ILP-2 modeling and virtual screening of an FDA-approved library:a possible anticancer therapy.
Khalili, Saeed; Mohammadpour, Hemn; Shokrollahi Barough, Mahideh; Kokhaei, Parviz
2016-06-23
The members of the inhibitors of apoptosis protein (IAP) family inhibit diverse components of the caspase signaling pathway, notably caspase 3, 7, and 9. ILP-2 (BIRC-8) is the most recently identified member of the IAPs, mainly interacting with caspase 9. This interaction would eventually lead to death resistance in the case of cancerous cells. Therefore, structural modeling of ILP-2 and finding applicable inhibitors of its interaction with caspase 9 are a compelling challenge. Three main protein modeling approaches along with various model refinement measures were harnessed to achieve a reliable 3D model, using state-of-the-art software. Thereafter, the selected model was employed to perform virtual screening of an FDA approved library. A model built by a combinatorial approach (homology and ab initio approaches) was chosen as the best model. Model refinement processes successfully bolstered the model quality. Virtual screening of the compound library introduced several high affinity inhibitor candidates that interact with functional residues of ILP2. Given the 3D structure of the ILP2 molecule, we found promising inhibitory molecules. In addition to high affinity towards the ILP2 molecule, these molecules interact with residues that play pivotal rules in ILP2-caspase interaction. These molecules would inhibit ILP2-caspase interaction and consequently would lead to reactivated cell apoptosis through the caspases pathway.
77 FR 22625 - Intermediary Lending Pilot (ILP) Program
2012-04-16
... years. SBA collects no fees on the loans and requires no collateral. An ILP Intermediary must use the... receive direct loans of up to $1,000,000 each. ILP Intermediaries must use the ILP Loan funds to make loans of up to $200,000 to startup, newly established, or growing small business concerns. ILP...
Physical model of dimensional regularization
Energy Technology Data Exchange (ETDEWEB)
Schonfeld, Jonathan F.
2016-12-15
We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)
Regularization modeling for large-eddy simulation
Geurts, Bernardus J.; Holm, D.D.
2003-01-01
A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of
A parallel ILP algorithm that incorporates incremental batch learning
Nuno Fonseca; Rui Camacho; Fernado Silva
2003-01-01
In this paper we tackle the problems of eciency and scala-bility faced by Inductive Logic Programming (ILP) systems. We proposethe use of parallelism to improve eciency and the use of an incrementalbatch learning to address the scalability problem. We describe a novelparallel algorithm that incorporates into ILP the method of incremen-tal batch learning. The theoretical complexity of the algorithm indicatesthat a linear speedup can be achieved.
Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'
International Nuclear Information System (INIS)
Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.
1987-01-01
A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)
Consistent Partial Least Squares Path Modeling via Regularization.
Jung, Sunho; Park, JaeHong
2018-01-01
Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Inclusion Professional Development Model and Regular Middle School Educators
Royster, Otelia; Reglin, Gary L.; Losike-Sedimo, Nonofo
2014-01-01
The purpose of this study was to determine the impact of a professional development model on regular education middle school teachers' knowledge of best practices for teaching inclusive classes and attitudes toward teaching these classes. There were 19 regular education teachers who taught the core subjects. Findings for Research Question 1…
Regularized multivariate regression models with skew-t error distributions
Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi
2014-01-01
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both
Chiral Schwinger model and lattice fermionic regularizations
International Nuclear Information System (INIS)
Kieu, T.D.; Sen, D.; Xue, S.
1988-01-01
The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations
Analytic regularization of the Yukawa model at finite temperature
International Nuclear Information System (INIS)
Malbouisson, A.P.C.; Svaiter, N.F.; Svaiter, B.F.
1996-07-01
It is analysed the one-loop fermionic contribution for the scalar effective potential in the temperature dependent Yukawa model. Ir order to regularize the model a mix between dimensional and analytic regularization procedures is used. It is found a general expression for the fermionic contribution in arbitrary spacetime dimension. It is also found that in D = 3 this contribution is finite. (author). 19 refs
Quantum effects and regular cosmological models
International Nuclear Information System (INIS)
Gurovich, V.Ts.; Starobinskij, A.A.; AN SSSR, Moscow. Inst. Teoreticheskoj Fiziki)
1979-01-01
Allowance for the quantum nature of material fields and weak gravitational waves on the background of the classical metric of the cosmological model results in two basic effects: vacuum polarization and particle production. The first of the effects may be taken into account qualitatively by introducing into the lagrangian density of the gravitational field an additional term of the type A+BR 2 +CR 2 In|R/R 0 |; the second effect can be accounted for by prescribing a local rate of particle (graviton) production which is proportional to the square of the scalar curvature R 2 . It is shown that the taking into account of the combined effect of these phenomena on the evolution of a homogeneous anisotropic metric of the first Bianchi type removes the Einstein singularities. Asymptotic approach to the classical model, however, is attained only if additional assumptions are made. At the stage of compression the solution is close to the anisotropic vacuum Kasner solution; at the expansion stage it tends to the isotropic Friedman solution in which matter is produced by the gravitational field
Mathematical Modeling the Geometric Regularity in Proteus Mirabilis Colonies
Zhang, Bin; Jiang, Yi; Minsu Kim Collaboration
Proteus Mirabilis colony exhibits striking spatiotemporal regularity, with concentric ring patterns with alternative high and low bacteria density in space, and periodicity for repetition process of growth and swarm in time. We present a simple mathematical model to explain the spatiotemporal regularity of P. Mirabilis colonies. We study a one-dimensional system. Using a reaction-diffusion model with thresholds in cell density and nutrient concentration, we recreated periodic growth and spread patterns, suggesting that the nutrient constraint and cell density regulation might be sufficient to explain the spatiotemporal periodicity in P. Mirabilis colonies. We further verify this result using a cell based model.
Consistent Partial Least Squares Path Modeling via Regularization
Directory of Open Access Journals (Sweden)
Sunho Jung
2018-02-01
Full Text Available Partial least squares (PLS path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc, designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Stochastic dynamic modeling of regular and slow earthquakes
Aso, N.; Ando, R.; Ide, S.
2017-12-01
Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal
Chiral Thirring–Wess model with Faddeevian regularization
International Nuclear Information System (INIS)
Rahaman, Anisur
2015-01-01
Replacing vector type of interaction of the Thirring–Wess model by the chiral type a new model is presented which is termed here as chiral Thirring–Wess model. Ambiguity parameters of regularization are so chosen that the model falls into the Faddeevian class. The resulting Faddeevian class of model in general does not possess Lorentz invariance. However we can exploit the arbitrariness admissible in the ambiguity parameters to relate the quantum mechanically generated ambiguity parameters with the classical parameter involved in the masslike term of the gauge field which helps to maintain physical Lorentz invariance instead of the absence of manifestly Lorentz covariance of the model. The phase space structure and the theoretical spectrum of this class of model have been determined through Dirac’s method of quantization of constraint system
Universal Regularizers For Robust Sparse Coding and Modeling
Ramirez, Ignacio; Sapiro, Guillermo
2010-01-01
Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. Based on a codelength minimization interpretation of sparse coding, and using tools from universal coding...
Mixture models with entropy regularization for community detection in networks
Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang
2018-04-01
Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.
Optimization of the Regularization in Background and Foreground Modeling
Directory of Open Access Journals (Sweden)
Si-Qi Wang
2014-01-01
Full Text Available Background and foreground modeling is a typical method in the application of computer vision. The current general “low-rank + sparse” model decomposes the frames from the video sequences into low-rank background and sparse foreground. But the sparse assumption in such a model may not conform with the reality, and the model cannot directly reflect the correlation between the background and foreground either. Thus, we present a novel model to solve this problem by decomposing the arranged data matrix D into low-rank background L and moving foreground M. Here, we only need to give the priori assumption of the background to be low-rank and let the foreground be separated from the background as much as possible. Based on this division, we use a pair of dual norms, nuclear norm and spectral norm, to regularize the foreground and background, respectively. Furthermore, we use a reweighted function instead of the normal norm so as to get a better and faster approximation model. Detailed explanation based on linear algebra about our two models will be presented in this paper. By the observation of the experimental results, we can see that our model can get better background modeling, and even simplified versions of our algorithms perform better than mainstream techniques IALM and GoDec.
Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes
Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.
2017-08-01
Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.
Operator regularization in the Weinberg-Salam model
International Nuclear Information System (INIS)
Chowdhury, A.M.; McKeon, D.G.C.
1987-01-01
The technique of operator regularization is applied to the Weinberg-Salam model. By directly regulating operators that arise in the course of evaluating path integrals in the background-field formalism, we preserve all symmetries of the theory. An expansion due to Schwinger is employed to compute amplitudes perturbatively, thereby avoiding Feynman diagrams. No explicitly divergent quantities arise in this approach. The general features of the method are outlined with particular attention paid to the problem of simultaneously regulating functions of an operator A and inverse functions upon which A itself depends. Specific application is made to computation of the one-loop contribution to the muon-photon vertex in the Weinberg-Salam model in the limit of zero momentum transfer to the photon
Regularized multivariate regression models with skew-t error distributions
Chen, Lianfu
2014-06-01
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.
SPATIAL MODELING OF SOLID-STATE REGULAR POLYHEDRA (SOLIDS OF PLATON IN AUTOCAD SYSTEM
Directory of Open Access Journals (Sweden)
P. V. Bezditko
2009-03-01
Full Text Available This article describes the technology of modeling regular polyhedra by graphic methods. The authors came to the conclusion that in order to create solid models of regular polyhedra the method of extrusion is best to use.
On Regularity Criteria for the Two-Dimensional Generalized Liquid Crystal Model
Directory of Open Access Journals (Sweden)
Yanan Wang
2014-01-01
Full Text Available We establish the regularity criteria for the two-dimensional generalized liquid crystal model. It turns out that the global existence results satisfy our regularity criteria naturally.
Spectrally-consistent regularization modeling of turbulent natural convection flows
International Nuclear Information System (INIS)
Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel
2012-01-01
The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.
Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes
Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.
2018-01-01
Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.
Regularization dependence on phase diagram in Nambu–Jona-Lasinio model
International Nuclear Information System (INIS)
Kohyama, H.; Kimura, D.; Inagaki, T.
2015-01-01
We study the regularization dependence on meson properties and the phase diagram of quark matter by using the two flavor Nambu–Jona-Lasinio model. The model also has the parameter dependence in each regularization, so we explicitly give the model parameters for some sets of the input observables, then investigate its effect on the phase diagram. We find that the location or the existence of the critical end point highly depends on the regularization methods and the model parameters. Then we think that regularization and parameters are carefully considered when one investigates the QCD critical end point in the effective model studies
2010-10-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD10-7-000] ILP Effectiveness Evaluation 2010; Additional Notice of Multi- Stakeholder Technical Conference on the Integrated..., Teleconferences, Regional Workshops And Multi-Stakeholder Technical Conference On The Integrated Licensing Process...
Differential regularization of a non-relativistic anyon model
International Nuclear Information System (INIS)
Freedman, D.Z.; Rius, N.
1993-07-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field φ with λ(φ * φ) 2 self-interaction and coupling to a statistics-changing 0(1) Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the φ * φ * φφ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the β-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to β(λ, e) vanish, and β(λ, ε) itself vanishes when the ''self-dual'' condition relating λ to the gauge coupling e is imposed. (author). 12 refs, 1 fig
Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model
Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.
2018-04-01
The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.
M. Asai (Manabu); M.J. McAleer (Michael)
2016-01-01
textabstractThe paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X), or the MALMX model, with dynamic conditional correlations, appropriate regularity conditions, and associated asymptotic theory. This enables checking of internal consistency
Regularity of solutions of a phase field model
Amler, Thomas
2013-01-01
Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.
Anisotropic Third-Order Regularization for Sparse Digital Elevation Models
Lellmann, Jan; Morel, Jean-Michel; Schö nlieb, Carola-Bibiane
2013-01-01
features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE
Regularization of quantum gravity in the matrix model approach
International Nuclear Information System (INIS)
Ueda, Haruhiko
1991-02-01
We study divergence problem of the partition function in the matrix model approach for two-dimensional quantum gravity. We propose a new model V(φ) = 1/2Trφ 2 + g 4 /NTrφ 4 + g'/N 4 Tr(φ 4 ) 2 and show that in the sphere case it has no divergence problem and the critical exponent is of pure gravity. (author)
Critical Behavior of the Annealed Ising Model on Random Regular Graphs
Can, Van Hao
2017-11-01
In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.
A regular analogue of the Smilansky model: spectral properties
Czech Academy of Sciences Publication Activity Database
Barseghyan, Diana; Exner, Pavel
2017-01-01
Roč. 80, č. 2 (2017), s. 177-192 ISSN 0034-4877 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : discrete spectrum * eigenvalue estimates * Smilansky model * spectral transition Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.604, year: 2016
Novel Harmonic Regularization Approach for Variable Selection in Cox’s Proportional Hazards Model
Directory of Open Access Journals (Sweden)
Ge-Jin Chu
2014-01-01
Full Text Available Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2regularizations, to select key risk factors in the Cox’s proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL, the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.
Anisotropic Third-Order Regularization for Sparse Digital Elevation Models
Lellmann, Jan
2013-01-01
We consider the problem of interpolating a surface based on sparse data such as individual points or level lines. We derive interpolators satisfying a list of desirable properties with an emphasis on preserving the geometry and characteristic features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE and higher-order total variation methods qualitatively and quantitatively on real-world digital elevation data. © 2013 Springer-Verlag.
Lin, Geng; Guan, Jian; Feng, Huibin
2018-06-01
The positive influence dominating set problem is a variant of the minimum dominating set problem, and has lots of applications in social networks. It is NP-hard, and receives more and more attention. Various methods have been proposed to solve the positive influence dominating set problem. However, most of the existing work focused on greedy algorithms, and the solution quality needs to be improved. In this paper, we formulate the minimum positive influence dominating set problem as an integer linear programming (ILP), and propose an ILP based memetic algorithm (ILPMA) for solving the problem. The ILPMA integrates a greedy randomized adaptive construction procedure, a crossover operator, a repair operator, and a tabu search procedure. The performance of ILPMA is validated on nine real-world social networks with nodes up to 36,692. The results show that ILPMA significantly improves the solution quality, and is robust.
Bayesian estimation of regularization parameters for deformable surface models
International Nuclear Information System (INIS)
Cunningham, G.S.; Lehovich, A.; Hanson, K.M.
1999-01-01
In this article the authors build on their past attempts to reconstruct a 3D, time-varying bolus of radiotracer from first-pass data obtained by the dynamic SPECT imager, FASTSPECT, built by the University of Arizona. The object imaged is a CardioWest total artificial heart. The bolus is entirely contained in one ventricle and its associated inlet and outlet tubes. The model for the radiotracer distribution at a given time is a closed surface parameterized by 482 vertices that are connected to make 960 triangles, with nonuniform intensity variations of radiotracer allowed inside the surface on a voxel-to-voxel basis. The total curvature of the surface is minimized through the use of a weighted prior in the Bayesian framework, as is the weighted norm of the gradient of the voxellated grid. MAP estimates for the vertices, interior intensity voxels and background count level are produced. The strength of the priors, or hyperparameters, are determined by maximizing the probability of the data given the hyperparameters, called the evidence. The evidence is calculated by first assuming that the posterior is approximately normal in the values of the vertices and voxels, and then by evaluating the integral of the multi-dimensional normal distribution. This integral (which requires evaluating the determinant of a covariance matrix) is computed by applying a recent algorithm from Bai et. al. that calculates the needed determinant efficiently. They demonstrate that the radiotracer is highly inhomogeneous in early time frames, as suspected in earlier reconstruction attempts that assumed a uniform intensity of radiotracer within the closed surface, and that the optimal choice of hyperparameters is substantially different for different time frames
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
Analytic supersymmetric regularization for the pure N=1 super-Yang-Mills model
International Nuclear Information System (INIS)
Abdalla, E.; Jasinschi, R.S.
1987-01-01
We calculate for the pure N=1 super-Yang-Mills model the quantum correction to the background field strength up to two loops. In using background field method, analytic regularization and Seeley coefficient expansion we show how these corrections arise. Our method differs from the dimensional regularization via dimensional reduction scheme in various respects, in particular to the origin of the background field strength as appearing in the divergent expressions. (orig.)
Regularized integrable version of the one-dimensional quantum sine-Gordon model
International Nuclear Information System (INIS)
Japaridze, G.I.; Nersesyan, A.A.; Wiegmann, P.B.
1983-01-01
The authors derive a regularized exactly solvable version of the one-dimensional quantum sine-Gordon model proceeding from the exact solution of the U(1)-symmetric Thirring model. The ground state and the excitation spectrum are obtained in the region ν 2 < 8π. (Auth.)
Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data
Directory of Open Access Journals (Sweden)
Jaewook Jung
2017-03-01
Full Text Available With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL combined with Hypothesize and Test (HAT. The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International
Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data.
Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho
2017-03-19
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Mehrdad, GOSHTASBPOUR; Center for Theoretical Physics and Mathematics, AEOI:Department of Physics, Shahid Beheshti University
1991-01-01
Extended D^†+D-DD^† Fujikawa regularization of anomaly and a method of integration of fermions for the chiral Schwinger model are criticized. On the basis of the corrected integration method, a new extended version of D^2 is obtained, resulting in the Jackiw-Rajaraman effective action.
Janic, M.
2009-01-01
This paper develops an analytical model for the assessment of the cost performance of a given logistics network operating under regular and irregular (disruptive) conditions. In addition, the paper aims to carry out a sensitivity analysis of this cost with respect to changes of the most influencing
Optimal control of a head-of-line processor sharing model with regular and opportunity customers
Wijk, van A.C.C.
2011-01-01
Motivated by a workload control setting, we study a model where two types of customers are served by a single server according to the head-of-line processor sharing discipline. Regular customers and opportunity customers are arriving to the system according to two independent Poisson processes, each
Boundary regularity of Nevanlinna domains and univalent functions in model subspaces
International Nuclear Information System (INIS)
Baranov, Anton D; Fedorovskiy, Konstantin Yu
2011-01-01
In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form K Θ =H 2 ominus ΘH 2 , where Θ is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.
UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA
Directory of Open Access Journals (Sweden)
IONIŢĂ Elena
2015-06-01
Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.
Yu, Yan; Qiu, Robin G
2014-01-01
Microblog that provides us a new communication and information sharing platform has been growing exponentially since it emerged just a few years ago. To microblog users, recommending followees who can serve as high quality information sources is a competitive service. To address this problem, in this paper we propose a matrix factorization model with structural regularization to improve the accuracy of followee recommendation in microblog. More specifically, we adapt the matrix factorization model in traditional item recommender systems to followee recommendation in microblog and use structural regularization to exploit structure information of social network to constrain matrix factorization model. The experimental analysis on a real-world dataset shows that our proposed model is promising.
Castellanos, Monica C.; Tang, Jonathan C. Y.; Allan, Douglas W.
2013-01-01
In Drosophila melanogaster, much of our understanding of sexually dimorphic neuronal development and function comes from the study of male behavior, leaving female behavior less well understood. Here, we identify a post-embryonic population of Insulin-like peptide 7 (Ilp7)-expressing neurons in the posterior ventral nerve cord that innervate the reproductive tracts and exhibit a female bias in their function. They form two distinct dorsal and ventral subsets in females, but only a single dorsal subset in males, signifying a rare example of a female-specific neuronal subset. Female post-embryonic Ilp7 neurons are glutamatergic motoneurons innervating the oviduct and are required for female fertility. In males, they are serotonergic/glutamatergic neuromodulatory neurons innervating the seminal vesicle but are not required for male fertility. In both sexes, these neurons express the sex-differentially spliced fruitless-P1 transcript but not doublesex. The male fruitless-P1 isoform (fruM) was necessary and sufficient for serotonin expression in the shared dorsal Ilp7 subset, but although it was necessary for eliminating female-specific Ilp7 neurons in males, it was not sufficient for their elimination in females. By contrast, sex-specific RNA-splicing by female-specific transformer is necessary for female-type Ilp7 neurons in females and is sufficient for their induction in males. Thus, the emergence of female-biased post-embryonic Ilp7 neurons is mediated in a subset-specific manner by a tra- and fru-dependent mechanism in the shared dorsal subset, and a tra-dependent, fru-independent mechanism in the female-specific subset. These studies provide an important counterpoint to studies of the development and function of male-biased neuronal dimorphism in Drosophila. PMID:23981656
S-matrix regularities of two-dimensional sigma-models of Stiefel manifolds
International Nuclear Information System (INIS)
Flume-Gorczyca, B.
1980-01-01
The S-matrices of the two-dimensional nonlinear O(n + m)/O(n) and O(n + m)/O(n) x O(m) sigma-models corresponding to Stiefel and Grassmann manifolds, respectively, are compared in leading order in 1/n. It is shown, that after averaging over O(m) labels of the incoming and outgoing particles, the S-matrices of both models become identical. This result explains why commonly expected regularities of the Grassmann models, in particular absence of particle production, are found, modulo an O(m) average, also in Stiefel models. (orig.)
Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction
Aarts, Fides; Jonsson, Bengt; Uijen, Johan
In order to facilitate model-based verification and validation, effort is underway to develop techniques for generating models of communication system components from observations of their external behavior. Most previous such work has employed regular inference techniques which generate modest-size finite-state models. They typically suppress parameters of messages, although these have a significant impact on control flow in many communication protocols. We present a framework, which adapts regular inference to include data parameters in messages and states for generating components with large or infinite message alphabets. A main idea is to adapt the framework of predicate abstraction, successfully used in formal verification. Since we are in a black-box setting, the abstraction must be supplied externally, using information about how the component manages data parameters. We have implemented our techniques by connecting the LearnLib tool for regular inference with the protocol simulator ns-2, and generated a model of the SIP component as implemented in ns-2.
Statistics of the Navier–Stokes-alpha-beta regularization model for fluid turbulence
International Nuclear Information System (INIS)
Hinz, Denis F; Kim, Tae-Yeon; Fried, Eliot
2014-01-01
We explore one-point and two-point statistics of the Navier–Stokes-αβ regularization model at moderate Reynolds number (Re ≈ 200) in homogeneous isotropic turbulence. The results are compared to the limit cases of the Navier–Stokes-α model and the Navier–Stokes-αβ model without subgrid-scale stress, as well as with high-resolution direct numerical simulation. After reviewing spectra of different energy norms of the Navier–Stokes-αβ model, the Navier–Stokes-α model, and Navier–Stokes-αβ model without subgrid-scale stress, we present probability density functions and normalized probability density functions of the filtered and unfiltered velocity increments along with longitudinal velocity structure functions of the regularization models and direct numerical simulation results. We highlight differences in the statistical properties of the unfiltered and filtered velocity fields entering the governing equations of the Navier–Stokes-α and Navier–Stokes-αβ models and discuss the usability of both velocity fields for realistic flow predictions. The influence of the modified viscous term in the Navier–Stokes-αβ model is studied through comparison to the case where the underlying subgrid-scale stress tensor is neglected. Whereas, the filtered velocity field is found to have physically more viable probability density functions and structure functions for the approximation of direct numerical simulation results, the unfiltered velocity field is found to have flatness factors close to direct numerical simulation results. (paper)
Context-Specific Metabolic Model Extraction Based on Regularized Least Squares Optimization.
Directory of Open Access Journals (Sweden)
Semidán Robaina Estévez
Full Text Available Genome-scale metabolic models have proven highly valuable in investigating cell physiology. Recent advances include the development of methods to extract context-specific models capable of describing metabolism under more specific scenarios (e.g., cell types. Yet, none of the existing computational approaches allows for a fully automated model extraction and determination of a flux distribution independent of user-defined parameters. Here we present RegrEx, a fully automated approach that relies solely on context-specific data and ℓ1-norm regularization to extract a context-specific model and to provide a flux distribution that maximizes its correlation to data. Moreover, the publically available implementation of RegrEx was used to extract 11 context-specific human models using publicly available RNAseq expression profiles, Recon1 and also Recon2, the most recent human metabolic model. The comparison of the performance of RegrEx and its contending alternatives demonstrates that the proposed method extracts models for which both the structure, i.e., reactions included, and the flux distributions are in concordance with the employed data. These findings are supported by validation and comparison of method performance on additional data not used in context-specific model extraction. Therefore, our study sets the ground for applications of other regularization techniques in large-scale metabolic modeling.
A simple homogeneous model for regular and irregular metallic wire media samples
Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.
2018-02-01
To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.
Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.
Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo
2017-07-01
Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.
Xia, Xinyao; Luan, Lin Lin; Qin, Guanghua; Yu, Li Fang; Wang, Zhi Wei; Dong, Wan Chen; Song, Yumin; Qiao, Yuling; Zhang, Xian Sheng; Sang, Ya Lin; Yang, Long
2017-12-20
Molecular markers are efficient tools for breeding and genetic studies. However, despite their ecological and economic importance, their development and application have long been hampered. In this study, we identified 524,170 simple sequence repeat (SSR), 267,636 intron length polymorphism (ILP), and 11,872 potential intron polymorphism (PIP) markers from 16 tree species based on recently available genome sequences. Larger motifs, including hexamers and heptamers, accounted for most of the seven different types of SSR loci. Within these loci, A/T bases comprised a significantly larger proportion of sequence than G/C. SSR and ILP markers exhibited an alternative distribution pattern. Most SSRs were monomorphic markers, and the proportions of polymorphic markers were positively correlated with genome size. By verifying with all 16 tree species, 54 SSR, 418 ILP, and four PIP universal markers were obtained, and their efficiency was examined by PCR. A combination of five SSR and six ILP markers were used for the phylogenetic analysis of 30 willow samples, revealing a positive correlation between genetic diversity and geographic distance. We also found that SSRs can be used as tools for duplication analysis. Our findings provide important foundations for the development of breeding and genetic studies in tree species.
Model-based estimation with boundary side information or boundary regularization
International Nuclear Information System (INIS)
Chiao, P.C.; Rogers, W.L.; Fessler, J.A.; Clinthorne, N.H.; Hero, A.O.
1994-01-01
The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (Emission Computed Tomography). The authors have also reported difficulties with boundary estimation in low contrast and low count rate situations. In this paper, the authors propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, the authors introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. The authors implement boundary regularization through formulating a penalized log-likelihood function. The authors also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information
Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O
1994-01-01
The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.
Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways
Directory of Open Access Journals (Sweden)
Sébastien De Landtsheer
2018-05-01
Full Text Available Understanding the functional properties of cells of different origins is a long-standing challenge of personalized medicine. Especially in cancer, the high heterogeneity observed in patients slows down the development of effective cures. The molecular differences between cell types or between healthy and diseased cellular states are usually determined by the wiring of regulatory networks. Understanding these molecular and cellular differences at the systems level would improve patient stratification and facilitate the design of rational intervention strategies. Models of cellular regulatory networks frequently make weak assumptions about the distribution of model parameters across cell types or patients. These assumptions are usually expressed in the form of regularization of the objective function of the optimization problem. We propose a new method of regularization for network models of signaling pathways based on the local density of the inferred parameter values within the parameter space. Our method reduces the complexity of models by creating groups of cell line-specific parameters which can then be optimized together. We demonstrate the use of our method by recovering the correct topology and inferring accurate values of the parameters of a small synthetic model. To show the value of our method in a realistic setting, we re-analyze a recently published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We conclude that our method efficiently reduces model complexity and helps recovering context-specific regulatory information.
The L0 Regularized Mumford-Shah Model for Bias Correction and Segmentation of Medical Images.
Duan, Yuping; Chang, Huibin; Huang, Weimin; Zhou, Jiayin; Lu, Zhongkang; Wu, Chunlin
2015-11-01
We propose a new variant of the Mumford-Shah model for simultaneous bias correction and segmentation of images with intensity inhomogeneity. First, based on the model of images with intensity inhomogeneity, we introduce an L0 gradient regularizer to model the true intensity and a smooth regularizer to model the bias field. In addition, we derive a new data fidelity using the local intensity properties to allow the bias field to be influenced by its neighborhood. Second, we use a two-stage segmentation method, where the fast alternating direction method is implemented in the first stage for the recovery of true intensity and bias field and a simple thresholding is used in the second stage for segmentation. Different from most of the existing methods for simultaneous bias correction and segmentation, we estimate the bias field and true intensity without fixing either the number of the regions or their values in advance. Our method has been validated on medical images of various modalities with intensity inhomogeneity. Compared with the state-of-art approaches and the well-known brain software tools, our model is fast, accurate, and robust with initializations.
Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo
2015-06-01
We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.
International Nuclear Information System (INIS)
Bianchi, Eugenio; Lorenzo, Tommaso De; Smerlak, Matteo
2015-01-01
We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole “exterior entropy” and “radiation entropy.” For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the “black hole fireworks” model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that (i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, (ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the “purifying” phase, (iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.
Evolution of radial profiles in regular Lemaitre-Tolman-Bondi dust models
International Nuclear Information System (INIS)
Sussman, Roberto A
2010-01-01
We undertake a comprehensive and rigorous analytic study of the evolution of radial profiles of covariant scalars in regular LemaItre-Tolman-Bondi (LTB) dust models. We consider specifically the phenomenon of 'profile inversions' in which an initial clump profile of density, spatial curvature or the expansion scalar might evolve into a void profile (and vice versa). Previous work in the literature on models with density void profiles and/or allowing for density profile inversions is given full generalization, with some erroneous results corrected. We prove rigorously that if an evolution without shell crossings is assumed, then only the 'clump to void' inversion can occur in density profiles, and only in hyperbolic models or regions with negative spatial curvature. The profiles of spatial curvature follow similar patterns as those of the density, with 'clump to void' inversions only possible for hyperbolic models or regions. However, profiles of the expansion scalar are less restrictive, with profile inversions necessarily taking place in elliptic models. We also examine radial profiles in special LTB configurations: closed elliptic models, models with a simultaneous big bang singularity, as well as a locally collapsing elliptic region surrounded by an expanding hyperbolic background. The general analytic statements that we obtain allow for setting up the right initial conditions to construct fully regular LTB models with any specific qualitative requirements for the profiles of all scalars and their time evolution. The results presented can be very useful in guiding future numerical work on these models and in revising previous analytic work on all their applications.
Regular network model for the sea ice-albedo feedback in the Arctic.
Müller-Stoffels, Marc; Wackerbauer, Renate
2011-03-01
The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.
DEFF Research Database (Denmark)
Lavancier, Frédéric; Møller, Jesper
We consider a dependent thinning of a regular point process with the aim of obtaining aggregation on the large scale and regularity on the small scale in the resulting target point process of retained points. Various parametric models for the underlying processes are suggested and the properties...
Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model
International Nuclear Information System (INIS)
Decker, K.; Weisz, P.; Montvay, I.
1985-11-01
Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs-model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this 'strong self-coupling expansion' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)
Regularities in hadron systematics, Regge trajectories and a string quark model
International Nuclear Information System (INIS)
Chekanov, S.V.; Levchenko, B.B.
2006-08-01
An empirical principle for the construction of a linear relationship between the total angular momentum and squared-mass of baryons is proposed. In order to examine linearity of the trajectories, a rigorous least-squares regression analysis was performed. Unlike the standard Regge-Chew-Frautschi approach, the constructed trajectories do not have non-linear behaviour. A similar regularity may exist for lowest-mass mesons. The linear baryonic trajectories are well described by a semi-classical picture based on a spinning relativistic string with tension. The obtained numerical solution of this model was used to extract the (di)quark masses. (orig.)
Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model
International Nuclear Information System (INIS)
Decker, K.; Weisz, P.
1986-01-01
Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this ''strong self-coupling expansion'' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)
Critical behavior of the XY-rotor model on regular and small-world networks
De Nigris, Sarah; Leoncini, Xavier
2013-07-01
We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.
Directory of Open Access Journals (Sweden)
Kyriaki Sidiropoulou
Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given
Nararidh, Niti
2013-11-01
Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. We investigated the role of the microvilli in the feeding and swimming behavior of the organism using a three-dimensional model based on the method of regularized Stokeslets. This model allows us to examine the velocity generated around the feeding organism tethered in place, as well as to predict the paths of surrounding free flowing particles. In particular, we can depict the effective capture of nutritional particles and bacteria in the fluid, showing the hydrodynamic cooperation between the cell, flagellum, and microvilli of the organism. Funding Source: Murchison Undergraduate Research Fellowship.
Directory of Open Access Journals (Sweden)
B. Moeini
2011-10-01
Full Text Available Introduction & Objective: One of the important problems in modern society is people's sedentary life style. The aim of this study was to determine factors associated with regular physical activity among college students based on BASNEF model.Materials & Methods: This study was a cross-sectional study carried out on 400 students in Hamadan University of Medical Sciences. Based on the assignment among different schools, classified sampling method was chosen for data gathering using a questionnaire in three parts including: demographic information, constructs of BASNEF model, and standard international physical activity questionnaire (IPAQ. Data were analyzed by SPSS-13, and using appropriate statistical tests (Chi-square, T-test and regression. Results: Based on the results, 271 students(67.8 % had low, 124 (31% moderate ,and 5 (1.2% vigorous physical activity. There was a significant relationship (c2=6.739, df= 1, P= 0.034 between their residence and physical activity and students living in dormitory were reported to have higher level of physical activity. Behavioral intention and enabling factors from the constructs of BASNEF model were the best predictors for having physical activity in students (OR=1.215, P = 0.000 and (OR=1.119, P= 0.000 respectively.Conclusion: With regard to the fact that majority of the students did not engage in enough physical activity and enabling factors were the most effective predictors for having regular physical activity in them, it seems that providing sports facilities can promote physical activity among the students.(Sci J Hamadan Univ Med Sci 2011;18(3:70-76
An ILP based Algorithm for Optimal Customer Selection for Demand Response in SmartGrids
Energy Technology Data Exchange (ETDEWEB)
Kuppannagari, Sanmukh R. [Univ. of Southern California, Los Angeles, CA (United States); Kannan, Rajgopal [Louisiana State Univ., Baton Rouge, LA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)
2015-12-07
Demand Response (DR) events are initiated by utilities during peak demand periods to curtail consumption. They ensure system reliability and minimize the utility’s expenditure. Selection of the right customers and strategies is critical for a DR event. An effective DR scheduling algorithm minimizes the curtailment error which is the absolute difference between the achieved curtailment value and the target. State-of-the-art heuristics exist for customer selection, however their curtailment errors are unbounded and can be as high as 70%. In this work, we develop an Integer Linear Programming (ILP) formulation for optimally selecting customers and curtailment strategies that minimize the curtailment error during DR events in SmartGrids. We perform experiments on real world data obtained from the University of Southern California’s SmartGrid and show that our algorithm achieves near exact curtailment values with errors in the range of 10^{-7} to 10^{-5}, which are within the range of numerical errors. We compare our results against the state-of-the-art heuristic being deployed in practice in the USC SmartGrid. We show that for the same set of available customer strategy pairs our algorithm performs 103 to 107 times better in terms of the curtailment errors incurred.
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.
Allen, Genevera I; Tibshirani, Robert
2010-06-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable , meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal , in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo
2011-03-09
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Directory of Open Access Journals (Sweden)
David J Poza
Full Text Available The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Huang, Maosong; Qu, Xie; Lü, Xilin
2017-11-01
By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.
Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach
Chiara D'Autilia, Maria; Sgura, Ivonne; Bozzini, Benedetto
2017-12-01
In this paper we consider a parameter identification problem (PIP) for data oscillating in time, that can be described in terms of the dynamics of some ordinary differential equation (ODE) model, resulting in an optimization problem constrained by the ODEs. In problems with this type of data structure, simple application of the direct method of control theory (discretize-then-optimize) yields a least-squares cost function exhibiting multiple ‘low’ minima. Since in this situation any optimization algorithm is liable to fail in the approximation of a good solution, here we propose a Fourier regularization approach that is able to identify an iso-frequency manifold {{ S}} of codimension-one in the parameter space \
Yaacob, Y.; Yeak, S. H.; Lim, R. S.; Soewono, E.
2015-03-01
Dengue disease has been known as one of widely transmitted vector-borne diseases which potentially affects millions of people throughout the world especially in tropical and sub-tropical countries. One of the main factors contributing in the complication of the transmission process is the mobility of people in which people may get infection in the places far from their home. Here we construct a delay differential equation model for dengue transmission in a closed population where regular visits of people to a mosquito breeding site out of their residency such as traditional market take place daily. Basic reproductive ratio of the system is obtained and depends on the ratio between the outgoing rates of susceptible human and infective human. It is shown that the increase of mobility with different variation of mobility rates may contribute to different level of basic reproductive ratio as well as different level of outbreaks.
Directory of Open Access Journals (Sweden)
Wei Wang
2013-01-01
Full Text Available The precipitation of wax/solid paraffin during production, transportation, and processing of crude oil is a serious problem. It is essential to have a reliable model to predict the wax appearance temperature and the amount of solid precipitated at different conditions. This paper presents a work to predict the solid precipitation based on solid-liquid equilibrium with regular solution-molecular thermodynamic theory and characterization of the crude oil plus fraction. Due to the differences of solubility characteristics between solid and liquid phase, the solubility parameters of liquid and solid phase are calculated by a modified model. The heat capacity change between solid and liquid phase is considered and estimated in the thermodynamic model. An activity coefficient based thermodynamic method combined with two characteristic methods to calculate wax precipitation in crude oil, especially heavy oil, has been tested with experimental data. The results show that the wax appearance temperature and the amount of weight precipitated can be predicted well with the experimental data.
A lattice Boltzmann model for substrates with regularly structured surface roughness
Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.
2015-11-01
Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.
Modeling hemispherical and directional radiative fluxes in regular-clumped canopies
International Nuclear Information System (INIS)
Begue, A.
1992-01-01
A model of radiative transfer in regular-clumped canopies is presented. The canopy is approximated by an array of porous cylinders located at the vertices of equilateral triangles. The model is split into two submodels, each describing a different level of structure: 1) The macrostructure submodel is based on Brown and Pandolfo (1969), who applied geometrical optics theory to an array of opaque cylinders. This model is adapted for porous cylinders and is used to derive expressions for directional interception efficiency as a function of height, radius, spacing and porosity of the cylinders. 2) The microstructure submodel makes use of the average canopy transmittance theory, applied to a cylinder, to compute the porosity of the clumps as a function of the leaf area density, the leaf inclination distribution function, the dimensions of the cylinder (height and radius), and the transmittance of green leaves in the appropriate spectral band. It is shown that, in the case of erectophile plant stands, the daily porosity of the cylinder can be approximated by the porosity calculated using the extinction coefficient of diffuse radiation. Directional interception efficiency, geometric conditions (incidence/viewing), and landscape component reflectances are used to compute hemispherical (interception, absorption, and reflectance) and directional (reflectance) radiative fluxes from simple analytical formulae. This model is validated against a data set of biological, radiative (PAR region) and radiometric (SPOT channels) measurements, collected in Niger on pearl millet (Pennisetum typhoides). The model fits the data quite well in terms of hourly and daily single-band or combined (NDVI) radiative fluxes. Close correspondence to measured fluxes, using few parameters, and the possibility of inversion makes the present model a valuable tool for the study of radiative transfer in discontinuous canopies. (author)
Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S
2014-05-01
We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.
Houborg, Rasmus
2016-08-20
A regularized canopy reflectance model (REGFLEC) is applied over a dryland irrigated agricultural system in Saudi Arabia for the purpose of retrieving leaf area index (LAI) and leaf chlorophyll content (Chll). To improve the robustness of the retrieved properties, REGFLEC was modified to 1) correct for aerosol and adjacency effects, 2) consider foliar dust effects on modeled canopy reflectances, 3) include spectral information in the red-edge wavelength region, and 4) exploit empirical LAI estimates in the model inversion. Using multi-spectral RapidEye imagery allowed Chll to be retrieved with a Mean Absolute Deviation (MAD) of 7.9 μg cm− 2 (16%), based upon in-situ measurements conducted in fields of alfalfa, Rhodes grass and maize over the course of a growing season. LAI and Chll compensation effects on canopy reflectance were largely avoided by informing the inversion process with ancillary LAI inputs established empirically on the basis of a statistical machine learning technique. As a result, LAI was reproduced with good accuracy, with an overall MAD of 0.42 m2 m− 2 (12.5%). Results highlighted the considerable challenges associated with the translation of at-sensor radiance observations to surface bidirectional reflectances in dryland environments, where issues such as high aerosol loadings and large spatial gradients in surface reflectance from bright desert soils to dark vegetated fields are often present. Indeed, surface reflectances in the visible bands were reduced by up to 60% after correction for such adjacency effects. In addition, dust deposition on leaves required explicit modification of the reflectance sub-model to account for its influence. By implementing these model refinements, REGFLEC demonstrated its utility for within-field characterization of vegetation conditions over the challenging landscapes typical of dryland agricultural regions, offering a means through which improvements can be made in the management of these globally
A regularized, model-based approach to phase-based conductivity mapping using MRI.
Ropella, Kathleen M; Noll, Douglas C
2017-11-01
To develop a novel regularized, model-based approach to phase-based conductivity mapping that uses structural information to improve the accuracy of conductivity maps. The inverse of the three-dimensional Laplacian operator is used to model the relationship between measured phase maps and the object conductivity in a penalized weighted least-squares optimization problem. Spatial masks based on structural information are incorporated into the problem to preserve data near boundaries. The proposed Inverse Laplacian method was compared against a restricted Gaussian filter in simulation, phantom, and human experiments. The Inverse Laplacian method resulted in lower reconstruction bias and error due to noise in simulations than the Gaussian filter. The Inverse Laplacian method also produced conductivity maps closer to the measured values in a phantom and with reduced noise in the human brain, as compared to the Gaussian filter. The Inverse Laplacian method calculates conductivity maps with less noise and more accurate values near boundaries. Improving the accuracy of conductivity maps is integral for advancing the applications of conductivity mapping. Magn Reson Med 78:2011-2021, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Stochastic methods of data modeling: application to the reconstruction of non-regular data
International Nuclear Information System (INIS)
Buslig, Leticia
2014-01-01
This research thesis addresses two issues or applications related to IRSN studies. The first one deals with the mapping of measurement data (the IRSN must regularly control the radioactivity level in France and, for this purpose, uses a network of sensors distributed among the French territory). The objective is then to predict, by means of reconstruction model which used observations, maps which will be used to inform the population. The second application deals with the taking of uncertainties into account in complex computation codes (the IRSN must perform safety studies to assess the risks of loss of integrity of a nuclear reactor in case of hypothetical accidents, and for this purpose, codes are used which simulate physical phenomena occurring within an installation). Some input parameters are not precisely known, and the author therefore tries to assess the impact of some uncertainties on simulated values. She notably aims at seeing whether variations of input parameters may push the system towards a behaviour which is very different from that obtained with parameters having a reference value, or even towards a state in which safety conditions are not met. The precise objective of this second part is then to a reconstruction model which is not costly (in terms of computation time) and to perform simulation in relevant areas (strong gradient areas, threshold overrun areas, so on). Two issues are then important: the choice of the approximation model and the construction of the experiment plan. The model is based on a kriging-type stochastic approach, and an important part of the work addresses the development of new numerical techniques of experiment planning. The first part proposes a generic criterion of adaptive planning, and reports its analysis and implementation. In the second part, an alternative to error variance addition is developed. Methodological developments are tested on analytic functions, and then applied to the cases of measurement mapping and
Weighted regularized statistical shape space projection for breast 3D model reconstruction.
Ruiz, Guillermo; Ramon, Eduard; García, Jaime; Sukno, Federico M; Ballester, Miguel A González
2018-05-02
The use of 3D imaging has increased as a practical and useful tool for plastic and aesthetic surgery planning. Specifically, the possibility of representing the patient breast anatomy in a 3D shape and simulate aesthetic or plastic procedures is a great tool for communication between surgeon and patient during surgery planning. For the purpose of obtaining the specific 3D model of the breast of a patient, model-based reconstruction methods can be used. In particular, 3D morphable models (3DMM) are a robust and widely used method to perform 3D reconstruction. However, if additional prior information (i.e., known landmarks) is combined with the 3DMM statistical model, shape constraints can be imposed to improve the 3DMM fitting accuracy. In this paper, we present a framework to fit a 3DMM of the breast to two possible inputs: 2D photos and 3D point clouds (scans). Our method consists in a Weighted Regularized (WR) projection into the shape space. The contribution of each point in the 3DMM shape is weighted allowing to assign more relevance to those points that we want to impose as constraints. Our method is applied at multiple stages of the 3D reconstruction process. Firstly, it can be used to obtain a 3DMM initialization from a sparse set of 3D points. Additionally, we embed our method in the 3DMM fitting process in which more reliable or already known 3D points or regions of points, can be weighted in order to preserve their shape information. The proposed method has been tested in two different input settings: scans and 2D pictures assessing both reconstruction frameworks with very positive results. Copyright © 2018 Elsevier B.V. All rights reserved.
Complete heat transfer solutions of an insulated regular polygonal pipe by using a PWTR model
International Nuclear Information System (INIS)
Wong, K.-L.; Chou, H.-M.; Li, Y.-H.
2004-01-01
The heat transfer characteristics for insulated long regular polygonal (including circular) pipes are analyzed by using the same PWRT model in the present study as that used by Chou and Wong previously [Energy Convers. Manage. 44 (4) (2003) 629]. The thermal resistance of the inner convection term and the pipe conduction term in the heat transfer rate are not neglected in the present study. Thus, the complete heat transfer solution will be obtained. The present results can be applied more extensively to practical situations, such as heat exchangers. The results of the critical thickness t cr and the neutral thickness t e are independent of the values of J (generated by the combined effect of the inner convection term and the pipe conduction term). However, the heat transfer rates are dependent on the values of J. The present study shows that the thermal resistance of the inner convection term and the pipe conduction term cannot be neglected in the heat transfer equation in situations of low to medium inner convection coefficients h i and/or low to medium pipe conductivities K, especially in situations with large pipe sizes or/and great outer convection coefficients h 0
Miehe, C; Teichtmeister, S; Aldakheel, F
2016-04-28
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).
Regularized Biot-Savart Laws for Modeling Magnetic Configurations with Flux Ropes
Titov, V. S.; Downs, C.; Mikic, Z.; Torok, T.; Linker, J.
2017-12-01
Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot-Savart laws whose kernels are regularized at the axis in such a way that these laws define a cylindrical force-free flux rope with a parabolic profile of the axial current density, when the axis is straight. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions' source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.
International Nuclear Information System (INIS)
Teuber, T; Steidl, G; Chan, R H
2013-01-01
In this paper, we analyze the minimization of seminorms ‖L · ‖ on R n under the constraint of a bounded I-divergence D(b, H · ) for rather general linear operators H and L. The I-divergence is also known as Kullback–Leibler divergence and appears in many models in imaging science, in particular when dealing with Poisson data but also in the case of multiplicative Gamma noise. Often H represents, e.g., a linear blur operator and L is some discrete derivative or frame analysis operator. A central part of this paper consists in proving relations between the parameters of I-divergence constrained and penalized problems. To solve the I-divergence constrained problem, we consider various first-order primal–dual algorithms which reduce the problem to the solution of certain proximal minimization problems in each iteration step. One of these proximation problems is an I-divergence constrained least-squares problem which can be solved based on Morozov’s discrepancy principle by a Newton method. We prove that these algorithms produce not only a sequence of vectors which converges to a minimizer of the constrained problem but also a sequence of parameters which converges to a regularization parameter so that the corresponding penalized problem has the same solution. Furthermore, we derive a rule for automatically setting the constraint parameter for data corrupted by multiplicative Gamma noise. The performance of the various algorithms is finally demonstrated for different image restoration tasks both for images corrupted by Poisson noise and multiplicative Gamma noise. (paper)
Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations
Hou, Thomas Y.; Liu, Pengfei; Wang, Fei
2018-05-01
We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.
Modelling the implications of regular increases in tobacco taxation in the tobacco endgame.
Cobiac, Linda J; Ikeda, Tak; Nghiem, Nhung; Blakely, Tony; Wilson, Nick
2015-06-01
We examine the potential role for taxation in the tobacco endgame in New Zealand, where the goal is to become 'smokefree' (less than 5% smoking prevalence) by 2025. Modelling study using a dynamic population model. New Zealand, Māori and non-Māori men and women. Annual increases in tobacco excise tax of 5%, 10%, 15% and 20% (with 10% reflecting the annual increase recently legislated by the New Zealand Government to 2016). With a continued commitment to annual 10% increases in tobacco excise tax, in addition to on-going Quitline and cessation support, New Zealand's smoking prevalence is projected to fall from 15.1% in 2013 to 8.7% (95% uncertainty interval 8.6% to 8.9%) by 2025. This is compared to 9.9% without any further tax rises. With annual tax increases of 20%, the prevalence is projected to fall to 7.6% (7.5% to 7.7%) by 2025. The potential reductions in smoking prevalence are substantial for both Māori and non-Māori populations, although annual tax increases as high as 20% will still only see Māori smoking prevalence in 2025 approaching the non-Māori smoking levels for 2013. Scenario analyses did not suggest that growth of the illicit tobacco market would substantively undermine the impact of tobacco tax rises. Nevertheless, unknown factors such as the gradual denormalisation of smoking and changes to the 'nicotine market' may influence sensitivity to changes in tobacco prices in the future. Regular increases in tobacco taxation could play an important role in helping to achieve tobacco endgames. However, this modelling in New Zealand suggests that a wider range of tobacco endgame strategies will be needed to achieve a smoke-free goal of less than 5% prevalence for all social groups--a conclusion that could also apply in other countries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Bio-inspired Artificial Intelligence: А Generalized Net Model of the Regularization Process in MLP
Directory of Open Access Journals (Sweden)
Stanimir Surchev
2013-10-01
Full Text Available Many objects and processes inspired by the nature have been recreated by the scientists. The inspiration to create a Multilayer Neural Network came from human brain as member of the group. It possesses complicated structure and it is difficult to recreate, because of the existence of too many processes that require different solving methods. The aim of the following paper is to describe one of the methods that improve learning process of Artificial Neural Network. The proposed generalized net method presents Regularization process in Multilayer Neural Network. The purpose of verification is to protect the neural network from overfitting. The regularization is commonly used in neural network training process. Many methods of verification are present, the subject of interest is the one known as Regularization. It contains function in order to set weights and biases with smaller values to protect from overfitting.
Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model
Hulscher, Suzanne J.M.H.
1996-01-01
The three-dimensional model presented in this paper is used to study how tidal currents form wave-like bottom patterns. Inclusion of vertical flow structure turns out to be necessary to describe the formation, or absence, of all known large-scale regular bottom features. The tide and topography are
Abiriand Bhekisipho Twala, Olufunminiyi
2017-08-01
In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.
International Nuclear Information System (INIS)
Krysko, A.V.; Awrejcewicz, J.; Papkova, I.V.; Krysko, V.A.
2012-01-01
In second part of the paper both classical and novel scenarios of transition from regular to chaotic dynamics of dissipative continuous mechanical systems are studied. A detailed analysis allowed us to detect the already known classical scenarios of transition from periodic to chaotic dynamics, and in particular the Feigenbaum scenario. The Feigenbaum constant was computed for all continuous mechanical objects studied in the first part of the paper. In addition, we illustrate and discuss different and novel scenarios of transition of the analysed systems from regular to chaotic dynamics, and we show that the type of scenario depends essentially on excitation parameters.
Statistical Shape Model for Manifold Regularization: Gleason grading of prostate histology.
Sparks, Rachel; Madabhushi, Anant
2013-09-01
Gleason patterns of prostate cancer histopathology, characterized primarily by morphological and architectural attributes of histological structures (glands and nuclei), have been found to be highly correlated with disease aggressiveness and patient outcome. Gleason patterns 4 and 5 are highly correlated with more aggressive disease and poorer patient outcome, while Gleason patterns 1-3 tend to reflect more favorable patient outcome. Because Gleason grading is done manually by a pathologist visually examining glass (or digital) slides subtle morphologic and architectural differences of histological attributes, in addition to other factors, may result in grading errors and hence cause high inter-observer variability. Recently some researchers have proposed computerized decision support systems to automatically grade Gleason patterns by using features pertaining to nuclear architecture, gland morphology, as well as tissue texture. Automated characterization of gland morphology has been shown to distinguish between intermediate Gleason patterns 3 and 4 with high accuracy. Manifold learning (ML) schemes attempt to generate a low dimensional manifold representation of a higher dimensional feature space while simultaneously preserving nonlinear relationships between object instances. Classification can then be performed in the low dimensional space with high accuracy. However ML is sensitive to the samples contained in the dataset; changes in the dataset may alter the manifold structure. In this paper we present a manifold regularization technique to constrain the low dimensional manifold to a specific range of possible manifold shapes, the range being determined via a statistical shape model of manifolds (SSMM). In this work we demonstrate applications of the SSMM in (1) identifying samples on the manifold which contain noise, defined as those samples which deviate from the SSMM, and (2) accurate out-of-sample extrapolation (OSE) of newly acquired samples onto a
Regular and chaotic behaviors of plasma oscillations modeled by a modified Duffing equation
International Nuclear Information System (INIS)
Enjieu Kadji, H.G.; Chabi Orou, J.B.; Woafo, P.; Abdus Salam International Centre for Theoretical Physics, Trieste
2005-07-01
The regular and chaotic behavior of plasma oscillations governed by a modified Duffing equation is studied. The plasma oscillations are described by a nonlinear differential equation of the form x + w 0 2 x + βx 2 + αx 3 = 0 which is similar to a Duffing equation. By focusing on the quadratic term, which is mainly the term modifying the Duffing equation, the harmonic balance method and the fourth order Runge-Kutta algorithm are used to derive regular and chaotic motions respectively. A strong chaotic behavior exhibited by the system in that event when the system is subjected to an external periodic forcing oscillation is reported as β varies. (author)
DEFF Research Database (Denmark)
Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.
