Constrained least squares regularization in PET
International Nuclear Information System (INIS)
Choudhury, K.R.; O'Sullivan, F.O.
1996-01-01
Standard reconstruction methods used in tomography produce images with undesirable negative artifacts in background and in areas of high local contrast. While sophisticated statistical reconstruction methods can be devised to correct for these artifacts, their computational implementation is excessive for routine operational use. This work describes a technique for rapid computation of approximate constrained least squares regularization estimates. The unique feature of the approach is that it involves no iterative projection or backprojection steps. This contrasts with the familiar computationally intensive algorithms based on algebraic reconstruction (ART) or expectation-maximization (EM) methods. Experimentation with the new approach for deconvolution and mixture analysis shows that the root mean square error quality of estimators based on the proposed algorithm matches and usually dominates that of more elaborate maximum likelihood, at a fraction of the computational effort
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Directory of Open Access Journals (Sweden)
Shahzad Sharif
2012-08-01
Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic, (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.
Bounded Perturbation Regularization for Linear Least Squares Estimation
Ballal, Tarig; Suliman, Mohamed Abdalla Elhag; Al-Naffouri, Tareq Y.
2017-01-01
This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded
Regularization by truncated total least squares
DEFF Research Database (Denmark)
Hansen, Per Christian; Fierro, R.D; Golub, G.H
1997-01-01
The total least squares (TLS) method is a successful method for noise reduction in linear least squares problems in a number of applications. The TLS method is suited to problems in which both the coefficient matrix and the right-hand side are not precisely known. This paper focuses on the use...... schemes for relativistic hydrodynamical equations. Such an approximate Riemann solver is presented in this paper which treats all waves emanating from an initial discontinuity as themselves discontinuous. Therefore, jump conditions for shocks are approximately used for rarefaction waves. The solver...... is easy to implement in a Godunov scheme and converges rapidly for relativistic hydrodynamics. The fast convergence of the solver indicates the potential of a higher performance of a Godunov scheme in which the solver is used....
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin; Dai, Wei; Schuster, Gerard T.
2013-01-01
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity
Bounded Perturbation Regularization for Linear Least Squares Estimation
Ballal, Tarig
2017-10-18
This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.
Consistent Partial Least Squares Path Modeling via Regularization.
Jung, Sunho; Park, JaeHong
2018-01-01
Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Regularization Techniques for Linear Least-Squares Problems
Suliman, Mohamed
2016-04-01
Linear estimation is a fundamental branch of signal processing that deals with estimating the values of parameters from a corrupted measured data. Throughout the years, several optimization criteria have been used to achieve this task. The most astonishing attempt among theses is the linear least-squares. Although this criterion enjoyed a wide popularity in many areas due to its attractive properties, it appeared to suffer from some shortcomings. Alternative optimization criteria, as a result, have been proposed. These new criteria allowed, in one way or another, the incorporation of further prior information to the desired problem. Among theses alternative criteria is the regularized least-squares (RLS). In this thesis, we propose two new algorithms to find the regularization parameter for linear least-squares problems. In the constrained perturbation regularization algorithm (COPRA) for random matrices and COPRA for linear discrete ill-posed problems, an artificial perturbation matrix with a bounded norm is forced into the model matrix. This perturbation is introduced to enhance the singular value structure of the matrix. As a result, the new modified model is expected to provide a better stabilize substantial solution when used to estimate the original signal through minimizing the worst-case residual error function. Unlike many other regularization algorithms that go in search of minimizing the estimated data error, the two new proposed algorithms are developed mainly to select the artifcial perturbation bound and the regularization parameter in a way that approximately minimizes the mean-squared error (MSE) between the original signal and its estimate under various conditions. The first proposed COPRA method is developed mainly to estimate the regularization parameter when the measurement matrix is complex Gaussian, with centered unit variance (standard), and independent and identically distributed (i.i.d.) entries. Furthermore, the second proposed COPRA
Regularized Partial Least Squares with an Application to NMR Spectroscopy
Allen, Genevera I.; Peterson, Christine; Vannucci, Marina; Maletic-Savatic, Mirjana
2012-01-01
High-dimensional data common in genomics, proteomics, and chemometrics often contains complicated correlation structures. Recently, partial least squares (PLS) and Sparse PLS methods have gained attention in these areas as dimension reduction techniques in the context of supervised data analysis. We introduce a framework for Regularized PLS by solving a relaxation of the SIMPLS optimization problem with penalties on the PLS loadings vectors. Our approach enjoys many advantages including flexi...
Consistent Partial Least Squares Path Modeling via Regularization
Directory of Open Access Journals (Sweden)
Sunho Jung
2018-02-01
Full Text Available Partial least squares (PLS path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc, designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Robust regularized least-squares beamforming approach to signal estimation
Suliman, Mohamed Abdalla Elhag
2017-05-12
In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill-conditioned covariance matrix of the received signals. Secondly, the steering vector pertaining to the direction of arrival of the signal of interest is not known precisely. To tackle these two challenges, the standard capon beamformer is manipulated to a form where the beamformer output is obtained as a scaled version of the inner product of two vectors. The two vectors are linearly related to the steering vector and the received signal snapshot, respectively. The linear operator, in both cases, is the square root of the covariance matrix. A regularized least-squares (RLS) approach is proposed to estimate these two vectors and to provide robustness without exploiting prior information. Simulation results show that the RLS beamformer using the proposed regularization algorithm outperforms state-of-the-art beamforming algorithms, as well as another RLS beamformers using a standard regularization approaches.
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin
2013-09-22
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.
BER analysis of regularized least squares for BPSK recovery
Ben Atitallah, Ismail; Thrampoulidis, Christos; Kammoun, Abla; Al-Naffouri, Tareq Y.; Hassibi, Babak; Alouini, Mohamed-Slim
2017-01-01
This paper investigates the problem of recovering an n-dimensional BPSK signal x
BER analysis of regularized least squares for BPSK recovery
Ben Atitallah, Ismail
2017-06-20
This paper investigates the problem of recovering an n-dimensional BPSK signal x
REGULAR METHOD FOR SYNTHESIS OF BASIC BENT-SQUARES OF RANDOM ORDER
Directory of Open Access Journals (Sweden)
A. V. Sokolov
2016-01-01
Full Text Available The paper is devoted to the class construction of the most non-linear Boolean bent-functions of any length N = 2k (k = 2, 4, 6…, on the basis of their spectral representation – Agievich bent squares. These perfect algebraic constructions are used as a basis to build many new cryptographic primitives, such as generators of pseudo-random key sequences, crypto graphic S-boxes, etc. Bent-functions also find their application in the construction of C-codes in the systems with code division multiple access (CDMA to provide the lowest possible value of Peak-to-Average Power Ratio (PAPR k = 1, as well as for the construction of error-correcting codes and systems of orthogonal biphasic signals. All the numerous applications of bent-functions relate to the theory of their synthesis. However, regular methods for complete class synthesis of bent-functions of any length N = 2k are currently unknown. The paper proposes a regular synthesis method for the basic Agievich bent squares of any order n, based on a regular operator of dyadic shift. Classification for a complete set of spectral vectors of lengths (l = 8, 16, … based on a criterion of the maximum absolute value and set of absolute values of spectral components has been carried out in the paper. It has been shown that any spectral vector can be a basis for building bent squares. Results of the synthesis for the Agievich bent squares of order n = 8 have been generalized and it has been revealed that there are only 3 basic bent squares for this order, while the other 5 can be obtained with help the operation of step-cyclic shift. All the basic bent squares of order n = 16 have been synthesized that allows to construct the bent-functions of length N = 256. The obtained basic bent squares can be used either for direct synthesis of bent-functions and their practical application or for further research in order to synthesize new structures of bent squares of orders n = 16, 32, 64, …
Energy Technology Data Exchange (ETDEWEB)
Hao, Ming; Wang, Yanli, E-mail: ywang@ncbi.nlm.nih.gov; Bryant, Stephen H., E-mail: bryant@ncbi.nlm.nih.gov
2016-02-25
Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.
International Nuclear Information System (INIS)
Hao, Ming; Wang, Yanli; Bryant, Stephen H.
2016-01-01
Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.
Bukhari, Hassan J.
2017-12-01
In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.
Context-Specific Metabolic Model Extraction Based on Regularized Least Squares Optimization.
Directory of Open Access Journals (Sweden)
Semidán Robaina Estévez
Full Text Available Genome-scale metabolic models have proven highly valuable in investigating cell physiology. Recent advances include the development of methods to extract context-specific models capable of describing metabolism under more specific scenarios (e.g., cell types. Yet, none of the existing computational approaches allows for a fully automated model extraction and determination of a flux distribution independent of user-defined parameters. Here we present RegrEx, a fully automated approach that relies solely on context-specific data and ℓ1-norm regularization to extract a context-specific model and to provide a flux distribution that maximizes its correlation to data. Moreover, the publically available implementation of RegrEx was used to extract 11 context-specific human models using publicly available RNAseq expression profiles, Recon1 and also Recon2, the most recent human metabolic model. The comparison of the performance of RegrEx and its contending alternatives demonstrates that the proposed method extracts models for which both the structure, i.e., reactions included, and the flux distributions are in concordance with the employed data. These findings are supported by validation and comparison of method performance on additional data not used in context-specific model extraction. Therefore, our study sets the ground for applications of other regularization techniques in large-scale metabolic modeling.
A comparative analysis of the EEDF obtained by Regularization and by Least square fit methods
International Nuclear Information System (INIS)
Gutierrez T, C.; Flores Ll, H.
2004-01-01
The second derived of the characteristic curve current-voltage (I - V) of a Langmuir probe (I - V) is numerically calculated using the Tikhonov method for to determine the distribution function of the electrons energy (EEDF). One comparison of the obtained EEDF and a fit by least square are discussed (LS). The I - V experimental curve is obtained in a plasma source in the electron cyclotron resonance (ECR) using a cylindrical probe. The parameters of plasma are determined of the EEDF by means of the Laframboise theory. For the case of the LS fit, the obtained results are similar to those obtained by the Tikhonov method, but in the first case the procedure is slow to achieve the best fit. (Author)
Passive shimming of a superconducting magnet using the L1-norm regularized least square algorithm.
Kong, Xia; Zhu, Minhua; Xia, Ling; Wang, Qiuliang; Li, Yi; Zhu, Xuchen; Liu, Feng; Crozier, Stuart
2016-02-01
The uniformity of the static magnetic field B0 is of prime importance for an MRI system. The passive shimming technique is usually applied to improve the uniformity of the static field by optimizing the layout of a series of steel shims. The steel pieces are fixed in the drawers in the inner bore of the superconducting magnet, and produce a magnetizing field in the imaging region to compensate for the inhomogeneity of the B0 field. In practice, the total mass of steel used for shimming should be minimized, in addition to the field uniformity requirement. This is because the presence of steel shims may introduce a thermal stability problem. The passive shimming procedure is typically realized using the linear programming (LP) method. The LP approach however, is generally slow and also has difficulty balancing the field quality and the total amount of steel for shimming. In this paper, we have developed a new algorithm that is better able to balance the dual constraints of field uniformity and the total mass of the shims. The least square method is used to minimize the magnetic field inhomogeneity over the imaging surface with the total mass of steel being controlled by an L1-norm based constraint. The proposed algorithm has been tested with practical field data, and the results show that, with similar computational cost and mass of shim material, the new algorithm achieves superior field uniformity (43% better for the test case) compared with the conventional linear programming approach. Copyright © 2016 Elsevier Inc. All rights reserved.
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
Energy Technology Data Exchange (ETDEWEB)
Harms, Joseph; Wang, Tonghe; Petrongolo, Michael; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Niu, Tianye [Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (China); Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016 (China)
2016-05-15
Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is based on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan{sup ©}600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise
Chen, Xing; Niu, Ya-Wei; Wang, Guang-Hui; Yan, Gui-Ying
2017-12-12
Recently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences indicating that miRNA could be associated with various human complex diseases development and progression. Hence, it is necessary and urgent to pay more attentions to the relevant study of predicting diseases associated miRNAs, which may be helpful for effective prevention, diagnosis and treatment of human diseases. Especially, constructing computational methods to predict potential miRNA-disease associations is worthy of more studies because of the feasibility and effectivity. In this work, we developed a novel computational model of multiple kernels learning-based Kronecker regularized least squares for MiRNA-disease association prediction (MKRMDA), which could reveal potential miRNA-disease associations by automatically optimizing the combination of multiple kernels for disease and miRNA. MKRMDA obtained AUCs of 0.9040 and 0.8446 in global and local leave-one-out cross validation, respectively. Meanwhile, MKRMDA achieved average AUCs of 0.8894 ± 0.0015 in fivefold cross validation. Furthermore, we conducted three different kinds of case studies on some important human cancers for further performance evaluation. In the case studies of colonic cancer, esophageal cancer and lymphoma based on known miRNA-disease associations in HMDDv2.0 database, 76, 94 and 88% of the corresponding top 50 predicted miRNAs were confirmed by experimental reports, respectively. In another two kinds of case studies for new diseases without any known associated miRNAs and diseases only with known associations in HMDDv1.0 database, the verified ratios of two different cancers were 88 and 94%, respectively. All the results mentioned above adequately showed the reliable prediction ability of MKRMDA. We anticipated that MKRMDA could serve to facilitate further developments in the field and the follow-up investigations by biomedical researchers.
International Nuclear Information System (INIS)
Durand, S.; Nikolova, M.
2006-01-01
Many estimation problems amount to minimizing a piecewise C m objective function, with m ≥ 2, composed of a quadratic data-fidelity term and a general regularization term. It is widely accepted that the minimizers obtained using non-convex and possibly non-smooth regularization terms are frequently good estimates. However, few facts are known on the ways to control properties of these minimizers. This work is dedicated to the stability of the minimizers of such objective functions with respect to variations of the data. It consists of two parts: first we consider all local minimizers, whereas in a second part we derive results on global minimizers. In this part we focus on data points such that every local minimizer is isolated and results from a C m-1 local minimizer function, defined on some neighborhood. We demonstrate that all data points for which this fails form a set whose closure is negligible
Hema, M. K.; Karthik, C. S.; Warad, Ismail; Lokanath, N. K.; Zarrouk, Abdelkader; Kumara, Karthik; Pampa, K. J.; Mallu, P.
2018-04-01
Trans-[Cu(O∩O)2] complex, O∩O = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione was reported with high potential toward CT-DNA binder. The solved XRD-structure of complex indicated a perfect regular square-planer geometry around the Cu(II) center. The trans/cis-DFT-isomerization calculation supported the XRD seen in reflecting the trans-isomer as the kinetic-favor isomer. The desired complex structure was also characterized by conductivity measurement, CHN-elemental analyses, MS, EDX, SEM, UV-Vis., FT-IR, HAS and TG/DTG. The Solvatochromism behavior of the complex was evaluated using four different polar solvents. MPE and Hirshfeld surface analysis (HSA) come to an agreement that fluoride and thiophene protons atoms are with suitable electro-potential environment to form non-classical H-bonds of type CThsbnd H⋯F. The DNA-binding properties were investigated by viscosity tests and spectrometric titrations, the results revealed the complex as strong calf-thymus DNA binder. High intrinsic-binding constants value ∼1.8 × 105 was collected.
DeTemple, Duane
2010-01-01
Purely combinatorial proofs are given for the sum of squares formula, 1[superscript 2] + 2[superscript 2] + ... + n[superscript 2] = n(n + 1) (2n + 1) / 6, and the sum of sums of squares formula, 1[superscript 2] + (1[superscript 2] + 2[superscript 2]) + ... + (1[superscript 2] + 2[superscript 2] + ... + n[superscript 2]) = n(n + 1)[superscript 2]…
DEFF Research Database (Denmark)
Forchhammer, Søren; Kim, Chul E
1988-01-01
Digital squares are defined and their geometric properties characterized. A linear time algorithm is presented that considers a convex digital region and determines whether or not it is a digital square. The algorithm also determines the range of the values of the parameter set of its preimages....... The analysis involves transforming the boundary of a digital region into parameter space of slope and y-intercept...
Indian Academy of Sciences (India)
Admin
2012-09-07
Sep 7, 2012 ... must first talk of permutations and Latin squares. A permutation of a finite set of objects is a linear arrange- ment of ... with a special element 1 ... Of course, this has .... tion method to disprove Euler's conjecture for infinitely.
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
Lyon, Betty Clayton
1990-01-01
One method of making magic squares using a prolongated square is illustrated. Discussed are third-order magic squares, fractional magic squares, fifth-order magic squares, decimal magic squares, and even magic squares. (CW)
DEFF Research Database (Denmark)
Rose, Jeremy; Sæbø, Øystein
2005-01-01
On-line political communities, such as the Norwegian site Demokratitorget (Democracy Square), are often designed according to a set of un-reflected assumptions about the political interests of their potential members. In political science, democracy is not taken as given in this way, but can...... be represented by different models which characterize different relationships between politicians and the citizens they represent. This paper uses quantitative and qualitative content analysis to analyze the communication mediated by the Democracy Square discussion forum in the first ten months of its life......-Republican model. In the qualitative analysis the discourse is analysed as repeating genres – patterns in the communication form which also reflect the conflict of interest between citizens and politicians. Though the analysis gives insight into the nature of the discourse the site supports, little is known about...
1972-01-01
With the existing Systems for using the accelerated protons, it is possible to supply only one slow ejected beam (feeding the East Hall) and, at the same time, to have only a small percentage of the beam on an internal target (feeding the South Hall). The arrangement will be replaced by a new System called SQUARE (Semi- QUAdrupole Resonant Extraction) which will give greater flexibility in supplying the three areas.
DEFF Research Database (Denmark)
Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.
1994-01-01
Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...
Energy Technology Data Exchange (ETDEWEB)
Gutierrez T, C.; Flores Ll, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
2004-07-01
The second derived of the characteristic curve current-voltage (I - V) of a Langmuir probe (I - V) is numerically calculated using the Tikhonov method for to determine the distribution function of the electrons energy (EEDF). One comparison of the obtained EEDF and a fit by least square are discussed (LS). The I - V experimental curve is obtained in a plasma source in the electron cyclotron resonance (ECR) using a cylindrical probe. The parameters of plasma are determined of the EEDF by means of the Laframboise theory. For the case of the LS fit, the obtained results are similar to those obtained by the Tikhonov method, but in the first case the procedure is slow to achieve the best fit. (Author)
Robust regularized least-squares beamforming approach to signal estimation
Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.
2017-01-01
In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill
Regularization Techniques for Linear Least-Squares Problems
Suliman, Mohamed Abdalla Elhag
2016-01-01
with a bounded norm is forced into the model matrix. This perturbation is introduced to enhance the singular value structure of the matrix. As a result, the new modified model is expected to provide a better stabilize substantial solution when used
UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA
Directory of Open Access Journals (Sweden)
IONIŢĂ Elena
2015-06-01
Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
Watson, Gale A.
2003-01-01
Demonstrates the transformations that are possible to construct a variety of magic squares, including modifications to challenge students from elementary grades through algebra. Presents an example of using magic squares with students who have special needs. (YDS)
Misiurewicz, Michal
2013-01-01
If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Nijholt, Antinus
1980-01-01
Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular
Accretion onto some well-known regular black holes
International Nuclear Information System (INIS)
Jawad, Abdul; Shahzad, M.U.
2016-01-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2016-03-15
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Jawad, Abdul; Shahzad, M. Umair
2016-03-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.
Regular Expression Pocket Reference
Stubblebine, Tony
2007-01-01
This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp
Regularization by External Variables
DEFF Research Database (Denmark)
Bossolini, Elena; Edwards, R.; Glendinning, P. A.
2016-01-01
Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...
Goyvaerts, Jan
2009-01-01
This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a
International Nuclear Information System (INIS)
Akita, Junji; Honma, Toei.
1975-01-01
Object: To provide a square through tube involving thermal movement in pipelines such as water supply pump driving turbine exhaust pipe (square-shaped), which is wide in freedom with respect to shape and dimension thereof for efficient installation at site. Structure: In a through tube to be airtightly retained for purpose of decontamination in an atomic power plant, comprising a seal rubber plate, a band and a bolt and a nut for securing said plate, the seal rubber plate being worked into the desired shape so that it may be placed in intimate contact with the concrete floor surface by utilization of elasticity of rubber, thereby providing airtightness at a corner portion of the square tube. (Kamimura, M.)
Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory
Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.
2016-01-01
random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various
Regularities of Multifractal Measures
Indian Academy of Sciences (India)
First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...
Stochastic analytic regularization
International Nuclear Information System (INIS)
Alfaro, J.
1984-07-01
Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)
Incremental projection approach of regularization for inverse problems
Energy Technology Data Exchange (ETDEWEB)
Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)
2016-10-15
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Regular expression containment
DEFF Research Database (Denmark)
Henglein, Fritz; Nielsen, Lasse
2011-01-01
We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
Regularized maximum correntropy machine
Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin
2015-01-01
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
International Nuclear Information System (INIS)
Dory, R.A.; Uckan, N.A.; Ard, W.B.
1986-10-01
The ELMO Bumpy Square (EBS) concept consists of four straight magnetic mirror arrays linked by four high-field corner coils. Extensive calculations show that this configuration offers major improvements over the ELMO Bumpy Torus (EBT) in particle confinement, heating, transport, ring production, and stability. The components of the EBT device at Oak Ridge National Laboratory can be reconfigured into a square arrangement having straight sides composed of EBT coils, with new microwave cavities and high-field corners designed and built for this application. The elimination of neoclassical convection, identified as the dominant mechanism for the limited confinement in EBT, will give the EBS device substantially improved confinement and the flexibility to explore the concepts that produce this improvement. The primary goals of the EBS program are twofold: first, to improve the physics of confinement in toroidal systems by developing the concepts of plasma stabilization using the effects of energetic electrons and confinement optimization using magnetic field shaping and electrostatic potential control to limit particle drift, and second, to develop bumpy toroid devices as attractive candidates for fusion reactors. This report presents a brief review of the physics analyses that support the EBS concept, discussions of the design and expected performance of the EBS device, a description of the EBS experimental program, and a review of the reactor potential of bumpy toroid configurations. Detailed information is presented in the appendices
Improved linear least squares estimation using bounded data uncertainty
Ballal, Tarig
2015-04-01
This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.
Improved linear least squares estimation using bounded data uncertainty
Ballal, Tarig; Al-Naffouri, Tareq Y.
2015-01-01
This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
Williams, Horace E.
1974-01-01
A method for generating 3x3 magic squares is developed. A series of questions relating to these magic squares is posed. An invesitgation using matrix methods is suggested with some questions for consideration. (LS)
Diverse Regular Employees and Non-regular Employment (Japanese)
MORISHIMA Motohiro
2011-01-01
Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
'Regular' and 'emergency' repair
International Nuclear Information System (INIS)
Luchnik, N.V.
1975-01-01
Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)
Regularization of divergent integrals
Felder, Giovanni; Kazhdan, David
2016-01-01
We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.
Regularizing portfolio optimization
International Nuclear Information System (INIS)
Still, Susanne; Kondor, Imre
2010-01-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regularizing portfolio optimization
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regular Single Valued Neutrosophic Hypergraphs
Directory of Open Access Journals (Sweden)
Muhammad Aslam Malik
2016-12-01
Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.
The geometry of continuum regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-03-01
This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations
Annotation of Regular Polysemy
DEFF Research Database (Denmark)
Martinez Alonso, Hector
Regular polysemy has received a lot of attention from the theory of lexical semantics and from computational linguistics. However, there is no consensus on how to represent the sense of underspecified examples at the token level, namely when annotating or disambiguating senses of metonymic words...... and metonymic. We have conducted an analysis in English, Danish and Spanish. Later on, we have tried to replicate the human judgments by means of unsupervised and semi-supervised sense prediction. The automatic sense-prediction systems have been unable to find empiric evidence for the underspecified sense, even...
