Information System (INIS)
Zet, G.
2002-01-01
The self-duality equations are important in gauge theories because they show the connection between gauge models with internal symmetry groups and gauge theory of gravity. They are differential equations of the first order and it is easier to investigate the solutions for different particular configurations of the gauge fields and of space-times.One of the most important property of the self-duality equations is that they imply the Yang-Mills field equations. In this paper we will prove this property for the general case of a gauge theory with compact Lie group of symmetry over a 4-dimensional space-time manifold. It is important to remark that there are 3m independent self-duality equations (of the first order) while the number of Yang-Mills equations is equal to 4m, where m is the dimension of the gauge group. Both of them have 4m unknown functions which are the gauge potentials A μ a (x), a = 1, 2, ....,m; μ = 0, 1, 2, 3. But, we have, in addition, m gauge conditions for A μ a (x), (for example Coulomb, Lorentz or axial gauge) which together with the selfduality equation constitute a system of 4m equations. The Bianchi identities for the self-dual stress tensor F μν a coincide with the Yang-Mills equations and do not imply therefore supplementary conditions. We use the axial gauge in order to obtain the self duality equations for a SU(2) gauge theory over a curved space-time. The compatibility between self-duality and Yang-Mills equations is studied and some classes of solutions are obtained. In fact, we will write the Einstein-Yang-Mills equations and we will analyse only the Yang-Mills sector. The Einstein equations can not be obtained of course from self-duality. They should be obtained if we would consider a gauge theory having P x SU(2) as symmetry group, where P is the Poincare group. More generally, a gauge theory of N-extended supersymmetry can be developed by imposing the self-duality condition. (author)
Non-self-dual nonlinear gravitons
International Nuclear Information System (INIS)
Yasskin, P.B.; Isenberg, J.A.
1982-01-01
Penrose has given a twistor description of all self-dual complex Riemannian space-times. This construction is modified to characterize all complex Riemannian space-times and all complex teleparallel space-times. This construction may be useful in finding non-self-dual solutions to the gravitational field equations (Einstein's or otherwise) without or with sources. It may also lead to a nonperturbative method for computing path integrals. Whereas Penrose shows that a self-dual space-time may be specified by a deformation of projective twistor space (the set of α planes in complex Minkowski space), it is found that a Riemannian or teleparallel space-time may be described by a deformation of projective ambitwistor space (the set of null geodesics in complex Minkowski space). (author)
Continuous Flattening of a Regular Tetrahedron with Explicit Mappings
Directory of Open Access Journals (Sweden)
Jin-ichi Itoh
2012-01-01
Full Text Available We proved in [10] that each Platonic polyhedron P can be folded into a flat multilayered face of P by a continuous folding process of polyhedra. In this paper, we give explicit formulas of continuous functions for such a continuous flattening process in R³ for a regular tetrahedron.The article is published in the author’s wording.
On primal regularity estimates for set-valued mappings
Czech Academy of Sciences Publication Activity Database
Cibulka, R.; Fabian, Marián
2016-01-01
Roč. 438, č. 1 (2016), s. 444-464 ISSN 0022-247X R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : metric regularity * linear openness * one-sided directional derivative Subject RIV: BA - General Mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16001402
Mapping the N-Z plane: residual mass regularities
International Nuclear Information System (INIS)
Hirsch, J.G.; Frank, A.; Velazquez, V.
2004-01-01
A new development in the study of the deviations between experimental nuclear masses and those calculated in the framework of the Finite Range Droplet Model is introduced. Some frequencies are isolated and used in a simple fit to reduce significantly the error width. The presence of this regular residual correlations suggests that the Strutinsky method of including microscopic fluctuations in nuclear masses could be improved. (Author)
Twisted covariant noncommutative self-dual gravity
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the θ expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in θ for the Plebanski action is explicitly obtained.
Self-dual gauge field, its quantum fluctuations, and interacting fermions
International Nuclear Information System (INIS)
Flory, C.A.
1983-01-01
The quantum fluctuations about a self-dual background field in SU(2) are computed. The background field consists of parallel and equal uniform chromomagnetic and chromoelectric fields. Determination of the gluon fluctuations about this field yields zero modes, which are naturally regularized by the introduction of massless fermions. This regularization makes the integrals over all fluctuations convergent, and allows a simple computation of the vacuum energy which is shown to be lower than the energy of the configuration of zero field strength. The regularization of the zero modes also facilitates the introduction of heavy test charges which can interact with the classical background field and also exchange virtual quanta. The formalism for introducing these heavy test charges could be a good starting point for investigating the relevant physics of the self-dual background field beyond the classical level
Quantum resonances and regularity islands in quantum maps
Sokolov; Zhirov; Alonso; Casati
2000-05-01
We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of an order q. The map is embedded into a continuous unitary transformation generated by a time-independent quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transformation described by the unitary unimodular group SU(q). The resonant energy growth is attributed to the zero Liouville eigenmodes of the generator in the adjoint representation of the group while the nonzero modes yield saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the form of power expansion with respect to the detuning from the resonance. The problem is related in this way to the motion along a circle in a (q2 - 1)-component inhomogeneous "magnetic" field of a quantum particle with q intrinsic degrees of freedom described by the SU(q) group. This motion is in parallel with the classical phase oscillations near a nonlinear resonance. The most important role is played by the resonances with the orders much smaller than the typical localization length q < l. Such resonances master for exponentially long though finite times the motion in some domains around them. Explicit analytical solution is possible for a few lowest and strongest resonances.
On Line Segment Length and Mapping 4-regular Grid Structures in Network Infrastructures
DEFF Research Database (Denmark)
Riaz, Muhammad Tahir; Nielsen, Rasmus Hjorth; Pedersen, Jens Myrup
2006-01-01
The paper focuses on mapping the road network into 4-regular grid structures. A mapping algorithm is proposed. To model the road network GIS data have been used. The Geographic Information System (GIS) data for the road network are composed with different size of line segment lengths...
An Efficient Construction of Self-Dual Codes
Lee, Yoonjin; Kim, Jon-Lark
2012-01-01
We complete the building-up construction for self-dual codes by resolving the open cases over $GF(q)$ with $q \\equiv 3 \\pmod 4$, and over $\\Z_{p^m}$ and Galois rings $\\GR(p^m,r)$ with an odd prime $p$ satisfying $p \\equiv 3 \\pmod 4$ with $r$ odd. We also extend the building-up construction for self-dual codes to finite chain rings. Our building-up construction produces many new interesting self-dual codes. In particular, we construct 945 new extremal self-dual ternary $[32,16,9]$ codes, each ...
Preference mapping of lemon lime carbonated beverages with regular and diet beverage consumers.
Leksrisompong, P P; Lopetcharat, K; Guthrie, B; Drake, M A
2013-02-01
The drivers of liking of lemon-lime carbonated beverages were investigated with regular and diet beverage consumers. Ten beverages were selected from a category survey of commercial beverages using a D-optimal procedure. Beverages were subjected to consumer testing (n = 101 regular beverage consumers, n = 100 diet beverage consumers). Segmentation of consumers was performed on overall liking scores followed by external preference mapping of selected samples. Diet beverage consumers liked 2 diet beverages more than regular beverage consumers. There were no differences in the overall liking scores between diet and regular beverage consumers for other products except for a sparkling beverage sweetened with juice which was more liked by regular beverage consumers. Three subtle but distinct consumer preference clusters were identified. Two segments had evenly distributed diet and regular beverage consumers but one segment had a greater percentage of regular beverage consumers (P beverage consumers) did not have a large impact on carbonated beverage liking. Instead, mouthfeel attributes were major drivers of liking when these beverages were tested in a blind tasting. Preference mapping of lemon-lime carbonated beverage with diet and regular beverage consumers allowed the determination of drivers of liking of both populations. The understanding of how mouthfeel attributes, aromatics, and basic tastes impact liking or disliking of products was achieved. Preference drivers established in this study provide product developers of carbonated lemon-lime beverages with additional information to develop beverages that may be suitable for different groups of consumers. © 2013 Institute of Food Technologists®
Construction of MDS self-dual codes from orthogonal matrices
Shi, Minjia; Sok, Lin; Solé, Patrick
2016-01-01
In this paper, we give algorithms and methods of construction of self-dual codes over finite fields using orthogonal matrices. Randomization in the orthogonal group, and code extension are the main tools. Some optimal, almost MDS, and MDS self-dual codes over both small and large prime fields are constructed.
Conformal transformation and symplectic structure of self-dual fields
International Nuclear Information System (INIS)
Yang Kongqing; Luo Yan
1996-01-01
Considered two dimensional self-dual fields, the symplectic structure on the space of solutions is given. It is shown that this structure is Poincare invariant. The Lagrangian of two dimensional self-dual field is invariant under infinite one component conformal group, then this symplectic structure is also invariant under this conformal group. The conserved currents in geometrical formalism are also obtained
Kaehler-Dirac ghosts for self-dual fields
International Nuclear Information System (INIS)
Labastida, J.M.F.; Pernici, M.
1988-01-01
We present the generalization to spacetime dimension D=4n+2 of the Lorentz covariant quadratic lagrangian for pairs of (anti)self-dual fields previously obtained by the authors in D=2. In the process of BRST quantizing this lagrangian a first-order quadratic lagrangian for ghost (anti)self-dual fields is found which, after gauge fixing, can be written in terms of bispinors and it turns out to be a Kaehler-Dirac lagrangian. The coupling to gravity is straightforward and the gravitational anomaly due to (anti)self-dual fields is obtained directly from an action principle. (orig.)
Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.
Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu
2018-08-01
To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Interference of Spin-2 Self-Dual Modes
Ilha, Anderson; Wotzasek, Clovis
2001-01-01
We study the effects of interference between the self-dual and anti self-dual massive modes of the linearized Einstein-Chern-Simons topological gravity. The dual models to be used in the interference process are carefully analyzed with special emphasis on their propagating spectrum. We identify the opposite dual aspects, necessary for the application of the interference formalism on this model. The soldered theory so obtained displays explicitly massive modes of the Proca type. It may also be...
A regularized, model-based approach to phase-based conductivity mapping using MRI.
Ropella, Kathleen M; Noll, Douglas C
2017-11-01
To develop a novel regularized, model-based approach to phase-based conductivity mapping that uses structural information to improve the accuracy of conductivity maps. The inverse of the three-dimensional Laplacian operator is used to model the relationship between measured phase maps and the object conductivity in a penalized weighted least-squares optimization problem. Spatial masks based on structural information are incorporated into the problem to preserve data near boundaries. The proposed Inverse Laplacian method was compared against a restricted Gaussian filter in simulation, phantom, and human experiments. The Inverse Laplacian method resulted in lower reconstruction bias and error due to noise in simulations than the Gaussian filter. The Inverse Laplacian method also produced conductivity maps closer to the measured values in a phantom and with reduced noise in the human brain, as compared to the Gaussian filter. The Inverse Laplacian method calculates conductivity maps with less noise and more accurate values near boundaries. Improving the accuracy of conductivity maps is integral for advancing the applications of conductivity mapping. Magn Reson Med 78:2011-2021, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Exact effective actions for quarks in pure and self-dual mean fields
International Nuclear Information System (INIS)
Elizalde, E.; Soto, J.
1985-01-01
The QCD effective action for ordinary quarks in the presence of a constant self-dual, pure colormagnetic or pure color-electric background created by themselves is calculated at all loop orders. This is done in a very simple way, by using zeta-function regularization and the fact that the dependence of the effective action on the background can be factorized in these three cases, leaving a well-defined constant factor. The zero mode problem and the imaginary contributions are seen to be mere one-loop artifacts which automatically vanish when the exact calculation is carried out. (orig.)
Hernandez, Monica
2017-12-01
This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.
Euclidean supersymmetric solutions with the self-dual Weyl tensor
Directory of Open Access Journals (Sweden)
Masato Nozawa
2017-07-01
Full Text Available We explore the Euclidean supersymmetric solutions admitting the self-dual gauge field in the framework of N=2 minimal gauged supergravity in four dimensions. According to the classification scheme utilizing the spinorial geometry or the bilinears of Killing spinors, the general solution preserves one quarter of supersymmetry and is described by the Przanowski–Tod class with the self-dual Weyl tensor. We demonstrate that there exists an additional Killing spinor, provided the Przanowski–Tod metric admits a Killing vector that commutes with the principal one. The proof proceeds by recasting the metric into another Przanowski–Tod form. This formalism enables us to show that the self-dual Reissner–Nordström–Taub–NUT–AdS metric possesses a second Killing spinor, which has been missed over many years. We also address the supersymmetry when the Przanowski–Tod space is conformal to each of the self-dual ambi-toric Kähler metrics. It turns out that three classes of solutions are all reduced to the self-dual Carter family, by virtue of the nondegenerate Killing–Yano tensor.
On the scalar curvature of self-dual manifolds
International Nuclear Information System (INIS)
Kim, J.
1992-08-01
We generalize LeBrun's explicit ''hyperbolic ansatz'' construction of self-dual metrics on connected sums of conformally flat manifolds and CP 2 's through a systematic use of the theory of hyperbolic geometry and Kleinian groups. (This construction produces, for example, all self-dual manifolds with semi-free S 1 -action and with either nonnegative scalar curvature or positive-definite intersection form.) We then point out a simple criterion for determining the sign of the scalar curvature of these conformal metrics. Exploiting this, we then show that the sign of the scalar curvature can change on connected components of the moduli space of self-dual metrics, thereby answering a question raised by King and Kotschick. (author). Refs
Hermitian self-dual quasi-abelian codes
Directory of Open Access Journals (Sweden)
Herbert S. Palines
2017-12-01
Full Text Available Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.
Non-trivial self-dual gluon configurations in lattice QCD
International Nuclear Information System (INIS)
Bilson-Thompson, S.; Bowman, P.; Bonnet, F.; Leinweber, D.; Williams, A.; Dunne, G.
2000-01-01
Full text: We have investigated the smoothing of gauge fields in SU(3) using a variety of cooling algorithms. A topic of particular interest to such investigations is the behaviour of self-dual field configurations over a large number of cooling sweeps. It is well known that cooling based upon the standard Wilson action is affected by excessively large discretisation errors, leading in the long-term to trivial configurations. This has shifted the research emphasis onto improved actions, which are designed to minimise the discretisation errors that arise on the lattice. The cooling schemes we have investigated have been designed to eliminate O(a 2 ) and O(a 4 ) discretization errors producing an action accurate to order O(a 6 ). An analogously defined improved topological charge operator is used to investigate vacuum instanton dynamics. We used these operators to construct self-dual gluon configurations by cooling until the duality condition S/S 0 |Q| (where S 0 is the single instanton action and Q is the topological charge) is reached. As it is expected from theoretical grounds that Q is always an integer, a range of different actions and topological charge operators are assessed to determine which combination produced a result closest to what we would expect in the continuum. As our lattices have (untwisted) periodic boundary conditions we are particularly interested in investigating the relevance of the Nahm transformation to our results. This is a duality transformation which maps a self-dual SU(N) configuration with topological charge Q on the 4-torus to a self-dual SU(Q) configuration with topological charge N on the dual 4-torus. As there are no instanton solutions in SU(1), the Nahm transformation appears to preclude the existence of a |Q| = 1 self-dual solution on the 4-torus. We have investigated this on the lattice by finding |Q| = 1 configurations and assessing the behaviour of the action and the stability of the topological charge as they cool towards
Covariant heterotic strings and odd self-dual lattices
International Nuclear Information System (INIS)
Lerche, W.; Luest, D.
1987-01-01
We investigate the implications of modular invariance for covariantly formulated heterotic strings. It is shown that modular invariant heterotic strings are characterized by odd self-dual lorentzian lattices which include charges of the bosonized superconformal ghosts. The proof of modular invariance involves the anomaly in the ghost number current in a crucial way. (orig.)
Couplings of self-dual tensor multiplet in six dimensions
Bergshoeff, E.; Sezgin, E.; Sokatchev, E.
1996-01-01
The (1, 0) supersymmetry in six dimensions admits a tensor multiplet which contains a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe the fully supersymmetric coupling of this multiplet to a Yangâ€“Mills multiplet, in the absence of supergravity. The
New MDS or near MDS self-dual codes over finite fields
Tong, Hongxi; Wang, Xiaoqing
2016-01-01
The study of MDS self-dual codes has attracted lots of attention in recent years. There are many papers on determining existence of $q-$ary MDS self-dual codes for various lengths. There are not existence of $q-$ary MDS self-dual codes of some lengths, even these lengths $< q$. We generalize MDS Euclidean self-dual codes to near MDS Euclidean self-dual codes and near MDS isodual codes. And we obtain many new near MDS isodual codes from extended negacyclic duadic codes and we obtain many new M...
Quantum tunneling radiation from self-dual black holes
International Nuclear Information System (INIS)
Silva, C.A.S.; Brito, F.A.
2013-01-01
Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included
Perturbative construction of self-dual configurations on the torus
International Nuclear Information System (INIS)
Garcia Perez, M.; Gonzalez-Arroyo, A.; Pena, C.
2000-01-01
We develop a perturbative expansion which allows the construction of non-abelian self-dual SU(2) Yang-Mills field configurations on the four-dimensional torus with topological charge 1/2. The expansion is performed around the constant field strength abelian solutions found by 't Hooft. Next to leading order calculations are compared with numerical results obtained with lattice gauge theory techniques. (author)
Von Neuman representations on self-dual Hilbert W* moduli
International Nuclear Information System (INIS)
Frank, M.
1987-01-01
Von Neumann algebras M of bounded operators on self-dual Hilbert W* moduli H possessing a cyclic-separating element x-bar in H are considered. The close relation of them to certain real subspaces of H is established. Under the supposition that the underlying W*-algebra is commutative, a Tomita-Takesaki type theorem is stated. The natural cone in H arising from the pair (M, x-bar) is investigated and its properties are obtained
Loop quantum cosmology with self-dual variables
Wilson-Ewing, Edward
2015-12-01
Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.
The matreoshka of supersymmetric self-dual theories
International Nuclear Information System (INIS)
Devchand, C.; Ogievetsky, V.
1993-06-01
Extended super self-dual systems have a structure reminiscent of a 'matreoshka'. For instance, solutions for N=0 are embedded in solutions for N=1, which are in turn embedded in solutions for N=2, and so on. Consequences of this phenomenon are explored. In particular, we present an explicit construction of local solutions of the higher-N super self-duality equations starting from any N=0 self-dual solution. Our construction uses N=0 solution data to produce N=1 solution data, which in turn yields N=2 solution data, and so on; each stage introducing a dependence of the solution on sufficiently many additional arbitrary functions to yield the most general supersymmetric solution having the initial N=0 solution as the helicity +1 component. The problem of finding the general local solution of the N>0 super self-duality equations. Another consequence of the matreoshka phenomenon is the vanishing of many conserved currents, including the supercurrents, for super self-dual systems. (orig.)
International Nuclear Information System (INIS)
Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J
2003-01-01
Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies
Regular Routes: Deep Mapping a Performative Counterpractice for the Daily Commute 1
Directory of Open Access Journals (Sweden)
Laura Bissell
2015-09-01
Full Text Available This article offers a textual “deep map” of a series of experimental commutes undertaken in the west of Scotland in 2014. Recent developments in the field of transport studies have reconceived travel time as a far richer cultural experience than in previously utilitarian and economic approaches to the “problem” of commuting. Understanding their own commutes in these terms—as spaces of creativity, productivity and transformation—the authors trace the development of a performative “counterpractice” for their daily journeys between home and work. Deep mapping—as a form of “theory-informed story-telling”—is employed as a productive strategy to document this reimagination of ostensibly quotidian and functional travel. Importantly, this particular stage of the project is not presented as an end-point. Striving to develop an ongoing creative engagement with landscape, the authors continue this exploratory mobile research by connecting to other commuters’ journeys, and proposing a series of “strategies” for reimagining the daily commute; a list of prompts for future action within the routines and spaces of commuting. A range of alternative approaches to commuting are offered here to anyone who regularly travels to and from work to employ or develop as they wish, extending the mapping process to other routes and contexts.
On self-dual Yang-Mills hierarchy
International Nuclear Information System (INIS)
Nakamura, Yoshimasa
1989-01-01
In this note, motivated by the Kadomtsev-Petviashvili (KP) hierarchy of integrable nonlinear evolution equations, a GL(n,C) self-dual Yang-Mills (SDYM) hierarchy is presented; it is an infinite system of SDYM equations having an infinite number of independent variables and being outside of the KP hierarchy. A relationship between the KP hierarchy and the SDYM hierarchy is discussed. It is also shown that GL(∞) SDYM equations introduced in this note are reduced to the GL(n,C) SDYM hierarchy by imposing an algebraic constraint. (orig.)
Self-dual geometry of generalized Hermitian surfaces
International Nuclear Information System (INIS)
Arsen'eva, O E; Kirichenko, V F
1998-01-01
Several results on the geometry of conformally semiflat Hermitian surfaces of both classical and hyperbolic types (generalized Hermitian surfaces) are obtained. Some of these results are generalizations and clarifications of already known results in this direction due to Koda, Itoh, and other authors. They reveal some unexpected beautiful connections between such classical characteristics of conformally semiflat (generalized) Hermitian surfaces as the Einstein property, the constancy of the holomorphic sectional curvature, and so on. A complete classification of compact self-dual Hermitian RK-surfaces that are at the same time generalized Hopf manifolds is obtained. This provides a complete solution of the Chen problem in this class of Hermitian surfaces
Self-dual spin-3 and 4 theories
International Nuclear Information System (INIS)
Aragone, C.; Khoudeir, A.
1991-08-01
We present self-dual pure spin-3 and 4 actions using the physical relevant Dreibein fields. Since these actions start with a Chern-Simons like kinetic term (and therefore cannot be obtained through dimensional reduction) one might wonder whether they need the presence of auxiliary, ghost-killing fields. It turns out that they must contain, also in this three dimensional case, auxiliary fields. Auxiliary scalars do not break self-duality; their free action does not contain kinetic terms. (author). 12 refs
Supersymmetric self-dual Yang-Mills fields
International Nuclear Information System (INIS)
Zhao Liu
1994-01-01
A new four dimensional (4d) N = 1 supersymmetric integrable model, i.e. the supersymmetric self-dual Yang-Mills model is constructed. The equations of motion for this model are shown to be equivalent to the zero curvature condition on some superplane in the 4d superspace, the superplane being characterized by a point in the project space CP 3,4 . The linear systems are established according to this geometrical interpretation, and the effective action is also proposed in order to explain the dynamical content of the model
General heavenly equation governs anti-self-dual gravity
Energy Technology Data Exchange (ETDEWEB)
Malykh, A A [Department of Numerical Modelling, Russian State Hydrometeorlogical University, Malookhtinsky pr 98, 195196 St Petersburg (Russian Federation); Sheftel, M B, E-mail: andrei-malykh@mail.ru, E-mail: mikhail.sheftel@boun.edu.tr [Department of Physics, Bogazici University, 34342 Bebek, Istanbul (Turkey)
2011-04-15
We show that the general heavenly equation, suggested recently by Doubrov and Ferapontov (2010 arXiv:0910.3407v2 [math.DG]), governs anti-self-dual (ASD) gravity. We derive ASD Ricci-flat vacuum metric governed by the general heavenly equation, null tetrad and basis of 1-forms for this metric. We present algebraic exact solutions of the general heavenly equation as a set of zeros of homogeneous polynomials in independent and dependent variables. A real solution is obtained for the case of a neutral signature.
Standard map in magnetized relativistic systems: fixed points and regular acceleration.
de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B
2010-08-01
We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.
Chidori, Kazuhiro; Yamamoto, Yuji
2017-01-01
The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.
Low Complexity Tail-Biting Trellises for Some Extremal Self-Dual Codes
Olocco , Grégory; Otmani , Ayoub
2002-01-01
International audience; We obtain low complexity tail-biting trellises for some extremal self-dual codes for various lengths and fields such as the [12,6,6] ternary Golay code and a [24,12,8] Hermitian self-dual code over GF(4). These codes are obtained from a particular family of cyclic Tanner graphs called necklace factor graphs.
Soft decoding a self-dual (48, 24; 12) code
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
R=0 spacetimes and self-dual Lorentzian wormholes
International Nuclear Information System (INIS)
Dadhich, Naresh; Kar, Sayan; Mukherjee, Sailajananda; Visser, Matt
2002-01-01
A two-parameter family of spherically symmetric, static Lorentzian wormholes is obtained as the general solution of the equation ρ=ρ t =0, where ρ=T ij u i u j , ρ t =(T ij -(1/2)Tg ij )u i u j , and u i u i =-1. This equation characterizes a class of spacetimes which are 'self-dual' (in the sense of electrogravity duality). The class includes the Schwarzschild black hole, a family of naked singularities, and a disjoint family of Lorentzian wormholes, all of which have a vanishing scalar curvature (R=0). The properties of these spacetimes are discussed. Using isotropic coordinates we delineate clearly the domains of parameter space for which wormholes, nakedly singular spacetimes and the Schwarzschild black hole can be obtained. A model for the required 'exotic' stress-energy is discussed, and the notion of traversability for the wormholes is also examined
Algebraic solutions of anti-self-dual gravity
International Nuclear Information System (INIS)
Sheftel, M.B.