1994-01-01
Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...
Mokhtarian, Patricia; Bagley, Michael
2000-01-01
This paper develops measures of job and workplace perceptions, and examines the importance of those and other measures to the desired proportions of work time at each of three locations: regular workplace, home, and telecommuting center. Using data from 188 participants in the Neighborhood Telecenters Project, four job context perception factors were identified: productivity, job satisfaction, supervisor relationship, and co-worker interaction. Four generic workplace perception factors were i...
Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong
2011-12-01
We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.
Directory of Open Access Journals (Sweden)
Mittelmann Hans D
2010-01-01
Full Text Available Abstract Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.
Time-Homogeneous Parabolic Wick-Anderson Model in One Space Dimension: Regularity of Solution
Kim, Hyun-Jung; Lototsky, Sergey V
2017-01-01
Even though the heat equation with random potential is a well-studied object, the particular case of time-independent Gaussian white noise in one space dimension has yet to receive the attention it deserves. The paper investigates the stochastic heat equation with space-only Gaussian white noise on a bounded interval. The main result is that the space-time regularity of the solution is the same for additive noise and for multiplicative noise in the Wick-It\\^o-Skorokhod interpretation.
Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh
2017-12-19
Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.
Regularization of a λφ4 type tensor model, using point-splitting
International Nuclear Information System (INIS)
Moura Melo, W.A.; Helayel-Neto, J.A.
1997-01-01
The idea of using point-splitting to avoid field products in the same point was first introduced by Dirac. This splitting would be applied for example, redefining the fields present in a small vertex, at different points. More recently, Osland and Wu, in a series of papers presented used the idea as a regularization method. An generalized Lagrangian was obtained for the Qed, with interaction terms not presenting field products at the same point, exhibiting however non-locality problems. Nevertheless this fact, the authors obtained satisfactory results with this formulation, such as the Higgs mass (190 GeV) and the divergence free top quark (120 GeV). This work intends to obtain a generalized Lagrangian, modifying the original theory to avoid that the interaction terms present field products at the same point
Bejaei, M; Wiseman, K; Cheng, K M
2015-01-01
Consumers' interest in specialty eggs appears to be growing in Europe and North America. The objective of this research was to develop logistic regression models that utilise purchaser attributes and demographics to predict the probability of a consumer purchasing a specific type of table egg including regular (white and brown), non-caged (free-run, free-range and organic) or nutrient-enhanced eggs. These purchase prediction models, together with the purchasers' attributes, can be used to assess market opportunities of different egg types specifically in British Columbia (BC). An online survey was used to gather data for the models. A total of 702 completed questionnaires were submitted by BC residents. Selected independent variables included in the logistic regression to develop models for different egg types to predict the probability of a consumer purchasing a specific type of table egg. The variables used in the model accounted for 54% and 49% of variances in the purchase of regular and non-caged eggs, respectively. Research results indicate that consumers of different egg types exhibit a set of unique and statistically significant characteristics and/or demographics. For example, consumers of regular eggs were less educated, older, price sensitive, major chain store buyers, and store flyer users, and had lower awareness about different types of eggs and less concern regarding animal welfare issues. However, most of the non-caged egg consumers were less concerned about price, had higher awareness about different types of table eggs, purchased their eggs from local/organic grocery stores, farm gates or farmers markets, and they were more concerned about care and feeding of hens compared to consumers of other eggs types.
Lee, Chang Hyun; Kim, Young Im
2015-01-01
This study analyzed predictors of regular mammography performance in Korea. In addition, we determined factors affecting regular mammography performance in life-transition aged women by applying an attitude, social influence, and self-efficacy (ASE) model. Data were collected from women aged over 40 years residing in province J in Korea. The 178 enrolled subjects provided informed voluntary consent prior to completing a structural questionnaire. The overall regular mammography performance rate of the subjects was 41.6%. Older age, city residency, high income and part-time job were associated with a high regular mammography performance. Among women who had undergone more breast self-examinations (BSE) or more doctors' physical examinations (PE), there were higher regular mammography performance rates. All three ASE model factors were significantly associated with regular mammography performance. Women with a high level of positive ASE values had a significantly high regular mammography performance rate. Within the ASE model, self-efficacy and social influence were particularly important. Logistic regression analysis explained 34.7% of regular mammography performance and PE experience (β=4.645, p=.003), part- time job (β=4.010, p=.050), self-efficacy (β=1.820, p=.026) and social influence (β=1.509, p=.038) were significant factors. Promotional strategies that could improve self-efficacy, reinforce social influence and reduce geographical, time and financial barriers are needed to increase the regular mammography performance rate in life-transition aged.
Tarafder, Sumit; Toukir Ahmed, Md; Iqbal, Sumaiya; Tamjidul Hoque, Md; Sohel Rahman, M
2018-03-14
Accessible surface area (ASA) of a protein residue is an effective feature for protein structure prediction, binding region identification, fold recognition problems etc. Improving the prediction of ASA by the application of effective feature variables is a challenging but explorable task to consider, specially in the field of machine learning. Among the existing predictors of ASA, REGAd 3 p is a highly accurate ASA predictor which is based on regularized exact regression with polynomial kernel of degree 3. In this work, we present a new predictor RBSURFpred, which extends REGAd 3 p on several dimensions by incorporating 58 physicochemical, evolutionary and structural properties into 9-tuple peptides via Chou's general PseAAC, which allowed us to obtain higher accuracies in predicting both real-valued and binary ASA. We have compared RBSURFpred for both real and binary space predictions with state-of-the-art predictors, such as REGAd 3 p and SPIDER2. We also have carried out a rigorous analysis of the performance of RBSURFpred in terms of different amino acids and their properties, and also with biologically relevant case-studies. The performance of RBSURFpred establishes itself as a useful tool for the community. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ali, M. F.; Mawdsley, J. A.
1987-09-01
An advection-aridity model for estimating actual evapotranspiration ET is tested with over 700 days of lysimeter evapotranspiration and meteorological data from barley, turf and rye-grass from three sites in the U.K. The performance of the model is also compared with the API model . It is observed from the test that the advection-aridity model overestimates nonpotential ET and tends to underestimate potential ET, but when tested with potential and nonpotential data together, the tendencies appear to cancel each other. On a daily basis the performance level of this model is found to be of the same order as the API model: correlation coefficients were obtained between the model estimates and lysimeter data of 0.62 and 0.68 respectively. For periods greater than one day, generally the performance of the models are improved. Proposed by Mawdsley and Ali (1979)
On the well posedness and further regularity of a diffusive three species aquatic model
Parshad, R.D.; Upadhyay, R.K.; Thakur, N.K.
2012-01-01
We consider Upadhay's three species aquatic food chain model, with the inclusion of spatial spread. This is a well established food chain model for the interaction of three given aquatic species. It exhibits rich dynamical behavior, including chaos
Directory of Open Access Journals (Sweden)
Jose Luiz Boldrini
2003-11-01
Full Text Available We study the existence and regularity of weak solutions of a phase field type model for pure material solidification in presence of natural convection. We assume that the non-stationary solidification process occurs in a two dimensional bounded domain. The governing equations of the model are the phase field equation coupled with a nonlinear heat equation and a modified Navier-Stokes equation. These equations include buoyancy forces modelled by Boussinesq approximation and a Carman-Koseny term to model the flow in mushy regions. Since these modified Navier-Stokes equations only hold in the non-solid regions, which are not known a priori, we have a free boundary-value problem.
Polomčić, Dušan M.; Bajić, Dragoljub I.; Močević, Jelena M.
2015-01-01
The calibration process of hydrodynamic model is done usually manually by 'testing' with different values of hydrogeological parameters and hydraulic characteristics of the boundary conditions. By using the PEST program, automatic calibration of models has been introduced, and it has proved to significantly reduce the subjective influence of the model creator on results. With the relatively new approach of PEST, i.e. with the introduction of so-called 'pilot points', the concept of homogeneou...
Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models
Kuznetsov, Sergey P.
2015-05-01
Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).
On the well posedness and further regularity of a diffusive three species aquatic model
Parshad, R.D.
2012-01-01
We consider Upadhay\\'s three species aquatic food chain model, with the inclusion of spatial spread. This is a well established food chain model for the interaction of three given aquatic species. It exhibits rich dynamical behavior, including chaos. We prove the existence of a global weak solution to the diffusive system, followed by existence of local mild and strong solution.
DEFF Research Database (Denmark)
Jacobsen, Niels Gjøl; Fredsøe, Jørgen; Hjelmager Jensen, Jacob
2014-01-01
In this work a detailed hydrodynamic model is presented, which is used for the study of cross-shore sediment transport and morphodynamics in two dimensions. The model is described in the framework of the generally unstructured, finite volume method. Considerable emphasis is put on those subtletie...
International Nuclear Information System (INIS)
Takane, Yoshitake
2016-01-01
An unbounded massless Dirac model with two nondegenerate Dirac cones is the simplest model for Weyl semimetals, which show the anomalous electromagnetic response of chiral magnetic effect (CME) and anomalous Hall effect (AHE). However, if this model is naively used to analyze the electromagnetic response within a linear response theory, it gives the result apparently inconsistent with the persuasive prediction based on a lattice model. We show that this serious difficulty is related to the breaking of current conservation in the Dirac model due to quantum anomaly and can be removed if current and charge operators are redefined to include the contribution from the anomaly. We demonstrate that the CME as well as the AHE can be properly described using newly defined operators, and clarify that the CME is determined by the competition between the contribution from the anomaly and that from low-energy electrons. (author)
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
DEFF Research Database (Denmark)
Callot, Laurent; Kristensen, Johannes Tang
This paper shows that the parsimoniously time-varying methodology of Callot and Kristensen (2015) can be applied to factor models.We apply this method to study macroeconomic instability in the US from 1959:1 to 2006:4 with a particular focus on the Great Moderation. Models with parsimoniously time...... that the parameters of both models exhibit a higher degree of instability in the period from 1970:1 to 1984:4 relative to the following 15 years. In our setting the Great Moderation appears as the gradual ending of a period of high structural instability that took place in the 1970s and early 1980s....
Langenfeld, K.; Junker, P.; Mosler, J.
2018-05-01
This paper deals with a constitutive model suitable for the analysis of quasi-brittle damage in structures. The model is based on incremental energy relaxation combined with a viscous-type regularization. A similar approach—which also represents the inspiration for the improved model presented in this paper—was recently proposed in Junker et al. (Contin Mech Thermodyn 29(1):291-310, 2017). Within this work, the model introduced in Junker et al. (2017) is critically analyzed first. This analysis leads to an improved model which shows the same features as that in Junker et al. (2017), but which (i) eliminates unnecessary model parameters, (ii) can be better interpreted from a physics point of view, (iii) can capture a fully softened state (zero stresses), and (iv) is characterized by a very simple evolution equation. In contrast to the cited work, this evolution equation is (v) integrated fully implicitly and (vi) the resulting time-discrete evolution equation can be solved analytically providing a numerically efficient closed-form solution. It is shown that the final model is indeed well-posed (i.e., its tangent is positive definite). Explicit conditions guaranteeing this well-posedness are derived. Furthermore, by additively decomposing the stress rate into deformation- and purely time-dependent terms, the functionality of the model is explained. Illustrative numerical examples confirm the theoretical findings.
Houborg, Rasmus
2015-01-19
Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials. However, simultaneous retrieval of LAI and Chll from space observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data.A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in central Nebraska for the period 2001-2005, demonstrate Chll retrieval with a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD=8.42μgcm-2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 =0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy
Houborg, Rasmus; McCabe, Matthew
2016-01-01
estimates in the model inversion. Using multi-spectral RapidEye imagery allowed Chll to be retrieved with a Mean Absolute Deviation (MAD) of 7.9 μg cm− 2 (16%), based upon in-situ measurements conducted in fields of alfalfa, Rhodes grass and maize over
Directory of Open Access Journals (Sweden)
Polomčić Dušan M.
2015-01-01
Full Text Available The calibration process of hydrodynamic model is done usually manually by 'testing' with different values of hydrogeological parameters and hydraulic characteristics of the boundary conditions. By using the PEST program, automatic calibration of models has been introduced, and it has proved to significantly reduce the subjective influence of the model creator on results. With the relatively new approach of PEST, i.e. with the introduction of so-called 'pilot points', the concept of homogeneous zones with parameter values of porous media or zones with the given boundary conditions has been outdated. However, the consequence of this kind of automatic calibration is that a significant amount of time is required to perform the calculation. The duration of calibration is measured in hours, sometimes even days. PEST contains two modules for the shortening of that process - Parallel PEST and BeoPEST. The paper presents performed experiments and analysis of different cases of PEST module usage, based on which the reduction in the time required to calibrate the model is done.
Brady, Timothy F.; Tenenbaum, Joshua B.
2013-01-01
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model
Gantert, Nina; Meiners, Matthias; Müller, Sebastian
2018-03-01
We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelson-Fisk and Häggström established for this model a phase transition for the asymptotic linear speed \\overline{v} of the walk. Namely, there exists some critical value λ c>0 such that \\overline{v}>0 if λ \\in (0,λ c) and \\overline{v}=0 if λ ≥ λ c. We show that the speed \\overline{v} is continuous in λ on (0,∞) and differentiable on (0,λ c/2). Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of \\overline{v} on (0,λ c/2), we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for λ ≥ λ c/2.
Directory of Open Access Journals (Sweden)
Kuzmichev Andrey A.
2017-01-01
Full Text Available Due to the active step of urbanization and rapid development of industry the external appearance of buildings and architectural monuments of urban environment from visual ecology position requires special attention. Dust deposition by polluted atmospheric air is one of the key aspects of degradation of the facades of buildings. With the help of modern computer modeling methods it is possible to evaluate the impact of polluted atmospheric air on the external facades of the buildings in order to save them.
Comparison of experimental data with results of some drying models for regularly shaped products
Energy Technology Data Exchange (ETDEWEB)
Kaya, Ahmet [Aksaray University, Department of Mechanical Engineering, Aksaray (Turkey); Aydin, Orhan [Karadeniz Technical University, Department of Mechanical Engineering, Trabzon (Turkey); Dincer, Ibrahim [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, Oshawa, ON (Canada)
2010-05-15
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60 C) at specific constant velocity (U = 1 m/s) and the relative humidity {phi}=30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 x 10{sup -5} and 5.981 x 10{sup -5} m{sup 2}/h for slab products, 0.818 x 10{sup -5} and 6.287 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.213 x 10{sup -7} and 7.589 x 10{sup -7} m{sup 2}/h spherical products using the model-I and 0.316 x 10{sup -5}-5.072 x 10{sup -5} m{sup 2}/h for slab products, 0.580 x 10{sup -5}-9.587 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.408 x 10{sup -7}-13.913 x 10{sup -7} m{sup 2}/h spherical products using the model-II. (orig.)
Comparison of experimental data with results of some drying models for regularly shaped products
Kaya, Ahmet; Aydın, Orhan; Dincer, Ibrahim
2010-05-01
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity ( U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10-5 and 5.981 × 10-5 m2/h for slab products, 0.818 × 10-5 and 6.287 × 10-5 m2/h for cylindrical products and 1.213 × 10-7 and 7.589 × 10-7 m2/h spherical products using the Model-I and 0.316 × 10-5-5.072 × 10-5 m2/h for slab products, 0.580 × 10-5-9.587 × 10-5 m2/h for cylindrical products and 1.408 × 10-7-13.913 × 10-7 m2/h spherical products using the Model-II.
Phase-locked patterns of the Kuramoto model on 3-regular graphs
DeVille, Lee; Ermentrout, Bard
2016-09-01
We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.
Directory of Open Access Journals (Sweden)
Anna Maria Pellegrino
2017-12-01
Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.
平野, 祐毅; 東, 克己; Yuuki , HIRANO; Katsumi , HIGASHI; 帝京科学大学理工学研究科バイオサイエンス専攻; 帝京科学大学理工学研究科バイオサイエンス専攻
2013-01-01
IAP like proteins (ILPs) are newly found paralogs of inhibitor of apoptosis proteins (IAPs) from wide variety of eukaryotesincluding fission yeast, mammals and higher plants. Because a human ILP (HsILP1) function as a cell death inhibitor inseveral human cells likes IAPs, there is a possibility that plant ILPs also have the same function. To assess the possibility,we tested plant ILP function using an established cell death assay systems with tobacco (Nicotiana tabacum ) cultured cells,BY-2. ...
Lawson, A C; Lashley, J C
2011-09-14
In this paper we apply the Aptekar-Ponyatovsky (AP) regular solution thermodynamic model to the analysis of experimental data for the coefficient of thermal expansion (CTE) and determine the AP model parameters for unalloyed cerium metal, Ce-Th-La alloys, and Pu-Ga alloys. We find that the high temperature CTE of cerium metal follows the predictions of the AP model based on low temperature, high pressure data. For Ce-Th-La alloys we use the AP parameters to track the suppression of the first-order γ-α cerium transition. We show the AP model accounts for the negative CTE observed for Pu-Ga alloys and is equivalent to an earlier invar model. Finally, we apply the AP parameters obtained for Pu-Ga alloys to rationalize the observed δ-α transformation pressures of these alloys. We show that the anomalous values of the Grüneisen and Grüneisen-Anderson parameters are important features of the thermal properties of plutonium. A strong analogy between the properties of plutonium and cerium is confirmed.
Boschi, Lapo
2006-10-01
I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.
Self-calibration for lab-μCT using space-time regularized projection-based DVC and model reduction
Jailin, C.; Buljac, A.; Bouterf, A.; Poncelet, M.; Hild, F.; Roux, S.
2018-02-01
An online calibration procedure for x-ray lab-CT is developed using projection-based digital volume correlation. An initial reconstruction of the sample is positioned in the 3D space for every angle so that its projection matches the initial one. This procedure allows a space-time displacement field to be estimated for the scanned sample, which is regularized with (i) rigid body motions in space and (ii) modal time shape functions computed using model reduction techniques (i.e. proper generalized decomposition). The result is an accurate identification of the position of the sample adapted for each angle, which may deviate from the desired perfect rotation required for standard reconstructions. An application of this procedure to a 4D in situ mechanical test is shown. The proposed correction leads to a much improved tomographic reconstruction quality.
Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina
2016-06-01
In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.
International Nuclear Information System (INIS)
Chetvertkov, M; Siddiqui, F; Chetty, I; Kumarasiri, A; Liu, C; Gordon, J
2016-01-01
Purpose: To use daily cone beam CTs (CBCTs) to develop regularized principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients, to guide replanning decisions in adaptive radiation therapy (ART). Methods: Known deformations were applied to planning CT (pCT) images of 10 H&N patients to model several different systematic anatomical changes. A Pinnacle plugin was used to interpolate systematic changes over 35 fractions, generating a set of 35 synthetic CTs for each patient. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CTs and random fraction-to-fraction changes were superimposed on the DVFs. Standard non-regularized and regularized patient-specific PCA models were built using the DVFs. The ability of PCA to extract the known deformations was quantified. PCA models were also generated from clinical CBCTs, for which the deformations and DVFs were not known. It was hypothesized that resulting eigenvectors/eigenfunctions with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: As demonstrated with quantitative results in the supporting document regularized PCA is more successful than standard PCA at capturing systematic changes early in the treatment. Regularized PCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes. To be successful at guiding ART, regularized PCA should be coupled with models of when anatomical changes occur: early, late or throughout the treatment course. Conclusion: The leading eigenvector/eigenfunction from the both PCA approaches can tentatively be identified as a major systematic change during radiotherapy course when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the regularized PCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are
Energy Technology Data Exchange (ETDEWEB)
Chetvertkov, M [Wayne State University, Detroit, MI (United States); Henry Ford Health System, Detroit, MI (United States); Siddiqui, F; Chetty, I; Kumarasiri, A; Liu, C; Gordon, J [Henry Ford Health System, Detroit, MI (United States)
2016-06-15
Purpose: To use daily cone beam CTs (CBCTs) to develop regularized principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients, to guide replanning decisions in adaptive radiation therapy (ART). Methods: Known deformations were applied to planning CT (pCT) images of 10 H&N patients to model several different systematic anatomical changes. A Pinnacle plugin was used to interpolate systematic changes over 35 fractions, generating a set of 35 synthetic CTs for each patient. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CTs and random fraction-to-fraction changes were superimposed on the DVFs. Standard non-regularized and regularized patient-specific PCA models were built using the DVFs. The ability of PCA to extract the known deformations was quantified. PCA models were also generated from clinical CBCTs, for which the deformations and DVFs were not known. It was hypothesized that resulting eigenvectors/eigenfunctions with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: As demonstrated with quantitative results in the supporting document regularized PCA is more successful than standard PCA at capturing systematic changes early in the treatment. Regularized PCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes. To be successful at guiding ART, regularized PCA should be coupled with models of when anatomical changes occur: early, late or throughout the treatment course. Conclusion: The leading eigenvector/eigenfunction from the both PCA approaches can tentatively be identified as a major systematic change during radiotherapy course when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the regularized PCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are
An improved model for the oPtImal Measurement Probes Allocation tool
Energy Technology Data Exchange (ETDEWEB)
Sterle, C., E-mail: claudio.sterle@unina.it [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Neto, A.C. [Fusion for Energy, 08019 Barcelona (Spain); De Tommasi, G. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy)
2015-10-15
Highlights: • The problem of optimally allocating the probes of a diagnostic system is tackled. • The problem is decomposed in two consecutive optimization problems. • Two original ILP models are proposed and sequentially solved to optimality. • The proposed ILP models improve and extend the previous work present in literature. • Real size instances have been optimally solved with very low computation time. - Abstract: The oPtImal Measurement Probes Allocation (PIMPA) tool has been recently proposed in [1] to maximize the reliability of a tokamak diagnostic system against the failure of one or more of the processing nodes. PIMPA is based on the solution of integer linear programming (ILP) problems, and it minimizes the effect of the failure of a data acquisition component. The first formulation of the PIMPA model did not support the concept of individual slots. This work presents an improved ILP model that addresses the above mentioned problem, by taking into account all the individual probes.
An improved model for the oPtImal Measurement Probes Allocation tool
International Nuclear Information System (INIS)
Sterle, C.; Neto, A.C.; De Tommasi, G.
2015-01-01
Highlights: • The problem of optimally allocating the probes of a diagnostic system is tackled. • The problem is decomposed in two consecutive optimization problems. • Two original ILP models are proposed and sequentially solved to optimality. • The proposed ILP models improve and extend the previous work present in literature. • Real size instances have been optimally solved with very low computation time. - Abstract: The oPtImal Measurement Probes Allocation (PIMPA) tool has been recently proposed in [1] to maximize the reliability of a tokamak diagnostic system against the failure of one or more of the processing nodes. PIMPA is based on the solution of integer linear programming (ILP) problems, and it minimizes the effect of the failure of a data acquisition component. The first formulation of the PIMPA model did not support the concept of individual slots. This work presents an improved ILP model that addresses the above mentioned problem, by taking into account all the individual probes.
Energy Technology Data Exchange (ETDEWEB)
Mello Junior, Glauco J.T.; Cardoso, Tarcisio de F.; Prates, Carlos L.M. [Eletrobras Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Gerencia de Analise de Tensoes GAN.T], e-mail: glauco@eletronuclear.gov.br, e-mail: tarci@eletronuclear.gov.br, e-mail: prates@eletronuclear.gov.br
2009-07-01
Angra dos Reis site in Brazil has already 2 operating PWR NPPs. Unit 3, with identical design to Unit 2, also a 1350 MW PWR, is expected to have its construction started in 2009. This new plant shall be founded directly on sound rock. The first step is to prepare this rock surface with a concrete regularization and a foundation waterproofing membrane. This study presents a 3D model approach of the corresponding reactor building to verify the maximum pressure acting on this surface. The 3D model permits to show a more realistic pressure distribution at every foundation specific detail. A static analysis is performed using ANSYS Mechanical Release 11.1. Dead weight, permanent and live loads, Safe Shutdown Earthquake (SSE) combined with Burst Pressure Wave (BPW) from the Feedwater Tank (SSB=SSE+BPW) and differences of temperature are taken into account. Considering all foundation nodes , the pressure distribution on the waterproofing membrane for each load case is obtained for vertical and horizontal directions, which corresponds to compression and tangential reaction loads. The maximum values occur in distinct positions for each load case. The maximum results are obtained according to DIN 25449 (2008) load combination criteria. The results are compared to a simplified analysis performed before, showing a good agreement in global values. (author)
NON-RADIAL OSCILLATIONS IN M-GIANT SEMI-REGULAR VARIABLES: STELLAR MODELS AND KEPLER OBSERVATIONS
Energy Technology Data Exchange (ETDEWEB)
Stello, Dennis; Compton, Douglas L.; Bedding, Timothy R.; Kiss, Laszlo L.; Bellamy, Beau [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mathur, Savita, E-mail: stello@physics.usyd.edu.au [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States)
2014-06-10
The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar-like star evolves off the main sequence and onto the red giant branch its structure changes dramatically, resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub-ridges in the period-luminosity diagram. Finally, we find ''new ridges'' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.
International Nuclear Information System (INIS)
Mello Junior, Glauco J.T.; Cardoso, Tarcisio de F.; Prates, Carlos L.M.