Regularity of Minimal Surfaces
Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht
2010-01-01
"Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t
Regularities of radiation heredity
International Nuclear Information System (INIS)
Skakov, M.K.; Melikhov, V.D.
2001-01-01
One analyzed regularities of radiation heredity in metals and alloys. One made conclusion about thermodynamically irreversible changes in structure of materials under irradiation. One offers possible ways of heredity transmittance of radiation effects at high-temperature transformations in the materials. Phenomenon of radiation heredity may be turned to practical use to control structure of liquid metal and, respectively, structure of ingot via preliminary radiation treatment of charge. Concentration microheterogeneities in material defect structure induced by preliminary irradiation represent the genetic factor of radiation heredity [ru
Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.
2016-01-01
This paper proposes a new approach to find the regularization parameter for linear least-squares discrete ill-posed problems. In the proposed approach, an artificial perturbation matrix with a bounded norm is forced into the discrete ill-posed model
Regularized Discriminant Analysis: A Large Dimensional Study
Yang, Xiaoke
2018-04-28
In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).
From Square Dance to Mathematics
Bremer, Zoe
2010-01-01
In this article, the author suggests a cross-curricular idea that can link with PE, dance, music and history. Teacher David Schmitz, a maths teacher in Illinois who was also a square dance caller, had developed a maths course that used the standard square dance syllabus to teach mathematical principles. He presents an intensive, two-week course…
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
2010-12-07
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal
Selection of regularization parameter for l1-regularized damage detection
Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing
2018-06-01
The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.
Ensemble manifold regularization.
Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng
2012-06-01
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.
Counting Triangles to Sum Squares
DeMaio, Joe
2012-01-01
Counting complete subgraphs of three vertices in complete graphs, yields combinatorial arguments for identities for sums of squares of integers, odd integers, even integers and sums of the triangular numbers.
Adaptive Regularization of Neural Classifiers
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai
1997-01-01
We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...
Sparse regularization for force identification using dictionaries
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
A Weighted Least Squares Approach To Robustify Least Squares Estimates.
Lin, Chowhong; Davenport, Ernest C., Jr.
This study developed a robust linear regression technique based on the idea of weighted least squares. In this technique, a subsample of the full data of interest is drawn, based on a measure of distance, and an initial set of regression coefficients is calculated. The rest of the data points are then taken into the subsample, one after another,…
Moreno, Carlos J
2005-01-01
Introduction Prerequisites Outline of Chapters 2 - 8 Elementary Methods Introduction Some Lemmas Two Fundamental Identities Euler's Recurrence for Sigma(n)More Identities Sums of Two Squares Sums of Four Squares Still More Identities Sums of Three Squares An Alternate Method Sums of Polygonal Numbers Exercises Bernoulli Numbers Overview Definition of the Bernoulli Numbers The Euler-MacLaurin Sum Formula The Riemann Zeta Function Signs of Bernoulli Numbers Alternate The von Staudt-Clausen Theorem Congruences of Voronoi and Kummer Irregular Primes Fractional Parts of Bernoulli Numbers Exercises Examples of Modular Forms Introduction An Example of Jacobi and Smith An Example of Ramanujan and Mordell An Example of Wilton: t (n) Modulo 23 An Example of Hamburger Exercises Hecke's Theory of Modular FormsIntroduction Modular Group ? and its Subgroup ? 0 (N) Fundamental Domains For ? and ? 0 (N) Integral Modular Forms Modular Forms of Type Mk(? 0(N);chi) and Euler-Poincare series Hecke Operators Dirichlet Series and ...
Suliman, Mohamed Abdalla Elhag
2016-12-19
This paper proposes a new approach to find the regularization parameter for linear least-squares discrete ill-posed problems. In the proposed approach, an artificial perturbation matrix with a bounded norm is forced into the discrete ill-posed model matrix. This perturbation is introduced to enhance the singular-value (SV) structure of the matrix and hence to provide a better solution. The proposed approach is derived to select the regularization parameter in a way that minimizes the mean-squared error (MSE) of the estimator. Numerical results demonstrate that the proposed approach outperforms a set of benchmark methods in most cases when applied to different scenarios of discrete ill-posed problems. Jointly, the proposed approach enjoys the lowest run-time and offers the highest level of robustness amongst all the tested methods.
2010-09-02
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
Graphs whose complement and square are isomorphic
DEFF Research Database (Denmark)
Pedersen, Anders Sune
2014-01-01
We study square-complementary graphs, that is, graphs whose complement and square are isomorphic. We prove several necessary conditions for a graph to be square-complementary, describe ways of building new square-complementary graphs from existing ones, construct infinite families of square-compl...
Agglomerative clustering of growing squares
Castermans, Thom; Speckmann, Bettina; Staals, Frank; Verbeek, Kevin; Bender, M.A.; Farach-Colton, M.; Mosteiro, M.A.
2018-01-01
We study an agglomerative clustering problem motivated by interactive glyphs in geo-visualization. Consider a set of disjoint square glyphs on an interactive map. When the user zooms out, the glyphs grow in size relative to the map, possibly with different speeds. When two glyphs intersect, we wish
On the MSE Performance and Optimization of Regularized Problems
Alrashdi, Ayed
2016-11-01
The amount of data that has been measured, transmitted/received, and stored in the recent years has dramatically increased. So, today, we are in the world of big data. Fortunately, in many applications, we can take advantages of possible structures and patterns in the data to overcome the curse of dimensionality. The most well known structures include sparsity, low-rankness, block sparsity. This includes a wide range of applications such as machine learning, medical imaging, signal processing, social networks and computer vision. This also led to a specific interest in recovering signals from noisy compressed measurements (Compressed Sensing (CS) problem). Such problems are generally ill-posed unless the signal is structured. The structure can be captured by a regularizer function. This gives rise to a potential interest in regularized inverse problems, where the process of reconstructing the structured signal can be modeled as a regularized problem. This thesis particularly focuses on finding the optimal regularization parameter for such problems, such as ridge regression, LASSO, square-root LASSO and low-rank Generalized LASSO. Our goal is to optimally tune the regularizer to minimize the mean-squared error (MSE) of the solution when the noise variance or structure parameters are unknown. The analysis is based on the framework of the Convex Gaussian Min-max Theorem (CGMT) that has been used recently to precisely predict performance errors.
Regularization in global sound equalization based on effort variation
DEFF Research Database (Denmark)
Stefanakis, Nick; Sarris, John; Jacobsen, Finn
2009-01-01
. Effort variation equalization involves modifying the conventional cost function in sound equalization, which is based on minimizing least-squares reproduction errors, by adding a term that is proportional to the squared deviations between complex source strengths, calculated independently for the sources......Sound equalization in closed spaces can be significantly improved by generating propagating waves that are naturally associated with the geometry, as, for example, plane waves in rectangular enclosures. This paper presents a control approach termed effort variation regularization based on this idea...
Continuum-regularized quantum gravity
International Nuclear Information System (INIS)
Chan Huesum; Halpern, M.B.
1987-01-01
The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)
Multiview Hessian regularization for image annotation.
Liu, Weifeng; Tao, Dacheng
2013-07-01
The rapid development of computer hardware and Internet technology makes large scale data dependent models computationally tractable, and opens a bright avenue for annotating images through innovative machine learning algorithms. Semisupervised learning (SSL) therefore received intensive attention in recent years and was successfully deployed in image annotation. One representative work in SSL is Laplacian regularization (LR), which smoothes the conditional distribution for classification along the manifold encoded in the graph Laplacian, however, it is observed that LR biases the classification function toward a constant function that possibly results in poor generalization. In addition, LR is developed to handle uniformly distributed data (or single-view data), although instances or objects, such as images and videos, are usually represented by multiview features, such as color, shape, and texture. In this paper, we present multiview Hessian regularization (mHR) to address the above two problems in LR-based image annotation. In particular, mHR optimally combines multiple HR, each of which is obtained from a particular view of instances, and steers the classification function that varies linearly along the data manifold. We apply mHR to kernel least squares and support vector machines as two examples for image annotation. Extensive experiments on the PASCAL VOC'07 dataset validate the effectiveness of mHR by comparing it with baseline algorithms, including LR and HR.
New regular black hole solutions
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zanchin, Vilson T.
2011-01-01
In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.
Regular variation on measure chains
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Vitovec, J.
2010-01-01
Roč. 72, č. 1 (2010), s. 439-448 ISSN 0362-546X R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : regularly varying function * regularly varying sequence * measure chain * time scale * embedding theorem * representation theorem * second order dynamic equation * asymptotic properties Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09008475
Manifold Regularized Correlation Object Tracking
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2017-01-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...
On geodesics in low regularity
Sämann, Clemens; Steinbauer, Roland
2018-02-01
We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.
An algorithm for total variation regularized photoacoustic imaging
DEFF Research Database (Denmark)
Dong, Yiqiu; Görner, Torsten; Kunis, Stefan
2014-01-01
Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During the iter......Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During...... the iteration, each matrix vector multiplication is realized in an efficient way using a recently proposed spectral discretization of the spherical mean value operator. All theoretical results are illustrated by numerical experiments....
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Regularity of optimal transport maps on multiple products of spheres
Figalli, Alessio; Kim, Young-Heon; McCann, Robert J.
2010-01-01
This article addresses regularity of optimal transport maps for cost="squared distance" on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain injectivity and continuity of o...
Exploiting Lexical Regularities in Designing Natural Language Systems.
1988-04-01
ELEMENT. PROJECT. TASKN Artificial Inteligence Laboratory A1A4WR NTumet 0) 545 Technology Square Cambridge, MA 02139 Ln *t- CONTROLLING OFFICE NAME AND...RO-RI95 922 EXPLOITING LEXICAL REGULARITIES IN DESIGNING NATURAL 1/1 LANGUAGE SYSTENS(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE...oes.ary and ftdou.Ip hr Nl wow" L,2This paper presents the lexical component of the START Question Answering system developed at the MIT Artificial
Filter Factors of Truncated TLS Regularization with Multiple Observations
Czech Academy of Sciences Publication Activity Database
Hnětynková, I.; Plešinger, Martin; Žáková, J.
2017-01-01
Roč. 62, č. 2 (2017), s. 105-120 ISSN 0862-7940 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : truncated total least squares * multiple right-hand sides * eigenvalues of rank-d update * ill-posed problem * regularization * filter factors Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.618, year: 2016 http://hdl.handle.net/10338.dmlcz/146698
Classification of Hyperspectral Images Using Kernel Fully Constrained Least Squares
Directory of Open Access Journals (Sweden)
Jianjun Liu
2017-11-01
Full Text Available As a widely used classifier, sparse representation classification (SRC has shown its good performance for hyperspectral image classification. Recent works have highlighted that it is the collaborative representation mechanism under SRC that makes SRC a highly effective technique for classification purposes. If the dimensionality and the discrimination capacity of a test pixel is high, other norms (e.g., ℓ 2 -norm can be used to regularize the coding coefficients, except for the sparsity ℓ 1 -norm. In this paper, we show that in the kernel space the nonnegative constraint can also play the same role, and thus suggest the investigation of kernel fully constrained least squares (KFCLS for hyperspectral image classification. Furthermore, in order to improve the classification performance of KFCLS by incorporating spatial-spectral information, we investigate two kinds of spatial-spectral methods using two regularization strategies: (1 the coefficient-level regularization strategy, and (2 the class-level regularization strategy. Experimental results conducted on four real hyperspectral images demonstrate the effectiveness of the proposed KFCLS, and show which way to incorporate spatial-spectral information efficiently in the regularization framework.
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Fullwood, James; Wang, Dongxu
2018-01-01
We introduce a class of F-theory vacua whose smooth elliptic fibers admit a vanishing $j$-invariant, and construct a weak coupling limit associated with such vacua which we view as the `square' of the Sen limit. We find that while Sen's limit is naturally viewed as an orientifold theory, the universal tadpole relation which equates the D3 charge between the associated F-theory compactification and the limit we construct suggests that perhaps the limiting theory is in fact an oriented theory c...
Renaming Zagreb Streets and Squares
Directory of Open Access Journals (Sweden)
Jelena Stanić
2009-06-01
Full Text Available The paper deals with changes in street names in the city of Zagreb. Taking the Lower Town (Donji grad city area as an example, the first part of the paper analyses diachronic street name changes commencing from the systematic naming of streets in 1878. Analysis of official changes in street names throughout Zagreb’s history resulted in categorisation of five periods of ideologically motivated naming/name-changing: 1. the Croatia modernisation period, when the first official naming was put into effect, with a marked tendency towards politicisation and nationalisation of the urban landscape; 2. the period of the Kingdom of the Serbs, Croatians and Slovenians/Yugoslavia, when symbols of the new monarchy, the idea of the fellowship of the Southern Slavs, Slavenophilism and the pro-Slavic geopolitical orientation were incorporated into the street names, and when the national idea was highly evident and remained so in that process; 3. the period of the NDH, the Independent State of Croatia, with decanonisation of the tokens of the Yugoslavian monarchy and the Southern Slavic orientation, and reference to the Ustashi and the German Nazi and Italian Fascist movement; 4. the period of Socialism, embedding the ideals and heroes of the workers’ movement and the War of National Liberation into the canonical system; and, 5. the period following the democratic changes in 1990, when almost all the signs of Socialism and the Communist/Antifascist struggle were erased, with the prominent presence of a process of installing new references to early national culture and historical tradition. The closing part of the paper deals with public discussions connected with the selection of a location for a square to bear the name of the first president of independent Croatia, Franjo Tuđman. Analysis of these public polemics shows two opposing discourses: the right-wing political option, which supports a central position for the square and considers the chosen area to
Latin squares and their applications
Keedwell, A Donald
2015-01-01
Latin Squares and Their Applications Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the
Efficient Model Selection for Sparse Least-Square SVMs
Directory of Open Access Journals (Sweden)
Xiao-Lei Xia
2013-01-01
Full Text Available The Forward Least-Squares Approximation (FLSA SVM is a newly-emerged Least-Square SVM (LS-SVM whose solution is extremely sparse. The algorithm uses the number of support vectors as the regularization parameter and ensures the linear independency of the support vectors which span the solution. This paper proposed a variant of the FLSA-SVM, namely, Reduced FLSA-SVM which is of reduced computational complexity and memory requirements. The strategy of “contexts inheritance” is introduced to improve the efficiency of tuning the regularization parameter for both the FLSA-SVM and the RFLSA-SVM algorithms. Experimental results on benchmark datasets showed that, compared to the SVM and a number of its variants, the RFLSA-SVM solutions contain a reduced number of support vectors, while maintaining competitive generalization abilities. With respect to the time cost for tuning of the regularize parameter, the RFLSA-SVM algorithm was empirically demonstrated fastest compared to FLSA-SVM, the LS-SVM, and the SVM algorithms.
Metric regularity and subdifferential calculus
International Nuclear Information System (INIS)
Ioffe, A D
2000-01-01
The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces
Manifold Regularized Correlation Object Tracking.
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2018-05-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.
Dimensional regularization in configuration space
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1995-09-01
Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs
Regular algebra and finite machines
Conway, John Horton
2012-01-01
World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg
Matrix regularization of 4-manifolds
Trzetrzelewski, M.
2012-01-01
We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...
Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei
2018-05-01
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.
$L^{p}$-square function estimates on spaces of homogeneous type and on uniformly rectifiable sets
Hofmann, Steve; Mitrea, Marius; Morris, Andrew J
2017-01-01
The authors establish square function estimates for integral operators on uniformly rectifiable sets by proving a local T(b) theorem and applying it to show that such estimates are stable under the so-called big pieces functor. More generally, they consider integral operators associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric spaces. The local T(b) theorem is then used to establish an inductive scheme in which square function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be sufficient for square function estimates to hold on the entire set. Extrapolation results for L^p and Hardy space versions of these estimates are also established. Moreover, the authors prove square function estimates for integral operators associated with variable coefficient kernels, including the Schwartz kernels of pseudodifferential operators acting between vector bundles on subdomains with uniformly rectifiable boundaries on manifolds.
Regularization of Nonmonotone Variational Inequalities
International Nuclear Information System (INIS)
Konnov, Igor V.; Ali, M.S.S.; Mazurkevich, E.O.
2006-01-01
In this paper we extend the Tikhonov-Browder regularization scheme from monotone to rather a general class of nonmonotone multivalued variational inequalities. We show that their convergence conditions hold for some classes of perfectly and nonperfectly competitive economic equilibrium problems
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
2011-01-20
... Meeting SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held at the offices of the Farm... meeting of the Board will be open to the [[Page 3630
Forcing absoluteness and regularity properties
Ikegami, D.
2010-01-01
For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over L and the core model K. We use our results to answer open questions from set theory of the reals.
Globals of Completely Regular Monoids
Institute of Scientific and Technical Information of China (English)
Wu Qian-qian; Gan Ai-ping; Du Xian-kun
2015-01-01
An element of a semigroup S is called irreducible if it cannot be expressed as a product of two elements in S both distinct from itself. In this paper we show that the class C of all completely regular monoids with irreducible identity elements satisfies the strong isomorphism property and so it is globally determined.
Fluid queues and regular variation
Boxma, O.J.
1996-01-01
This paper considers a fluid queueing system, fed by N independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index ¿. We show that its fat tail gives rise to an even
Fluid queues and regular variation
O.J. Boxma (Onno)
1996-01-01
textabstractThis paper considers a fluid queueing system, fed by $N$ independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index $zeta$. We show that its fat tail
Empirical laws, regularity and necessity
Koningsveld, H.
1973-01-01
In this book I have tried to develop an analysis of the concept of an empirical law, an analysis that differs in many ways from the alternative analyse's found in contemporary literature dealing with the subject.
1 am referring especially to two well-known views, viz. the regularity and
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Regularization in Matrix Relevance Learning
Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael
A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can
Squares of Random Linear Codes
DEFF Research Database (Denmark)
Cascudo Pueyo, Ignacio; Cramer, Ronald; Mirandola, Diego
2015-01-01
a positive answer, for codes of dimension $k$ and length roughly $\\frac{1}{2}k^2$ or smaller. Moreover, the convergence speed is exponential if the difference $k(k+1)/2-n$ is at least linear in $k$. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise......Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code ``typically'' fill the whole space? We give...
Plane-wave Least-squares Reverse Time Migration
Dai, Wei
2012-11-04
Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.
Regular and conformal regular cores for static and rotating solutions
Energy Technology Data Exchange (ETDEWEB)
Azreg-Aïnou, Mustapha
2014-03-07
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Regular and conformal regular cores for static and rotating solutions
International Nuclear Information System (INIS)
Azreg-Aïnou, Mustapha
2014-01-01
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Square-root measurement for pure states
International Nuclear Information System (INIS)
Huang Siendong
2005-01-01
Square-root measurement is a very useful suboptimal measurement in many applications. It was shown that the square-root measurement minimizes the squared error for pure states. In this paper, the least squared error problem is reformulated and a new proof is provided. It is found that the least squared error depends only on the average density operator of the input states. The properties of the least squared error are then discussed, and it is shown that if the input pure states are uniformly distributed, the average probability of error has an upper bound depending on the least squared error, the rank of the average density operator, and the number of the input states. The aforementioned properties help explain why the square-root measurement can be effective in decoding processes
Laplacian embedded regression for scalable manifold regularization.
Chen, Lin; Tsang, Ivor W; Xu, Dong
2012-06-01
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real
36 CFR 910.67 - Square guidelines.
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Square guidelines. 910.67... GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Glossary of Terms § 910.67 Square guidelines. Square Guidelines establish the Corporation's...
Energy functions for regularization algorithms
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
Physical model of dimensional regularization
Energy Technology Data Exchange (ETDEWEB)
Schonfeld, Jonathan F.
2016-12-15
We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin
2014-01-01
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Circuit complexity of regular languages
Czech Academy of Sciences Publication Activity Database
Koucký, Michal
2009-01-01
Roč. 45, č. 4 (2009), s. 865-879 ISSN 1432-4350 R&D Projects: GA ČR GP201/07/P276; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : regular languages * circuit complexity * upper and lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.726, year: 2009
Least-squares methods involving the H{sup -1} inner product
Energy Technology Data Exchange (ETDEWEB)
Pasciak, J.
1996-12-31
Least-squares methods are being shown to be an effective technique for the solution of elliptic boundary value problems. However, the methods differ depending on the norms in which they are formulated. For certain problems, it is much more natural to consider least-squares functionals involving the H{sup -1} norm. Such norms give rise to improved convergence estimates and better approximation to problems with low regularity solutions. In addition, fewer new variables need to be added and less stringent boundary conditions need to be imposed. In this talk, I will describe some recent developments involving least-squares methods utilizing the H{sup -1} inner product.
General inverse problems for regular variation
DEFF Research Database (Denmark)
Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan
2014-01-01
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...
Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory
Suliman, Mohamed Abdalla Elhag
2016-10-06
In this work, we propose a new regularization approach for linear least-squares problems with random matrices. In the proposed constrained perturbation regularization approach, an artificial perturbation matrix with a bounded norm is forced into the system model matrix. This perturbation is introduced to improve the singular-value structure of the model matrix and, hence, the solution of the estimation problem. Relying on the randomness of the model matrix, a number of deterministic equivalents from random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various estimated signal characteristics. In addition, simulations show that our approach is robust in the presence of model uncertainty.
Asymptotic solution of natural convection problem in a square cavity heated from below
Grundmann, M; Mojtabi, A; vantHof, B
Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and
Regularized Statistical Analysis of Anatomy
DEFF Research Database (Denmark)
Sjöstrand, Karl
2007-01-01
This thesis presents the application and development of regularized methods for the statistical analysis of anatomical structures. Focus is on structure-function relationships in the human brain, such as the connection between early onset of Alzheimer’s disease and shape changes of the corpus...... and mind. Statistics represents a quintessential part of such investigations as they are preluded by a clinical hypothesis that must be verified based on observed data. The massive amounts of image data produced in each examination pose an important and interesting statistical challenge...... efficient algorithms which make the analysis of large data sets feasible, and gives examples of applications....
Regularization methods in Banach spaces
Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S
2012-01-01
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B
Academic Training Lecture - Regular Programme
PH Department
2011-01-01
Regular Lecture Programme 9 May 2011 ACT Lectures on Detectors - Inner Tracking Detectors by Pippa Wells (CERN) 10 May 2011 ACT Lectures on Detectors - Calorimeters (2/5) by Philippe Bloch (CERN) 11 May 2011 ACT Lectures on Detectors - Muon systems (3/5) by Kerstin Hoepfner (RWTH Aachen) 12 May 2011 ACT Lectures on Detectors - Particle Identification and Forward Detectors by Peter Krizan (University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia) 13 May 2011 ACT Lectures on Detectors - Trigger and Data Acquisition (5/5) by Dr. Brian Petersen (CERN) from 11:00 to 12:00 at CERN ( Bldg. 222-R-001 - Filtration Plant )
Low-Complexity Regularization Algorithms for Image Deblurring
Alanazi, Abdulrahman
2016-11-01
Image restoration problems deal with images in which information has been degraded by blur or noise. In practice, the blur is usually caused by atmospheric turbulence, motion, camera shake, and several other mechanical or physical processes. In this study, we present two regularization algorithms for the image deblurring problem. We first present a new method based on solving a regularized least-squares (RLS) problem. This method is proposed to find a near-optimal value of the regularization parameter in the RLS problems. Experimental results on the non-blind image deblurring problem are presented. In all experiments, comparisons are made with three benchmark methods. The results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and structural similarity, as well as the visual quality of the deblurred images. To reduce the complexity of the proposed algorithm, we propose a technique based on the bootstrap method to estimate the regularization parameter in low and high-resolution images. Numerical results show that the proposed technique can effectively reduce the computational complexity of the proposed algorithms. In addition, for some cases where the point spread function (PSF) is separable, we propose using a Kronecker product so as to reduce the computations. Furthermore, in the case where the image is smooth, it is always desirable to replace the regularization term in the RLS problems by a total variation term. Therefore, we propose a novel method for adaptively selecting the regularization parameter in a so-called square root regularized total variation (SRTV). Experimental results demonstrate that our proposed method outperforms the other benchmark methods when applied to smooth images in terms of PSNR, SSIM and the restored image quality. In this thesis, we focus on the non-blind image deblurring problem, where the blur kernel is assumed to be known. However, we developed algorithms that also work
Square pulse linear transformer driver
Directory of Open Access Journals (Sweden)
A. A. Kim
2012-04-01
Full Text Available The linear transformer driver (LTD technological approach can result in relatively compact devices that can deliver fast, high current, and high-voltage pulses straight out of the LTD cavity without any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The usual LTD architecture [A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, B. M. Kovalchuk, V. A. Vizir, S. N Volkov, F. Bayol, A. N. Bastrikov, V. G. Durakov, S. V. Frolov, V. M. Alexeenko, D. H. McDaniel, W. E. Fowler, K. LeCheen, C. Olson, W. A. Stygar, K. W. Struve, J. Porter, and R. M. Gilgenbach, Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402; M. G. Mazarakis, W. E. Fowler, A. A. Kim, V. A. Sinebryukhov, S. T. Rogowski, R. A. Sharpe, D. H. McDaniel, C. L. Olson, J. L. Porter, K. W. Struve, W. A. Stygar, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 12, 050401 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050401] provides sine shaped output pulses that may not be well suited for some applications like z-pinch drivers, flash radiography, high power microwaves, etc. A more suitable power pulse would have a flat or trapezoidal (rising or falling top. In this paper, we present the design and first test results of an LTD cavity that generates such a type of output pulse by including within its circular array a number of third harmonic bricks in addition to the main bricks. A voltage adder made out of a square pulse cavity linear array will produce the same shape output pulses provided that the timing of each cavity is synchronized with the propagation of the electromagnetic pulse.