2011-01-01
Full text: (author)It is considered a four-dimensional PDE: complex Monge-Amp'ere equation (CMA), solutions of which govern anti-self-dual gravity, i.e. determine anti-self-dual Ricci-flat Kahler metrics, solutions of the vacuum Einstein equations with the Euclidean signature. It is used simultaneously two mutually complex conjugate pairs of partner symmetries of CMA related by a recursion relation. For both pairs of partner symmetries, using Lie equations, it is introduced explicitly group parameters as additional variables, replacing symmetry characteristics and their complex conjugates by derivatives of the unknown with respect to group parameters. It is studied the resulting system of six equations in the eight-dimensional space, that includes CMA, four equations of the recursion between partner symmetries and one integrability condition of this system. It is used point symmetries of this extended system for performing its symmetry reduction with respect to group parameters that facilitates solving the extended system. This procedure does not imply a reduction in the number of physical variables and hence it is ended up with orbits of non-invariant solutions of CMA, generated by one partner symmetry, not used in the reduction. These solutions are determined by six linear equations with constant coefficients in the five-dimensional space which are obtained by a three-dimensional Legendre transformation of the reduced extended system. It is presented an example of algebraic solutions that govern Legendre-transformed Ricci-flat Kahler metrics with no Killing vectors. It is defined as a set of roots of a homogeneous polynomial of degree 6 in the six complex variables which determines a four-dimensional compact manifold in a five-dimensional complex projective space
Self-dual Skyrmions on the spheres S2 N +1
Amari, Y.; Ferreira, L. A.
2018-04-01
We construct self-dual sectors for scalar field theories on a (2 N +2 )-dimensional Minkowski space-time with the target space being the 2 N +1 -dimensional sphere S2 N +1. The construction of such self-dual sectors is made possible by the introduction of an extra functional in the action that renders the static energy and the self-duality equations conformally invariant on the (2 N +1 )-dimensional spatial submanifold. The conformal and target-space symmetries are used to build an ansatz that leads to an infinite number of exact self-dual solutions with arbitrary values of the topological charge. The five-dimensional case is discussed in detail, where it is shown that two types of theories admit self-dual sectors. Our work generalizes the known results in the three-dimensional case that lead to an infinite set of self-dual Skyrmion solutions.
The heat flows and harmonic maps from complete manifolds into generalized regular balls
International Nuclear Information System (INIS)
Li Jiayu.
1993-01-01
Let M be a complete Riemannian manifold (compact (with or without boundary) or noncompact). Let N be a complete Riemannian manifold. We generalize the existence result for harmonic maps obtained by Hildebrandt-Kaul-Widman using the heat flow method. (author). 21 refs
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague (Czech Republic); Saemann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh (United Kingdom); Wolf, Martin [Department of Mathematics, University of Surrey, Guildford (United Kingdom)
2016-08-15
We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of (∞, 1)-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to L{sub ∞}-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
International Nuclear Information System (INIS)
Jurco, Branislav; Saemann, Christian; Wolf, Martin
2016-01-01
We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of (∞, 1)-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to L ∞ -algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Spinors in self-dual Yang-Mills fields in minkowski space
International Nuclear Information System (INIS)
Pervushin, V.N.
1981-01-01
Yang-Mills theory with infrared divergences removed by spontaneous vacuum symmetry breaking is considered. The corresponding vacuum fields are self-dual and are defined in the Minkowski space. The complete set of solutions of Dirac equations with self-dual fields, depending on certain arbitrary function, is found. Physical observables (charge, energy, spin) for the spinor fields within the self-dual vacuum are calculated and a Hermitean Hamiltonian is obtained. The physical picture corresponds to a relativistic generalization of the hadron bag model [ru
New extremal binary self-dual codes of lengths 64 and 66 from bicubic planar graphs
Kaya, Abidin
2016-01-01
In this work, connected cubic planar bipartite graphs and related binary self-dual codes are studied. Binary self-dual codes of length 16 are obtained by face-vertex incidence matrices of these graphs. By considering their lifts to the ring R_2 new extremal binary self-dual codes of lengths 64 are constructed as Gray images. More precisely, we construct 15 new codes of length 64. Moreover, 10 new codes of length 66 were obtained by applying a building-up construction to the binary codes. Code...
A new approach to the self-dual Yang-Mills equations
International Nuclear Information System (INIS)
Takasaki, K.
1984-01-01
Inspired by Sato's new theory for soliton equations, we find a new approach to the self-dual Yang-Mills equations. We first establish a correspondence of solutions between the self-dual Yang-Mills equations and a new system of equations with infinitely many unknown functions. It then turns out that the latter equations can be easily solved by a simple explicit procedure. This leads to an explicit description of a very broad class of solutions to the self-dual Yang-Mills equations, and also to a construction of transformations acting on these solutions. (orig.)
Self-dual solutions to Euclidean Yang-Mills equations
International Nuclear Information System (INIS)
Corrigan, E.
1979-01-01
The paper provides an introduction to two approaches towards understanding the classical Yang-Mills field equations. On the one hand, the work of Atiyah and Ward showed that the self-dual equations, which are non-linear, could be regarded as a set of linear equations which turned out to be related to each other by Baecklund transformations. Fundamental to their procedure was the observation that the information carried by the vector potential could be coded into the structure of certain analytic vector bundles over a three dimensional projective space. The classification of these bundles and the subsequent recovery of the gauge field led to the infinite set of ansaetze, corresponding to the sets of linear equation mentioned already. On the other hand, Atiyah, Hitchin, Drinfeld and Manin have recently constructed, completely algebraically, the bundles of interest and indicated how the Yang-Mills potential may be obtained. Remarkably, their construction differs very little as the gauge group is changed (to any of the classical compact groups) and, uses only the elementary operations of linear algebra to yield potentials as rational functions of the spatial coordinates. (Auth.)
LQG for the bewildered the self-dual approach revisited
Vaid, Deepak
2017-01-01
This primer offers a concise introduction to Loop Quantum Gravity (LQG) - a theoretical framework for uniting Quantum Mechanics (QM) with General Relativity (GR). The emphasis is on the physical aspects of the framework and its historical development in terms of self-dual variables, still most suited for a first, pedagogical encounter with LQG. The text starts by reviewing GR and the very basics of Quantum Field Theory (QFT), and then explains in a concise and clear manner the steps leading from the Einstein-Hilbert action for gravity to the construction of the quantum states of geometry, known as spin-networks, and which provide the basis for the kinematical Hilbert space of quantum general relativity. Along the way the various associated concepts of tetrads, spin-connection and holonomies are introduced. Having thus provided a minimal introduction to the LQG framework, some applications to the problems of black hole entropy and of quantum cosmology are briefly surveyed. Last but not least, a list of the m...
International Nuclear Information System (INIS)
Menezes, R.; Nascimento, J.R.S.; Ribeiro, R.F.; Wotzasek, C.
2002-01-01
We study the dual equivalence between the non-linear generalization of the self-dual (NSD BF ) and the topologically massive B and F models with particular emphasis on the non-linear electrodynamics proposed by Born and Infeld. This is done through a dynamical gauge embedding of the non-linear self-dual model yielding to a gauge invariant and dynamically equivalent theory. We clearly show that non-polinomial NSD BF models can be map, through a properly defined duality transformation into TM BF actions. The general result obtained is then particularized for a number of examples, including the Born-Infeld-BF (BIBF) model that has experienced a revival in the recent literature
Nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model
International Nuclear Information System (INIS)
Han, Jongmin; Jang, Jaeduk
2005-01-01
In this paper we prove the existence of the radially symmetric nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model. We also verify the Chern-Simons limit for those solutions
Interacting fields of arbitrary spin and N > 4 supersymmetric self-dual Yang-Mills equations
International Nuclear Information System (INIS)
Devchand, Ch.; Ogievetsky, V.
1996-06-01
We show that the self-dual Yang-Mills equations afford supersymmetrization to systems of equations invariant under global N-extended super-Poincare transformations for arbitrary values of N, without the limitation (N ≤ 4) applicable to standard non-self-dual Yang-Mills theories. These systems of equations provide novel classically consistent interactions for vector supermultiplets containing fields of spin up to N-2/2. The equations of motion of the component fields of spin greater than 1/2 are interacting variants of the first-order Dirac-Fierz equations for zero rest-mass fields of arbitrary spin. The interactions are governed by conserved currents which are constructed by an iterative procedure. In (arbitrarily extended) chiral superspace, the equations of motion for the (arbitrarily large) self-dual supermultiplet are shown to be completely equivalent to the set of algebraic supercurvature defining the self-dual superconnection. (author). 25 refs
Z flux-line lattices and self-dual equations in the standard model
International Nuclear Information System (INIS)
Bimonte, G.; Lozano, G.
1994-04-01
We derive gauge covariant self-dual equations for the SU(2) x U(1) y theory of electroweak interactions and show that they admit solutions describing a periodic lattice of Z-strings. (author). 14 refs
Self-dual monopoles in a seven-dimensional gauge theory
International Nuclear Information System (INIS)
Yang Yisong
1990-01-01
The existence of self-dual or anti-self-dual monopoles of a seven-dimensional generalized Yang-Mills-Higgs theory is proved using the second-order equations of motion. The behavior of solutions can be used to recognize self- or anti-self-duality. Moreover, it is shwon that, in the class of the field configurations under discussion, the solutions are, in fact, unique. (orig.)
Connection between Einstein equations, nonlinear sigma models, and self-dual Yang-Mills theory
International Nuclear Information System (INIS)
Sanchez, N.; Whiting, B.
1986-01-01
The authors analyze the connection between nonlinear sigma models self-dual Yang-Mills theory, and general relativity (self-dual and non-self-dual, with and without killing vectors), both at the level of the equations and at the level of the different type of solutions (solitons and calorons) of these theories. They give a manifestly gauge invariant formulation of the self-dual gravitational field analogous to that given by Yang for the self-dual Yang-Mills field. This formulation connects in a direct and explicit way the self-dual Yang-Mills and the general relativity equations. They give the ''R gauge'' parametrization of the self-dual gravitational field (which corresponds to modified Yang's-type and Ernst equations) and analyze the correspondence between their different types of solutions. No assumption about the existence of symmetries in the space-time is needed. For the general case (non-self-dual), they show that the Einstein equations contain an O nonlinear sigma model. This connection with the sigma model holds irrespective of the presence of symmetries in the space-time. They found a new class of solutions of Einstein equations depending on holomorphic and antiholomorphic functions and we relate some subclasses of these solutions to solutions of simpler nonlinear field equations that are well known in other branches of physics, like sigma models, SineGordon, and Liouville equations. They include gravitational plane wave solutions. They analyze the response of different accelerated quantum detector models, compare them to the case when the detectors are linterial in an ordinary Planckian gas at a given temperature, and discuss the anisotropy of the detected response for Rindler observers
Vested Madsen, Matias; Macario, Alex; Yamamoto, Satoshi; Tanaka, Pedro
2016-06-01
In this study, we examined the regularly scheduled, formal teaching sessions in a single anesthesiology residency program to (1) map the most common primary instructional methods, (2) map the use of 10 known teaching techniques, and (3) assess if residents scored sessions that incorporated active learning as higher quality than sessions with little or no verbal interaction between teacher and learner. A modified Delphi process was used to identify useful teaching techniques. A representative sample of each of the formal teaching session types was mapped, and residents anonymously completed a 5-question written survey rating the session. The most common primary instructional methods were computer slides-based classroom lectures (66%), workshops (15%), simulations (5%), and journal club (5%). The number of teaching techniques used per formal teaching session averaged 5.31 (SD, 1.92; median, 5; range, 0-9). Clinical applicability (85%) and attention grabbers (85%) were the 2 most common teaching techniques. Thirty-eight percent of the sessions defined learning objectives, and one-third of sessions engaged in active learning. The overall survey response rate equaled 42%, and passive sessions had a mean score of 8.44 (range, 5-10; median, 9; SD, 1.2) compared with a mean score of 8.63 (range, 5-10; median, 9; SD, 1.1) for active sessions (P = 0.63). Slides-based classroom lectures were the most common instructional method, and faculty used an average of 5 known teaching techniques per formal teaching session. The overall education scores of the sessions as rated by the residents were high.
High-temperature expansion along the self-dual line of three-dimensional Z(2) spin-gauge theory
International Nuclear Information System (INIS)
Bhanot, G.
1981-01-01
We exploit the self-duality of the three-dimensional Ising spin-gauge theory to develop an eighth-order high-temperature expansion for the partition function along the self-dual line. This generates a high-temperature series for the gauge-invariant, nearest-neighbor spin-spin correlation function. A Pade analysis of this series reveals a pole along the self-dual line. Recent Monte Carlo simulations indicate that this theory has a first-order self-dual line emerging from a triple point. We interpret the Pade pole as a theoretical estimate of the end point of this self-dual line
Green functions in a super self-dual Yang-Mills background
International Nuclear Information System (INIS)
McArthur, I.N.
1984-01-01
In euclidean supersymmetric theories of chiral superfields and vector superfields coupled to a super-self-dual Yang-Mills background, we define Green functions for the Laplace-type differential operators which are obtained from the quadratic parot the action. These Green functions are expressed in terms of the Green function on the space of right chiral superfields, and an explicit expression for the right chiral Green function in the fundamental representation of an SU(n) gauge group is presented using the supersymmetric version of the ADHM formalism. The superfield kernels associated with the Laplace-type operators are used to obtain the one-loop quantum corrections to the super-self-dual Yang-Mills action, and also to provide a superfield version of the super-index theorems for the components of chiral superfields in a self-dual background. (orig.)
Hamiltonian quantization of self-dual tensor fields and a bosonic Nielsen-Ninomiya theorem
International Nuclear Information System (INIS)
Tang Waikeung
1989-01-01
The quantization of self-dual tensor fields is carried out following the procedure of Batalin and Fradkin. The (anti) self-duality constraints (either fermionic or bosonic) in the action leads to the gravitational anomaly. In the process of gauge fixing, the impossibility of the co-existence of a positive hamiltonian and covariant action is shown. A version of the Nielsen-Ninomiya theorem applies to self-dual tensor fields viz. the lattice version of the theory shows species doubling with zero net chirality. (orig.)
On a gauge theory of the self-dual field and its quantization
International Nuclear Information System (INIS)
Srivastava, P.P.
1990-01-01
A gauge theory of self-dual fields is constructed by adding a Wess-Zumino term to the recently studied formulation based on a second-order scalar field lagrangian carrying with it an auxiliary vector field to take care of the self-duality constraint in a linear fashion. The two versions are quantized using the BRST formulation following the BFV procedure. No violation of microcausality occurs and the action of the ordinary scalar field may not be written as the sum of the actions of the self- and anti-self-dual fields. (orig.)
Symmetry and conservation law structures of some anti-self-dual ...
Indian Academy of Sciences (India)
2016-09-28
Sep 28, 2016 ... (2016) 87: 64 c Indian Academy of Sciences. DOI 10.1007/s12043-016-1258-y. Symmetry and conservation law structures of some anti-self-dual (ASD) manifolds. J BASINGWA1, A H KARA1,∗, ASHFAQUE H BOKHARI2, R A MOUSA2 and F D ZAMAN2. 1School of Mathematics, University of the ...
Constant self-dual Abelian gauge fields and fermions in SU(2) gauge theory
International Nuclear Information System (INIS)
Kay, D.; Parthasarathy, R.; Viswanathan, K.S.
1983-01-01
Fermion one-loop corrections to the effective action in a self-dual Abelian background field are calculated for an SU(2) gauge theory. It is found that these corrections for massless fermions tend to destabilize the vacuum. The quantitative and qualitative features of such corrections for the case of massive fermions are discussed
Static, self-dual, finite action SU(3) gauge fields in the de Sitter space
International Nuclear Information System (INIS)
Chakrabarti, A.; Comtet, A.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia
1980-01-01
Static, self-dual, finite action SU(3) gauge fields are constructed on the euclidean section of the positive curvature de Sitter metric with periodic time. Their relation to known time dependent flat space solutions is pointed out. Their significances and possible applications are indicated. (orig.)
Two general classes of self dual, Minkowski propagating wave solutions in Yang Mills gauge theory
International Nuclear Information System (INIS)
Kovacs, E.; Lo, S.Y.
1979-01-01
Two classes of self dual propogating wave solutions to the sourceless field equations in Minkowski space are presented. Some of these solutions can be linearly superposed. These waves can propogate at either the speed of light or at a speed less than that of light
Nishino, Hitoshi; Rajpoot, Subhash
2018-03-01
We formulate an N = (2 , 0) system in D = 3 + 3 dimensions consisting of a Yang-Mills (YM)-multiplet (ˆ μ ˆ IA, λˆI), a self-dual non-Abelian tensor multiplet (ˆ μ ˆ ν ˆ IB, χˆI ,φˆI), and an extra vector multiplet (C ˆ μ ˆ IC, ρˆI). We next perform the dimensional reductions of this system into D = 2 + 2, and obtain N = (1 , 1) systems with a self-dual YM-multiplet (AIμ ,λI), a self-dual tensor multiplet (BIμν , χI , φI), and an extra vector multiplet (CIμ , ρI). In D = 2 + 2, we reach two distinct theories: 'Theory-I' and 'Theory-II'. The former has the self-dual field-strength Hμν(+)I of CIμ already presented in our recent paper, while the latter has anti-self-dual field strength Hμν(-)I. As an application, we show that Theory-II actually generates supersymmetric-KdV equations in D = 1 + 1. Our result leads to a new conclusion that the D = 3 + 3 theory with non-Abelian tensor multiplet can be a 'Grand Master Theory' for self-dual multiplet and self-dual YM-multiplet in D = 2 + 2, that in turn has been conjectured to be the 'Master Theory' for all supersymmetric integrable theories in D ≤ 3.
Killing–Yano tensor and supersymmetry of the self-dual Plebański–Demiański solution
International Nuclear Information System (INIS)
Nozawa, Masato; Houri, Tsuyoshi
2016-01-01
We explore various aspects of the self-dual Plebański–Demiański (PD) family in the Euclidean Einstein–Maxwell-Λ system. The Killing–Yano tensor which was recently found by Yasui and one of the present authors allows us to prove that the self-dual PD metric can be brought into the self-dual Carter metric by an orientation-reversing coordinate transformation. We show that the self-dual PD solution admits two independent Killing spinors in the framework of N = 2 minimal gauged supergravity, whereas the non-self-dual solution admits only a single Killing spinor. This can be demonstrated by casting the self-dual PD metric into two distinct Przanowski–Tod forms. As a by-product, a new example of the three-dimensional Einstein–Weyl space is presented. We also prove that the self-dual PD metric falls into two different Calderbank–Pedersen families, which are determined by a single function subjected to a linear equation on the two-dimensional hyperbolic space. Furthermore, we consider the hyper-Kähler case for which the metric falls into the Gibbons–Hawking class. We find that the condition for the nonexistence of the Dirac–Misner string enforces the solution with a nonvanishing acceleration parameter to the Eguchi–Hanson space. (paper)
International Nuclear Information System (INIS)
Akbar, M.M.; D'Eath, P.D.
2003-01-01
The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact (S 3 ) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii (a,b). For the simplest, four-ball, topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti)de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii (a,b), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a 'cusp catastrophe' structure with a non-self-intersecting 'catastrophe manifold' implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between a and b holds. The action of this solution is proportional to -a 3 for large a (∼b) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a 'bolt' is investigated in a forthcoming paper
Thomson scattering of chiral tensors and scalars against a self-dual string
International Nuclear Information System (INIS)
Arvidsson, Paer; Flink, Erik; Henningson, Maans
2002-01-01
We give a non-technical outline of a program to study the (2,0) theories in six space-time dimensions. Away from the origin of their moduli space, these theories describe the interactions of tensor multiplets and self-dual spinning strings. We argue that if the ratio between the square of the energy of a process and the string tension is taken to be small, it should be possible to study the dynamics of such a system perturbatively in this parameter. As a first step in this direction, we perform a classical computation of the amplitude for scattering chiral tensor and scalar fields (i.e. the bosonic part of a tensor multiplet) against a self-dual spinnless string. (author)
Almost commuting self-adjoint matrices: The real and self-dual cases
Loring, Terry A.; Sørensen, Adam P. W.
2016-08-01
We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.
Vortex dynamics in self-dual Chern-Simons-Higgs systems
International Nuclear Information System (INIS)
Kim, Y.; Lee, K.
1994-01-01
We consider vortex dynamics in self-dual Chern-Simons-Higgs systems. We show that the naive Aharonov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use the path integral formalism to derive the dual formulation of Chern-Simons-Higgs systems in which vortices appear as charged particles. We argue that in addition to the electromagnetic interaction, there is an additional interaction between vortices, the so-called Magnus force, and that these forces can be put together into a single ''dual electromagnetic'' interaction. This dual electromagnetic interaction leads to the right statistical phase. We also derive and study the effective action for slowly moving vortices, which contains terms both linear and quadratic in the vortex velocity. We show that vortices can be bounded to each other by the Magnus force
Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)
2016-12-14
We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.
On the algebraic structure of self-dual gauge fields and sigma models
International Nuclear Information System (INIS)
Bais, F.A.; Sasaki, R.
1983-01-01
An extensive and detailed analysis of self-dual gauge fields, in particular with axial symmetry, is presented, culminating in a purely algebraic procedure to generate solutions. The method which is particularly suited for the construction of multimonopole solutions for a theory with arbitrary G, is also applicable to a wide class of non-linear sigma models. The relevant symmetries as well as the associated linear problems which underly the exact solubility of the problem, are constructed and discussed in detail. (orig.)
Some New Integrable Equations from the Self-Dual Yang-Mills Equations
International Nuclear Information System (INIS)
Ivanova, T.A.; Popov, A.D.
1994-01-01
Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs
Diffeomorphism-type symmetries of the self-dual Yang-Mills equations
International Nuclear Information System (INIS)
Ivanova, T.A.
1998-01-01
The infinite-dimensional algebra of diffeomorphism-type symmetries of the self-dual Yang-Mills equations is described as the algebra of 0-cochains with values in a sheaf of germs of holomorphic sections of the (1,0) tangent bundle over the twistor space. It is shown that the extended conformal symmetries are obtained as particular cases of the aforementioned algebra
SLE in self-dual critical Z(N) spin systems: CFT predictions
International Nuclear Information System (INIS)
Santachiara, Raoul
2008-01-01
The Schramm-Loewner evolution (SLE) describes the continuum limit of domain walls at phase transitions in two-dimensional statistical systems. We consider here the SLE in Z(N) spin models at their self-dual critical point. For N=2 and N=3 these models correspond to the Ising and three-state Potts model. For N≥4 the critical self-dual Z(N) spin models are described in the continuum limit by non-minimal conformal field theories with central charge c≥1. By studying the representations of the corresponding chiral algebra, we show that two particular operators satisfy a two level null vector condition which, for N≥4, presents an additional term coming from the extra symmetry currents action. For N=2,3 these operators correspond to the boundary conditions changing operators associated to the SLE 16/3 (Ising model) and to the SLE 24/5 and SLE 10/3 (three-state Potts model). We suggest a definition of the interfaces within the Z(N) lattice models. The scaling limit of these interfaces is expected to be described at the self-dual critical point and for N≥4 by the SLE 4(N+1)/(N+2) and SLE 4(N+2)/(N+1) processes
Construction of self-dual codes in the Rosenbloom-Tsfasman metric
Krisnawati, Vira Hari; Nisa, Anzi Lina Ukhtin
2017-12-01
Linear code is a very basic code and very useful in coding theory. Generally, linear code is a code over finite field in Hamming metric. Among the most interesting families of codes, the family of self-dual code is a very important one, because it is the best known error-correcting code. The concept of Hamming metric is develop into Rosenbloom-Tsfasman metric (RT-metric). The inner product in RT-metric is different from Euclid inner product that is used to define duality in Hamming metric. Most of the codes which are self-dual in Hamming metric are not so in RT-metric. And, generator matrix is very important to construct a code because it contains basis of the code. Therefore in this paper, we give some theorems and methods to construct self-dual codes in RT-metric by considering properties of the inner product and generator matrix. Also, we illustrate some examples for every kind of the construction.