2009-01-01
Angra dos Reis site in Brazil has already 2 operating PWR NPPs. Unit 3, with identical design to Unit 2, also a 1350 MW PWR, is expected to have its construction started in 2009. This new plant shall be founded directly on sound rock. The first step is to prepare this rock surface with a concrete regularization and a foundation waterproofing membrane. This study presents a 3D model approach of the corresponding reactor building to verify the maximum pressure acting on this surface. The 3D model permits to show a more realistic pressure distribution at every foundation specific detail. A static analysis is performed using ANSYS Mechanical Release 11.1. Dead weight, permanent and live loads, Safe Shutdown Earthquake (SSE) combined with Burst Pressure Wave (BPW) from the Feedwater Tank (SSB=SSE+BPW) and differences of temperature are taken into account. Considering all foundation nodes , the pressure distribution on the waterproofing membrane for each load case is obtained for vertical and horizontal directions, which corresponds to compression and tangential reaction loads. The maximum values occur in distinct positions for each load case. The maximum results are obtained according to DIN 25449 (2008) load combination criteria. The results are compared to a simplified analysis performed before, showing a good agreement in global values. (author)
7. Lasers and plasmas forum - ILP 2015 Forum. Book of abstracts
International Nuclear Information System (INIS)
Mora, P.; Le Marec, A.; Ferri, S.; Corde, S.; Ceccotti, T.; Dozieres, M.; Pariente, G.; Azamoum, Y.; Cheriaux, G.; Baccou, C.; Romagnani, L.; Ravasio, A.; Masson-Laborde, P.E.; Laffite, S.; Neuville, C.; Casner, A.; Debayle, A.; Lobet, M.; Cosse, P.; Falize, E.; Taieb, R.; Rozmus, W.; Colaitis, A.; Boutoux, G.; Llor Aisa, E.; Ducret, J.E.; Le Pennec, M.; Barbrel, B.; Rouan, D.; Smets, R.; Seisson, G.; Boyer, S.; Massacrier, G.; Harmand, M.; Jacquemot, S.; Adam, J.C.; Boutoux, G.; Busquet, M.; Bychenkov, V. Yu.; Castan, A.; Chatagnier, A.; Chiaramello, M.; Debayle, A.; Deschaud, Basil; Do, A.; Fedeli, L.; Ferri, J.; Gangolf, T.; Gilles, D.; Vallet, A.; D'Humieres, E.; Khiar, B.; Grassi, A.; Hadj-Bachir, M.; Lee, P.; Lobet, M.; Loiseau, P.; Maitrallain, A.; Masson-Laborde, P.E.; Mollica, F.; Moreau, J.G.; Nicolas, Loic; Pain, J.-C.; Penninckx, D.; Riconda, C.; Ruyer, C.; Soleilhac, A.; Van Box Som, L.
2015-06-01
List of oral presentation abstracts: Effect of XUV lasers partial coherence on the characterization of their spectral properties; Study of ionization potential lowering and other statistical properties of coupled plasmas using numerical simulation and classical molecular dynamics; Plasma acceleration by particle beam; Electron acceleration by surface wave resonant excitation in relativistic regime; Optimization of a laser-generated X Ka source (Ti:Sa 10 TW - 100 Hz); Apollon 10 PW: description and status; The future of the research federation and of power laser facilities; Inertial confinement fusion and operation of 'rugby'-shape hohlraums; Chronometry and efficiency of direct attack implosion at OMEGA facility; Laser-plasma interaction physics in beam crossing configuration; NIF Discovery Science experiments for the study of the strongly nonlinear regime of the ablative Rayleigh-Taylor instability; X opacity measurements in mid-Z dense plasmas with a new target design of indirect heating; Photoionization dynamics: Transition and scattering delays; Ion acceleration induced by laser-produced electrostatic shocks; Electron Transport and Related Non-equilibrium Distribution Functions in Hot Large Scale ICF Plasmas; Rate optimization of neutron-less fusion reactions initiated by laser-accelerated protons; Nonlinear laser-plasma interactions modeling at hydrodynamic scales: application to beam crossing energy exchange; Evolution of a Sedov-Taylor blast-wave: radiative, nonlocal heat transport and field effects; Measuring ultra-intense laser beams in space time; A few applications of the radiative and quantum electrodynamics effects in future extreme-intensity laser-matter experiments; X-rays imaging diagnostics for PETAL; Laboratory Astrophysics with High Power Lasers; Femto-second electron dynamics in the Warm dense Matter; The extra-solar planets; Study of HEDP magnetic reconnection; Opacity of solar-type stars inside: what (un)certainties?; Validation of solar
Houborg, Rasmus
2015-10-14
Accurate retrieval of canopy biophysical and leaf biochemical constituents from space observations is critical to diagnosing the functioning and condition of vegetation canopies across spatio-temporal scales. Retrieved vegetation characteristics may serve as important inputs to precision farming applications and as constraints in spatially and temporally distributed model simulations of water and carbon exchange processes. However significant challenges remain in the translation of composite remote sensing signals into useful biochemical, physiological or structural quantities and treatment of confounding factors in spectrum-trait relations. Bands in the red-edge spectrum have particular potential for improving the robustness of retrieved vegetation properties. The development of observationally based vegetation retrieval capacities, effectively constrained by the enhanced information content afforded by bands in the red-edge, is a needed investment towards optimizing the benefit of current and future satellite sensor systems. In this study, a REGularized canopy reFLECtance model (REGFLEC) for joint leaf chlorophyll (Chll) and leaf area index (LAI) retrieval is extended to sensor systems with a band in the red-edge region for the first time. Application to time-series of 5 m resolution multi-spectral RapidEye data is demonstrated over an irrigated agricultural region in central Saudi Arabia, showcasing the value of satellite-derived crop information at this fine scale for precision management. Validation against in-situ measurements in fields of alfalfa, Rhodes grass, carrot and maize indicate improved accuracy of retrieved vegetation properties when exploiting red-edge information in the model inversion process. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
International Nuclear Information System (INIS)
Nigro, G; Carbone, V
2015-01-01
Conventional surveys on the existence of singularities in fluid systems for vanishing dissipation have hitherto tried to infer some insight by searching for spatial features developing in asymptotic regimes. This approach has not yet produced a conclusive answer. One of the difficulties preventing us from getting a definitive answer is the limitations of direct numerical simulations which do not yet have a high enough resolution so far as to properly describe spatial fine structures in asymptotic regimes. In this paper, instead of searching for spatial details, we suggest seeking a principle, that would be able to discriminate between singular or not-singular behavior, among the integral and purely dynamical properties of a fluid system. We investigate the singularities developed by a hydromagnetic shell model during the magnetohydrodynamic turbulent cascade. Our results show that when the viscosity is equal to the magnetic diffusivity (unit magnetic Prandtl number) singularities appear in a finite time. A complex behavior is observed at extreme magnetic Prandtl numbers. In particular, the singularities persist in the limit of vanishing viscosity, while a complete regularization is observed in the limit of vanishing diffusivity. This dynamics is related to differences between the magnetic and the kinetic energy cascades towards small scales. Finally a comparison between the three-dimensional and the two-dimensional cases leads to conjecture that the existence of singularities may be related to the conservation of different ideal invariants. (paper)
Garner, Sarah Rose C; Castellanos, Monica C; Baillie, Katherine E; Lian, Tianshun; Allan, Douglas W
2018-01-08
Female-specific Ilp7 neuropeptide-expressing motoneurons (FS-Ilp7 motoneurons) are required in Drosophila for oviduct function in egg laying. Here, we uncover cellular and genetic mechanisms underlying their female-specific generation. We demonstrate that programmed cell death (PCD) eliminates FS-Ilp7 motoneurons in males, and that this requires male-specific splicing of the sex-determination gene fruitless ( fru ) into the Fru MC isoform. However, in females, fru alleles that only generate Fru M isoforms failed to kill FS-Ilp7 motoneurons. This blockade of Fru M -dependent PCD was not attributable to doublesex gene function but to a non-canonical role for transformer ( tra ), a gene encoding the RNA splicing activator that regulates female-specific splicing of fru and dsx transcripts. In both sexes, we show that Tra prevents PCD even when the Fru M isoform is expressed. In addition, we found that Fru MC eliminated FS-Ilp7 motoneurons in both sexes, but only when Tra was absent. Thus, Fru MC -dependent PCD eliminates female-specific neurons in males, and Tra plays a double-assurance function in females to establish and reinforce the decision to generate female-specific neurons. © 2018. Published by The Company of Biologists Ltd.
Lamorgese, A.; Mauri, R.
2017-04-01
We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.
Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster
2017-12-01
This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.
Manifold Regularized Correlation Object Tracking
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2017-01-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...
International Nuclear Information System (INIS)
Carneiro, David; Sampaio, Marcos; Nemes, Maria Carolina; Scarpelli, Antonio Paulo Baeta
2003-01-01
We compute the three loop β function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disentangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories. (author)
Abramov, G. V.; Emeljanov, A. E.; Ivashin, A. L.
Theoretical bases for modeling a digital control system with information transfer via the channel of plural access and a regular quantization cycle are submitted. The theory of dynamic systems with random changes of the structure including elements of the Markov random processes theory is used for a mathematical description of a network control system. The characteristics of similar control systems are received. Experimental research of the given control systems is carried out.
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Nijholt, Antinus
1980-01-01
Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular
International Nuclear Information System (INIS)
Hamoudi, A.K.; Abdul Majeed Al-Rahmani, A.
2012-01-01
The spectral fluctuations and the statistics of electromagnetic transition intensities and electromagnetic moments in 44 V nucleus are studied by the framework of the interacting shell model, using the FPD6 as a realistic effective interaction in the isospin formalism for 4 particles move in the fp-model space with a 40 Ca core. To look for a regular-chaos transition in 44 V nucleus, we perform shell model calculations using various interaction strengths β to the off-diagonal matrix elements of the FPD6. The nearest-neighbors level spacing distribution P(s) and the distribution of electromagnetic transition intensities [such as, B(M1) and B(E2) transitions] are found to have a regular dynamic at β=0, a chaotic dynamic at β⩾0.3 and an intermediate situation at 0 3 statistic we have found a regular dynamic at β=0, a chaotic dynamic at β⩾0.4 and an intermediate situation at 0<β<0.4. It is also found that the statistics of the squares of M1 and E2 moments, which are consistent with a Porter-Thomas distribution, have no dependence on the interaction strength β.
Directory of Open Access Journals (Sweden)
E. Hatefnia
2016-05-01
Full Text Available Background: Osteoporosis is a metabolic bone disease and a growing global health problem that causes bones to thin and fragile. It is estimated that about two million people suffer from osteoporosis. According to the World Health Organization recommends regular physical activity is effective in preventing and while the results of some studies show about 65% of working women in Iran; do not get enough physical activity. This study aimed to determine factors associated with regular physical activity behavior for the prevention of osteoporosis in female employees Alborz University of Medical Sciences and was designed by HBM Methods: This study is a cross-sectional study involving 217 female university employees, all of whom were studied with the consent of the census. Tools for data collection questionnaire that included demographic questions, knowledge and questions based on health belief model structures that had done Validity and reliability. Data were analyzed using spss Edition19 and descriptive analytical statistics tests. Findings: The results show that regular physical activity was 37/8%. Idependent t-test showed a significant difference (P< 0/001 knowledge and self-efficacy between the two groups (with and without regular physical activity. Logistic regression analysis showed that knowledge and self-efficacy are significant predictor of Physical activity behavior. In this study, a significant association was found between the income and physical activity And the other factors such relationship wasnot found for physical activity. Conclusion: According to lack of regular physical activity and considering the relationship between knowledge and self-efficacy with physical activity, the need to addressing this issue through educational programming based on related factors.
Regular Expression Pocket Reference
Stubblebine, Tony
2007-01-01
This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp
International Nuclear Information System (INIS)
Plassart, Roland; Giraud, Albert; Hoxha, Dashnor; Laigle, Francois
2013-01-01
In the context of nuclear waste disposals, this paper deals with hydro-mechanical modelling in saturated conditions in deep geological formation, using a specific elasto-viscoplastic model hereafter called the L and K model. While classical Biot's framework is followed for the hydro-mechanical coupling, the mechanical L and K model offers a coupling between instantaneous and delayed behaviour and a variation of dilation of ten related to softening. These volumetric strains are especially highlighted in coupled hydro-mechanical conditions. In order to avoid mesh dependency and numerical localized solutions, this type of modelling needs the use of a regularization method which is here referred to as the second gradient dilation model. After describing the numeric tools, we use them for simulating a gallery of the underground research laboratory of Bure. The approach is validated by the good general agreement found between numeric results and in situ measures for both hydraulic pressure and displacement. (authors)
Regularization by External Variables
DEFF Research Database (Denmark)
Bossolini, Elena; Edwards, R.; Glendinning, P. A.
2016-01-01
Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...
Goyvaerts, Jan
2009-01-01
This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a
Yankovskii, A. P.
2018-01-01
On the basis of constitutive equations of the Rabotnov nonlinear hereditary theory of creep, the problem on the rheonomic flexural behavior of layered plates with a regular structure is formu-lated. Equations allowing one to describe, with different degrees of accuracy, the stress-strain state of such plates with account of their weakened resistance to transverse shear were ob-tained. From them, the relations of the nonclassical Reissner- and Reddytype theories can be found. For axially loaded annular plates clamped at one edge and loaded quasistatically on the other edge, a simplified version of the refined theory, whose complexity is comparable to that of the Reissner and Reddy theories, is developed. The flexural strains of such metal-composite annular plates in shortterm and long-term loadings at different levels of heat action are calcu-lated. It is shown that, for plates with a relative thickness of order of 1/10, neither the classical theory, nor the traditional nonclassical Reissner and Reddy theories guarantee reliable results for deflections even with the rough 10% accuracy. The accuracy of these theories decreases at elevated temperatures and with time under long-term loadings of structures. On the basic of relations of the refined theory, it is revealed that, in bending of layered metal-composite heat-sensitive plates under elevated temperatures, marked edge effects arise in the neighborhood of the supported edge, which characterize the shear of these structures in the transverse direction
International Nuclear Information System (INIS)
Kulshreshtha, U.
1998-01-01
A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the above gauge-non-invariant theory, are investigated with some specific gauge choices. (orig.)
Regularities of Multifractal Measures
Indian Academy of Sciences (India)
First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...
Stochastic analytic regularization
International Nuclear Information System (INIS)
Alfaro, J.
1984-07-01
Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Kirschneck, Christian; Maurer, Michael; Wolf, Michael; Reicheneder, Claudia; Proff, Peter
2017-01-01
Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment at a nicotine exposure corresponding to that of an average European smoker. 63 male Fischer344 rats were randomized in three consecutive experiments of 21 animals each (A/B/C) to 3 experimental groups (7 rats, 1/2/3): (A) cone-beam-computed tomography (CBCT); (B) histology/serology; (C) reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR)/cotinine serology—(1) control; (2) orthodontic tooth movement (OTM) of the first and second upper left molar (NiTi closed coil spring, 0.25 N); (3) OTM with 1.89 mg·kg−1 per day s.c. of L(−)-nicotine. After 14 days of OTM, serum cotinine and IL-6 concentration as well as orthodontically induced inflammatory root resorption (OIIRR), osteoclast activity (histology), orthodontic tooth movement velocity (CBCT, within 14 and 28 days of OTM) and relative gene expression of known inflammatory and osteoclast markers were quantified in the dental-periodontal tissue (RT–qPCR). Animals exposed to nicotine showed significantly heightened serum cotinine and IL-6 levels corresponding to those of regular European smokers. Both the extent of root resorption, osteoclast activity, orthodontic tooth movement and gene expression of inflammatory and osteoclast markers were significantly increased compared to controls with and without OTM under the influence of nicotine. We conclude that apart from increased periodontal bone loss, a progression of dental root resorption and accelerated orthodontic tooth movement are to be anticipated during orthodontic therapy, if nicotine consumption is present. Thus patients should be informed about these risks and the necessity of nicotine abstinence during treatment. PMID:28960194
Forcing absoluteness and regularity properties
Ikegami, D.
2010-01-01
For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over L and the core model K. We use our results to answer open questions from set theory of the reals.
International Nuclear Information System (INIS)
Chetvertkov, Mikhail A.; Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James; Kim, Jinkoo
2016-01-01
Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more
Energy Technology Data Exchange (ETDEWEB)
Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne.edu [Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201 and Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Kim, Jinkoo [Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, New York 11794 (United States)
2016-10-15
Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more
Lee, JuHee; Park, Chang Gi; Choi, Moonki
2016-05-01
This study was conducted to identify risk factors that influence regular exercise among patients with Parkinson's disease in Korea. Parkinson's disease is prevalent in the elderly, and may lead to a sedentary lifestyle. Exercise can enhance physical and psychological health. However, patients with Parkinson's disease are less likely to exercise than are other populations due to physical disability. A secondary data analysis and cross-sectional descriptive study were conducted. A convenience sample of 106 patients with Parkinson's disease was recruited at an outpatient neurology clinic of a tertiary hospital in Korea. Demographic characteristics, disease-related characteristics (including disease duration and motor symptoms), self-efficacy for exercise, balance, and exercise level were investigated. Negative binomial regression and zero-inflated negative binomial regression for exercise count data were utilized to determine factors involved in exercise. The mean age of participants was 65.85 ± 8.77 years, and the mean duration of Parkinson's disease was 7.23 ± 6.02 years. Most participants indicated that they engaged in regular exercise (80.19%). Approximately half of participants exercised at least 5 days per week for 30 min, as recommended (51.9%). Motor symptoms were a significant predictor of exercise in the count model, and self-efficacy for exercise was a significant predictor of exercise in the zero model. Severity of motor symptoms was related to frequency of exercise. Self-efficacy contributed to the probability of exercise. Symptom management and improvement of self-efficacy for exercise are important to encourage regular exercise in patients with Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Manifold Regularized Correlation Object Tracking.
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2018-05-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.
Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.
2017-01-01
The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Keplers equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Keplers equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Regular expression containment
DEFF Research Database (Denmark)
Henglein, Fritz; Nielsen, Lasse
2011-01-01
We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
Regularized maximum correntropy machine
Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin
2015-01-01
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
PAAR, [No Value; VORKAPIC, D; DIERPERINK, AEL
1992-01-01
We study the fluctuation properties of 0+ levels in rotational nuclei using the framework of SU(3) dynamical symmetry of the interacting boson model. Computations of Poincare sections for SU(3) dynamical symmetry and its breaking confirm the expected relation between dynamical symmetry and classical
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
Lino, A. C. L.; Dal Fabbro, I. M.
2008-04-01
The conception of a tridimensional digital model of solid figures and plant organs started from topographic survey of virtual surfaces [1], followed by topographic survey of solid figures [2], fruit surface survey [3] and finally the generation of a 3D digital model [4] as presented by [1]. In this research work, i.e. step number [4] tested objects included cylinders, cubes, spheres and fruits. A Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface. Projected grid was named Gd. The difference between Gd and G1 followed by filtration generated de moiré fringes M1 and so on, obtaining the fringes M2, M3 and M4 from Gd. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Tested object was placed on a goniometer and rotate to generate four surfaces topography. These four surveyed surfaces were assembled by means of a SCILAB software, obtaining a three column matrix, corresponding to the object coordinates xi, also having elevation values and coordinates corrected as well. The work includes conclusions on the reliability of the proposed method as well as the setup simplicity and of low cost.
Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak
2016-03-01
One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi
International Nuclear Information System (INIS)
Wang Yusheng; Li Wenjun
1995-01-01
During the Meso-Cenozoic era, the crust in the east of South China experienced an evolutional process of compression-relaxed extension-local disintegration, correspondingly, three periods of volcanic activity were developed, forming initial volcanic cycle, principal volcanic cycle and caldera volcanic cycle. The caldera volcanic cycle was expressed as a 'bimodal type' rock suite, indicating the entering of the region into an evolutional stage of new embryonic refitting. The volcanic type uranium deposit is characterized by ore-formation during caldera volcanic cycle, ore control by the mobile belt of caldera volcanic cycle and double superposition and concentration, and it can be summarized as a new unconformity-related type uranium deposit of caldera volcanic series, which is divided into three morphological types: body type, layer type and vein type and relevant exploration models are proposed. The new unconformity-related type uranium deposits of the caldera volcanic series in the east of South China have a great prospecting potential. The tectonomagmatic complex area of the caldera volcanic cycle developed on the granite basement is the favourable target area in searching for large uranium deposits from now on
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-03-01
Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
From recreational to regular drug use
DEFF Research Database (Denmark)
Järvinen, Margaretha; Ravn, Signe
2011-01-01
This article analyses the process of going from recreational use to regular and problematic use of illegal drugs. We present a model containing six career contingencies relevant for young people’s progress from recreational to regular drug use: the closing of social networks, changes in forms...
Dwicahyani, A. R.; Jauhari, W. A.; Jonrinaldi
2017-06-01
Product take-back recovery has currently became a promising effort for companies in order to create a sustainable supply chain. In addition, some restrictions including government regulations, social-ethical responsibilities, and up to economic factors have contributed to the reasons for the importance of product take-back recovery. This study aims to develop an inventory model in a system of reverse logistic management consisting of a manufacturer and a collector. Recycle dealer collects used products from the market and ships it to manufacturer. Manufacturer then recovers the used products and sell it eventually to the market. Some recovered products that can not be recovered as good as new one will be sold to the secondary market. In this study, we investigate the effects of environmental factors including GHG emissions and energy usage from transportation, regular production, and remanufacturing operations conducted by manufacturer and solve the model to get the maximum annual joint total profit for both parties. The model also considers price-dependent return rate and determine it as a decision variable as well as number of shipments from collector to manufacturer and optimal cycle period. An iterative procedure is proposed to determine the optimal solutions. We present a numerical example to illustrate the application of the model and perform a sensitivity analysis to study the effects of the changes in environmental related costs on the model’s decision.
Yang, Zhengfei; Liu, Qingyu; Zheng, Guanghui; Liu, Zhifeng; Jiang, Longyuan; Lin, Qing; Chen, Rui; Tang, Wanchun
2017-09-01
A compression-ventilation (C:V) ratio of 30:2 is recommended for adult cardiopulmonary resuscitation (CPR) by the current American Heart Association (AHA) guidelines. However, continuous chest compression (CCC) is an alternative strategy for CPR that minimizes interruption especially when an advanced airway exists. In this study, we investigated the effects of 30:2 mechanical CPR when compared with CCC in combination with regular ventilation in a porcine model. Sixteen male domestic pigs weighing 39±2 kg were utilized. Ventricular fibrillation was induced and untreated for 7 min. The animals were then randomly assigned to receive CCC combined with regular ventilation (CCC group) or 30:2 CPR (VC group). Mechanical chest compression was implemented with a miniaturized mechanical chest compressor. At the same time of beginning of precordial compression, the animals were mechanically ventilated at a rate of 10 breaths-per-minute in the CCC group or with a 30:2 C:V ratio in the VC group. Defibrillation was delivered by a single 150 J shock after 5 min of CPR. If failed to resuscitation, CPR was resumed for 2 min before the next shock. The protocol was stopped if successful resuscitation or at a total of 15 min. The resuscitated animals were observed for 72 h. Coronary perfusion pressure, end-tidal carbon dioxide and carotid blood flow in the VC group were similar to those achieved in the CCC group during CPR. No significant differences were observed in arterial blood gas parameters between two groups at baseline, VF 6 min, CPR 4 min and 30, 120 and 360 min post-resuscitation. Although extravascular lung water index of both groups significantly increased after resuscitation, no distinct difference was found between CCC and VC groups. All animals were successfully resuscitated and survived for 72 h with favorable neurologic outcomes in both groups. However, obviously more numbers of rib fracture were observed in CCC animals in comparison with VC animals. There was no
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin
2014-01-01
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Learning Sparse Visual Representations with Leaky Capped Norm Regularizers
Wangni, Jianqiao; Lin, Dahua
2017-01-01
Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of $\\ell_1$ regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and...
Regularization methods in Banach spaces
Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S
2012-01-01
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B
Diverse Regular Employees and Non-regular Employment (Japanese)
MORISHIMA Motohiro
2011-01-01
Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
'Regular' and 'emergency' repair
International Nuclear Information System (INIS)
Luchnik, N.V.
1975-01-01
Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)
Regularization of divergent integrals
Felder, Giovanni; Kazhdan, David
2016-01-01
We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.
Regularizing portfolio optimization
International Nuclear Information System (INIS)
Still, Susanne; Kondor, Imre
2010-01-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regularizing portfolio optimization
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regular Single Valued Neutrosophic Hypergraphs
Directory of Open Access Journals (Sweden)
Muhammad Aslam Malik
2016-12-01
Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.
The geometry of continuum regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-03-01
This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations
Annotation of Regular Polysemy
DEFF Research Database (Denmark)
Martinez Alonso, Hector
Regular polysemy has received a lot of attention from the theory of lexical semantics and from computational linguistics. However, there is no consensus on how to represent the sense of underspecified examples at the token level, namely when annotating or disambiguating senses of metonymic words...... and metonymic. We have conducted an analysis in English, Danish and Spanish. Later on, we have tried to replicate the human judgments by means of unsupervised and semi-supervised sense prediction. The automatic sense-prediction systems have been unable to find empiric evidence for the underspecified sense, even...
Regularity of Minimal Surfaces
Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht
2010-01-01
"Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t
Regularities of radiation heredity
International Nuclear Information System (INIS)
Skakov, M.K.; Melikhov, V.D.
2001-01-01
One analyzed regularities of radiation heredity in metals and alloys. One made conclusion about thermodynamically irreversible changes in structure of materials under irradiation. One offers possible ways of heredity transmittance of radiation effects at high-temperature transformations in the materials. Phenomenon of radiation heredity may be turned to practical use to control structure of liquid metal and, respectively, structure of ingot via preliminary radiation treatment of charge. Concentration microheterogeneities in material defect structure induced by preliminary irradiation represent the genetic factor of radiation heredity [ru
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Graph Modeling for Quadratic Assignment Problems Associated with the Hypercube
International Nuclear Information System (INIS)
Mittelmann, Hans; Peng Jiming; Wu Xiaolin
2009-01-01
In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associated hypercube allow us to obtain partial information regarding the optimal solutions and thus shrink the search space and improve all the existing QAP solvers for the underlying QAPs.Secondly, we use graph modeling technique to derive a new integer linear program (ILP) models for the underlying QAPs. The new ILP model has n(n-1) binary variables and O(n 3 log(n)) linear constraints. This yields the smallest known number of binary variables for the ILP reformulation of QAPs. Various relaxations of the new ILP model are obtained based on the graphical characterization of the hypercube, and the lower bounds provided by the LP relaxations of the new model are analyzed and compared with what provided by several classical LP relaxations of QAPs in the literature.
Fast and compact regular expression matching
DEFF Research Database (Denmark)
Bille, Philip; Farach-Colton, Martin
2008-01-01
We study 4 problems in string matching, namely, regular expression matching, approximate regular expression matching, string edit distance, and subsequence indexing, on a standard word RAM model of computation that allows logarithmic-sized words to be manipulated in constant time. We show how...... to improve the space and/or remove a dependency on the alphabet size for each problem using either an improved tabulation technique of an existing algorithm or by combining known algorithms in a new way....