Throughput Analysis of Large Wireless Networks with Regular Topologies
Directory of Open Access Journals (Sweden)
Hong Kezhu
2007-01-01
Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.
Throughput Analysis of Large Wireless Networks with Regular Topologies
Directory of Open Access Journals (Sweden)
Kezhu Hong
2007-04-01
Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.
Regularization of the double period method for experimental data processing
Belov, A. A.; Kalitkin, N. N.
2017-11-01
In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.
Nonnegative least-squares image deblurring: improved gradient projection approaches
Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M.
2010-02-01
The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the ill-posedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have been proposed. Some of them have the 'semi-convergence' property, i.e. early stopping of the iteration provides 'regularized' solutions. In this paper we consider two of these methods: the projected Landweber (PL) method and the iterative image space reconstruction algorithm (ISRA). Even if they work well in many instances, they are not frequently used in practice because, in general, they require a large number of iterations before providing a sensible solution. Therefore, the main purpose of this paper is to refresh these methods by increasing their efficiency. Starting from the remark that PL and ISRA require only the computation of the gradient of the functional, we propose the application to these algorithms of special acceleration techniques that have been recently developed in the area of the gradient methods. In particular, we propose the application of efficient step-length selection rules and line-search strategies. Moreover, remarking that ISRA is a scaled gradient algorithm, we evaluate its behaviour in comparison with a recent scaled gradient projection (SGP) method for image deblurring. Numerical experiments demonstrate that the accelerated methods still exhibit the semi-convergence property, with a considerable gain both in the number of iterations and in the computational time; in particular, SGP appears definitely the most efficient one.
RES: Regularized Stochastic BFGS Algorithm
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Weighted conditional least-squares estimation
International Nuclear Information System (INIS)
Booth, J.G.
1987-01-01
A two-stage estimation procedure is proposed that generalizes the concept of conditional least squares. The method is instead based upon the minimization of a weighted sum of squares, where the weights are inverses of estimated conditional variance terms. Some general conditions are given under which the estimators are consistent and jointly asymptotically normal. More specific details are given for ergodic Markov processes with stationary transition probabilities. A comparison is made with the ordinary conditional least-squares estimators for two simple branching processes with immigration. The relationship between weighted conditional least squares and other, more well-known, estimators is also investigated. In particular, it is shown that in many cases estimated generalized least-squares estimators can be obtained using the weighted conditional least-squares approach. Applications to stochastic compartmental models, and linear models with nested error structures are considered
3D plane-wave least-squares Kirchhoff migration
Wang, Xin
2014-08-05
A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.
Credit Risk Evaluation Using a C-Variable Least Squares Support Vector Classification Model
Yu, Lean; Wang, Shouyang; Lai, K. K.
Credit risk evaluation is one of the most important issues in financial risk management. In this paper, a C-variable least squares support vector classification (C-VLSSVC) model is proposed for credit risk analysis. The main idea of this model is based on the prior knowledge that different classes may have different importance for modeling and more weights should be given to those classes with more importance. The C-VLSSVC model can be constructed by a simple modification of the regularization parameter in LSSVC, whereby more weights are given to the lease squares classification errors with important classes than the lease squares classification errors with unimportant classes while keeping the regularized terms in its original form. For illustration purpose, a real-world credit dataset is used to test the effectiveness of the C-VLSSVC model.
Sets of Mutually Orthogonal Sudoku Latin Squares
Vis, Timothy; Petersen, Ryan M.
2009-01-01
A Latin square of order "n" is an "n" x "n" array using n symbols, such that each symbol appears exactly once in each row and column. A set of Latin squares is c ordered pairs of symbols appearing in the cells of the array are distinct. The popular puzzle Sudoku involves Latin squares with n = 9, along with the added condition that each of the 9…
The Square Light Clock and Special Relativity
Galli, J. Ronald; Amiri, Farhang
2012-01-01
A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…
From inactive to regular jogger
DEFF Research Database (Denmark)
Lund-Cramer, Pernille; Brinkmann Løite, Vibeke; Bredahl, Thomas Viskum Gjelstrup
study was conducted using individual semi-structured interviews on how a successful long-term behavior change had been achieved. Ten informants were purposely selected from participants in the DANO-RUN research project (7 men, 3 women, average age 41.5). Interviews were performed on the basis of Theory...... of Planned Behavior (TPB) and The Transtheoretical Model (TTM). Coding and analysis of interviews were performed using NVivo 10 software. Results TPB: During the behavior change process, the intention to jogging shifted from a focus on weight loss and improved fitness to both physical health, psychological......Title From inactive to regular jogger - a qualitative study of achieved behavioral change among recreational joggers Authors Pernille Lund-Cramer & Vibeke Brinkmann Løite Purpose Despite extensive knowledge of barriers to physical activity, most interventions promoting physical activity have proven...
On the equivalence of different regularization methods
International Nuclear Information System (INIS)
Brzezowski, S.
1985-01-01
The R-circunflex-operation preceded by the regularization procedure is discussed. Some arguments are given, according to which the results may depend on the method of regularization, introduced in order to avoid divergences in perturbation calculations. 10 refs. (author)
The uniqueness of the regularization procedure
International Nuclear Information System (INIS)
Brzezowski, S.
1981-01-01
On the grounds of the BPHZ procedure, the criteria of correct regularization in perturbation calculations of QFT are given, together with the prescription for dividing the regularized formulas into the finite and infinite parts. (author)
Directory of Open Access Journals (Sweden)
Wei Gao
2016-01-01
Full Text Available According to the regularization method in the inverse problem of load identification, a new method for determining the optimal regularization parameter is proposed. Firstly, quotient function (QF is defined by utilizing the regularization parameter as a variable based on the least squares solution of the minimization problem. Secondly, the quotient function method (QFM is proposed to select the optimal regularization parameter based on the quadratic programming theory. For employing the QFM, the characteristics of the values of QF with respect to the different regularization parameters are taken into consideration. Finally, numerical and experimental examples are utilized to validate the performance of the QFM. Furthermore, the Generalized Cross-Validation (GCV method and the L-curve method are taken as the comparison methods. The results indicate that the proposed QFM is adaptive to different measuring points, noise levels, and types of dynamic load.
Application of Turchin's method of statistical regularization
Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey
2018-04-01
During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.
Regular extensions of some classes of grammars
Nijholt, Antinus
Culik and Cohen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this report we consider the analogous extension of the LL(k) grammers, called the LL-regular grammars. The relations of this class of grammars to other classes of grammars are shown. Every LL-regular
Distribution of squares modulo a composite number
Aryan, Farzad
2015-01-01
In this paper we study the distribution of squares modulo a square-free number $q$. We also look at inverse questions for the large sieve in the distribution aspect and we make improvements on existing results on the distribution of $s$-tuples of reduced residues.
Some Theoretical Essences of Lithuania Squares Formation
Directory of Open Access Journals (Sweden)
Gintautas Tiškus
2016-04-01
Full Text Available In the Lithuanian acts of law and in the scientific literature there are no clear criteria and notions to define a square. The unbuilt city space places or the gaps between buildings are often defined as the squares, which do not have clear limits or destination. The mandatory attributes of the place which is called the square are indicated in the article, the notion of square is defined. The article deals with Lithuanian squares theme, analyses the differences between representation and representativeness. The article aims to indicate an influence of city environmental context and monument in the square on its function. The square is an independent element of city plan structure, but it is not an independent element of city spatial structure. The space and environment of the square are related to each other not only by physical, aesthetical relations, but as well as by causalities, which may be named as the essences of squares’ formation. The interdisciplinary discourse analysis method is applied in the article.
Entrywise Squared Transforms for GAMP Supplementary Material
DEFF Research Database (Denmark)
2016-01-01
Supplementary material for a study on Entrywise Squared Transforms for Generalized Approximate Message Passing (GAMP). See the README file for the details.......Supplementary material for a study on Entrywise Squared Transforms for Generalized Approximate Message Passing (GAMP). See the README file for the details....
Lagrange’s Four-Square Theorem
Directory of Open Access Journals (Sweden)
Watase Yasushige
2015-02-01
Full Text Available This article provides a formalized proof of the so-called “the four-square theorem”, namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23].
BIOMECHANICS. Why the seahorse tail is square.
Porter, Michael M; Adriaens, Dominique; Hatton, Ross L; Meyers, Marc A; McKittrick, Joanna
2015-07-03
Whereas the predominant shapes of most animal tails are cylindrical, seahorse tails are square prisms. Seahorses use their tails as flexible grasping appendages, in spite of a rigid bony armor that fully encases their bodies. We explore the mechanics of two three-dimensional-printed models that mimic either the natural (square prism) or hypothetical (cylindrical) architecture of a seahorse tail to uncover whether or not the square geometry provides any functional advantages. Our results show that the square prism is more resilient when crushed and provides a mechanism for preserving articulatory organization upon extensive bending and twisting, as compared with its cylindrical counterpart. Thus, the square architecture is better than the circular one in the context of two integrated functions: grasping ability and crushing resistance. Copyright © 2015, American Association for the Advancement of Science.
Directory of Open Access Journals (Sweden)
Zhao-Qing Wang
2014-01-01
Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.
Directory of Open Access Journals (Sweden)
I PUTU EKA IRAWAN
2013-11-01
Full Text Available Principal Component Regression is a method to overcome multicollinearity techniques by combining principal component analysis with regression analysis. The calculation of classical principal component analysis is based on the regular covariance matrix. The covariance matrix is optimal if the data originated from a multivariate normal distribution, but is very sensitive to the presence of outliers. Alternatives are used to overcome this problem the method of Least Median Square-Minimum Covariance Determinant (LMS-MCD. The purpose of this research is to conduct a comparison between Principal Component Regression (RKU and Method of Least Median Square - Minimum Covariance Determinant (LMS-MCD in dealing with outliers. In this study, Method of Least Median Square - Minimum Covariance Determinant (LMS-MCD has a bias and mean square error (MSE is smaller than the parameter RKU. Based on the difference of parameter estimators, still have a test that has a difference of parameter estimators method LMS-MCD greater than RKU method.
Class of regular bouncing cosmologies
Vasilić, Milovan
2017-06-01
In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.
Around and Beyond the Square of Opposition
Béziau, Jean-Yves
2012-01-01
aiThe theory of oppositions based on Aristotelian foundations of logic has been pictured in a striking square diagram which can be understood and applied in many different ways having repercussions in various fields: epistemology, linguistics, mathematics, psychology. The square can also be generalized in other two-dimensional or multi-dimensional objects extending in breadth and depth the original theory of oppositions of Aristotle. The square of opposition is a very attractive theme which has been going through centuries without evaporating. Since 10 years there is a new growing interest for
Partial update least-square adaptive filtering
Xie, Bei
2014-01-01
Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity (O(N)) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster a
Quantum square-well with logarithmic central spike
Znojil, Miloslav; Semorádová, Iveta
2018-01-01
Singular repulsive barrier V (x) = -gln(|x|) inside a square-well is interpreted and studied as a linear analog of the state-dependent interaction ℒeff(x) = -gln[ψ∗(x)ψ(x)] in nonlinear Schrödinger equation. In the linearized case, Rayleigh-Schrödinger perturbation theory is shown to provide a closed-form spectrum at sufficiently small g or after an amendment of the unperturbed Hamiltonian. At any spike strength g, the model remains solvable numerically, by the matching of wave functions. Analytically, the singularity is shown regularized via the change of variables x = expy which interchanges the roles of the asymptotic and central boundary conditions.
Least-squares reverse time migration with radon preconditioning
Dutta, Gaurav
2016-09-06
We present a least-squares reverse time migration (LSRTM) method using Radon preconditioning to regularize noisy or severely undersampled data. A high resolution local radon transform is used as a change of basis for the reflectivity and sparseness constraints are applied to the inverted reflectivity in the transform domain. This reflects the prior that for each location of the subsurface the number of geological dips is limited. The forward and the adjoint mapping of the reflectivity to the local Radon domain and back are done through 3D Fourier-based discrete Radon transform operators. The sparseness is enforced by applying weights to the Radon domain components which either vary with the amplitudes of the local dips or are thresholded at given quantiles. Numerical tests on synthetic and field data validate the effectiveness of the proposed approach in producing images with improved SNR and reduced aliasing artifacts when compared with standard RTM or LSRTM.
The growth of minicircle networks on regular lattices
International Nuclear Information System (INIS)
Diao, Y; Hinson, K; Arsuaga, J
2012-01-01
The mitochondrial DNA of trypanosomes is organized into a network of topologically linked minicircles. In order to investigate how key topological properties of the network change with minicircle density, the authors introduced, in an earlier study, a mathematical model in which randomly oriented minicircles were placed on the vertices of the simple square lattice. Using this model, the authors rigorously showed that when the density of minicircles increases, percolation clusters form. For higher densities, these percolation clusters are the backbones for networks of minicircles that saturate the entire lattice. An important relevant question is whether these findings are generally true. That is, whether these results are independent of the choice of the lattices on which the model is based. In this paper, we study two additional lattices (namely the honeycomb and the triangular lattices). These regular lattices are selected because they have been proposed for trypanosomes before and after replication. We compare our findings with our earlier results on the square lattice and show that the mathematical statements derived for the square lattice can be extended to these other lattices qualitatively. This finding suggests the universality of these properties. Furthermore, we performed a numerical study which provided data that are consistent with our theoretical analysis, and showed that the effect of the choice of lattices on the key network topological characteristics is rather small. (paper)
Image deblurring using a perturbation-basec regularization approach
Alanazi, Abdulrahman
2017-11-02
The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.
Image deblurring using a perturbation-basec regularization approach
Alanazi, Abdulrahman; Ballal, Tarig; Masood, Mudassir; Al-Naffouri, Tareq Y.
2017-01-01
The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.
Enhanced manifold regularization for semi-supervised classification.
Gan, Haitao; Luo, Zhizeng; Fan, Yingle; Sang, Nong
2016-06-01
Manifold regularization (MR) has become one of the most widely used approaches in the semi-supervised learning field. It has shown superiority by exploiting the local manifold structure of both labeled and unlabeled data. The manifold structure is modeled by constructing a Laplacian graph and then incorporated in learning through a smoothness regularization term. Hence the labels of labeled and unlabeled data vary smoothly along the geodesics on the manifold. However, MR has ignored the discriminative ability of the labeled and unlabeled data. To address the problem, we propose an enhanced MR framework for semi-supervised classification in which the local discriminative information of the labeled and unlabeled data is explicitly exploited. To make full use of labeled data, we firstly employ a semi-supervised clustering method to discover the underlying data space structure of the whole dataset. Then we construct a local discrimination graph to model the discriminative information of labeled and unlabeled data according to the discovered intrinsic structure. Therefore, the data points that may be from different clusters, though similar on the manifold, are enforced far away from each other. Finally, the discrimination graph is incorporated into the MR framework. In particular, we utilize semi-supervised fuzzy c-means and Laplacian regularized Kernel minimum squared error for semi-supervised clustering and classification, respectively. Experimental results on several benchmark datasets and face recognition demonstrate the effectiveness of our proposed method.
A Variance Minimization Criterion to Feature Selection Using Laplacian Regularization.
He, Xiaofei; Ji, Ming; Zhang, Chiyuan; Bao, Hujun
2011-10-01
In many information processing tasks, one is often confronted with very high-dimensional data. Feature selection techniques are designed to find the meaningful feature subset of the original features which can facilitate clustering, classification, and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenarios, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. Based on Laplacian regularized least squares, which finds a smooth function on the data manifold and minimizes the empirical loss, we propose two novel feature selection algorithms which aim to minimize the expected prediction error of the regularized regression model. Specifically, we select those features such that the size of the parameter covariance matrix of the regularized regression model is minimized. Motivated from experimental design, we use trace and determinant operators to measure the size of the covariance matrix. Efficient computational schemes are also introduced to solve the corresponding optimization problems. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithms.
Elmo bumpy square plasma confinement device
Owen, L.W.
1985-01-01
The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.
Quantized kernel least mean square algorithm.
Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C
2012-01-01
In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.
Anomalous structural transition of confined hard squares.
Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo
2016-11-01
Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.
The inverse square law of gravitation
International Nuclear Information System (INIS)
Cook, A.H.
1987-01-01
The inverse square law of gravitation is very well established over the distances of celestial mechanics, while in electrostatics the law has been shown to be followed to very high precision. However, it is only within the last century that any laboratory experiments have been made to test the inverse square law for gravitation, and all but one has been carried out in the last ten years. At the same time, there has been considerable interest in the possibility of deviations from the inverse square law, either because of a possible bearing on unified theories of forces, including gravitation or, most recently, because of a possible additional fifth force of nature. In this article the various lines of evidence for the inverse square law are summarized, with emphasis upon the recent laboratory experiments. (author)
Applications of square-related theorems
Srinivasan, V. K.
2014-04-01
The square centre of a given square is the point of intersection of its two diagonals. When two squares of different side lengths share the same square centre, there are in general four diagonals that go through the same square centre. The Two Squares Theorem developed in this paper summarizes some nice theoretical conclusions that can be obtained when two squares of different side lengths share the same square centre. These results provide the theoretical basis for two of the constructions given in the book of H.S. Hall and F.H. Stevens , 'A Shorter School Geometry, Part 1, Metric Edition'. In page 134 of this book, the authors present, in exercise 4, a practical construction which leads to a verification of the Pythagorean theorem. Subsequently in Theorems 29 and 30, the authors present the standard proofs of the Pythagorean theorem and its converse. In page 140, the authors present, in exercise 15, what amounts to a geometric construction, whose verification involves a simple algebraic identity. Both the constructions are of great importance and can be replicated by using the standard equipment provided in a 'geometry toolbox' carried by students in high schools. The author hopes that the results proved in this paper, in conjunction with the two constructions from the above-mentioned book, would provide high school students an appreciation of the celebrated theorem of Pythagoras. The diagrams that accompany this document are based on the free software GeoGebra. The author formally acknowledges his indebtedness to the creators of this free software at the end of this document.
Power Efficient Division and Square Root Unit
DEFF Research Database (Denmark)
Liu, Wei; Nannarelli, Alberto
2012-01-01
Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work....... The proposed unit is compared to similar solutions based on the digit-recurrence algorithm and it is compared to a unit based on the multiplicative Newton-Raphson algorithm....
Analysis of a plane stress wave by the moving least squares method
Directory of Open Access Journals (Sweden)
Wojciech Dornowski
2014-08-01
Full Text Available A meshless method based on the moving least squares approximation is applied to stress wave propagation analysis. Two kinds of node meshes, the randomly generated mesh and the regular mesh are used. The nearest neighbours’ problem is developed from a triangulation that satisfies minimum edges length conditions. It is found that this method of neighbours’ choice significantly improves the solution accuracy. The reflection of stress waves from the free edge is modelled using fictitious nodes (outside the plate. The comparison with the finite difference results also demonstrated the accuracy of the proposed approach.[b]Keywords[/b]: civil engineering, meshless method, moving least squares method, elastic waves
Percolation of overlapping squares or cubes on a lattice
International Nuclear Information System (INIS)
Koza, Zbigniew; Kondrat, Grzegorz; Suszczyński, Karol
2014-01-01
Porous media are often modeled as systems of overlapping obstacles, which leads to the problem of two percolation thresholds in such systems, one for the porous matrix and the other for the void space. Here we investigate these percolation thresholds in the model of overlapping squares or cubes of linear size k > 1 randomly distributed on a regular lattice. We find that the percolation threshold of obstacles is a nonmonotonic function of k, whereas the percolation threshold of the void space is well approximated by a function linear in 1/k. We propose a generalization of the excluded volume approximation to discrete systems and use it to investigate the transition between continuous and discrete percolation, finding a remarkable agreement between the theory and numerical results. We argue that the continuous percolation threshold of aligned squares on a plane is the same for the solid and void phases and estimate the continuous percolation threshold of the void space around aligned cubes in a 3D space as 0.036(1). We also discuss the connection of the model to the standard site percolation with complex neighborhood. (paper)
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
Higher derivative regularization and chiral anomaly
International Nuclear Information System (INIS)
Nagahama, Yoshinori.
1985-02-01
A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)
Regularity effect in prospective memory during aging
Directory of Open Access Journals (Sweden)
Geoffrey Blondelle
2016-10-01
Full Text Available Background: Regularity effect can affect performance in prospective memory (PM, but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30, 16 intermediate adults (40–55, and 25 older adults (65–80. The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities. We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding, short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results: A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young, but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion: Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical
Regularity effect in prospective memory during aging
Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique
2016-01-01
Background: Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults.Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 1...
Regularization and error assignment to unfolded distributions
Zech, Gunter
2011-01-01
The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.
Iterative Regularization with Minimum-Residual Methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2007-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Iterative regularization with minimum-residual methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2006-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration
Wu, Juan; Bai, Min
2018-05-01
We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.
A regularized stationary mean-field game
Yang, Xianjin
2016-01-01
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
A regularized stationary mean-field game
Yang, Xianjin
2016-04-19
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
On infinite regular and chiral maps
Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán
2015-01-01
We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.
From recreational to regular drug use
DEFF Research Database (Denmark)
Järvinen, Margaretha; Ravn, Signe
2011-01-01
This article analyses the process of going from recreational use to regular and problematic use of illegal drugs. We present a model containing six career contingencies relevant for young people’s progress from recreational to regular drug use: the closing of social networks, changes in forms...
Automating InDesign with Regular Expressions
Kahrel, Peter
2006-01-01
If you need to make automated changes to InDesign documents beyond what basic search and replace can handle, you need regular expressions, and a bit of scripting to make them work. This Short Cut explains both how to write regular expressions, so you can find and replace the right things, and how to use them in InDesign specifically.
Regularization modeling for large-eddy simulation
Geurts, Bernardus J.; Holm, D.D.
2003-01-01
A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of
2010-07-01
... employee under subsection (a) or in excess of the employee's normal working hours or regular working hours... Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... not less than one and one-half times their regular rates of pay. Section 7(e) of the Act defines...
