#### Sample records for regressive statistical evaluation

1. Advanced statistics: linear regression, part II: multiple linear regression.

Science.gov (United States)

Marill, Keith A

2004-01-01

The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

2. Using synthetic data to evaluate multiple regression and principal component analyses for statistical modeling of daily building energy consumption

Energy Technology Data Exchange (ETDEWEB)

Reddy, T.A. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States)); Claridge, D.E. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States))

1994-01-01

Multiple regression modeling of monitored building energy use data is often faulted as a reliable means of predicting energy use on the grounds that multicollinearity between the regressor variables can lead both to improper interpretation of the relative importance of the various physical regressor parameters and to a model with unstable regressor coefficients. Principal component analysis (PCA) has the potential to overcome such drawbacks. While a few case studies have already attempted to apply this technique to building energy data, the objectives of this study were to make a broader evaluation of PCA and multiple regression analysis (MRA) and to establish guidelines under which one approach is preferable to the other. Four geographic locations in the US with different climatic conditions were selected and synthetic data sequence representative of daily energy use in large institutional buildings were generated in each location using a linear model with outdoor temperature, outdoor specific humidity and solar radiation as the three regression variables. MRA and PCA approaches were then applied to these data sets and their relative performances were compared. Conditions under which PCA seems to perform better than MRA were identified and preliminary recommendations on the use of either modeling approach formulated. (orig.)

3. Statistical learning from a regression perspective

CERN Document Server

Berk, Richard A

2016-01-01

This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this can be seen as an extension of nonparametric regression. This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. A continued emphasis on the implications for practice runs through the text. Among the statistical learning procedures examined are bagging, random forests, boosting, support vector machines and neural networks. Response variables may be quantitative or categorical. As in the first edition, a unifying theme is supervised learning that can be trea...

4. Advanced statistics: linear regression, part I: simple linear regression.

Science.gov (United States)

Marill, Keith A

2004-01-01

Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

5. Free Software Development. 1. Fitting Statistical Regressions

Directory of Open Access Journals (Sweden)

Lorentz JÄNTSCHI

2002-12-01

Full Text Available The present paper is focused on modeling of statistical data processing with applications in field of material science and engineering. A new method of data processing is presented and applied on a set of 10 Ni–Mn–Ga ferromagnetic ordered shape memory alloys that are known to exhibit phonon softening and soft mode condensation into a premartensitic phase prior to the martensitic transformation itself. The method allows to identify the correlations between data sets and to exploit them later in statistical study of alloys. An algorithm for computing data was implemented in preprocessed hypertext language (PHP, a hypertext markup language interface for them was also realized and put onto comp.east.utcluj.ro educational web server, and it is accessible via http protocol at the address http://vl.academicdirect.ro/applied_statistics/linear_regression/multiple/v1.5/. The program running for the set of alloys allow to identify groups of alloys properties and give qualitative measure of correlations between properties. Surfaces of property dependencies are also fitted.

6. Interpretation of commonly used statistical regression models.

Science.gov (United States)

Kasza, Jessica; Wolfe, Rory

2014-01-01

A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

7. Vectors, a tool in statistical regression theory

NARCIS (Netherlands)

Corsten, L.C.A.

1958-01-01

Using linear algebra this thesis developed linear regression analysis including analysis of variance, covariance analysis, special experimental designs, linear and fertility adjustments, analysis of experiments at different places and times. The determination of the orthogonal projection, yielding

8. Introduction to statistical modelling: linear regression.

Science.gov (United States)

Lunt, Mark

2015-07-01

In many studies we wish to assess how a range of variables are associated with a particular outcome and also determine the strength of such relationships so that we can begin to understand how these factors relate to each other at a population level. Ultimately, we may also be interested in predicting the outcome from a series of predictive factors available at, say, a routine clinic visit. In a recent article in Rheumatology, Desai et al. did precisely that when they studied the prediction of hip and spine BMD from hand BMD and various demographic, lifestyle, disease and therapy variables in patients with RA. This article aims to introduce the statistical methodology that can be used in such a situation and explain the meaning of some of the terms employed. It will also outline some common pitfalls encountered when performing such analyses. © The Author 2013. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

9. Simulation Experiments in Practice: Statistical Design and Regression Analysis

OpenAIRE

Kleijnen, J.P.C.

2007-01-01

In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...

10. Simulation Experiments in Practice : Statistical Design and Regression Analysis

NARCIS (Netherlands)

Kleijnen, J.P.C.

2007-01-01

In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic

11. Wind speed prediction using statistical regression and neural network

Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve ﬁtting,Auto Regressive ...

12. Online Statistical Modeling (Regression Analysis) for Independent Responses

Science.gov (United States)

Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

2017-06-01

Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

13. New robust statistical procedures for the polytomous logistic regression models.

Science.gov (United States)

Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

2018-05-17

This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

14. Statistical approach for selection of regression model during validation of bioanalytical method

Directory of Open Access Journals (Sweden)

Natalija Nakov

2014-06-01

Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.

15. Polygenic scores via penalized regression on summary statistics.

Science.gov (United States)

Mak, Timothy Shin Heng; Porsch, Robert Milan; Choi, Shing Wan; Zhou, Xueya; Sham, Pak Chung

2017-09-01

Polygenic scores (PGS) summarize the genetic contribution of a person's genotype to a disease or phenotype. They can be used to group participants into different risk categories for diseases, and are also used as covariates in epidemiological analyses. A number of possible ways of calculating PGS have been proposed, and recently there is much interest in methods that incorporate information available in published summary statistics. As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a pertinent question is how we can use LD information available elsewhere to supplement such analyses. To answer this question, we propose a method for constructing PGS using summary statistics and a reference panel in a penalized regression framework, which we call lassosum. We also propose a general method for choosing the value of the tuning parameter in the absence of validation data. In our simulations, we showed that pseudovalidation often resulted in prediction accuracy that is comparable to using a dataset with validation phenotype and was clearly superior to the conservative option of setting the tuning parameter of lassosum to its lowest value. We also showed that lassosum achieved better prediction accuracy than simple clumping and P-value thresholding in almost all scenarios. It was also substantially faster and more accurate than the recently proposed LDpred. © 2017 WILEY PERIODICALS, INC.

16. Mapping the results of local statistics: Using geographically weighted regression

Directory of Open Access Journals (Sweden)

Stephen A. Matthews

2012-03-01

Full Text Available BACKGROUND The application of geographically weighted regression (GWR - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health, and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in the relationships between predictors and the outcome variable. OBJECTIVE A major challenge to users of GWR methods is how best to present and synthesize the large number of mappable results, specifically the local parameter parameter estimates and local t-values, generated from local GWR models. We offer an elegant solution. METHODS This paper introduces a mapping technique to simultaneously display local parameter estimates and local t-values on one map based on the use of data selection and transparency techniques. We integrate GWR software and GIS software package (ArcGIS and adapt earlier work in cartography on bivariate mapping. We compare traditional mapping strategies (i.e., side-by-side comparison and isoline overlay maps with our method using an illustration focusing on US county infant mortality data. CONCLUSIONS The resultant map design is more elegant than methods used to date. This type of map presentation can facilitate the exploration and interpretation of nonstationarity, focusing map reader attention on the areas of primary interest.

17. Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis

Science.gov (United States)

Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.

2018-05-01

Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.

18. Statistical analysis of sediment toxicity by additive monotone regression splines

NARCIS (Netherlands)

Boer, de W.J.; Besten, den P.J.; Braak, ter C.J.F.

2002-01-01

Modeling nonlinearity and thresholds in dose-effect relations is a major challenge, particularly in noisy data sets. Here we show the utility of nonlinear regression with additive monotone regression splines. These splines lead almost automatically to the estimation of thresholds. We applied this

19. Distributed Monitoring of the R2 Statistic for Linear Regression

Data.gov (United States)

National Aeronautics and Space Administration — The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and...

20. Evaluating statistical cloud schemes

OpenAIRE

Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix

2015-01-01

Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...

1. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

Science.gov (United States)

2012-01-01

The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

2. Subset Statistics in the linear IV regression model

NARCIS (Netherlands)

Kleibergen, F.R.

2005-01-01

We show that the limiting distributions of subset generalizations of the weak instrument robust instrumental variable statistics are boundedly similar when the remaining structural parameters are estimated using maximum likelihood. They are bounded from above by the limiting distributions which

3. Common pitfalls in statistical analysis: Linear regression analysis

Directory of Open Access Journals (Sweden)

Rakesh Aggarwal

2017-01-01

Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.

4. Statistical and regression analyses of detected extrasolar systems

Czech Academy of Sciences Publication Activity Database

Pintr, Pavel; Peřinová, V.; Lukš, A.; Pathak, A.

2013-01-01

Roč. 75, č. 1 (2013), s. 37-45 ISSN 0032-0633 Institutional support: RVO:61389021 Keywords : Exoplanets * Kepler candidates * Regression analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.630, year: 2013 http://www.sciencedirect.com/science/article/pii/S0032063312003066

5. Simulation Experiments in Practice : Statistical Design and Regression Analysis

NARCIS (Netherlands)

Kleijnen, J.P.C.

2007-01-01

In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is

6. Statistical Optimality in Multipartite Ranking and Ordinal Regression.

Science.gov (United States)

Uematsu, Kazuki; Lee, Yoonkyung

2015-05-01

Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.

7. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

Science.gov (United States)

Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

2009-11-01

G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

8. Quantile regression for the statistical analysis of immunological data with many non-detects

NARCIS (Netherlands)

Eilers, P.H.C.; Roder, E.; Savelkoul, H.F.J.; Wijk, van R.G.

2012-01-01

Background Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical

9. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

NARCIS (Netherlands)

Kleijnen, J.P.C.

1995-01-01

This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

10. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

Science.gov (United States)

2014-01-01

This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

11. A consistent framework for Horton regression statistics that leads to a modified Hack's law

Science.gov (United States)

Furey, P.R.; Troutman, B.M.

2008-01-01

A statistical framework is introduced that resolves important problems with the interpretation and use of traditional Horton regression statistics. The framework is based on a univariate regression model that leads to an alternative expression for Horton ratio, connects Horton regression statistics to distributional simple scaling, and improves the accuracy in estimating Horton plot parameters. The model is used to examine data for drainage area A and mainstream length L from two groups of basins located in different physiographic settings. Results show that confidence intervals for the Horton plot regression statistics are quite wide. Nonetheless, an analysis of covariance shows that regression intercepts, but not regression slopes, can be used to distinguish between basin groups. The univariate model is generalized to include n > 1 dependent variables. For the case where the dependent variables represent ln A and ln L, the generalized model performs somewhat better at distinguishing between basin groups than two separate univariate models. The generalized model leads to a modification of Hack's law where L depends on both A and Strahler order ??. Data show that ?? plays a statistically significant role in the modified Hack's law expression. ?? 2008 Elsevier B.V.

12. Integration of association statistics over genomic regions using Bayesian adaptive regression splines

Directory of Open Access Journals (Sweden)

Zhang Xiaohua

2003-11-01

Full Text Available Abstract In the search for genetic determinants of complex disease, two approaches to association analysis are most often employed, testing single loci or testing a small group of loci jointly via haplotypes for their relationship to disease status. It is still debatable which of these approaches is more favourable, and under what conditions. The former has the advantage of simplicity but suffers severely when alleles at the tested loci are not in linkage disequilibrium (LD with liability alleles; the latter should capture more of the signal encoded in LD, but is far from simple. The complexity of haplotype analysis could be especially troublesome for association scans over large genomic regions, which, in fact, is becoming the standard design. For these reasons, the authors have been evaluating statistical methods that bridge the gap between single-locus and haplotype-based tests. In this article, they present one such method, which uses non-parametric regression techniques embodied by Bayesian adaptive regression splines (BARS. For a set of markers falling within a common genomic region and a corresponding set of single-locus association statistics, the BARS procedure integrates these results into a single test by examining the class of smooth curves consistent with the data. The non-parametric BARS procedure generally finds no signal when no liability allele exists in the tested region (ie it achieves the specified size of the test and it is sensitive enough to pick up signals when a liability allele is present. The BARS procedure provides a robust and potentially powerful alternative to classical tests of association, diminishes the multiple testing problem inherent in those tests and can be applied to a wide range of data types, including genotype frequencies estimated from pooled samples.

13. A generalization of voxel-wise procedures for highdimensional statistical inference using ridge regression

DEFF Research Database (Denmark)

Sjöstrand, Karl; Cardenas, Valerie A.; Larsen, Rasmus

2008-01-01

regression to address this issue, allowing for a gradual introduction of correlation information into the model. We make the connections between ridge regression and voxel-wise procedures explicit and discuss relations to other statistical methods. Results are given on an in-vivo data set of deformation......Whole-brain morphometry denotes a group of methods with the aim of relating clinical and cognitive measurements to regions of the brain. Typically, such methods require the statistical analysis of a data set with many variables (voxels and exogenous variables) paired with few observations (subjects...