Zagoni, M.
2017-12-01
Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.
Coupling regularizes individual units in noisy populations
International Nuclear Information System (INIS)
Ly Cheng; Ermentrout, G. Bard
2010-01-01
The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
2010-12-07
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...
Directory of Open Access Journals (Sweden)
Zohre kafaee
2016-04-01
Full Text Available Background: One of the most common disorders in pregnancy is Folic Acid deficiency and its complications. The aim of this study was to examine the predictors of regular use of folic acid supplements based on HBM in pregnant women referred to Borazjan’s health centers. Material and Methods: In this cross-sectional study, 228 pregnant women or women with planning of pregnancy referred to health centers of Borazjan with random sampling method evaluated. Data was collected with questionnaire in 4 parts included demographic characteristics, knowledge, health belief model constructs and questions about folic acid supplement use. Data was analyzed by SPSS software with using appropriate statistical tests. Results: The mean age of samples was 27.4±5.41. 144 patients (63.2% consumed Folic Acid pills regularly, and 84 patients (36.8% had irregular use. The awareness of folic acid in 22.8% of women was good, 59.6% and 17.5% of samples had intermediate and poor awareness, respectively. The perceived barriers (P<0.001, perceived benefits (P=0.002 and self-efficacy (P<0.001 had relation with consumption of folic acid and among demographic variables, only education level (P=0.04 had relation with the consumption of pills. In logistic regression perceived barriers was only predictor. Age and educational level had indirect effect in regular consume pill. Conclusion: Perceived barriers was strongest predictors of folic acid use, therefore intervention based on health belief model, with emphasis on reducing barriers is necessary for improving the use of this medicine during pregnancy.
Selection of regularization parameter for l1-regularized damage detection
Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing
2018-06-01
The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.
Ensemble manifold regularization.
Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng
2012-06-01
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.
Class of regular bouncing cosmologies
Vasilić, Milovan
2017-06-01
In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.
From inactive to regular jogger
DEFF Research Database (Denmark)
Lund-Cramer, Pernille; Brinkmann Løite, Vibeke; Bredahl, Thomas Viskum Gjelstrup
study was conducted using individual semi-structured interviews on how a successful long-term behavior change had been achieved. Ten informants were purposely selected from participants in the DANO-RUN research project (7 men, 3 women, average age 41.5). Interviews were performed on the basis of Theory...... of Planned Behavior (TPB) and The Transtheoretical Model (TTM). Coding and analysis of interviews were performed using NVivo 10 software. Results TPB: During the behavior change process, the intention to jogging shifted from a focus on weight loss and improved fitness to both physical health, psychological......Title From inactive to regular jogger - a qualitative study of achieved behavioral change among recreational joggers Authors Pernille Lund-Cramer & Vibeke Brinkmann Løite Purpose Despite extensive knowledge of barriers to physical activity, most interventions promoting physical activity have proven...
Adaptive Regularization of Neural Classifiers
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai
1997-01-01
We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...
Directory of Open Access Journals (Sweden)
Andreas Taubert
2008-08-01
Full Text Available At elevated temperatures, the ionic liquid precursor (ILP tetrabutylammonium hydroxide reacts with zinc acetate and the glass wall of the reaction vessel. While the reaction of OH- with the glass wall is not surprising as such and could be considered a failed experiment, the resulting materials are interesting for a variety of applications. If done on purpose and under controlled conditions, the reaction with the glass wall results in uniform, well-defined hemimorphite Zn4Si2O7(OH2Ã‚Â·nH2O and willemite Zn2SiO4 microcrystals and films. Their morphology can be adjusted by variation of the reaction time and reaction temperature. The hemimorphite can be transformed to Zn2SiO4 via calcination. The process is therefore a viable approach for the fabrication of porous films on glass surfaces with potential applications as catalyst support, among others.
2010-09-02
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
Improvements in GRACE Gravity Fields Using Regularization
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
A Sim(2 invariant dimensional regularization
Directory of Open Access Journals (Sweden)
J. Alfaro
2017-09-01
Full Text Available We introduce a Sim(2 invariant dimensional regularization of loop integrals. Then we can compute the one loop quantum corrections to the photon self energy, electron self energy and vertex in the Electrodynamics sector of the Very Special Relativity Standard Model (VSRSM.
Continuum-regularized quantum gravity
International Nuclear Information System (INIS)
Chan Huesum; Halpern, M.B.
1987-01-01
The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)
New regular black hole solutions
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zanchin, Vilson T.
2011-01-01
In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.
Regular variation on measure chains
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Vitovec, J.
2010-01-01
Roč. 72, č. 1 (2010), s. 439-448 ISSN 0362-546X R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : regularly varying function * regularly varying sequence * measure chain * time scale * embedding theorem * representation theorem * second order dynamic equation * asymptotic properties Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09008475
On geodesics in low regularity
Sämann, Clemens; Steinbauer, Roland
2018-02-01
We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal
Regularized forecasting of chaotic dynamical systems
International Nuclear Information System (INIS)
Bollt, Erik M.
2017-01-01
While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.
Learning Probabilistic Logic Models from Probabilistic Examples.
Chen, Jianzhong; Muggleton, Stephen; Santos, José
2008-10-01
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
Regularized Discriminant Analysis: A Large Dimensional Study
Yang, Xiaoke
2018-04-28
In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).
Describing chaotic attractors: Regular and perpetual points
Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz
2018-03-01
We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.
Metric regularity and subdifferential calculus
International Nuclear Information System (INIS)
Ioffe, A D
2000-01-01
The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces
Laplacian manifold regularization method for fluorescence molecular tomography
He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei
2017-04-01
Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.
Dimensional regularization in configuration space
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1995-09-01
Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs
Regular algebra and finite machines
Conway, John Horton
2012-01-01
World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg
Matrix regularization of 4-manifolds
Trzetrzelewski, M.
2012-01-01
We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...
Regular Breakfast and Blood Lead Levels among Preschool Children
Directory of Open Access Journals (Sweden)
Needleman Herbert
2011-04-01
Full Text Available Abstract Background Previous studies have shown that fasting increases lead absorption in the gastrointestinal tract of adults. Regular meals/snacks are recommended as a nutritional intervention for lead poisoning in children, but epidemiological evidence of links between fasting and blood lead levels (B-Pb is rare. The purpose of this study was to examine the association between eating a regular breakfast and B-Pb among children using data from the China Jintan Child Cohort Study. Methods Parents completed a questionnaire regarding children's breakfast-eating habit (regular or not, demographics, and food frequency. Whole blood samples were collected from 1,344 children for the measurements of B-Pb and micronutrients (iron, copper, zinc, calcium, and magnesium. B-Pb and other measures were compared between children with and without regular breakfast. Linear regression modeling was used to evaluate the association between regular breakfast and log-transformed B-Pb. The association between regular breakfast and risk of lead poisoning (B-Pb≥10 μg/dL was examined using logistic regression modeling. Results Median B-Pb among children who ate breakfast regularly and those who did not eat breakfast regularly were 6.1 μg/dL and 7.2 μg/dL, respectively. Eating breakfast was also associated with greater zinc blood levels. Adjusting for other relevant factors, the linear regression model revealed that eating breakfast regularly was significantly associated with lower B-Pb (beta = -0.10 units of log-transformed B-Pb compared with children who did not eat breakfast regularly, p = 0.02. Conclusion The present study provides some initial human data supporting the notion that eating a regular breakfast might reduce B-Pb in young children. To our knowledge, this is the first human study exploring the association between breakfast frequency and B-Pb in young children.
Regularization of Nonmonotone Variational Inequalities
International Nuclear Information System (INIS)
Konnov, Igor V.; Ali, M.S.S.; Mazurkevich, E.O.
2006-01-01
In this paper we extend the Tikhonov-Browder regularization scheme from monotone to rather a general class of nonmonotone multivalued variational inequalities. We show that their convergence conditions hold for some classes of perfectly and nonperfectly competitive economic equilibrium problems
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
2011-01-20
... Meeting SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held at the offices of the Farm... meeting of the Board will be open to the [[Page 3630
Globals of Completely Regular Monoids
Institute of Scientific and Technical Information of China (English)
Wu Qian-qian; Gan Ai-ping; Du Xian-kun
2015-01-01
An element of a semigroup S is called irreducible if it cannot be expressed as a product of two elements in S both distinct from itself. In this paper we show that the class C of all completely regular monoids with irreducible identity elements satisfies the strong isomorphism property and so it is globally determined.
Fluid queues and regular variation
Boxma, O.J.
1996-01-01
This paper considers a fluid queueing system, fed by N independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index ¿. We show that its fat tail gives rise to an even
Fluid queues and regular variation
O.J. Boxma (Onno)
1996-01-01
textabstractThis paper considers a fluid queueing system, fed by $N$ independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index $zeta$. We show that its fat tail
Empirical laws, regularity and necessity
Koningsveld, H.
1973-01-01
In this book I have tried to develop an analysis of the concept of an empirical law, an analysis that differs in many ways from the alternative analyse's found in contemporary literature dealing with the subject.
1 am referring especially to two well-known views, viz. the regularity and
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Regularization in Matrix Relevance Learning
Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael
A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can
Higher order total variation regularization for EIT reconstruction.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut
2018-01-08
Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.
Regularity and chaos in cavity QED
International Nuclear Information System (INIS)
Bastarrachea-Magnani, Miguel Angel; López-del-Carpio, Baldemar; Chávez-Carlos, Jorge; Lerma-Hernández, Sergio; Hirsch, Jorge G
2017-01-01
The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside it can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through the use of coherent states, a semiclassical description in phase space, where the non-integrable Dicke model has regions associated with regular and chaotic motion. The appearance of classical chaos can be quantified calculating the largest Lyapunov exponent over the whole available phase space for a given energy. In the quantum regime, employing efficient diagonalization techniques, we are able to perform a detailed quantitative study of the regular and chaotic regions, where the quantum participation ratio (P R ) of coherent states on the eigenenergy basis plays a role equivalent to the Lyapunov exponent. It is noted that, in the thermodynamic limit, dividing the participation ratio by the number of atoms leads to a positive value in chaotic regions, while it tends to zero in the regular ones. (paper)
Regular and conformal regular cores for static and rotating solutions
Energy Technology Data Exchange (ETDEWEB)
Azreg-Aïnou, Mustapha
2014-03-07
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Regular and conformal regular cores for static and rotating solutions
International Nuclear Information System (INIS)
Azreg-Aïnou, Mustapha
2014-01-01
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Contour Propagation With Riemannian Elasticity Regularization
DEFF Research Database (Denmark)
Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.
2011-01-01
Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...
Preckel, Franzis; Schmidt, Isabelle; Stumpf, Eva; Motschenbacher, Monika; Vogl, Katharina; Schneider, Wolfgang
2017-01-01
According to the reciprocal-effects model (REM), prior academic self-concept (ASC) has a positive effect on subsequent achievement beyond what can be explained in terms of prior achievement and vice versa. The present study investigated the REM for students studying in special classes for the gifted compared to students studying in regular…
New regularities in mass spectra of hadrons
International Nuclear Information System (INIS)
Kajdalov, A.B.
1989-01-01
The properties of bosonic and baryonic Regge trajectories for hadrons composed of light quarks are considered. Experimental data agree with an existence of daughter trajectories consistent with string models. It is pointed out that the parity doubling for baryonic trajectories, observed experimentally, is not understood in the existing quark models. Mass spectrum of bosons and baryons indicates to an approximate supersymmetry in the mass region M>1 GeV. These regularities indicates to a high degree of symmetry for the dynamics in the confinement region. 8 refs.; 5 figs
Moreau, Michel; Gagnon, Marie-Pierre; Boudreau, François
2015-02-17
Type 2 diabetes is a major challenge for Canadian public health authorities, and regular physical activity is a key factor in the management of this disease. Given that fewer than half of people with type 2 diabetes in Canada are sufficiently active to meet the recommendations, effective programs targeting the adoption of regular physical activity (PA) are in demand for this population. Many researchers argue that Web-based, tailored interventions targeting PA are a promising and effective avenue for sedentary populations like Canadians with type 2 diabetes, but few have described the detailed development of this kind of intervention. This paper aims to describe the systematic development of the Web-based, tailored intervention, Diabète en Forme, promoting regular aerobic PA among adult Canadian francophones with type 2 diabetes. This paper can be used as a reference for health professionals interested in developing similar interventions. We also explored the integration of theoretical components derived from the I-Change Model, Self-Determination Theory, and Motivational Interviewing, which is a potential path for enhancing the effectiveness of tailored interventions on PA adoption and maintenance. The intervention development was based on the program-planning model for tailored interventions of Kreuter et al. An additional step was added to the model to evaluate the intervention's usability prior to the implementation phase. An 8-week intervention was developed. The key components of the intervention include a self-monitoring tool for PA behavior, a weekly action planning tool, and eight tailored motivational sessions based on attitude, self-efficacy, intention, type of motivation, PA behavior, and other constructs and techniques. Usability evaluation, a step added to the program-planning model, helped to make several improvements to the intervention prior to the implementation phase. The intervention development cost was about CDN $59,700 and took approximately
Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Dolgova, Yu. N.; Beletskaya, E. Yu.
2015-12-01
Theoretical models are developed for growth and filling processes in filamentary channels of nanostructured non-metallic coatings produced by anodizing and microplasma oxidation. Graphical concentration distributions are obtained for channel-reacting anions, cations, and sparingly soluble reaction products depending on the time of electric current transmission and the length of the filamentary channel. Graphical distributions of the front moving velocity for the sparingly soluble compound are presented. The resulting model representation increases the understanding of the anodic process nature and can be used for a description and prediction of porous anodic film growth and filling. It is shown that the character of the filamentary channel growth and filling causes a variety of processes determining the textured metal - nonmetallic inorganic coating phase boundary formation.
Energy functions for regularization algorithms
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
Circuit complexity of regular languages
Czech Academy of Sciences Publication Activity Database
Koucký, Michal
2009-01-01
Roč. 45, č. 4 (2009), s. 865-879 ISSN 1432-4350 R&D Projects: GA ČR GP201/07/P276; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : regular languages * circuit complexity * upper and lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.726, year: 2009
Likelihood ratio decisions in memory: three implied regularities.
Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T
2009-06-01
We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.
Efficient multidimensional regularization for Volterra series estimation
Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan
2018-05-01
This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.
Solution path for manifold regularized semisupervised classification.
Wang, Gang; Wang, Fei; Chen, Tao; Yeung, Dit-Yan; Lochovsky, Frederick H
2012-04-01
Traditional learning algorithms use only labeled data for training. However, labeled examples are often difficult or time consuming to obtain since they require substantial human labeling efforts. On the other hand, unlabeled data are often relatively easy to collect. Semisupervised learning addresses this problem by using large quantities of unlabeled data with labeled data to build better learning algorithms. In this paper, we use the manifold regularization approach to formulate the semisupervised learning problem where a regularization framework which balances a tradeoff between loss and penalty is established. We investigate different implementations of the loss function and identify the methods which have the least computational expense. The regularization hyperparameter, which determines the balance between loss and penalty, is crucial to model selection. Accordingly, we derive an algorithm that can fit the entire path of solutions for every value of the hyperparameter. Its computational complexity after preprocessing is quadratic only in the number of labeled examples rather than the total number of labeled and unlabeled examples.
Regularizations: different recipes for identical situations
International Nuclear Information System (INIS)
Gambin, E.; Lobo, C.O.; Battistel, O.A.
2004-03-01
We present a discussion where the choice of the regularization procedure and the routing for the internal lines momenta are put at the same level of arbitrariness in the analysis of Ward identities involving simple and well-known problems in QFT. They are the complex self-interacting scalar field and two simple models where the SVV and AVV process are pertinent. We show that, in all these problems, the conditions to symmetry relations preservation are put in terms of the same combination of divergent Feynman integrals, which are evaluated in the context of a very general calculational strategy, concerning the manipulations and calculations involving divergences. Within the adopted strategy, all the arbitrariness intrinsic to the problem are still maintained in the final results and, consequently, a perfect map can be obtained with the corresponding results of the traditional regularization techniques. We show that, when we require an universal interpretation for the arbitrariness involved, in order to get consistency with all stated physical constraints, a strong condition is imposed for regularizations which automatically eliminates the ambiguities associated to the routing of the internal lines momenta of loops. The conclusion is clean and sound: the association between ambiguities and unavoidable symmetry violations in Ward identities cannot be maintained if an unique recipe is required for identical situations in the evaluation of divergent physical amplitudes. (author)
General inverse problems for regular variation
DEFF Research Database (Denmark)
Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan
2014-01-01
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...
DEFF Research Database (Denmark)
Garcia-Aymerich, Judith; Lange, Peter; Serra, Ignasi
2008-01-01
PURPOSE: Results from longitudinal studies about the association between physical activity and chronic obstructive pulmonary disease (COPD) may have been biased because they did not properly adjust for time-dependent confounders. Marginal structural models (MSMs) have been proposed to address...... this type of confounding. We sought to assess the presence of time-dependent confounding in the association between physical activity and COPD development and course by comparing risk estimates between standard statistical methods and MSMs. METHODS: By using the population-based cohort Copenhagen City Heart...... Study, 6,568 subjects selected from the general population in 1976 were followed up until 2004 with three repeated examinations. RESULTS: Moderate to high compared with low physical activity was associated with a reduced risk of developing COPD both in the standard analysis (odds ratio [OR] 0.76, p = 0...
Sparse regularization for force identification using dictionaries
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
Optimal behaviour can violate the principle of regularity.
Trimmer, Pete C
2013-07-22
Understanding decisions is a fundamental aim of behavioural ecology, psychology and economics. The regularity axiom of utility theory holds that a preference between options should be maintained when other options are made available. Empirical studies have shown that animals violate regularity but this has not been understood from a theoretical perspective, such decisions have therefore been labelled as irrational. Here, I use models of state-dependent behaviour to demonstrate that choices can violate regularity even when behavioural strategies are optimal. I also show that the range of conditions over which regularity should be violated can be larger when options do not always persist into the future. Consequently, utility theory--based on axioms, including transitivity, regularity and the independence of irrelevant alternatives--is undermined, because even alternatives that are never chosen by an animal (in its current state) can be relevant to a decision.
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.
2012-03-11
The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).
Energy Technology Data Exchange (ETDEWEB)
Saide, Pablo (CGRER, Center for Global and Regional Environmental Research, Univ. of Iowa, Iowa City, IA (United States)), e-mail: pablo-saide@uiowa.edu; Bocquet, Marc (Universite Paris-Est, CEREA Joint Laboratory Ecole des Ponts ParisTech and EDF RandD, Champs-sur-Marne (France); INRIA, Paris Rocquencourt Research Center (France)); Osses, Axel (Departamento de Ingeniera Matematica, Universidad de Chile, Santiago (Chile); Centro de Modelamiento Matematico, UMI 2807/Universidad de Chile-CNRS, Santiago (Chile)); Gallardo, Laura (Centro de Modelamiento Matematico, UMI 2807/Universidad de Chile-CNRS, Santiago (Chile); Departamento de Geofisica, Universidad de Chile, Santiago (Chile))
2011-07-15
When constraining surface emissions of air pollutants using inverse modelling one often encounters spurious corrections to the inventory at places where emissions and observations are colocated, referred to here as the colocalization problem. Several approaches have been used to deal with this problem: coarsening the spatial resolution of emissions; adding spatial correlations to the covariance matrices; adding constraints on the spatial derivatives into the functional being minimized; and multiplying the emission error covariance matrix by weighting factors. Intercomparison of methods for a carbon monoxide inversion over a city shows that even though all methods diminish the colocalization problem and produce similar general patterns, detailed information can greatly change according to the method used ranging from smooth, isotropic and short range modifications to not so smooth, non-isotropic and long range modifications. Poisson (non-Gaussian) and Gaussian assumptions both show these patterns, but for the Poisson case the emissions are naturally restricted to be positive and changes are given by means of multiplicative correction factors, producing results closer to the true nature of emission errors. Finally, we propose and test a new two-step, two-scale, fully Bayesian approach that deals with the colocalization problem and can be implemented for any prior density distribution
Regularized Statistical Analysis of Anatomy
DEFF Research Database (Denmark)
Sjöstrand, Karl
2007-01-01
This thesis presents the application and development of regularized methods for the statistical analysis of anatomical structures. Focus is on structure-function relationships in the human brain, such as the connection between early onset of Alzheimer’s disease and shape changes of the corpus...... and mind. Statistics represents a quintessential part of such investigations as they are preluded by a clinical hypothesis that must be verified based on observed data. The massive amounts of image data produced in each examination pose an important and interesting statistical challenge...... efficient algorithms which make the analysis of large data sets feasible, and gives examples of applications....
Academic Training Lecture - Regular Programme
PH Department
2011-01-01
Regular Lecture Programme 9 May 2011 ACT Lectures on Detectors - Inner Tracking Detectors by Pippa Wells (CERN) 10 May 2011 ACT Lectures on Detectors - Calorimeters (2/5) by Philippe Bloch (CERN) 11 May 2011 ACT Lectures on Detectors - Muon systems (3/5) by Kerstin Hoepfner (RWTH Aachen) 12 May 2011 ACT Lectures on Detectors - Particle Identification and Forward Detectors by Peter Krizan (University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia) 13 May 2011 ACT Lectures on Detectors - Trigger and Data Acquisition (5/5) by Dr. Brian Petersen (CERN) from 11:00 to 12:00 at CERN ( Bldg. 222-R-001 - Filtration Plant )
EIT image reconstruction with four dimensional regularization.
Dai, Tao; Soleimani, Manuchehr; Adler, Andy
2008-09-01
Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.
RES: Regularized Stochastic BFGS Algorithm
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Modeling complex nuclear spectra: Regularity versus chaos
International Nuclear Information System (INIS)
Drozdz, S.; Nishizaki, S.; Speth, J.; Wambach, J.
1994-01-01
A statistical analysis of the spectrum of two-particle--two-hole doorway states in a finite nucleus is performed. On the unperturbed mean-field level sizable attractive correlations are present in such a spectrum. Including particle-hole rescattering effects via the residual interaction introduces repulsive dynamical correlations which generate the fluctuation properties characteristic of the Gaussian orthogonal ensemble. This signals that the underlying dynamics becomes chaotic. This feature turns out to be independent of the detailed form of the residual interaction and hence reflects the generic nature of the fluctuations studied
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738
Supporting Regularized Logistic Regression Privately and Efficiently.
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Multiple graph regularized nonnegative matrix factorization
Wang, Jim Jing-Yan
2013-10-01
Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.
Accelerating Large Data Analysis By Exploiting Regularities
Moran, Patrick J.; Ellsworth, David
2003-01-01
We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.
Supporting Regularized Logistic Regression Privately and Efficiently.
Directory of Open Access Journals (Sweden)
Wenfa Li
Full Text Available As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc
2014-03-11
This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
Dimensional versus lattice regularization within Luescher's Yang Mills theory
International Nuclear Information System (INIS)
Diekmann, B.; Langer, M.; Schuette, D.
1993-01-01
It is pointed out that the coefficients of Luescher's effective model space Hamiltonian, which is based upon dimensional regularization techniques, can be reproduced by applying folded diagram perturbation theory to the Kogut Susskind Hamiltonian and by performing a lattice continuum limit (keeping the volume fixed). Alternative cutoff regularizations of the Hamiltonian are in general inconsistent, the critical point beeing the correct prediction for Luescher's tadpole coefficient which is formally quadratically divergent and which has to become a well defined (negative) number. (orig.)
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
On the equivalence of different regularization methods
International Nuclear Information System (INIS)
Brzezowski, S.
1985-01-01
The R-circunflex-operation preceded by the regularization procedure is discussed. Some arguments are given, according to which the results may depend on the method of regularization, introduced in order to avoid divergences in perturbation calculations. 10 refs. (author)
The uniqueness of the regularization procedure
International Nuclear Information System (INIS)
Brzezowski, S.
1981-01-01
On the grounds of the BPHZ procedure, the criteria of correct regularization in perturbation calculations of QFT are given, together with the prescription for dividing the regularized formulas into the finite and infinite parts. (author)
Application of Turchin's method of statistical regularization
Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey
2018-04-01
During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.
Regular extensions of some classes of grammars
Nijholt, Antinus
Culik and Cohen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this report we consider the analogous extension of the LL(k) grammers, called the LL-regular grammars. The relations of this class of grammars to other classes of grammars are shown. Every LL-regular
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Multiview Hessian regularization for image annotation.
Liu, Weifeng; Tao, Dacheng
2013-07-01
The rapid development of computer hardware and Internet technology makes large scale data dependent models computationally tractable, and opens a bright avenue for annotating images through innovative machine learning algorithms. Semisupervised learning (SSL) therefore received intensive attention in recent years and was successfully deployed in image annotation. One representative work in SSL is Laplacian regularization (LR), which smoothes the conditional distribution for classification along the manifold encoded in the graph Laplacian, however, it is observed that LR biases the classification function toward a constant function that possibly results in poor generalization. In addition, LR is developed to handle uniformly distributed data (or single-view data), although instances or objects, such as images and videos, are usually represented by multiview features, such as color, shape, and texture. In this paper, we present multiview Hessian regularization (mHR) to address the above two problems in LR-based image annotation. In particular, mHR optimally combines multiple HR, each of which is obtained from a particular view of instances, and steers the classification function that varies linearly along the data manifold. We apply mHR to kernel least squares and support vector machines as two examples for image annotation. Extensive experiments on the PASCAL VOC'07 dataset validate the effectiveness of mHR by comparing it with baseline algorithms, including LR and HR.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Sparsity-regularized HMAX for visual recognition.
Directory of Open Access Journals (Sweden)
Xiaolin Hu
Full Text Available About ten years ago, HMAX was proposed as a simple and biologically feasible model for object recognition, based on how the visual cortex processes information. However, the model does not encompass sparse firing, which is a hallmark of neurons at all stages of the visual pathway. The current paper presents an improved model, called sparse HMAX, which integrates sparse firing. This model is able to learn higher-level features of objects on unlabeled training images. Unlike most other deep learning models that explicitly address global structure of images in every layer, sparse HMAX addresses local to global structure gradually along the hierarchy by applying patch-based learning to the output of the previous layer. As a consequence, the learning method can be standard sparse coding (SSC or independent component analysis (ICA, two techniques deeply rooted in neuroscience. What makes SSC and ICA applicable at higher levels is the introduction of linear higher-order statistical regularities by max pooling. After training, high-level units display sparse, invariant selectivity for particular individuals or for image categories like those observed in human inferior temporal cortex (ITC and medial temporal lobe (MTL. Finally, on an image classification benchmark, sparse HMAX outperforms the original HMAX by a large margin, suggesting its great potential for computer vision.