Separation of soft and collinear infrared limits of QCD squared matrix elements
Nagy, Zoltan; Trócsányi, Z L; Trocsanyi, Zoltan; Somogyi, Gabor; Trocsanyi, Zoltan
2007-01-01
We present a simple way of separating the overlap between the soft and collinear factorization formulae of QCD squared matrix elements. We check its validity explicitly for single and double unresolved emissions of tree-level processes. The new method makes possible the definition of helicity-dependent subtraction terms for regularizing the real contributions in computing radiative corrections to QCD jet cross sections. This implies application of Monte Carlo helicity summation in computing higher order corrections.
Non-spill control squared cascade
International Nuclear Information System (INIS)
Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Suemori, Nobuo.
1974-01-01
Object: To reduce a mixed loss thus enhancing separating efficiency by the provision of a simple arrangement wherein a reflux portion in a conventional spill control squared cascade is replaced by a special stage including centrifugal separators. Structure: Steps in the form of a square cascade, in which a plurality of centrifugal separators are connected by pipe lines, are accumulated in multistage fashion to form a squared cascade. Between the adjoining steps is disposed a special stage including a centrifugal separator which receives both lean flow from the upper step and rich flow from the lower step. The centrifugal separator in the special stage has its rich side connected to the upper step and its lean side connected to the lower step. Special stages are each disposed at the upper side of the uppermost step and at the lower side of the lowermost step. (Kamimura, M.)
Least Squares Data Fitting with Applications
DEFF Research Database (Denmark)
Hansen, Per Christian; Pereyra, Víctor; Scherer, Godela
As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data....... In a number of applications, the accuracy and efficiency of the least squares fit is central, and Per Christian Hansen, Víctor Pereyra, and Godela Scherer survey modern computational methods and illustrate them in fields ranging from engineering and environmental sciences to geophysics. Anyone working...... with problems of linear and nonlinear least squares fitting will find this book invaluable as a hands-on guide, with accessible text and carefully explained problems. Included are • an overview of computational methods together with their properties and advantages • topics from statistical regression analysis...
Good Filtrations and the Steinberg Square
DEFF Research Database (Denmark)
Kildetoft, Tobias
that tensoring the Steinberg module with a simple module of restricted highest weight gives a module with a good filtration. This result was first proved by Andersen when the characteristic is large enough. In this dissertation, generalizations of those results, which are joint work with Daniel Nakano......, the socle completely determines how a Steinberg square decomposes. The dissertation also investigates the socle of the Steinberg square for a finite group of Lie type, again providing formulas which describe how to find the multiplicity of a simple module in the socle, given information about...
C1,1 regularity for degenerate elliptic obstacle problems
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems
Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.
2016-01-01
Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.
Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems
Suliman, Mohamed Abdalla Elhag
2016-11-29
Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.
The persistence of the attentional bias to regularities in a changing environment.
Yu, Ru Qi; Zhao, Jiaying
2015-10-01
The environment often is stable, but some aspects may change over time. The challenge for the visual system is to discover and flexibly adapt to the changes. We examined how attention is shifted in the presence of changes in the underlying structure of the environment. In six experiments, observers viewed four simultaneous streams of objects while performing a visual search task. In the first half of each experiment, the stream in the structured location contained regularities, the shapes in the random location were randomized, and gray squares appeared in two neutral locations. In the second half, the stream in the structured or the random location may change. In the first half of all experiments, visual search was facilitated in the structured location, suggesting that attention was consistently biased toward regularities. In the second half, this bias persisted in the structured location when no change occurred (Experiment 1), when the regularities were removed (Experiment 2), or when new regularities embedded in the original or novel stimuli emerged in the previously random location (Experiments 3 and 6). However, visual search was numerically but no longer reliably faster in the structured location when the initial regularities were removed and new regularities were introduced in the previously random location (Experiment 4), or when novel random stimuli appeared in the random location (Experiment 5). This suggests that the attentional bias was weakened. Overall, the results demonstrate that the attentional bias to regularities was persistent but also sensitive to changes in the environment.
An iterative method for Tikhonov regularization with a general linear regularization operator
Hochstenbach, M.E.; Reichel, L.
2010-01-01
Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Hierarchical regular small-world networks
International Nuclear Information System (INIS)
Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan
2008-01-01
Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Coupling regularizes individual units in noisy populations
International Nuclear Information System (INIS)
Ly Cheng; Ermentrout, G. Bard
2010-01-01
The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian
International Nuclear Information System (INIS)
Bel, L.; Zia, H.S.
1985-01-01
We consider those relativistic theories of gravitation which generalize Einstein's theory in the sense that their field equations derive from a scalar Lagrangian which, besides the matter term, contains a linear combination of the Ricci scalar, its square, and the square of the Ricci tensor. Using a generalization of a technique which has been used to deal with some dynamical systems, we regularly and covariantly reduce the corresponding fourth-order differential equations to second-order ones. We examine, in particular, at a low order of approximation, these reduced equations in cosmology, and for static and spherically symmetric interior solutions with constant density
Regularities in hadron systematics, Regge trajectories and a string quark model
International Nuclear Information System (INIS)
Chekanov, S.V.; Levchenko, B.B.
2006-08-01
An empirical principle for the construction of a linear relationship between the total angular momentum and squared-mass of baryons is proposed. In order to examine linearity of the trajectories, a rigorous least-squares regression analysis was performed. Unlike the standard Regge-Chew-Frautschi approach, the constructed trajectories do not have non-linear behaviour. A similar regularity may exist for lowest-mass mesons. The linear baryonic trajectories are well described by a semi-classical picture based on a spinning relativistic string with tension. The obtained numerical solution of this model was used to extract the (di)quark masses. (orig.)
Self-diffusion of particles interacting through a square-well or square-shoulder potential
Wilbertz, H.; Michels, J.; Beijeren, H. van; Leegwater, J.A.
1988-01-01
The diffusion coefficient and velocity autocorrelation function for a fluid of particles interacting through a square-well or square-shoulder potential are calculated from a kinetic theory similar to the Davis-Rice-Sengers theory and the results are compared to those of computer simulations. At low
Multiples least-squares reverse time migration
Zhang, Dongliang; Zhan, Ge; Dai, Wei; Schuster, Gerard T.
2013-01-01
To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated
Least-squares variance component estimation
Teunissen, P.J.G.; Amiri-Simkooei, A.R.
2007-01-01
Least-squares variance component estimation (LS-VCE) is a simple, flexible and attractive method for the estimation of unknown variance and covariance components. LS-VCE is simple because it is based on the well-known principle of LS; it is flexible because it works with a user-defined weight
Square root approximation to the poisson channel
Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J.
2013-01-01
Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding
Latin square three dimensional gage master
Jones, Lynn L.
1982-01-01
A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.
Time Scale in Least Square Method
Directory of Open Access Journals (Sweden)
Özgür Yeniay
2014-01-01
Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.
Group-wise partial least square regression
Camacho, José; Saccenti, Edoardo
2018-01-01
This paper introduces the group-wise partial least squares (GPLS) regression. GPLS is a new sparse PLS technique where the sparsity structure is defined in terms of groups of correlated variables, similarly to what is done in the related group-wise principal component analysis. These groups are
Clar sextets in square graphene antidot lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Deformation analysis with Total Least Squares
Directory of Open Access Journals (Sweden)
M. Acar
2006-01-01
Full Text Available Deformation analysis is one of the main research fields in geodesy. Deformation analysis process comprises measurement and analysis phases. Measurements can be collected using several techniques. The output of the evaluation of the measurements is mainly point positions. In the deformation analysis phase, the coordinate changes in the point positions are investigated. Several models or approaches can be employed for the analysis. One approach is based on a Helmert or similarity coordinate transformation where the displacements and the respective covariance matrix are transformed into a unique datum. Traditionally a Least Squares (LS technique is used for the transformation procedure. Another approach that could be introduced as an alternative methodology is the Total Least Squares (TLS that is considerably a new approach in geodetic applications. In this study, in order to determine point displacements, 3-D coordinate transformations based on the Helmert transformation model were carried out individually by the Least Squares (LS and the Total Least Squares (TLS, respectively. The data used in this study was collected by GPS technique in a landslide area located nearby Istanbul. The results obtained from these two approaches have been compared.
Optimistic semi-supervised least squares classification
DEFF Research Database (Denmark)
Krijthe, Jesse H.; Loog, Marco
2017-01-01
The goal of semi-supervised learning is to improve supervised classifiers by using additional unlabeled training examples. In this work we study a simple self-learning approach to semi-supervised learning applied to the least squares classifier. We show that a soft-label and a hard-label variant ...
Iterative methods for weighted least-squares
Energy Technology Data Exchange (ETDEWEB)
Bobrovnikova, E.Y.; Vavasis, S.A. [Cornell Univ., Ithaca, NY (United States)
1996-12-31
A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.
Least-squares model-based halftoning
Pappas, Thrasyvoulos N.; Neuhoff, David L.
1992-08-01
A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach
Diagrammatic methods in phase-space regularization
International Nuclear Information System (INIS)
Bern, Z.; Halpern, M.B.; California Univ., Berkeley
1987-11-01
Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)
J-regular rings with injectivities
Shen, Liang
2010-01-01
A ring $R$ is called a J-regular ring if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. It is proved that if R is J-regular, then (i) R is right n-injective if and only if every homomorphism from an $n$-generated small right ideal of $R$ to $R_{R}$ can be extended to one from $R_{R}$ to $R_{R}$; (ii) R is right FP-injective if and only if R is right (J, R)-FP-injective. Some known results are improved.
Entanglement in coined quantum walks on regular graphs
International Nuclear Information System (INIS)
Carneiro, Ivens; Loo, Meng; Xu, Xibai; Girerd, Mathieu; Kendon, Viv; Knight, Peter L
2005-01-01
Quantum walks, both discrete (coined) and continuous time, form the basis of several recent quantum algorithms. Here we use numerical simulations to study the properties of discrete, coined quantum walks. We investigate the variation in the entanglement between the coin and the position of the particle by calculating the entropy of the reduced density matrix of the coin. We consider both dynamical evolution and asymptotic limits for coins of dimensions from two to eight on regular graphs. For low coin dimensions, quantum walks which spread faster (as measured by the mean square deviation of their distribution from uniform) also exhibit faster convergence towards the asymptotic value of the entanglement between the coin and particle's position. For high-dimensional coins, the DFT coin operator is more efficient at spreading than the Grover coin. We study the entanglement of the coin on regular finite graphs such as cycles, and also show that on complete bipartite graphs, a quantum walk with a Grover coin is always periodic with period four. We generalize the 'glued trees' graph used by Childs et al (2003 Proc. STOC, pp 59-68) to higher branching rate (fan out) and verify that the scaling with branching rate and with tree depth is polynomial
Robust regularized singular value decomposition with application to mortality data
Zhang, Lingsong
2013-09-01
We develop a robust regularized singular value decomposition (RobRSVD) method for analyzing two-way functional data. The research is motivated by the application of modeling human mortality as a smooth two-way function of age group and year. The RobRSVD is formulated as a penalized loss minimization problem where a robust loss function is used to measure the reconstruction error of a low-rank matrix approximation of the data, and an appropriately defined two-way roughness penalty function is used to ensure smoothness along each of the two functional domains. By viewing the minimization problem as two conditional regularized robust regressions, we develop a fast iterative reweighted least squares algorithm to implement the method. Our implementation naturally incorporates missing values. Furthermore, our formulation allows rigorous derivation of leaveone- row/column-out cross-validation and generalized cross-validation criteria, which enable computationally efficient data-driven penalty parameter selection. The advantages of the new robust method over nonrobust ones are shown via extensive simulation studies and the mortality rate application. © Institute of Mathematical Statistics, 2013.
Mathematical Construction of Magic Squares Utilizing Base-N Arithmetic
O'Brien, Thomas D.
2006-01-01
Magic squares have been of interest as a source of recreation for over 4,500 years. A magic square consists of a square array of n[squared] positive and distinct integers arranged so that the sum of any column, row, or main diagonal is the same. In particular, an array of consecutive integers from 1 to n[squared] forming an nxn magic square is…
Generalized regular genus for manifolds with boundary
Directory of Open Access Journals (Sweden)
Paola Cristofori
2003-05-01
Full Text Available We introduce a generalization of the regular genus, a combinatorial invariant of PL manifolds ([10], which is proved to be strictly related, in dimension three, to generalized Heegaard splittings defined in [12].
Geometric regularizations and dual conifold transitions
International Nuclear Information System (INIS)
Landsteiner, Karl; Lazaroiu, Calin I.
2003-01-01
We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)
Fast and compact regular expression matching
DEFF Research Database (Denmark)
Bille, Philip; Farach-Colton, Martin
2008-01-01
We study 4 problems in string matching, namely, regular expression matching, approximate regular expression matching, string edit distance, and subsequence indexing, on a standard word RAM model of computation that allows logarithmic-sized words to be manipulated in constant time. We show how...... to improve the space and/or remove a dependency on the alphabet size for each problem using either an improved tabulation technique of an existing algorithm or by combining known algorithms in a new way....
Regular-fat dairy and human health
DEFF Research Database (Denmark)
Astrup, Arne; Bradley, Beth H Rice; Brenna, J Thomas
2016-01-01
In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to......, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted....
Deterministic automata for extended regular expressions
Directory of Open Access Journals (Sweden)
Syzdykov Mirzakhmet
2017-12-01
Full Text Available In this work we present the algorithms to produce deterministic finite automaton (DFA for extended operators in regular expressions like intersection, subtraction and complement. The method like “overriding” of the source NFA(NFA not defined with subset construction rules is used. The past work described only the algorithm for AND-operator (or intersection of regular languages; in this paper the construction for the MINUS-operator (and complement is shown.
Regularities of intermediate adsorption complex relaxation
International Nuclear Information System (INIS)
Manukova, L.A.
1982-01-01
The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained
Online Manifold Regularization by Dual Ascending Procedure
Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui
2013-01-01
We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...
Total least squares for anomalous change detection
Theiler, James; Matsekh, Anna M.
2010-04-01
A family of subtraction-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQbased anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and special cases of it are equivalent to canonical correlation analysis and optimized covariance equalization. What whitened TLSQ offers is a generalization of these algorithms with the potential for better performance.
Classical square-plus-triangle well fluid
International Nuclear Information System (INIS)
Boghdadi, M.
1984-01-01
A simplified model for the intermolecular-potential function which consists of a hard core and a square-plus-triangle well is proposed. The square width is taken to be lambda 1 -1 and the triangle width is lambda 2 -lambda 1 , where the diameter of the molecules is assumed to be epsilon. Under the restriction that the area under the potential well should be equal to 0.5epsilon, which has its own reason, it is shown that the appropriate choice of lambda 1 and lambda 2 that best mimics the Lennard-Jones (LJ) cut-off results is 1.15 and 1.85 respectively. With this choice for lambda 1 and lambda 2 , the proposed model is effective and satisfactory
Dancoff Correction in Square and Hexagonal Lattices
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1966-11-15
This report presents the results of a series of calculations of Dancoff corrections for square and hexagonal rod lattices. The tables cover a wide range of volume ratios and moderator cross sections. The results were utilized for checking the approximative formula of Sauer and also the modification of Bonalumi to Sauer's formula. The modified formula calculates the Dancoff correction with an accuracy of 0.01 - 0.02 in cases of practical interest. Calculations have also been performed on square lattices with an empty gap surrounding the rods. The results demonstrate the error involved in treating this kind of geometry by means of homogenizing the gap and the moderator. The calculations were made on the Ferranti Mercury computer of AB Atomenergi before it was closed down. Since then FORTRAN routines for Dancoff corrections have been written, and a subroutine DASQHE is included in the report.
Elastic least-squares reverse time migration
Feng, Zongcai; Schuster, Gerard T.
2016-01-01
Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.
Elastic least-squares reverse time migration
Feng, Zongcai
2016-09-06
Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.
Natural convective heat transfer from square cylinder
Energy Technology Data Exchange (ETDEWEB)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)
2016-06-30
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
Least Squares Problems with Absolute Quadratic Constraints
Directory of Open Access Journals (Sweden)
R. Schöne
2012-01-01
Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.
A least-squares computational ''tool kit''
International Nuclear Information System (INIS)
Smith, D.L.
1993-04-01
The information assembled in this report is intended to offer a useful computational ''tool kit'' to individuals who are interested in a variety of practical applications for the least-squares method of parameter estimation. The fundamental principles of Bayesian analysis are outlined first and these are applied to development of both the simple and the generalized least-squares conditions. Formal solutions that satisfy these conditions are given subsequently. Their application to both linear and non-linear problems is described in detail. Numerical procedures required to implement these formal solutions are discussed and two utility computer algorithms are offered for this purpose (codes LSIOD and GLSIOD written in FORTRAN). Some simple, easily understood examples are included to illustrate the use of these algorithms. Several related topics are then addressed, including the generation of covariance matrices, the role of iteration in applications of least-squares procedures, the effects of numerical precision and an approach that can be pursued in developing data analysis packages that are directed toward special applications
Advancing Astrophysics with the Square Kilometre Array
Fender, Rob; Govoni, Federica; Green, Jimi; Hoare, Melvin; Jarvis, Matt; Johnston-Hollitt, Melanie; Keane, Evan; Koopmans, Leon; Kramer, Michael; Maartens, Roy; Macquart, Jean-Pierre; Mellema, Garrelt; Oosterloo, Tom; Prandoni, Isabella; Pritchard, Jonathan; Santos, Mario; Seymour, Nick; Stappers, Ben; Staveley-Smith, Lister; Tian, Wen Wu; Umana, Grazia; Wagg, Jeff; Bourke, Tyler L; AASKA14
2015-01-01
In 2014 it was 10 years since the publication of the comprehensive ‘Science with the Square Kilometre Array’ book and 15 years since the first such volume appeared in 1999. In that time numerous and unexpected advances have been made in the fields of astronomy and physics relevant to the capabilities of the Square Kilometre Array (SKA). The SKA itself progressed from an idea to a developing reality with a baselined Phase 1 design (SKA1) and construction planned from 2017. To facilitate the publication of a new, updated science book, which will be relevant to the current astrophysical context, the meeting "Advancing Astrophysics with the Square Kilometre Array" was held in Giardina Naxos, Sicily. Articles were solicited from the community for that meeting to document the scientific advances enabled by the first phase of the SKA and those pertaining to future SKA deployments, with expected gains of 5 times the Phase 1 sensitivity below 350 MHz, about 10 times the Phase 1 sensitivity above 350 MHz and with f...
Improvements in GRACE Gravity Fields Using Regularization
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
The Jump Set under Geometric Regularization. Part 1: Basic Technique and First-Order Denoising
Valkonen, Tuomo
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Let u ∈ BV(Ω) solve the total variation (TV) denoising problem with L^{2}-squared fidelity and data f. Caselles, Chambolle, and Novaga [Multiscale Model. Simul., 6 (2008), pp. 879-894] have shown the containment H^{m-1} (Ju \\\\Jf) = 0 of the jump set Ju of u in that of f. Their proof unfortunately depends heavily on the co-area formula, as do many results in this area, and as such is not directly extensible to higher-order, curvature-based, and other advanced geometric regularizers, such as total generalized variation and Euler\\'s elastica. These have received increased attention in recent times due to their better practical regularization properties compared to conventional TV or wavelets. We prove analogous jump set containment properties for a general class of regularizers. We do this with novel Lipschitz transformation techniques and do not require the co-area formula. In the present Part 1 we demonstrate the general technique on first-order regularizers, while in Part 2 we will extend it to higher-order regularizers. In particular, we concentrate in this part on TV and, as a novelty, Huber-regularized TV. We also demonstrate that the technique would apply to nonconvex TV models as well as the Perona-Malik anisotropic diffusion, if these approaches were well-posed to begin with.
Single crystalline electronic structure and growth mechanism of aligned square graphene sheets
Directory of Open Access Journals (Sweden)
H. F. Yang
2018-03-01
Full Text Available Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation. Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001 copper surface structure but also discovered that the square graphene sheets’ sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures
Single crystalline electronic structure and growth mechanism of aligned square graphene sheets
Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.
2018-03-01
Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)
XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries
Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-08-01
X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.
Lax-pair operators for squared-sum and squared-difference eigenfunctions
International Nuclear Information System (INIS)
Ichikawa, Yoshihiko; Iino, Kazuhiro.
1984-10-01
Inter-relationship between various representations of the inverse scattering transformation is established by examining eigenfunctions of Lax-pair operators of the sine-Gordon equation and the modified Korteweg-de Vries equation. In particular, it is shown explicitly that there exists Lax-pair operators for the squared-sum and squared-difference eigenfunctions of the Ablowitz-Kaup-Newell-Segur inverse scattering transformation. (author)
Regular Expression Matching and Operational Semantics
Directory of Open Access Journals (Sweden)
Asiri Rathnayake
2011-08-01
Full Text Available Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.
Regularities, Natural Patterns and Laws of Nature
Directory of Open Access Journals (Sweden)
Stathis Psillos
2014-02-01
Full Text Available The goal of this paper is to sketch an empiricist metaphysics of laws of nature. The key idea is that there are regularities without regularity-enforcers. Differently put, there are natural laws without law-makers of a distinct metaphysical kind. This sketch will rely on the concept of a natural pattern and more significantly on the existence of a network of natural patterns in nature. The relation between a regularity and a pattern will be analysed in terms of mereology. Here is the road map. In section 2, I will briefly discuss the relation between empiricism and metaphysics, aiming to show that an empiricist metaphysics is possible. In section 3, I will offer arguments against stronger metaphysical views of laws. Then, in section 4 I will motivate nomic objectivism. In section 5, I will address the question ‘what is a regularity?’ and will develop a novel answer to it, based on the notion of a natural pattern. In section 6, I will raise the question: ‘what is a law of nature?’, the answer to which will be: a law of nature is a regularity that is characterised by the unity of a natural pattern.
Analysis of the Two-Regime Method on Square Meshes
Flegg, Mark B.
2014-01-01
The two-regime method (TRM) has been recently developed for optimizing stochastic reaction-diffusion simulations [M. Flegg, J. Chapman, and R. Erban, J. Roy. Soc. Interface, 9 (2012), pp. 859-868]. It is a multiscale (hybrid) algorithm which uses stochastic reaction-diffusion models with different levels of detail in different parts of the computational domain. The coupling condition on the interface between different modeling regimes of the TRM was previously derived for onedimensional models. In this paper, the TRM is generalized to higher dimensional reaction-diffusion systems. Coupling Brownian dynamics models with compartment-based models on regular (square) two-dimensional lattices is studied in detail. In this case, the interface between different modeling regimes contains either flat parts or right-angle corners. Both cases are studied in the paper. For flat interfaces, it is shown that the one-dimensional theory can be used along the line perpendicular to the TRM interface. In the direction tangential to the interface, two choices of the TRM parameters are presented. Their applicability depends on the compartment size and the time step used in the molecular-based regime. The two-dimensional generalization of the TRM is also discussed in the case of corners. © 2014 Society for Industrial and Applied Mathematics.
A SYNTHESIS METHOD OF BASIC TERNARY BENT-SQUARES BASED ON THE TRIAD SHIFT OPERATOR
Directory of Open Access Journals (Sweden)
O. N. Zhdanov
2017-01-01
Full Text Available Practical application of advanced algebraic constructions in modern communication systems based on MC-CDMA (Multi Code Code Division Multiple Access technology and in cryptography necessitates their further research. One of the most commonly used advanced algebraic construction is the binary bent-function having a uniform amplitude spectrum of the Walsh-Hadamard transform and, accordingly, having the maximal distance from the codewords of affine code. In addition to the binary bent-functions researchers are currently focuses on the development of synthesis methods of their many-valued analogues. In particular, one of the most effective methods for the synthesis of many-valued bent-functions is the method based on the Agievich bent-squares. In this paper, we developed a regular synthesis method of the ternary bent-squares on the basis of an arbitrary spectral vector and the regular operator of the triad shift. The classification of spectral vectors of lengths N = 3 and N = 9 is performed. On the basis of spectral classification more precise definition of many-valued bent-sequences is given, taking into account the existence of the phenomenon of many-valued bent-sequences for the length, determined by odd power of base. The paper results are valuable for practical use: the development of new constant amplitude codes for MC-CDMA technology, cryptographic primitives, data compression algorithms, signal structures, algorithms of block and stream encryption, based on advanced principles of many-valued logic. The developed bent-squares design method is also a basis for further theoretical research: development of methods of the permutation of rows and columns of basic bent-squares and their sign coding, synthesis of composite bent-squares. In addition, the data on the spectral classification of vectors give the task of constructing the synthesis methods of bent-functions of lengths N = 32k+1, k Є ℕ.