14. Statistical Analysis of Reactor Pressure Vessel Fluence Calculation Benchmark Data Using Multiple Regression Techniques

International Nuclear Information System (INIS)

Carew, John F.; Finch, Stephen J.; Lois, Lambros

2003-01-01

The calculated >1-MeV pressure vessel fluence is used to determine the fracture toughness and integrity of the reactor pressure vessel. It is therefore of the utmost importance to ensure that the fluence prediction is accurate and unbiased. In practice, this assurance is provided by comparing the predictions of the calculational methodology with an extensive set of accurate benchmarks. A benchmarking database is used to provide an estimate of the overall average measurement-to-calculation (M/C) bias in the calculations ( ). This average is used as an ad-hoc multiplicative adjustment to the calculations to correct for the observed calculational bias. However, this average only provides a well-defined and valid adjustment of the fluence if the M/C data are homogeneous; i.e., the data are statistically independent and there is no correlation between subsets of M/C data.Typically, the identification of correlations between the errors in the database M/C values is difficult because the correlation is of the same magnitude as the random errors in the M/C data and varies substantially over the database. In this paper, an evaluation of a reactor dosimetry benchmark database is performed to determine the statistical validity of the adjustment to the calculated pressure vessel fluence. Physical mechanisms that could potentially introduce a correlation between the subsets of M/C ratios are identified and included in a multiple regression analysis of the M/C data. Rigorous statistical criteria are used to evaluate the homogeneity of the M/C data and determine the validity of the adjustment.For the database evaluated, the M/C data are found to be strongly correlated with dosimeter response threshold energy and dosimeter location (e.g., cavity versus in-vessel). It is shown that because of the inhomogeneity in the M/C data, for this database, the benchmark data do not provide a valid basis for adjusting the pressure vessel fluence.The statistical criteria and methods employed in

15. Quantile regression for the statistical analysis of immunological data with many non-detects.

Science.gov (United States)

Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth

2012-07-07

Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.

16. Quantile regression for the statistical analysis of immunological data with many non-detects

NARCIS (Netherlands)

P.H.C. Eilers (Paul); E. Röder (Esther); H.F.J. Savelkoul (Huub); R. Gerth van Wijk (Roy)

2012-01-01

textabstractBackground: Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced

17. A Note on Three Statistical Tests in the Logistic Regression DIF Procedure

Science.gov (United States)

Paek, Insu

2012-01-01

Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…

18. Pivotal statistics for testing subsets of structural parameters in the IV Regression Model

NARCIS (Netherlands)

Kleibergen, F.R.

2000-01-01

We construct a novel statistic to test hypothezes on subsets of the structural parameters in anInstrumental Variables (IV) regression model. We derive the chi squared limiting distribution of thestatistic and show that it has a degrees of freedom parameter that is equal to the number ofstructural

19. Constrained statistical inference : sample-size tables for ANOVA and regression

NARCIS (Netherlands)

Vanbrabant, Leonard; Van De Schoot, Rens; Rosseel, Yves

2015-01-01

Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient β1 is larger than β2 and β3. The corresponding hypothesis is H: β1 > {β2, β3} and

20. White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice

NARCIS (Netherlands)

Kleijnen, J.P.C.

2006-01-01

Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise.By definition, white noise is normally, independently, and identically distributed with zero mean.This survey tries to answer the following questions: (i) How realistic are these

1. Statistical methods in regression and calibration analysis of chromosome aberration data

International Nuclear Information System (INIS)

Merkle, W.

1983-01-01

The method of iteratively reweighted least squares for the regression analysis of Poisson distributed chromosome aberration data is reviewed in the context of other fit procedures used in the cytogenetic literature. As an application of the resulting regression curves methods for calculating confidence intervals on dose from aberration yield are described and compared, and, for the linear quadratic model a confidence interval is given. Emphasis is placed on the rational interpretation and the limitations of various methods from a statistical point of view. (orig./MG)

2. Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model.

Science.gov (United States)

Austin, Peter C

2018-01-01

The use of the Cox proportional hazards regression model is widespread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.

3. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

Science.gov (United States)

Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

2017-11-01

Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

4. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages

Science.gov (United States)

Kim, Yoonsang; Emery, Sherry

2013-01-01

Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415

5. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

Science.gov (United States)

Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

2013-08-01

Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

6. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

Science.gov (United States)

Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

2016-04-01

The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

7. FREQFIT: Computer program which performs numerical regression and statistical chi-squared goodness of fit analysis

International Nuclear Information System (INIS)

Hofland, G.S.; Barton, C.C.

1990-01-01

The computer program FREQFIT is designed to perform regression and statistical chi-squared goodness of fit analysis on one-dimensional or two-dimensional data. The program features an interactive user dialogue, numerous help messages, an option for screen or line printer output, and the flexibility to use practically any commercially available graphics package to create plots of the program's results. FREQFIT is written in Microsoft QuickBASIC, for IBM-PC compatible computers. A listing of the QuickBASIC source code for the FREQFIT program, a user manual, and sample input data, output, and plots are included. 6 refs., 1 fig

8. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

Science.gov (United States)

Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

2015-02-01

We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

9. The Initial Regression Statistical Characteristics of Intervals Between Zeros of Random Processes

Directory of Open Access Journals (Sweden)

V. K. Hohlov

2014-01-01

Full Text Available The article substantiates the initial regression statistical characteristics of intervals between zeros of realizing random processes, studies their properties allowing the use these features in the autonomous information systems (AIS of near location (NL. Coefficients of the initial regression (CIR to minimize the residual sum of squares of multiple initial regression views are justified on the basis of vector representations associated with a random vector notion of analyzed signal parameters. It is shown that even with no covariance-based private CIR it is possible to predict one random variable through another with respect to the deterministic components. The paper studies dependences of CIR interval sizes between zeros of the narrowband stationary in wide-sense random process with its energy spectrum. Particular CIR for random processes with Gaussian and rectangular energy spectra are obtained. It is shown that the considered CIRs do not depend on the average frequency of spectra, are determined by the relative bandwidth of the energy spectra, and weakly depend on the type of spectrum. CIR properties enable its use as an informative parameter when implementing temporary regression methods of signal processing, invariant to the average rate and variance of the input implementations. We consider estimates of the average energy spectrum frequency of the random stationary process by calculating the length of the time interval corresponding to the specified number of intervals between zeros. It is shown that the relative variance in estimation of the average energy spectrum frequency of stationary random process with increasing relative bandwidth ceases to depend on the last process implementation in processing above ten intervals between zeros. The obtained results can be used in the AIS NL to solve the tasks of detection and signal recognition, when a decision is made in conditions of unknown mathematical expectations on a limited observation

10. SPLINE LINEAR REGRESSION USED FOR EVALUATING FINANCIAL ASSETS 1

Directory of Open Access Journals (Sweden)

Liviu GEAMBAŞU

2010-12-01

Full Text Available One of the most important preoccupations of financial markets participants was and still is the problem of determining more precise the trend of financial assets prices. For solving this problem there were written many scientific papers and were developed many mathematical and statistical models in order to better determine the financial assets price trend. If until recently the simple linear models were largely used due to their facile utilization, the financial crises that affected the world economy starting with 2008 highlight the necessity of adapting the mathematical models to variation of economy. A simple to use model but adapted to economic life realities is the spline linear regression. This type of regression keeps the continuity of regression function, but split the studied data in intervals with homogenous characteristics. The characteristics of each interval are highlighted and also the evolution of market over all the intervals, resulting reduced standard errors. The first objective of the article is the theoretical presentation of the spline linear regression, also referring to scientific national and international papers related to this subject. The second objective is applying the theoretical model to data from the Bucharest Stock Exchange

11. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

Science.gov (United States)

Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

2015-05-01

Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.

12. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

Science.gov (United States)

Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

2010-10-01

This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

13. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

Science.gov (United States)

Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

2008-04-01

Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

14. Distributed Monitoring of the R(sup 2) Statistic for Linear Regression

Science.gov (United States)

Bhaduri, Kanishka; Das, Kamalika; Giannella, Chris R.

2011-01-01

The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and one or more dependent target variables. This problem becomes challenging for large scale data in a distributed computing environment when only a subset of instances is available at individual nodes and the local data changes frequently. Data centralization and periodic model recomputation can add high overhead to tasks like anomaly detection in such dynamic settings. Therefore, the goal is to develop techniques for monitoring and updating the model over the union of all nodes data in a communication-efficient fashion. Correctness guarantees on such techniques are also often highly desirable, especially in safety-critical application scenarios. In this paper we develop DReMo a distributed algorithm with very low resource overhead, for monitoring the quality of a regression model in terms of its coefficient of determination (R2 statistic). When the nodes collectively determine that R2 has dropped below a fixed threshold, the linear regression model is recomputed via a network-wide convergecast and the updated model is broadcast back to all nodes. We show empirically, using both synthetic and real data, that our proposed method is highly communication-efficient and scalable, and also provide theoretical guarantees on correctness.

15. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

International Nuclear Information System (INIS)

Harlim, John; Mahdi, Adam; Majda, Andrew J.

2014-01-01

A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model

16. Constrained statistical inference: sample-size tables for ANOVA and regression

Directory of Open Access Journals (Sweden)

Leonard eVanbrabant

2015-01-01

Full Text Available Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient beta1 is larger than beta2 and beta3. The corresponding hypothesis is H: beta1 > {beta2, beta3} and this is known as an (order constrained hypothesis. A major advantage of testing such a hypothesis is that power can be gained and inherently a smaller sample size is needed. This article discusses this gain in sample size reduction, when an increasing number of constraints is included into the hypothesis. The main goal is to present sample-size tables for constrained hypotheses. A sample-size table contains the necessary sample-size at a prespecified power (say, 0.80 for an increasing number of constraints. To obtain sample-size tables, two Monte Carlo simulations were performed, one for ANOVA and one for multiple regression. Three results are salient. First, in an ANOVA the needed sample-size decreases with 30% to 50% when complete ordering of the parameters is taken into account. Second, small deviations from the imposed order have only a minor impact on the power. Third, at the maximum number of constraints, the linear regression results are comparable with the ANOVA results. However, in the case of fewer constraints, ordering the parameters (e.g., beta1 > beta2 results in a higher power than assigning a positive or a negative sign to the parameters (e.g., beta1 > 0.

17. Introduction to statistical modelling 2: categorical variables and interactions in linear regression.

Science.gov (United States)

Lunt, Mark

2015-07-01

18. Statistical Downscaling Output GCM Modeling with Continuum Regression and Pre-Processing PCA Approach

Directory of Open Access Journals (Sweden)

Sutikno Sutikno

2010-08-01

Full Text Available One of the climate models used to predict the climatic conditions is Global Circulation Models (GCM. GCM is a computer-based model that consists of different equations. It uses numerical and deterministic equation which follows the physics rules. GCM is a main tool to predict climate and weather, also it uses as primary information source to review the climate change effect. Statistical Downscaling (SD technique is used to bridge the large-scale GCM with a small scale (the study area. GCM data is spatial and temporal data most likely to occur where the spatial correlation between different data on the grid in a single domain. Multicollinearity problems require the need for pre-processing of variable data X. Continuum Regression (CR and pre-processing with Principal Component Analysis (PCA methods is an alternative to SD modelling. CR is one method which was developed by Stone and Brooks (1990. This method is a generalization from Ordinary Least Square (OLS, Principal Component Regression (PCR and Partial Least Square method (PLS methods, used to overcome multicollinearity problems. Data processing for the station in Ambon, Pontianak, Losarang, Indramayu and Yuntinyuat show that the RMSEP values and R2 predict in the domain 8x8 and 12x12 by uses CR method produces results better than by PCR and PLS.

19. Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression

Directory of Open Access Journals (Sweden)

Land Walker H

2011-01-01

Full Text Available Abstract Background When investigating covariate interactions and group associations with standard regression analyses, the relationship between the response variable and exposure may be difficult to characterize. When the relationship is nonlinear, linear modeling techniques do not capture the nonlinear information content. Statistical learning (SL techniques with kernels are capable of addressing nonlinear problems without making parametric assumptions. However, these techniques do not produce findings relevant for epidemiologic interpretations. A simulated case-control study was used to contrast the information embedding characteristics and separation boundaries produced by a specific SL technique with logistic regression (LR modeling representing a parametric approach. The SL technique was comprised of a kernel mapping in combination with a perceptron neural network. Because the LR model has an important epidemiologic interpretation, the SL method was modified to produce the analogous interpretation and generate odds ratios for comparison. Results The SL approach is capable of generating odds ratios for main effects and risk factor interactions that better capture nonlinear relationships between exposure variables and outcome in comparison with LR. Conclusions The integration of SL methods in epidemiology may improve both the understanding and interpretation of complex exposure/disease relationships.

20. Genetic evaluation of European quails by random regression models

Directory of Open Access Journals (Sweden)

Flaviana Miranda Gonçalves

2012-09-01

Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

1. Development of statistical linear regression model for metals from transportation land uses.

Science.gov (United States)

Maniquiz, Marla C; Lee, Soyoung; Lee, Eunju; Kim, Lee-Hyung

2009-01-01

The transportation landuses possessing impervious surfaces such as highways, parking lots, roads, and bridges were recognized as the highly polluted non-point sources (NPSs) in the urban areas. Lots of pollutants from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off during a storm. In Korea, the identification and monitoring of NPSs still represent a great challenge. Since 2004, the Ministry of Environment (MOE) has been engaged in several researches and monitoring to develop stormwater management policies and treatment systems for future implementation. The data over 131 storm events during May 2004 to September 2008 at eleven sites were analyzed to identify correlation relationships between particulates and metals, and to develop simple linear regression (SLR) model to estimate event mean concentration (EMC). Results indicate that there was no significant relationship between metals and TSS EMC. However, the SLR estimation models although not providing useful results are valuable indicators of high uncertainties that NPS pollution possess. Therefore, long term monitoring employing proper methods and precise statistical analysis of the data should be undertaken to eliminate these uncertainties.

2. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

Directory of Open Access Journals (Sweden)

Tao Gao

2014-01-01

Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

3. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

Science.gov (United States)

Southard, Rodney E.

2013-01-01

The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical

4. Adaptive RAC codes employing statistical channel evaluation ...

African Journals Online (AJOL)

An adaptive encoding technique using row and column array (RAC) codes employing a different number of parity columns that depends on the channel state is proposed in this paper. The trellises of the proposed adaptive codes and a statistical channel evaluation technique employing these trellises are designed and ...