Low-rank matrix approximation with manifold regularization.
Zhang, Zhenyue; Zhao, Keke
2013-07-01
This paper proposes a new model of low-rank matrix factorization that incorporates manifold regularization to the matrix factorization. Superior to the graph-regularized nonnegative matrix factorization, this new regularization model has globally optimal and closed-form solutions. A direct algorithm (for data with small number of points) and an alternate iterative algorithm with inexact inner iteration (for large scale data) are proposed to solve the new model. A convergence analysis establishes the global convergence of the iterative algorithm. The efficiency and precision of the algorithm are demonstrated numerically through applications to six real-world datasets on clustering and classification. Performance comparison with existing algorithms shows the effectiveness of the proposed method for low-rank factorization in general.
The Regularity of Optimal Irrigation Patterns
Morel, Jean-Michel; Santambrogio, Filippo
2010-02-01
A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.
TTAs : missing the ILP complexity wall
Corporaal, H.
1999-01-01
A common approach to enhance the performance of processors is to increase the number of function units which operate concurrently. We observe this development in all recent general purpose superscalar processors, and in VLIW (very long instruction word) processors used for more dedicated application
Human visual system automatically encodes sequential regularities of discrete events.
Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki
2010-06-01
regularities. In combination with a wide range of auditory MMN studies, the present study highlights the critical role of sensory systems in automatically encoding sequential regularities when modeling the world.
Borderline personality disorder and regularly drinking alcohol before sex.
Thompson, Ronald G; Eaton, Nicholas R; Hu, Mei-Chen; Hasin, Deborah S
2017-07-01
Drinking alcohol before sex increases the likelihood of engaging in unprotected intercourse, having multiple sexual partners and becoming infected with sexually transmitted infections. Borderline personality disorder (BPD), a complex psychiatric disorder characterised by pervasive instability in emotional regulation, self-image, interpersonal relationships and impulse control, is associated with substance use disorders and sexual risk behaviours. However, no study has examined the relationship between BPD and drinking alcohol before sex in the USA. This study examined the association between BPD and regularly drinking before sex in a nationally representative adult sample. Participants were 17 491 sexually active drinkers from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression models estimated effects of BPD diagnosis, specific borderline diagnostic criteria and BPD criterion count on the likelihood of regularly (mostly or always) drinking alcohol before sex, adjusted for controls. Borderline personality disorder diagnosis doubled the odds of regularly drinking before sex [adjusted odds ratio (AOR) = 2.26; confidence interval (CI) = 1.63, 3.14]. Of nine diagnostic criteria, impulsivity in areas that are self-damaging remained a significant predictor of regularly drinking before sex (AOR = 1.82; CI = 1.42, 2.35). The odds of regularly drinking before sex increased by 20% for each endorsed criterion (AOR = 1.20; CI = 1.14, 1.27) DISCUSSION AND CONCLUSIONS: This is the first study to examine the relationship between BPD and regularly drinking alcohol before sex in the USA. Substance misuse treatment should assess regularly drinking before sex, particularly among patients with BPD, and BPD treatment should assess risk at the intersection of impulsivity, sexual behaviour and substance use. [Thompson Jr RG, Eaton NR, Hu M-C, Hasin DS Borderline personality disorder and regularly drinking alcohol
Stability of negative ionization fronts: Regularization by electric screening?
International Nuclear Information System (INIS)
Arrayas, Manuel; Ebert, Ute
2004-01-01
We recently have proposed that a reduced interfacial model for streamer propagation is able to explain spontaneous branching. Such models require regularization. In the present paper we investigate how transversal Fourier modes of a planar ionization front are regularized by the electric screening length. For a fixed value of the electric field ahead of the front we calculate the dispersion relation numerically. These results guide the derivation of analytical asymptotes for arbitrary fields: for small wave-vector k, the growth rate s(k) grows linearly with k, for large k, it saturates at some positive plateau value. We give a physical interpretation of these results
Parameter optimization in the regularized kernel minimum noise fraction transformation
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack
2012-01-01
Based on the original, linear minimum noise fraction (MNF) transformation and kernel principal component analysis, a kernel version of the MNF transformation was recently introduced. Inspired by we here give a simple method for finding optimal parameters in a regularized version of kernel MNF...... analysis. We consider the model signal-to-noise ratio (SNR) as a function of the kernel parameters and the regularization parameter. In 2-4 steps of increasingly refined grid searches we find the parameters that maximize the model SNR. An example based on data from the DLR 3K camera system is given....
Higher derivative regularization and chiral anomaly
International Nuclear Information System (INIS)
Nagahama, Yoshinori.
1985-02-01
A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)
Regularity effect in prospective memory during aging
Directory of Open Access Journals (Sweden)
Geoffrey Blondelle
2016-10-01
Full Text Available Background: Regularity effect can affect performance in prospective memory (PM, but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30, 16 intermediate adults (40–55, and 25 older adults (65–80. The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities. We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding, short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results: A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young, but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion: Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical
Regularity effect in prospective memory during aging
Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique
2016-01-01
Background: Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults.Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 1...
Regularization and error assignment to unfolded distributions
Zech, Gunter
2011-01-01
The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.
Iterative Regularization with Minimum-Residual Methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2007-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Iterative regularization with minimum-residual methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2006-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography
Energy Technology Data Exchange (ETDEWEB)
Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)
2011-11-15
Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used
Regularization of Instantaneous Frequency Attribute Computations
Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.
2014-12-01
We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.
Manifold regularization for sparse unmixing of hyperspectral images.
Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin
2016-01-01
Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.
A regularized stationary mean-field game
Yang, Xianjin
2016-01-01
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
A regularized stationary mean-field game
Yang, Xianjin
2016-04-19
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
On infinite regular and chiral maps
Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán
2015-01-01
We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.
Automating InDesign with Regular Expressions
Kahrel, Peter
2006-01-01
If you need to make automated changes to InDesign documents beyond what basic search and replace can handle, you need regular expressions, and a bit of scripting to make them work. This Short Cut explains both how to write regular expressions, so you can find and replace the right things, and how to use them in InDesign specifically.
2010-07-01
... employee under subsection (a) or in excess of the employee's normal working hours or regular working hours... Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... not less than one and one-half times their regular rates of pay. Section 7(e) of the Act defines...
Processing SPARQL queries with regular expressions in RDF databases
2011-01-01
Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225
Processing SPARQL queries with regular expressions in RDF databases
Directory of Open Access Journals (Sweden)
Cho Hune
2011-03-01
Full Text Available Abstract Background As the Resource Description Framework (RDF data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf or Bio2RDF (bio2rdf.org, SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1 We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2 We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3 We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.
Processing SPARQL queries with regular expressions in RDF databases.
Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon
2011-03-29
As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.
Academic Training Lecture - Regular Programme
PH Department
2010-01-01
Tuesday 25 & Wednesday 26 May 2010 from 11:00 to 12:30 - Main Auditorium, Bldg. 500-1-001 Baryon Asymmetry of the Universe by Prof. Hitoshi Murayama (University of California, Berkeley) In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
Robust regularized singular value decomposition with application to mortality data
Zhang, Lingsong; Shen, Haipeng; Huang, Jianhua Z.
2013-01-01
We develop a robust regularized singular value decomposition (RobRSVD) method for analyzing two-way functional data. The research is motivated by the application of modeling human mortality as a smooth two-way function of age group and year. The Rob
Reducing errors in the GRACE gravity solutions using regularization
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2012-09-01
The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4
On the MSE Performance and Optimization of Regularized Problems
Alrashdi, Ayed
2016-11-01
The amount of data that has been measured, transmitted/received, and stored in the recent years has dramatically increased. So, today, we are in the world of big data. Fortunately, in many applications, we can take advantages of possible structures and patterns in the data to overcome the curse of dimensionality. The most well known structures include sparsity, low-rankness, block sparsity. This includes a wide range of applications such as machine learning, medical imaging, signal processing, social networks and computer vision. This also led to a specific interest in recovering signals from noisy compressed measurements (Compressed Sensing (CS) problem). Such problems are generally ill-posed unless the signal is structured. The structure can be captured by a regularizer function. This gives rise to a potential interest in regularized inverse problems, where the process of reconstructing the structured signal can be modeled as a regularized problem. This thesis particularly focuses on finding the optimal regularization parameter for such problems, such as ridge regression, LASSO, square-root LASSO and low-rank Generalized LASSO. Our goal is to optimally tune the regularizer to minimize the mean-squared error (MSE) of the solution when the noise variance or structure parameters are unknown. The analysis is based on the framework of the Convex Gaussian Min-max Theorem (CGMT) that has been used recently to precisely predict performance errors.
Variational regularization of 3D data experiments with Matlab
Montegranario, Hebert
2014-01-01
Variational Regularization of 3D Data provides an introduction to variational methods for data modelling and its application in computer vision. In this book, the authors identify interpolation as an inverse problem that can be solved by Tikhonov regularization. The proposed solutions are generalizations of one-dimensional splines, applicable to n-dimensional data and the central idea is that these splines can be obtained by regularization theory using a trade-off between the fidelity of the data and smoothness properties.As a foundation, the authors present a comprehensive guide to the necessary fundamentals of functional analysis and variational calculus, as well as splines. The implementation and numerical experiments are illustrated using MATLAB®. The book also includes the necessary theoretical background for approximation methods and some details of the computer implementation of the algorithms. A working knowledge of multivariable calculus and basic vector and matrix methods should serve as an adequat...
Structural characterization of the packings of granular regular polygons.
Wang, Chuncheng; Dong, Kejun; Yu, Aibing
2015-12-01
By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.
An iterative method for Tikhonov regularization with a general linear regularization operator
Hochstenbach, M.E.; Reichel, L.
2010-01-01
Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan
International Nuclear Information System (INIS)
Purdie, T.J.; Lee, T.J.; Iizuka, M.; Sherar, M.D.
2000-01-01
One effect of heating during interstitial laser photocoagulation (ILP) is to directly destroy the tumour vasculature resulting in a loss of viable blood supply. Therefore, blood flow measured during and after treatment can be a useful indicator of tissue thermal damage. In this study, the effect of ILP treatment on rabbit thigh tumours was investigated by measuring blood flow changes using dynamic contrast enhanced computed tomography (CT). The CT measured changes in blood flow of treated tumour tissue were fitted to an Arrhenius model assuming first order rate kinetics. Our results show that changes in blood flow of tumour tissue distant from surrounding normal tissue are well described by an Arrhenius model. By contrast, the temperature profile of tumour tissue adjacent to normal tissue must be modified to account for heat dissipation by the latter. Finally, the Arrhenius parameters derived in the study are similar to those derived by heating tumour tissue to a lower temperature (<47 deg. C) than the current study. In conclusion, CT can be used to monitor blood flow changes during ILP and these measurements are related to the thermal damage predicted by the Arrhenius model. (author)
Hierarchical regular small-world networks
International Nuclear Information System (INIS)
Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan
2008-01-01
Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)
Geosocial process and its regularities
Vikulina, Marina; Vikulin, Alexander; Dolgaya, Anna
2015-04-01
Natural disasters and social events (wars, revolutions, genocides, epidemics, fires, etc.) accompany each other throughout human civilization, thus reflecting the close relationship of these phenomena that are seemingly of different nature. In order to study this relationship authors compiled and analyzed the list of the 2,400 natural disasters and social phenomena weighted by their magnitude that occurred during the last XXXVI centuries of our history. Statistical analysis was performed separately for each aggregate (natural disasters and social phenomena), and for particular statistically representative types of events. There was 5 + 5 = 10 types. It is shown that the numbers of events in the list are distributed by logarithmic law: the bigger the event, the less likely it happens. For each type of events and each aggregate the existence of periodicities with periods of 280 ± 60 years was established. Statistical analysis of the time intervals between adjacent events for both aggregates showed good agreement with Weibull-Gnedenko distribution with shape parameter less than 1, which is equivalent to the conclusion about the grouping of events at small time intervals. Modeling of statistics of time intervals with Pareto distribution allowed to identify the emergent property for all events in the aggregate. This result allowed the authors to make conclusion about interaction between natural disasters and social phenomena. The list of events compiled by authors and first identified properties of cyclicity, grouping and interaction process reflected by this list is the basis of modeling essentially unified geosocial process at high enough statistical level. Proof of interaction between "lifeless" Nature and Society is fundamental and provided a new approach to forecasting demographic crises with taking into account both natural disasters and social phenomena.
Diagrammatic methods in phase-space regularization
International Nuclear Information System (INIS)
Bern, Z.; Halpern, M.B.; California Univ., Berkeley
1987-11-01
Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)
J-regular rings with injectivities
Shen, Liang
2010-01-01
A ring $R$ is called a J-regular ring if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. It is proved that if R is J-regular, then (i) R is right n-injective if and only if every homomorphism from an $n$-generated small right ideal of $R$ to $R_{R}$ can be extended to one from $R_{R}$ to $R_{R}$; (ii) R is right FP-injective if and only if R is right (J, R)-FP-injective. Some known results are improved.
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin
2013-09-22
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.
Manifold Regularized Experimental Design for Active Learning.
Zhang, Lining; Shum, Hubert P H; Shao, Ling
2016-12-02
Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.
Wave dynamics of regular and chaotic rays
International Nuclear Information System (INIS)
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space
Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation
International Nuclear Information System (INIS)
Bardsley, Johnathan M; Goldes, John
2009-01-01
In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness
Regularization Techniques for Linear Least-Squares Problems
Suliman, Mohamed
2016-04-01
Linear estimation is a fundamental branch of signal processing that deals with estimating the values of parameters from a corrupted measured data. Throughout the years, several optimization criteria have been used to achieve this task. The most astonishing attempt among theses is the linear least-squares. Although this criterion enjoyed a wide popularity in many areas due to its attractive properties, it appeared to suffer from some shortcomings. Alternative optimization criteria, as a result, have been proposed. These new criteria allowed, in one way or another, the incorporation of further prior information to the desired problem. Among theses alternative criteria is the regularized least-squares (RLS). In this thesis, we propose two new algorithms to find the regularization parameter for linear least-squares problems. In the constrained perturbation regularization algorithm (COPRA) for random matrices and COPRA for linear discrete ill-posed problems, an artificial perturbation matrix with a bounded norm is forced into the model matrix. This perturbation is introduced to enhance the singular value structure of the matrix. As a result, the new modified model is expected to provide a better stabilize substantial solution when used to estimate the original signal through minimizing the worst-case residual error function. Unlike many other regularization algorithms that go in search of minimizing the estimated data error, the two new proposed algorithms are developed mainly to select the artifcial perturbation bound and the regularization parameter in a way that approximately minimizes the mean-squared error (MSE) between the original signal and its estimate under various conditions. The first proposed COPRA method is developed mainly to estimate the regularization parameter when the measurement matrix is complex Gaussian, with centered unit variance (standard), and independent and identically distributed (i.i.d.) entries. Furthermore, the second proposed COPRA
Generalized regular genus for manifolds with boundary
Directory of Open Access Journals (Sweden)
Paola Cristofori
2003-05-01
Full Text Available We introduce a generalization of the regular genus, a combinatorial invariant of PL manifolds ([10], which is proved to be strictly related, in dimension three, to generalized Heegaard splittings defined in [12].
Geometric regularizations and dual conifold transitions
International Nuclear Information System (INIS)
Landsteiner, Karl; Lazaroiu, Calin I.
2003-01-01
We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)
Regular-fat dairy and human health
DEFF Research Database (Denmark)
Astrup, Arne; Bradley, Beth H Rice; Brenna, J Thomas
2016-01-01
In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to......, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted....
Deterministic automata for extended regular expressions
Directory of Open Access Journals (Sweden)
Syzdykov Mirzakhmet
2017-12-01
Full Text Available In this work we present the algorithms to produce deterministic finite automaton (DFA for extended operators in regular expressions like intersection, subtraction and complement. The method like “overriding” of the source NFA(NFA not defined with subset construction rules is used. The past work described only the algorithm for AND-operator (or intersection of regular languages; in this paper the construction for the MINUS-operator (and complement is shown.
Regularities of intermediate adsorption complex relaxation
International Nuclear Information System (INIS)
Manukova, L.A.
1982-01-01
The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained
Online Manifold Regularization by Dual Ascending Procedure
Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui
2013-01-01
We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...
Surface-based prostate registration with biomechanical regularization
van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.
2013-03-01
Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.
Shakeout: A New Approach to Regularized Deep Neural Network Training.
Kang, Guoliang; Li, Jun; Tao, Dacheng
2018-05-01
Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. Dropout has played an essential role in many successful deep neural networks, by inducing regularization in the model training. In this paper, we present a new regularized training approach: Shakeout. Instead of randomly discarding units as Dropout does at the training stage, Shakeout randomly chooses to enhance or reverse each unit's contribution to the next layer. This minor modification of Dropout has the statistical trait: the regularizer induced by Shakeout adaptively combines , and regularization terms. Our classification experiments with representative deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that Shakeout deals with over-fitting effectively and outperforms Dropout. We empirically demonstrate that Shakeout leads to sparser weights under both unsupervised and supervised settings. Shakeout also leads to the grouping effect of the input units in a layer. Considering the weights in reflecting the importance of connections, Shakeout is superior to Dropout, which is valuable for the deep model compression. Moreover, we demonstrate that Shakeout can effectively reduce the instability of the training process of the deep architecture.
Centered Differential Waveform Inversion with Minimum Support Regularization
Kazei, Vladimir
2017-05-26
Time-lapse full-waveform inversion has two major challenges. The first one is the reconstruction of a reference model (baseline model for most of approaches). The second is inversion for the time-lapse changes in the parameters. Common model approach is utilizing the information contained in all available data sets to build a better reference model for time lapse inversion. Differential (Double-difference) waveform inversion allows to reduce the artifacts introduced into estimates of time-lapse parameter changes by imperfect inversion for the baseline-reference model. We propose centered differential waveform inversion (CDWI) which combines these two approaches in order to benefit from both of their features. We apply minimum support regularization commonly used with electromagnetic methods of geophysical exploration. We test the CDWI method on synthetic dataset with random noise and show that, with Minimum support regularization, it provides better resolution of velocity changes than with total variation and Tikhonov regularizations in time-lapse full-waveform inversion.
Regular Expression Matching and Operational Semantics
Directory of Open Access Journals (Sweden)
Asiri Rathnayake
2011-08-01
Full Text Available Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.
Regularities, Natural Patterns and Laws of Nature
Directory of Open Access Journals (Sweden)
Stathis Psillos
2014-02-01
Full Text Available The goal of this paper is to sketch an empiricist metaphysics of laws of nature. The key idea is that there are regularities without regularity-enforcers. Differently put, there are natural laws without law-makers of a distinct metaphysical kind. This sketch will rely on the concept of a natural pattern and more significantly on the existence of a network of natural patterns in nature. The relation between a regularity and a pattern will be analysed in terms of mereology. Here is the road map. In section 2, I will briefly discuss the relation between empiricism and metaphysics, aiming to show that an empiricist metaphysics is possible. In section 3, I will offer arguments against stronger metaphysical views of laws. Then, in section 4 I will motivate nomic objectivism. In section 5, I will address the question ‘what is a regularity?’ and will develop a novel answer to it, based on the notion of a natural pattern. In section 6, I will raise the question: ‘what is a law of nature?’, the answer to which will be: a law of nature is a regularity that is characterised by the unity of a natural pattern.
Optimal Tikhonov Regularization in Finite-Frequency Tomography
Fang, Y.; Yao, Z.; Zhou, Y.
2017-12-01
The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.
Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei
2018-05-01
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.
Object Tracking via 2DPCA and l2-Regularization
Directory of Open Access Journals (Sweden)
Haijun Wang
2016-01-01
Full Text Available We present a fast and robust object tracking algorithm by using 2DPCA and l2-regularization in a Bayesian inference framework. Firstly, we model the challenging appearance of the tracked object using 2DPCA bases, which exploit the strength of subspace representation. Secondly, we adopt the l2-regularization to solve the proposed presentation model and remove the trivial templates from the sparse tracking method which can provide a more fast tracking performance. Finally, we present a novel likelihood function that considers the reconstruction error, which is concluded from the orthogonal left-projection matrix and the orthogonal right-projection matrix. Experimental results on several challenging image sequences demonstrate that the proposed method can achieve more favorable performance against state-of-the-art tracking algorithms.
Analysis of Logic Programs Using Regular Tree Languages
DEFF Research Database (Denmark)
Gallagher, John Patrick
2012-01-01
The eld of nite tree automata provides fundamental notations and tools for reasoning about set of terms called regular or recognizable tree languages. We consider two kinds of analysis using regular tree languages, applied to logic programs. The rst approach is to try to discover automatically...... a tree automaton from a logic program, approximating its minimal Herbrand model. In this case the input for the analysis is a program, and the output is a tree automaton. The second approach is to expose or check properties of the program that can be expressed by a given tree automaton. The input...... to the analysis is a program and a tree automaton, and the output is an abstract model of the program. These two contrasting abstract interpretations can be used in a wide range of analysis and verication problems....
Fractional Regularization Term for Variational Image Registration
Directory of Open Access Journals (Sweden)
Rafael Verdú-Monedero
2009-01-01
Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.
International Nuclear Information System (INIS)
Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.
2004-01-01
We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)
Online Manifold Regularization by Dual Ascending Procedure
Directory of Open Access Journals (Sweden)
Boliang Sun
2013-01-01
Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.
"Plug-and-play" edge-preserving regularization
DEFF Research Database (Denmark)
Chen, Donghui; Kilmer, Misha E.; Hansen, Per Christian
2014-01-01
In many inverse problems it is essential to use regularization methods that preserve edges in the reconstructions, and many reconstruction models have been developed for this task, such as the Total Variation (TV) approach. The associated algorithms are complex and require a good knowledge of large...... cosine transform.hence the term "plug-and-play" . We do not attempt to improve on TV reconstructions, but rather provide an easy-to-use approach to computing reconstructions with similar properties....
Mapping the N-Z plane: residual mass regularities
International Nuclear Information System (INIS)
Hirsch, J.G.; Frank, A.; Velazquez, V.
2004-01-01
A new development in the study of the deviations between experimental nuclear masses and those calculated in the framework of the Finite Range Droplet Model is introduced. Some frequencies are isolated and used in a simple fit to reduce significantly the error width. The presence of this regular residual correlations suggests that the Strutinsky method of including microscopic fluctuations in nuclear masses could be improved. (Author)
Regular behaviors in SU(2) Yang-Mills classical mechanics
International Nuclear Information System (INIS)
Xu Xiaoming
1997-01-01
In order to study regular behaviors in high-energy nucleon-nucleon collisions, a representation of the vector potential A i a is defined with respect to the (a,i)-dependence in the SU(2) Yang-Mills classical mechanics. Equations of the classical infrared field as well as effective potentials are derived for the elastic or inelastic collision of two plane wave in a three-mode model and the decay of an excited spherically-symmetric field
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Regularity of difference equations on Banach spaces
Agarwal, Ravi P; Lizama, Carlos
2014-01-01
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semigroup and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
Matrix regularization of embedded 4-manifolds
International Nuclear Information System (INIS)
Trzetrzelewski, Maciej
2012-01-01
We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).
Reali, Florencia; Griffiths, Thomas L.
2009-01-01
The regularization of linguistic structures by learners has played a key role in arguments for strong innate constraints on language acquisition, and has important implications for language evolution. However, relating the inductive biases of learners to regularization behavior in laboratory tasks can be challenging without a formal model. In this…
Verbal working memory is related to the acquisition of cross-linguistic phonological regularities
Bosma, E.; Heeringa, W.; Hoekstra, E.; Versloot, A.; Blom, E.
Closely related languages share cross-linguistic phonological regularities, such as Frisian -âld [c:t] and Dutch -oud [hut], as in the cognate pairs kâld [kc:t] - koud [khut] 'cold' and wâld [wc:t] - woud [whut] 'forest'. Within Bybee's (1995, 2001, 2008, 2010) network model, these regularities are,
On a correspondence between regular and non-regular operator monotone functions
DEFF Research Database (Denmark)
Gibilisco, P.; Hansen, Frank; Isola, T.
2009-01-01
We prove the existence of a bijection between the regular and the non-regular operator monotone functions satisfying a certain functional equation. As an application we give a new proof of the operator monotonicity of certain functions related to the Wigner-Yanase-Dyson skew information....
Regularity and irreversibility of weekly travel behavior
Kitamura, R.; van der Hoorn, A.I.J.M.
1987-01-01
Dynamic characteristics of travel behavior are analyzed in this paper using weekly travel diaries from two waves of panel surveys conducted six months apart. An analysis of activity engagement indicates the presence of significant regularity in weekly activity participation between the two waves.
Regular and context-free nominal traces
DEFF Research Database (Denmark)
Degano, Pierpaolo; Ferrari, Gian-Luigi; Mezzetti, Gianluca
2017-01-01
Two kinds of automata are presented, for recognising new classes of regular and context-free nominal languages. We compare their expressive power with analogous proposals in the literature, showing that they express novel classes of languages. Although many properties of classical languages hold ...
Faster 2-regular information-set decoding
Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.
2011-01-01
Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free-path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Regular Gleason Measures and Generalized Effect Algebras
Dvurečenskij, Anatolij; Janda, Jiří
2015-12-01
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
Regularization of finite temperature string theories
International Nuclear Information System (INIS)
Leblanc, Y.; Knecht, M.; Wallet, J.C.
1990-01-01
The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)
Continuum regularized Yang-Mills theory
International Nuclear Information System (INIS)
Sadun, L.A.
1987-01-01
Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions
Gravitational lensing by a regular black hole
International Nuclear Information System (INIS)
Eiroa, Ernesto F; Sendra, Carlos M
2011-01-01
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Gravitational lensing by a regular black hole
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)
2011-04-21
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Analytic stochastic regularization and gange invariance
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1986-05-01
A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt
Annotation of regular polysemy and underspecification
DEFF Research Database (Denmark)
Martínez Alonso, Héctor; Pedersen, Bolette Sandford; Bel, Núria
2013-01-01
We present the result of an annotation task on regular polysemy for a series of seman- tic classes or dot types in English, Dan- ish and Spanish. This article describes the annotation process, the results in terms of inter-encoder agreement, and the sense distributions obtained with two methods...