Fractional Regularization Term for Variational Image Registration
Directory of Open Access Journals (Sweden)
Rafael Verdú-Monedero
2009-01-01
Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.
International Nuclear Information System (INIS)
Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.
2004-01-01
We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)
Online Manifold Regularization by Dual Ascending Procedure
Directory of Open Access Journals (Sweden)
Boliang Sun
2013-01-01
Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.
Leonardo Pisano (Fibonacci) the book of squares
Sigler, L E
1987-01-01
The Book of Squares by Fibonacci is a gem in the mathematical literature and one of the most important mathematical treatises written in the Middle Ages. It is a collection of theorems on indeterminate analysis and equations of second degree which yield, among other results, a solution to a problem proposed by Master John of Palermo to Leonardo at the Court of Frederick II. The book was dedicated and presented to the Emperor at Pisa in 1225. Dating back to the 13th century the book exhibits the early and continued fascination of men with our number system and the relationship among numbers
Least Squares Methods for Equidistant Tree Reconstruction
Fahey, Conor; Hosten, Serkan; Krieger, Nathan; Timpe, Leslie
2008-01-01
UPGMA is a heuristic method identifying the least squares equidistant phylogenetic tree given empirical distance data among $n$ taxa. We study this classic algorithm using the geometry of the space of all equidistant trees with $n$ leaves, also known as the Bergman complex of the graphical matroid for the complete graph $K_n$. We show that UPGMA performs an orthogonal projection of the data onto a maximal cell of the Bergman complex. We also show that the equidistant tree with the least (Eucl...
Magnetics calculations for an ELMO Bumpy square
International Nuclear Information System (INIS)
Santoro, R.T.; Uckan, N.A.; Schmidt, R.J.
1985-01-01
Advanced ELMO Bumpy Torus (EBT) concepts have been studied in an effort to determine the potential for new and different concepts as confinement experiments or as reactors. Several magnetic configurations based on the EBT confinement concept were developed including the ELMO Bumpy Square (EBS). The EBS was selected as a possible candidate for near-term study because of its potential for resolving critical EBT issues, for its desirability as a reactor, and for anticipated contributions to the physics and technology of fusion. This paper summarizes magnetics calculations that were carried out in support of studies to assess the merits of an EBS
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Regularity of difference equations on Banach spaces
Agarwal, Ravi P; Lizama, Carlos
2014-01-01
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semigroup and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
Matrix regularization of embedded 4-manifolds
International Nuclear Information System (INIS)
Trzetrzelewski, Maciej
2012-01-01
We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).
Search for the non-canonical Ising spin glass on rewired square lattices
Surungan, Tasrief
2018-03-01
A spin glass (SG) of non-canonical type is a purely antiferromagnetic (AF) system, exemplified by the AF Ising model on a scale free network (SFN), studied by Bartolozzi et al. [ Phys. Rev. B73, 224419 (2006)]. Frustration in this new type of SG is rendered by topological factor and its randomness is caused by random connectivity. As an SFN corresponds to a large dimensional lattice, finding non-canonical SG in lattice with physical dimension is desireable. However, a regular lattice can not have random connectivity. In order to obtain lattices with random connection and preserving the notion of finite dimension, we costructed rewired lattices. We added some extra bonds randomly connecting each site of a regular lattice to its next-nearest neighbors. Very recently, Surungan et al., studied AF Heisenberg system on rewired square lattice and found no SG behavior [AIP Conf. Proc. 1719, 030006 (2016)]. Due to the importance of discrete symmetry for phase transition, here we study similar structure for the Ising model (Z 2 symmetry). We used Monte Carlo simulation with Replica Exchange algorithm. Two types of structures were studied, firstly, the rewired square lattices with one extra bonds added to each site, and secondly, two bonds added to each site. We calculated the Edwards-Anderson paremeter, the commonly used parameter in searching for SG phase. The non-canonical SG is clearly observed in the rewired square lattice with two extra bonds added.
Computational logic with square rings of nanomagnets
Arava, Hanu; Derlet, Peter M.; Vijayakumar, Jaianth; Cui, Jizhai; Bingham, Nicholas S.; Kleibert, Armin; Heyderman, Laura J.
2018-06-01
Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
On a correspondence between regular and non-regular operator monotone functions
DEFF Research Database (Denmark)
Gibilisco, P.; Hansen, Frank; Isola, T.
2009-01-01
We prove the existence of a bijection between the regular and the non-regular operator monotone functions satisfying a certain functional equation. As an application we give a new proof of the operator monotonicity of certain functions related to the Wigner-Yanase-Dyson skew information....
Regularity and irreversibility of weekly travel behavior
Kitamura, R.; van der Hoorn, A.I.J.M.
1987-01-01
Dynamic characteristics of travel behavior are analyzed in this paper using weekly travel diaries from two waves of panel surveys conducted six months apart. An analysis of activity engagement indicates the presence of significant regularity in weekly activity participation between the two waves.
Regular and context-free nominal traces
DEFF Research Database (Denmark)
Degano, Pierpaolo; Ferrari, Gian-Luigi; Mezzetti, Gianluca
2017-01-01
Two kinds of automata are presented, for recognising new classes of regular and context-free nominal languages. We compare their expressive power with analogous proposals in the literature, showing that they express novel classes of languages. Although many properties of classical languages hold ...
Faster 2-regular information-set decoding
Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.
2011-01-01
Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free-path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Regular Gleason Measures and Generalized Effect Algebras
Dvurečenskij, Anatolij; Janda, Jiří
2015-12-01
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
Regularization of finite temperature string theories
International Nuclear Information System (INIS)
Leblanc, Y.; Knecht, M.; Wallet, J.C.
1990-01-01
The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)
A Sim(2 invariant dimensional regularization
Directory of Open Access Journals (Sweden)
J. Alfaro
2017-09-01
Full Text Available We introduce a Sim(2 invariant dimensional regularization of loop integrals. Then we can compute the one loop quantum corrections to the photon self energy, electron self energy and vertex in the Electrodynamics sector of the Very Special Relativity Standard Model (VSRSM.
Continuum regularized Yang-Mills theory
International Nuclear Information System (INIS)
Sadun, L.A.
1987-01-01
Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions
Gravitational lensing by a regular black hole
International Nuclear Information System (INIS)
Eiroa, Ernesto F; Sendra, Carlos M
2011-01-01
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Gravitational lensing by a regular black hole
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)
2011-04-21
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Analytic stochastic regularization and gange invariance
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1986-05-01
A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt
Annotation of regular polysemy and underspecification
DEFF Research Database (Denmark)
Martínez Alonso, Héctor; Pedersen, Bolette Sandford; Bel, Núria
2013-01-01
We present the result of an annotation task on regular polysemy for a series of seman- tic classes or dot types in English, Dan- ish and Spanish. This article describes the annotation process, the results in terms of inter-encoder agreement, and the sense distributions obtained with two methods...
Stabilization, pole placement, and regular implementability
Belur, MN; Trentelman, HL
In this paper, we study control by interconnection of linear differential systems. We give necessary and sufficient conditions for regular implementability of a-given linear, differential system. We formulate the problems of stabilization and pole placement as problems of finding a suitable,
12 CFR 725.3 - Regular membership.
2010-01-01
... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit....5(b) of this part, and forwarding with its completed application funds equal to one-half of this... 1, 1979, is not required to forward these funds to the Facility until October 1, 1979. (3...
Supervised scale-regularized linear convolutionary filters
DEFF Research Database (Denmark)
Loog, Marco; Lauze, Francois Bernard
2017-01-01
also be solved relatively efficient. All in all, the idea is to properly control the scale of a trained filter, which we solve by introducing a specific regularization term into the overall objective function. We demonstrate, on an artificial filter learning problem, the capabil- ities of our basic...
On regular riesz operators | Raubenheimer | Quaestiones ...
African Journals Online (AJOL)
The r-asymptotically quasi finite rank operators on Banach lattices are examples of regular Riesz operators. We characterise Riesz elements in a subalgebra of a Banach algebra in terms of Riesz elements in the Banach algebra. This enables us to characterise r-asymptotically quasi finite rank operators in terms of adjoint ...
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free- path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Bit-coded regular expression parsing
DEFF Research Database (Denmark)
Nielsen, Lasse; Henglein, Fritz
2011-01-01
the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...
Tetravalent one-regular graphs of order 4p2
DEFF Research Database (Denmark)
Feng, Yan-Quan; Kutnar, Klavdija; Marusic, Dragan
2014-01-01
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified.......A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified....
Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.
Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun
2014-08-07
The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.
Cichocki, A; Unbehauen, R
1994-01-01
In this paper a new class of simplified low-cost analog artificial neural networks with on chip adaptive learning algorithms are proposed for solving linear systems of algebraic equations in real time. The proposed learning algorithms for linear least squares (LS), total least squares (TLS) and data least squares (DLS) problems can be considered as modifications and extensions of well known algorithms: the row-action projection-Kaczmarz algorithm and/or the LMS (Adaline) Widrow-Hoff algorithms. The algorithms can be applied to any problem which can be formulated as a linear regression problem. The correctness and high performance of the proposed neural networks are illustrated by extensive computer simulation results.
Multimodal manifold-regularized transfer learning for MCI conversion prediction.
Cheng, Bo; Liu, Mingxia; Suk, Heung-Il; Shen, Dinggang; Zhang, Daoqiang
2015-12-01
As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods.
Quantum mechanical streamlines. I - Square potential barrier
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Square well approximation to the optical potential
International Nuclear Information System (INIS)
Jain, A.K.; Gupta, M.C.; Marwadi, P.R.
1976-01-01
Approximations for obtaining T-matrix elements for a sum of several potentials in terms of T-matrices for individual potentials are studied. Based on model calculations for S-wave for a sum of two separable non-local potentials of Yukawa type form factors and a sum of two delta function potentials, it is shown that the T-matrix for a sum of several potentials can be approximated satisfactorily over all the energy regions by the sum of T-matrices for individual potentials. Based on this, an approximate method for finding T-matrix for any local potential by approximating it by a sum of suitable number of square wells is presented. This provides an interesting way to calculate the T-matrix for any arbitary potential in terms of Bessel functions to a good degree of accuracy. The method is applied to the Saxon-Wood potentials and good agreement with exact results is found. (author)
ANYOLS, Least Square Fit by Stepwise Regression
International Nuclear Information System (INIS)
Atwoods, C.L.; Mathews, S.
1986-01-01
Description of program or function: ANYOLS is a stepwise program which fits data using ordinary or weighted least squares. Variables are selected for the model in a stepwise way based on a user- specified input criterion or a user-written subroutine. The order in which variables are entered can be influenced by user-defined forcing priorities. Instead of stepwise selection, ANYOLS can try all possible combinations of any desired subset of the variables. Automatic output for the final model in a stepwise search includes plots of the residuals, 'studentized' residuals, and leverages; if the model is not too large, the output also includes partial regression and partial leverage plots. A data set may be re-used so that several selection criteria can be tried. Flexibility is increased by allowing the substitution of user-written subroutines for several default subroutines
Optimally weighted least-squares steganalysis
Ker, Andrew D.
2007-02-01
Quantitative steganalysis aims to estimate the amount of payload in a stego object, and such estimators seem to arise naturally in steganalysis of Least Significant Bit (LSB) replacement in digital images. However, as with all steganalysis, the estimators are subject to errors, and their magnitude seems heavily dependent on properties of the cover. In very recent work we have given the first derivation of estimation error, for a certain method of steganalysis (the Least-Squares variant of Sample Pairs Analysis) of LSB replacement steganography in digital images. In this paper we make use of our theoretical results to find an improved estimator and detector. We also extend the theoretical analysis to another (more accurate) steganalysis estimator (Triples Analysis) and hence derive an improved version of that estimator too. Experimental results show that the new steganalyzers have improved accuracy, particularly in the difficult case of never-compressed covers.
The Square Kilometre Array: An Engineering Perspective
Hall, Peter J
2005-01-01
This volume is an up-to-date and comprehensive overview of the engineering of the Square Kilometre Array (SKA), a revolutionary instrument which will be the world’s largest radio telescope. Expected to be completed by 2020, the SKA will be a pre-eminent tool in probing the Early Universe and in enhancing greatly the discovery potential of radio astronomy in many other fields. This book, containing 36 refereed papers written by leaders in SKA engineering, has been compiled by the International SKA Project Office and is the only contemporary compendium available. It features papers dealing with pivotal technologies such as antennas, RF systems and data transport. As well, overviews of important SKA demonstrator instruments and key system design issues are included. Practising professionals, and students interested in next-generation telescopes, will find this book an invaluable reference.
Multiples least-squares reverse time migration
Zhang, Dongliang
2013-01-01
To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated as a virtual source, knowledge of the source wavelet is not required. Numerical tests on synthetic data for the Sigsbee2B model and field data from Gulf of Mexico show that MLSRTM can improve the image quality by removing artifacts, balancing amplitudes, and suppressing crosstalk compared to standard migration of the free-surface multiples. The potential liability of this method is that multiples require several roundtrips between the reflector and the free surface, so that high frequencies in the multiples are attenuated compared to the primary reflections. This can lead to lower resolution in the migration image compared to that computed from primaries.
Tensor hypercontraction. II. Least-squares renormalization
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template
Directory of Open Access Journals (Sweden)
Shuhua Pang
2017-10-01
Full Text Available Polyaniline nanotubes were successfully synthesized by a facile in situ chemical oxidative polymerization method using urea as soft template. When the urea/aniline molar ratio is 3:1, the as-prepared nanotubular polyaniline (PANI-3 shows regular and uniform square capillaries, which provides a high electrode/electrolyte contact, easy ion diffusion and enhanced electroactive regions during the electrochemical process, leading to weak internal resistance and improved electrochemical performance. The PANI-3 sample exhibits a high specific capacitance of 405 F/g at current density of 0.2 A/g, and PANI only has a specific capacitance of 263 F/g. At current density of 1 A/g, the capacitance of PANI-3 is still 263 F/g (64.9% of the capacitance at 0.2 A/g. Such a PANI-3 nanotube, with regular and uniform capillary, is a promising electrode material for high-performance supercapacitors.
Save, H.; Bettadpur, S. V.
2013-12-01
It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.
Extreme values, regular variation and point processes
Resnick, Sidney I
1987-01-01
Extremes Values, Regular Variation and Point Processes is a readable and efficient account of the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors It presents a coherent treatment of the distributional and sample path fundamental properties of extremes and records It emphasizes the core primacy of three topics necessary for understanding extremes the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces The book is self-contained and requires an introductory measure-theoretic course in probability as a prerequisite Almost all sections have an extensive list of exercises which extend developments in the text, offer alternate approaches, test mastery and provide for enj...
Stream Processing Using Grammars and Regular Expressions
DEFF Research Database (Denmark)
Rasmussen, Ulrik Terp
disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...
Describing chaotic attractors: Regular and perpetual points
Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz
2018-03-01
We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.
Chaos regularization of quantum tunneling rates
International Nuclear Information System (INIS)
Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward
2011-01-01
Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.
Contour Propagation With Riemannian Elasticity Regularization
DEFF Research Database (Denmark)
Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.
2011-01-01
Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...
Thin accretion disk around regular black hole
Directory of Open Access Journals (Sweden)
QIU Tianqi
2014-08-01
Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiplier less high-speed squaring circuit for binary numbers
Sethi, Kabiraj; Panda, Rutuparna
2015-03-01
The squaring operation is important in many applications in signal processing, cryptography etc. In general, squaring circuits reported in the literature use fast multipliers. A novel idea of a squaring circuit without using multipliers is proposed in this paper. Ancient Indian method used for squaring decimal numbers is extended here for binary numbers. The key to our success is that no multiplier is used. Instead, one squaring circuit is used. The hardware architecture of the proposed squaring circuit is presented. The design is coded in VHDL and synthesised and simulated in Xilinx ISE Design Suite 10.1 (Xilinx Inc., San Jose, CA, USA). It is implemented in Xilinx Vertex 4vls15sf363-12 device (Xilinx Inc.). The results in terms of time delay and area is compared with both modified Booth's algorithm and squaring circuit using Vedic multipliers. Our proposed squaring circuit seems to have better performance in terms of both speed and area.
Evaluating Outlier Identification Tests: Mahalanobis "D" Squared and Comrey "Dk."
Rasmussen, Jeffrey Lee
1988-01-01
A Monte Carlo simulation was used to compare the Mahalanobis "D" Squared and the Comrey "Dk" methods of detecting outliers in data sets. Under the conditions investigated, the "D" Squared technique was preferable as an outlier removal statistic. (SLD)
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Analytic stochastic regularization and gauge theories
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1987-04-01
We prove that analytic stochatic regularization braks gauge invariance. This is done by an explicit one loop calculation of the two three and four point vertex functions of the gluon field in scalar chromodynamics, which turns out not to be geuge invariant. We analyse the counter term structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization. (author) [pt
Preconditioners for regularized saddle point matrices
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe
2011-01-01
Roč. 19, č. 2 (2011), s. 91-112 ISSN 1570-2820 Institutional research plan: CEZ:AV0Z30860518 Keywords : saddle point matrices * preconditioning * regularization * eigenvalue clustering Subject RIV: BA - General Mathematics Impact factor: 0.533, year: 2011 http://www.degruyter.com/view/j/jnma.2011.19.issue-2/jnum.2011.005/jnum.2011.005. xml
Analytic stochastic regularization: gauge and supersymmetry theories
International Nuclear Information System (INIS)
Abdalla, M.C.B.
1988-01-01
Analytic stochastic regularization for gauge and supersymmetric theories is considered. Gauge invariance in spinor and scalar QCD is verified to brak fown by an explicit one loop computation of the two, theree and four point vertex function of the gluon field. As a result, non gauge invariant counterterms must be added. However, in the supersymmetric multiplets there is a cancellation rendering the counterterms gauge invariant. The calculation is considered at one loop order. (author) [pt
Regularized forecasting of chaotic dynamical systems
International Nuclear Information System (INIS)
Bollt, Erik M.
2017-01-01
While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.
Minimal length uncertainty relation and ultraviolet regularization
Kempf, Achim; Mangano, Gianpiero
1997-06-01
Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.
Regularity and chaos in cavity QED
International Nuclear Information System (INIS)
Bastarrachea-Magnani, Miguel Angel; López-del-Carpio, Baldemar; Chávez-Carlos, Jorge; Lerma-Hernández, Sergio; Hirsch, Jorge G
2017-01-01
The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside it can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through the use of coherent states, a semiclassical description in phase space, where the non-integrable Dicke model has regions associated with regular and chaotic motion. The appearance of classical chaos can be quantified calculating the largest Lyapunov exponent over the whole available phase space for a given energy. In the quantum regime, employing efficient diagonalization techniques, we are able to perform a detailed quantitative study of the regular and chaotic regions, where the quantum participation ratio (P R ) of coherent states on the eigenenergy basis plays a role equivalent to the Lyapunov exponent. It is noted that, in the thermodynamic limit, dividing the participation ratio by the number of atoms leads to a positive value in chaotic regions, while it tends to zero in the regular ones. (paper)
Solution path for manifold regularized semisupervised classification.
Wang, Gang; Wang, Fei; Chen, Tao; Yeung, Dit-Yan; Lochovsky, Frederick H
2012-04-01
Traditional learning algorithms use only labeled data for training. However, labeled examples are often difficult or time consuming to obtain since they require substantial human labeling efforts. On the other hand, unlabeled data are often relatively easy to collect. Semisupervised learning addresses this problem by using large quantities of unlabeled data with labeled data to build better learning algorithms. In this paper, we use the manifold regularization approach to formulate the semisupervised learning problem where a regularization framework which balances a tradeoff between loss and penalty is established. We investigate different implementations of the loss function and identify the methods which have the least computational expense. The regularization hyperparameter, which determines the balance between loss and penalty, is crucial to model selection. Accordingly, we derive an algorithm that can fit the entire path of solutions for every value of the hyperparameter. Its computational complexity after preprocessing is quadratic only in the number of labeled examples rather than the total number of labeled and unlabeled examples.
Regularizations: different recipes for identical situations
International Nuclear Information System (INIS)
Gambin, E.; Lobo, C.O.; Battistel, O.A.
2004-03-01
We present a discussion where the choice of the regularization procedure and the routing for the internal lines momenta are put at the same level of arbitrariness in the analysis of Ward identities involving simple and well-known problems in QFT. They are the complex self-interacting scalar field and two simple models where the SVV and AVV process are pertinent. We show that, in all these problems, the conditions to symmetry relations preservation are put in terms of the same combination of divergent Feynman integrals, which are evaluated in the context of a very general calculational strategy, concerning the manipulations and calculations involving divergences. Within the adopted strategy, all the arbitrariness intrinsic to the problem are still maintained in the final results and, consequently, a perfect map can be obtained with the corresponding results of the traditional regularization techniques. We show that, when we require an universal interpretation for the arbitrariness involved, in order to get consistency with all stated physical constraints, a strong condition is imposed for regularizations which automatically eliminates the ambiguities associated to the routing of the internal lines momenta of loops. The conclusion is clean and sound: the association between ambiguities and unavoidable symmetry violations in Ward identities cannot be maintained if an unique recipe is required for identical situations in the evaluation of divergent physical amplitudes. (author)
Testing the gravitational inverse-square law
International Nuclear Information System (INIS)
Adelberger, Eric; Heckel, B.; Hoyle, C.D.
2005-01-01
If the universe contains more than three spatial dimensions, as many physicists believe, our current laws of gravity should break down at small distances. When Isaac Newton realized that the acceleration of the Moon as it orbited around the Earth could be related to the acceleration of an apple as it fell to the ground, it was the first time that two seemingly unrelated physical phenomena had been 'unified'. The quest to unify all the forces of nature is one that still keeps physicists busy today. Newton showed that the gravitational attraction between two point bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. Newton's theory, which assumes that the gravitational force acts instantaneously, remained essentially unchallenged for roughly two centuries until Einstein proposed the general theory of relativity in 1915. Einstein's radical new theory made gravity consistent with the two basic ideas of relativity: the world is 4D - the three directions of space combined with time - and no physical effect can travel faster than light. The theory of general relativity states that gravity is not a force in the usual sense but a consequence of the curvature of this space-time produced by mass or energy. However, in the limit of low velocities and weak gravitational fields, Einstein's theory still predicts that the gravitational force between two point objects obeys an inverse-square law. One of the outstanding challenges in physics is to finish what Newton started and achieve the ultimate 'grand unification' - to unify gravity with the other three fundamental forces (the electromagnetic force, and the strong and weak nuclear forces) into a single quantum theory. In string theory - one of the leading candidates for an ultimate theory - the fundamental entities of nature are 1D strings and higher-dimensional objects called 'branes', rather than the point-like particles we are familiar with. String
Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.
2018-04-01
We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.