5. A statistical evaluation of asbestos air concentrations

Energy Technology Data Exchange (ETDEWEB)

Lange, J.H. [Envirosafe Training and Consultants, Pittsburgh, PA (United States)

1999-07-01

Both area and personal air samples collected during an asbestos abatement project were matched and statistically analysed. Among the many parameters studied were fibre concentrations and their variability. Mean values for area and personal samples were 0.005 and 0.024 f cm{sup -}-{sup 3} of air, respectively. Summary values for area and personal samples suggest that exposures are low with no single exposure value exceeding the current OSHA TWA value of 0.1 f cm{sup -3} of air. Within- and between-worker analysis suggests that these data are homogeneous. Comparison of within- and between-worker values suggests that the exposure source and variability for abatement are more related to the process than individual practices. This supports the importance of control measures for abatement. Study results also suggest that area and personal samples are not statistically related, that is, there is no association observed for these two sampling methods when data are analysed by correlation or regression analysis. Personal samples were statistically higher in concentration than area samples. Area sampling cannot be used as a surrogate exposure for asbestos abatement workers. (author)

6. A statistical evaluation of asbestos air concentrations

International Nuclear Information System (INIS)

Lange, J.H.

1999-01-01

Both area and personal air samples collected during an asbestos abatement project were matched and statistically analysed. Among the many parameters studied were fibre concentrations and their variability. Mean values for area and personal samples were 0.005 and 0.024 f cm - - 3 of air, respectively. Summary values for area and personal samples suggest that exposures are low with no single exposure value exceeding the current OSHA TWA value of 0.1 f cm -3 of air. Within- and between-worker analysis suggests that these data are homogeneous. Comparison of within- and between-worker values suggests that the exposure source and variability for abatement are more related to the process than individual practices. This supports the importance of control measures for abatement. Study results also suggest that area and personal samples are not statistically related, that is, there is no association observed for these two sampling methods when data are analysed by correlation or regression analysis. Personal samples were statistically higher in concentration than area samples. Area sampling cannot be used as a surrogate exposure for asbestos abatement workers. (author)

7. PI-3 correlations and statistical evaluation results

International Nuclear Information System (INIS)

Pernica, R.; Cizek, J.

1992-01-01

Empirical Critical Heat Flux (CHF) correlations PI-3 having the widest range of validity for flow conditions in both hexagonal and square rod bundle geometries and compared with published CHF correlations are presented. They are valid for vertical water upflow through rod bundles with relatively wide and very tight rod lattices, and include axial and radial non-uniform heating. The correlations were developed with the use of more than 6000 data obtained from 119 electrically heated rod bundles. Comprehensive results of statistical evaluations of the new correlations are presented for various data bases. Also presented is a comparison of statistical evaluations of several well-known CHF correlations in the experimental data base used. A procedure which makes it possible to directly determine the probability that CHF does not occur is described for the purpose of nuclear safety assessment. (author) 8 tabs., 32 figs., 11 refs

8. Developments in statistical evaluation of clinical trials

CERN Document Server

Oud, Johan; Ghidey, Wendimagegn

2014-01-01

This book describes various ways of approaching and interpreting the data produced by clinical trial studies, with a special emphasis on the essential role that biostatistics plays in clinical trials. Over the past few decades the role of statistics in the evaluation and interpretation of clinical data has become of paramount importance. As a result the standards of clinical study design, conduct and interpretation have undergone substantial improvement. The book includes 18 carefully reviewed chapters on recent developments in clinical trials and their statistical evaluation, with each chapter providing one or more examples involving typical data sets, enabling readers to apply the proposed procedures. The chapters employ a uniform style to enhance comparability between the approaches.

9. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

Science.gov (United States)

As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

10. Statistical evaluation of vibration analysis techniques

Science.gov (United States)

Milner, G. Martin; Miller, Patrice S.

1987-01-01

An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

11. A STATISTICAL ANALYSIS OF GDP AND FINAL CONSUMPTION USING SIMPLE LINEAR REGRESSION. THE CASE OF ROMANIA 1990–2010

OpenAIRE

Aniela Balacescu; Marian Zaharia

2011-01-01

This paper aims to examine the causal relationship between GDP and final consumption. The authors used linear regression model in which GDP is considered variable results, and final consumption variable factor. In drafting article we used Excel software application that is a modern computing and statistical data analysis.

12. Regression Analyses on the Butterfly Ballot Effect: A Statistical Perspective of the US 2000 Election

Science.gov (United States)

Wu, Dane W.

2002-01-01

The year 2000 US presidential election between Al Gore and George Bush has been the most intriguing and controversial one in American history. The state of Florida was the trigger for the controversy, mainly, due to the use of the misleading "butterfly ballot". Using prediction (or confidence) intervals for least squares regression lines…

13. Quantifying the statistical importance of utilizing regression over classic energy intensity calculations for tracking efficiency improvements in industry

Energy Technology Data Exchange (ETDEWEB)

Nimbalkar, Sachin U. [ORNL; Wenning, Thomas J. [ORNL; Guo, Wei [ORNL

2017-08-01

In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero, which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.

14. Landslide susceptibility mapping using logistic statistical regression in Babaheydar Watershed, Chaharmahal Va Bakhtiari Province, Iran

Directory of Open Access Journals (Sweden)

Ebrahim Karimi Sangchini

2015-01-01

Full Text Available Landslides are amongst the most damaging natural hazards in mountainous regions. Every year, hundreds of people all over the world lose their lives in landslides; furthermore, there are large impacts on the local and global economy from these events. In this study, landslide hazard zonation in Babaheydar watershed using logistic regression was conducted to determine landslide hazard areas. At first, the landslide inventory map was prepared using aerial photograph interpretations and field surveys. The next step, ten landslide conditioning factors such as altitude, slope percentage, slope aspect, lithology, distance from faults, rivers, settlement and roads, land use, and precipitation were chosen as effective factors on landsliding in the study area. Subsequently, landslide susceptibility map was constructed using the logistic regression model in Geographic Information System (GIS. The ROC and Pseudo-R2 indexes were used for model assessment. Results showed that the logistic regression model provided slightly high prediction accuracy of landslide susceptibility maps in the Babaheydar Watershed with ROC equal to 0.876. Furthermore, the results revealed that about 44% of the watershed areas were located in high and very high hazard classes. The resultant landslide susceptibility maps can be useful in appropriate watershed management practices and for sustainable development in the region.

15. Synthesis of linear regression coefficients by recovering the within-study covariance matrix from summary statistics.

Science.gov (United States)

Yoneoka, Daisuke; Henmi, Masayuki

2017-06-01

Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

16. Application of random regression models to the genetic evaluation ...

African Journals Online (AJOL)

The model included fixed regression on AM (range from 30 to 138 mo) and the effect of herd-measurement date concatenation. Random parts of the model were RRM coefficients for additive and permanent environmental effects, while residual effects were modelled to account for heterogeneity of variance by AY. Estimates ...

17. Transpiration of glasshouse rose crops: evaluation of regression models

NARCIS (Netherlands)

Baas, R.; Rijssel, van E.

2006-01-01

Regression models of transpiration (T) based on global radiation inside the greenhouse (G), with or without energy input from heating pipes (Eh) and/or vapor pressure deficit (VPD) were parameterized. Therefore, data on T, G, temperatures from air, canopy and heating pipes, and VPD from both a

18. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation.

Science.gov (United States)

Hayes, Andrew F; Rockwood, Nicholas J

2017-11-01

There have been numerous treatments in the clinical research literature about various design, analysis, and interpretation considerations when testing hypotheses about mechanisms and contingencies of effects, popularly known as mediation and moderation analysis. In this paper we address the practice of mediation and moderation analysis using linear regression in the pages of Behaviour Research and Therapy and offer some observations and recommendations, debunk some popular myths, describe some new advances, and provide an example of mediation, moderation, and their integration as conditional process analysis using the PROCESS macro for SPSS and SAS. Our goal is to nudge clinical researchers away from historically significant but increasingly old school approaches toward modifications, revisions, and extensions that characterize more modern thinking about the analysis of the mechanisms and contingencies of effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

19. Statistical learning method in regression analysis of simulated positron spectral data

International Nuclear Information System (INIS)

Avdic, S. Dz.

2005-01-01

Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)

20. Remote sensing of atmospheric water content from Bhaskara SAMIR data. [using statistical linear regression analysis

Science.gov (United States)

Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.

1982-01-01

The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.

1. Single-electron multiplication statistics as a combination of Poissonian pulse height distributions using constraint regression methods

International Nuclear Information System (INIS)

Ballini, J.-P.; Cazes, P.; Turpin, P.-Y.

1976-01-01

Analysing the histogram of anode pulse amplitudes allows a discussion of the hypothesis that has been proposed to account for the statistical processes of secondary multiplication in a photomultiplier. In an earlier work, good agreement was obtained between experimental and reconstructed spectra, assuming a first dynode distribution including two Poisson distributions of distinct mean values. This first approximation led to a search for a method which could give the weights of several Poisson distributions of distinct mean values. Three methods have been briefly exposed: classical linear regression, constraint regression (d'Esopo's method), and regression on variables subject to error. The use of these methods gives an approach of the frequency function which represents the dispersion of the punctual mean gain around the whole first dynode mean gain value. Comparison between this function and the one employed in Polya distribution allows the statement that the latter is inadequate to describe the statistical process of secondary multiplication. Numerous spectra obtained with two kinds of photomultiplier working under different physical conditions have been analysed. Then two points are discussed: - Does the frequency function represent the dynode structure and the interdynode collection process. - Is the model (the multiplication process of all dynodes but the first one, is Poissonian) valid whatever the photomultiplier and the utilization conditions. (Auth.)

2. How to show that unicorn milk is a chronobiotic: the regression-to-the-mean statistical artifact.

Science.gov (United States)

Atkinson, G; Waterhouse, J; Reilly, T; Edwards, B

2001-11-01

Few chronobiologists may be aware of the regression-to-the-mean (RTM) statistical artifact, even though it may have far-reaching influences on chronobiological data. With the aid of simulated measurements of the circadian rhythm phase of body temperature and a completely bogus stimulus (unicorn milk), we explain what RTM is and provide examples relevant to chronobiology. We show how RTM may lead to erroneous conclusions regarding individual differences in phase responses to rhythm disturbances and how it may appear as though unicorn milk has phase-shifting effects and can successfully treat some circadian rhythm disorders. Guidelines are provided to ensure RTM effects are minimized in chronobiological investigations.

3. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

Science.gov (United States)

McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

2017-12-01

Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

4. Nonlinear regression analysis for evaluating tracer binding parameters using the programmable K1003 desk computer

International Nuclear Information System (INIS)

Sarrach, D.; Strohner, P.

1986-01-01

The Gauss-Newton algorithm has been used to evaluate tracer binding parameters of RIA by nonlinear regression analysis. The calculations were carried out on the K1003 desk computer. Equations for simple binding models and its derivatives are presented. The advantages of nonlinear regression analysis over linear regression are demonstrated

5. Measuring the statistical validity of summary meta‐analysis and meta‐regression results for use in clinical practice

Science.gov (United States)

Riley, Richard D.

2017-01-01

An important question for clinicians appraising a meta‐analysis is: are the findings likely to be valid in their own practice—does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity—where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple (‘leave‐one‐out’) cross‐validation technique, we demonstrate how we may test meta‐analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta‐analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta‐analysis and a tailored meta‐regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within‐study variance, between‐study variance, study sample size, and the number of studies in the meta‐analysis. Finally, we apply Vn to two published meta‐analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta‐analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28620945

6. An attempt to evaluate some regression models used for radiometric ash determination in the brown coal

International Nuclear Information System (INIS)

Karamuz, S.; Urbanski, P.; Antoniak, W.; Wagner, D.

1984-01-01

Five different regression models for determination of the ash as well as iron and calcium contents in brown coal using fluorescence and scattering of X-rays have been evaluated. Calculations were done using experimental results obtained from the natural brown coal samples to which appropriate quantities of iron, calcium and silicon oxides were added. The secondary radiation was excited by Pu-238 source and detected by X-ray argone filled proportional counter. The investigation has shown the superiority of the multiparametric models over the radiometric ash determination in the pit-coal applying aluminium filter for the correction of the influence of iron content on the intensity of scattered radiation. Standard error of estimation for the best algorithm is about three time smaler than that for algorithm simulating application of the aluminium filter. Statistical parameters of the considered algorithm were reviewed and discussed. (author)

7. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

Science.gov (United States)

Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

2011-04-01

The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF

8. Ontology matching evaluation : A statistical perspective

NARCIS (Netherlands)

Mohammadi, M.; Hofman, W.J.; Tan, Y.H.

2016-01-01

This paper proposes statistical approaches to test if the difference between two ontology matchers is real. Specifically, the performances of the matchers over multiple data sets are obtained and based on their performances, the conclusion can be drawn whether one method is better than one another

9. Ontology matching evaluation : A statistical perspective

NARCIS (Netherlands)

Mohammadi, M.; Hofman, Wout; Tan, Y.

2016-01-01

This paper proposes statistical approaches to test if the difference between two ontology matchers is real. Specifically, the performances of the matchers over multiple data sets are obtained and based on their performances, the conclusion can be drawn whether one method is better than one

10. Evaluation of observables in statistical multifragmentation theories

International Nuclear Information System (INIS)

Cole, A.J.