DEFF Research Database (Denmark)
Vested Madsen, Matias; Macario, Alex; Yamamoto, Satoshi
2016-01-01
learning as higher quality than sessions with little or no verbal interaction between teacher and learner. A modified Delphi process was used to identify useful teaching techniques. A representative sample of each of the formal teaching session types was mapped, and residents anonymously completed a 5...... formal teaching session. The overall education scores of the sessions as rated by the residents were high....
International Nuclear Information System (INIS)
Chau Ling-Lie; Ge Mo-Lin; Teh, Rosy.
1984-09-01
The Baecklund Transformations and the hidden symmetry algebra for Self-Dual Yang-Mills Equations, Landau-Lifshitz equations and the Extended Super Yang-Mills fields (N>2) are discussed on the base of the Regular Riemann-Hilbert Transform and the linearization equations. (author)
Self-dual Yang-Mills equation and deformation of surfaces
International Nuclear Information System (INIS)
Serikbaev, N.S.; Myrzakul, K.; Sajymbetova, S.K.; Koshkinbaev, A.D.; Myrzakulov, R.
2003-01-01
We show that many integrable systems and integrable spin systems in 2+1 dimensions can be obtained from the (2+1)- dimensional Gauss-Mainardi-Codazzi and Gauss-Weingarten equations, respectively. We also show that the (2+1)-dimensional Gauss-Mainardi-Codazzi equation which describes the deformation (motion) of surfaces is the exact reduction of the Yang-Mills-Higgs-Bogomolny and self-dual Yang-Mills equations. On the basis of this observation, we suggest that the (2+1)-dimensional Gauss-Mainardi-Codazzi equation is a candidate to be integrable, and the associated linear problem (Lax representation) with the spectral parameter is presented. (author)
Moduli space of self-dual connections in dimension greater than four for abelian Gauge groups
Cappelle, Natacha
2018-01-01
In 1954, C. Yang and R. Mills created a Gauge Theory for strong interaction of Elementary Particles. More generally, they proved that it is possible to define a Gauge Theory with an arbitrary compact Lie group as Gauge group. Within this context, it is interesting to find critical values of a functional defined on the space of connections: the Yang-Mills functional. If the based manifold is four dimensional, there exists a natural notion of (anti-)self-dual 2-form, which gives a natural notio...
Canonical formulation of the self-dual Yang-Mills system: Algebras and hierarchies
International Nuclear Information System (INIS)
Chau, L.; Yamanaka, I.
1992-01-01
We construct a canonical formulation of the self-dual Yang-Mills system formulated in the gauge-invariant group-valued J fields and derive their Hamiltonian and the quadratic algebras of the fundamental Dirac brackets. We also show that the quadratic algebras satisfy Jacobi identities and their structure matrices satisfy modified Yang-Baxter equations. From these quadratic algebras, we construct Kac-Moody-like and Virasoro-like algebras. We also discuss their related symmetries, involutive conserved quantities, and hierarchies of nonlinear and linear equations
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
Dai, Jialiang; Fan, Engui
2018-04-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
Some Evolution Hierarchies Derived from Self-dual Yang-Mills Equations
International Nuclear Information System (INIS)
Zhang Yufeng; Hon, Y.C.
2011-01-01
We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra Ē of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable model of the Giachetti-Johnson (GJ) hierarchy whose Hamiltonian structure can also be derived by using the trace identity. This provides a much simpler construction method in comparing with the tedious variational identity approach. Furthermore, the nonlinear integrable coupling of the GJ hierarchy is readily obtained by introducing the Lie algebra g N . As an application, we apply the loop algebra E-tilde of the Lie algebra E to obtain a kind of expanding integrable model of the Kaup-Newell (KN) hierarchy which, consisting of two arbitrary parameters α and β, can be reduced to two nonlinear evolution equations. In addition, we use a loop algebra F of the Lie algebra F to obtain an expanding integrable model of the BT hierarchy whose Hamiltonian structure is the same as using the trace identity. Finally, we deduce five integrable systems in R 3 based on the self-dual Yang-Mills equations, which include Poisson structures, irregular lines, and the reduced equations. (general)
Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian
Directory of Open Access Journals (Sweden)
A. Zabrodin
2018-02-01
Full Text Available We discuss a self-dual form or the Bäcklund transformations for the continuous (in time variable glN Ruijsenaars–Schneider model. It is based on the first order equations in N+M complex variables which include N positions of particles and M dual variables. The latter satisfy equations of motion of the glM Ruijsenaars–Schneider model. In the elliptic case it holds M=N while for the rational and trigonometric models M is not necessarily equal to N. Our consideration is similar to the previously obtained results for the Calogero–Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars–Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian by means of the simple pole ansatz likewise the Calogero–Moser models arise from ordinary intermediate long wave and Benjamin–Ono equations.
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Frison, Gianluca; Skajaa, Anders
2015-01-01
We develop an efficient homogeneous and self-dual interior-point method (IPM) for the linear programs arising in economic model predictive control of constrained linear systems with linear objective functions. The algorithm is based on a Riccati iteration procedure, which is adapted to the linear...... system of equations solved in homogeneous and self-dual IPMs. Fast convergence is further achieved using a warm-start strategy. We implement the algorithm in MATLAB and C. Its performance is tested using a conceptual power management case study. Closed loop simulations show that 1) the proposed algorithm...
The electrically charged BTZ black hole with self (anti-self) dual Maxwell field
International Nuclear Information System (INIS)
Kamata, M.; Koikawa, T.
1995-04-01
The Einstein-Maxwell equations with a negative cosmological constant Λ in 2 + 1 spacetime dimensions discussed by Banados, Teitelboim and Zanelli are solved by assuming a self (anti-self) dual equation E r-circumflex = ± B -circumflex , which is imposed on the orthonormal basis components of the electric field E r-circumflex and the magnetic field B -circumflex . This solution describes an electrically charged extra black hole with mass M=8πGQ 2 e , angular momentum J = ±8πGQ 2 e / modul Λ 1/2 and electric charge Q e . Although the coordinate components of the electric field E r and the magnetic field B have singularities on the horizon at r (4πGQ 2 e / modul Λ) 1/2 , the spacetime has the same value of constant negative curvature R = 6Λ as that of Banados et al. (author). 5 refs
Kaehler-Chern-Simons theory and symmetries of anti-self-dual gauge fields
International Nuclear Information System (INIS)
Nair, V.P.; Schiff, J.
1992-01-01
Kaehler-Chern-Simons theory, which was proposed as a generalization of ordinary Chern-Simons theory, is explored in more detail. The theory describes anti-self-dual instantons on a four-dimensional Kaehler manifold. The phase space is the space of gauge potentials, whose symplectic reduction by the constraints of anti-self-duality leads to the moduli space of instantons. We show that infinitesimal Baecklund transformations, previously related to 'hidden symmetries' of instantons, are canonical transformations generated by the anti-self-duality constraints. The quantum wave functions naturally lead to a generalized Wess-Zumino-Witten action, which in turn has associated chiral current algebras. The dimensional reduction of the anti-self-duality equations leading to integrable two-dimensional theories is briefly discussed in this framework. (orig.)
Emitter and absorber assembly for multiple self-dual operation and directional transparency
Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.
2017-03-01
We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Frison, Gianluca; Edlund, Kristian
2013-01-01
In this paper, we develop an efficient interior-point method (IPM) for the linear programs arising in economic model predictive control of linear systems. The novelty of our algorithm is that it combines a homogeneous and self-dual model, and a specialized Riccati iteration procedure. We test...
DEFF Research Database (Denmark)
Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.
1994-01-01
Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...
(3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces
Energy Technology Data Exchange (ETDEWEB)
Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-05-22
We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
Orbifold constructions and the classification of self-dual c=24 conformal field theories
International Nuclear Information System (INIS)
Montague, P.S.
1994-01-01
We discuss questions arising from the work of Schellekens [A.N. Schellekens, Phys. Lett. B 277 (1992) 277; Meromorphic c=24 conformal field theories, CERN-TH.6478/92, 1992.] After introducing the concept of complementary representations, we examine Z 2 -orbifold constructions in general, and propose a technique for identifying the orbifold theory without knowledge of its explicit construction. This technique is then generalised to twists of order 3, 5 and 7, and we proceed to apply our considerations to the FKS constructions H (Λ) (Λ an even self-dual lattice) and the reflection-twisted orbifold theories and H ;(Λ), which together remain the only c=24 theories which have so far been proven to exist [L. Dolan, P. Goddard and P. Montague, Nucl. Phys. B 338 (1990) 529.] We also make, in the course of our arguments, some comments on the automorphism groups of the theories H (Λ) and and H ;(Λ), and of meromorphic theories in general, introducing the concept of deterministic theories. ((orig.))
Analytical evidence for the absence of spin glass transition on self-dual lattices
International Nuclear Information System (INIS)
Ohzeki, Masayuki; Nishimori, Hidetoshi
2009-01-01
We show strong evidence for the absence of a finite-temperature spin glass transition for the random-bond Ising model on self-dual lattices. The analysis is performed by an application of duality relations, which enables us to derive a precise but approximate location of the multicritical point on the Nishimori line. This method can be systematically improved to presumably give the exact result asymptotically. The duality analysis, in conjunction with the relationship between the multicritical point and the spin glass transition point for the symmetric distribution function of randomness, leads to the conclusion of the absence of a finite-temperature spin glass transition for the case of symmetric distribution. The result is applicable to the random-bond Ising model with ±J or Gaussian distribution and the Potts gauge glass on the square, triangular and hexagonal lattices as well as the random three-body Ising model on the triangular and the Union-Jack lattices and the four-dimensional random plaquette gauge model. This conclusion is exact provided that the replica method is valid and the asymptotic limit of the duality analysis yields the exact location of the multicritical point. (fast track communication)
Supersymmetric Dirac-Born-Infeld action with self-dual mass term
International Nuclear Information System (INIS)
Nishino, Hitoshi; Rajpoot, Subhash; Reed, Kevin
2005-01-01
We introduce a Dirac-Born-Infeld action to a self-dual N = 1 supersymmetric vector multiplet in three dimensions. This action is based on the supersymmetric generalized self-duality in odd dimensions developed originally by Townsend, Pilch and van Nieuwenhuizen. Even though such a self-duality had been supposed to be very difficult to generalize to a supersymmetrically interacting system, we show that the Dirac-Born-Infeld action is actually compatible with supersymmetry and self-duality in three dimensions, even though the original self-duality receives corrections by the Dirac-Born-Infeld action. The interactions can be further generalized to arbitrary (non)polynomial interactions. As a by-product, we also show that a third-rank field strength leads to a more natural formulation of self-duality in 3D. We also show an interesting role played by the third-rank field strength leading to supersymmetry breaking, in addition to accommodating a Chern-Simons form
International Nuclear Information System (INIS)
Wang, L.C.
1980-01-01
Baecklund Transformations (BT) and the derivation of local conservation laws are first reviewed in the classic case of the Sine-Gordon equation. The BT, conservation laws (local and nonlocal), and the inverse-scattering formulation are discussed for the chiral and the self-dual Yang-Mills fields. Their possible applications to the loop formulation for the Yang-Mills fields are mentioned. 55 references, 1 figure
International Nuclear Information System (INIS)
Magnon, A.; Departement de Mathematiques, Universite de Clermont-Fd. 63170 Aubiere, France)
1986-01-01
An analogy between source-free, asymptotically Taub--NUT magnetic monopole solutions to Einstein's equation and self-(anti-self-) dual gauge connections is displayed, which finds its origin in the first Chern class of these space-times. A definition of asymptotic graviton modes is proposed that suggests that a subclass of Penrose's nonlinear gravitons or Newman's H-script-spaces could emerge from nontrivial space-time topologies
International Nuclear Information System (INIS)
Sourrouille, Lucas; Casana, Rodolfo
2016-01-01
We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω_1(|ϕ|) and ω(|ϕ|), which split the kinetic term of the Higgs field, |D_μϕ|"2→ω_1(|ϕ|)|D_0ϕ|"2-ω(|ϕ|)|D_kϕ|"2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω(|ϕ|)∝β|ϕ|"2"β"-"2 with β≥1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω_1(|ϕ|) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual |ϕ|"6-vortex solutions have been analyzed from both theoretical and numerical point of view.
The critical behaviour of self-dual Z(N) spin systems - Finite size scaling and conformal invariance
International Nuclear Information System (INIS)
Alcaraz, F.C.
1986-01-01
Critical properties of a family of self-dual two dimensional Z(N) models whose bulk free energy is exacly known at the self-dual point are studied. The analysis is performed by studing the finite size behaviour of the corresponding one dimensional quantum Hamiltonians which also possess an exact solution at their self-dual point. By exploring finite size scaling ideas and the conformal invariance of the critical infinite system the critical temperature and critical exponents as well as the central charge associated with the underlying conformal algebra are calculated for N up to 8. The results strongly suggest that the recently constructed Z(N) quantum field theory of Zamolodchikov and Fateev (1985) is the underlying field theory associated with these statistical mechanical systems. It is also tested, for the Z(5) case, the conjecture that these models correspond to the bifurcation points, in the phase diagram of the general Z(N) spin model, where a massless phase originates. (Author) [pt
Regularization of divergent integrals
Felder, Giovanni; Kazhdan, David
2016-01-01
We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.
Short-time dynamics of random-bond Potts ferromagnet with continuous self-dual quenched disorders
Pan, Z. Q.; Ying, H. P.; Gu, D. W.
2001-01-01
We present Monte Carlo simulation results of random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two-dimensions. By exploring the short-time scaling dynamics, we find universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent $z$ and magnetic exponent $\\eta$, as well as the exponent $\\theta$. Our special attention is paid to the dynamic process for the $q...
UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA
Directory of Open Access Journals (Sweden)
IONIŢĂ Elena
2015-06-01
Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
Energy Technology Data Exchange (ETDEWEB)
Sayed, S.M. [Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Mathematics Department, P.O. Box 1144, Tabouk Teacher College, Ministry of Education (Saudi Arabia)], E-mail: eaashour@lycos.com; Gharib, G.M. [Mathematics Department, P.O. Box 1144, Tabouk Teacher College, Ministry of Education (Saudi Arabia)
2009-01-30
The (constrained) canonical reduction of four-dimensional self-dual Yang-Mills theory to two-dimensional Fitzhugh-Nagumo and the real Newell-Whitehead equations are considered. On the other hand, other methods and transformations are developed to obtain exact solutions for the original two-dimensional Fitzhugh-Nagumo and Newell-Whitehead equations. The corresponding gauge potential A{sub {mu}} and the gauge field strengths F{sub {mu}}{sub {nu}} are also obtained. New explicit and exact traveling wave and solitary solutions (for Fitzhugh-Nagumo and Newell-Whitehead equations) are obtained by using an improved sine-cosine method and the Wu's elimination method with the aid of Mathematica.
International Nuclear Information System (INIS)
Sayed, S.M.; Gharib, G.M.
2009-01-01
The (constrained) canonical reduction of four-dimensional self-dual Yang-Mills theory to two-dimensional Fitzhugh-Nagumo and the real Newell-Whitehead equations are considered. On the other hand, other methods and transformations are developed to obtain exact solutions for the original two-dimensional Fitzhugh-Nagumo and Newell-Whitehead equations. The corresponding gauge potential A μ and the gauge field strengths F μν are also obtained. New explicit and exact traveling wave and solitary solutions (for Fitzhugh-Nagumo and Newell-Whitehead equations) are obtained by using an improved sine-cosine method and the Wu's elimination method with the aid of Mathematica.
International Nuclear Information System (INIS)
Martin, H.O.; Tsallis, C.
1981-01-01
A simple renormalization group approach based on self-dual clusters is proposed for two-dimensional nearest-neighbour 1/2 - spin Ising model on the square lattice; it reproduces the exact critical point. The internal energy and the specific heat for vanishing external magnetic field, spontaneous magnetization and the thermal (Y sub(T)) and magnetic (Y sub(H)) critical exponents are calculated. The results obtained from the first four smallest cluster sizes strongly suggest the convergence towards the exact values when the cluster sizes increases. Even for the smallest cluster, where the calculation is very simple, the results are quite accurate, particularly in the neighbourhood of the critical point. (Author) [pt
DEFF Research Database (Denmark)
Boegh, E.; Houborg, R.; Bienkowski, J.
2011-01-01
index (LAI) are important determinants of the maximum CO2 Methods/Approach uptake by plants and trees. In the EU project NitroEurope, high spatial resolution (10-20 m) remote sensing data from the HRG and HRVIR sensors onboard the SPOT satellites were acquired to derive maps of leaf N and LAI for 5...... European landscapes. The estimations of leaf N, Cab and LAI soil reflectance parameters and canopy parameters are discussed in relation to the prevailing soil types and vegetation characteristics of land cover classes across the 5 European landscapes....
International Nuclear Information System (INIS)
Leznov, A.N.
1994-01-01
A general method for the construction of solutions of the d'Alamberian and double d'Alamberian (harmonic and bi-harmonic) equations with local dependence of arbitrary functions upon two independent arguments is proposed. The connection between solutions of this kind and self-dual configurations of gauge fields having no singularities is established. 5 refs
Directory of Open Access Journals (Sweden)
Maria Joita
2007-12-01
Full Text Available In this paper we characterize the order relation on the set of all nondegenerate completely n-positive linear maps between C*-algebras in terms of a self-dual Hilbert module induced by each completely n-positive linear map.
Differential regularization of a non-relativistic anyon model
International Nuclear Information System (INIS)
Freedman, D.Z.; Rius, N.
1993-07-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field φ with λ(φ * φ) 2 self-interaction and coupling to a statistics-changing 0(1) Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the φ * φ * φφ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the β-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to β(λ, e) vanish, and β(λ, ε) itself vanishes when the ''self-dual'' condition relating λ to the gauge coupling e is imposed. (author). 12 refs, 1 fig
Metric regularity and subdifferential calculus
International Nuclear Information System (INIS)
Ioffe, A D
2000-01-01
The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Nijholt, Antinus
1980-01-01
Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular
Regular Expression Pocket Reference
Stubblebine, Tony
2007-01-01
This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp
Regularization by External Variables
DEFF Research Database (Denmark)
Bossolini, Elena; Edwards, R.; Glendinning, P. A.
2016-01-01
Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...
Goyvaerts, Jan
2009-01-01
This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a
Regularities of Multifractal Measures
Indian Academy of Sciences (India)
First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...
Stochastic analytic regularization
International Nuclear Information System (INIS)
Alfaro, J.
1984-07-01
Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)
Finley, Daniel; McIver, John K.
2002-12-01
The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.
International Nuclear Information System (INIS)
Saemann, Christian
2005-01-01
In this paper, we propose so-called fattened complex manifolds as target spaces for the topological B-model. We naturally obtain these manifolds by restricting the structure sheaf of the N=4 supertwistor space, a process, which can be understood as a fermionic dimensional reduction. Using the twistorial description of these fattened complex manifolds, we construct Penrose-Ward transforms between solutions to the holomorphic Chern-Simons equations on these spaces and bosonic subsectors of solutions to the N=4 self-dual Yang-Mills equations on C 4 or R 4 . Furthermore, we comment on Yau's theorem for these spaces. (author)
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Regular expression containment
DEFF Research Database (Denmark)
Henglein, Fritz; Nielsen, Lasse
2011-01-01
We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
Regularized maximum correntropy machine
Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin
2015-01-01
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
International Nuclear Information System (INIS)
Ketov, S.V.
1996-09-01
Taking the (2,2) strings as a starting point, we discuss the equivalent self-dual field theories and analyze their symmetry structure in 2+2 dimensions from the viewpoint of string/membrane unification. Requiring the 'Lorentz' invariance and supersymmetry in the (2,2) string target space leads to an extension of the (2,2) string theory to a theory of 2+2 dimensional supermembranes (M-branes) propagating in a higher dimensional target space. The origin of the hidden target space dimensions of the M-brane is related to the maximally extended supersymmetry implied by the 'Lorentz' covariance and dimensional reasons. The Kaehler-Chern-Simons-type action describing the self-dual gravity in 2+2 dimensions is proposed. Its maximal supersymmetrization (of the Green-Schwarz-type) naturally leads to the 2+10 (or higher) dimensions for the M-brane target space. The proposed OSp(32 vertical stroke 1) supersymmetric action gives the pre-geometrical description of M-branes, which may be useful for a fundamental formulation of F and M theory. (orig.)
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
The K-Z Equation and the Quantum-Group Difference Equation in Quantum Self-dual Yang-Mills Theory
Chau, Ling-Lie; Yamanaka, Itaru
1995-01-01
From the time-independent current $\\tcj(\\bar y,\\bar k)$ in the quantum self-dual Yang-Mills (SDYM) theory, we construct new group-valued quantum fields $\\tilde U(\\bar y,\\bar k)$ and $\\bar U^{-1}(\\bar y,\\bar k)$ which satisfy a set of exchange algebras such that fields of $\\tcj(\\bar y,\\bar k)\\sim\\tilde U(\\bar y,\\bar k)~\\partial\\bar y~\\tilde U^{-1}(\\bar y,\\bar k)$ satisfy the original time-independent current algebras. For the correlation functions of the products of the $\\tilde U(\\bar y,\\bar k...
Diverse Regular Employees and Non-regular Employment (Japanese)
MORISHIMA Motohiro
2011-01-01
Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
'Regular' and 'emergency' repair
International Nuclear Information System (INIS)
Luchnik, N.V.
1975-01-01
Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)
Regularizing portfolio optimization
International Nuclear Information System (INIS)
Still, Susanne; Kondor, Imre
2010-01-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regularizing portfolio optimization
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regular Single Valued Neutrosophic Hypergraphs
Directory of Open Access Journals (Sweden)
Muhammad Aslam Malik
2016-12-01
Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.
The geometry of continuum regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-03-01
This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations
Annotation of Regular Polysemy
DEFF Research Database (Denmark)
Martinez Alonso, Hector
Regular polysemy has received a lot of attention from the theory of lexical semantics and from computational linguistics. However, there is no consensus on how to represent the sense of underspecified examples at the token level, namely when annotating or disambiguating senses of metonymic words...... and metonymic. We have conducted an analysis in English, Danish and Spanish. Later on, we have tried to replicate the human judgments by means of unsupervised and semi-supervised sense prediction. The automatic sense-prediction systems have been unable to find empiric evidence for the underspecified sense, even...
Regularity of Minimal Surfaces
Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht
2010-01-01
"Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t
Regularities of radiation heredity
International Nuclear Information System (INIS)
Skakov, M.K.; Melikhov, V.D.
2001-01-01
One analyzed regularities of radiation heredity in metals and alloys. One made conclusion about thermodynamically irreversible changes in structure of materials under irradiation. One offers possible ways of heredity transmittance of radiation effects at high-temperature transformations in the materials. Phenomenon of radiation heredity may be turned to practical use to control structure of liquid metal and, respectively, structure of ingot via preliminary radiation treatment of charge. Concentration microheterogeneities in material defect structure induced by preliminary irradiation represent the genetic factor of radiation heredity [ru
Regularities, Natural Patterns and Laws of Nature
Directory of Open Access Journals (Sweden)
Stathis Psillos
2014-02-01
Full Text Available The goal of this paper is to sketch an empiricist metaphysics of laws of nature. The key idea is that there are regularities without regularity-enforcers. Differently put, there are natural laws without law-makers of a distinct metaphysical kind. This sketch will rely on the concept of a natural pattern and more significantly on the existence of a network of natural patterns in nature. The relation between a regularity and a pattern will be analysed in terms of mereology. Here is the road map. In section 2, I will briefly discuss the relation between empiricism and metaphysics, aiming to show that an empiricist metaphysics is possible. In section 3, I will offer arguments against stronger metaphysical views of laws. Then, in section 4 I will motivate nomic objectivism. In section 5, I will address the question ‘what is a regularity?’ and will develop a novel answer to it, based on the notion of a natural pattern. In section 6, I will raise the question: ‘what is a law of nature?’, the answer to which will be: a law of nature is a regularity that is characterised by the unity of a natural pattern.
Improvements in GRACE Gravity Fields Using Regularization
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
2010-12-07
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...
Selection of regularization parameter for l1-regularized damage detection
Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing
2018-06-01
The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.
Ensemble manifold regularization.
Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng
2012-06-01
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.
Adaptive Regularization of Neural Classifiers
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai
1997-01-01
We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...
Capped Lp approximations for the composite L0 regularization problem
Li, Qia; Zhang, Na
2017-01-01
The composite L0 function serves as a sparse regularizer in many applications. The algorithmic difficulty caused by the composite L0 regularization (the L0 norm composed with a linear mapping) is usually bypassed through approximating the L0 norm. We consider in this paper capped Lp approximations with $p>0$ for the composite L0 regularization problem. For each $p>0$, the capped Lp function converges to the L0 norm pointwisely as the approximation parameter tends to infinity. We point out tha...