Stabilization, pole placement, and regular implementability
Belur, MN; Trentelman, HL
In this paper, we study control by interconnection of linear differential systems. We give necessary and sufficient conditions for regular implementability of a-given linear, differential system. We formulate the problems of stabilization and pole placement as problems of finding a suitable,
12 CFR 725.3 - Regular membership.
2010-01-01
... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit....5(b) of this part, and forwarding with its completed application funds equal to one-half of this... 1, 1979, is not required to forward these funds to the Facility until October 1, 1979. (3...
Supervised scale-regularized linear convolutionary filters
DEFF Research Database (Denmark)
Loog, Marco; Lauze, Francois Bernard
2017-01-01
also be solved relatively efficient. All in all, the idea is to properly control the scale of a trained filter, which we solve by introducing a specific regularization term into the overall objective function. We demonstrate, on an artificial filter learning problem, the capabil- ities of our basic...
On regular riesz operators | Raubenheimer | Quaestiones ...
African Journals Online (AJOL)
The r-asymptotically quasi finite rank operators on Banach lattices are examples of regular Riesz operators. We characterise Riesz elements in a subalgebra of a Banach algebra in terms of Riesz elements in the Banach algebra. This enables us to characterise r-asymptotically quasi finite rank operators in terms of adjoint ...
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free- path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Bit-coded regular expression parsing
DEFF Research Database (Denmark)
Nielsen, Lasse; Henglein, Fritz
2011-01-01
the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...
Tetravalent one-regular graphs of order 4p2
DEFF Research Database (Denmark)
Feng, Yan-Quan; Kutnar, Klavdija; Marusic, Dragan
2014-01-01
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified.......A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified....
Subcortical processing of speech regularities underlies reading and music aptitude in children
2011-01-01
Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input
Subcortical processing of speech regularities underlies reading and music aptitude in children
Directory of Open Access Journals (Sweden)
Strait Dana L
2011-10-01
Full Text Available Abstract Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to
Subcortical processing of speech regularities underlies reading and music aptitude in children.
Strait, Dana L; Hornickel, Jane; Kraus, Nina
2011-10-17
Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings
Nonlocal Regularized Algebraic Reconstruction Techniques for MRI: An Experimental Study
Directory of Open Access Journals (Sweden)
Xin Li
2013-01-01
Full Text Available We attempt to revitalize researchers' interest in algebraic reconstruction techniques (ART by expanding their capabilities and demonstrating their potential in speeding up the process of MRI acquisition. Using a continuous-to-discrete model, we experimentally study the application of ART into MRI reconstruction which unifies previous nonuniform-fast-Fourier-transform- (NUFFT- based and gridding-based approaches. Under the framework of ART, we advocate the use of nonlocal regularization techniques which are leveraged from our previous research on modeling photographic images. It is experimentally shown that nonlocal regularization ART (NR-ART can often outperform their local counterparts in terms of both subjective and objective qualities of reconstructed images. On one real-world k-space data set, we find that nonlocal regularization can achieve satisfactory reconstruction from as few as one-third of samples. We also address an issue related to image reconstruction from real-world k-space data but overlooked in the open literature: the consistency of reconstructed images across different resolutions. A resolution-consistent extension of NR-ART is developed and shown to effectively suppress the artifacts arising from frequency extrapolation. Both source codes and experimental results of this work are made fully reproducible.
Graph Regularized Auto-Encoders for Image Representation.
Yiyi Liao; Yue Wang; Yong Liu
2017-06-01
Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.
Enhanced manifold regularization for semi-supervised classification.
Gan, Haitao; Luo, Zhizeng; Fan, Yingle; Sang, Nong
2016-06-01
Manifold regularization (MR) has become one of the most widely used approaches in the semi-supervised learning field. It has shown superiority by exploiting the local manifold structure of both labeled and unlabeled data. The manifold structure is modeled by constructing a Laplacian graph and then incorporated in learning through a smoothness regularization term. Hence the labels of labeled and unlabeled data vary smoothly along the geodesics on the manifold. However, MR has ignored the discriminative ability of the labeled and unlabeled data. To address the problem, we propose an enhanced MR framework for semi-supervised classification in which the local discriminative information of the labeled and unlabeled data is explicitly exploited. To make full use of labeled data, we firstly employ a semi-supervised clustering method to discover the underlying data space structure of the whole dataset. Then we construct a local discrimination graph to model the discriminative information of labeled and unlabeled data according to the discovered intrinsic structure. Therefore, the data points that may be from different clusters, though similar on the manifold, are enforced far away from each other. Finally, the discrimination graph is incorporated into the MR framework. In particular, we utilize semi-supervised fuzzy c-means and Laplacian regularized Kernel minimum squared error for semi-supervised clustering and classification, respectively. Experimental results on several benchmark datasets and face recognition demonstrate the effectiveness of our proposed method.
A Variance Minimization Criterion to Feature Selection Using Laplacian Regularization.
He, Xiaofei; Ji, Ming; Zhang, Chiyuan; Bao, Hujun
2011-10-01
In many information processing tasks, one is often confronted with very high-dimensional data. Feature selection techniques are designed to find the meaningful feature subset of the original features which can facilitate clustering, classification, and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenarios, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. Based on Laplacian regularized least squares, which finds a smooth function on the data manifold and minimizes the empirical loss, we propose two novel feature selection algorithms which aim to minimize the expected prediction error of the regularized regression model. Specifically, we select those features such that the size of the parameter covariance matrix of the regularized regression model is minimized. Motivated from experimental design, we use trace and determinant operators to measure the size of the covariance matrix. Efficient computational schemes are also introduced to solve the corresponding optimization problems. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithms.
Bardeen regular black hole with an electric source
Rodrigues, Manuel E.; Silva, Marcos V. de S.
2018-06-01
If some energy conditions on the stress-energy tensor are violated, is possible construct regular black holes in General Relativity and in alternative theories of gravity. This type of solution has horizons but does not present singularities. The first regular black hole was presented by Bardeen and can be obtained from Einstein equations in the presence of an electromagnetic field. E. Ayon-Beato and A. Garcia reinterpreted the Bardeen metric as a magnetic solution of General Relativity coupled to a nonlinear electrodynamics. In this work, we show that the Bardeen model may also be interpreted as a solution of Einstein equations in the presence of an electric source, whose electric field does not behave as a Coulomb field. We analyzed the asymptotic forms of the Lagrangian for the electric case and also analyzed the energy conditions.
Determining the flexibility of regular and chaotic attractors
International Nuclear Information System (INIS)
Marhl, Marko; Perc, Matjaz
2006-01-01
We present an overview of measures that are appropriate for determining the flexibility of regular and chaotic attractors. In particular, we focus on those system properties that constitute its responses to external perturbations. We deploy a systematic approach, first introducing the simplest measure given by the local divergence of the system along the attractor, and then develop more rigorous mathematical tools for estimating the flexibility of the system's dynamics. The presented measures are tested on the regular Brusselator and chaotic Hindmarsh-Rose model of an excitable neuron with equal success, thus indicating the overall effectiveness and wide applicability range of the proposed theory. Since responses of dynamical systems to external signals are crucial in several scientific disciplines, and especially in natural sciences, we discuss several important aspects and biological implications of obtained results
Traveling waves of the regularized short pulse equation
International Nuclear Information System (INIS)
Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J
2014-01-01
The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)
Major earthquakes occur regularly on an isolated plate boundary fault.
Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar
2012-06-29
The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.
One-loop regularization of the Polyakov string functional
International Nuclear Information System (INIS)
Cohen, E.; Kluberg-Stern, H.; Peschanski, R.
1989-01-01
The divergences of the vacuum amplitude for the bosonic Polyakov string are studied at the one-loop level in a modular invariant regularization scheme, characterized by a dimensional cutoff analogous to proper time. As a result, the singular behaviour in the cutoff is not uniform in the range of the modulus variable and this yields a control on the singularities induced by the tachyon and the dilaton. The divergences are those of a sigma model, but the coefficients of the sigma-model counter-terms are different for the sphere and the flat torus. (orig.)
Save, H.; Bettadpur, S. V.
2013-12-01
It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.
Extreme values, regular variation and point processes
Resnick, Sidney I
1987-01-01
Extremes Values, Regular Variation and Point Processes is a readable and efficient account of the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors It presents a coherent treatment of the distributional and sample path fundamental properties of extremes and records It emphasizes the core primacy of three topics necessary for understanding extremes the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces The book is self-contained and requires an introductory measure-theoretic course in probability as a prerequisite Almost all sections have an extensive list of exercises which extend developments in the text, offer alternate approaches, test mastery and provide for enj...
Stream Processing Using Grammars and Regular Expressions
DEFF Research Database (Denmark)
Rasmussen, Ulrik Terp
disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...
Chaos regularization of quantum tunneling rates
International Nuclear Information System (INIS)
Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward
2011-01-01
Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Thin accretion disk around regular black hole
Directory of Open Access Journals (Sweden)
QIU Tianqi
2014-08-01
Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Analytic stochastic regularization and gauge theories
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1987-04-01
We prove that analytic stochatic regularization braks gauge invariance. This is done by an explicit one loop calculation of the two three and four point vertex functions of the gluon field in scalar chromodynamics, which turns out not to be geuge invariant. We analyse the counter term structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization. (author) [pt
Preconditioners for regularized saddle point matrices
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe
2011-01-01
Roč. 19, č. 2 (2011), s. 91-112 ISSN 1570-2820 Institutional research plan: CEZ:AV0Z30860518 Keywords : saddle point matrices * preconditioning * regularization * eigenvalue clustering Subject RIV: BA - General Mathematics Impact factor: 0.533, year: 2011 http://www.degruyter.com/view/j/jnma.2011.19.issue-2/jnum.2011.005/jnum.2011.005. xml
Analytic stochastic regularization: gauge and supersymmetry theories
International Nuclear Information System (INIS)
Abdalla, M.C.B.
1988-01-01
Analytic stochastic regularization for gauge and supersymmetric theories is considered. Gauge invariance in spinor and scalar QCD is verified to brak fown by an explicit one loop computation of the two, theree and four point vertex function of the gluon field. As a result, non gauge invariant counterterms must be added. However, in the supersymmetric multiplets there is a cancellation rendering the counterterms gauge invariant. The calculation is considered at one loop order. (author) [pt
Minimal length uncertainty relation and ultraviolet regularization
Kempf, Achim; Mangano, Gianpiero
1997-06-01
Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.
Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory
Suliman, Mohamed Abdalla Elhag
2016-10-06
In this work, we propose a new regularization approach for linear least-squares problems with random matrices. In the proposed constrained perturbation regularization approach, an artificial perturbation matrix with a bounded norm is forced into the system model matrix. This perturbation is introduced to improve the singular-value structure of the model matrix and, hence, the solution of the estimation problem. Relying on the randomness of the model matrix, a number of deterministic equivalents from random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various estimated signal characteristics. In addition, simulations show that our approach is robust in the presence of model uncertainty.
SAR image regularization with fast approximate discrete minimization.
Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc
2009-07-01
Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.
Asymptotic performance of regularized quadratic discriminant analysis based classifiers
Elkhalil, Khalil
2017-12-13
This paper carries out a large dimensional analysis of the standard regularized quadratic discriminant analysis (QDA) classifier designed on the assumption that data arise from a Gaussian mixture model. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that depends only on the covariances and means associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized QDA and can be used to determine the optimal regularization parameter that minimizes the misclassification error probability. Despite being valid only for Gaussian data, our theoretical findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from popular real data bases, thereby making an interesting connection between theory and practice.
Regularity and predictability of human mobility in personal space.
Directory of Open Access Journals (Sweden)
Daniel Austin
Full Text Available Fundamental laws governing human mobility have many important applications such as forecasting and controlling epidemics or optimizing transportation systems. These mobility patterns, studied in the context of out of home activity during travel or social interactions with observations recorded from cell phone use or diffusion of money, suggest that in extra-personal space humans follow a high degree of temporal and spatial regularity - most often in the form of time-independent universal scaling laws. Here we show that mobility patterns of older individuals in their home also show a high degree of predictability and regularity, although in a different way than has been reported for out-of-home mobility. Studying a data set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal home activity monitoring, we find that in-home mobility is not well represented by a universal scaling law, but that significant structure (predictability and regularity is uncovered when explicitly accounting for contextual data in a model of in-home mobility. These results suggest that human mobility in personal space is highly stereotyped, and that monitoring discontinuities in routine room-level mobility patterns may provide an opportunity to predict individual human health and functional status or detect adverse events and trends.
A Large Dimensional Analysis of Regularized Discriminant Analysis Classifiers
Elkhalil, Khalil
2017-11-01
This article carries out a large dimensional analysis of standard regularized discriminant analysis classifiers designed on the assumption that data arise from a Gaussian mixture model with different means and covariances. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under mild assumptions, we show that the asymptotic classification error approaches a deterministic quantity that depends only on the means and covariances associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized discriminant analsysis, in practical large but finite dimensions, and can be used to determine and pre-estimate the optimal regularization parameter that minimizes the misclassification error probability. Despite being theoretically valid only for Gaussian data, our findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from the popular USPS data base, thereby making an interesting connection between theory and practice.
Image deblurring using a perturbation-basec regularization approach
Alanazi, Abdulrahman
2017-11-02
The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.
Image deblurring using a perturbation-basec regularization approach
Alanazi, Abdulrahman; Ballal, Tarig; Masood, Mudassir; Al-Naffouri, Tareq Y.
2017-01-01
The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.
Sparsity regularization for parameter identification problems
International Nuclear Information System (INIS)
Jin, Bangti; Maass, Peter
2012-01-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
Local regularity analysis of strata heterogeneities from sonic logs
Directory of Open Access Journals (Sweden)
S. Gaci
2010-09-01
Full Text Available Borehole logs provide geological information about the rocks crossed by the wells. Several properties of rocks can be interpreted in terms of lithology, type and quantity of the fluid filling the pores and fractures.
Here, the logs are assumed to be nonhomogeneous Brownian motions (nhBms which are generalized fractional Brownian motions (fBms indexed by depth-dependent Hurst parameters H(z. Three techniques, the local wavelet approach (LWA, the average-local wavelet approach (ALWA, and Peltier Algorithm (PA, are suggested to estimate the Hurst functions (or the regularity profiles from the logs.
First, two synthetic sonic logs with different parameters, shaped by the successive random additions (SRA algorithm, are used to demonstrate the potential of the proposed methods. The obtained Hurst functions are close to the theoretical Hurst functions. Besides, the transitions between the modeled layers are marked by Hurst values discontinuities. It is also shown that PA leads to the best Hurst value estimations.
Second, we investigate the multifractional property of sonic logs data recorded at two scientific deep boreholes: the pilot hole VB and the ultra deep main hole HB, drilled for the German Continental Deep Drilling Program (KTB. All the regularity profiles independently obtained for the logs provide a clear correlation with lithology, and from each regularity profile, we derive a similar segmentation in terms of lithological units. The lithological discontinuities (strata' bounds and faults contacts are located at the local extrema of the Hurst functions. Moreover, the regularity profiles are compared with the KTB estimated porosity logs, showing a significant relation between the local extrema of the Hurst functions and the fluid-filled fractures. The Hurst function may then constitute a tool to characterize underground heterogeneities.
Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function
Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike
2017-03-01
Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the
Temporal regularity of the environment drives time perception
van Rijn, H; Rhodes, D; Di Luca, M
2016-01-01
It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be var- ied. In one experiment, we asked whether the last stim...
Directory of Open Access Journals (Sweden)
Dustin Kai Yan Lau
2014-03-01
Full Text Available Background Unlike alphabetic languages, Chinese uses a logographic script. However, the pronunciation of many character’s phonetic radical has the same pronunciation as the character as a whole. These are considered regular characters and can be read through a lexical non-semantic route (Weekes & Chen, 1999. Pseudocharacters are another way to study this non-semantic route. A pseudocharacter is the combination of existing semantic and phonetic radicals in their legal positions resulting in a non-existing character (Ho, Chan, Chung, Lee, & Tsang, 2007. Pseudocharacters can be pronounced by direct derivation from the sound of its phonetic radical. Conversely, if the pronunciation of a character does not follow that of the phonetic radical, it is considered as irregular and can only be correctly read through the lexical-semantic route. The aim of the current investigation was to examine reading aloud in normal adults. We hypothesized that the regularity effect, previously described for alphabetical scripts and acquired dyslexic patients of Chinese (Weekes & Chen, 1999; Wu, Liu, Sun, Chromik, & Zhang, 2014, would also be present in normal adult Chinese readers. Method Participants. Thirty (50% female native Hong Kong Cantonese speakers with a mean age of 19.6 years and a mean education of 12.9 years. Stimuli. Sixty regular-, 60 irregular-, and 60 pseudo-characters (with at least 75% of name agreement in Chinese were matched by initial phoneme, number of strokes and family size. Additionally, regular- and irregular-characters were matched by frequency (low and consistency. Procedure. Each participant was asked to read aloud the stimuli presented on a laptop using the DMDX software. The order of stimuli presentation was randomized. Data analysis. ANOVAs were carried out by participants and items with RTs and errors as dependent variables and type of stimuli (regular-, irregular- and pseudo-character as repeated measures (F1 or between subject
Convergence and fluctuations of Regularized Tyler estimators
Kammoun, Abla; Couillet, Romain; Pascal, Frederic; Alouini, Mohamed-Slim
2015-01-01
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter p. While a high value of p is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations n and/or their size N increase together. First asymptotic results have recently been obtained under the assumption that N and n are large and commensurable. Interestingly, no results concerning the regime of n going to infinity with N fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult N and n large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when n → ∞ with N fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter.
Convergence and fluctuations of Regularized Tyler estimators
Kammoun, Abla
2015-10-26
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter p. While a high value of p is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations n and/or their size N increase together. First asymptotic results have recently been obtained under the assumption that N and n are large and commensurable. Interestingly, no results concerning the regime of n going to infinity with N fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult N and n large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when n → ∞ with N fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter.
Multi-task feature learning by using trace norm regularization
Directory of Open Access Journals (Sweden)
Jiangmei Zhang
2017-11-01
Full Text Available Multi-task learning can extract the correlation of multiple related machine learning problems to improve performance. This paper considers applying the multi-task learning method to learn a single task. We propose a new learning approach, which employs the mixture of expert model to divide a learning task into several related sub-tasks, and then uses the trace norm regularization to extract common feature representation of these sub-tasks. A nonlinear extension of this approach by using kernel is also provided. Experiments conducted on both simulated and real data sets demonstrate the advantage of the proposed approach.
The use of regularization in inferential measurements
International Nuclear Information System (INIS)
Hines, J. Wesley; Gribok, Andrei V.; Attieh, Ibrahim; Uhrig, Robert E.
1999-01-01
Inferential sensing is the prediction of a plant variable through the use of correlated plant variables. A correct prediction of the variable can be used to monitor sensors for drift or other failures making periodic instrument calibrations unnecessary. This move from periodic to condition based maintenance can reduce costs and increase the reliability of the instrument. Having accurate, reliable measurements is important for signals that may impact safety or profitability. This paper investigates how collinearity adversely affects inferential sensing by making the results inconsistent and unrepeatable; and presents regularization as a potential solution (author) (ml)
Regularization ambiguities in loop quantum gravity
International Nuclear Information System (INIS)
Perez, Alejandro
2006-01-01
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find
Effort variation regularization in sound field reproduction
DEFF Research Database (Denmark)
Stefanakis, Nick; Jacobsen, Finn; Sarris, Ioannis
2010-01-01
In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths......), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy...
Total-variation regularization with bound constraints
International Nuclear Information System (INIS)
Chartrand, Rick; Wohlberg, Brendt
2009-01-01
We present a new algorithm for bound-constrained total-variation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise. We incorporate previous iterative reweighting algorithms to solve the TV portion.
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
Indefinite metric and regularization of electrodynamics
International Nuclear Information System (INIS)
Gaudin, M.
1984-06-01
The invariant regularization of Pauli and Villars in quantum electrodynamics can be considered as deriving from a local and causal lagrangian theory for spin 1/2 bosons, by introducing an indefinite metric and a condition on the allowed states similar to the Lorentz condition. The consequences are the asymptotic freedom of the photon's propagator. We present a calcultion of the effective charge to the fourth order in the coupling as a function of the auxiliary masses, the theory avoiding all mass divergencies to this order [fr
Strategies for regular segmented reductions on GPU
DEFF Research Database (Denmark)
Larsen, Rasmus Wriedt; Henriksen, Troels
2017-01-01
We present and evaluate an implementation technique for regular segmented reductions on GPUs. Existing techniques tend to be either consistent in performance but relatively inefficient in absolute terms, or optimised for specific workloads and thereby exhibiting bad performance for certain input...... is in the context of the Futhark compiler, the implementation technique is applicable to any library or language that has a need for segmented reductions. We evaluate the technique on four microbenchmarks, two of which we also compare to implementations in the CUB library for GPU programming, as well as on two...
The Evolution of Reputation-Based Cooperation in Regular Networks
Directory of Open Access Journals (Sweden)
Tatsuya Sasaki
2017-01-01
Full Text Available Despite recent advances in reputation technologies, it is not clear how reputation systems can affect human cooperation in social networks. Although it is known that two of the major mechanisms in the evolution of cooperation are spatial selection and reputation-based reciprocity, theoretical study of the interplay between both mechanisms remains almost uncharted. Here, we present a new individual-based model for the evolution of reciprocal cooperation between reputation and networks. We comparatively analyze four of the leading moral assessment rules—shunning, image scoring, stern judging, and simple standing—and base the model on the giving game in regular networks for Cooperators, Defectors, and Discriminators. Discriminators rely on a proper moral assessment rule. By using individual-based models, we show that the four assessment rules are differently characterized in terms of how cooperation evolves, depending on the benefit-to-cost ratio, the network-node degree, and the observation and error conditions. Our findings show that the most tolerant rule—simple standing—is the most robust among the four assessment rules in promoting cooperation in regular networks.
Emotion regulation deficits in regular marijuana users.
Zimmermann, Kaeli; Walz, Christina; Derckx, Raissa T; Kendrick, Keith M; Weber, Bernd; Dore, Bruce; Ochsner, Kevin N; Hurlemann, René; Becker, Benjamin
2017-08-01
Effective regulation of negative affective states has been associated with mental health. Impaired regulation of negative affect represents a risk factor for dysfunctional coping mechanisms such as drug use and thus could contribute to the initiation and development of problematic substance use. This study investigated behavioral and neural indices of emotion regulation in regular marijuana users (n = 23) and demographically matched nonusing controls (n = 20) by means of an fMRI cognitive emotion regulation (reappraisal) paradigm. Relative to nonusing controls, marijuana users demonstrated increased neural activity in a bilateral frontal network comprising precentral, middle cingulate, and supplementary motor regions during reappraisal of negative affect (P marijuana users relative to controls. Together, the present findings could reflect an unsuccessful attempt of compensatory recruitment of additional neural resources in the context of disrupted amygdala-prefrontal interaction during volitional emotion regulation in marijuana users. As such, impaired volitional regulation of negative affect might represent a consequence of, or risk factor for, regular marijuana use. Hum Brain Mapp 38:4270-4279, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Catalytic micromotor generating self-propelled regular motion through random fluctuation
Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa
2013-07-01
Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.
Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm
Directory of Open Access Journals (Sweden)
O. G. Monahov
2014-01-01
Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously
Accretion onto some well-known regular black holes
International Nuclear Information System (INIS)
Jawad, Abdul; Shahzad, M.U.
2016-01-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2016-03-15
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Jawad, Abdul; Shahzad, M. Umair
2016-03-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.
Laplacian embedded regression for scalable manifold regularization.
Chen, Lin; Tsang, Ivor W; Xu, Dong
2012-06-01
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real
Stark widths regularities within spectral series of sodium isoelectronic sequence
Trklja, Nora; Tapalaga, Irinel; Dojčinović, Ivan P.; Purić, Jagoš
2018-02-01
Stark widths within spectral series of sodium isoelectronic sequence have been studied. This is a unique approach that includes both neutrals and ions. Two levels of problem are considered: if the required atomic parameters are known, Stark widths can be calculated by some of the known methods (in present paper modified semiempirical formula has been used), but if there is a lack of parameters, regularities enable determination of Stark broadening data. In the framework of regularity research, Stark broadening dependence on environmental conditions and certain atomic parameters has been investigated. The aim of this work is to give a simple model, with minimum of required parameters, which can be used for calculation of Stark broadening data for any chosen transitions within sodium like emitters. Obtained relations were used for predictions of Stark widths for transitions that have not been measured or calculated yet. This system enables fast data processing by using of proposed theoretical model and it provides quality control and verification of obtained results.
Multilinear Graph Embedding: Representation and Regularization for Images.
Chen, Yi-Lei; Hsu, Chiou-Ting
2014-02-01
Given a set of images, finding a compact and discriminative representation is still a big challenge especially when multiple latent factors are hidden in the way of data generation. To represent multifactor images, although multilinear models are widely used to parameterize the data, most methods are based on high-order singular value decomposition (HOSVD), which preserves global statistics but interprets local variations inadequately. To this end, we propose a novel method, called multilinear graph embedding (MGE), as well as its kernelization MKGE to leverage the manifold learning techniques into multilinear models. Our method theoretically links the linear, nonlinear, and multilinear dimensionality reduction. We also show that the supervised MGE encodes informative image priors for image regularization, provided that an image is represented as a high-order tensor. From our experiments on face and gait recognition, the superior performance demonstrates that MGE better represents multifactor images than classic methods, including HOSVD and its variants. In addition, the significant improvement in image (or tensor) completion validates the potential of MGE for image regularization.
Regularized inversion of controlled source and earthquake data
International Nuclear Information System (INIS)
Ramachandran, Kumar
2012-01-01
Estimation of the seismic velocity structure of the Earth's crust and upper mantle from travel-time data has advanced greatly in recent years. Forward modelling trial-and-error methods have been superseded by tomographic methods which allow more objective analysis of large two-dimensional and three-dimensional refraction and/or reflection data sets. The fundamental purpose of travel-time tomography is to determine the velocity structure of a medium by analysing the time it takes for a wave generated at a source point within the medium to arrive at a distribution of receiver points. Tomographic inversion of first-arrival travel-time data is a nonlinear problem since both the velocity of the medium and ray paths in the medium are unknown. The solution for such a problem is typically obtained by repeated application of linearized inversion. Regularization of the nonlinear problem reduces the ill posedness inherent in the tomographic inversion due to the under-determined nature of the problem and the inconsistencies in the observed data. This paper discusses the theory of regularized inversion for joint inversion of controlled source and earthquake data, and results from synthetic data testing and application to real data. The results obtained from tomographic inversion of synthetic data and real data from the northern Cascadia subduction zone show that the velocity model and hypocentral parameters can be efficiently estimated using this approach. (paper)
Regular and platform switching: bone stress analysis varying implant type.
Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes
2012-04-01
This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon
Regular and promotional sales in new product life-cycle: A competitive approach
Guidolin, Mariangela; Guseo, Renato; Mortarino, Cinzia
2016-01-01
In this paper, we consider the application of the Lotka-Volterra model with churn effects, LVch, (Guidolin and Guseo, 2015) to the case of a confectionary product produced in Italy and recently commercialized in a European country. Weekly time series, referring separately to quantities of regular and promotional sales, are available. Their joint inspection highlighted the presence of compensatory dynamics suggesting the study with the LVch to estimate whether competition between regular and p...
Verbal Working Memory Is Related to the Acquisition of Cross-Linguistic Phonological Regularities
Bosma, E.; Heeringa, Wilbert; Hoekstra, E.; Versloot, A.P.; Blom, W.B.T.
2017-01-01
Closely related languages share cross-linguistic phonological regularities, such as Frisian -âld [ͻ:t] and Dutch -oud [ʱut], as in the cognate pairs kâld [kͻ:t] – koud [kʱut] ‘cold’ and wâld [wͻ:t] – woud [wʱut] ‘forest’. Within Bybee’s (1995, 2001, 2008, 2010) network model, these regularities are,
Constrained least squares regularization in PET
International Nuclear Information System (INIS)
Choudhury, K.R.; O'Sullivan, F.O.
1996-01-01
Standard reconstruction methods used in tomography produce images with undesirable negative artifacts in background and in areas of high local contrast. While sophisticated statistical reconstruction methods can be devised to correct for these artifacts, their computational implementation is excessive for routine operational use. This work describes a technique for rapid computation of approximate constrained least squares regularization estimates. The unique feature of the approach is that it involves no iterative projection or backprojection steps. This contrasts with the familiar computationally intensive algorithms based on algebraic reconstruction (ART) or expectation-maximization (EM) methods. Experimentation with the new approach for deconvolution and mixture analysis shows that the root mean square error quality of estimators based on the proposed algorithm matches and usually dominates that of more elaborate maximum likelihood, at a fraction of the computational effort
Regularities of radiorace formation in yeasts
International Nuclear Information System (INIS)
Korogodin, V.I.; Bliznik, K.M.; Kapul'tsevich, Yu.G.; Petin, V.G.; Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel'skij Inst. Meditsinskoj Radiologii)
1977-01-01
Two strains of diploid yeast, namely, Saccharomyces ellipsoides, Megri 139-B, isolated under natural conditions, and Saccharomyces cerevisiae 5a x 3Bα, heterozygous by genes ade 1 and ade 2, were exposed to γ-quanta of Co 60 . The content of cells-saltants forming colonies with changed morphology, that of the nonviable cells, cells that are respiration mutants, and cells-recombinants by gene ade 1 and ade 2, has been determined. A certain regularity has been revealed in the distribution among the colonies of cells of the four types mentioned above: the higher the content of cells of some one of the types, the higher that of the cells having other hereditary changes
Regularization destriping of remote sensing imagery
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
Singular tachyon kinks from regular profiles
International Nuclear Information System (INIS)
Copeland, E.J.; Saffin, P.M.; Steer, D.A.
2003-01-01
We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately
Two-pass greedy regular expression parsing
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge; Henglein, Fritz; Nielsen, Lasse
2013-01-01
We present new algorithms for producing greedy parses for regular expressions (REs) in a semi-streaming fashion. Our lean-log algorithm executes in time O(mn) for REs of size m and input strings of size n and outputs a compact bit-coded parse tree representation. It improves on previous algorithms...... by: operating in only 2 passes; using only O(m) words of random-access memory (independent of n); requiring only kn bits of sequentially written and read log storage, where k ... and not requiring it to be stored at all. Previous RE parsing algorithms do not scale linearly with input size, or require substantially more log storage and employ 3 passes where the first consists of reversing the input, or do not or are not known to produce a greedy parse. The performance of our unoptimized C...
Improved resolution and reliability in dynamic PET using Bayesian regularization of MRTM2
DEFF Research Database (Denmark)
Agn, Mikael; Svarer, Claus; Frokjaer, Vibe G.
2014-01-01
This paper presents a mathematical model that regularizes dynamic PET data by using a Bayesian framework. We base the model on the well known two-parameter multilinear reference tissue method MRTM2 and regularize on the assumption that spatially close regions have similar parameters. The developed...... model is compared to the conventional approach of improving the low signal-to-noise ratio of PET data, i.e., spatial filtering of each time frame independently by a Gaussian kernel. We show that the model handles high levels of noise better than the conventional approach, while at the same time...
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.; Franek, M.; Schonlieb, C.-B.
2012-01-01
for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations
Incremental projection approach of regularization for inverse problems
Energy Technology Data Exchange (ETDEWEB)
Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)
2016-10-15
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
Dimensional regularization and analytical continuation at finite temperature
International Nuclear Information System (INIS)
Chen Xiangjun; Liu Lianshou
1998-01-01
The relationship between dimensional regularization and analytical continuation of infrared divergent integrals at finite temperature is discussed and a method of regularization of infrared divergent integrals and infrared divergent sums is given
Bounded Perturbation Regularization for Linear Least Squares Estimation
Ballal, Tarig; Suliman, Mohamed Abdalla Elhag; Al-Naffouri, Tareq Y.
2017-01-01
This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded
Regular Generalized Star Star closed sets in Bitopological Spaces
K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar
2011-01-01
The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.
Exclusion of children with intellectual disabilities from regular ...
African Journals Online (AJOL)
Study investigated why teachers exclude children with intellectual disability from the regular classrooms in Nigeria. Participants were, 169 regular teachers randomly selected from Oyo and Ogun states. Questionnaire was used to collect data result revealed that 57.4% regular teachers could not cope with children with ID ...
39 CFR 6.1 - Regular meetings, annual meeting.
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Regular meetings, annual meeting. 6.1 Section 6.1 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE MEETINGS (ARTICLE VI) § 6.1 Regular meetings, annual meeting. The Board shall meet regularly on a schedule...
Recognition Memory for Novel Stimuli: The Structural Regularity Hypothesis
Cleary, Anne M.; Morris, Alison L.; Langley, Moses M.
2007-01-01
Early studies of human memory suggest that adherence to a known structural regularity (e.g., orthographic regularity) benefits memory for an otherwise novel stimulus (e.g., G. A. Miller, 1958). However, a more recent study suggests that structural regularity can lead to an increase in false-positive responses on recognition memory tests (B. W. A.…
5 CFR 551.421 - Regular working hours.
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Regular working hours. 551.421 Section... Activities § 551.421 Regular working hours. (a) Under the Act there is no requirement that a Federal employee... distinction based on whether the activity is performed by an employee during regular working hours or outside...
20 CFR 226.35 - Deductions from regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Deductions from regular annuity rate. 226.35... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.35 Deductions from regular annuity rate. The regular annuity rate of the spouse and divorced...
20 CFR 226.34 - Divorced spouse regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Divorced spouse regular annuity rate. 226.34... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing a Spouse or Divorced Spouse Annuity § 226.34 Divorced spouse regular annuity rate. The regular annuity rate of a divorced spouse is equal to...
20 CFR 226.14 - Employee regular annuity rate.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Employee regular annuity rate. 226.14 Section... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Computing an Employee Annuity § 226.14 Employee regular annuity rate. The regular annuity rate payable to the employee is the total of the employee tier I...
Simple regular black hole with logarithmic entropy correction
Energy Technology Data Exchange (ETDEWEB)
Morales-Duran, Nicolas; Vargas, Andres F.; Hoyos-Restrepo, Paulina; Bargueno, Pedro [Universidad de los Andes, Departamento de Fisica, Bogota, Distrito Capital (Colombia)
2016-10-15
A simple regular black hole solution satisfying the weak energy condition is obtained within Einstein-non-linear electrodynamics theory. We have computed the thermodynamic properties of this black hole by a careful analysis of the horizons and we have found that the usual Bekenstein-Hawking entropy gets corrected by a logarithmic term. Therefore, in this sense our model realises some quantum gravity predictions which add this kind of correction to the black hole entropy. In particular, we have established some similitudes between our model and a quadratic generalised uncertainty principle. This similitude has been confirmed by the existence of a remnant, which prevents complete evaporation, in agreement with the quadratic generalised uncertainty principle case. (orig.)
On the overlap prescription for lattice regularization of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S; Strathdee, J
1995-12-01
Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs.
Regularization of the big bang singularity with random perturbations
Belbruno, Edward; Xue, BingKan
2018-03-01
We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.
On the overlap prescription for lattice regularization of chiral fermions
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1995-12-01
Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs
Prevalence and Correlates of Having a Regular Physician among Women Presenting for Induced Abortion.
Chor, Julie; Hebert, Luciana E; Hasselbacher, Lee A; Whitaker, Amy K
2016-01-01
To determine the prevalence and correlates of having a regular physician among women presenting for induced abortion. We conducted a retrospective review of women presenting to an urban, university-based family planning clinic for abortion between January 2008 and September 2011. We conducted bivariate analyses, comparing women with and without a regular physician, and multivariable regression modeling, to identify factors associated with not having a regular physician. Of 834 women, 521 (62.5%) had a regular physician and 313 (37.5%) did not. Women with a prior pregnancy, live birth, or spontaneous abortion were more likely than women without these experiences to have a regular physician. Women with a prior induced abortion were not more likely than women who had never had a prior induced abortion to have a regular physician. Compared with women younger than 18 years, women aged 18 to 26 years were less likely to have a physician (adjusted odds ratio [aOR], 0.25; 95% confidence interval [CI], 0.10-0.62). Women with a prior live birth had increased odds of having a regular physician compared with women without a prior pregnancy (aOR, 1.89; 95% CI, 1.13-3.16). Women without medical/fetal indications and who had not been victims of sexual assault (self-indicated) were less likely to report having a regular physician compared with women with medical/fetal indications (aOR, 0.55; 95% CI, 0.17-0.82). The abortion visit is a point of contact with a large number of women without a regular physician and therefore provides an opportunity to integrate women into health care. Copyright © 2016 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.
Regularity dimension of sequences and its application to phylogenetic tree reconstruction
International Nuclear Information System (INIS)
Pham, Tuan D.
2012-01-01
The concept of dimension is a central development of chaos theory for studying nonlinear dynamical systems. Different types of dimensions have been derived to interpret different geometrical or physical observations. Approximate entropy and its modified methods have been introduced for studying regularity and complexity of time-series data in physiology and biology. Here, the concept of power laws and entropy measure are adopted to develop the regularity dimension of sequences to model a mathematical relationship between the frequency with which information about signal regularity changes in various scales. The proposed regularity dimension is applied to reconstruct phylogenetic trees using mitochondrial DNA (mtDNA) sequences for the family Hominidae, which can be validated according to the hypothesized evolutionary relationships between organisms.
Robust regularized singular value decomposition with application to mortality data
Zhang, Lingsong
2013-09-01
We develop a robust regularized singular value decomposition (RobRSVD) method for analyzing two-way functional data. The research is motivated by the application of modeling human mortality as a smooth two-way function of age group and year. The RobRSVD is formulated as a penalized loss minimization problem where a robust loss function is used to measure the reconstruction error of a low-rank matrix approximation of the data, and an appropriately defined two-way roughness penalty function is used to ensure smoothness along each of the two functional domains. By viewing the minimization problem as two conditional regularized robust regressions, we develop a fast iterative reweighted least squares algorithm to implement the method. Our implementation naturally incorporates missing values. Furthermore, our formulation allows rigorous derivation of leaveone- row/column-out cross-validation and generalized cross-validation criteria, which enable computationally efficient data-driven penalty parameter selection. The advantages of the new robust method over nonrobust ones are shown via extensive simulation studies and the mortality rate application. © Institute of Mathematical Statistics, 2013.
GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES
International Nuclear Information System (INIS)
Rogers, Adam; Fiege, Jason D.
2012-01-01
Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.
STRUCTURE OPTIMIZATION OF RESERVATION BY PRECISE QUADRATIC REGULARIZATION
Directory of Open Access Journals (Sweden)
KOSOLAP A. I.
2015-11-01
Full Text Available The problem of optimization of the structure of systems redundancy elements. Such problems arise in the design of complex systems. To improve the reliability of operation of such systems of its elements are duplicated. This increases system cost and improves its reliability. When optimizing these systems is maximized probability of failure of the entire system while limiting its cost or the cost is minimized for a given probability of failure-free operation. A mathematical model of the problem is a discrete backup multiextremal. To search for the global extremum of currently used methods of Lagrange multipliers, coordinate descent, dynamic programming, random search. These methods guarantee a just and local solutions are used in the backup tasks of small dimension. In the work for solving redundancy uses a new method for accurate quadratic regularization. This method allows you to convert the original discrete problem to the maximization of multi vector norm on a convex set. This means that the diversity of the tasks given to the problem of redundancy maximize vector norm on a convex set. To solve the problem, a reformed straightdual interior point methods. Currently, it is the best method for local optimization of nonlinear problems. Transformed the task includes a new auxiliary variable, which is determined by dichotomy. There have been numerous comparative numerical experiments in problems with the number of redundant subsystems to one hundred. These experiments confirm the effectiveness of the method of precise quadratic regularization for solving problems of redundancy.
Statistical regularities in the rank-citation profile of scientists.
Petersen, Alexander M; Stanley, H Eugene; Succi, Sauro
2011-01-01
Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile c(i)(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each c(i)(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different c(i)(r) profiles, our results demonstrate the utility of the β(i) scaling parameter in conjunction with h(i) for quantifying individual publication impact. We show that the total number of citations C(i) tallied from a scientist's N(i) papers scales as [Formula: see text]. Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress.
Accreting fluids onto regular black holes via Hamiltonian approach
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)
2017-08-15
We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)
On the regularized fermionic projector of the vacuum
Finster, Felix
2008-03-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.
On the regularized fermionic projector of the vacuum
International Nuclear Information System (INIS)
Finster, Felix
2008-01-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed
MRI reconstruction with joint global regularization and transform learning.
Tanc, A Korhan; Eksioglu, Ender M
2016-10-01
Sparsity based regularization has been a popular approach to remedy the measurement scarcity in image reconstruction. Recently, sparsifying transforms learned from image patches have been utilized as an effective regularizer for the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse additional global regularization terms to the patch-based transform learning. We develop an algorithm to solve the resulting novel cost function, which includes both patchwise and global regularization terms. Extensive simulation results indicate that the introduced mixed approach has improved MRI reconstruction performance, when compared to the algorithms which use either of the patchwise transform learning or global regularization terms alone. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Jump Set under Geometric Regularization. Part 1: Basic Technique and First-Order Denoising
Valkonen, Tuomo
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Let u ∈ BV(Ω) solve the total variation (TV) denoising problem with L^{2}-squared fidelity and data f. Caselles, Chambolle, and Novaga [Multiscale Model. Simul., 6 (2008), pp. 879-894] have shown the containment H^{m-1} (Ju \\\\Jf) = 0 of the jump set Ju of u in that of f. Their proof unfortunately depends heavily on the co-area formula, as do many results in this area, and as such is not directly extensible to higher-order, curvature-based, and other advanced geometric regularizers, such as total generalized variation and Euler\\'s elastica. These have received increased attention in recent times due to their better practical regularization properties compared to conventional TV or wavelets. We prove analogous jump set containment properties for a general class of regularizers. We do this with novel Lipschitz transformation techniques and do not require the co-area formula. In the present Part 1 we demonstrate the general technique on first-order regularizers, while in Part 2 we will extend it to higher-order regularizers. In particular, we concentrate in this part on TV and, as a novelty, Huber-regularized TV. We also demonstrate that the technique would apply to nonconvex TV models as well as the Perona-Malik anisotropic diffusion, if these approaches were well-posed to begin with.
Makarova, A. N.; Makarov, E. I.; Zakharov, N. S.
2018-03-01
In the article, the issue of correcting engineering servicing regularity on the basis of actual dependability data of cars in operation is considered. The purpose of the conducted research is to increase dependability of transport-technological machines by correcting engineering servicing regularity. The subject of the research is the mechanism of engineering servicing regularity influence on reliability measure. On the basis of the analysis of researches carried out before, a method of nonparametric estimation of car failure measure according to actual time-to-failure data was chosen. A possibility of describing the failure measure dependence on engineering servicing regularity by various mathematical models is considered. It is proven that the exponential model is the most appropriate for that purpose. The obtained results can be used as a separate method of engineering servicing regularity correction with certain operational conditions taken into account, as well as for the technical-economical and economical-stochastic methods improvement. Thus, on the basis of the conducted researches, a method of engineering servicing regularity correction of transport-technological machines in the operational process was developed. The use of that method will allow decreasing the number of failures.
An analysis of electrical impedance tomography with applications to Tikhonov regularization
Jin, Bangti
2012-01-16
This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in L p-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage. © EDP Sciences, SMAI, 2012.
An analysis of electrical impedance tomography with applications to Tikhonov regularization
Jin, Bangti; Maass, Peter
2012-01-01
This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in L p-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage. © EDP Sciences, SMAI, 2012.
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
Color correction optimization with hue regularization
Zhang, Heng; Liu, Huaping; Quan, Shuxue
2011-01-01
Previous work has suggested that observers are capable of judging the quality of an image without any knowledge of the original scene. When no reference is available, observers can extract the apparent objects in an image and compare them with the typical colors of similar objects recalled from their memories. Some generally agreed upon research results indicate that although perfect colorimetric rendering is not conspicuous and color errors can be well tolerated, the appropriate rendition of certain memory colors such as skin, grass, and sky is an important factor in the overall perceived image quality. These colors are appreciated in a fairly consistent manner and are memorized with slightly different hues and higher color saturation. The aim of color correction for a digital color pipeline is to transform the image data from a device dependent color space to a target color space, usually through a color correction matrix which in its most basic form is optimized through linear regressions between the two sets of data in two color spaces in the sense of minimized Euclidean color error. Unfortunately, this method could result in objectionable distortions if the color error biased certain colors undesirably. In this paper, we propose a color correction optimization method with preferred color reproduction in mind through hue regularization and present some experimental results.
Regularities and irregularities in order flow data
Theissen, Martin; Krause, Sebastian M.; Guhr, Thomas
2017-11-01
We identify and analyze statistical regularities and irregularities in the recent order flow of different NASDAQ stocks, focusing on the positions where orders are placed in the order book. This includes limit orders being placed outside of the spread, inside the spread and (effective) market orders. Based on the pairwise comparison of the order flow of different stocks, we perform a clustering of stocks into groups with similar behavior. This is useful to assess systemic aspects of stock price dynamics. We find that limit order placement inside the spread is strongly determined by the dynamics of the spread size. Most orders, however, arrive outside of the spread. While for some stocks order placement on or next to the quotes is dominating, deeper price levels are more important for other stocks. As market orders are usually adjusted to the quote volume, the impact of market orders depends on the order book structure, which we find to be quite diverse among the analyzed stocks as a result of the way limit order placement takes place.
Library search with regular reflectance IR spectra
International Nuclear Information System (INIS)
Staat, H.; Korte, E.H.; Lampen, P.
1989-01-01
Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)
Regularities of praseodymium oxide dissolution in acids
International Nuclear Information System (INIS)
Savin, V.D.; Elyutin, A.V.; Mikhajlova, N.P.; Eremenko, Z.V.; Opolchenova, N.L.
1989-01-01
The regularities of Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 interaction with inorganic acids are studied. pH of the solution and oxidation-reduction potential registrated at 20±1 deg C are the working parameters of studies. It is found that the amount of all oxides dissolved increase in the series of acids - nitric, hydrochloric and sulfuric, in this case for hydrochloric and sulfuric acid it increases in the series of oxides Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 . It is noted that Pr 2 O 5 has a high value of oxidation-reduction potential with a positive sign in the whole disslolving range. A low positive value of a redox potential during dissolving belongs to Pr(OH) 3 and in the case of Pr 2 O 3 dissloving redox potential is negative. The schemes of dissolving processes which do not agree with classical assumptions are presented
Regular expressions compiler and some applications
International Nuclear Information System (INIS)
Saldana A, H.
1978-01-01
We deal with high level programming language of a Regular Expressions Compiler (REC). The first chapter is an introduction in which the history of the REC development and the problems related to its numerous applicatons are described. The syntactic and sematic rules as well as the language features are discussed just after the introduction. Concerning the applicatons as examples, an adaptation is given in order to solve numerical problems and another for the data manipulation. The last chapter is an exposition of ideas and techniques about the compiler construction. Examples of the adaptation to numerical problems show the applications to education, vector analysis, quantum mechanics, physics, mathematics and other sciences. The rudiments of an operating system for a minicomputer are the examples of the adaptation to symbolic data manipulaton. REC is a programming language that could be applied to solve problems in almost any human activity. Handling of computer graphics, control equipment, research on languages, microprocessors and general research are some of the fields in which this programming language can be applied and developed. (author)
Quantum implications of a scale invariant regularization
Ghilencea, D. M.
2018-04-01
We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).
Regularities development of entrepreneurial structures in regions
Directory of Open Access Journals (Sweden)
Julia Semenovna Pinkovetskaya
2012-12-01
Full Text Available Consider regularities and tendencies for the three types of entrepreneurial structures — small enterprises, medium enterprises and individual entrepreneurs. The aim of the research was to confirm the possibilities of describing indicators of aggregate entrepreneurial structures with the use of normal law distribution functions. Presented proposed by the author the methodological approach and results of construction of the functions of the density distribution for the main indicators for the various objects: the Russian Federation, regions, as well as aggregates ofentrepreneurial structures, specialized in certain forms ofeconomic activity. All the developed functions, as shown by the logical and statistical analysis, are of high quality and well-approximate the original data. In general, the proposed methodological approach is versatile and can be used in further studies of aggregates of entrepreneurial structures. The received results can be applied in solving a wide range of problems justify the need for personnel and financial resources at the federal, regional and municipal levels, as well as the formation of plans and forecasts of development entrepreneurship and improvement of this sector of the economy.
Vignati, F.; Guardone, A.
2017-11-01
An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.
TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY
International Nuclear Information System (INIS)
Crotts, Arlin P. S.
2009-01-01
Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.
Elementary Particle Spectroscopy in Regular Solid Rewrite
International Nuclear Information System (INIS)
Trell, Erik
2008-01-01
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each
Regularity theory for mean-field game systems
Gomes, Diogo A; Voskanyan, Vardan
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.
2016-09-14
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Total Variation Regularization for Functions with Values in a Manifold
Lellmann, Jan; Strekalovskiy, Evgeny; Koetter, Sabrina; Cremers, Daniel
2013-01-01
While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.
Total Variation Regularization for Functions with Values in a Manifold
Lellmann, Jan
2013-12-01
While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.; Pimentel, Edgard A.; Voskanyan, Vardan K.
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Optimal analysis of structures by concepts of symmetry and regularity
Kaveh, Ali
2013-01-01
Optimal analysis is defined as an analysis that creates and uses sparse, well-structured and well-conditioned matrices. The focus is on efficient methods for eigensolution of matrices involved in static, dynamic and stability analyses of symmetric and regular structures, or those general structures containing such components. Powerful tools are also developed for configuration processing, which is an important issue in the analysis and design of space structures and finite element models. Different mathematical concepts are combined to make the optimal analysis of structures feasible. Canonical forms from matrix algebra, product graphs from graph theory and symmetry groups from group theory are some of the concepts involved in the variety of efficient methods and algorithms presented. The algorithms elucidated in this book enable analysts to handle large-scale structural systems by lowering their computational cost, thus fulfilling the requirement for faster analysis and design of future complex systems. The ...
Ma, Denglong; Tan, Wei; Zhang, Zaoxiao; Hu, Jun
2017-03-05
In order to identify the parameters of hazardous gas emission source in atmosphere with less previous information and reliable probability estimation, a hybrid algorithm coupling Tikhonov regularization with particle swarm optimization (PSO) was proposed. When the source location is known, the source strength can be estimated successfully by common Tikhonov regularization method, but it is invalid when the information about both source strength and location is absent. Therefore, a hybrid method combining linear Tikhonov regularization and PSO algorithm was designed. With this method, the nonlinear inverse dispersion model was transformed to a linear form under some assumptions, and the source parameters including source strength and location were identified simultaneously by linear Tikhonov-PSO regularization method. The regularization parameters were selected by L-curve method. The estimation results with different regularization matrixes showed that the confidence interval with high-order regularization matrix is narrower than that with zero-order regularization matrix. But the estimation results of different source parameters are close to each other with different regularization matrixes. A nonlinear Tikhonov-PSO hybrid regularization was also designed with primary nonlinear dispersion model to estimate the source parameters. The comparison results of simulation and experiment case showed that the linear Tikhonov-PSO method with transformed linear inverse model has higher computation efficiency than nonlinear Tikhonov-PSO method. The confidence intervals from linear Tikhonov-PSO are more reasonable than that from nonlinear method. The estimation results from linear Tikhonov-PSO method are similar to that from single PSO algorithm, and a reasonable confidence interval with some probability levels can be additionally given by Tikhonov-PSO method. Therefore, the presented linear Tikhonov-PSO regularization method is a good potential method for hazardous emission
Analysis of regularized inversion of data corrupted by white Gaussian noise
International Nuclear Information System (INIS)
Kekkonen, Hanne; Lassas, Matti; Siltanen, Samuli
2014-01-01
Tikhonov regularization is studied in the case of linear pseudodifferential operator as the forward map and additive white Gaussian noise as the measurement error. The measurement model for an unknown function u(x) is m(x) = Au(x) + δ ε (x), where δ > 0 is the noise magnitude. If ε was an L 2 -function, Tikhonov regularization gives an estimate T α (m) = u∈H r arg min { ||Au-m|| L 2 2 + α||u|| H r 2 } for u where α = α(δ) is the regularization parameter. Here penalization of the Sobolev norm ||u|| H r covers the cases of standard Tikhonov regularization (r = 0) and first derivative penalty (r = 1). Realizations of white Gaussian noise are almost never in L 2 , but do belong to H s with probability one if s < 0 is small enough. A modification of Tikhonov regularization theory is presented, covering the case of white Gaussian measurement noise. Furthermore, the convergence of regularized reconstructions to the correct solution as δ → 0 is proven in appropriate function spaces using microlocal analysis. The convergence of the related finite-dimensional problems to the infinite-dimensional problem is also analysed. (paper)