1989-01-01

The canonical formulation of equilibrium statistical multifragmentation is examined. It is shown that the explicit construction of observables (average values) by sampling the partition probabilities is unnecessary insofar as closed expressions in the form of recursion relations can be obtained quite easily. Such expressions may conversely be used to verify the sampling algorithms

11. Automatic Craniomaxillofacial Landmark Digitization via Segmentation-guided Partially-joint Regression Forest Model and Multi-scale Statistical Features

Science.gov (United States)

Zhang, Jun; Gao, Yaozong; Wang, Li; Tang, Zhen; Xia, James J.; Shen, Dinggang

2016-01-01

Objective The goal of this paper is to automatically digitize craniomaxillofacial (CMF) landmarks efficiently and accurately from cone-beam computed tomography (CBCT) images, by addressing the challenge caused by large morphological variations across patients and image artifacts of CBCT images. Methods We propose a Segmentation-guided Partially-joint Regression Forest (S-PRF) model to automatically digitize CMF landmarks. In this model, a regression voting strategy is first adopted to localize each landmark by aggregating evidences from context locations, thus potentially relieving the problem caused by image artifacts near the landmark. Second, CBCT image segmentation is utilized to remove uninformative voxels caused by morphological variations across patients. Third, a partially-joint model is further proposed to separately localize landmarks based on the coherence of landmark positions to improve the digitization reliability. In addition, we propose a fast vector quantization (VQ) method to extract high-level multi-scale statistical features to describe a voxel's appearance, which has low dimensionality, high efficiency, and is also invariant to the local inhomogeneity caused by artifacts. Results Mean digitization errors for 15 landmarks, in comparison to the ground truth, are all less than 2mm. Conclusion Our model has addressed challenges of both inter-patient morphological variations and imaging artifacts. Experiments on a CBCT dataset show that our approach achieves clinically acceptable accuracy for landmark digitalization. Significance Our automatic landmark digitization method can be used clinically to reduce the labor cost and also improve digitalization consistency. PMID:26625402

12. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

Science.gov (United States)

Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

2015-03-01

During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

13. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis.

Science.gov (United States)

Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L

2017-02-06

Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.

14. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation.

Science.gov (United States)

Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

2018-03-05

Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.

15. STATISTICAL EVALUATION OF THE IMPACT OF ECONOMIC FACTORS ON SOCIO-DEMOGRAPHICS OF THE COUNTRY

Directory of Open Access Journals (Sweden)

O. Evseenko

2014-04-01

Full Text Available In theory made a case the necessity of modeling economic and demographic indicators. The influences of economic, social and environmental indicators on social and demographic factors of development country are researeched. Given statistical evaluation of relationships based on correlation and regression analysis method.

16. Statistics? You Must Be Joking: The Application and Evaluation of Humor when Teaching Statistics

Science.gov (United States)

Neumann, David L.; Hood, Michelle; Neumann, Michelle M.

2009-01-01

Humor has been promoted as a teaching tool that enhances student engagement and learning. The present report traces the pathway from research to practice by reflecting upon various ways to incorporate humor into the face-to-face teaching of statistics. The use of humor in an introductory university statistics course was evaluated via interviews…

17. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic.

Science.gov (United States)

Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R

2016-12-01

: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We

18. A statistical regression model for the estimation of acrylamide concentrations in French fries for excess lifetime cancer risk assessment.

Science.gov (United States)

Chen, Ming-Jen; Hsu, Hui-Tsung; Lin, Cheng-Li; Ju, Wei-Yuan

2012-10-01

Human exposure to acrylamide (AA) through consumption of French fries and other foods has been recognized as a potential health concern. Here, we used a statistical non-linear regression model, based on the two most influential factors, cooking temperature and time, to estimate AA concentrations in French fries. The R(2) of the predictive model is 0.83, suggesting the developed model was significant and valid. Based on French fry intake survey data conducted in this study and eight frying temperature-time schemes which can produce tasty and visually appealing French fries, the Monte Carlo simulation results showed that if AA concentration is higher than 168 ppb, the estimated cancer risk for adolescents aged 13-18 years in Taichung City would be already higher than the target excess lifetime cancer risk (ELCR), and that by taking into account this limited life span only. In order to reduce the cancer risk associated with AA intake, the AA levels in French fries might have to be reduced even further if the epidemiological observations are valid. Our mathematical model can serve as basis for further investigations on ELCR including different life stages and behavior and population groups. Copyright © 2012 Elsevier Ltd. All rights reserved.

19. Thorough statistical comparison of machine learning regression models and their ensembles for sub-pixel imperviousness and imperviousness change mapping

Directory of Open Access Journals (Sweden)

Drzewiecki Wojciech

2017-12-01

Full Text Available We evaluated the performance of nine machine learning regression algorithms and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat imagery. The accuracy of imperviousness mapping in individual time points was assessed based on RMSE, MAE and R2. These measures were also used for the assessment of imperviousness change intensity estimations. The applicability for detection of relevant changes in impervious areas coverages at sub-pixel level was evaluated using overall accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist algorithm may be advised for Landsat-based mapping of imperviousness for single dates. Stochastic gradient boosting of regression trees (GBM may be also considered for this purpose. However, Random Forest algorithm is endorsed for both imperviousness change detection and mapping of its intensity. In all applications the heterogeneous model ensembles performed at least as well as the best individual models or better. They may be recommended for improving the quality of sub-pixel imperviousness and imperviousness change mapping. The study revealed also limitations of the investigated methodology for detection of subtle changes of imperviousness inside the pixel. None of the tested approaches was able to reliably classify changed and non-changed pixels if the relevant change threshold was set as one or three percent. Also for fi ve percent change threshold most of algorithms did not ensure that the accuracy of change map is higher than the accuracy of random classifi er. For the threshold of relevant change set as ten percent all approaches performed satisfactory.

20. Thorough statistical comparison of machine learning regression models and their ensembles for sub-pixel imperviousness and imperviousness change mapping

Science.gov (United States)

Drzewiecki, Wojciech

2017-12-01

We evaluated the performance of nine machine learning regression algorithms and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat imagery. The accuracy of imperviousness mapping in individual time points was assessed based on RMSE, MAE and R2. These measures were also used for the assessment of imperviousness change intensity estimations. The applicability for detection of relevant changes in impervious areas coverages at sub-pixel level was evaluated using overall accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist algorithm may be advised for Landsat-based mapping of imperviousness for single dates. Stochastic gradient boosting of regression trees (GBM) may be also considered for this purpose. However, Random Forest algorithm is endorsed for both imperviousness change detection and mapping of its intensity. In all applications the heterogeneous model ensembles performed at least as well as the best individual models or better. They may be recommended for improving the quality of sub-pixel imperviousness and imperviousness change mapping. The study revealed also limitations of the investigated methodology for detection of subtle changes of imperviousness inside the pixel. None of the tested approaches was able to reliably classify changed and non-changed pixels if the relevant change threshold was set as one or three percent. Also for fi ve percent change threshold most of algorithms did not ensure that the accuracy of change map is higher than the accuracy of random classifi er. For the threshold of relevant change set as ten percent all approaches performed satisfactory.

1. Regression analysis utilizing subjective evaluation of emotional experience in PET studies on emotions.

Science.gov (United States)

Aalto, Sargo; Wallius, Esa; Näätänen, Petri; Hiltunen, Jaana; Metsähonkala, Liisa; Sipilä, Hannu; Karlsson, Hasse

2005-09-01

A methodological study on subject-specific regression analysis (SSRA) exploring the correlation between the neural response and the subjective evaluation of emotional experience in eleven healthy females is presented. The target emotions, i.e., amusement and sadness, were induced using validated film clips, regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET), and the subjective intensity of the emotional experience during the PET scanning was measured using a category ratio (CR-10) scale. Reliability analysis of the rating data indicated that the subjects rated the intensity of their emotional experience fairly consistently on the CR-10 scale (Cronbach alphas 0.70-0.97). A two-phase random-effects analysis was performed to ensure the generalizability and inter-study comparability of the SSRA results. Random-effects SSRAs using Statistical non-Parametric Mapping 99 (SnPM99) showed that rCBF correlated with the self-rated intensity of the emotional experience mainly in the brain regions that were identified in the random-effects subtraction analyses using the same imaging data. Our results give preliminary evidence of a linear association between the neural responses related to amusement and sadness and the self-evaluated intensity of the emotional experience in several regions involved in the emotional response. SSRA utilizing subjective evaluation of emotional experience turned out a feasible and promising method of analysis. It allows versatile exploration of the neurobiology of emotions and the neural correlates of actual and individual emotional experience. Thus, SSRA might be able to catch the idiosyncratic aspects of the emotional response better than traditional subtraction analysis.

2. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

Science.gov (United States)

Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

2010-11-01

Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

3. Statistical methods for evaluating the attainment of cleanup standards

Energy Technology Data Exchange (ETDEWEB)

Gilbert, R.O.; Simpson, J.C.

1992-12-01

This document is the third volume in a series of volumes sponsored by the US Environmental Protection Agency (EPA), Statistical Policy Branch, that provide statistical methods for evaluating the attainment of cleanup Standards at Superfund sites. Volume 1 (USEPA 1989a) provides sampling designs and tests for evaluating attainment of risk-based standards for soils and solid media. Volume 2 (USEPA 1992) provides designs and tests for evaluating attainment of risk-based standards for groundwater. The purpose of this third volume is to provide statistical procedures for designing sampling programs and conducting statistical tests to determine whether pollution parameters in remediated soils and solid media at Superfund sites attain site-specific reference-based standards. This.document is written for individuals who may not have extensive training or experience with statistical methods. The intended audience includes EPA regional remedial project managers, Superfund-site potentially responsible parties, state environmental protection agencies, and contractors for these groups.

4. Attitudes toward statistics in medical postgraduates: measuring, evaluating and monitoring.

Science.gov (United States)

Zhang, Yuhai; Shang, Lei; Wang, Rui; Zhao, Qinbo; Li, Chanjuan; Xu, Yongyong; Su, Haixia

2012-11-23

In medical training, statistics is considered a very difficult course to learn and teach. Current studies have found that students' attitudes toward statistics can influence their learning process. Measuring, evaluating and monitoring the changes of students' attitudes toward statistics are important. Few studies have focused on the attitudes of postgraduates, especially medical postgraduates. Our purpose was to understand current attitudes regarding statistics held by medical postgraduates and explore their effects on students' achievement. We also wanted to explore the influencing factors and the sources of these attitudes and monitor their changes after a systematic statistics course. A total of 539 medical postgraduates enrolled in a systematic statistics course completed the pre-form of the Survey of Attitudes Toward Statistics -28 scale, and 83 postgraduates were selected randomly from among them to complete the post-form scale after the course. Most medical postgraduates held positive attitudes toward statistics, but they thought statistics was a very difficult subject. The attitudes mainly came from experiences in a former statistical or mathematical class. Age, level of statistical education, research experience, specialty and mathematics basis may influence postgraduate attitudes toward statistics. There were significant positive correlations between course achievement and attitudes toward statistics. In general, student attitudes showed negative changes after completing a statistics course. The importance of student attitudes toward statistics must be recognized in medical postgraduate training. To make sure all students have a positive learning environment, statistics teachers should measure their students' attitudes and monitor their change of status during a course. Some necessary assistance should be offered for those students who develop negative attitudes.

5. Attitudes toward statistics in medical postgraduates: measuring, evaluating and monitoring

Science.gov (United States)

2012-01-01

Background In medical training, statistics is considered a very difficult course to learn and teach. Current studies have found that students’ attitudes toward statistics can influence their learning process. Measuring, evaluating and monitoring the changes of students’ attitudes toward statistics are important. Few studies have focused on the attitudes of postgraduates, especially medical postgraduates. Our purpose was to understand current attitudes regarding statistics held by medical postgraduates and explore their effects on students’ achievement. We also wanted to explore the influencing factors and the sources of these attitudes and monitor their changes after a systematic statistics course. Methods A total of 539 medical postgraduates enrolled in a systematic statistics course completed the pre-form of the Survey of Attitudes Toward Statistics −28 scale, and 83 postgraduates were selected randomly from among them to complete the post-form scale after the course. Results Most medical postgraduates held positive attitudes toward statistics, but they thought statistics was a very difficult subject. The attitudes mainly came from experiences in a former statistical or mathematical class. Age, level of statistical education, research experience, specialty and mathematics basis may influence postgraduate attitudes toward statistics. There were significant positive correlations between course achievement and attitudes toward statistics. In general, student attitudes showed negative changes after completing a statistics course. Conclusions The importance of student attitudes toward statistics must be recognized in medical postgraduate training. To make sure all students have a positive learning environment, statistics teachers should measure their students’ attitudes and monitor their change of status during a course. Some necessary assistance should be offered for those students who develop negative attitudes. PMID:23173770

6. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India

Science.gov (United States)

Jayakumar, M.; Rajavel, M.; Surendran, U.

2016-12-01

A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.

7. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

Energy Technology Data Exchange (ETDEWEB)

Deng, Yangyang; Parajuli, Prem B.

2011-08-10

Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of \$0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

8. Sensory evaluation of food: statistical methods and procedures

National Research Council Canada - National Science Library

O'Mahony, Michael

1986-01-01

The aim of this book is to provide basic knowledge of the logic and computation of statistics for the sensory evaluation of food, or for other forms of sensory measurement encountered in, say, psychophysics...

9. Regression analysis: An evaluation of the inuences behindthe pricing of beer

OpenAIRE

Eriksson, Sara; Häggmark, Jonas

2017-01-01

This bachelor thesis in applied mathematics is an analysis of which factors affect the pricing of beer at the Swedish market. A multiple linear regression model is created with the statistical programming language R through a study of the influences for several explanatory variables. For example these variables include country of origin, beer style, volume sold and a Bayesian weighted mean rating from RateBeer, a popular website for beer enthusiasts. The main goal of the project is to find si...

10. Analysis and Evaluation of Statistical Models for Integrated Circuits Design

Directory of Open Access Journals (Sweden)

Sáenz-Noval J.J.

2011-10-01

Full Text Available Statistical models for integrated circuits (IC allow us to estimate the percentage of acceptable devices in the batch before fabrication. Actually, Pelgrom is the statistical model most accepted in the industry; however it was derived from a micrometer technology, which does not guarantee reliability in nanometric manufacturing processes. This work considers three of the most relevant statistical models in the industry and evaluates their limitations and advantages in analog design, so that the designer has a better criterion to make a choice. Moreover, it shows how several statistical models can be used for each one of the stages and design purposes.