2010-09-02
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
Regularizations: different recipes for identical situations
International Nuclear Information System (INIS)
Gambin, E.; Lobo, C.O.; Battistel, O.A.
2004-03-01
We present a discussion where the choice of the regularization procedure and the routing for the internal lines momenta are put at the same level of arbitrariness in the analysis of Ward identities involving simple and well-known problems in QFT. They are the complex self-interacting scalar field and two simple models where the SVV and AVV process are pertinent. We show that, in all these problems, the conditions to symmetry relations preservation are put in terms of the same combination of divergent Feynman integrals, which are evaluated in the context of a very general calculational strategy, concerning the manipulations and calculations involving divergences. Within the adopted strategy, all the arbitrariness intrinsic to the problem are still maintained in the final results and, consequently, a perfect map can be obtained with the corresponding results of the traditional regularization techniques. We show that, when we require an universal interpretation for the arbitrariness involved, in order to get consistency with all stated physical constraints, a strong condition is imposed for regularizations which automatically eliminates the ambiguities associated to the routing of the internal lines momenta of loops. The conclusion is clean and sound: the association between ambiguities and unavoidable symmetry violations in Ward identities cannot be maintained if an unique recipe is required for identical situations in the evaluation of divergent physical amplitudes. (author)
Ergodicity of polygonal slap maps
International Nuclear Information System (INIS)
Del Magno, Gianluigi; Pedro Gaivão, José; Lopes Dias, João; Duarte, Pedro
2014-01-01
Polygonal slap maps are piecewise affine expanding maps of the interval obtained by projecting the sides of a polygon along their normals onto the perimeter of the polygon. These maps arise in the study of polygonal billiards with non-specular reflection laws. We study the absolutely continuous invariant probabilities (acips) of the slap maps for several polygons, including regular polygons and triangles. We also present a general method for constructing polygons with slap maps with more than one ergodic acip. (paper)
Continuum-regularized quantum gravity
International Nuclear Information System (INIS)
Chan Huesum; Halpern, M.B.
1987-01-01
The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)
New regular black hole solutions
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zanchin, Vilson T.
2011-01-01
In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.
Regular variation on measure chains
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Vitovec, J.
2010-01-01
Roč. 72, č. 1 (2010), s. 439-448 ISSN 0362-546X R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : regularly varying function * regularly varying sequence * measure chain * time scale * embedding theorem * representation theorem * second order dynamic equation * asymptotic properties Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09008475
Manifold Regularized Correlation Object Tracking
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2017-01-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...
On geodesics in low regularity
Sämann, Clemens; Steinbauer, Roland
2018-02-01
We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Partial Regularity for Holonomic Minimisers of Quasiconvex Functionals
Hopper, Christopher P.
2016-10-01
We prove partial regularity for local minimisers of certain strictly quasiconvex integral functionals, over a class of Sobolev mappings into a compact Riemannian manifold, to which such mappings are said to be holonomically constrained. Our approach uses the lifting of Sobolev mappings to the universal covering space, the connectedness of the covering space, an application of Ekeland's variational principle and a certain tangential A-harmonic approximation lemma obtained directly via a Lipschitz approximation argument. This allows regularity to be established directly on the level of the gradient. Several applications to variational problems in condensed matter physics with broken symmetries are also discussed, in particular those concerning the superfluidity of liquid helium-3 and nematic liquid crystals.
Sparsity regularization for parameter identification problems
International Nuclear Information System (INIS)
Jin, Bangti; Maass, Peter
2012-01-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
Manifold Regularized Correlation Object Tracking.
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2018-05-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.
Dimensional regularization in configuration space
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1995-09-01
Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs
Regular algebra and finite machines
Conway, John Horton
2012-01-01
World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg
Matrix regularization of 4-manifolds
Trzetrzelewski, M.
2012-01-01
We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...
On primal regularity estimates for single-valued mappings
Czech Academy of Sciences Publication Activity Database
Cibulka, R.; Fabian, Marián; Ioffe, A. D.
2015-01-01
Roč. 17, č. 1 (2015), s. 187-208 ISSN 1661-7738 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : Clarke's inverse function theorem * confinal family * contingent tangent cone * linear openness Subject RIV: BA - General Mathematics Impact factor: 0.540, year: 2015 http://link.springer.com/article/10.1007%2Fs11784-015-0240-5
Regularization of Nonmonotone Variational Inequalities
International Nuclear Information System (INIS)
Konnov, Igor V.; Ali, M.S.S.; Mazurkevich, E.O.
2006-01-01
In this paper we extend the Tikhonov-Browder regularization scheme from monotone to rather a general class of nonmonotone multivalued variational inequalities. We show that their convergence conditions hold for some classes of perfectly and nonperfectly competitive economic equilibrium problems
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
2011-01-20
... Meeting SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held at the offices of the Farm... meeting of the Board will be open to the [[Page 3630
Forcing absoluteness and regularity properties
Ikegami, D.
2010-01-01
For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over L and the core model K. We use our results to answer open questions from set theory of the reals.
Globals of Completely Regular Monoids
Institute of Scientific and Technical Information of China (English)
Wu Qian-qian; Gan Ai-ping; Du Xian-kun
2015-01-01
An element of a semigroup S is called irreducible if it cannot be expressed as a product of two elements in S both distinct from itself. In this paper we show that the class C of all completely regular monoids with irreducible identity elements satisfies the strong isomorphism property and so it is globally determined.
Fluid queues and regular variation
Boxma, O.J.
1996-01-01
This paper considers a fluid queueing system, fed by N independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index ¿. We show that its fat tail gives rise to an even
Fluid queues and regular variation
O.J. Boxma (Onno)
1996-01-01
textabstractThis paper considers a fluid queueing system, fed by $N$ independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index $zeta$. We show that its fat tail
Empirical laws, regularity and necessity
Koningsveld, H.
1973-01-01
In this book I have tried to develop an analysis of the concept of an empirical law, an analysis that differs in many ways from the alternative analyse's found in contemporary literature dealing with the subject.
1 am referring especially to two well-known views, viz. the regularity and
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Regularization in Matrix Relevance Learning
Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael
A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can
Regular and conformal regular cores for static and rotating solutions
Energy Technology Data Exchange (ETDEWEB)
Azreg-Aïnou, Mustapha
2014-03-07
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Regular and conformal regular cores for static and rotating solutions
International Nuclear Information System (INIS)
Azreg-Aïnou, Mustapha
2014-01-01
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Energy functions for regularization algorithms
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
Physical model of dimensional regularization
Energy Technology Data Exchange (ETDEWEB)
Schonfeld, Jonathan F.
2016-12-15
We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin
2014-01-01
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Circuit complexity of regular languages
Czech Academy of Sciences Publication Activity Database
Koucký, Michal
2009-01-01
Roč. 45, č. 4 (2009), s. 865-879 ISSN 1432-4350 R&D Projects: GA ČR GP201/07/P276; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : regular languages * circuit complexity * upper and lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.726, year: 2009
General inverse problems for regular variation
DEFF Research Database (Denmark)
Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan
2014-01-01
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...
Directory of Open Access Journals (Sweden)
Ferjan Ormeling
2008-09-01
Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.
Poisson image reconstruction with Hessian Schatten-norm regularization.
Lefkimmiatis, Stamatios; Unser, Michael
2013-11-01
Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.
Regularized Statistical Analysis of Anatomy
DEFF Research Database (Denmark)
Sjöstrand, Karl
2007-01-01
This thesis presents the application and development of regularized methods for the statistical analysis of anatomical structures. Focus is on structure-function relationships in the human brain, such as the connection between early onset of Alzheimer’s disease and shape changes of the corpus...... and mind. Statistics represents a quintessential part of such investigations as they are preluded by a clinical hypothesis that must be verified based on observed data. The massive amounts of image data produced in each examination pose an important and interesting statistical challenge...... efficient algorithms which make the analysis of large data sets feasible, and gives examples of applications....
Regularization methods in Banach spaces
Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S
2012-01-01
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B
Academic Training Lecture - Regular Programme
PH Department
2011-01-01
Regular Lecture Programme 9 May 2011 ACT Lectures on Detectors - Inner Tracking Detectors by Pippa Wells (CERN) 10 May 2011 ACT Lectures on Detectors - Calorimeters (2/5) by Philippe Bloch (CERN) 11 May 2011 ACT Lectures on Detectors - Muon systems (3/5) by Kerstin Hoepfner (RWTH Aachen) 12 May 2011 ACT Lectures on Detectors - Particle Identification and Forward Detectors by Peter Krizan (University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia) 13 May 2011 ACT Lectures on Detectors - Trigger and Data Acquisition (5/5) by Dr. Brian Petersen (CERN) from 11:00 to 12:00 at CERN ( Bldg. 222-R-001 - Filtration Plant )
RES: Regularized Stochastic BFGS Algorithm
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Group-regularized individual prediction: theory and application to pain.
Lindquist, Martin A; Krishnan, Anjali; López-Solà, Marina; Jepma, Marieke; Woo, Choong-Wan; Koban, Leonie; Roy, Mathieu; Atlas, Lauren Y; Schmidt, Liane; Chang, Luke J; Reynolds Losin, Elizabeth A; Eisenbarth, Hedwig; Ashar, Yoni K; Delk, Elizabeth; Wager, Tor D
2017-01-15
Multivariate pattern analysis (MVPA) has become an important tool for identifying brain representations of psychological processes and clinical outcomes using fMRI and related methods. Such methods can be used to predict or 'decode' psychological states in individual subjects. Single-subject MVPA approaches, however, are limited by the amount and quality of individual-subject data. In spite of higher spatial resolution, predictive accuracy from single-subject data often does not exceed what can be accomplished using coarser, group-level maps, because single-subject patterns are trained on limited amounts of often-noisy data. Here, we present a method that combines population-level priors, in the form of biomarker patterns developed on prior samples, with single-subject MVPA maps to improve single-subject prediction. Theoretical results and simulations motivate a weighting based on the relative variances of biomarker-based prediction-based on population-level predictive maps from prior groups-and individual-subject, cross-validated prediction. Empirical results predicting pain using brain activity on a trial-by-trial basis (single-trial prediction) across 6 studies (N=180 participants) confirm the theoretical predictions. Regularization based on a population-level biomarker-in this case, the Neurologic Pain Signature (NPS)-improved single-subject prediction accuracy compared with idiographic maps based on the individuals' data alone. The regularization scheme that we propose, which we term group-regularized individual prediction (GRIP), can be applied broadly to within-person MVPA-based prediction. We also show how GRIP can be used to evaluate data quality and provide benchmarks for the appropriateness of population-level maps like the NPS for a given individual or study. Copyright © 2015 Elsevier Inc. All rights reserved.
SUPPORTING INFORMATION REGULAR ARTICLE The ...
Indian Academy of Sciences (India)
MAd
MP2/6-311++G(2d,2p). Calculated 3D molecular electrostatic potential contour map of C4B2H6 … CH3OH clusters, the red color represents the minimal molecular electrostatic Potential and the blue color denotes the maximal molecular electrostatic potential. Figure S2. MP2/6-311++G(2d,2p). Calculated 3D molecular ...
From inactive to regular jogger
DEFF Research Database (Denmark)
Lund-Cramer, Pernille; Brinkmann Løite, Vibeke; Bredahl, Thomas Viskum Gjelstrup
study was conducted using individual semi-structured interviews on how a successful long-term behavior change had been achieved. Ten informants were purposely selected from participants in the DANO-RUN research project (7 men, 3 women, average age 41.5). Interviews were performed on the basis of Theory...... of Planned Behavior (TPB) and The Transtheoretical Model (TTM). Coding and analysis of interviews were performed using NVivo 10 software. Results TPB: During the behavior change process, the intention to jogging shifted from a focus on weight loss and improved fitness to both physical health, psychological......Title From inactive to regular jogger - a qualitative study of achieved behavioral change among recreational joggers Authors Pernille Lund-Cramer & Vibeke Brinkmann Løite Purpose Despite extensive knowledge of barriers to physical activity, most interventions promoting physical activity have proven...
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
On the equivalence of different regularization methods
International Nuclear Information System (INIS)
Brzezowski, S.
1985-01-01
The R-circunflex-operation preceded by the regularization procedure is discussed. Some arguments are given, according to which the results may depend on the method of regularization, introduced in order to avoid divergences in perturbation calculations. 10 refs. (author)
The uniqueness of the regularization procedure
International Nuclear Information System (INIS)
Brzezowski, S.
1981-01-01
On the grounds of the BPHZ procedure, the criteria of correct regularization in perturbation calculations of QFT are given, together with the prescription for dividing the regularized formulas into the finite and infinite parts. (author)
Boundary Equations and Regularity Theory for Geometric Variational Systems with Neumann Data
Schikorra, Armin
2018-02-01
We study boundary regularity of maps from two-dimensional domains into manifolds which are critical with respect to a generic conformally invariant variational functional and which, at the boundary, intersect perpendicularly with a support manifold. For example, harmonic maps, or H-surfaces, with a partially free boundary condition. In the interior it is known, by the celebrated work of Rivière, that these maps satisfy a system with an antisymmetric potential, from which one can derive the interior regularity of the solution. Avoiding a reflection argument, we show that these maps satisfy along the boundary a system of equations which also exhibits a (nonlocal) antisymmetric potential that combines information from the interior potential and the geometric Neumann boundary condition. We then proceed to show boundary regularity for solutions to such systems.
Use of regularized algebraic methods in tomographic reconstruction
International Nuclear Information System (INIS)
Koulibaly, P.M.; Darcourt, J.; Blanc-Ferraud, L.; Migneco, O.; Barlaud, M.
1997-01-01
The algebraic methods are used in emission tomography to facilitate the compensation of attenuation and of Compton scattering. We have tested on a phantom the use of a regularization (a priori introduction of information), as well as the taking into account of spatial resolution variation with the depth (SRVD). Hence, we have compared the performances of the two methods by back-projection filtering (BPF) and of the two algebraic methods (AM) in terms of FWHM (by means of a point source), of the reduction of background noise (σ/m) on the homogeneous part of Jaszczak's phantom and of reconstruction speed (time unit = BPF). The BPF methods make use of a grade filter (maximal resolution, no noise treatment), single or associated with a Hann's low-pass (f c = 0.4), as well as of an attenuation correction. The AM which embody attenuation and scattering corrections are, on one side, the OS EM (Ordered Subsets, partitioning and rearranging of the projection matrix; Expectation Maximization) without regularization or SRVD correction, and, on the other side, the OS MAP EM (Maximum a posteriori), regularized and embodying the SRVD correction. A table is given containing for each used method (grade, Hann, OS EM and OS MAP EM) the values of FWHM, σ/m and time, respectively. One can observe that the OS MAP EM algebraic method allows ameliorating both the resolution, by taking into account the SRVD in the reconstruction process and noise treatment by regularization. In addition, due to the OS technique the reconstruction times are acceptable
Application of Turchin's method of statistical regularization
Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey
2018-04-01
During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.
Regular extensions of some classes of grammars
Nijholt, Antinus
Culik and Cohen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this report we consider the analogous extension of the LL(k) grammers, called the LL-regular grammars. The relations of this class of grammars to other classes of grammars are shown. Every LL-regular
Reducing errors in the GRACE gravity solutions using regularization
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2012-09-01
The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4
Class of regular bouncing cosmologies
Vasilić, Milovan
2017-06-01
In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.
Restrictive metric regularity and generalized differential calculus in Banach spaces
Directory of Open Access Journals (Sweden)
Bingwu Wang
2004-10-01
Full Text Available We consider nonlinear mappings f:XÃ¢Â†Â’Y between Banach spaces and study the notion of restrictive metric regularity of f around some point xÃ‚Â¯, that is, metric regularity of f from X into the metric space E=f(X. Some sufficient as well as necessary and sufficient conditions for restrictive metric regularity are obtained, which particularly include an extension of the classical Lyusternik-Graves theorem in the case when f is strictly differentiable at xÃ‚Â¯ but its strict derivative Ã¢ÂˆÂ‡f(xÃ‚Â¯ is not surjective. We develop applications of the results obtained and some other techniques in variational analysis to generalized differential calculus involving normal cones to nonsmooth and nonconvex sets, coderivatives of set-valued mappings, as well as first-order and second-order subdifferentials of extended real-valued functions.
Graph Regularized Auto-Encoders for Image Representation.
Yiyi Liao; Yue Wang; Yong Liu
2017-06-01
Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.
International Nuclear Information System (INIS)
McParland, C.; Bieser, F.
1984-01-01
The principal component of the Bevalac HISS facility is a large super-conducting 3 Tesla dipole. The facility's need for a large magnetic volume spectrometer resulted in a large gap geometry - a 2 meter pole tip diameter and a 1 meter pole gap. Obviously, the field required detailed mapping for effective use as a spectrometer. The mapping device was designed with several major features in mind. The device would measure field values on a grid which described a closed rectangular solid. The grid would be a regular with the exact measurement intervals adjustable by software. The device would function unattended over the long period of time required to complete a field map. During this time, the progress of the map could be monitored by anyone with access to the HISS VAX computer. Details of the mechanical, electrical, and control design follow
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
Higher derivative regularization and chiral anomaly
International Nuclear Information System (INIS)
Nagahama, Yoshinori.
1985-02-01
A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)
Regularity effect in prospective memory during aging
Directory of Open Access Journals (Sweden)
Geoffrey Blondelle
2016-10-01
Full Text Available Background: Regularity effect can affect performance in prospective memory (PM, but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30, 16 intermediate adults (40–55, and 25 older adults (65–80. The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities. We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding, short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results: A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young, but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion: Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical
Regularity effect in prospective memory during aging
Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique
2016-01-01
Background: Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults.Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 1...
Regularization and error assignment to unfolded distributions
Zech, Gunter
2011-01-01
The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.
Iterative Regularization with Minimum-Residual Methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2007-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Iterative regularization with minimum-residual methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2006-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Nielsen number of a covering map
Directory of Open Access Journals (Sweden)
Jezierski Jerzy
2006-01-01
Full Text Available We consider a finite regular covering over a compact polyhedron and a map admitting a lift . We show some formulae expressing the Nielsen number as a linear combination of the Nielsen numbers of its lifts.
A regularized stationary mean-field game
Yang, Xianjin
2016-01-01
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
A regularized stationary mean-field game
Yang, Xianjin
2016-04-19
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
From recreational to regular drug use
DEFF Research Database (Denmark)
Järvinen, Margaretha; Ravn, Signe
2011-01-01
This article analyses the process of going from recreational use to regular and problematic use of illegal drugs. We present a model containing six career contingencies relevant for young people’s progress from recreational to regular drug use: the closing of social networks, changes in forms...
Automating InDesign with Regular Expressions
Kahrel, Peter
2006-01-01
If you need to make automated changes to InDesign documents beyond what basic search and replace can handle, you need regular expressions, and a bit of scripting to make them work. This Short Cut explains both how to write regular expressions, so you can find and replace the right things, and how to use them in InDesign specifically.
Regularization modeling for large-eddy simulation
Geurts, Bernardus J.; Holm, D.D.
2003-01-01
A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of
2010-07-01
... employee under subsection (a) or in excess of the employee's normal working hours or regular working hours... Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... not less than one and one-half times their regular rates of pay. Section 7(e) of the Act defines...
An iterative method for Tikhonov regularization with a general linear regularization operator
Hochstenbach, M.E.; Reichel, L.
2010-01-01
Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Hierarchical regular small-world networks
International Nuclear Information System (INIS)
Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan
2008-01-01
Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Coupling regularizes individual units in noisy populations
International Nuclear Information System (INIS)
Ly Cheng; Ermentrout, G. Bard
2010-01-01
The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Diagrammatic methods in phase-space regularization
International Nuclear Information System (INIS)
Bern, Z.; Halpern, M.B.; California Univ., Berkeley
1987-11-01
Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)
J-regular rings with injectivities
Shen, Liang
2010-01-01
A ring $R$ is called a J-regular ring if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. It is proved that if R is J-regular, then (i) R is right n-injective if and only if every homomorphism from an $n$-generated small right ideal of $R$ to $R_{R}$ can be extended to one from $R_{R}$ to $R_{R}$; (ii) R is right FP-injective if and only if R is right (J, R)-FP-injective. Some known results are improved.
Generalized regular genus for manifolds with boundary
Directory of Open Access Journals (Sweden)
Paola Cristofori
2003-05-01
Full Text Available We introduce a generalization of the regular genus, a combinatorial invariant of PL manifolds ([10], which is proved to be strictly related, in dimension three, to generalized Heegaard splittings defined in [12].
Geometric regularizations and dual conifold transitions
International Nuclear Information System (INIS)
Landsteiner, Karl; Lazaroiu, Calin I.
2003-01-01
We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)
Fast and compact regular expression matching
DEFF Research Database (Denmark)
Bille, Philip; Farach-Colton, Martin
2008-01-01
We study 4 problems in string matching, namely, regular expression matching, approximate regular expression matching, string edit distance, and subsequence indexing, on a standard word RAM model of computation that allows logarithmic-sized words to be manipulated in constant time. We show how...... to improve the space and/or remove a dependency on the alphabet size for each problem using either an improved tabulation technique of an existing algorithm or by combining known algorithms in a new way....
Regular-fat dairy and human health
DEFF Research Database (Denmark)
Astrup, Arne; Bradley, Beth H Rice; Brenna, J Thomas
2016-01-01
In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to......, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted....
Deterministic automata for extended regular expressions
Directory of Open Access Journals (Sweden)
Syzdykov Mirzakhmet
2017-12-01
Full Text Available In this work we present the algorithms to produce deterministic finite automaton (DFA for extended operators in regular expressions like intersection, subtraction and complement. The method like “overriding” of the source NFA(NFA not defined with subset construction rules is used. The past work described only the algorithm for AND-operator (or intersection of regular languages; in this paper the construction for the MINUS-operator (and complement is shown.
Regularities of intermediate adsorption complex relaxation
International Nuclear Information System (INIS)
Manukova, L.A.
1982-01-01
The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained
Online Manifold Regularization by Dual Ascending Procedure
Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui
2013-01-01
We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...
Variational problems with obstacles and harmonic maps
International Nuclear Information System (INIS)
Musina, R.
1990-08-01
Our first purpose is to find a generalization of the usual definition of a harmonic map between two Riemannian manifolds in order to consider less regular target spaces. Our second aim was to extend a result by Chen and Struwe about the heat flow of harmonic mappings into manifolds with boundary. 19 refs
Delattre, Marie; Bonin, Patrick; Barry, Christopher
2006-01-01
The authors examined the effect of sound-to-spelling regularity on written spelling latencies and writing durations in a dictation task in which participants had to write each target word 3 times in succession. The authors found that irregular words (i.e., those containing low-probability phoneme-to-grapheme mappings) were slower both to…
Regular Expression Matching and Operational Semantics
Directory of Open Access Journals (Sweden)
Asiri Rathnayake
2011-08-01
Full Text Available Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.
Finiteness of PST self-dual models
International Nuclear Information System (INIS)
Del Cima, Oswaldo M.; Piguet, Olivier; Sarandy, Marcelo S.
2000-12-01
The Pasti-Sorokin-Tonin model for describing chiral forms is considered at the quantum level. We study the ultraviolet and infrared behaviour of the model in two, four and six dimensions in the framework of algebraic renormalization. The absence of anomalies, as well as the finiteness, up to non-physical renormalizations, are shown in all dimensions analyzed. (author)
Hamilton-Jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle
Wang, Hong
2017-09-01
In this paper, some of formulations of Hamilton-Jacobi equations for Hamiltonian system and regular reduced Hamiltonian systems are given. At first, an important lemma is proved, and it is a modification for the corresponding result of Abraham and Marsden (1978), such that we can prove two types of geometric Hamilton-Jacobi theorem for a Hamiltonian system on the cotangent bundle of a configuration manifold, by using the symplectic form and dynamical vector field. Then these results are generalized to the regular reducible Hamiltonian system with symmetry and momentum map, by using the reduced symplectic form and the reduced dynamical vector field. The Hamilton-Jacobi theorems are proved and two types of Hamilton-Jacobi equations, for the regular point reduced Hamiltonian system and the regular orbit reduced Hamiltonian system, are obtained. As an application of the theoretical results, the regular point reducible Hamiltonian system on a Lie group is considered, and two types of Lie-Poisson Hamilton-Jacobi equation for the regular point reduced system are given. In particular, the Type I and Type II of Lie-Poisson Hamilton-Jacobi equations for the regular point reduced rigid body and heavy top systems are shown, respectively.