Multisource Least-squares Reverse Time Migration
Dai, Wei
2012-12-01
Least-squares migration has been shown to be able to produce high quality migration images, but its computational cost is considered to be too high for practical imaging. In this dissertation, a multisource least-squares reverse time migration algorithm (LSRTM) is proposed to increase by up to 10 times the computational efficiency by utilizing the blended sources processing technique. There are three main chapters in this dissertation. In Chapter 2, the multisource LSRTM algorithm is implemented with random time-shift and random source polarity encoding functions. Numerical tests on the 2D HESS VTI data show that the multisource LSRTM algorithm suppresses migration artifacts, balances the amplitudes, improves image resolution, and reduces crosstalk noise associated with the blended shot gathers. For this example, multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution, and fewer migration artifacts compared to conventional RTM. The empirical results suggest that the multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with similar or less computational cost. The caveat is that LSRTM image is sensitive to large errors in the migration velocity model. In Chapter 3, the multisource LSRTM algorithm is implemented with frequency selection encoding strategy and applied to marine streamer data, for which traditional random encoding functions are not applicable. The frequency-selection encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique non-overlapping frequency content. Therefore, the receivers can distinguish the wavefield from each shot according to the frequencies. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is
Delayed ripple counter simplifies square-root computation
Cliff, R.
1965-01-01
Ripple subtract technique simplifies the logic circuitry required in a binary computing device to derive the square root of a number. Successively higher numbers are subtracted from a register containing the number out of which the square root is to be extracted. The last number subtracted will be the closest integer to the square root of the number.
Sparsity regularization for parameter identification problems
International Nuclear Information System (INIS)
Jin, Bangti; Maass, Peter
2012-01-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
Skeletonized Least Squares Wave Equation Migration
Zhan, Ge
2010-10-17
The theory for skeletonized least squares wave equation migration (LSM) is presented. The key idea is, for an assumed velocity model, the source‐side Green\\'s function and the geophone‐side Green\\'s function are computed by a numerical solution of the wave equation. Only the early‐arrivals of these Green\\'s functions are saved and skeletonized to form the migration Green\\'s function (MGF) by convolution. Then the migration image is obtained by a dot product between the recorded shot gathers and the MGF for every trial image point. The key to an efficient implementation of iterative LSM is that at each conjugate gradient iteration, the MGF is reused and no new finitedifference (FD) simulations are needed to get the updated migration image. It is believed that this procedure combined with phase‐encoded multi‐source technology will allow for the efficient computation of wave equation LSM images in less time than that of conventional reverse time migration (RTM).
Elastic least-squares reverse time migration
Feng, Zongcai
2017-03-08
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef
2017-06-30
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.
Elastic least-squares reverse time migration
Feng, Zongcai; Schuster, Gerard T.
2017-01-01
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Eloquence Squared: An Interview with Padhraig Nolan
Directory of Open Access Journals (Sweden)
Nolan, Padhraig
2017-06-01
Full Text Available Often, creative people are recognised primarily for the work they do in one discipline, with efforts in other areas overlooked. Some artists are truly multidisciplinary, having the ability to express themselves eloquently through more than one medium. This selection of work from Padhraig Nolan, Dublin-based artist and poet, illustrates two strands of his practice: poetry and painting. As discussed in the accompanying interview, he is an artist working in more than one medium, each of which could be said to communicate with the other. In both painting and poetry, Nolan is inspired by landscape and a sense of place, and he turns his inspirations into remarkable art pieces, whether they be crafted with words or paint. Originally from Enniscorthy in County Wexford, Padhraig Nolan now lives near Dún Laoghaire, where he works as a graphic designer, illustrator and visual artist. He also writes poetry, reviews and songs. His work is regularly published and exhibited in Ireland and internationally. His website is www.padhraignolan.com
Learning Sparse Visual Representations with Leaky Capped Norm Regularizers
Wangni, Jianqiao; Lin, Dahua
2017-01-01
Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of $\\ell_1$ regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and...
Temporal regularity of the environment drives time perception
van Rijn, H; Rhodes, D; Di Luca, M
2016-01-01
It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be var- ied. In one experiment, we asked whether the last stim...
Directory of Open Access Journals (Sweden)
Dustin Kai Yan Lau
2014-03-01
Full Text Available Background Unlike alphabetic languages, Chinese uses a logographic script. However, the pronunciation of many character’s phonetic radical has the same pronunciation as the character as a whole. These are considered regular characters and can be read through a lexical non-semantic route (Weekes & Chen, 1999. Pseudocharacters are another way to study this non-semantic route. A pseudocharacter is the combination of existing semantic and phonetic radicals in their legal positions resulting in a non-existing character (Ho, Chan, Chung, Lee, & Tsang, 2007. Pseudocharacters can be pronounced by direct derivation from the sound of its phonetic radical. Conversely, if the pronunciation of a character does not follow that of the phonetic radical, it is considered as irregular and can only be correctly read through the lexical-semantic route. The aim of the current investigation was to examine reading aloud in normal adults. We hypothesized that the regularity effect, previously described for alphabetical scripts and acquired dyslexic patients of Chinese (Weekes & Chen, 1999; Wu, Liu, Sun, Chromik, & Zhang, 2014, would also be present in normal adult Chinese readers. Method Participants. Thirty (50% female native Hong Kong Cantonese speakers with a mean age of 19.6 years and a mean education of 12.9 years. Stimuli. Sixty regular-, 60 irregular-, and 60 pseudo-characters (with at least 75% of name agreement in Chinese were matched by initial phoneme, number of strokes and family size. Additionally, regular- and irregular-characters were matched by frequency (low and consistency. Procedure. Each participant was asked to read aloud the stimuli presented on a laptop using the DMDX software. The order of stimuli presentation was randomized. Data analysis. ANOVAs were carried out by participants and items with RTs and errors as dependent variables and type of stimuli (regular-, irregular- and pseudo-character as repeated measures (F1 or between subject
Phase transition in a modified square Josephson-junction array
Han, J
1999-01-01
We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.
Convergence and fluctuations of Regularized Tyler estimators
Kammoun, Abla; Couillet, Romain; Pascal, Frederic; Alouini, Mohamed-Slim
2015-01-01
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter p. While a high value of p is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations n and/or their size N increase together. First asymptotic results have recently been obtained under the assumption that N and n are large and commensurable. Interestingly, no results concerning the regime of n going to infinity with N fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult N and n large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when n → ∞ with N fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter.
Convergence and fluctuations of Regularized Tyler estimators
Kammoun, Abla
2015-10-26
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter p. While a high value of p is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations n and/or their size N increase together. First asymptotic results have recently been obtained under the assumption that N and n are large and commensurable. Interestingly, no results concerning the regime of n going to infinity with N fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult N and n large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when n → ∞ with N fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter.
The use of regularization in inferential measurements
International Nuclear Information System (INIS)
Hines, J. Wesley; Gribok, Andrei V.; Attieh, Ibrahim; Uhrig, Robert E.
1999-01-01
Inferential sensing is the prediction of a plant variable through the use of correlated plant variables. A correct prediction of the variable can be used to monitor sensors for drift or other failures making periodic instrument calibrations unnecessary. This move from periodic to condition based maintenance can reduce costs and increase the reliability of the instrument. Having accurate, reliable measurements is important for signals that may impact safety or profitability. This paper investigates how collinearity adversely affects inferential sensing by making the results inconsistent and unrepeatable; and presents regularization as a potential solution (author) (ml)
Regularization ambiguities in loop quantum gravity
International Nuclear Information System (INIS)
Perez, Alejandro
2006-01-01
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find
Effort variation regularization in sound field reproduction
DEFF Research Database (Denmark)
Stefanakis, Nick; Jacobsen, Finn; Sarris, Ioannis
2010-01-01
In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths......), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy...
New regularities in mass spectra of hadrons
International Nuclear Information System (INIS)
Kajdalov, A.B.
1989-01-01
The properties of bosonic and baryonic Regge trajectories for hadrons composed of light quarks are considered. Experimental data agree with an existence of daughter trajectories consistent with string models. It is pointed out that the parity doubling for baryonic trajectories, observed experimentally, is not understood in the existing quark models. Mass spectrum of bosons and baryons indicates to an approximate supersymmetry in the mass region M>1 GeV. These regularities indicates to a high degree of symmetry for the dynamics in the confinement region. 8 refs.; 5 figs
Total-variation regularization with bound constraints
International Nuclear Information System (INIS)
Chartrand, Rick; Wohlberg, Brendt
2009-01-01
We present a new algorithm for bound-constrained total-variation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise. We incorporate previous iterative reweighting algorithms to solve the TV portion.
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
Indefinite metric and regularization of electrodynamics
International Nuclear Information System (INIS)
Gaudin, M.
1984-06-01
The invariant regularization of Pauli and Villars in quantum electrodynamics can be considered as deriving from a local and causal lagrangian theory for spin 1/2 bosons, by introducing an indefinite metric and a condition on the allowed states similar to the Lorentz condition. The consequences are the asymptotic freedom of the photon's propagator. We present a calcultion of the effective charge to the fourth order in the coupling as a function of the auxiliary masses, the theory avoiding all mass divergencies to this order [fr
Strategies for regular segmented reductions on GPU
DEFF Research Database (Denmark)
Larsen, Rasmus Wriedt; Henriksen, Troels
2017-01-01
We present and evaluate an implementation technique for regular segmented reductions on GPUs. Existing techniques tend to be either consistent in performance but relatively inefficient in absolute terms, or optimised for specific workloads and thereby exhibiting bad performance for certain input...... is in the context of the Futhark compiler, the implementation technique is applicable to any library or language that has a need for segmented reductions. We evaluate the technique on four microbenchmarks, two of which we also compare to implementations in the CUB library for GPU programming, as well as on two...
Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J
2005-11-23
The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.
Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.
2016-03-01
Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.
Ye, Qing; Pan, Hao; Liu, Changhua
2015-01-01
A novel semisupervised extreme learning machine (ELM) with clustering discrimination manifold regularization (CDMR) framework named CDMR-ELM is proposed for semisupervised classification. By using unsupervised fuzzy clustering method, CDMR framework integrates clustering discrimination of both labeled and unlabeled data with twinning constraints regularization. Aiming at further improving the classification accuracy and efficiency, a new multiobjective fruit fly optimization algorithm (MOFOA) is developed to optimize crucial parameters of CDME-ELM. The proposed MOFOA is implemented with two objectives: simultaneously minimizing the number of hidden nodes and mean square error (MSE). The results of experiments on actual datasets show that the proposed semisupervised classifier can obtain better accuracy and efficiency with relatively few hidden nodes compared with other state-of-the-art classifiers.
Directory of Open Access Journals (Sweden)
Qing Ye
2015-01-01
Full Text Available A novel semisupervised extreme learning machine (ELM with clustering discrimination manifold regularization (CDMR framework named CDMR-ELM is proposed for semisupervised classification. By using unsupervised fuzzy clustering method, CDMR framework integrates clustering discrimination of both labeled and unlabeled data with twinning constraints regularization. Aiming at further improving the classification accuracy and efficiency, a new multiobjective fruit fly optimization algorithm (MOFOA is developed to optimize crucial parameters of CDME-ELM. The proposed MOFOA is implemented with two objectives: simultaneously minimizing the number of hidden nodes and mean square error (MSE. The results of experiments on actual datasets show that the proposed semisupervised classifier can obtain better accuracy and efficiency with relatively few hidden nodes compared with other state-of-the-art classifiers.
Emotion regulation deficits in regular marijuana users.
Zimmermann, Kaeli; Walz, Christina; Derckx, Raissa T; Kendrick, Keith M; Weber, Bernd; Dore, Bruce; Ochsner, Kevin N; Hurlemann, René; Becker, Benjamin
2017-08-01
Effective regulation of negative affective states has been associated with mental health. Impaired regulation of negative affect represents a risk factor for dysfunctional coping mechanisms such as drug use and thus could contribute to the initiation and development of problematic substance use. This study investigated behavioral and neural indices of emotion regulation in regular marijuana users (n = 23) and demographically matched nonusing controls (n = 20) by means of an fMRI cognitive emotion regulation (reappraisal) paradigm. Relative to nonusing controls, marijuana users demonstrated increased neural activity in a bilateral frontal network comprising precentral, middle cingulate, and supplementary motor regions during reappraisal of negative affect (P marijuana users relative to controls. Together, the present findings could reflect an unsuccessful attempt of compensatory recruitment of additional neural resources in the context of disrupted amygdala-prefrontal interaction during volitional emotion regulation in marijuana users. As such, impaired volitional regulation of negative affect might represent a consequence of, or risk factor for, regular marijuana use. Hum Brain Mapp 38:4270-4279, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Efficient multidimensional regularization for Volterra series estimation
Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan
2018-05-01
This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738
Supporting Regularized Logistic Regression Privately and Efficiently.
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Multiple graph regularized nonnegative matrix factorization
Wang, Jim Jing-Yan
2013-10-01
Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.
Accelerating Large Data Analysis By Exploiting Regularities
Moran, Patrick J.; Ellsworth, David
2003-01-01
We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.
Supporting Regularized Logistic Regression Privately and Efficiently.
Directory of Open Access Journals (Sweden)
Wenfa Li
Full Text Available As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
EIT image reconstruction with four dimensional regularization.
Dai, Tao; Soleimani, Manuchehr; Adler, Andy
2008-09-01
Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.
The hydrodynamic behaviour of gas—solid trickle flow over a regularly stacked packing
Verver, A.B.; van Swaaij, Willibrordus Petrus Maria
1986-01-01
The hydrodynamic properties of counter-current gas—solid flow over a regularly stacked packing at trickle flow conditions have been studied. The flow properties of the solids phase were examined, using five types of solid particles with a mean particle diameter ranging from 70 to 880 μm and a particle density from 800 to 7800 kg m−3. Data on the solids hold-up and the pressure drop caused by the solids flow were obtained from experiments in a test column of 0.10 m square cross-section. A part...
Siregar, R. H.; Muzasti, R. A.
2018-03-01
Cardiovascular disease is the most inducer of morbidity and mortality of chronic kidney disease (CKD) patients who have undergone dialysis. Today, neutrophil to lymphocyte ratio (NLR) is considered an indicator of the severity and extent of systemic inflammation and atherosclerosis in patients with renal and cardiovascular disorders. To examine the relationship between NLR with PAD in regular hemodialysis patients, a cross-sectional study, Ankle- Brachial Index (ABI) measurement and peripheral blood examination was on 72 regular hemodialysis patients ≥6 months. The ABI value ≤0.9 is considered PAD. NLR≥ 3.5 is considered abnormal based on some pre-existing research. Prevalence of PAD is 29.16%. Chi- square test showed significant correlation between NLR with PAD (p = 0.0001), multiplication of Calcium and Phosphorus (p = 0.0001), and type 2 Diabetes Mellitus (T2DM) (p = 0.039), multivariate analysis showed that NLR was an independent predictor for PAD in regular hemodialysis patients (RR = 2.271 p = 0.027). In conclusion, NLR, a new inflammatory marker of peripheral blood examination may serve as a marker of PAD in a regular hemodialysis patient, in addition to the multiplication of Calcium and Phosphorus as well as T2DM.
Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.
Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu
2018-08-01
To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
New approach to breast cancer CAD using partial least squares and kernel-partial least squares
Land, Walker H., Jr.; Heine, John; Embrechts, Mark; Smith, Tom; Choma, Robert; Wong, Lut
2005-04-01
Breast cancer is second only to lung cancer as a tumor-related cause of death in women. Currently, the method of choice for the early detection of breast cancer is mammography. While sensitive to the detection of breast cancer, its positive predictive value (PPV) is low, resulting in biopsies that are only 15-34% likely to reveal malignancy. This paper explores the use of two novel approaches called Partial Least Squares (PLS) and Kernel-PLS (K-PLS) to the diagnosis of breast cancer. The approach is based on optimization for the partial least squares (PLS) algorithm for linear regression and the K-PLS algorithm for non-linear regression. Preliminary results show that both the PLS and K-PLS paradigms achieved comparable results with three separate support vector learning machines (SVLMs), where these SVLMs were known to have been trained to a global minimum. That is, the average performance of the three separate SVLMs were Az = 0.9167927, with an average partial Az (Az90) = 0.5684283. These results compare favorably with the K-PLS paradigm, which obtained an Az = 0.907 and partial Az = 0.6123. The PLS paradigm provided comparable results. Secondly, both the K-PLS and PLS paradigms out performed the ANN in that the Az index improved by about 14% (Az ~ 0.907 compared to the ANN Az of ~ 0.8). The "Press R squared" value for the PLS and K-PLS machine learning algorithms were 0.89 and 0.9, respectively, which is in good agreement with the other MOP values.
Regularities of radiorace formation in yeasts
International Nuclear Information System (INIS)
Korogodin, V.I.; Bliznik, K.M.; Kapul'tsevich, Yu.G.; Petin, V.G.; Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel'skij Inst. Meditsinskoj Radiologii)
1977-01-01
Two strains of diploid yeast, namely, Saccharomyces ellipsoides, Megri 139-B, isolated under natural conditions, and Saccharomyces cerevisiae 5a x 3Bα, heterozygous by genes ade 1 and ade 2, were exposed to γ-quanta of Co 60 . The content of cells-saltants forming colonies with changed morphology, that of the nonviable cells, cells that are respiration mutants, and cells-recombinants by gene ade 1 and ade 2, has been determined. A certain regularity has been revealed in the distribution among the colonies of cells of the four types mentioned above: the higher the content of cells of some one of the types, the higher that of the cells having other hereditary changes
Regularization destriping of remote sensing imagery
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
The Regularity of Optimal Irrigation Patterns
Morel, Jean-Michel; Santambrogio, Filippo
2010-02-01
A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.
Singular tachyon kinks from regular profiles
International Nuclear Information System (INIS)
Copeland, E.J.; Saffin, P.M.; Steer, D.A.
2003-01-01
We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately
Two-pass greedy regular expression parsing
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge; Henglein, Fritz; Nielsen, Lasse
2013-01-01
We present new algorithms for producing greedy parses for regular expressions (REs) in a semi-streaming fashion. Our lean-log algorithm executes in time O(mn) for REs of size m and input strings of size n and outputs a compact bit-coded parse tree representation. It improves on previous algorithms...... by: operating in only 2 passes; using only O(m) words of random-access memory (independent of n); requiring only kn bits of sequentially written and read log storage, where k ... and not requiring it to be stored at all. Previous RE parsing algorithms do not scale linearly with input size, or require substantially more log storage and employ 3 passes where the first consists of reversing the input, or do not or are not known to produce a greedy parse. The performance of our unoptimized C...
Space and protest: A tale of two Egyptian squares
Mohamed, A.A.; Van Nes, A.; Salheen, M.A.
2015-01-01
Protests and revolts take place in public space. How they can be controlled or how protests develop depend on the physical layout of the built environment. This study reveals the relationship between urban space and protest for two Egyptian squares: Tahrir Square and Rabaa Al-Adawiya in Cairo. For analysis, the research uses space syntax method. The results of this analysis are then compared with descriptions of the protest behaviour. As it turns out, the spatial properties of Tahrir square s...
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Regularization of Instantaneous Frequency Attribute Computations
Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.
2014-12-01
We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.; Franek, M.; Schonlieb, C.-B.
2012-01-01
for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations
Dimensional regularization and analytical continuation at finite temperature
International Nuclear Information System (INIS)
Chen Xiangjun; Liu Lianshou
1998-01-01
The relationship between dimensional regularization and analytical continuation of infrared divergent integrals at finite temperature is discussed and a method of regularization of infrared divergent integrals and infrared divergent sums is given
Regular Generalized Star Star closed sets in Bitopological Spaces
K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar
2011-01-01
The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.
Exclusion of children with intellectual disabilities from regular ...
African Journals Online (AJOL)
Study investigated why teachers exclude children with intellectual disability from the regular classrooms in Nigeria. Participants were, 169 regular teachers randomly selected from Oyo and Ogun states. Questionnaire was used to collect data result revealed that 57.4% regular teachers could not cope with children with ID ...
39 CFR 6.1 - Regular meetings, annual meeting.
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Regular meetings, annual meeting. 6.1 Section 6.1 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE MEETINGS (ARTICLE VI) § 6.1 Regular meetings, annual meeting. The Board shall meet regularly on a schedule...
Recognition Memory for Novel Stimuli: The Structural Regularity Hypothesis
Cleary, Anne M.; Morris, Alison L.; Langley, Moses M.
2007-01-01
Early studies of human memory suggest that adherence to a known structural regularity (e.g., orthographic regularity) benefits memory for an otherwise novel stimulus (e.g., G. A. Miller, 1958). However, a more recent study suggests that structural regularity can lead to an increase in false-positive responses on recognition memory tests (B. W. A.…
5 CFR 551.421 - Regular working hours.
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Regular working hours. 551.421 Section... Activities § 551.421 Regular working hours. (a) Under the Act there is no requirement that a Federal employee... distinction based on whether the activity is performed by an employee during regular working hours or outside...
20 CFR 226.35 - Deductions from regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Deductions from regular annuity rate. 226.35... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.35 Deductions from regular annuity rate. The regular annuity rate of the spouse and divorced...
20 CFR 226.34 - Divorced spouse regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Divorced spouse regular annuity rate. 226.34... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.34 Divorced spouse regular annuity rate. The regular annuity rate of a divorced spouse is equal to...
20 CFR 226.14 - Employee regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Employee regular annuity rate. 226.14 Section... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing an Employee Annuity § 226.14 Employee regular annuity rate. The regular annuity rate payable to the employee is the total of the employee tier I...
Dose domain regularization of MLC leaf patterns for highly complex IMRT plans
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Dan; Yu, Victoria Y.; Ruan, Dan; Cao, Minsong; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States); O’Connor, Daniel [Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095 (United States)
2015-04-15
Purpose: The advent of automated beam orientation and fluence optimization enables more complex intensity modulated radiation therapy (IMRT) planning using an increasing number of fields to exploit the expanded solution space. This has created a challenge in converting complex fluences to robust multileaf collimator (MLC) segments for delivery. A novel method to regularize the fluence map and simplify MLC segments is introduced to maximize delivery efficiency, accuracy, and plan quality. Methods: In this work, we implemented a novel approach to regularize optimized fluences in the dose domain. The treatment planning problem was formulated in an optimization framework to minimize the segmentation-induced dose distribution degradation subject to a total variation regularization to encourage piecewise smoothness in fluence maps. The optimization problem was solved using a first-order primal-dual algorithm known as the Chambolle-Pock algorithm. Plans for 2 GBM, 2 head and neck, and 2 lung patients were created using 20 automatically selected and optimized noncoplanar beams. The fluence was first regularized using Chambolle-Pock and then stratified into equal steps, and the MLC segments were calculated using a previously described level reducing method. Isolated apertures with sizes smaller than preset thresholds of 1–3 bixels, which are square units of an IMRT fluence map from MLC discretization, were removed from the MLC segments. Performance of the dose domain regularized (DDR) fluences was compared to direct stratification and direct MLC segmentation (DMS) of the fluences using level reduction without dose domain fluence regularization. Results: For all six cases, the DDR method increased the average planning target volume dose homogeneity (D95/D5) from 0.814 to 0.878 while maintaining equivalent dose to organs at risk (OARs). Regularized fluences were more robust to MLC sequencing, particularly to the stratification and small aperture removal. The maximum and
Directory of Open Access Journals (Sweden)
Reza Ezzati
2014-08-01
Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.
Zhang, Hua; Huang, Jing; Ma, Jianhua; Bian, Zhaoying; Feng, Qianjin; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan
2014-09-01
Repeated X-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the X-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as "PWLS-PINL". Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive overrelaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection, and edge detail preservation.
Quadratic PBW-Algebras, Yang-Baxter Equation and Artin-Schelter Regularity
International Nuclear Information System (INIS)
Gateva-Ivanova, Tatiana
2010-08-01
We study quadratic algebras over a field k. We show that an n-generated PBW-algebra A has finite global dimension and polynomial growth iff its Hilbert series is H A (z) = 1/(1-z) n . A surprising amount can be said when the algebra A has quantum binomial relations, that is the defining relations are binomials xy - c xy zt, c xy is an element of k x , which are square-free and nondegenerate. We prove that in this case various good algebraic and homological properties are closely related. The main result shows that for an n-generated quantum binomial algebra A the following conditions are equivalent: (i) A is a PBW-algebra with finite global dimension; (ii) A is PBW and has polynomial growth; (iii) A is an Artin-Schelter regular PBW-algebra; (iv) A is a Yang-Baxter algebra; (v) H A (z) = 1/(1-z) n ; (vi) The dual A ! is a quantum Grassman algebra; (vii) A is a binomial skew polynomial ring. This implies that the problem of classification of Artin-Schelter regular PBW-algebras of global dimension n is equivalent to the classification of square-free set-theoretic solutions of the Yang-Baxter equation (X,r), on sets X of order n.| (author)
Accreting fluids onto regular black holes via Hamiltonian approach
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)
2017-08-15
We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)
On the regularized fermionic projector of the vacuum
Finster, Felix
2008-03-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.