11. Statistical evaluation of diagnostic performance topics in ROC analysis

CERN Document Server

Zou, Kelly H; Bandos, Andriy I; Ohno-Machado, Lucila; Rockette, Howard E

2016-01-01

Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are relevant to a wide variety of applications, including medical imaging, cancer research, epidemiology, and bioinformatics. Statistical Evaluation of Diagnostic Performance: Topics in ROC Analysis covers areas including monotone-transformation techniques in parametric ROC analysis, ROC methods for combined and pooled biomarkers, Bayesian hierarchical transformation models, sequential designs and inferences in the ROC setting, predictive modeling, multireader ROC analysis, and free-response ROC (FROC) methodology. The book is suitable for graduate-level students and researchers in statistics, biostatistics, epidemiology, public health, biomedical engineering, radiology, medi...

12. Fuzzy comprehensive evaluation method of F statistics weighting in ...

African Journals Online (AJOL)

In order to rapidly identify the source of water inrush in coal mine, and provide the theoretical basis for mine water damage prevention and control, fuzzy comprehensive evaluation model was established. The F statistics of water samples was normalized as the weight of fuzzy comprehensive evaluation for determining the ...

13. Statistical Process Control in the Practice of Program Evaluation.

Science.gov (United States)

Posavac, Emil J.

1995-01-01

A technique developed to monitor the quality of manufactured products, statistical process control (SPC), incorporates several features that may prove attractive to evaluators. This paper reviews the history of SPC, suggests how the approach can enrich program evaluation, and illustrates its use in a hospital-based example. (SLD)

14. Applying Bayesian Statistics to Educational Evaluation. Theoretical Paper No. 62.

Science.gov (United States)

Brumet, Michael E.

Bayesian statistical inference is unfamiliar to many educational evaluators. While the classical model is useful in educational research, it is not as useful in evaluation because of the need to identify solutions to practical problems based on a wide spectrum of information. The reason Bayesian analysis is effective for decision making is that it…

15. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS

Directory of Open Access Journals (Sweden)

Soyoung Park

2017-07-01

Full Text Available This study mapped and analyzed groundwater potential using two different models, logistic regression (LR and multivariate adaptive regression splines (MARS, and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70% were used for model training, whereas the other 365 locations (30% were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.

16. Impact of some types of mass gatherings on current suicide risk in an urban population: statistical and negative binominal regression analysis of time series.

Science.gov (United States)

Usenko, Vasiliy S; Svirin, Sergey N; Shchekaturov, Yan N; Ponarin, Eduard D

2014-04-04

Many studies have investigated the impact of a wide range of social events on suicide-related behaviour. However, these studies have predominantly examined national events. The aim of this study is to provide a statistical evaluation of the relationship between mass gatherings in some relatively small urban sub-populations and the general suicide rates of a major city. The data were gathered in the Ukrainian city of Dnipropetrovsk, with a population of 1 million people, in 2005-2010. Suicide attempts, suicides, and the total amount of suicide-related behaviours were registered daily for each sex. Bivariate and multivariate statistical analysis, including negative binomial regression, were applied to assess the risk of suicide-related behaviour in the city's general population for 7 days before and after 427 mass gatherings, such as concerts, football games, and non-regular mass events organized by the Orthodox Church and new religious movements. The bivariate and multivariate statistical analyses found significant changes in some suicide-related behaviour rates in the city's population after certain kinds of mass gatherings. In particular, we observed an increased relative risk (RR) of male suicide-related behaviour after a home defeat of the local football team (RR = 1.32, p = 0.047; regression coefficient beta = 0.371, p = 0.002), and an increased risk of male suicides (RR = 1.29, p = 0.006; beta =0.255, p = 0.002), male suicide-related behaviour (RR = 1.25, p = 0.019; beta =0.251, p football games and mass events organized by new religious movements involved a relatively small part of an urban population (1.6 and 0.3%, respectively), we observed a significant increase of the some suicide-related behaviour rates in the whole population. It is likely that the observed effect on suicide-related behaviour is related to one's personal presence at the event rather than to its broadcast. Our findings can be explained largely in

17. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

Science.gov (United States)

Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

2018-02-01

A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

18. Statistical modeling for visualization evaluation through data fusion.

Science.gov (United States)

Chen, Xiaoyu; Jin, Ran

2017-11-01

There is a high demand of data visualization providing insights to users in various applications. However, a consistent, online visualization evaluation method to quantify mental workload or user preference is lacking, which leads to an inefficient visualization and user interface design process. Recently, the advancement of interactive and sensing technologies makes the electroencephalogram (EEG) signals, eye movements as well as visualization logs available in user-centered evaluation. This paper proposes a data fusion model and the application procedure for quantitative and online visualization evaluation. 15 participants joined the study based on three different visualization designs. The results provide a regularized regression model which can accurately predict the user's evaluation of task complexity, and indicate the significance of all three types of sensing data sets for visualization evaluation. This model can be widely applied to data visualization evaluation, and other user-centered designs evaluation and data analysis in human factors and ergonomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

19. Prognostic value of tumor regression evaluated after first course of radiotherapy for anal canal cancer

International Nuclear Information System (INIS)

Chapet, Olivier; Gerard, Jean-Pierre; Riche, Benjamin; Alessio, Annunziato; Mornex, Francoise; Romestaing, Pascale

2005-01-01

Purpose: To evaluate whether the tumor response after an initial course of irradiation predicts for colostomy-free survival and overall survival in patients with anal canal cancer. Methods and Materials: Between 1980 and 1998, 252 patients were treated by pelvic external-beam radiotherapy (EBRT) followed by a brachytherapy boost in 218 or EBRT in 34. EBRT was combined with chemotherapy in 168 patients. An evaluation of tumor regression, before the boost, was available for 221 patients. They were divided into four groups according to the tumor response: 80% but 80% vs. ≤80%. The group with a T3-T4 lesion and tumor regression ≤80% had the poorest overall (52.8% ± 12.3%), disease-free (19.9% ± 9.9%), and colostomy-free survival (24.8% ± 11.2%) rates. Conclusion: The amount of tumor regression before EBRT or brachytherapy boost is a strong prognostic factor of disease control without colostomy. When regression is ≤80% in patients with an initial T3-T4 lesion, the use of conservative RT should be carefully evaluated because of the very poor disease-free and colostomy-free survival

20. Statistical methods to evaluate thermoluminescence ionizing radiation dosimetry data

International Nuclear Information System (INIS)

Segre, Nadia; Matoso, Erika; Fagundes, Rosane Correa

2011-01-01

Ionizing radiation levels, evaluated through the exposure of CaF 2 :Dy thermoluminescence dosimeters (TLD- 200), have been monitored at Centro Experimental Aramar (CEA), located at Ipero in Sao Paulo state, Brazil, since 1991 resulting in a large amount of measurements until 2009 (more than 2,000). The data amount associated with measurements dispersion, since every process has deviation, reinforces the utilization of statistical tools to evaluate the results, procedure also imposed by the Brazilian Standard CNEN-NN-3.01/PR- 3.01-008 which regulates the radiometric environmental monitoring. Thermoluminescence ionizing radiation dosimetry data are statistically compared in order to evaluate potential CEA's activities environmental impact. The statistical tools discussed in this work are box plots, control charts and analysis of variance. (author)

1. Regression Discontinuity in Prospective Evaluations: The Case of the FFVP Evaluation

Science.gov (United States)

Klerman, Jacob Alex; Olsho, Lauren E. W.; Bartlett, Susan

2015-01-01

While regression discontinuity has usually been applied retrospectively to secondary data, it is even more attractive when applied prospectively. In a prospective design, data collection can be focused on cases near the discontinuity, thereby improving internal validity and substantially increasing precision. Furthermore, such prospective…

2. [Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].

Science.gov (United States)

Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L

2017-03-10

To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.

3. Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

Directory of Open Access Journals (Sweden)

C. Wu

2018-03-01

Full Text Available Linear regression techniques are widely used in atmospheric science, but they are often improperly applied due to lack of consideration or inappropriate handling of measurement uncertainty. In this work, numerical experiments are performed to evaluate the performance of five linear regression techniques, significantly extending previous works by Chu and Saylor. The five techniques are ordinary least squares (OLS, Deming regression (DR, orthogonal distance regression (ODR, weighted ODR (WODR, and York regression (YR. We first introduce a new data generation scheme that employs the Mersenne twister (MT pseudorandom number generator. The numerical simulations are also improved by (a refining the parameterization of nonlinear measurement uncertainties, (b inclusion of a linear measurement uncertainty, and (c inclusion of WODR for comparison. Results show that DR, WODR and YR produce an accurate slope, but the intercept by WODR and YR is overestimated and the degree of bias is more pronounced with a low R2 XY dataset. The importance of a properly weighting parameter λ in DR is investigated by sensitivity tests, and it is found that an improper λ in DR can lead to a bias in both the slope and intercept estimation. Because the λ calculation depends on the actual form of the measurement error, it is essential to determine the exact form of measurement error in the XY data during the measurement stage. If a priori error in one of the variables is unknown, or the measurement error described cannot be trusted, DR, WODR and YR can provide the least biases in slope and intercept among all tested regression techniques. For these reasons, DR, WODR and YR are recommended for atmospheric studies when both X and Y data have measurement errors. An Igor Pro-based program (Scatter Plot was developed to facilitate the implementation of error-in-variables regressions.

4. Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

Science.gov (United States)

Wu, Cheng; Zhen Yu, Jian

2018-03-01

Linear regression techniques are widely used in atmospheric science, but they are often improperly applied due to lack of consideration or inappropriate handling of measurement uncertainty. In this work, numerical experiments are performed to evaluate the performance of five linear regression techniques, significantly extending previous works by Chu and Saylor. The five techniques are ordinary least squares (OLS), Deming regression (DR), orthogonal distance regression (ODR), weighted ODR (WODR), and York regression (YR). We first introduce a new data generation scheme that employs the Mersenne twister (MT) pseudorandom number generator. The numerical simulations are also improved by (a) refining the parameterization of nonlinear measurement uncertainties, (b) inclusion of a linear measurement uncertainty, and (c) inclusion of WODR for comparison. Results show that DR, WODR and YR produce an accurate slope, but the intercept by WODR and YR is overestimated and the degree of bias is more pronounced with a low R2 XY dataset. The importance of a properly weighting parameter λ in DR is investigated by sensitivity tests, and it is found that an improper λ in DR can lead to a bias in both the slope and intercept estimation. Because the λ calculation depends on the actual form of the measurement error, it is essential to determine the exact form of measurement error in the XY data during the measurement stage. If a priori error in one of the variables is unknown, or the measurement error described cannot be trusted, DR, WODR and YR can provide the least biases in slope and intercept among all tested regression techniques. For these reasons, DR, WODR and YR are recommended for atmospheric studies when both X and Y data have measurement errors. An Igor Pro-based program (Scatter Plot) was developed to facilitate the implementation of error-in-variables regressions.

5. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

Science.gov (United States)

Watson, Kara M.; McHugh, Amy R.

2014-01-01

Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is

6. Evaluation for Long Term PM10 Concentration Forecasting using Multi Linear Regression (MLR and Principal Component Regression (PCR Models

Directory of Open Access Journals (Sweden)

Samsuri Abdullah

2016-07-01

Full Text Available Air pollution in Peninsular Malaysia is dominated by particulate matter which is demonstrated by having the highest Air Pollution Index (API value compared to the other pollutants at most part of the country. Particulate Matter (PM10 forecasting models development is crucial because it allows the authority and citizens of a community to take necessary actions to limit their exposure to harmful levels of particulates pollution and implement protection measures to significantly improve air quality on designated locations. This study aims in improving the ability of MLR using PCs inputs for PM10 concentrations forecasting. Daily observations for PM10 in Kuala Terengganu, Malaysia from January 2003 till December 2011 were utilized to forecast PM10 concentration levels. MLR and PCR (using PCs input models were developed and the performance was evaluated using RMSE, NAE and IA. Results revealed that PCR performed better than MLR due to the implementation of PCA which reduce intricacy and eliminate data multi-collinearity.

7. Statistical evaluation of cleanup: How should it be done?

International Nuclear Information System (INIS)

Gilbert, R.O.

1993-02-01

This paper discusses statistical issues that must be addressed when conducting statistical tests for the purpose of evaluating if a site has been remediated to guideline values or standards. The importance of using the Data Quality Objectives (DQO) process to plan and design the sampling plan is emphasized. Other topics discussed are: (1) accounting for the uncertainty of cleanup standards when conducting statistical tests, (2) determining the number of samples and measurements needed to attain specified DQOs, (3) considering whether the appropriate testing philosophy in a given situation is ''guilty until proven innocent'' or ''innocent until proven guilty'' when selecting a statistical test for evaluating the attainment of standards, (4) conducting tests using data sets that contain measurements that have been reported by the laboratory as less than the minimum detectable activity, and (5) selecting statistical tests that are appropriate for risk-based or background-based standards. A recent draft report by Berger that provides guidance on sampling plans and data analyses for final status surveys at US Nuclear Regulatory Commission licensed facilities serves as a focal point for discussion

8. Statistical significance of epidemiological data. Seminar: Evaluation of epidemiological studies

International Nuclear Information System (INIS)

Weber, K.H.