Dose domain regularization of MLC leaf patterns for highly complex IMRT plans
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Dan; Yu, Victoria Y.; Ruan, Dan; Cao, Minsong; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States); O’Connor, Daniel [Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095 (United States)
2015-04-15
Purpose: The advent of automated beam orientation and fluence optimization enables more complex intensity modulated radiation therapy (IMRT) planning using an increasing number of fields to exploit the expanded solution space. This has created a challenge in converting complex fluences to robust multileaf collimator (MLC) segments for delivery. A novel method to regularize the fluence map and simplify MLC segments is introduced to maximize delivery efficiency, accuracy, and plan quality. Methods: In this work, we implemented a novel approach to regularize optimized fluences in the dose domain. The treatment planning problem was formulated in an optimization framework to minimize the segmentation-induced dose distribution degradation subject to a total variation regularization to encourage piecewise smoothness in fluence maps. The optimization problem was solved using a first-order primal-dual algorithm known as the Chambolle-Pock algorithm. Plans for 2 GBM, 2 head and neck, and 2 lung patients were created using 20 automatically selected and optimized noncoplanar beams. The fluence was first regularized using Chambolle-Pock and then stratified into equal steps, and the MLC segments were calculated using a previously described level reducing method. Isolated apertures with sizes smaller than preset thresholds of 1–3 bixels, which are square units of an IMRT fluence map from MLC discretization, were removed from the MLC segments. Performance of the dose domain regularized (DDR) fluences was compared to direct stratification and direct MLC segmentation (DMS) of the fluences using level reduction without dose domain fluence regularization. Results: For all six cases, the DDR method increased the average planning target volume dose homogeneity (D95/D5) from 0.814 to 0.878 while maintaining equivalent dose to organs at risk (OARs). Regularized fluences were more robust to MLC sequencing, particularly to the stratification and small aperture removal. The maximum and
Fractional Regularization Term for Variational Image Registration
Directory of Open Access Journals (Sweden)
Rafael Verdú-Monedero
2009-01-01
Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.
International Nuclear Information System (INIS)
Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.
2004-01-01
We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)
Online Manifold Regularization by Dual Ascending Procedure
Directory of Open Access Journals (Sweden)
Boliang Sun
2013-01-01
Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Regularity of difference equations on Banach spaces
Agarwal, Ravi P; Lizama, Carlos
2014-01-01
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semigroup and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
Matrix regularization of embedded 4-manifolds
International Nuclear Information System (INIS)
Trzetrzelewski, Maciej
2012-01-01
We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).
On a correspondence between regular and non-regular operator monotone functions
DEFF Research Database (Denmark)
Gibilisco, P.; Hansen, Frank; Isola, T.
2009-01-01
We prove the existence of a bijection between the regular and the non-regular operator monotone functions satisfying a certain functional equation. As an application we give a new proof of the operator monotonicity of certain functions related to the Wigner-Yanase-Dyson skew information....
Total variation regularization for fMRI-based prediction of behavior
Michel, Vincent; Gramfort, Alexandre; Varoquaux, Gaël; Eger, Evelyn; Thirion, Bertrand
2011-01-01
While medical imaging typically provides massive amounts of data, the extraction of relevant information for predictive diagnosis remains a difficult challenge. Functional MRI (fMRI) data, that provide an indirect measure of task-related or spontaneous neuronal activity, are classically analyzed in a mass-univariate procedure yielding statistical parametric maps. This analysis framework disregards some important principles of brain organization: population coding, distributed and overlapping representations. Multivariate pattern analysis, i.e., the prediction of behavioural variables from brain activation patterns better captures this structure. To cope with the high dimensionality of the data, the learning method has to be regularized. However, the spatial structure of the image is not taken into account in standard regularization methods, so that the extracted features are often hard to interpret. More informative and interpretable results can be obtained with the ℓ1 norm of the image gradient, a.k.a. its Total Variation (TV), as regularization. We apply for the first time this method to fMRI data, and show that TV regularization is well suited to the purpose of brain mapping while being a powerful tool for brain decoding. Moreover, this article presents the first use of TV regularization for classification. PMID:21317080
Regularity and irreversibility of weekly travel behavior
Kitamura, R.; van der Hoorn, A.I.J.M.
1987-01-01
Dynamic characteristics of travel behavior are analyzed in this paper using weekly travel diaries from two waves of panel surveys conducted six months apart. An analysis of activity engagement indicates the presence of significant regularity in weekly activity participation between the two waves.
Regular and context-free nominal traces
DEFF Research Database (Denmark)
Degano, Pierpaolo; Ferrari, Gian-Luigi; Mezzetti, Gianluca
2017-01-01
Two kinds of automata are presented, for recognising new classes of regular and context-free nominal languages. We compare their expressive power with analogous proposals in the literature, showing that they express novel classes of languages. Although many properties of classical languages hold ...
Faster 2-regular information-set decoding
Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.
2011-01-01
Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free-path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Regular Gleason Measures and Generalized Effect Algebras
Dvurečenskij, Anatolij; Janda, Jiří
2015-12-01
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
Regularization of finite temperature string theories
International Nuclear Information System (INIS)
Leblanc, Y.; Knecht, M.; Wallet, J.C.
1990-01-01
The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)
A Sim(2 invariant dimensional regularization
Directory of Open Access Journals (Sweden)
J. Alfaro
2017-09-01
Full Text Available We introduce a Sim(2 invariant dimensional regularization of loop integrals. Then we can compute the one loop quantum corrections to the photon self energy, electron self energy and vertex in the Electrodynamics sector of the Very Special Relativity Standard Model (VSRSM.
Continuum regularized Yang-Mills theory
International Nuclear Information System (INIS)
Sadun, L.A.
1987-01-01
Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions
Gravitational lensing by a regular black hole
International Nuclear Information System (INIS)
Eiroa, Ernesto F; Sendra, Carlos M
2011-01-01
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Gravitational lensing by a regular black hole
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)
2011-04-21
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Analytic stochastic regularization and gange invariance
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1986-05-01
A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt
Annotation of regular polysemy and underspecification
DEFF Research Database (Denmark)
Martínez Alonso, Héctor; Pedersen, Bolette Sandford; Bel, Núria
2013-01-01
We present the result of an annotation task on regular polysemy for a series of seman- tic classes or dot types in English, Dan- ish and Spanish. This article describes the annotation process, the results in terms of inter-encoder agreement, and the sense distributions obtained with two methods...
Stabilization, pole placement, and regular implementability
Belur, MN; Trentelman, HL
In this paper, we study control by interconnection of linear differential systems. We give necessary and sufficient conditions for regular implementability of a-given linear, differential system. We formulate the problems of stabilization and pole placement as problems of finding a suitable,
12 CFR 725.3 - Regular membership.
2010-01-01
... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit....5(b) of this part, and forwarding with its completed application funds equal to one-half of this... 1, 1979, is not required to forward these funds to the Facility until October 1, 1979. (3...
Supervised scale-regularized linear convolutionary filters
DEFF Research Database (Denmark)
Loog, Marco; Lauze, Francois Bernard
2017-01-01
also be solved relatively efficient. All in all, the idea is to properly control the scale of a trained filter, which we solve by introducing a specific regularization term into the overall objective function. We demonstrate, on an artificial filter learning problem, the capabil- ities of our basic...
On regular riesz operators | Raubenheimer | Quaestiones ...
African Journals Online (AJOL)
The r-asymptotically quasi finite rank operators on Banach lattices are examples of regular Riesz operators. We characterise Riesz elements in a subalgebra of a Banach algebra in terms of Riesz elements in the Banach algebra. This enables us to characterise r-asymptotically quasi finite rank operators in terms of adjoint ...
Regularized Discriminant Analysis: A Large Dimensional Study
Yang, Xiaoke
2018-04-28
In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free- path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Bit-coded regular expression parsing
DEFF Research Database (Denmark)
Nielsen, Lasse; Henglein, Fritz
2011-01-01
the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...
Tetravalent one-regular graphs of order 4p2
DEFF Research Database (Denmark)
Feng, Yan-Quan; Kutnar, Klavdija; Marusic, Dragan
2014-01-01
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified.......A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified....
,
2008-01-01
The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.
International Development Research Centre (IDRC) Digital Library (Canada)
Betty Dyment
wireless information communications systems to send and receive regular transmissions of information ... and relevant information, and developing data collection and transmission tools that contribute ..... Car battery, solar panel, mains power.
Boundary regularity of Nevanlinna domains and univalent functions in model subspaces
International Nuclear Information System (INIS)
Baranov, Anton D; Fedorovskiy, Konstantin Yu
2011-01-01
In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form K Θ =H 2 ominus ΘH 2 , where Θ is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.
Poernomo, Alvin; Kang, Dae-Ki
2018-08-01
Training a deep neural network with a large number of parameters often leads to overfitting problem. Recently, Dropout has been introduced as a simple, yet effective regularization approach to combat overfitting in such models. Although Dropout has shown remarkable results on many deep neural network cases, its actual effect on CNN has not been thoroughly explored. Moreover, training a Dropout model will significantly increase the training time as it takes longer time to converge than a non-Dropout model with the same architecture. To deal with these issues, we address Biased Dropout and Crossmap Dropout, two novel approaches of Dropout extension based on the behavior of hidden units in CNN model. Biased Dropout divides the hidden units in a certain layer into two groups based on their magnitude and applies different Dropout rate to each group appropriately. Hidden units with higher activation value, which give more contributions to the network final performance, will be retained by a lower Dropout rate, while units with lower activation value will be exposed to a higher Dropout rate to compensate the previous part. The second approach is Crossmap Dropout, which is an extension of the regular Dropout in convolution layer. Each feature map in a convolution layer has a strong correlation between each other, particularly in every identical pixel location in each feature map. Crossmap Dropout tries to maintain this important correlation yet at the same time break the correlation between each adjacent pixel with respect to all feature maps by applying the same Dropout mask to all feature maps, so that all pixels or units in equivalent positions in each feature map will be either dropped or active during training. Our experiment with various benchmark datasets shows that our approaches provide better generalization than the regular Dropout. Moreover, our Biased Dropout takes faster time to converge during training phase, suggesting that assigning noise appropriately in
A regularized approach for geodesic-based semisupervised multimanifold learning.
Fan, Mingyu; Zhang, Xiaoqin; Lin, Zhouchen; Zhang, Zhongfei; Bao, Hujun
2014-05-01
Geodesic distance, as an essential measurement for data dissimilarity, has been successfully used in manifold learning. However, most geodesic distance-based manifold learning algorithms have two limitations when applied to classification: 1) class information is rarely used in computing the geodesic distances between data points on manifolds and 2) little attention has been paid to building an explicit dimension reduction mapping for extracting the discriminative information hidden in the geodesic distances. In this paper, we regard geodesic distance as a kind of kernel, which maps data from linearly inseparable space to linear separable distance space. In doing this, a new semisupervised manifold learning algorithm, namely regularized geodesic feature learning algorithm, is proposed. The method consists of three techniques: a semisupervised graph construction method, replacement of original data points with feature vectors which are built by geodesic distances, and a new semisupervised dimension reduction method for feature vectors. Experiments on the MNIST, USPS handwritten digit data sets, MIT CBCL face versus nonface data set, and an intelligent traffic data set show the effectiveness of the proposed algorithm.
Save, H.; Bettadpur, S. V.
2013-12-01
It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.
Analysis of regularized inversion of data corrupted by white Gaussian noise
International Nuclear Information System (INIS)
Kekkonen, Hanne; Lassas, Matti; Siltanen, Samuli
2014-01-01
Tikhonov regularization is studied in the case of linear pseudodifferential operator as the forward map and additive white Gaussian noise as the measurement error. The measurement model for an unknown function u(x) is m(x) = Au(x) + δ ε (x), where δ > 0 is the noise magnitude. If ε was an L 2 -function, Tikhonov regularization gives an estimate T α (m) = u∈H r arg min { ||Au-m|| L 2 2 + α||u|| H r 2 } for u where α = α(δ) is the regularization parameter. Here penalization of the Sobolev norm ||u|| H r covers the cases of standard Tikhonov regularization (r = 0) and first derivative penalty (r = 1). Realizations of white Gaussian noise are almost never in L 2 , but do belong to H s with probability one if s < 0 is small enough. A modification of Tikhonov regularization theory is presented, covering the case of white Gaussian measurement noise. Furthermore, the convergence of regularized reconstructions to the correct solution as δ → 0 is proven in appropriate function spaces using microlocal analysis. The convergence of the related finite-dimensional problems to the infinite-dimensional problem is also analysed. (paper)
Extreme values, regular variation and point processes
Resnick, Sidney I
1987-01-01
Extremes Values, Regular Variation and Point Processes is a readable and efficient account of the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors It presents a coherent treatment of the distributional and sample path fundamental properties of extremes and records It emphasizes the core primacy of three topics necessary for understanding extremes the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces The book is self-contained and requires an introductory measure-theoretic course in probability as a prerequisite Almost all sections have an extensive list of exercises which extend developments in the text, offer alternate approaches, test mastery and provide for enj...
Stream Processing Using Grammars and Regular Expressions
DEFF Research Database (Denmark)
Rasmussen, Ulrik Terp
disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...
Describing chaotic attractors: Regular and perpetual points
Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz
2018-03-01
We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.
Chaos regularization of quantum tunneling rates
International Nuclear Information System (INIS)
Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward
2011-01-01
Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Contour Propagation With Riemannian Elasticity Regularization
DEFF Research Database (Denmark)
Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.
2011-01-01
Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...
Thin accretion disk around regular black hole
Directory of Open Access Journals (Sweden)
QIU Tianqi
2014-08-01
Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Sparse regularization for force identification using dictionaries
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
Analytic stochastic regularization and gauge theories
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1987-04-01
We prove that analytic stochatic regularization braks gauge invariance. This is done by an explicit one loop calculation of the two three and four point vertex functions of the gluon field in scalar chromodynamics, which turns out not to be geuge invariant. We analyse the counter term structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization. (author) [pt
Preconditioners for regularized saddle point matrices
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe
2011-01-01
Roč. 19, č. 2 (2011), s. 91-112 ISSN 1570-2820 Institutional research plan: CEZ:AV0Z30860518 Keywords : saddle point matrices * preconditioning * regularization * eigenvalue clustering Subject RIV: BA - General Mathematics Impact factor: 0.533, year: 2011 http://www.degruyter.com/view/j/jnma.2011.19.issue-2/jnum.2011.005/jnum.2011.005. xml
Analytic stochastic regularization: gauge and supersymmetry theories
International Nuclear Information System (INIS)
Abdalla, M.C.B.
1988-01-01
Analytic stochastic regularization for gauge and supersymmetric theories is considered. Gauge invariance in spinor and scalar QCD is verified to brak fown by an explicit one loop computation of the two, theree and four point vertex function of the gluon field. As a result, non gauge invariant counterterms must be added. However, in the supersymmetric multiplets there is a cancellation rendering the counterterms gauge invariant. The calculation is considered at one loop order. (author) [pt
Regularized forecasting of chaotic dynamical systems
International Nuclear Information System (INIS)
Bollt, Erik M.
2017-01-01
While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.
Minimal length uncertainty relation and ultraviolet regularization
Kempf, Achim; Mangano, Gianpiero
1997-06-01
Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
2016-01-01
practice. In particular, mapping environmental damage, endangered species, and human-made disasters has become one focal point for environmental knowledge production. This type of digital map has been highlighted as a processual turn in critical cartography, whereas in related computational journalism...... of a geo-visualization within information mapping that enhances embodiment in the experience of the information. InfoAmazonia is defined as a digitally created map-space within which journalistic practice can be seen as dynamic, performative interactions between journalists, ecosystems, space, and species...
Regularity and chaos in cavity QED
International Nuclear Information System (INIS)
Bastarrachea-Magnani, Miguel Angel; López-del-Carpio, Baldemar; Chávez-Carlos, Jorge; Lerma-Hernández, Sergio; Hirsch, Jorge G
2017-01-01
The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside it can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through the use of coherent states, a semiclassical description in phase space, where the non-integrable Dicke model has regions associated with regular and chaotic motion. The appearance of classical chaos can be quantified calculating the largest Lyapunov exponent over the whole available phase space for a given energy. In the quantum regime, employing efficient diagonalization techniques, we are able to perform a detailed quantitative study of the regular and chaotic regions, where the quantum participation ratio (P R ) of coherent states on the eigenenergy basis plays a role equivalent to the Lyapunov exponent. It is noted that, in the thermodynamic limit, dividing the participation ratio by the number of atoms leads to a positive value in chaotic regions, while it tends to zero in the regular ones. (paper)
Solution path for manifold regularized semisupervised classification.
Wang, Gang; Wang, Fei; Chen, Tao; Yeung, Dit-Yan; Lochovsky, Frederick H
2012-04-01
Traditional learning algorithms use only labeled data for training. However, labeled examples are often difficult or time consuming to obtain since they require substantial human labeling efforts. On the other hand, unlabeled data are often relatively easy to collect. Semisupervised learning addresses this problem by using large quantities of unlabeled data with labeled data to build better learning algorithms. In this paper, we use the manifold regularization approach to formulate the semisupervised learning problem where a regularization framework which balances a tradeoff between loss and penalty is established. We investigate different implementations of the loss function and identify the methods which have the least computational expense. The regularization hyperparameter, which determines the balance between loss and penalty, is crucial to model selection. Accordingly, we derive an algorithm that can fit the entire path of solutions for every value of the hyperparameter. Its computational complexity after preprocessing is quadratic only in the number of labeled examples rather than the total number of labeled and unlabeled examples.
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal
Directory of Open Access Journals (Sweden)
Patrick W. Keeley
2014-10-01
Full Text Available Retinal neurons are often arranged as non-random distributions called mosaics, as their somata minimize proximity to neighboring cells of the same type. The horizontal cells serve as an example of such a mosaic, but little is known about the developmental mechanisms that underlie their patterning. To identify genes involved in this process, we have used three different spatial statistics to assess the patterning of the horizontal cell mosaic across a panel of genetically distinct recombinant inbred strains. To avoid the confounding effect cell density, which varies two-fold across these different strains, we computed the real/random regularity ratio, expressing the regularity of a mosaic relative to a randomly distributed simulation of similarly sized cells. To test whether this latter statistic better reflects the variation in biological processes that contribute to horizontal cell spacing, we subsequently compared the genetic linkage for each of these two traits, the regularity index and the real/random regularity ratio, each computed from the distribution of nearest neighbor (NN distances and from the Voronoi domain (VD areas. Finally, we compared each of these analyses with another index of patterning, the packing factor. Variation in the regularity indexes, as well as their real/random regularity ratios, and the packing factor, mapped quantitative trait loci (QTL to the distal ends of Chromosomes 1 and 14. For the NN and VD analyses, we found that the degree of linkage was greater when using the real/random regularity ratio rather than the respective regularity index. Using informatic resources, we narrow the list of prospective genes positioned at these two intervals to a small collection of six genes that warrant further investigation to determine their potential role in shaping the patterning of the horizontal cell mosaic.
Technology & Learning, 2005
2005-01-01
Concept maps are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. Displaying information visually--in concept maps, word webs, or diagrams--stimulates creativity. Being able to think logically teaches…
Learning Sparse Visual Representations with Leaky Capped Norm Regularizers
Wangni, Jianqiao; Lin, Dahua
2017-01-01
Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of $\\ell_1$ regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and...
Temporal regularity of the environment drives time perception
van Rijn, H; Rhodes, D; Di Luca, M
2016-01-01
It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be var- ied. In one experiment, we asked whether the last stim...
Directory of Open Access Journals (Sweden)
Dustin Kai Yan Lau
2014-03-01
Full Text Available Background Unlike alphabetic languages, Chinese uses a logographic script. However, the pronunciation of many character’s phonetic radical has the same pronunciation as the character as a whole. These are considered regular characters and can be read through a lexical non-semantic route (Weekes & Chen, 1999. Pseudocharacters are another way to study this non-semantic route. A pseudocharacter is the combination of existing semantic and phonetic radicals in their legal positions resulting in a non-existing character (Ho, Chan, Chung, Lee, & Tsang, 2007. Pseudocharacters can be pronounced by direct derivation from the sound of its phonetic radical. Conversely, if the pronunciation of a character does not follow that of the phonetic radical, it is considered as irregular and can only be correctly read through the lexical-semantic route. The aim of the current investigation was to examine reading aloud in normal adults. We hypothesized that the regularity effect, previously described for alphabetical scripts and acquired dyslexic patients of Chinese (Weekes & Chen, 1999; Wu, Liu, Sun, Chromik, & Zhang, 2014, would also be present in normal adult Chinese readers. Method Participants. Thirty (50% female native Hong Kong Cantonese speakers with a mean age of 19.6 years and a mean education of 12.9 years. Stimuli. Sixty regular-, 60 irregular-, and 60 pseudo-characters (with at least 75% of name agreement in Chinese were matched by initial phoneme, number of strokes and family size. Additionally, regular- and irregular-characters were matched by frequency (low and consistency. Procedure. Each participant was asked to read aloud the stimuli presented on a laptop using the DMDX software. The order of stimuli presentation was randomized. Data analysis. ANOVAs were carried out by participants and items with RTs and errors as dependent variables and type of stimuli (regular-, irregular- and pseudo-character as repeated measures (F1 or between subject
Convergence and fluctuations of Regularized Tyler estimators
Kammoun, Abla; Couillet, Romain; Pascal, Frederic; Alouini, Mohamed-Slim
2015-01-01
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter p. While a high value of p is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations n and/or their size N increase together. First asymptotic results have recently been obtained under the assumption that N and n are large and commensurable. Interestingly, no results concerning the regime of n going to infinity with N fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult N and n large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when n → ∞ with N fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter.
Convergence and fluctuations of Regularized Tyler estimators
Kammoun, Abla
2015-10-26
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter p. While a high value of p is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations n and/or their size N increase together. First asymptotic results have recently been obtained under the assumption that N and n are large and commensurable. Interestingly, no results concerning the regime of n going to infinity with N fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult N and n large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when n → ∞ with N fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter.
The use of regularization in inferential measurements
International Nuclear Information System (INIS)
Hines, J. Wesley; Gribok, Andrei V.; Attieh, Ibrahim; Uhrig, Robert E.
1999-01-01
Inferential sensing is the prediction of a plant variable through the use of correlated plant variables. A correct prediction of the variable can be used to monitor sensors for drift or other failures making periodic instrument calibrations unnecessary. This move from periodic to condition based maintenance can reduce costs and increase the reliability of the instrument. Having accurate, reliable measurements is important for signals that may impact safety or profitability. This paper investigates how collinearity adversely affects inferential sensing by making the results inconsistent and unrepeatable; and presents regularization as a potential solution (author) (ml)
Regularization ambiguities in loop quantum gravity
International Nuclear Information System (INIS)
Perez, Alejandro
2006-01-01
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find
Effort variation regularization in sound field reproduction
DEFF Research Database (Denmark)
Stefanakis, Nick; Jacobsen, Finn; Sarris, Ioannis
2010-01-01
In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths......), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy...
New regularities in mass spectra of hadrons
International Nuclear Information System (INIS)
Kajdalov, A.B.
1989-01-01
The properties of bosonic and baryonic Regge trajectories for hadrons composed of light quarks are considered. Experimental data agree with an existence of daughter trajectories consistent with string models. It is pointed out that the parity doubling for baryonic trajectories, observed experimentally, is not understood in the existing quark models. Mass spectrum of bosons and baryons indicates to an approximate supersymmetry in the mass region M>1 GeV. These regularities indicates to a high degree of symmetry for the dynamics in the confinement region. 8 refs.; 5 figs
Total-variation regularization with bound constraints
International Nuclear Information System (INIS)
Chartrand, Rick; Wohlberg, Brendt
2009-01-01
We present a new algorithm for bound-constrained total-variation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise. We incorporate previous iterative reweighting algorithms to solve the TV portion.
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
Indefinite metric and regularization of electrodynamics
International Nuclear Information System (INIS)
Gaudin, M.
1984-06-01
The invariant regularization of Pauli and Villars in quantum electrodynamics can be considered as deriving from a local and causal lagrangian theory for spin 1/2 bosons, by introducing an indefinite metric and a condition on the allowed states similar to the Lorentz condition. The consequences are the asymptotic freedom of the photon's propagator. We present a calcultion of the effective charge to the fourth order in the coupling as a function of the auxiliary masses, the theory avoiding all mass divergencies to this order [fr
Strategies for regular segmented reductions on GPU
DEFF Research Database (Denmark)
Larsen, Rasmus Wriedt; Henriksen, Troels
2017-01-01
We present and evaluate an implementation technique for regular segmented reductions on GPUs. Existing techniques tend to be either consistent in performance but relatively inefficient in absolute terms, or optimised for specific workloads and thereby exhibiting bad performance for certain input...... is in the context of the Futhark compiler, the implementation technique is applicable to any library or language that has a need for segmented reductions. We evaluate the technique on four microbenchmarks, two of which we also compare to implementations in the CUB library for GPU programming, as well as on two...