On the regularized fermionic projector of the vacuum
International Nuclear Information System (INIS)
Finster, Felix
2008-01-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed
MRI reconstruction with joint global regularization and transform learning.
Tanc, A Korhan; Eksioglu, Ender M
2016-10-01
Sparsity based regularization has been a popular approach to remedy the measurement scarcity in image reconstruction. Recently, sparsifying transforms learned from image patches have been utilized as an effective regularizer for the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse additional global regularization terms to the patch-based transform learning. We develop an algorithm to solve the resulting novel cost function, which includes both patchwise and global regularization terms. Extensive simulation results indicate that the introduced mixed approach has improved MRI reconstruction performance, when compared to the algorithms which use either of the patchwise transform learning or global regularization terms alone. Copyright © 2016 Elsevier Ltd. All rights reserved.
The nonabelian tensor square of a bieberbach group with ...
African Journals Online (AJOL)
The main objective of this paper is to compute the nonabelian tensor square of one Bieberbach group with elementary abelian 2-group point group of dimension three by using the computational method of the nonabelian tensor square for polycyclic groups. The finding of the computation showed that the nonabelian tensor ...
Your Chi-Square Test Is Statistically Significant: Now What?
Sharpe, Donald
2015-01-01
Applied researchers have employed chi-square tests for more than one hundred years. This paper addresses the question of how one should follow a statistically significant chi-square test result in order to determine the source of that result. Four approaches were evaluated: calculating residuals, comparing cells, ransacking, and partitioning. Data…
Space and protest : A tale of two Egyptian squares
Mohamed, A.A.; Van Nes, A.; Salheen, M.A.
2015-01-01
Protests and revolts take place in public space. How they can be controlled or how protests develop depend on the physical layout of the built environment. This study reveals the relationship between urban space and protest for two Egyptian squares: Tahrir Square and Rabaa Al-Adawiya in Cairo. For
Least-squares reverse time migration of multiples
Zhang, Dongliang; Schuster, Gerard T.
2013-01-01
The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual
TINGKAT KEPUASAN PELANGGAN TERHADAP PELAYANAN DI KFC MAKASSAR TOWN SQUARE
RAMADHANI, IRMA
2017-01-01
2017 Penelitian ini bertujuan untuk mengetahui tingkat kepuasan pelanggan terhadap pelayanan di KFC Makassar Town Square. Penelitian ini dilaksanakan terhadap pelanggan KFC Makassar Town Square yang telah bertransaksi lebih dari satu kali. Penelitian ini merupakan penelitian kuantitatif deskriptif dengan mendeskripsikan atau menggambarkan tentang tingkat kepuasan pelanggan terhadap pelayanan. Jumlah sampel penelitian 83 pelanggan KFC Makassar Town. Analisis data menggunak...
Solution of a Complex Least Squares Problem with Constrained Phase.
Bydder, Mark
2010-12-30
The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.
note: The least square nucleolus is a general nucleolus
Elisenda Molina; Juan Tejada
2000-01-01
This short note proves that the least square nucleolus (Ruiz et al. (1996)) and the lexicographical solution (Sakawa and Nishizaki (1994)) select the same imputation in each game with nonempty imputation set. As a consequence the least square nucleolus is a general nucleolus (Maschler et al. (1992)).
On root mean square approximation by exponential functions
Sharipov, Ruslan
2014-01-01
The problem of root mean square approximation of a square integrable function by finite linear combinations of exponential functions is considered. It is subdivided into linear and nonlinear parts. The linear approximation problem is solved. Then the nonlinear problem is studied in some particular example.
Application of least-squares method to decay heat evaluation
International Nuclear Information System (INIS)
Schmittroth, F.; Schenter, R.E.
1976-01-01
Generalized least-squares methods are applied to decay-heat experiments and summation calculations to arrive at evaluated values and uncertainties for the fission-product decay-heat from the thermal fission of 235 U. Emphasis is placed on a proper treatment of both statistical and correlated uncertainties in the least-squares method
Directory of Open Access Journals (Sweden)
Shiqi Zhou
2013-10-01
Full Text Available Monte Carlo simulations in the canonical ensemble are performed for fluid with potential consisting of a square-well plus a square-barrier to obtain thermodynamic properties such as pressure, excess energy, constant volume excess heat capacity, and excess chemical potential, and structural property such as radial distribution function. The simulations cover a wide density range for the fluid phase, several temperatures, and different combinations of the parameters defining the potential. These simulation data have been used to test performances of a coupling parameter series expansion (CPSE recently proposed by one of the authors [S. Zhou, Phys. Rev. E 74, 031119 (2006], and a traditional 2nd-order high temperature series expansion (HTSE based on a macroscopic compressibility approximation (MAC used with confidence since its introduction in 1967. It is found that (i the MCA-based 2nd-order HTSE unexpectedly and depressingly fails for most situations investigated, and the present simulation results can serve well as strict criteria for testing liquid state theories. (ii The CPSE perturbation scheme is shown to be capable of predicting very accurately most of the thermodynamic properties simulated, but the most appropriate level of truncating the CPSE differs and depends on the range of the potential to be calculated; in particular, the shorter the potential range is, the higher the most appropriate truncating level can be, and along with rising of the potential range the performance of the CPSE perturbation scheme will decrease at higher truncating level. (iii The CPSE perturbation scheme can calculate satisfactorily bulk fluid rdf, and such calculations can be done for all fluid states of the whole phase diagram. (iv The CPSE is a convergent series at higher temperatures, but show attribute of asymptotic series at lower temperatures, and as a result, the surest asymptotic value occurs at lower-order truncation.
Enumeration of self-avoiding walks on the square lattice
International Nuclear Information System (INIS)
Jensen, Iwan
2004-01-01
We describe a new algorithm for the enumeration of self-avoiding walks on the square lattice. Using up to 128 processors on a HP Alpha server cluster we have enumerated the number of self-avoiding walks on the square lattice to length 71. Series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and mean-square distance of monomers from the end points have been derived to length 59. An analysis of the resulting series yields accurate estimates of the critical exponents γ and ν confirming predictions of their exact values. Likewise we obtain accurate amplitude estimates yielding precise values for certain universal amplitude combinations. Finally we report on an analysis giving compelling evidence that the leading non-analytic correction-to-scaling exponent Δ 1 = 3/2
Quantum effects and regular cosmological models
International Nuclear Information System (INIS)
Gurovich, V.Ts.; Starobinskij, A.A.; AN SSSR, Moscow. Inst. Teoreticheskoj Fiziki)
1979-01-01
Allowance for the quantum nature of material fields and weak gravitational waves on the background of the classical metric of the cosmological model results in two basic effects: vacuum polarization and particle production. The first of the effects may be taken into account qualitatively by introducing into the lagrangian density of the gravitational field an additional term of the type A+BR 2 +CR 2 In|R/R 0 |; the second effect can be accounted for by prescribing a local rate of particle (graviton) production which is proportional to the square of the scalar curvature R 2 . It is shown that the taking into account of the combined effect of these phenomena on the evolution of a homogeneous anisotropic metric of the first Bianchi type removes the Einstein singularities. Asymptotic approach to the classical model, however, is attained only if additional assumptions are made. At the stage of compression the solution is close to the anisotropic vacuum Kasner solution; at the expansion stage it tends to the isotropic Friedman solution in which matter is produced by the gravitational field
Manifold Regularized Experimental Design for Active Learning.
Zhang, Lining; Shum, Hubert P H; Shao, Ling
2016-12-02
Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
Color correction optimization with hue regularization
Zhang, Heng; Liu, Huaping; Quan, Shuxue
2011-01-01
Previous work has suggested that observers are capable of judging the quality of an image without any knowledge of the original scene. When no reference is available, observers can extract the apparent objects in an image and compare them with the typical colors of similar objects recalled from their memories. Some generally agreed upon research results indicate that although perfect colorimetric rendering is not conspicuous and color errors can be well tolerated, the appropriate rendition of certain memory colors such as skin, grass, and sky is an important factor in the overall perceived image quality. These colors are appreciated in a fairly consistent manner and are memorized with slightly different hues and higher color saturation. The aim of color correction for a digital color pipeline is to transform the image data from a device dependent color space to a target color space, usually through a color correction matrix which in its most basic form is optimized through linear regressions between the two sets of data in two color spaces in the sense of minimized Euclidean color error. Unfortunately, this method could result in objectionable distortions if the color error biased certain colors undesirably. In this paper, we propose a color correction optimization method with preferred color reproduction in mind through hue regularization and present some experimental results.
Wave dynamics of regular and chaotic rays
International Nuclear Information System (INIS)
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space
Regularities and irregularities in order flow data
Theissen, Martin; Krause, Sebastian M.; Guhr, Thomas
2017-11-01
We identify and analyze statistical regularities and irregularities in the recent order flow of different NASDAQ stocks, focusing on the positions where orders are placed in the order book. This includes limit orders being placed outside of the spread, inside the spread and (effective) market orders. Based on the pairwise comparison of the order flow of different stocks, we perform a clustering of stocks into groups with similar behavior. This is useful to assess systemic aspects of stock price dynamics. We find that limit order placement inside the spread is strongly determined by the dynamics of the spread size. Most orders, however, arrive outside of the spread. While for some stocks order placement on or next to the quotes is dominating, deeper price levels are more important for other stocks. As market orders are usually adjusted to the quote volume, the impact of market orders depends on the order book structure, which we find to be quite diverse among the analyzed stocks as a result of the way limit order placement takes place.
Library search with regular reflectance IR spectra
International Nuclear Information System (INIS)
Staat, H.; Korte, E.H.; Lampen, P.
1989-01-01
Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)
Regularities of praseodymium oxide dissolution in acids
International Nuclear Information System (INIS)
Savin, V.D.; Elyutin, A.V.; Mikhajlova, N.P.; Eremenko, Z.V.; Opolchenova, N.L.
1989-01-01
The regularities of Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 interaction with inorganic acids are studied. pH of the solution and oxidation-reduction potential registrated at 20±1 deg C are the working parameters of studies. It is found that the amount of all oxides dissolved increase in the series of acids - nitric, hydrochloric and sulfuric, in this case for hydrochloric and sulfuric acid it increases in the series of oxides Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 . It is noted that Pr 2 O 5 has a high value of oxidation-reduction potential with a positive sign in the whole disslolving range. A low positive value of a redox potential during dissolving belongs to Pr(OH) 3 and in the case of Pr 2 O 3 dissloving redox potential is negative. The schemes of dissolving processes which do not agree with classical assumptions are presented
Regular expressions compiler and some applications
International Nuclear Information System (INIS)
Saldana A, H.
1978-01-01
We deal with high level programming language of a Regular Expressions Compiler (REC). The first chapter is an introduction in which the history of the REC development and the problems related to its numerous applicatons are described. The syntactic and sematic rules as well as the language features are discussed just after the introduction. Concerning the applicatons as examples, an adaptation is given in order to solve numerical problems and another for the data manipulation. The last chapter is an exposition of ideas and techniques about the compiler construction. Examples of the adaptation to numerical problems show the applications to education, vector analysis, quantum mechanics, physics, mathematics and other sciences. The rudiments of an operating system for a minicomputer are the examples of the adaptation to symbolic data manipulaton. REC is a programming language that could be applied to solve problems in almost any human activity. Handling of computer graphics, control equipment, research on languages, microprocessors and general research are some of the fields in which this programming language can be applied and developed. (author)
Sparsity-regularized HMAX for visual recognition.
Directory of Open Access Journals (Sweden)
Xiaolin Hu
Full Text Available About ten years ago, HMAX was proposed as a simple and biologically feasible model for object recognition, based on how the visual cortex processes information. However, the model does not encompass sparse firing, which is a hallmark of neurons at all stages of the visual pathway. The current paper presents an improved model, called sparse HMAX, which integrates sparse firing. This model is able to learn higher-level features of objects on unlabeled training images. Unlike most other deep learning models that explicitly address global structure of images in every layer, sparse HMAX addresses local to global structure gradually along the hierarchy by applying patch-based learning to the output of the previous layer. As a consequence, the learning method can be standard sparse coding (SSC or independent component analysis (ICA, two techniques deeply rooted in neuroscience. What makes SSC and ICA applicable at higher levels is the introduction of linear higher-order statistical regularities by max pooling. After training, high-level units display sparse, invariant selectivity for particular individuals or for image categories like those observed in human inferior temporal cortex (ITC and medial temporal lobe (MTL. Finally, on an image classification benchmark, sparse HMAX outperforms the original HMAX by a large margin, suggesting its great potential for computer vision.
Quantum implications of a scale invariant regularization
Ghilencea, D. M.
2018-04-01
We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).
Regularities development of entrepreneurial structures in regions
Directory of Open Access Journals (Sweden)
Julia Semenovna Pinkovetskaya
2012-12-01
Full Text Available Consider regularities and tendencies for the three types of entrepreneurial structures — small enterprises, medium enterprises and individual entrepreneurs. The aim of the research was to confirm the possibilities of describing indicators of aggregate entrepreneurial structures with the use of normal law distribution functions. Presented proposed by the author the methodological approach and results of construction of the functions of the density distribution for the main indicators for the various objects: the Russian Federation, regions, as well as aggregates ofentrepreneurial structures, specialized in certain forms ofeconomic activity. All the developed functions, as shown by the logical and statistical analysis, are of high quality and well-approximate the original data. In general, the proposed methodological approach is versatile and can be used in further studies of aggregates of entrepreneurial structures. The received results can be applied in solving a wide range of problems justify the need for personnel and financial resources at the federal, regional and municipal levels, as well as the formation of plans and forecasts of development entrepreneurship and improvement of this sector of the economy.
TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY
International Nuclear Information System (INIS)
Crotts, Arlin P. S.
2009-01-01
Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.
Elementary Particle Spectroscopy in Regular Solid Rewrite
International Nuclear Information System (INIS)
Trell, Erik
2008-01-01
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each
Spectrum unfolding by the least-squares methods
International Nuclear Information System (INIS)
Perey, F.G.
1977-01-01
The method of least squares is briefly reviewed, and the conditions under which it may be used are stated. From this analysis, a least-squares approach to the solution of the dosimetry neutron spectrum unfolding problem is introduced. The mathematical solution to this least-squares problem is derived from the general solution. The existence of this solution is analyzed in some detail. A chi 2 -test is derived for the consistency of the input data which does not require the solution to be obtained first. The fact that the problem is technically nonlinear, but should be treated in general as a linear one, is argued. Therefore, the solution should not be obtained by iteration. Two interpretations are made for the solution of the code STAY'SL, which solves this least-squares problem. The relationship of the solution to this least-squares problem to those obtained currently by other methods of solving the dosimetry neutron spectrum unfolding problem is extensively discussed. It is shown that the least-squares method does not require more input information than would be needed by current methods in order to estimate the uncertainties in their solutions. From this discussion it is concluded that the proposed least-squares method does provide the best complete solution, with uncertainties, to the problem as it is understood now. Finally, some implications of this method are mentioned regarding future work required in order to exploit its potential fully
Progressive image denoising through hybrid graph Laplacian regularization: a unified framework.
Liu, Xianming; Zhai, Deming; Zhao, Debin; Zhai, Guangtao; Gao, Wen
2014-04-01
Recovering images from corrupted observations is necessary for many real-world applications. In this paper, we propose a unified framework to perform progressive image recovery based on hybrid graph Laplacian regularized regression. We first construct a multiscale representation of the target image by Laplacian pyramid, then progressively recover the degraded image in the scale space from coarse to fine so that the sharp edges and texture can be eventually recovered. On one hand, within each scale, a graph Laplacian regularization model represented by implicit kernel is learned, which simultaneously minimizes the least square error on the measured samples and preserves the geometrical structure of the image data space. In this procedure, the intrinsic manifold structure is explicitly considered using both measured and unmeasured samples, and the nonlocal self-similarity property is utilized as a fruitful resource for abstracting a priori knowledge of the images. On the other hand, between two successive scales, the proposed model is extended to a projected high-dimensional feature space through explicit kernel mapping to describe the interscale correlation, in which the local structure regularity is learned and propagated from coarser to finer scales. In this way, the proposed algorithm gradually recovers more and more image details and edges, which could not been recovered in previous scale. We test our algorithm on one typical image recovery task: impulse noise removal. Experimental results on benchmark test images demonstrate that the proposed method achieves better performance than state-of-the-art algorithms.
TAHRIR SQUARE: A Narrative of a Public Space
Directory of Open Access Journals (Sweden)
Hussam Hussein Salama
2013-03-01
Full Text Available This paper investigates the patterns of public discourse that occurred in Tahrir Square during the 18 days of the Egyptian Revolution. For protestors Tahrir Square became an urban utopia, a place of community engagement, collective projects, social discourse, and most importantly, freedom of speech and expression. This paper traces these forms of spatial adaptation, and the patterns of social organization and discourse that emerged in the square during that period. The paper builds on Henri Lefebvre’s interpretation of space and his three dimensional conceptualization: the perceived, the conceived, and the lived.
The circumference of the square of a connected graph
DEFF Research Database (Denmark)
Brandt, S.; Muttel, J.; Rautenbach, D.
2014-01-01
The celebrated result of Fleischner states that the square of every 2-connected graph is Hamiltonian. We investigate what happens if the graph is just connected. For every n a parts per thousand yen 3, we determine the smallest length c(n) of a longest cycle in the square of a connected graph of ...... of order n and show that c(n) is a logarithmic function in n. Furthermore, for every c a parts per thousand yen 3, we characterize the connected graphs of largest order whose square contains no cycle of length at least c....
Radix-16 Combined Division and Square Root Unit
DEFF Research Database (Denmark)
Nannarelli, Alberto
2011-01-01
Division and square root, based on the digitrecurrence algorithm, can be implemented in a combined unit. Several implementations of combined division/square root units have been presented mostly for radices 2 and 4. Here, we present a combined radix-16 unit obtained by overlapping two radix-4...... result digit selection functions, as it is normally done for division only units. The latency of the unit is reduced by retiming and low power methods are applied as well. The proposed unit is compared to a radix-4 combined division/square root unit, and to a radix-16 unit, obtained by cascading two...
Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao
2018-06-01
To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.
Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou
2018-02-08
The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.
First-order system least squares for the pure traction problem in planar linear elasticity
Energy Technology Data Exchange (ETDEWEB)
Cai, Z.; Manteuffel, T.; McCormick, S.; Parter, S.
1996-12-31
This talk will develop two first-order system least squares (FOSLS) approaches for the solution of the pure traction problem in planar linear elasticity. Both are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. One approach, which uses L{sup 2} norms to define the FOSLS functional, is shown under certain H{sup 2} regularity assumptions to admit optimal H{sup 1}-like performance for standard finite element discretization and standard multigrid solution methods that is uniform in the Poisson ratio for all variables. The second approach, which is based on H{sup -1} norms, is shown under general assumptions to admit optimal uniform performance for displacement flux in an L{sup 2} norm and for displacement in an H{sup 1} norm. These methods do not degrade as other methods generally do when the material properties approach the incompressible limit.
Regularization of plurisubharmonic functions with a net of good points
Li, Long
2017-01-01
The purpose of this article is to present a new regularization technique of quasi-plurisubharmoinc functions on a compact Kaehler manifold. The idea is to regularize the function on local coordinate balls first, and then glue each piece together. Therefore, all the higher order terms in the complex Hessian of this regularization vanish at the center of each coordinate ball, and all the centers build a delta-net of the manifold eventually.
A Newton Algorithm for Multivariate Total Least Squares Problems
Directory of Open Access Journals (Sweden)
WANG Leyang
2016-04-01
Full Text Available In order to improve calculation efficiency of parameter estimation, an algorithm for multivariate weighted total least squares adjustment based on Newton method is derived. The relationship between the solution of this algorithm and that of multivariate weighted total least squares adjustment based on Lagrange multipliers method is analyzed. According to propagation of cofactor, 16 computational formulae of cofactor matrices of multivariate total least squares adjustment are also listed. The new algorithm could solve adjustment problems containing correlation between observation matrix and coefficient matrix. And it can also deal with their stochastic elements and deterministic elements with only one cofactor matrix. The results illustrate that the Newton algorithm for multivariate total least squares problems could be practiced and have higher convergence rate.
MIDPOINT TWO- STEPS RULE FOR THE SQUARE ROOT METHOD
African Journals Online (AJOL)
DR S.E UWAMUSI
Aberth third order method for finding zeros of a polynomial in interval ... KEY WORDS: Square root iteration, midpoint two steps Method, ...... A New set of Methods for the simultaneous determination of zeros of polynomial equation and iterative ...
Chi-square test and its application in hypothesis testing
Directory of Open Access Journals (Sweden)
Rakesh Rana
2015-01-01
Full Text Available In medical research, there are studies which often collect data on categorical variables that can be summarized as a series of counts. These counts are commonly arranged in a tabular format known as a contingency table. The chi-square test statistic can be used to evaluate whether there is an association between the rows and columns in a contingency table. More specifically, this statistic can be used to determine whether there is any difference between the study groups in the proportions of the risk factor of interest. Chi-square test and the logic of hypothesis testing were developed by Karl Pearson. This article describes in detail what is a chi-square test, on which type of data it is used, the assumptions associated with its application, how to manually calculate it and how to make use of an online calculator for calculating the Chi-square statistics and its associated P-value.
Multi-source least-squares migration of marine data
Wang, Xin; Schuster, Gerard T.
2012-01-01
Kirchhoff based multi-source least-squares migration (MSLSM) is applied to marine streamer data. To suppress the crosstalk noise from the excitation of multiple sources, a dynamic encoding function (including both time-shifts and polarity changes
Squaring the Circle: Attempting Peace in Northern Ireland
National Research Council Canada - National Science Library
Marchi, Gina
1997-01-01
Finding a political framework for self-government in Northern Ireland that will be supported by both nationalists and unionists is referred to as a modern day attempt to do the impossible-to 'square the circle...
Latin Square Thue-Morse Sequences are Overlap-Free
Directory of Open Access Journals (Sweden)
Christopher Robinson Tompkins
2007-01-01
Full Text Available We define a morphism based upon a Latin square that generalizes the Thue-Morse morphism. We prove that fixed points of this morphism are overlap-free sequences, generalizing results of Allouche - Shallit and Frid.
Suppression of vortex shedding around a square cylinder using ...
Indian Academy of Sciences (India)
control of vortex shedding of square cylinders using blowing or suction. ... also showed complete suppression of vortex shedding if suction velocity falls between 0.40 .... equations such that mass balance (continuity) is satisfied simultaneously.
Plane-wave Least-squares Reverse Time Migration
Dai, Wei; Schuster, Gerard T.
2012-01-01
convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A
3D plane-wave least-squares Kirchhoff migration
Wang, Xin; Dai, Wei; Huang, Yunsong; Schuster, Gerard T.
2014-01-01
A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition
Making the most out of least-squares migration
Huang, Yunsong; Dutta, Gaurav; Dai, Wei; Wang, Xin; Schuster, Gerard T.; Yu, Jianhua
2014-01-01
) weak amplitudes resulting from geometric spreading, attenuation, and defocusing. These problems can be remedied in part by least-squares migration (LSM), also known as linearized seismic inversion or migration deconvolution (MD), which aims to linearly
Making the most out of the least (squares migration)
Dutta, Gaurav; Huang, Yunsong; Dai, Wei; Wang, Xin; Schuster, Gerard T.