1993-01-01

In stochastic damages, the numbers of events, e.g. the persons who are affected by or have died of cancer, and thus the relative frequencies (incidence or mortality) are binomially distributed random variables. Their statistical fluctuations can be characterized by confidence intervals. For epidemiologic questions, especially for the analysis of stochastic damages in the low dose range, the following issues are interesting: - Is a sample (a group of persons) with a definite observed damage frequency part of the whole population? - Is an observed frequency difference between two groups of persons random or statistically significant? - Is an observed increase or decrease of the frequencies with increasing dose random or statistically significant and how large is the regression coefficient (= risk coefficient) in this case? These problems can be solved by sttistical tests. So-called distribution-free tests and tests which are not bound to the supposition of normal distribution are of particular interest, such as: - χ 2 -independence test (test in contingency tables); - Fisher-Yates-test; - trend test according to Cochran; - rank correlation test given by Spearman. These tests are explained in terms of selected epidemiologic data, e.g. of leukaemia clusters, of the cancer mortality of the Japanese A-bomb survivors especially in the low dose range as well as on the sample of the cancer mortality in the high background area in Yangjiang (China). (orig.) [de

9. Evaluation of the Wishart test statistics for polarimetric SAR data

DEFF Research Database (Denmark)

Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

2003-01-01

A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

10. Statistics

CERN Document Server

Hayslett, H T

1991-01-01

Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the

11. METHODOLOGICAL PRINCIPLES AND METHODS OF TERMS OF TRADE STATISTICAL EVALUATION

Directory of Open Access Journals (Sweden)

N. Kovtun

2014-09-01

Full Text Available The paper studies the methodological principles and guidance of the statistical evaluation of terms of trade for the United Nations classification model – Harmonized Commodity Description and Coding System (HS. The practical implementation of the proposed three-stage model of index analysis and estimation of terms of trade for Ukraine's commodity-members for the period of 2011-2012 are realized.

12. An evaluation of an operating BWR piping system damping during earthquake by applying auto regressive analysis

International Nuclear Information System (INIS)

Kitada, Y.; Makiguchi, M.; Komori, A.; Ichiki, T.

1985-01-01

The records of three earthquakes which had induced significant earthquake response to the piping system were obtained with the earthquake observation system. In the present paper, first, the eigenvalue analysis results for the natural piping system based on the piping support (boundary) conditions are described and second, the frequency and the damping factor evaluation results for each vibrational mode are described. In the present study, the Auto Regressive (AR) analysis method is used in the evaluation of natural frequencies and damping factors. The AR analysis applied here has a capability of direct evaluation of natural frequencies and damping factors from earthquake records observed on a piping system without any information on the input motions to the system. (orig./HP)

13. Statistical evaluation of design-error related nuclear reactor accidents

International Nuclear Information System (INIS)

Ott, K.O.; Marchaterre, J.F.

1981-01-01

In this paper, general methodology for the statistical evaluation of design-error related accidents is proposed that can be applied to a variety of systems that evolves during the development of large-scale technologies. The evaluation aims at an estimate of the combined ''residual'' frequency of yet unknown types of accidents ''lurking'' in a certain technological system. A special categorization in incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of U.S. nuclear power reactor technology, considering serious accidents (category 2 events) that involved, in the accident progression, a particular design inadequacy. 9 refs

14. Evaluating disease management programme effectiveness: an introduction to the regression discontinuity design.

Science.gov (United States)

Linden, Ariel; Adams, John L; Roberts, Nancy

2006-04-01

Although disease management (DM) has been in existence for over a decade, there is still much uncertainty as to its effectiveness in improving health status and reducing medical cost. The main reason is that most programme evaluations typically follow weak observational study designs that are subject to bias, most notably selection bias and regression to the mean. The regression discontinuity (RD) design may be the best alternative to randomized studies for evaluating DM programme effectiveness. The most crucial element of the RD design is its use of a 'cut-off' score on a pre-test measure to determine assignment to intervention or control. A valuable feature of this technique is that the pre-test measure does not have to be the same as the outcome measure, thus maximizing the programme's ability to use research-based practice guidelines, survey instruments and other tools to identify those individuals in greatest need of the programme intervention. Similarly, the cut-off score can be based on clinical understanding of the disease process, empirically derived, or resource-based. In the RD design, programme effectiveness is determined by a change in the pre-post relationship at the cut-off point. While the RD design is uniquely suitable for DM programme evaluation, its success will depend, in large part, on fundamental changes being made in the way DM programmes identify and assign individuals to the programme intervention.

15. Evaluating the Performance of Polynomial Regression Method with Different Parameters during Color Characterization

Directory of Open Access Journals (Sweden)

Bangyong Sun

2014-01-01

Full Text Available The polynomial regression method is employed to calculate the relationship of device color space and CIE color space for color characterization, and the performance of different expressions with specific parameters is evaluated. Firstly, the polynomial equation for color conversion is established and the computation of polynomial coefficients is analysed. And then different forms of polynomial equations are used to calculate the RGB and CMYK’s CIE color values, while the corresponding color errors are compared. At last, an optimal polynomial expression is obtained by analysing several related parameters during color conversion, including polynomial numbers, the degree of polynomial terms, the selection of CIE visual spaces, and the linearization.

16. The N-shaped environmental Kuznets curve: an empirical evaluation using a panel quantile regression approach.

Science.gov (United States)

Allard, Alexandra; Takman, Johanna; Uddin, Gazi Salah; Ahmed, Ali

2018-02-01

We evaluate the N-shaped environmental Kuznets curve (EKC) using panel quantile regression analysis. We investigate the relationship between CO 2 emissions and GDP per capita for 74 countries over the period of 1994-2012. We include additional explanatory variables, such as renewable energy consumption, technological development, trade, and institutional quality. We find evidence for the N-shaped EKC in all income groups, except for the upper-middle-income countries. Heterogeneous characteristics are, however, observed over the N-shaped EKC. Finally, we find a negative relationship between renewable energy consumption and CO 2 emissions, which highlights the importance of promoting greener energy in order to combat global warming.

17. Building information for systematic improvement of the prevention of hospital-acquired pressure ulcers with statistical process control charts and regression.

Science.gov (United States)

Padula, William V; Mishra, Manish K; Weaver, Christopher D; Yilmaz, Taygan; Splaine, Mark E

2012-06-01

To demonstrate complementary results of regression and statistical process control (SPC) chart analyses for hospital-acquired pressure ulcers (HAPUs), and identify possible links between changes and opportunities for improvement between hospital microsystems and macrosystems. Ordinary least squares and panel data regression of retrospective hospital billing data, and SPC charts of prospective patient records for a US tertiary-care facility (2004-2007). A prospective cohort of hospital inpatients at risk for HAPUs was the study population. There were 337 HAPU incidences hospital wide among 43 844 inpatients. A probit regression model predicted the correlation of age, gender and length of stay on HAPU incidence (pseudo R(2)=0.096). Panel data analysis determined that for each additional day in the hospital, there was a 0.28% increase in the likelihood of HAPU incidence. A p-chart of HAPU incidence showed a mean incidence rate of 1.17% remaining in statistical control. A t-chart showed the average time between events for the last 25 HAPUs was 13.25 days. There was one 57-day period between two incidences during the observation period. A p-chart addressing Braden scale assessments showed that 40.5% of all patients were risk stratified for HAPUs upon admission. SPC charts complement standard regression analysis. SPC amplifies patient outcomes at the microsystem level and is useful for guiding quality improvement. Macrosystems should monitor effective quality improvement initiatives in microsystems and aid the spread of successful initiatives to other microsystems, followed by system-wide analysis with regression. Although HAPU incidence in this study is below the national mean, there is still room to improve HAPU incidence in this hospital setting since 0% incidence is theoretically achievable. Further assessment of pressure ulcer incidence could illustrate improvement in the quality of care and prevent HAPUs.

18. An Evaluation of the Use of Statistical Procedures in Soil Science

Directory of Open Access Journals (Sweden)

Laene de Fátima Tavares

2016-01-01

Full Text Available ABSTRACT Experimental statistical procedures used in almost all scientific papers are fundamental for clearer interpretation of the results of experiments conducted in agrarian sciences. However, incorrect use of these procedures can lead the researcher to incorrect or incomplete conclusions. Therefore, the aim of this study was to evaluate the characteristics of the experiments and quality of the use of statistical procedures in soil science in order to promote better use of statistical procedures. For that purpose, 200 articles, published between 2010 and 2014, involving only experimentation and studies by sampling in the soil areas of fertility, chemistry, physics, biology, use and management were randomly selected. A questionnaire containing 28 questions was used to assess the characteristics of the experiments, the statistical procedures used, and the quality of selection and use of these procedures. Most of the articles evaluated presented data from studies conducted under field conditions and 27 % of all papers involved studies by sampling. Most studies did not mention testing to verify normality and homoscedasticity, and most used the Tukey test for mean comparisons. Among studies with a factorial structure of the treatments, many had ignored this structure, and data were compared assuming the absence of factorial structure, or the decomposition of interaction was performed without showing or mentioning the significance of the interaction. Almost none of the papers that had split-block factorial designs considered the factorial structure, or they considered it as a split-plot design. Among the articles that performed regression analysis, only a few of them tested non-polynomial fit models, and none reported verification of the lack of fit in the regressions. The articles evaluated thus reflected poor generalization and, in some cases, wrong generalization in experimental design and selection of procedures for statistical analysis.

19. Statistics

Science.gov (United States)

Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

20. Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.

Science.gov (United States)

Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas

2014-01-01

In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.

1. Australasian Resuscitation In Sepsis Evaluation trial statistical analysis plan.

Science.gov (United States)

Delaney, Anthony; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve

2013-10-01

The Australasian Resuscitation In Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the ED with severe sepsis. In keeping with current practice, and taking into considerations aspects of trial design and reporting specific to non-pharmacologic interventions, this document outlines the principles and methods for analysing and reporting the trial results. The document is prepared prior to completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and prior to completion of the two related international studies. The statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. The data collected by the research team as specified in the study protocol, and detailed in the study case report form were reviewed. Information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation and other related therapies, and other relevant data are described with appropriate comparisons between groups. The primary, secondary and tertiary outcomes for the study are defined, with description of the planned statistical analyses. A statistical analysis plan was developed, along with a trial profile, mock-up tables and figures. A plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies, along with adverse events are described. The primary, secondary and tertiary outcomes are described along with identification of subgroups to be analysed. A statistical analysis plan for the ARISE study has been developed, and is available in the public domain, prior to the completion of recruitment into the

2. Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast-iron brake shoes manufacturing

Science.gov (United States)

Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.

2018-01-01

Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.

3. Correct statistical evaluation for total dose in rural settlement

International Nuclear Information System (INIS)

Vlasova, N.G.; Skryabin, A.M.

2001-01-01

Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose

4. Statistical performance evaluation of ECG transmission using wireless networks.

Science.gov (United States)

Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

2013-07-01

This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.

5. Statistics

International Nuclear Information System (INIS)

2005-01-01

For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees

6. Statistics

International Nuclear Information System (INIS)

2001-01-01

For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

7. Statistics

International Nuclear Information System (INIS)

2000-01-01

For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

8. Statistics

International Nuclear Information System (INIS)

1999-01-01

For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

9. Direct integral linear least square regression method for kinetic evaluation of hepatobiliary scintigraphy

International Nuclear Information System (INIS)

Shuke, Noriyuki

1991-01-01

In hepatobiliary scintigraphy, kinetic model analysis, which provides kinetic parameters like hepatic extraction or excretion rate, have been done for quantitative evaluation of liver function. In this analysis, unknown model parameters are usually determined using nonlinear least square regression method (NLS method) where iterative calculation and initial estimate for unknown parameters are required. As a simple alternative to NLS method, direct integral linear least square regression method (DILS method), which can determine model parameters by a simple calculation without initial estimate, is proposed, and tested the applicability to analysis of hepatobiliary scintigraphy. In order to see whether DILS method could determine model parameters as good as NLS method, or to determine appropriate weight for DILS method, simulated theoretical data based on prefixed parameters were fitted to 1 compartment model using both DILS method with various weightings and NLS method. The parameter values obtained were then compared with prefixed values which were used for data generation. The effect of various weights on the error of parameter estimate was examined, and inverse of time was found to be the best weight to make the error minimum. When using this weight, DILS method could give parameter values close to those obtained by NLS method and both parameter values were very close to prefixed values. With appropriate weighting, the DILS method could provide reliable parameter estimate which is relatively insensitive to the data noise. In conclusion, the DILS method could be used as a simple alternative to NLS method, providing reliable parameter estimate. (author)

10. Statistical estimate for evaluation of vitrified radioactive wastes

International Nuclear Information System (INIS)

Jedinakova-Krizova, V.; Dvorak, Z.

1994-01-01

The evaluation of experimental results by methods of mathematical statistics gave a chance to derive a number of conclusions on the leachability of vitrified radioactive wastes. Practical application of this procedure requires that the ratio of Na and K concentration in the solution should be independent of the leaching time- The actual value of this ratio is influenced. above all. by the properties of the glass matrix. These results confirm the ion that Na/K correlation found could be extended for the determination of the Na/ 137 Cs concentration ratio. This finding was used for the application of a ln-ln correlation, while evaluation the quality of vitrified radioactive wastes products. (author) 7 refs.; 5 figs.; 1 tab

11. Statistical evaluation of design-error related accidents

International Nuclear Information System (INIS)

Ott, K.O.; Marchaterre, J.F.

1980-01-01

In a recently published paper (Campbell and Ott, 1979), a general methodology was proposed for the statistical evaluation of design-error related accidents. The evaluation aims at an estimate of the combined residual frequency of yet unknown types of accidents lurking in a certain technological system. Here, the original methodology is extended, as to apply to a variety of systems that evolves during the development of large-scale technologies. A special categorization of incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of the nuclear power reactor technology, considering serious accidents that involve in the accident-progression a particular design inadequacy

12. Personal dosimetry statistics and specifics of low dose evaluation

International Nuclear Information System (INIS)

Avila, R.E.; Gómez Salinas, R.A.; Oyarzún Cortés, C.H.