Moss, Donald B
2006-01-01
The author uses the metaphor of mapping to illuminate a structural feature of racist thought, locating the degraded object along vertical and horizontal axes. These axes establish coordinates of hierarchy and of distance. With the coordinates in place, racist thought begins to seem grounded in natural processes. The other's identity becomes consolidated, and parochialism results. The use of this kind of mapping is illustrated via two patient vignettes. The author presents Freud's (1905, 1927) views in relation to such a "mapping" process, as well as Adorno's (1951) and Baldwin's (1965). Finally, the author conceptualizes the crucial status of primitivity in the workings of racist thought.
Emotion regulation deficits in regular marijuana users.
Zimmermann, Kaeli; Walz, Christina; Derckx, Raissa T; Kendrick, Keith M; Weber, Bernd; Dore, Bruce; Ochsner, Kevin N; Hurlemann, René; Becker, Benjamin
2017-08-01
Effective regulation of negative affective states has been associated with mental health. Impaired regulation of negative affect represents a risk factor for dysfunctional coping mechanisms such as drug use and thus could contribute to the initiation and development of problematic substance use. This study investigated behavioral and neural indices of emotion regulation in regular marijuana users (n = 23) and demographically matched nonusing controls (n = 20) by means of an fMRI cognitive emotion regulation (reappraisal) paradigm. Relative to nonusing controls, marijuana users demonstrated increased neural activity in a bilateral frontal network comprising precentral, middle cingulate, and supplementary motor regions during reappraisal of negative affect (P marijuana users relative to controls. Together, the present findings could reflect an unsuccessful attempt of compensatory recruitment of additional neural resources in the context of disrupted amygdala-prefrontal interaction during volitional emotion regulation in marijuana users. As such, impaired volitional regulation of negative affect might represent a consequence of, or risk factor for, regular marijuana use. Hum Brain Mapp 38:4270-4279, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Efficient multidimensional regularization for Volterra series estimation
Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan
2018-05-01
This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738
Supporting Regularized Logistic Regression Privately and Efficiently.
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Multiple graph regularized nonnegative matrix factorization
Wang, Jim Jing-Yan
2013-10-01
Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.
Accelerating Large Data Analysis By Exploiting Regularities
Moran, Patrick J.; Ellsworth, David
2003-01-01
We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.
Supporting Regularized Logistic Regression Privately and Efficiently.
Directory of Open Access Journals (Sweden)
Wenfa Li
Full Text Available As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Multiview Hessian regularization for image annotation.
Liu, Weifeng; Tao, Dacheng
2013-07-01
The rapid development of computer hardware and Internet technology makes large scale data dependent models computationally tractable, and opens a bright avenue for annotating images through innovative machine learning algorithms. Semisupervised learning (SSL) therefore received intensive attention in recent years and was successfully deployed in image annotation. One representative work in SSL is Laplacian regularization (LR), which smoothes the conditional distribution for classification along the manifold encoded in the graph Laplacian, however, it is observed that LR biases the classification function toward a constant function that possibly results in poor generalization. In addition, LR is developed to handle uniformly distributed data (or single-view data), although instances or objects, such as images and videos, are usually represented by multiview features, such as color, shape, and texture. In this paper, we present multiview Hessian regularization (mHR) to address the above two problems in LR-based image annotation. In particular, mHR optimally combines multiple HR, each of which is obtained from a particular view of instances, and steers the classification function that varies linearly along the data manifold. We apply mHR to kernel least squares and support vector machines as two examples for image annotation. Extensive experiments on the PASCAL VOC'07 dataset validate the effectiveness of mHR by comparing it with baseline algorithms, including LR and HR.
EIT image reconstruction with four dimensional regularization.
Dai, Tao; Soleimani, Manuchehr; Adler, Andy
2008-09-01
Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.
Behrooz, Ali; Zhou, Hao-Min; Eftekhar, Ali A.; Adibi, Ali
2011-02-01
Depth-resolved localization and quantification of fluorescence distribution in tissue, called Fluorescence Molecular Tomography (FMT), is highly ill-conditioned as depth information should be extracted from limited number of surface measurements. Inverse solvers resort to regularization algorithms that penalize Euclidean norm of the solution to overcome ill-posedness. While these regularization algorithms offer good accuracy, their smoothing effects result in continuous distributions which lack high-frequency edge-type features of the actual fluorescence distribution and hence limit the resolution offered by FMT. We propose an algorithm that penalizes the total variation (TV) norm of the solution to preserve sharp transitions and high-frequency components in the reconstructed fluorescence map while overcoming ill-posedness. The hybrid algorithm is composed of two levels: 1) An Algebraic Reconstruction Technique (ART), performed on FMT data for fast recovery of a smooth solution that serves as an initial guess for the iterative TV regularization, 2) A time marching TV regularization algorithm, inspired by the Rudin-Osher-Fatemi TV image restoration, performed on the initial guess to further enhance the resolution and accuracy of the reconstruction. The performance of the proposed method in resolving fluorescent tubes inserted in a liquid tissue phantom imaged by a non-contact CW trans-illumination FMT system is studied and compared to conventional regularization schemes. It is observed that the proposed method performs better in resolving fluorescence inclusions at higher depths.
Accretion onto some well-known regular black holes
International Nuclear Information System (INIS)
Jawad, Abdul; Shahzad, M.U.
2016-01-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2016-03-15
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Jawad, Abdul; Shahzad, M. Umair
2016-03-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.
... greatly advanced genetics research. The improved quality of genetic data has reduced the time required to identify a ... cases, a matter of months or even weeks. Genetic mapping data generated by the HGP's laboratories is freely accessible ...
Laplacian embedded regression for scalable manifold regularization.
Chen, Lin; Tsang, Ivor W; Xu, Dong
2012-06-01
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real
Constrained least squares regularization in PET
International Nuclear Information System (INIS)
Choudhury, K.R.; O'Sullivan, F.O.
1996-01-01
Standard reconstruction methods used in tomography produce images with undesirable negative artifacts in background and in areas of high local contrast. While sophisticated statistical reconstruction methods can be devised to correct for these artifacts, their computational implementation is excessive for routine operational use. This work describes a technique for rapid computation of approximate constrained least squares regularization estimates. The unique feature of the approach is that it involves no iterative projection or backprojection steps. This contrasts with the familiar computationally intensive algorithms based on algebraic reconstruction (ART) or expectation-maximization (EM) methods. Experimentation with the new approach for deconvolution and mixture analysis shows that the root mean square error quality of estimators based on the proposed algorithm matches and usually dominates that of more elaborate maximum likelihood, at a fraction of the computational effort
Regularities of radiorace formation in yeasts
International Nuclear Information System (INIS)
Korogodin, V.I.; Bliznik, K.M.; Kapul'tsevich, Yu.G.; Petin, V.G.; Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel'skij Inst. Meditsinskoj Radiologii)
1977-01-01
Two strains of diploid yeast, namely, Saccharomyces ellipsoides, Megri 139-B, isolated under natural conditions, and Saccharomyces cerevisiae 5a x 3Bα, heterozygous by genes ade 1 and ade 2, were exposed to γ-quanta of Co 60 . The content of cells-saltants forming colonies with changed morphology, that of the nonviable cells, cells that are respiration mutants, and cells-recombinants by gene ade 1 and ade 2, has been determined. A certain regularity has been revealed in the distribution among the colonies of cells of the four types mentioned above: the higher the content of cells of some one of the types, the higher that of the cells having other hereditary changes
Regularization destriping of remote sensing imagery
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
The Regularity of Optimal Irrigation Patterns
Morel, Jean-Michel; Santambrogio, Filippo
2010-02-01
A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.
Singular tachyon kinks from regular profiles
International Nuclear Information System (INIS)
Copeland, E.J.; Saffin, P.M.; Steer, D.A.
2003-01-01
We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately
Two-pass greedy regular expression parsing
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge; Henglein, Fritz; Nielsen, Lasse
2013-01-01
We present new algorithms for producing greedy parses for regular expressions (REs) in a semi-streaming fashion. Our lean-log algorithm executes in time O(mn) for REs of size m and input strings of size n and outputs a compact bit-coded parse tree representation. It improves on previous algorithms...... by: operating in only 2 passes; using only O(m) words of random-access memory (independent of n); requiring only kn bits of sequentially written and read log storage, where k ... and not requiring it to be stored at all. Previous RE parsing algorithms do not scale linearly with input size, or require substantially more log storage and employ 3 passes where the first consists of reversing the input, or do not or are not known to produce a greedy parse. The performance of our unoptimized C...
International Nuclear Information System (INIS)
Verhaeghe, Jeroen; D'Asseler, Yves; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace
2007-01-01
The use of a temporal B-spline basis for the reconstruction of dynamic positron emission tomography data was investigated. Maximum likelihood (ML) reconstructions using an expectation maximization framework and maximum A-posteriori (MAP) reconstructions using the generalized expectation maximization framework were evaluated. Different parameters of the B-spline basis of such as order, number of basis functions and knot placing were investigated in a reconstruction task using simulated dynamic list-mode data. We found that a higher order basis reduced both the bias and variance. Using a higher number of basis functions in the modeling of the time activity curves (TACs) allowed the algorithm to model faster changes of the TACs, however, the TACs became noisier. We have compared ML, Gaussian postsmoothed ML and MAP reconstructions. The noise level in the ML reconstructions was controlled by varying the number of basis functions. The MAP algorithm penalized the integrated squared curvature of the reconstructed TAC. The postsmoothed ML was always outperformed in terms of bias and variance properties by the MAP and ML reconstructions. A simple adaptive knot placing strategy was also developed and evaluated. It is based on an arc length redistribution scheme during the reconstruction. The free knot reconstruction allowed a more accurate reconstruction while reducing the noise level especially for fast changing TACs such as blood input functions. Limiting the number of temporal basis functions combined with the adaptive knot placing strategy is in this case advantageous for regularization purposes when compared to the other regularization techniques
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Regularization of Instantaneous Frequency Attribute Computations
Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.
2014-12-01
We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.; Franek, M.; Schonlieb, C.-B.
2012-01-01
for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations
Incremental projection approach of regularization for inverse problems
Energy Technology Data Exchange (ETDEWEB)
Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)
2016-10-15
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
Dimensional regularization and analytical continuation at finite temperature
International Nuclear Information System (INIS)
Chen Xiangjun; Liu Lianshou
1998-01-01
The relationship between dimensional regularization and analytical continuation of infrared divergent integrals at finite temperature is discussed and a method of regularization of infrared divergent integrals and infrared divergent sums is given
Bounded Perturbation Regularization for Linear Least Squares Estimation
Ballal, Tarig; Suliman, Mohamed Abdalla Elhag; Al-Naffouri, Tareq Y.
2017-01-01
This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded
Regular Generalized Star Star closed sets in Bitopological Spaces
K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar
2011-01-01
The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.
Representing and computing regular languages on massively parallel networks
Energy Technology Data Exchange (ETDEWEB)
Miller, M.I.; O' Sullivan, J.A. (Electronic Systems and Research Lab., of Electrical Engineering, Washington Univ., St. Louis, MO (US)); Boysam, B. (Dept. of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Inst., Troy, NY (US)); Smith, K.R. (Dept. of Electrical Engineering, Southern Illinois Univ., Edwardsville, IL (US))
1991-01-01
This paper proposes a general method for incorporating rule-based constraints corresponding to regular languages into stochastic inference problems, thereby allowing for a unified representation of stochastic and syntactic pattern constraints. The authors' approach first established the formal connection of rules to Chomsky grammars, and generalizes the original work of Shannon on the encoding of rule-based channel sequences to Markov chains of maximum entropy. This maximum entropy probabilistic view leads to Gibb's representations with potentials which have their number of minima growing at precisely the exponential rate that the language of deterministically constrained sequences grow. These representations are coupled to stochastic diffusion algorithms, which sample the language-constrained sequences by visiting the energy minima according to the underlying Gibbs' probability law. The coupling to stochastic search methods yields the all-important practical result that fully parallel stochastic cellular automata may be derived to generate samples from the rule-based constraint sets. The production rules and neighborhood state structure of the language of sequences directly determines the necessary connection structures of the required parallel computing surface. Representations of this type have been mapped to the DAP-510 massively-parallel processor consisting of 1024 mesh-connected bit-serial processing elements for performing automated segmentation of electron-micrograph images.
Grouping by Closure Influences Subjective Regularity and Implicit Preference
Directory of Open Access Journals (Sweden)
Alexis Makin
2012-09-01
Full Text Available A reflection between a pair of contours is more rapidly detected than a translation, but this effect is stronger when the contours are closed to form a single object compared to when they are closed to form 2 objects with a gap between them. That is, grouping changes the relative salience of different regularities. We tested whether this manipulation would also change preference for reflection or translation. We measured preference for these patterns using the Implicit Association Test (IAT. On some trials, participants saw words that were either positive or negative and had to classify them as quickly as possible. On interleaved trials, they saw reflection or translation patterns and again had to classify them. Participants were faster when 1 button was used for reflection and positive words and another button was used for translation and negative words, compared to when the reverse response mapping was used (translation and positive vs. reflection and negative. This reaction time difference indicates an implicit preference for reflection over translation. However, the size of the implicit preference was significantly reduced in the Two-objects condition. We concluded that factors that affect perceptual sensitivity also systematically affect implicit preference formation.
Exclusion of children with intellectual disabilities from regular ...
African Journals Online (AJOL)
Study investigated why teachers exclude children with intellectual disability from the regular classrooms in Nigeria. Participants were, 169 regular teachers randomly selected from Oyo and Ogun states. Questionnaire was used to collect data result revealed that 57.4% regular teachers could not cope with children with ID ...
39 CFR 6.1 - Regular meetings, annual meeting.
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Regular meetings, annual meeting. 6.1 Section 6.1 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE MEETINGS (ARTICLE VI) § 6.1 Regular meetings, annual meeting. The Board shall meet regularly on a schedule...
Recognition Memory for Novel Stimuli: The Structural Regularity Hypothesis
Cleary, Anne M.; Morris, Alison L.; Langley, Moses M.
2007-01-01
Early studies of human memory suggest that adherence to a known structural regularity (e.g., orthographic regularity) benefits memory for an otherwise novel stimulus (e.g., G. A. Miller, 1958). However, a more recent study suggests that structural regularity can lead to an increase in false-positive responses on recognition memory tests (B. W. A.…
5 CFR 551.421 - Regular working hours.
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Regular working hours. 551.421 Section... Activities § 551.421 Regular working hours. (a) Under the Act there is no requirement that a Federal employee... distinction based on whether the activity is performed by an employee during regular working hours or outside...
20 CFR 226.35 - Deductions from regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Deductions from regular annuity rate. 226.35... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.35 Deductions from regular annuity rate. The regular annuity rate of the spouse and divorced...
20 CFR 226.34 - Divorced spouse regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Divorced spouse regular annuity rate. 226.34... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.34 Divorced spouse regular annuity rate. The regular annuity rate of a divorced spouse is equal to...
20 CFR 226.14 - Employee regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Employee regular annuity rate. 226.14 Section... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing an Employee Annuity § 226.14 Employee regular annuity rate. The regular annuity rate payable to the employee is the total of the employee tier I...
DEFF Research Database (Denmark)
Dehlholm, Christian; Brockhoff, Per B.; Bredie, Wender Laurentius Petrus
2012-01-01
by the practical testing environment. As a result of the changes, a reasonable assumption would be to question the consequences caused by the variations in method procedures. Here, the aim is to highlight the proven or hypothetic consequences of variations of Projective Mapping. Presented variations will include...... instructions and influence heavily the product placements and the descriptive vocabulary (Dehlholm et.al., 2012b). The type of assessors performing the method influences results with an extra aspect in Projective Mapping compared to more analytical tests, as the given spontaneous perceptions are much dependent......Projective Mapping (Risvik et.al., 1994) and its Napping (Pagès, 2003) variations have become increasingly popular in the sensory field for rapid collection of spontaneous product perceptions. It has been applied in variations which sometimes are caused by the purpose of the analysis and sometimes...
Grammatical complexity for two-dimensional maps
International Nuclear Information System (INIS)
Hagiwara, Ryouichi; Shudo, Akira
2004-01-01
We calculate the grammatical complexity of the symbol sequences generated from the Henon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front
Grammatical complexity for two-dimensional maps
Energy Technology Data Exchange (ETDEWEB)
Hagiwara, Ryouichi; Shudo, Akira [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397 (Japan)
2004-11-05
We calculate the grammatical complexity of the symbol sequences generated from the Henon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
. In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology. This type...... of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper looks at computer-assisted cartography as part...
Accreting fluids onto regular black holes via Hamiltonian approach
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)
2017-08-15
We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)
On the regularized fermionic projector of the vacuum
Finster, Felix
2008-03-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.
On the regularized fermionic projector of the vacuum
International Nuclear Information System (INIS)
Finster, Felix
2008-01-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed
MRI reconstruction with joint global regularization and transform learning.
Tanc, A Korhan; Eksioglu, Ender M
2016-10-01
Sparsity based regularization has been a popular approach to remedy the measurement scarcity in image reconstruction. Recently, sparsifying transforms learned from image patches have been utilized as an effective regularizer for the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse additional global regularization terms to the patch-based transform learning. We develop an algorithm to solve the resulting novel cost function, which includes both patchwise and global regularization terms. Extensive simulation results indicate that the introduced mixed approach has improved MRI reconstruction performance, when compared to the algorithms which use either of the patchwise transform learning or global regularization terms alone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Manifold Regularized Experimental Design for Active Learning.
Zhang, Lining; Shum, Hubert P H; Shao, Ling
2016-12-02
Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
Color correction optimization with hue regularization
Zhang, Heng; Liu, Huaping; Quan, Shuxue
2011-01-01
Previous work has suggested that observers are capable of judging the quality of an image without any knowledge of the original scene. When no reference is available, observers can extract the apparent objects in an image and compare them with the typical colors of similar objects recalled from their memories. Some generally agreed upon research results indicate that although perfect colorimetric rendering is not conspicuous and color errors can be well tolerated, the appropriate rendition of certain memory colors such as skin, grass, and sky is an important factor in the overall perceived image quality. These colors are appreciated in a fairly consistent manner and are memorized with slightly different hues and higher color saturation. The aim of color correction for a digital color pipeline is to transform the image data from a device dependent color space to a target color space, usually through a color correction matrix which in its most basic form is optimized through linear regressions between the two sets of data in two color spaces in the sense of minimized Euclidean color error. Unfortunately, this method could result in objectionable distortions if the color error biased certain colors undesirably. In this paper, we propose a color correction optimization method with preferred color reproduction in mind through hue regularization and present some experimental results.
Wave dynamics of regular and chaotic rays
International Nuclear Information System (INIS)
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space
Regularities and irregularities in order flow data
Theissen, Martin; Krause, Sebastian M.; Guhr, Thomas
2017-11-01
We identify and analyze statistical regularities and irregularities in the recent order flow of different NASDAQ stocks, focusing on the positions where orders are placed in the order book. This includes limit orders being placed outside of the spread, inside the spread and (effective) market orders. Based on the pairwise comparison of the order flow of different stocks, we perform a clustering of stocks into groups with similar behavior. This is useful to assess systemic aspects of stock price dynamics. We find that limit order placement inside the spread is strongly determined by the dynamics of the spread size. Most orders, however, arrive outside of the spread. While for some stocks order placement on or next to the quotes is dominating, deeper price levels are more important for other stocks. As market orders are usually adjusted to the quote volume, the impact of market orders depends on the order book structure, which we find to be quite diverse among the analyzed stocks as a result of the way limit order placement takes place.
Library search with regular reflectance IR spectra
International Nuclear Information System (INIS)
Staat, H.; Korte, E.H.; Lampen, P.
1989-01-01
Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)
Regularities of praseodymium oxide dissolution in acids
International Nuclear Information System (INIS)
Savin, V.D.; Elyutin, A.V.; Mikhajlova, N.P.; Eremenko, Z.V.; Opolchenova, N.L.
1989-01-01
The regularities of Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 interaction with inorganic acids are studied. pH of the solution and oxidation-reduction potential registrated at 20±1 deg C are the working parameters of studies. It is found that the amount of all oxides dissolved increase in the series of acids - nitric, hydrochloric and sulfuric, in this case for hydrochloric and sulfuric acid it increases in the series of oxides Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 . It is noted that Pr 2 O 5 has a high value of oxidation-reduction potential with a positive sign in the whole disslolving range. A low positive value of a redox potential during dissolving belongs to Pr(OH) 3 and in the case of Pr 2 O 3 dissloving redox potential is negative. The schemes of dissolving processes which do not agree with classical assumptions are presented
Regular expressions compiler and some applications
International Nuclear Information System (INIS)
Saldana A, H.
1978-01-01
We deal with high level programming language of a Regular Expressions Compiler (REC). The first chapter is an introduction in which the history of the REC development and the problems related to its numerous applicatons are described. The syntactic and sematic rules as well as the language features are discussed just after the introduction. Concerning the applicatons as examples, an adaptation is given in order to solve numerical problems and another for the data manipulation. The last chapter is an exposition of ideas and techniques about the compiler construction. Examples of the adaptation to numerical problems show the applications to education, vector analysis, quantum mechanics, physics, mathematics and other sciences. The rudiments of an operating system for a minicomputer are the examples of the adaptation to symbolic data manipulaton. REC is a programming language that could be applied to solve problems in almost any human activity. Handling of computer graphics, control equipment, research on languages, microprocessors and general research are some of the fields in which this programming language can be applied and developed. (author)
Sparsity-regularized HMAX for visual recognition.
Directory of Open Access Journals (Sweden)
Xiaolin Hu
Full Text Available About ten years ago, HMAX was proposed as a simple and biologically feasible model for object recognition, based on how the visual cortex processes information. However, the model does not encompass sparse firing, which is a hallmark of neurons at all stages of the visual pathway. The current paper presents an improved model, called sparse HMAX, which integrates sparse firing. This model is able to learn higher-level features of objects on unlabeled training images. Unlike most other deep learning models that explicitly address global structure of images in every layer, sparse HMAX addresses local to global structure gradually along the hierarchy by applying patch-based learning to the output of the previous layer. As a consequence, the learning method can be standard sparse coding (SSC or independent component analysis (ICA, two techniques deeply rooted in neuroscience. What makes SSC and ICA applicable at higher levels is the introduction of linear higher-order statistical regularities by max pooling. After training, high-level units display sparse, invariant selectivity for particular individuals or for image categories like those observed in human inferior temporal cortex (ITC and medial temporal lobe (MTL. Finally, on an image classification benchmark, sparse HMAX outperforms the original HMAX by a large margin, suggesting its great potential for computer vision.
Quantum implications of a scale invariant regularization
Ghilencea, D. M.
2018-04-01
We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).
Regularities development of entrepreneurial structures in regions
Directory of Open Access Journals (Sweden)
Julia Semenovna Pinkovetskaya
2012-12-01
Full Text Available Consider regularities and tendencies for the three types of entrepreneurial structures — small enterprises, medium enterprises and individual entrepreneurs. The aim of the research was to confirm the possibilities of describing indicators of aggregate entrepreneurial structures with the use of normal law distribution functions. Presented proposed by the author the methodological approach and results of construction of the functions of the density distribution for the main indicators for the various objects: the Russian Federation, regions, as well as aggregates ofentrepreneurial structures, specialized in certain forms ofeconomic activity. All the developed functions, as shown by the logical and statistical analysis, are of high quality and well-approximate the original data. In general, the proposed methodological approach is versatile and can be used in further studies of aggregates of entrepreneurial structures. The received results can be applied in solving a wide range of problems justify the need for personnel and financial resources at the federal, regional and municipal levels, as well as the formation of plans and forecasts of development entrepreneurship and improvement of this sector of the economy.
Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means
Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin
2017-12-01
Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.
International Nuclear Information System (INIS)
2012-01-01
This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy
Speckmann, B.; Verbeek, K.A.B.
2010-01-01
Statistical data associated with geographic regions is nowadays globally available in large amounts and hence automated methods to visually display these data are in high demand. There are several well-established thematic map types for quantitative data on the ratio-scale associated with regions:
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
towards a new political ecology. This type of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper...
Regular Topographic Patterning of Karst Depressions Suggests Landscape Self-Organization
Quintero, C.; Cohen, M. J.