2014-01-01
) ringiness caused by a ringy source wavelet. To partly remedy these problems, least-squares migration (LSM), also known as linearized seismic inversion or migration deconvolution (MD), proposes to linearly invert seismic data for the reflectivity distribution
Least squares analysis of fission neutron standard fields
International Nuclear Information System (INIS)
Griffin, P.J.; Williams, J.G.
1997-01-01
A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252 Cf spontaneous fission and 235 U thermal fission fields are presented
On square-free edge colorings of graphs
DEFF Research Database (Denmark)
Barat, Janos; Varju, P.P.
2008-01-01
An edge coloring of a graph is called square-free, if the sequence of colors on certain walks is not a square, that is not of the form x(1,)...,x(m), x(1),...,x(m), for any m epsilon N. Recently, various classes of walks have been suggested to be considered in the above definition. We construct...... graphs, for which the minimum number of colors needed for a square-free coloring is different if the considered set of walks vary, solving a problem posed by Bre ar and Klav2ar. We also prove the following: if an edge coloring of G is not square-free (even in the most general sense), then the length...
A new stabilized least-squares imaging condition
International Nuclear Information System (INIS)
Vivas, Flor A; Pestana, Reynam C; Ursin, Bjørn
2009-01-01
The classical deconvolution imaging condition consists of dividing the upgoing wave field by the downgoing wave field and summing over all frequencies and sources. The least-squares imaging condition consists of summing the cross-correlation of the upgoing and downgoing wave fields over all frequencies and sources, and dividing the result by the total energy of the downgoing wave field. This procedure is more stable than using the classical imaging condition, but it still requires stabilization in zones where the energy of the downgoing wave field is small. To stabilize the least-squares imaging condition, the energy of the downgoing wave field is replaced by its average value computed in a horizontal plane in poorly illuminated regions. Applications to the Marmousi and Sigsbee2A data sets show that the stabilized least-squares imaging condition produces better images than the least-squares and cross-correlation imaging conditions
International Nuclear Information System (INIS)
Keller, Kai Johannes
2010-04-01
The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Keller, Kai Johannes
2010-04-15
The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)
Higher order total variation regularization for EIT reconstruction.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut
2018-01-08
Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.
Perception of Length to Width Relations of City Squares
Directory of Open Access Journals (Sweden)
Harold T. Nefs
2013-04-01
Full Text Available In this paper, we focus on how people perceive the aspect ratio of city squares. Earlier research has focused on distance perception but not so much on the perceived aspect ratio of the surrounding space. Furthermore, those studies have focused on “open” spaces rather than urban areas enclosed by walls, houses and filled with people, cars, etc. In two experiments, we therefore measured, using a direct and an indirect method, the perceived aspect ratio of five city squares in the historic city center of Delft, the Netherlands. We also evaluated whether the perceived aspect ratio of city squares was affected by the position of the observer on the square. In the first experiment, participants were asked to set the aspect ratio of a small rectangle such that it matched the perceived aspect ratio of the city square. In the second experiment, participants were asked to estimate the length and width of the city square separately. In the first experiment, we found that the perceived aspect ratio was in general lower than the physical aspect ratio. However, in the second experiment, we found that the calculated ratios were close to veridical except for the most elongated city square. We conclude therefore that the outcome depends on how the measurements are performed. Furthermore, although indirect measurements are nearly veridical, the perceived aspect ratio is an underestimation of the physical aspect ratio when measured in a direct way. Moreover, the perceived aspect ratio also depends on the location of the observer. These results may be beneficial to the design of large open urban environments, and in particular to rectangular city squares.
Consistency of the least weighted squares under heteroscedasticity
Czech Academy of Sciences Publication Activity Database
Víšek, Jan Ámos
2011-01-01
Roč. 2011, č. 47 (2011), s. 179-206 ISSN 0023-5954 Grant - others:GA UK(CZ) GA402/09/055 Institutional research plan: CEZ:AV0Z10750506 Keywords : Regression * Consistency * The least weighted squares * Heteroscedasticity Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/visek-consistency of the least weighted squares under heteroscedasticity.pdf
Behaviour of FRP confined concrete in square columns
Diego Villalón, Ana de; Arteaga Iriarte, Ángel; Fernandez Gomez, Jaime Antonio; Perera Velamazán, Ricardo; Cisneros, Daniel
2015-01-01
A significant amount of research has been conducted on FRP-confined circular columns, but much less is known about rectangular/square columns in which the effectiveness of confinement is much reduced. This paper presents the results of experimental investigations on low strength square concrete columns confined with FRP. Axial compression tests were performed on ten intermediate size columns. The tests results indicate that FRP composites can significantly improve the bearing capacity and duc...
A Simple Square Rooting Circuit Based on Operational Amplifiers (OPAMPs
Directory of Open Access Journals (Sweden)
K. C. Selvam
2013-02-01
Full Text Available A simple circuit which accepts a negative voltage as input and provides an output voltage equal to the square root of the input voltage is described in this paper. The square rooting operation is dependent only on the ratio of two resistors and a DC voltage. Hence, the required accuracy can be obtained by employing precision resistors and a stable reference voltage. The feasibility of the circuit is examined by testing the results on a proto type.
Analisa Faktor Pembentuk Kualitas Layanan Di Starbucks the Square Surabaya
Tanujaya, Jimmy
2013-01-01
— Starbucks merupakan salah satu Perusahaan yang bergerak dibidang kedai kopi. Disini peneliti ingin meneliti faktor-faktor apa saja yang membentuk kualitas layanan di Starbucks The Square.Penelitian ini dilakukan untuk mengetahui dan menganalisis faktor apa saja yang membentuk kualitas layanan di Starbucks. Penelitian ini menggunakan jenis penelitian kuantitatif yang bertujuan untuk menganalisis faktor-faktor yang membentuk kualitas layanan di Starbucks The Square dengan menggunakan kuesion...
A Generalized Autocovariance Least-Squares Method for Covariance Estimation
DEFF Research Database (Denmark)
Åkesson, Bernt Magnus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad
2007-01-01
A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.......A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter....
Mean Square Synchronization of Stochastic Nonlinear Delayed Coupled Complex Networks
Directory of Open Access Journals (Sweden)
Chengrong Xie
2013-01-01
Full Text Available We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.
Energy Technology Data Exchange (ETDEWEB)
Kniehl, B.A.; Merebashvili, Z. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Koerner, J.G. [Mainz Univ. (Germany). Inst. fuer Physik; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2008-09-15
We calculate the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) one-loop squared corrections to the production of heavy quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the q anti q production channel the results of this paper complete the calculation of the oneloop squared contributions of the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) radiative QCD corrections to the hadroproduction of heavy flavours. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization. (orig.)
International Nuclear Information System (INIS)
Kniehl, B.A.; Merebashvili, Z.
2008-09-01
We calculate the next-to-next-to-leading order O(α 4 s ) one-loop squared corrections to the production of heavy quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the q anti q production channel the results of this paper complete the calculation of the oneloop squared contributions of the next-to-next-to-leading order O(α 4 s ) radiative QCD corrections to the hadroproduction of heavy flavours. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization. (orig.)
Hoel, Hakon
2016-06-13
A formal mean square error expansion (MSE) is derived for Euler-Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise, a posteriori, adaptive time-stepping Euler-Maruyama algorithm for numerical solutions of SDE, and the resulting algorithm is incorporated into a multilevel Monte Carlo (MLMC) algorithm for weak approximations of SDE. This gives an efficient MSE adaptive MLMC algorithm for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC algorithm is shown to outperform the uniform time-stepping MLMC algorithm by orders of magnitude, producing output whose error with high probability is bounded by TOL > 0 at the near-optimal MLMC cost rate б(TOL log(TOL)) that is achieved when the cost of sample generation is б(1).
International Nuclear Information System (INIS)
Ackroyd, R.T.
1987-01-01
A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)
Time-domain least-squares migration using the Gaussian beam summation method
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-04-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Spontaneous Formation of A Nanotube From A Square Ag Nanowire: An Atomistic View
Konuk Onat, Mine; Durukanoglu, Sondan
2012-02-01
We have performed molecular static calculations to investigate the recently observed phenomenon of the spontaneous formation of a nanotube from a regular, square Ag nanowire[1]. In the simulations, atoms are allowed to interact via the model potential obtained from the modified embedded atom method. Our simulations predict that this particular type of structural phase transformation is controlled by the nature of applied strain, length of the wire and initial cross-sectional shape. For such a perfect structural transformation, the axially oriented fcc nanowire needs (1) to be formed by stacking A and B layers of an fcc crystal, both possessing the geometry of two interpenetrating one-lattice-parameter-wide squares, containing four atoms each, (2) to have an optimum length of eight layers, and (3) to be exposed to a combination of low and high stress along the length direction. The results further offer insights into atomistic nature of this specific structural transformation into a nanotube with the smallest possible cross-section. [1] M.J. Lagos et al., Nature Nanotech. 4, 149 (2009).
Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection
Directory of Open Access Journals (Sweden)
Tian Wang
2013-12-01
Full Text Available The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM, combined with its sparsified version (sparse online LS-OC-SVM. LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.
Regular Breakfast and Blood Lead Levels among Preschool Children
Directory of Open Access Journals (Sweden)
Needleman Herbert
2011-04-01
Full Text Available Abstract Background Previous studies have shown that fasting increases lead absorption in the gastrointestinal tract of adults. Regular meals/snacks are recommended as a nutritional intervention for lead poisoning in children, but epidemiological evidence of links between fasting and blood lead levels (B-Pb is rare. The purpose of this study was to examine the association between eating a regular breakfast and B-Pb among children using data from the China Jintan Child Cohort Study. Methods Parents completed a questionnaire regarding children's breakfast-eating habit (regular or not, demographics, and food frequency. Whole blood samples were collected from 1,344 children for the measurements of B-Pb and micronutrients (iron, copper, zinc, calcium, and magnesium. B-Pb and other measures were compared between children with and without regular breakfast. Linear regression modeling was used to evaluate the association between regular breakfast and log-transformed B-Pb. The association between regular breakfast and risk of lead poisoning (B-Pb≥10 μg/dL was examined using logistic regression modeling. Results Median B-Pb among children who ate breakfast regularly and those who did not eat breakfast regularly were 6.1 μg/dL and 7.2 μg/dL, respectively. Eating breakfast was also associated with greater zinc blood levels. Adjusting for other relevant factors, the linear regression model revealed that eating breakfast regularly was significantly associated with lower B-Pb (beta = -0.10 units of log-transformed B-Pb compared with children who did not eat breakfast regularly, p = 0.02. Conclusion The present study provides some initial human data supporting the notion that eating a regular breakfast might reduce B-Pb in young children. To our knowledge, this is the first human study exploring the association between breakfast frequency and B-Pb in young children.
Rebillat, Marc; Schoukens, Maarten
2018-05-01
Linearity is a common assumption for many real-life systems, but in many cases the nonlinear behavior of systems cannot be ignored and must be modeled and estimated. Among the various existing classes of nonlinear models, Parallel Hammerstein Models (PHM) are interesting as they are at the same time easy to interpret as well as to estimate. One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical least squares (LS) estimation algorithms can be used. In that area, this article introduces a regularized LS estimation algorithm inspired on some of the recently developed regularized impulse response estimation techniques. Another mean to estimate PHM consists in using parametric or non-parametric exponential sine sweeps (ESS) based methods. These methods (LS and ESS) are founded on radically different mathematical backgrounds but are expected to tackle the same issue. A methodology is proposed here to compare them with respect to (i) their accuracy, (ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values of methods respective parameters and of signal to noise ratio. Results show that, for a given set of data points, the ESS method is less demanding in computational resources than the LS method but that it is also less accurate. Furthermore, the LS method needs parameters to be set in advance whereas the ESS method is not subject to conditioning issues and can be fully non-parametric. In summary, for a given set of data points, ESS method can provide a first, automatic, and quick overview of a nonlinear system than can guide more computationally demanding and precise methods, such as the regularized LS one proposed here.
Ren, Jie; He, Tao; Li, Ye; Liu, Sai; Du, Yinhao; Jiang, Yu; Wu, Cen
2017-05-16
Over the past decades, the prevalence of type 2 diabetes mellitus (T2D) has been steadily increasing around the world. Despite large efforts devoted to better understand the genetic basis of the disease, the identified susceptibility loci can only account for a small portion of the T2D heritability. Some of the existing approaches proposed for the high dimensional genetic data from the T2D case-control study are limited by analyzing a few number of SNPs at a time from a large pool of SNPs, by ignoring the correlations among SNPs and by adopting inefficient selection techniques. We propose a network constrained regularization method to select important SNPs by taking the linkage disequilibrium into account. To accomodate the case control study, an iteratively reweighted least square algorithm has been developed within the coordinate descent framework where optimization of the regularized logistic loss function is performed with respect to one parameter at a time and iteratively cycle through all the parameters until convergence. In this article, a novel approach is developed to identify important SNPs more effectively through incorporating the interconnections among them in the regularized selection. A coordinate descent based iteratively reweighed least squares (IRLS) algorithm has been proposed. Both the simulation study and the analysis of the Nurses's Health Study, a case-control study of type 2 diabetes data with high dimensional SNP measurements, demonstrate the advantage of the network based approach over the competing alternatives.
Direct numerical simulation of free and forced square jets
International Nuclear Information System (INIS)
Gohil, Trushar B.; Saha, Arun K.; Muralidhar, K.
2015-01-01
Highlights: • Free square jet at Re = 500–2000 is studied using DNS. • Forced square jet at Re = 1000 subjected to varicose perturbation is also investigated at various forcing frequencies. • Vortex interactions within the jet and jet spreading are affected both for free and forced jets. • Perturbation at higher frequency shows axis-switching. - Abstract: Direct numerical simulation (DNS) of incompressible, spatially developing square jets in the Reynolds number range of 500–2000 is reported. The three-dimensional unsteady Navier–Stokes equations are solved using high order spatial and temporal discretization. The objective of the present work is to understand the evolution of free and forced square jets by examining the formation of large-scale structures. Coherent structures and related interactions of free jets suggest control strategies that can be used to achieve enhanced spreading and mixing of the jet with the surrounding fluid. The critical Reynolds number for the onset on unsteadiness in an unperturbed free square jet is found to be 875–900 while it reduces to the range 500–525 in the presence of small-scale perturbations. Disturbances applied at the flow inlet cause saturation of KH-instability and early transition to turbulence. Forced jet calculations have been carried out using varicose perturbation with amplitude of 15%, while frequency is independently varied. Simulations show that the initial development of the square jet is influenced by the four corners leading to the appearance hairpin structures along with the formation of vortex rings. Farther downstream, adjacent vortices strongly interact leading to their rapid breakup. Excitation frequencies in the range 0.4–0.6 cause axis-switching of the jet cross-section. Results show that square jets achieve greater spreading but are less controllable in comparison to the circular ones
Chimeric mitochondrial peptides from contiguous regular and swinger RNA.
Seligmann, Hervé
2016-01-01
Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.
Tur\\'an type inequalities for regular Coulomb wave functions
Baricz, Árpád
2015-01-01
Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.
Regularization and Complexity Control in Feed-forward Networks
Bishop, C. M.
1995-01-01
In this paper we consider four alternative approaches to complexity control in feed-forward networks based respectively on architecture selection, regularization, early stopping, and training with noise. We show that there are close similarities between these approaches and we argue that, for most practical applications, the technique of regularization should be the method of choice.
Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces
F. Vallentin (Frank)
2008-01-01
htmlabstractIn this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite
Degree-regular triangulations of torus and Klein bottle
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 3 ... A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. ... In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices.
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Strictly-regular number system and data structures
DEFF Research Database (Denmark)
Elmasry, Amr Ahmed Abd Elmoneim; Jensen, Claus; Katajainen, Jyrki
2010-01-01
We introduce a new number system that we call the strictly-regular system, which efficiently supports the operations: digit-increment, digit-decrement, cut, concatenate, and add. Compared to other number systems, the strictly-regular system has distinguishable properties. It is superior to the re...
Inclusion Professional Development Model and Regular Middle School Educators
Royster, Otelia; Reglin, Gary L.; Losike-Sedimo, Nonofo
2014-01-01
The purpose of this study was to determine the impact of a professional development model on regular education middle school teachers' knowledge of best practices for teaching inclusive classes and attitudes toward teaching these classes. There were 19 regular education teachers who taught the core subjects. Findings for Research Question 1…
The equivalence problem for LL- and LR-regular grammars
Nijholt, Antinus; Gecsec, F.
It will be shown that the equivalence problem for LL-regular grammars is decidable. Apart from extending the known result for LL(k) grammar equivalence to LLregular grammar equivalence, we obtain an alternative proof of the decidability of LL(k) equivalence. The equivalence prob]em for LL-regular
The Effects of Regular Exercise on the Physical Fitness Levels
Kirandi, Ozlem
2016-01-01
The purpose of the present research is investigating the effects of regular exercise on the physical fitness levels among sedentary individuals. The total of 65 sedentary male individuals between the ages of 19-45, who had never exercises regularly in their lives, participated in the present research. Of these participants, 35 wanted to be…
Regular perturbations in a vector space with indefinite metric
International Nuclear Information System (INIS)
Chiang, C.C.
1975-08-01
The Klein space is discussed in connection with practical applications. Some lemmas are presented which are to be used for the discussion of regular self-adjoint operators. The criteria for the regularity of perturbed operators are given. (U.S.)
Pairing renormalization and regularization within the local density approximation
International Nuclear Information System (INIS)
Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.
2006-01-01
We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications
Cognitive Aspects of Regularity Exhibit When Neighborhood Disappears
Chen, Sau-Chin; Hu, Jon-Fan
2015-01-01
Although regularity refers to the compatibility between pronunciation of character and sound of phonetic component, it has been suggested as being part of consistency, which is defined by neighborhood characteristics. Two experiments demonstrate how regularity effect is amplified or reduced by neighborhood characteristics and reveals the…
Regularity conditions of the field on a toroidal magnetic surface
International Nuclear Information System (INIS)
Bouligand, M.
1985-06-01
We show that a field B vector which is derived from an analytic canonical potential on an ordinary toroidal surface is regular on this surface when the potential satisfies an elliptic equation (owing to the conservative field) subject to certain conditions of regularity of its coefficients [fr
47 CFR 76.614 - Cable television system regular monitoring.
2010-10-01
...-137 and 225-400 MHz shall provide for a program of regular monitoring for signal leakage by... in these bands of 20 uV/m or greater at a distance of 3 meters. During regular monitoring, any leakage source which produces a field strength of 20 uV/m or greater at a distance of 3 meters in the...
Analysis of regularized Navier-Stokes equations, 2
Ou, Yuh-Roung; Sritharan, S. S.
1989-01-01
A practically important regularization of the Navier-Stokes equations was analyzed. As a continuation of the previous work, the structure of the attractors characterizing the solutins was studied. Local as well as global invariant manifolds were found. Regularity properties of these manifolds are analyzed.
20 CFR 226.33 - Spouse regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Spouse regular annuity rate. 226.33 Section... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.33 Spouse regular annuity rate. The final tier I and tier II rates, from §§ 226.30 and 226.32, are...
Optimal behaviour can violate the principle of regularity.
Trimmer, Pete C
2013-07-22
Understanding decisions is a fundamental aim of behavioural ecology, psychology and economics. The regularity axiom of utility theory holds that a preference between options should be maintained when other options are made available. Empirical studies have shown that animals violate regularity but this has not been understood from a theoretical perspective, such decisions have therefore been labelled as irrational. Here, I use models of state-dependent behaviour to demonstrate that choices can violate regularity even when behavioural strategies are optimal. I also show that the range of conditions over which regularity should be violated can be larger when options do not always persist into the future. Consequently, utility theory--based on axioms, including transitivity, regularity and the independence of irrelevant alternatives--is undermined, because even alternatives that are never chosen by an animal (in its current state) can be relevant to a decision.
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.
2012-03-11
The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).
Laplacian manifold regularization method for fluorescence molecular tomography
He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei
2017-04-01
Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.
On squares of representations of compact Lie algebras
Energy Technology Data Exchange (ETDEWEB)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de [Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching (Germany); Zimborás, Zoltán, E-mail: zimboras@gmail.com [Department of Computer Science, University College London, Gower St., London WC1E 6BT (United Kingdom)
2015-08-15
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.
On squares of representations of compact Lie algebras
International Nuclear Information System (INIS)
Zeier, Robert; Zimborás, Zoltán
2015-01-01
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems
Sound field simulation and acoustic animation in urban squares
Kang, Jian; Meng, Yan
2005-04-01
Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.
Energy Technology Data Exchange (ETDEWEB)
Koerner, J.G. [Mainz Univ. (Germany). Inst. fuer Physik; Merebashvili, Z. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2008-02-15
We calculate the NNLO O({alpha}{sup 4}{sub s}) one-loop squared corrections to the production of heavy quark pairs in quark-antiquark annihilations. These are part of the NNLO O({alpha}{sup 4}{sub s}) radiative QCD corrections to this process. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in the dimensional regularization scheme. We find very intriguing factorization properties for the finite part of the amplitudes. (orig.)
International Nuclear Information System (INIS)
Koerner, J.G.
2008-02-01
We calculate the NNLO O(α 4 s ) one-loop squared corrections to the production of heavy quark pairs in quark-antiquark annihilations. These are part of the NNLO O(α 4 s ) radiative QCD corrections to this process. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in the dimensional regularization scheme. We find very intriguing factorization properties for the finite part of the amplitudes. (orig.)
Symplectic finite element scheme: application to a driven problem with a regular singularity
Energy Technology Data Exchange (ETDEWEB)
Pletzer, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear `tent` elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs.
Symplectic finite element scheme: application to a driven problem with a regular singularity
International Nuclear Information System (INIS)
Pletzer, A.
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear 'tent' elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2007-01-01
This paper describes new extensions to the previously published multivariate alteration detection (MAD) method for change detection in bi-temporal, multi- and hypervariate data such as remote sensing imagery. Much like boosting methods often applied in data mining work, the iteratively reweighted...... to observations that show little change, i.e., for which the sum of squared, standardized MAD variates is small, and small weights are assigned to observations for which the sum is large. Like the original MAD method, the iterative extension is invariant to linear (affine) transformations of the original...... an agricultural region in Kenya, and hyperspectral airborne HyMap data from a small rural area in southeastern Germany are given. The latter case demonstrates the need for regularization....
International Nuclear Information System (INIS)
Kowsary, F.; Pooladvand, K.; Pourshaghaghy, A.
2007-01-01
In this paper, an appropriate distribution of the heating elements' strengths in a radiation furnace is estimated using inverse methods so that a pre-specified temperature and heat flux distribution is attained on the design surface. Minimization of the sum of the squares of the error function is performed using the variable metric method (VMM), and the results are compared with those obtained by the conjugate gradient method (CGM) established previously in the literature. It is shown via test cases and a well-founded validation procedure that the VMM, when using a 'regularized' estimator, is more accurate and is able to reach at a higher quality final solution as compared to the CGM. The test cases used in this study were two-dimensional furnaces filled with an absorbing, emitting, and scattering gas
Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach
Chiara D'Autilia, Maria; Sgura, Ivonne; Bozzini, Benedetto
2017-12-01
In this paper we consider a parameter identification problem (PIP) for data oscillating in time, that can be described in terms of the dynamics of some ordinary differential equation (ODE) model, resulting in an optimization problem constrained by the ODEs. In problems with this type of data structure, simple application of the direct method of control theory (discretize-then-optimize) yields a least-squares cost function exhibiting multiple ‘low’ minima. Since in this situation any optimization algorithm is liable to fail in the approximation of a good solution, here we propose a Fourier regularization approach that is able to identify an iso-frequency manifold {{ S}} of codimension-one in the parameter space \