2015-01-01

The dose statistics of a personal dosimetry service, considering 35,000+ readings, display a sharp peak at low dose (below 0.5 mSv) with skewness to higher values. A measure of the dispersion is that approximately 65% of the doses fall below the average plus 2 standard deviations, an observation which may prove helpful to radiation protection agencies. Categorizing the doses by the concomitant use of a finger ring dosimeter, that skewness is larger in the whole body, and ring dosimeters. The use of Harshaw 5500 readers at high gain leads to frequent values of the glow curve that are judged to be spurious, i.e. values not belonging to the roughly normal noise over the curve. A statistical criterion is shown for identifying those anomalous values, and replacing them with the local behavior, as fit by a cubic polynomial. As a result, the doses above 0.05 mSv which are affected by more than 2% comprise over 10% of the data base. The low dose peak of the statistics, above, has focused our attention on the evaluation of LiF(Mg,Ti) dosimeters exposed at low dose, and read with Harshaw 5500 readers. The standard linear procedure, via an overall reader calibration factor, is observed to fail at low dose, in detailed calibrations from 0.02 mSv to 1 Sv. A significant improvement is achieved by a piecewise polynomials calibration curve. A cubic, at low dose is matched, at ∼10 mSv, in value and first derivative, to a linear dependence at higher doses. This improvement is particularly noticeable below 2 mSv, where over 60% of the evaluated dosimeters are found. (author)

13. Evaluation of air quality in a megacity using statistics tools

Science.gov (United States)

Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana

2017-03-01

Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.

14. Evaluation of air quality in a megacity using statistics tools

Science.gov (United States)

Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana

2018-06-01

Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.

15. Statistical methods of evaluating and comparing imaging techniques

International Nuclear Information System (INIS)

Freedman, L.S.

1987-01-01

Over the past 20 years several new methods of generating images of internal organs and the anatomy of the body have been developed and used to enhance the accuracy of diagnosis and treatment. These include ultrasonic scanning, radioisotope scanning, computerised X-ray tomography (CT) and magnetic resonance imaging (MRI). The new techniques have made a considerable impact on radiological practice in hospital departments, not least on the investigational process for patients suspected or known to have malignant disease. As a consequence of the increased range of imaging techniques now available, there has developed a need to evaluate and compare their usefulness. Over the past 10 years formal studies of the application of imaging technology have been conducted and many reports have appeared in the literature. These studies cover a range of clinical situations. Likewise, the methodologies employed for evaluating and comparing the techniques in question have differed widely. While not attempting an exhaustive review of the clinical studies which have been reported, this paper aims to examine the statistical designs and analyses which have been used. First a brief review of the different types of study is given. Examples of each type are then chosen to illustrate statistical issues related to their design and analysis. In the final sections it is argued that a form of classification for these different types of study might be helpful in clarifying relationships between them and bringing a perspective to the field. A classification based upon a limited analogy with clinical trials is suggested

16. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable.

Science.gov (United States)

Austin, Peter C; Steyerberg, Ewout W

2012-06-20

When outcomes are binary, the c-statistic (equivalent to the area under the Receiver Operating Characteristic curve) is a standard measure of the predictive accuracy of a logistic regression model. An analytical expression was derived under the assumption that a continuous explanatory variable follows a normal distribution in those with and without the condition. We then conducted an extensive set of Monte Carlo simulations to examine whether the expressions derived under the assumption of binormality allowed for accurate prediction of the empirical c-statistic when the explanatory variable followed a normal distribution in the combined sample of those with and without the condition. We also examine the accuracy of the predicted c-statistic when the explanatory variable followed a gamma, log-normal or uniform distribution in combined sample of those with and without the condition. Under the assumption of binormality with equality of variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the product of the standard deviation of the normal components (reflecting more heterogeneity) and the log-odds ratio (reflecting larger effects). Under the assumption of binormality with unequal variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the standardized difference of the explanatory variable in those with and without the condition. In our Monte Carlo simulations, we found that these expressions allowed for reasonably accurate prediction of the empirical c-statistic when the distribution of the explanatory variable was normal, gamma, log-normal, and uniform in the entire sample of those with and without the condition. The discriminative ability of a continuous explanatory variable cannot be judged by its odds ratio alone, but always needs to be considered in relation to the heterogeneity of the population.

17. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression

DEFF Research Database (Denmark)

Bini, L. M.; Diniz-Filho, J. A. F.; Rangel, T. F. L. V. B.

2009-01-01

A major focus of geographical ecology and macroecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regression, because the relative importance of explanatory variables, as measured by regress...

18. Statistics

International Nuclear Information System (INIS)

2003-01-01

For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products

19. Statistics

International Nuclear Information System (INIS)

2004-01-01

For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees

20. Statistics

International Nuclear Information System (INIS)

2000-01-01

For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

1. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

Science.gov (United States)

Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

2017-05-01

The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

2. Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis.

Science.gov (United States)

Díaz-Alemán, Valentín T; González-Hernández, Marta; Perera-Sanz, Daniel; Armas-Domínguez, Karintia

2016-01-01

To determine the sensitivity, specificity and agreement between the Quasar program, glaucoma progression analysis (GPA II) event analysis and expert opinion in the detection of glaucomatous progression. The Quasar program is based on linear regression analysis of both mean defect (MD) and pattern standard deviation (PSD). Each series of visual fields was evaluated by three methods; Quasar, GPA II and four experts. The sensitivity, specificity and agreement (kappa) for each method was calculated, using expert opinion as the reference standard. The study included 439 SITA Standard visual fields of 56 eyes of 42 patients, with a mean of 7.8 ± 0.8 visual fields per eye. When suspected cases of progression were considered stable, sensitivity and specificity of Quasar, GPA II and the experts were 86.6% and 70.7%, 26.6% and 95.1%, and 86.6% and 92.6% respectively. When suspected cases of progression were considered as progressing, sensitivity and specificity of Quasar, GPA II and the experts were 79.1% and 81.2%, 45.8% and 90.6%, and 85.4% and 90.6% respectively. The agreement between Quasar and GPA II when suspected cases were considered stable or progressing was 0.03 and 0.28 respectively. The degree of agreement between Quasar and the experts when suspected cases were considered stable or progressing was 0.472 and 0.507. The degree of agreement between GPA II and the experts when suspected cases were considered stable or progressing was 0.262 and 0.342. The combination of MD and PSD regression analysis in the Quasar program showed better agreement with the experts and higher sensitivity than GPA II.

3. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

Directory of Open Access Journals (Sweden)

J. Behmanesh

2015-06-01

Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

4. Evaluating effects of developmental education for college students using a regression discontinuity design.

Science.gov (United States)

Moss, Brian G; Yeaton, William H

2013-10-01

Annually, American colleges and universities provide developmental education (DE) to millions of underprepared students; however, evaluation estimates of DE benefits have been mixed. Using a prototypic exemplar of DE, our primary objective was to investigate the utility of a replicative evaluative framework for assessing program effectiveness. Within the context of the regression discontinuity (RD) design, this research examined the effectiveness of a DE program for five, sequential cohorts of first-time college students. Discontinuity estimates were generated for individual terms and cumulatively, across terms. Participants were 3,589 first-time community college students. DE program effects were measured by contrasting both college-level English grades and a dichotomous measure of pass/fail, for DE and non-DE students. Parametric and nonparametric estimates of overall effect were positive for continuous and dichotomous measures of achievement (grade and pass/fail). The variability of program effects over time was determined by tracking results within individual terms and cumulatively, across terms. Applying this replication strategy, DE's overall impact was modest (an effect size of approximately .20) but quite consistent, based on parametric and nonparametric estimation approaches. A meta-analysis of five RD results yielded virtually the same estimate as the overall, parametric findings. Subset analysis, though tentative, suggested that males benefited more than females, while academic gains were comparable for different ethnicities. The cumulative, within-study comparison, replication approach offers considerable potential for the evaluation of new and existing policies, particularly when effects are relatively small, as is often the case in applied settings.

5. Evaluation of heat transfer mathematical models and multiple linear regression to predict the inside variables in semi-solar greenhouse

Directory of Open Access Journals (Sweden)

M Taki

2017-05-01

Full Text Available Introduction Controlling greenhouse microclimate not only influences the growth of plants, but also is critical in the spread of diseases inside the greenhouse. The microclimate parameters were inside air, greenhouse roof and soil temperature, relative humidity and solar radiation intensity. Predicting the microclimate conditions inside a greenhouse and enabling the use of automatic control systems are the two main objectives of greenhouse climate model. The microclimate inside a greenhouse can be predicted by conducting experiments or by using simulation. Static and dynamic models are used for this purpose as a function of the metrological conditions and the parameters of the greenhouse components. Some works were done in past to 2015 year to simulation and predict the inside variables in different greenhouse structures. Usually simulation has a lot of problems to predict the inside climate of greenhouse and the error of simulation is higher in literature. The main objective of this paper is comparison between heat transfer and regression models to evaluate them to predict inside air and roof temperature in a semi-solar greenhouse in Tabriz University. Materials and Methods In this study, a semi-solar greenhouse was designed and constructed at the North-West of Iran in Azerbaijan Province (geographical location of 38°10′ N and 46°18′ E with elevation of 1364 m above the sea level. In this research, shape and orientation of the greenhouse, selected between some greenhouses common shapes and according to receive maximum solar radiation whole the year. Also internal thermal screen and cement north wall was used to store and prevent of heat lost during the cold period of year. So we called this structure, ‘semi-solar’ greenhouse. It was covered with glass (4 mm thickness. It occupies a surface of approximately 15.36 m2 and 26.4 m3. The orientation of this greenhouse was East–West and perpendicular to the direction of the wind prevailing

6. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

Science.gov (United States)

Delwiche, Stephen R; Reeves, James B

2010-01-01

In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various

7. Evaluating and Reporting Statistical Power in Counseling Research

Science.gov (United States)

Balkin, Richard S.; Sheperis, Carl J.

2011-01-01

Despite recommendations from the "Publication Manual of the American Psychological Association" (6th ed.) to include information on statistical power when publishing quantitative results, authors seldom include analysis or discussion of statistical power. The rationale for discussing statistical power is addressed, approaches to using "G*Power" to…

8. The importance of statistical modelling in clinical research : Comparing multidimensional Rasch-, structural equation and linear regression models for analyzing the depression of relatives of psychiatric patients.

Science.gov (United States)

Alexandrowicz, Rainer W; Jahn, Rebecca; Friedrich, Fabian; Unger, Anne

2016-06-01

Various studies have shown that caregiving relatives of schizophrenic patients are at risk of suffering from depression. These studies differ with respect to the applied statistical methods, which could influence the findings. Therefore, the present study analyzes to which extent different methods may cause differing results. The present study contrasts by means of one data set the results of three different modelling approaches, Rasch Modelling (RM), Structural Equation Modelling (SEM), and Linear Regression Modelling (LRM). The results of the three models varied considerably, reflecting the different assumptions of the respective models. Latent trait models (i. e., RM and SEM) generally provide more convincing results by correcting for measurement error and the RM specifically proves superior for it treats ordered categorical data most adequately.

9. Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

Science.gov (United States)

Engström, Emma; Mörtberg, Ulla; Karlström, Anders; Mangold, Mikael

2017-06-01

This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran's I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model ( p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.

10. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

Directory of Open Access Journals (Sweden)

Green HN

2014-11-01

Full Text Available Hadiyah N Green,1,2 Stephanie D Crockett,3 Dmitry V Martyshkin,1 Karan P Singh,2,4 William E Grizzle,2,5 Eben L Rosenthal,2,6 Sergey B Mirov11Department of Physics, Center for Optical Sensors and Spectroscopies, 2Comprehensive Cancer Center, 3Department of Pediatrics, Division of Neonatology, 4Department of Medicine, Division of Preventive Medicine, Biostatistics and Bioinformatics Shared Facility, 5Department of Pathology, 6Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Alabama at Birmingham, Birmingham, AL, USAPurpose: Nanoparticle (NP-enabled near infrared (NIR photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies.Methods: Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm2. Tumor response was measured for 10–15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed.Results: The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a

11. Pattern recognition by the use of multivariate statistical evaluation of macro- and micro-PIXE results

International Nuclear Information System (INIS)

Tapper, U.A.S.; Malmqvist, K.G.; Loevestam, N.E.G.; Swietlicki, E.; Salford, L.G.

1991-01-01

The importance of statistical evaluation of multielemental data is illustrated using the data collected in a macro- and micro-PIXE analysis of human brain tumours. By employing a multivariate statistical classification methodology (SIMCA) it was shown that the total information collected from each specimen separates three types of tissue: High malignant, less malignant and normal brain tissue. This makes a classification of a given specimen possible based on the elemental concentrations. Partial least squares regression (PLS), a multivariate regression method, made it possible to study the relative importance of the examined nine trace elements, the dry/wet weight ratio and the age of the patient in predicting the survival time after operation for patients with the high malignant form, astrocytomas grade III-IV. The elemental maps from a microprobe analysis were also subjected to multivariate analysis. This showed that the six elements sorted into maps could be presented in three maps containing all the relevant information. The intensity in these maps is proportional to the value (score) of the actual pixel along the calculated principal components. (orig.)

12. Various Statistical Methods in Use for Evaluating Human Malignant Gastric Specimens

Directory of Open Access Journals (Sweden)

Ventzeslav Enchev

1998-01-01

Full Text Available This paper presents the use of certain statistical methods (comparison of means – independent samples t‐test, multiple linear regression analysis, multiple logistic regression analysis, analysis of clusters, etc. included in the SPSS Statistical Package used to classify the patients quantitatively evaluated after a subtotal resection of their stomachs. The group consisted of 40 patients subdivided into two groups: primary neoplasia of the stomach (20 patients, and corresponding lymphogenic deposits in the abdominal perigastric lymph nodes (20 patients. Paraffin‐embedded tissue sections (thickness 4–5µm prepared as consecutive hematoxylin‐eosin‐stained slides were morphometrically measured by a rotation of a graduated eyepiece‐micrometer; thus, we obtained the minor and major axes’ lengths of the elliptic nuclear profiles and the minor and major caliper diameters of the corresponding cellular profiles. These four variables were used to determine the dynamic changes in quantitative features of human gastric lesions when passing from normal histological structures, through hyperplastic processes (chronic gastritis, gastric precancer (ulcers and polyps with or without malignancy till the development of primary carcinomas and their corresponding lymphogeneous metastases. Besides the increased cytomorphometrical measures, we also noted an opportunity to classify the patients according to these data as well as to add to the knowledge of our consultation system for clinical aid and use, recently published in the literature.