2017-12-01
Thousands of wetland depressions that are commonly host to cypress domes dot the sub-tropical limestone landscape of South Florida. The origin of these depression features has been the topic of debate. Here we build upon the work of previous surveyors of this landscape to analyze the morphology and spatial distribution of depressions on the Big Cypress landscape. We took advantage of the emergence and availability of high resolution Light Direction and Ranging (LiDAR) technology and ArcMap GIS software to analyze the structure and regularity of landscape features with methods unavailable to past surveyors. Six 2.25 km2 LiDAR plots within the preserve were selected for remote analysis and one depression feature within each plot was selected for more intensive sediment and water depth surveying. Depression features on the Big Cypress landscape were found to show strong evidence of regular spatial patterning. Periodicity, a feature of regularly patterned landscapes, is apparent in both Variograms and Radial Spectrum Analyses. Size class distributions of the identified features indicate constrained feature sizes while Average Nearest Neighbor analyses support the inference of dispersed features with non-random spacing. The presence of regular patterning on this landscape strongly implies biotic reinforcement of spatial structure by way of the scale dependent feedback. In characterizing the structure of this wetland landscape we add to the growing body of work dedicated to documenting how water, life and geology may interact to shape the natural landscapes we see today.
Experiments to Distribute Map Generalization Processes
Berli, Justin; Touya, Guillaume; Lokhat, Imran; Regnauld, Nicolas
2018-05-01
Automatic map generalization requires the use of computationally intensive processes often unable to deal with large datasets. Distributing the generalization process is the only way to make them scalable and usable in practice. But map generalization is a highly contextual process, and the surroundings of a generalized map feature needs to be known to generalize the feature, which is a problem as distribution might partition the dataset and parallelize the processing of each part. This paper proposes experiments to evaluate the past propositions to distribute map generalization, and to identify the main remaining issues. The past propositions to distribute map generalization are first discussed, and then the experiment hypotheses and apparatus are described. The experiments confirmed that regular partitioning was the quickest strategy, but also the less effective in taking context into account. The geographical partitioning, though less effective for now, is quite promising regarding the quality of the results as it better integrates the geographical context.
TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY
International Nuclear Information System (INIS)
Crotts, Arlin P. S.
2009-01-01
Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.
Elementary Particle Spectroscopy in Regular Solid Rewrite
International Nuclear Information System (INIS)
Trell, Erik
2008-01-01
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each
Synchronisation phenomenon in three blades rotor driven by regular or chaotic oscillations
Directory of Open Access Journals (Sweden)
Szmit Zofia
2018-01-01
Full Text Available The goal of the paper is to analysed the influence of the different types of excitation on the synchronisation phenomenon in case of the rotating system composed of a rigid hub and three flexible composite beams. In the model is assumed that two blades, due to structural differences, are de-tuned. Numerical calculation are divided on two parts, firstly the rotating system is exited by a torque given by regular harmonic function, than in the second part the torque is produced by chaotic Duffing oscillator. The synchronisation phenomenon between the beams is analysed both either for regular or chaotic motions. Partial differential equations of motion are solved numerically and resonance curves, time series and Poincaré maps are presented for selected excitation torques.
DEFF Research Database (Denmark)
Thuesen, Christian Langhoff; Koch, Christian
2011-01-01
By adopting a theoretical framework from strategic niche management research (SNM) this paper presents an analysis of the innovation system of the Danish Construction industry. The analysis shows a multifaceted landscape of innovation around an existing regime, built around existing ways of working...... and developed over generations. The regime is challenged from various niches and the socio-technical landscape through trends as globalization. Three niches (Lean Construction, BIM and System Deliveries) are subject to a detailed analysis showing partly incompatible rationales and various degrees of innovation...... potential. The paper further discusses how existing policymaking operates in a number of tensions one being between government and governance. Based on the concepts from SNM the paper introduces an innovation map in order to support the development of meta-governance policymaking. By mapping some...
DEFF Research Database (Denmark)
Gilje, Øystein; Frølunde, Lisbeth; Lindstrand, Fredrik
2010-01-01
This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus ...... is on their learning practices and how they create ‘learning paths’ in relation to resources in diverse learning contexts, whether formal, non-formal and informal contexts.......This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus...
Prospective regularization design in prior-image-based reconstruction
International Nuclear Information System (INIS)
Dang, Hao; Siewerdsen, Jeffrey H; Stayman, J Webster
2015-01-01
Prior-image-based reconstruction (PIBR) methods leveraging patient-specific anatomical information from previous imaging studies and/or sequences have demonstrated dramatic improvements in dose utilization and image quality for low-fidelity data. However, a proper balance of information from the prior images and information from the measurements is required (e.g. through careful tuning of regularization parameters). Inappropriate selection of reconstruction parameters can lead to detrimental effects including false structures and failure to improve image quality. Traditional methods based on heuristics are subject to error and sub-optimal solutions, while exhaustive searches require a large number of computationally intensive image reconstructions. In this work, we propose a novel method that prospectively estimates the optimal amount of prior image information for accurate admission of specific anatomical changes in PIBR without performing full image reconstructions. This method leverages an analytical approximation to the implicitly defined PIBR estimator, and introduces a predictive performance metric leveraging this analytical form and knowledge of a particular presumed anatomical change whose accurate reconstruction is sought. Additionally, since model-based PIBR approaches tend to be space-variant, a spatially varying prior image strength map is proposed to optimally admit changes everywhere in the image (eliminating the need to know change locations a priori). Studies were conducted in both an ellipse phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The proposed method demonstrated accurate estimation of the optimal prior image strength while achieving a substantial computational speedup (about a factor of 20) compared to traditional exhaustive search. Moreover, the use of the proposed prior strength map in PIBR demonstrated accurate reconstruction of anatomical changes without foreknowledge of change locations in
L1-norm locally linear representation regularization multi-source adaptation learning.
Tao, Jianwen; Wen, Shiting; Hu, Wenjun
2015-09-01
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regularization of plurisubharmonic functions with a net of good points
Li, Long
2017-01-01
The purpose of this article is to present a new regularization technique of quasi-plurisubharmoinc functions on a compact Kaehler manifold. The idea is to regularize the function on local coordinate balls first, and then glue each piece together. Therefore, all the higher order terms in the complex Hessian of this regularization vanish at the center of each coordinate ball, and all the centers build a delta-net of the manifold eventually.
Estimate of the regularly gridded 3D vector flow field from a set of tomographic maps
Czech Academy of Sciences Publication Activity Database
Švanda, Michal; Kozoň, M.
2017-01-01
Roč. 600, April (2017), A117/1-A117/12 E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GA14-04338S Institutional support: RVO:67985815 Keywords : Sun * helioseismology * miscellaneous Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016
International Nuclear Information System (INIS)
Keller, Kai Johannes
2010-04-01
The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Keller, Kai Johannes
2010-04-15
The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)
Higher order total variation regularization for EIT reconstruction.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut
2018-01-08
Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.
Transition from regularity to Li-Yorke chaos in coupled logistic networks
International Nuclear Information System (INIS)
Li Xiang; Chen Guanrong
2005-01-01
The transition from regularity to chaos in the sense of Li-Yorke is investigated in this Letter. A logistic network is investigated in detail, where all nodes in the network are the same logistic maps in non-chaotic states (with the parameter μ in non-chaotic regions). It is proved that when μ>1, these non-chaotic logistic nodes can become chaotic in the sense of Li-Yorke. Extensive simulations lead to the conjecture that when μ=<1 such a logistic network is 'super-stable', because no matter how strong the coupling strength is, the network does not transfer to a chaotic state
DEFF Research Database (Denmark)
Carruth, Susan
2015-01-01
by planners when aiming to construct resilient energy plans. It concludes that a graphical language has the potential to be a significant tool, flexibly facilitating cross-disciplinary communication and decision-making, while emphasising that its role is to support imaginative, resilient planning rather than...... the relationship between resilience and energy planning, suggesting that planning in, and with, time is a core necessity in this domain. It then reviews four examples of graphically mapping with time, highlighting some of the key challenges, before tentatively proposing a graphical language to be employed...
Regular Breakfast and Blood Lead Levels among Preschool Children
Directory of Open Access Journals (Sweden)
Needleman Herbert
2011-04-01
Full Text Available Abstract Background Previous studies have shown that fasting increases lead absorption in the gastrointestinal tract of adults. Regular meals/snacks are recommended as a nutritional intervention for lead poisoning in children, but epidemiological evidence of links between fasting and blood lead levels (B-Pb is rare. The purpose of this study was to examine the association between eating a regular breakfast and B-Pb among children using data from the China Jintan Child Cohort Study. Methods Parents completed a questionnaire regarding children's breakfast-eating habit (regular or not, demographics, and food frequency. Whole blood samples were collected from 1,344 children for the measurements of B-Pb and micronutrients (iron, copper, zinc, calcium, and magnesium. B-Pb and other measures were compared between children with and without regular breakfast. Linear regression modeling was used to evaluate the association between regular breakfast and log-transformed B-Pb. The association between regular breakfast and risk of lead poisoning (B-Pb≥10 μg/dL was examined using logistic regression modeling. Results Median B-Pb among children who ate breakfast regularly and those who did not eat breakfast regularly were 6.1 μg/dL and 7.2 μg/dL, respectively. Eating breakfast was also associated with greater zinc blood levels. Adjusting for other relevant factors, the linear regression model revealed that eating breakfast regularly was significantly associated with lower B-Pb (beta = -0.10 units of log-transformed B-Pb compared with children who did not eat breakfast regularly, p = 0.02. Conclusion The present study provides some initial human data supporting the notion that eating a regular breakfast might reduce B-Pb in young children. To our knowledge, this is the first human study exploring the association between breakfast frequency and B-Pb in young children.
Directory of Open Access Journals (Sweden)
Sayed M. Arafat
2014-06-01
Full Text Available Land cover map of North Sinai was produced based on the FAO-Land Cover Classification System (LCCS of 2004. The standard FAO classification scheme provides a standardized system of classification that can be used to analyze spatial and temporal land cover variability in the study area. This approach also has the advantage of facilitating the integration of Sinai land cover mapping products to be included with the regional and global land cover datasets. The total study area is covering a total area of 20,310.4 km2 (203,104 hectare. The landscape classification was based on SPOT4 data acquired in 2011 using combined multispectral bands of 20 m spatial resolution. Geographic Information System (GIS was used to manipulate the attributed layers of classification in order to reach the maximum possible accuracy. GIS was also used to include all necessary information. The identified vegetative land cover classes of the study area are irrigated herbaceous crops, irrigated tree crops and rain fed tree crops. The non-vegetated land covers in the study area include bare rock, bare soils (stony, very stony and salt crusts, loose and shifting sands and sand dunes. The water bodies were classified as artificial perennial water bodies (fish ponds and irrigated canals and natural perennial water bodies as lakes (standing. The artificial surfaces include linear and non-linear features.
Chimeric mitochondrial peptides from contiguous regular and swinger RNA.
Seligmann, Hervé
2016-01-01
Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.
Tur\\'an type inequalities for regular Coulomb wave functions
Baricz, Árpád
2015-01-01
Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.
Regularization and Complexity Control in Feed-forward Networks
Bishop, C. M.
1995-01-01
In this paper we consider four alternative approaches to complexity control in feed-forward networks based respectively on architecture selection, regularization, early stopping, and training with noise. We show that there are close similarities between these approaches and we argue that, for most practical applications, the technique of regularization should be the method of choice.
Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces
F. Vallentin (Frank)
2008-01-01
htmlabstractIn this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite
Degree-regular triangulations of torus and Klein bottle
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 3 ... A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. ... In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices.
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Strictly-regular number system and data structures
DEFF Research Database (Denmark)
Elmasry, Amr Ahmed Abd Elmoneim; Jensen, Claus; Katajainen, Jyrki
2010-01-01
We introduce a new number system that we call the strictly-regular system, which efficiently supports the operations: digit-increment, digit-decrement, cut, concatenate, and add. Compared to other number systems, the strictly-regular system has distinguishable properties. It is superior to the re...
Inclusion Professional Development Model and Regular Middle School Educators
Royster, Otelia; Reglin, Gary L.; Losike-Sedimo, Nonofo
2014-01-01
The purpose of this study was to determine the impact of a professional development model on regular education middle school teachers' knowledge of best practices for teaching inclusive classes and attitudes toward teaching these classes. There were 19 regular education teachers who taught the core subjects. Findings for Research Question 1…
The equivalence problem for LL- and LR-regular grammars
Nijholt, Antinus; Gecsec, F.
It will be shown that the equivalence problem for LL-regular grammars is decidable. Apart from extending the known result for LL(k) grammar equivalence to LLregular grammar equivalence, we obtain an alternative proof of the decidability of LL(k) equivalence. The equivalence prob]em for LL-regular
The Effects of Regular Exercise on the Physical Fitness Levels
Kirandi, Ozlem
2016-01-01
The purpose of the present research is investigating the effects of regular exercise on the physical fitness levels among sedentary individuals. The total of 65 sedentary male individuals between the ages of 19-45, who had never exercises regularly in their lives, participated in the present research. Of these participants, 35 wanted to be…
Regular perturbations in a vector space with indefinite metric
International Nuclear Information System (INIS)
Chiang, C.C.
1975-08-01
The Klein space is discussed in connection with practical applications. Some lemmas are presented which are to be used for the discussion of regular self-adjoint operators. The criteria for the regularity of perturbed operators are given. (U.S.)
Pairing renormalization and regularization within the local density approximation
International Nuclear Information System (INIS)
Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.
2006-01-01
We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications
Cognitive Aspects of Regularity Exhibit When Neighborhood Disappears
Chen, Sau-Chin; Hu, Jon-Fan
2015-01-01
Although regularity refers to the compatibility between pronunciation of character and sound of phonetic component, it has been suggested as being part of consistency, which is defined by neighborhood characteristics. Two experiments demonstrate how regularity effect is amplified or reduced by neighborhood characteristics and reveals the…
Regularity conditions of the field on a toroidal magnetic surface
International Nuclear Information System (INIS)
Bouligand, M.
1985-06-01
We show that a field B vector which is derived from an analytic canonical potential on an ordinary toroidal surface is regular on this surface when the potential satisfies an elliptic equation (owing to the conservative field) subject to certain conditions of regularity of its coefficients [fr
47 CFR 76.614 - Cable television system regular monitoring.
2010-10-01
...-137 and 225-400 MHz shall provide for a program of regular monitoring for signal leakage by... in these bands of 20 uV/m or greater at a distance of 3 meters. During regular monitoring, any leakage source which produces a field strength of 20 uV/m or greater at a distance of 3 meters in the...
Analysis of regularized Navier-Stokes equations, 2
Ou, Yuh-Roung; Sritharan, S. S.
1989-01-01
A practically important regularization of the Navier-Stokes equations was analyzed. As a continuation of the previous work, the structure of the attractors characterizing the solutins was studied. Local as well as global invariant manifolds were found. Regularity properties of these manifolds are analyzed.
20 CFR 226.33 - Spouse regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Spouse regular annuity rate. 226.33 Section... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.33 Spouse regular annuity rate. The final tier I and tier II rates, from §§ 226.30 and 226.32, are...
Consistent Partial Least Squares Path Modeling via Regularization.
Jung, Sunho; Park, JaeHong
2018-01-01
Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Optimal behaviour can violate the principle of regularity.
Trimmer, Pete C
2013-07-22
Understanding decisions is a fundamental aim of behavioural ecology, psychology and economics. The regularity axiom of utility theory holds that a preference between options should be maintained when other options are made available. Empirical studies have shown that animals violate regularity but this has not been understood from a theoretical perspective, such decisions have therefore been labelled as irrational. Here, I use models of state-dependent behaviour to demonstrate that choices can violate regularity even when behavioural strategies are optimal. I also show that the range of conditions over which regularity should be violated can be larger when options do not always persist into the future. Consequently, utility theory--based on axioms, including transitivity, regularity and the independence of irrelevant alternatives--is undermined, because even alternatives that are never chosen by an animal (in its current state) can be relevant to a decision.
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.
2012-03-11
The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).
Laplacian manifold regularization method for fluorescence molecular tomography
He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei
2017-04-01
Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.
DEFF Research Database (Denmark)
Mikosch, Thomas Valentin; Moser, Martin
2013-01-01
We investigate the maximum increment of a random walk with heavy-tailed jump size distribution. Here heavy-tailedness is understood as regular variation of the finite-dimensional distributions. The jump sizes constitute a strictly stationary sequence. Using a continuous mapping argument acting...... on the point processes of the normalized jump sizes, we prove that the maximum increment of the random walk converges in distribution to a Fréchet distributed random variable....
An algorithmic framework for Mumford–Shah regularization of inverse problems in imaging
International Nuclear Information System (INIS)
Hohm, Kilian; Weinmann, Andreas; Storath, Martin
2015-01-01
The Mumford–Shah model is a very powerful variational approach for edge preserving regularization of image reconstruction processes. However, it is algorithmically challenging because one has to deal with a non-smooth and non-convex functional. In this paper, we propose a new efficient algorithmic framework for Mumford–Shah regularization of inverse problems in imaging. It is based on a splitting into specific subproblems that can be solved exactly. We derive fast solvers for the subproblems which are key for an efficient overall algorithm. Our method neither requires a priori knowledge of the gray or color levels nor of the shape of the discontinuity set. We demonstrate the wide applicability of the method for different modalities. In particular, we consider the reconstruction from Radon data, inpainting, and deconvolution. Our method can be easily adapted to many further imaging setups. The relevant condition is that the proximal mapping of the data fidelity can be evaluated a within reasonable time. In other words, it can be used whenever classical Tikhonov regularization is possible. (paper)
A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.
Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong
2015-12-01
Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.
Progressive image denoising through hybrid graph Laplacian regularization: a unified framework.
Liu, Xianming; Zhai, Deming; Zhao, Debin; Zhai, Guangtao; Gao, Wen
2014-04-01
Recovering images from corrupted observations is necessary for many real-world applications. In this paper, we propose a unified framework to perform progressive image recovery based on hybrid graph Laplacian regularized regression. We first construct a multiscale representation of the target image by Laplacian pyramid, then progressively recover the degraded image in the scale space from coarse to fine so that the sharp edges and texture can be eventually recovered. On one hand, within each scale, a graph Laplacian regularization model represented by implicit kernel is learned, which simultaneously minimizes the least square error on the measured samples and preserves the geometrical structure of the image data space. In this procedure, the intrinsic manifold structure is explicitly considered using both measured and unmeasured samples, and the nonlocal self-similarity property is utilized as a fruitful resource for abstracting a priori knowledge of the images. On the other hand, between two successive scales, the proposed model is extended to a projected high-dimensional feature space through explicit kernel mapping to describe the interscale correlation, in which the local structure regularity is learned and propagated from coarser to finer scales. In this way, the proposed algorithm gradually recovers more and more image details and edges, which could not been recovered in previous scale. We test our algorithm on one typical image recovery task: impulse noise removal. Experimental results on benchmark test images demonstrate that the proposed method achieves better performance than state-of-the-art algorithms.
2-regularity and 2-normality conditions for systems with impulsive controls
Directory of Open Access Journals (Sweden)
Pavlova Natal'ya
2007-01-01
Full Text Available In this paper a controlled system with impulsive controls in the neighborhood of an abnormal point is investigated. The set of pairs (u,μ is considered as a class of admissible controls, where u is a measurable essentially bounded function and μ is a finite-dimensional Borel measure, such that for any Borel set B, μ(B is a subset of the given convex closed pointed cone. In this article the concepts of 2-regularity and 2-normality for the abstract mapping Ф, operating from the given Banach space into a finite-dimensional space, are introduced. The concepts of 2-regularity and 2-normality play a great role in the course of derivation of the first and the second order necessary conditions for the optimal control problem, consisting of the minimization of a certain functional on the set of the admissible processes. These concepts are also important for obtaining the sufficient conditions for the local controllability of the nonlinear systems. The convenient criterion for 2-regularity along the prescribed direction and necessary conditions for 2-normality of systems, linear in control, are introduced in this article as well.
On diagonalization in map(M,G)
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1995-01-01
Motivated by some questions in the path integral approach to (topological) gauge theories, we are led to address the following question: given a smooth map from a manifold M to a compact group G, is it possible to smoothly ''diagonalize'' it, i.e. conjugate it into a map to a maximal torus T of G? We analyze the local and global obstructions and give a complete solution to the problem for regular maps. We establish that these can always be smoothly diagonalized locally and that the obstructions to doing this globally are non-trivial Weyl group and torus bundles on M. We explain the relation of the obstructions to winding numbers of maps into G/T and restrictions of the structure group of a principal G bundle to T and examine the behaviour of gauge fields under this diagonalization. We also discuss the complications that arise in the presence of non-trivial G-bundles and for non-regular maps. We use these results to justify a Weyl integral formula for functional integrals which, as a novel feature not seen in the finite-dimensional case, contains a summation over all those topological T-sectors which arise as restrictions of a trivial principal G bundle and which was used previously to solve completely Yang-Mills theory and the G/ G model in two dimensions. (orig.)
A q-deformed logistic map and its implications
International Nuclear Information System (INIS)
Banerjee, Subhashish; Parthasarathy, R
2011-01-01
A new q-deformed logistic map is proposed and it is found to have concavity in parts of the x-space. Its one-cycle and two-cycle non-trivial fixed points are obtained which are found to be qualitatively and quantitatively different from those of the usual logistic map. The stability of the proposed q-logistic map is studied using the Lyapunov exponent, and with a change in the value of the deformation parameter q, one is able to go from the chaotic to regular dynamical regime. The implications of this q-logistic map on Parrondo's paradox are examined.
Measuring time series regularity using nonlinear similarity-based sample entropy
International Nuclear Information System (INIS)
Xie Hongbo; He Weixing; Liu Hui
2008-01-01
Sampe Entropy (SampEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors is based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of SampEn. Sigmoid function is a smoothed and continuous version of Heaviside function. To overcome the problems SampEn encountered, a modified SampEn (mSampEn) based on nonlinear Sigmoid function was proposed. The performance of mSampEn was tested on the independent identically distributed (i.i.d.) uniform random numbers, the MIX stochastic model, the Rossler map, and the Hennon map. The results showed that mSampEn was superior to SampEn in several aspects, including giving entropy definition in case of small parameters, better relative consistency, robust to noise, and more independence on record length when characterizing time series generated from either deterministic or stochastic system with different regularities
Regularization Techniques for ECG Imaging during Atrial Fibrillation: a Computational Study
Directory of Open Access Journals (Sweden)
Carlos Figuera
2016-10-01
Full Text Available The inverse problem of electrocardiography is usually analyzed during stationary rhythms. However, the performance of the regularization methods under fibrillatory conditions has not been fully studied. In this work, we assessed different regularization techniques during atrial fibrillation (AF for estimating four target parameters, namely, epicardial potentials, dominant frequency (DF, phase maps, and singularity point (SP location. We use a realistic mathematical model of atria and torso anatomy with three different electrical activity patterns (i.e. sinus rhythm, simple AF and complex AF. Body surface potentials (BSP were simulated using Boundary Element Method and corrupted with white Gaussian noise of different powers. Noisy BSPs were used to obtain the epicardial potentials on the atrial surface, using fourteen different regularization techniques. DF, phase maps and SP location were computed from estimated epicardial potentials. Inverse solutions were evaluated using a set of performance metrics adapted to each clinical target. For the case of SP location, an assessment methodology based on the spatial mass function of the SP location and four spatial error metrics was proposed. The role of the regularization parameter for Tikhonov-based methods, and the effect of noise level and imperfections in the knowledge of the transfer matrix were also addressed. Results showed that the Bayes maximum-a-posteriori method clearly outperforms the rest of the techniques but requires a priori information about the epicardial potentials. Among the purely non-invasive techniques, Tikhonov-based methods performed as well as more complex techniques in realistic fibrillatory conditions, with a slight gain between 0.02 and 0.2 in terms of the correlation coefficient. Also, the use of a constant regularization parameter may be advisable since the performance was similar to that obtained with a variable parameter (indeed there was no difference for the zero
Three regularities of recognition memory: the role of bias.
Hilford, Andrew; Maloney, Laurence T; Glanzer, Murray; Kim, Kisok
2015-12-01
A basic assumption of Signal Detection Theory is that decisions are made on the basis of likelihood ratios. In a preceding paper, Glanzer, Hilford, and Maloney (Psychonomic Bulletin & Review, 16, 431-455, 2009) showed that the likelihood ratio assumption implies that three regularities will occur in recognition memory: (1) the Mirror Effect, (2) the Variance Effect, (3) the normalized Receiver Operating Characteristic (z-ROC) Length Effect. The paper offered formal proofs and computational demonstrations that decisions based on likelihood ratios produce the three regularities. A survey of data based on group ROCs from 36 studies validated the likelihood ratio assumption by showing that its three implied regularities are ubiquitous. The study noted, however, that bias, another basic factor in Signal Detection Theory, can obscure the Mirror Effect. In this paper we examine how bias affects the regularities at the theoretical level. The theoretical analysis shows: (1) how bias obscures the Mirror Effect, not the other two regularities, and (2) four ways to counter that obscuring. We then report the results of five experiments that support the theoretical analysis. The analyses and the experimental results also demonstrate: (1) that the three regularities govern individual, as well as group, performance, (2) alternative explanations of the regularities are ruled out, and (3) that Signal Detection Theory, correctly applied, gives a simple and unified explanation of recognition memory data.
Learning regularization parameters for general-form Tikhonov
International Nuclear Information System (INIS)
Chung, Julianne; Español, Malena I
2017-01-01
Computing regularization parameters for general-form Tikhonov regularization can be an expensive and difficult task, especially if multiple parameters or many solutions need to be computed in real time. In this work, we assume training data is available and describe an efficient learning approach for computing regularization parameters that can be used for a large set of problems. We consider an empirical Bayes risk minimization framework for finding regularization parameters that minimize average errors for the training data. We first extend methods from Chung et al (2011 SIAM J. Sci. Comput. 33 3132–52) to the general-form Tikhonov problem. Then we develop a learning approach for multi-parameter Tikhonov problems, for the case where all involved matrices are simultaneously diagonalizable. For problems where this is not the case, we describe an approach to compute near-optimal regularization parameters by using operator approximations for the original problem. Finally, we propose a new class of regularizing filters, where solutions correspond to multi-parameter Tikhonov solutions, that requires less data than previously proposed optimal error filters, avoids the generalized SVD, and allows flexibility and novelty in the choice of regularization matrices. Numerical results for 1D and 2D examples using different norms on the errors show the effectiveness of our methods. (paper)
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.
Closedness type regularity conditions in convex optimization and beyond
Directory of Open Access Journals (Sweden)
Sorin-Mihai Grad
2016-09-01
Full Text Available The closedness type regularity conditions have proven during the last decade to be viable alternatives to their more restrictive interiority type counterparts, in both convex optimization and different areas where it was successfully applied. In this review article we de- and reconstruct some closedness type regularity conditions formulated by means of epigraphs and subdifferentials, respectively, for general optimization problems in order to stress that they arise naturally when dealing with such problems. The results are then specialized for constrained and unconstrained convex optimization problems. We also hint towards other classes of optimization problems where closedness type regularity conditions were successfully employed and discuss other possible applications of them.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Likelihood ratio decisions in memory: three implied regularities.
Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T
2009-06-01
We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.
Fluctuations of quantum fields via zeta function regularization
International Nuclear Information System (INIS)
Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio
2002-01-01
Explicit expressions for the expectation values and the variances of some observables, which are bilinear quantities in the quantum fields on a D-dimensional manifold, are derived making use of zeta function regularization. It is found that the variance, related to the second functional variation of the effective action, requires a further regularization and that the relative regularized variance turns out to be 2/N, where N is the number of the fields, thus being independent of the dimension D. Some illustrating examples are worked through. The issue of the stress tensor is also briefly addressed
Low-Rank Matrix Factorization With Adaptive Graph Regularizer.
Lu, Gui-Fu; Wang, Yong; Zou, Jian
2016-05-01
In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.
Regularization theory for ill-posed problems selected topics
Lu, Shuai
2013-01-01
Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects.He demonstrates new,differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory,such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs
On the theory of drainage area for regular and non-regular points
Bonetti, S.; Bragg, A. D.; Porporato, A.
2018-03-01
The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.
Glass, Tom
2016-01-01
When students generate mind maps, or concept maps, the maps are usually on paper, computer screens, or a blackboard. Human Mind Maps require few resources and little preparation. The main requirements are space where students can move around and a little creativity and imagination. Mind maps can be used for a variety of purposes, and Human Mind…
Automatic Constraint Detection for 2D Layout Regularization.
Jiang, Haiyong; Nan, Liangliang; Yan, Dong-Ming; Dong, Weiming; Zhang, Xiaopeng; Wonka, Peter
2016-08-01
In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans or images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior performance to the state of the art.
Regularized multivariate regression models with skew-t error distributions
Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi
2014-01-01
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both
A Regularized Algorithm for the Proximal Split Feasibility Problem
Directory of Open Access Journals (Sweden)
Zhangsong Yao
2014-01-01
Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.
Anaemia in Patients with Diabetes Mellitus attending regular ...
African Journals Online (AJOL)
Anaemia in Patients with Diabetes Mellitus attending regular Diabetic ... Nigerian Journal of Health and Biomedical Sciences ... some patients may omit important food items in their daily diet for fear of increasing their blood sugar level.
Automatic Constraint Detection for 2D Layout Regularization
Jiang, Haiyong
2015-09-18
In this paper, we address the problem of constraint detection for layout regularization. As layout we consider a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important for digitizing plans or images, such as floor plans and facade images, and for the improvement of user created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate the layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm to automatically detect constraints. In our results, we evaluate the proposed framework on a variety of input layouts from different applications, which demonstrates our method has superior performance to the state of the art.
Body composition, disordered eating and menstrual regularity in a ...
African Journals Online (AJOL)
Body composition, disordered eating and menstrual regularity in a group of South African ... e between body composition and disordered eating in irregular vs normal menstruating athletes. ... measured by air displacement plethysmography.
A new approach to nonlinear constrained Tikhonov regularization
Ito, Kazufumi; Jin, Bangti
2011-01-01
operator. The approach is exploited to derive convergence rate results for a priori as well as a posteriori choice rules, e.g., discrepancy principle and balancing principle, for selecting the regularization parameter. The idea is further illustrated on a
Supporting primary school teachers in differentiating in the regular classroom
Eysink, Tessa H.S.; Hulsbeek, Manon; Gijlers, Hannie
Many primary school teachers experience difficulties in effectively differentiating in the regular classroom. This study investigated the effect of the STIP-approach on teachers' differentiation activities and self-efficacy, and children's learning outcomes and instructional value. Teachers using
Lavrentiev regularization method for nonlinear ill-posed problems
International Nuclear Information System (INIS)
Kinh, Nguyen Van
2002-10-01
In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin; Dai, Wei; Schuster, Gerard T.
2013-01-01
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity
Automatic Constraint Detection for 2D Layout Regularization
Jiang, Haiyong; Nan, Liangliang; Yan, Dongming; Dong, Weiming; Zhang, Xiaopeng; Wonka, Peter
2015-01-01
plans or images, such as floor plans and facade images, and for the improvement of user created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing
Regularization method for solving the inverse scattering problem
International Nuclear Information System (INIS)
Denisov, A.M.; Krylov, A.S.
1985-01-01
The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc
2014-03-11
This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
Dimensional versus lattice regularization within Luescher's Yang Mills theory
International Nuclear Information System (INIS)
Diekmann, B.; Langer, M.; Schuette, D.
1993-01-01
It is pointed out that the coefficients of Luescher's effective model space Hamiltonian, which is based upon dimensional regularization techniques, can be reproduced by applying folded diagram perturbation theory to the Kogut Susskind Hamiltonian and by performing a lattice continuum limit (keeping the volume fixed). Alternative cutoff regularizations of the Hamiltonian are in general inconsistent, the critical point beeing the correct prediction for Luescher's tadpole coefficient which is formally quadratically divergent and which has to become a well defined (negative) number. (orig.)
Left regular bands of groups of left quotients
International Nuclear Information System (INIS)
El-Qallali, A.
1988-10-01
A semigroup S which has a left regular band of groups as a semigroup of left quotients is shown to be the semigroup which is a left regular band of right reversible cancellative semigroups. An alternative characterization is provided by using spinned products. These results are applied to the case where S is a superabundant whose set of idempotents forms a left normal band. (author). 13 refs
Human visual system automatically encodes sequential regularities of discrete events.
Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki
2010-06-01
For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential
Estimation of the global regularity of a multifractional Brownian motion
DEFF Research Database (Denmark)
Lebovits, Joachim; Podolskij, Mark
This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a ...... that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path....
Regularization of the quantum field theory of charges and monopoles
International Nuclear Information System (INIS)
Panagiotakopoulos, C.
1981-09-01
A gauge invariant regularization procedure for quantum field theories of electric and magnetic charges based on Zwanziger's local formulation is proposed. The bare regularized full Green's functions of gauge invariant operators are shown to be Lorentz invariant. This would have as a consequence the Lorentz invariance of the finite Green's functions that might result after any reasonable subtraction if such a subtraction can be found. (author)
Borderline personality disorder and regularly drinking alcohol before sex.
Thompson, Ronald G; Eaton, Nicholas R; Hu, Mei-Chen; Hasin, Deborah S
2017-07-01
Drinking alcohol before sex increases the likelihood of engaging in unprotected intercourse, having multiple sexual partners and becoming infected with sexually transmitted infections. Borderline personality disorder (BPD), a complex psychiatric disorder characterised by pervasive instability in emotional regulation, self-image, interpersonal relationships and impulse control, is associated with substance use disorders and sexual risk behaviours. However, no study has examined the relationship between BPD and drinking alcohol before sex in the USA. This study examined the association between BPD and regularly drinking before sex in a nationally representative adult sample. Participants were 17 491 sexually active drinkers from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression models estimated effects of BPD diagnosis, specific borderline diagnostic criteria and BPD criterion count on the likelihood of regularly (mostly or always) drinking alcohol before sex, adjusted for controls. Borderline personality disorder diagnosis doubled the odds of regularly drinking before sex [adjusted odds ratio (AOR) = 2.26; confidence interval (CI) = 1.63, 3.14]. Of nine diagnostic criteria, impulsivity in areas that are self-damaging remained a significant predictor of regularly drinking before sex (AOR = 1.82; CI = 1.42, 2.35). The odds of regularly drinking before sex increased by 20% for each endorsed criterion (AOR = 1.20; CI = 1.14, 1.27) DISCUSSION AND CONCLUSIONS: This is the first study to examine the relationship between BPD and regularly drinking alcohol before sex in the USA. Substance misuse treatment should assess regularly drinking before sex, particularly among patients with BPD, and BPD treatment should assess risk at the intersection of impulsivity, sexual behaviour and substance use. [Thompson Jr RG, Eaton NR, Hu M-C, Hasin DS Borderline personality disorder and regularly drinking alcohol
The Impact of Computerization on Regular Employment (Japanese)
SUNADA Mitsuru; HIGUCHI Yoshio; ABE Masahiro
2004-01-01
This paper uses micro data from the Basic Survey of Japanese Business Structure and Activity to analyze the effects of companies' introduction of information and telecommunications technology on employment structures, especially regular versus non-regular employment. Firstly, examination of trends in the ratio of part-time workers recorded in the Basic Survey shows that part-time worker ratios in manufacturing firms are rising slightly, but that companies with a high proportion of part-timers...
Analytic regularization of the Yukawa model at finite temperature
International Nuclear Information System (INIS)
Malbouisson, A.P.C.; Svaiter, N.F.; Svaiter, B.F.
1996-07-01
It is analysed the one-loop fermionic contribution for the scalar effective potential in the temperature dependent Yukawa model. Ir order to regularize the model a mix between dimensional and analytic regularization procedures is used. It is found a general expression for the fermionic contribution in arbitrary spacetime dimension. It is also found that in D = 3 this contribution is finite. (author). 19 refs
The relationship between lifestyle regularity and subjective sleep quality
Monk, Timothy H.; Reynolds, Charles F 3rd; Buysse, Daniel J.; DeGrazia, Jean M.; Kupfer, David J.
2003-01-01
In previous work we have developed a diary instrument-the Social Rhythm Metric (SRM), which allows the assessment of lifestyle regularity-and a questionnaire instrument--the Pittsburgh Sleep Quality Index (PSQI), which allows the assessment of subjective sleep quality. The aim of the present study was to explore the relationship between lifestyle regularity and subjective sleep quality. Lifestyle regularity was assessed by both standard (SRM-17) and shortened (SRM-5) metrics; subjective sleep quality was assessed by the PSQI. We hypothesized that high lifestyle regularity would be conducive to better sleep. Both instruments were given to a sample of 100 healthy subjects who were studied as part of a variety of different experiments spanning a 9-yr time frame. Ages ranged from 19 to 49 yr (mean age: 31.2 yr, s.d.: 7.8 yr); there were 48 women and 52 men. SRM scores were derived from a two-week diary. The hypothesis was confirmed. There was a significant (rho = -0.4, p subjects with higher levels of lifestyle regularity reported fewer sleep problems. This relationship was also supported by a categorical analysis, where the proportion of "poor sleepers" was doubled in the "irregular types" group as compared with the "non-irregular types" group. Thus, there appears to be an association between lifestyle regularity and good sleep, though the direction of causality remains to be tested.
Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions
International Nuclear Information System (INIS)
Lin, Hongxia; Du, Lili
2013-01-01
In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263–74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier–Stokes equations Indiana Univ. Math. J. 57 2643–61; 2011 Gobal regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919–32) for 3D incompressible Navier–Stokes equations. (paper)
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Bounded Perturbation Regularization for Linear Least Squares Estimation
Ballal, Tarig
2017-10-18
This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.
Near-Regular Structure Discovery Using Linear Programming
Huang, Qixing
2014-06-02
Near-regular structures are common in manmade and natural objects. Algorithmic detection of such regularity greatly facilitates our understanding of shape structures, leads to compact encoding of input geometries, and enables efficient generation and manipulation of complex patterns on both acquired and synthesized objects. Such regularity manifests itself both in the repetition of certain geometric elements, as well as in the structured arrangement of the elements. We cast the regularity detection problem as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both these aspects are captured by our near-regular structure extraction framework, which alternates between discrete and continuous optimizations. We demonstrate the effectiveness of our framework on a variety of problems including near-regular structure extraction, structure-preserving pattern manipulation, and markerless correspondence detection. Robustness results with respect to geometric and topological noise are presented on synthesized, real-world, and also benchmark datasets. © 2014 ACM.
Maps & minds : mapping through the ages
,
1984-01-01
Throughout time, maps have expressed our understanding of our world. Human affairs have been influenced strongly by the quality of maps available to us at the major turning points in our history. "Maps & Minds" traces the ebb and flow of a few central ideas in the mainstream of mapping. Our expanding knowledge of our cosmic neighborhood stems largely from a small number of simple but grand ideas, vigorously pursued.
National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...
... a Member Home Resources & Services Professional Resource Baby Brain Map Mar 17, 2016 The Brain Map was adapted in 2006 by ZERO TO ... supports Adobe Flash Player. To view the Baby Brain Map, please visit this page on a browser ...
National Research Council Canada - National Science Library
Nielsen, Curtis W; Ricks, Bob; Goodrich, Michael A; Bruemmer, David; Few, Doug; Walton, Miles
2004-01-01
.... Semantic maps are a relatively new approach to information presentation. Semantic maps provide more detail about an environment than typical maps because they are augmented by icons or symbols that provide meaning for places or objects of interest...
An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography
Energy Technology Data Exchange (ETDEWEB)
Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)
2011-11-15
Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used
The neural substrates of impaired finger tapping regularity after stroke.
Calautti, Cinzia; Jones, P Simon; Guincestre, Jean-Yves; Naccarato, Marcello; Sharma, Nikhil; Day, Diana J; Carpenter, T Adrian; Warburton, Elizabeth A; Baron, Jean-Claude
2010-03-01
Not only finger tapping speed, but also tapping regularity can be impaired after stroke, contributing to reduced dexterity. The neural substrates of impaired tapping regularity after stroke are unknown. Previous work suggests damage to the dorsal premotor cortex (PMd) and prefrontal cortex (PFCx) affects externally-cued hand movement. We tested the hypothesis that these two areas are involved in impaired post-stroke tapping regularity. In 19 right-handed patients (15 men/4 women; age 45-80 years; purely subcortical in 16) partially to fully recovered from hemiparetic stroke, tri-axial accelerometric quantitative assessment of tapping regularity and BOLD fMRI were obtained during fixed-rate auditory-cued index-thumb tapping, in a single session 10-230 days after stroke. A strong random-effect correlation between tapping regularity index and fMRI signal was found in contralesional PMd such that the worse the regularity the stronger the activation. A significant correlation in the opposite direction was also present within contralesional PFCx. Both correlations were maintained if maximal index tapping speed, degree of paresis and time since stroke were added as potential confounds. Thus, the contralesional PMd and PFCx appear to be involved in the impaired ability of stroke patients to fingertap in pace with external cues. The findings for PMd are consistent with repetitive TMS investigations in stroke suggesting a role for this area in affected-hand movement timing. The inverse relationship with tapping regularity observed for the PFCx and the PMd suggests these two anatomically-connected areas negatively co-operate. These findings have implications for understanding the disruption and reorganization of the motor systems after stroke. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Image of the World on polyhedral maps and globes
Directory of Open Access Journals (Sweden)
Pędzich Paweł
2016-12-01
Full Text Available Application of polyhedrons as image surface in cartographic projections has a tradition of more than 200 years. The first maps relying on polyhedrons appeared in the 19th century. One of the first maps which based on an original polyhedral projection using a regular octahedron was constructed by the Californian architect Bernard Cahill in 1909. Other well known polyhedral projections and maps included Buckminster Fuller’s projection and map into icosahedron from 1954 and S. Waterman’s projection into truncated octahedron from 1996, which resulted in the “butterfly” map. Polyhedrons as image surface have the advantage of allowing a continuous image of continents of the Earth with low projection distortion. Such maps can be used for many purposes, such as presentation of tectonic plates or geographic discoveries.
Rotating Hayward’s regular black hole as particle accelerator
International Nuclear Information System (INIS)
Amir, Muhammed; Ghosh, Sushant G.
2015-01-01
Recently, Bañados, Silk and West (BSW) demonstrated that the extremal Kerr black hole can act as a particle accelerator with arbitrarily high center-of-mass energy (E CM ) when the collision takes place near the horizon. The rotating Hayward’s regular black hole, apart from Mass (M) and angular momentum (a), has a new parameter g (g>0 is a constant) that provides a deviation from the Kerr black hole. We demonstrate that for each g, with M=1, there exist critical a E and r H E , which corresponds to a regular extremal black hole with degenerate horizons, and a E decreases whereas r H E increases with increase in g. While aregular non-extremal black hole with outer and inner horizons. We apply the BSW process to the rotating Hayward’s regular black hole, for different g, and demonstrate numerically that the E CM diverges in the vicinity of the horizon for the extremal cases thereby suggesting that a rotating regular black hole can also act as a particle accelerator and thus in turn provide a suitable framework for Plank-scale physics. For a non-extremal case, there always exist a finite upper bound for the E CM , which increases with the deviation parameter g.
Consistent Partial Least Squares Path Modeling via Regularization
Directory of Open Access Journals (Sweden)
Sunho Jung
2018-02-01
Full Text Available Partial least squares (PLS path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc, designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Method of transferring regular shaped vessel into cell
International Nuclear Information System (INIS)
Murai, Tsunehiko.
1997-01-01
The present invention concerns a method of transferring regular shaped vessels from a non-contaminated area to a contaminated cell. A passage hole for allowing the regular shaped vessels to pass in the longitudinal direction is formed to a partitioning wall at the bottom of the contaminated cell. A plurality of regular shaped vessel are stacked in multiple stages in a vertical direction from the non-contaminated area present below the passage hole, allowed to pass while being urged and transferred successively into the contaminated cell. As a result, since they are transferred while substantially closing the passage hole by the regular shaped vessels, radiation rays or contaminated materials are prevented from discharging from the contaminated cell to the non-contaminated area. Since there is no requirement to open/close an isolation door frequently, the workability upon transfer can be improved remarkably. In addition, the sealing member for sealing the gap between the regular shaped vessel passing through the passage hole and the partitioning wall of the bottom is disposed to the passage hole, the contaminated materials in the contaminated cells can be prevented from discharging from the gap to the non-contaminated area. (N.H.)
X-ray computed tomography using curvelet sparse regularization.
Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias
2015-04-01
Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.
On the MSE Performance and Optimization of Regularized Problems
Alrashdi, Ayed
2016-11-01
The amount of data that has been measured, transmitted/received, and stored in the recent years has dramatically increased. So, today, we are in the world of big data. Fortunately, in many applications, we can take advantages of possible structures and patterns in the data to overcome the curse of dimensionality. The most well known structures include sparsity, low-rankness, block sparsity. This includes a wide range of applications such as machine learning, medical imaging, signal processing, social networks and computer vision. This also led to a specific interest in recovering signals from noisy compressed measurements (Compressed Sensing (CS) problem). Such problems are generally ill-posed unless the signal is structured. The structure can be captured by a regularizer function. This gives rise to a potential interest in regularized inverse problems, where the process of reconstructing the structured signal can be modeled as a regularized problem. This thesis particularly focuses on finding the optimal regularization parameter for such problems, such as ridge regression, LASSO, square-root LASSO and low-rank Generalized LASSO. Our goal is to optimally tune the regularizer to minimize the mean-squared error (MSE) of the solution when the noise variance or structure parameters are unknown. The analysis is based on the framework of the Convex Gaussian Min-max Theorem (CGMT) that has been used recently to precisely predict performance errors.
Grammatical complexity for two-dimensional maps
Hagiwara, Ryouichi; Shudo, Akira
2004-11-01
We calculate the grammatical complexity of the symbol sequences generated from the Hénon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.
The relationship between synchronization and percolation for regular networks
Li, Zhe; Ren, Tao; Xu, Yanjie; Jin, Jianyu
2018-02-01
Synchronization and percolation are two essential phenomena in complex dynamical networks. They have been studied widely, but previously treated as unrelated. In this paper, the relationship between synchronization and percolation are revealed for regular networks. Firstly, we discovered a bridge between synchronization and percolation by using the eigenvalues of the Laplacian matrix to describe the synchronizability and using the eigenvalues of the adjacency matrix to describe the percolation threshold. Then, we proposed a method to find the relationship for regular networks based on the topology of networks. Particularly, if the degree distribution of the network is subject to delta function, we show that only the eigenvalues of the adjacency matrix need to be calculated. Finally, several examples are provided to demonstrate how to apply our proposed method to discover the relationship between synchronization and percolation for regular networks.
Variational regularization of 3D data experiments with Matlab
Montegranario, Hebert
2014-01-01
Variational Regularization of 3D Data provides an introduction to variational methods for data modelling and its application in computer vision. In this book, the authors identify interpolation as an inverse problem that can be solved by Tikhonov regularization. The proposed solutions are generalizations of one-dimensional splines, applicable to n-dimensional data and the central idea is that these splines can be obtained by regularization theory using a trade-off between the fidelity of the data and smoothness properties.As a foundation, the authors present a comprehensive guide to the necessary fundamentals of functional analysis and variational calculus, as well as splines. The implementation and numerical experiments are illustrated using MATLAB®. The book also includes the necessary theoretical background for approximation methods and some details of the computer implementation of the algorithms. A working knowledge of multivariable calculus and basic vector and matrix methods should serve as an adequat...
Wavelet domain image restoration with adaptive edge-preserving regularization.
Belge, M; Kilmer, M E; Miller, E L
2000-01-01
In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.
Breast ultrasound tomography with total-variation regularization
Energy Technology Data Exchange (ETDEWEB)
Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTIT.; Duric, Neb [KARMANOS CANCER INSTIT
2009-01-01
Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation (TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few artifacts.
Manufacture of Regularly Shaped Sol-Gel Pellets
Leventis, Nicholas; Johnston, James C.; Kinder, James D.
2006-01-01
An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.
Gamma regularization based reconstruction for low dose CT
International Nuclear Information System (INIS)
Zhang, Junfeng; Chen, Yang; Hu, Yining; Luo, Limin; Shu, Huazhong; Li, Bicao; Liu, Jin; Coatrieux, Jean-Louis
2015-01-01
Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution is flexible and provides a good balance between the regularizations based on l 0 -norm and l 1 -norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other norms. (paper)
Further investigation on "A multiplicative regularization for force reconstruction"
Aucejo, M.; De Smet, O.
2018-05-01
We have recently proposed a multiplicative regularization to reconstruct mechanical forces acting on a structure from vibration measurements. This method does not require any selection procedure for choosing the regularization parameter, since the amount of regularization is automatically adjusted throughout an iterative resolution process. The proposed iterative algorithm has been developed with performance and efficiency in mind, but it is actually a simplified version of a full iterative procedure not described in the original paper. The present paper aims at introducing the full resolution algorithm and comparing it with its simplified version in terms of computational efficiency and solution accuracy. In particular, it is shown that both algorithms lead to very similar identified solutions.
Structural characterization of the packings of granular regular polygons.
Wang, Chuncheng; Dong, Kejun; Yu, Aibing
2015-12-01
By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.
Manifestly scale-invariant regularization and quantum effective operators
Ghilencea, D.M.
2016-01-01
Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...