13. Methodology development for statistical evaluation of reactor safety analyses

International Nuclear Information System (INIS)

Mazumdar, M.; Marshall, J.A.; Chay, S.C.; Gay, R.

1976-07-01

In February 1975, Westinghouse Electric Corporation, under contract to Electric Power Research Institute, started a one-year program to develop methodology for statistical evaluation of nuclear-safety-related engineering analyses. The objectives of the program were to develop an understanding of the relative efficiencies of various computational methods which can be used to compute probability distributions of output variables due to input parameter uncertainties in analyses of design basis events for nuclear reactors and to develop methods for obtaining reasonably accurate estimates of these probability distributions at an economically feasible level. A series of tasks was set up to accomplish these objectives. Two of the tasks were to investigate the relative efficiencies and accuracies of various Monte Carlo and analytical techniques for obtaining such estimates for a simple thermal-hydraulic problem whose output variable of interest is given in a closed-form relationship of the input variables and to repeat the above study on a thermal-hydraulic problem in which the relationship between the predicted variable and the inputs is described by a short-running computer program. The purpose of the report presented is to document the results of the investigations completed under these tasks, giving the rationale for choices of techniques and problems, and to present interim conclusions

14. Comparative evaluation of left ventricular mass regression after aortic valve replacement: a prospective randomized analysis

Directory of Open Access Journals (Sweden)

Kiessling Arndt H

2011-10-01

Full Text Available Abstract Background We assessed the hemodynamic performance of various prostheses and the clinical outcomes after aortic valve replacement, in different age groups. Methods One-hundred-and-twenty patients with isolated aortic valve stenosis were included in this prospective randomized randomised trial and allocated in three age-groups to receive either pulmonary autograft (PA, n = 20 or mechanical prosthesis (MP, Edwards Mira n = 20 in group 1 (age 75. Clinical outcomes and hemodynamic performance were evaluated at discharge, six months and one year. Results In group 1, patients with PA had significantly lower mean gradients than the MP (2.6 vs. 10.9 mmHg, p = 0.0005 with comparable left ventricular mass regression (LVMR. Morbidity included 1 stroke in the PA population and 1 gastrointestinal bleeding in the MP subgroup. In group 2, mean gradients did not differ significantly between both populations (7.0 vs. 8.9 mmHg, p = 0.81. The rate of LVMR and EF were comparable at 12 months; each group with one mortality. Morbidity included 1 stroke and 1 gastrointestinal bleeding in the stentless and 3 bleeding complications in the MP group. In group 3, mean gradients did not differ significantly (7.8 vs 6.5 mmHg, p = 0.06. Postoperative EF and LVMR were comparable. There were 3 deaths in the stented group and no mortality in the stentless group. Morbidity included 1 endocarditis and 1 stroke in the stentless compared to 1 endocarditis, 1 stroke and one pulmonary embolism in the stented group. Conclusions Clinical outcomes justify valve replacement with either valve substitute in the respective age groups. The PA hemodynamically outperformed the MPs. Stentless valves however, did not demonstrate significantly superior hemodynamics or outcomes in comparison to stented bioprosthesis or MPs.

15. Testing contingency hypotheses in budgetary research: An evaluation of the use of moderated regression analysis

NARCIS (Netherlands)

Hartmann, Frank G.H.; Moers, Frank

1999-01-01

In the contingency literature on the behavioral and organizational effects of budgeting, use of the Moderated Regression Analysis (MRA) technique is prevalent. This technique is used to test contingency hypotheses that predict interaction effects between budgetary and contextual variables. This

16. An evaluation of regression methods to estimate nutritional condition of canvasbacks and other water birds

Science.gov (United States)

Sparling, D.W.; Barzen, J.A.; Lovvorn, J.R.; Serie, J.R.

1992-01-01

Regression equations that use mensural data to estimate body condition have been developed for several water birds. These equations often have been based on data that represent different sexes, age classes, or seasons, without being adequately tested for intergroup differences. We used proximate carcass analysis of 538 adult and juvenile canvasbacks (Aythya valisineria ) collected during fall migration, winter, and spring migrations in 1975-76 and 1982-85 to test regression methods for estimating body condition.

17. Gregor Mendel, His Experiments and Their Statistical Evaluation

Czech Academy of Sciences Publication Activity Database

Kalina, Jan

2014-01-01

Roč. 99, č. 1 (2014), s. 87-99 ISSN 1211-8788 Institutional support: RVO:67985807 Keywords : Mendel * history of genetics * Mendel-Fisher controversy * statistical analysis * binomial distribution * numerical simulation Subject RIV: BB - Applied Statistics, Operational Research http://www.mzm.cz/fileadmin/user_upload/publikace/casopisy/amm_sb_99_1_2014/08kalina.pdf

18. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

Energy Technology Data Exchange (ETDEWEB)

Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Champagne, Pascale, E-mail: champagne@civil.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr [National Institute for Applied Sciences – Lyon, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

2015-01-15

Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling

19. Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth

Directory of Open Access Journals (Sweden)

I. Karamatlou

2016-02-01

Full Text Available Introduction: Persian walnut (Juglans regia L. is a large, wind-pollinated, monoecious, dichogamous, long lived, perennial tree cultivated for its high quality wood and nuts throughout the temperate regions of the world. Growth model methodology has been widely used in the modeling of plant growth. Mathematical models are important tools to study the plant growth and agricultural systems. These models can be applied for decision-making anddesigning management procedures in horticulture. Through growth analysis, planning for planting systems, fertilization, pruning operations, harvest time as well as obtaining economical yield can be more accessible.Non-linear models are more difficult to specify and estimate than linear models. This research was aimed to studynon-linear regression models based on data obtained from fruit weight, length and width. Selecting the best models which explain that fruit inherent growth pattern of Persian walnut was a further goal of this study. Materials and Methods: The experimental material comprising 14 Persian walnut genotypes propagated by seed collected from a walnut orchard in Golestan province, Minoudasht region, Iran, at latitude 37◦04’N; longitude 55◦32’E; altitude 1060 m, in a silt loam soil type. These genotypes were selected as a representative sampling of the many walnut genotypes available throughout the Northeastern Iran. The age range of walnut trees was 30 to 50 years. The annual mean temperature at the location is16.3◦C, with annual mean rainfall of 690 mm.The data used here is the average of walnut fresh fruit and measured withgram/millimeter/day in2011.According to the data distribution pattern, several equations have been proposed to describesigmoidal growth patterns. Here, we used double-sigmoid and logistic–monomolecular models to evaluate fruit growth based on fruit weight and4different regression models in cluding Richards, Gompertz, Logistic and Exponential growth for evaluation

20. Regression to Causality : Regression-style presentation influences causal attribution

DEFF Research Database (Denmark)

Bordacconi, Mats Joe; Larsen, Martin Vinæs

2014-01-01

of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...

1. A primer of statistical methods for correlating parameters and properties of electrospun poly( l -lactide) scaffolds for tissue engineering-PART 2: Regression

KAUST Repository

Seyedmahmoud, Rasoul

2014-04-07

This two-articles series presents an in-depth discussion of electrospun poly-l-lactide scaffolds for tissue engineering by means of statistical methodologies that can be used, in general, to gain a quantitative and systematic insight about effects and interactions between a handful of key scaffold properties (Ys) and a set of process parameters (Xs) in electrospinning. While Part-1 dealt with the DOE methods to unveil the interactions between Xs in determining the morphomechanical properties (ref. Y1-4), this Part-2 article continues and refocuses the discussion on the interdependence of scaffold properties investigated by standard regression methods. The discussion first explores the connection between mechanical properties (Y4) and morphological descriptors of the scaffolds (Y1-3) in 32 types of scaffolds, finding that the mean fiber diameter (Y1) plays a predominant role which is nonetheless and crucially modulated by the molecular weight (MW) of PLLA. The second part examines the biological performance (Y5) (i.e. the cell proliferation of seeded bone marrow-derived mesenchymal stromal cells) on a random subset of eight scaffolds vs. the mechanomorphological properties (Y1-4). In this case, the featured regression analysis on such an incomplete set was not conclusive, though, indirectly suggesting in quantitative terms that cell proliferation could not fully be explained as a function of considered mechanomorphological properties (Y1-4), but in the early stage seeding, and that a randomization effects occurs over time such that the differences in initial cell proliferation performance (at day 1) is smeared over time. The findings may be the cornerstone of a novel route to accrue sufficient understanding and establish design rules for scaffold biofunctional vs. architecture, mechanical properties, and process parameters.

2. Relevance of the c-statistic when evaluating risk-adjustment models in surgery.

Science.gov (United States)

Merkow, Ryan P; Hall, Bruce L; Cohen, Mark E; Dimick, Justin B; Wang, Edward; Chow, Warren B; Ko, Clifford Y; Bilimoria, Karl Y

2012-05-01

The measurement of hospital quality based on outcomes requires risk adjustment. The c-statistic is a popular tool used to judge model performance, but can be limited, particularly when evaluating specific operations in focused populations. Our objectives were to examine the interpretation and relevance of the c-statistic when used in models with increasingly similar case mix and to consider an alternative perspective on model calibration based on a graphical depiction of model fit. From the American College of Surgeons National Surgical Quality Improvement Program (2008-2009), patients were identified who underwent a general surgery procedure, and procedure groups were increasingly restricted: colorectal-all, colorectal-elective cases only, and colorectal-elective cancer cases only. Mortality and serious morbidity outcomes were evaluated using logistic regression-based risk adjustment, and model c-statistics and calibration curves were used to compare model performance. During the study period, 323,427 general, 47,605 colorectal-all, 39,860 colorectal-elective, and 21,680 colorectal cancer patients were studied. Mortality ranged from 1.0% in general surgery to 4.1% in the colorectal-all group, and serious morbidity ranged from 3.9% in general surgery to 12.4% in the colorectal-all procedural group. As case mix was restricted, c-statistics progressively declined from the general to the colorectal cancer surgery cohorts for both mortality and serious morbidity (mortality: 0.949 to 0.866; serious morbidity: 0.861 to 0.668). Calibration was evaluated graphically by examining predicted vs observed number of events over risk deciles. For both mortality and serious morbidity, there was no qualitative difference in calibration identified between the procedure groups. In the present study, we demonstrate how the c-statistic can become less informative and, in certain circumstances, can lead to incorrect model-based conclusions, as case mix is restricted and patients become

3. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

Science.gov (United States)

2014-06-01

4. Evaluation of the performance of Moses statistical engine adapted to ...

African Journals Online (AJOL)

... of Moses statistical engine adapted to English-Arabic language combination. ... of Artificial Intelligence (AI) dedicated to Natural Language Processing (NLP). ... and focuses on SMT, then introducing the features of the open source Moses ...

5. Empirical and Statistical Evaluation of the Effectiveness of Four ...

African Journals Online (AJOL)

Akorede

ABSTRACT: Data compression is the process of reducing the size of a file to effectively ... Through the statistical analysis performed using Boxplot and ANOVA and comparison made ...... Automatic Control, Electronics and Computer Science.

6. Methods for estimating disease transmission rates: Evaluating the precision of Poisson regression and two novel methods

DEFF Research Database (Denmark)

Kirkeby, Carsten Thure; Hisham Beshara Halasa, Tariq; Gussmann, Maya Katrin

2017-01-01

the transmission rate. We use data from the two simulation models and vary the sampling intervals and the size of the population sampled. We devise two new methods to determine transmission rate, and compare these to the frequently used Poisson regression method in both epidemic and endemic situations. For most...... tested scenarios these new methods perform similar or better than Poisson regression, especially in the case of long sampling intervals. We conclude that transmission rate estimates are easily biased, which is important to take into account when using these rates in simulation models....

7. Use of Statistics for Data Evaluation in Environmental Radioactivity Measurements

International Nuclear Information System (INIS)

Sutarman

2001-01-01

Counting statistics will give a correction on environmental radioactivity measurement result. Statistics provides formulas to determine standard deviation (S B ) and minimum detectable concentration (MDC) according to the Poisson distribution. Both formulas depend on the background count rate, counting time, counting efficiency, gamma intensity, and sample size. A long time background counting results in relatively low S B and MDC that can present relatively accurate measurement results. (author)

8. Meta-regression analyses to explain statistical heterogeneity in a systematic review of strategies for guideline implementation in primary health care.

Directory of Open Access Journals (Sweden)

Susanne Unverzagt

Full Text Available This study is an in-depth-analysis to explain statistical heterogeneity in a systematic review of implementation strategies to improve guideline adherence of primary care physicians in the treatment of patients with cardiovascular diseases. The systematic review included randomized controlled trials from a systematic search in MEDLINE, EMBASE, CENTRAL, conference proceedings and registers of ongoing studies. Implementation strategies were shown to be effective with substantial heterogeneity of treatment effects across all investigated strategies. Primary aim of this study was to explain different effects of eligible trials and to identify methodological and clinical effect modifiers. Random effects meta-regression models were used to simultaneously assess the influence of multimodal implementation strategies and effect modifiers on physician adherence. Effect modifiers included the staff responsible for implementation, level of prevention and definition pf the primary outcome, unit of randomization, duration of follow-up and risk of bias. Six clinical and methodological factors were investigated as potential effect modifiers of the efficacy of different implementation strategies on guideline adherence in primary care practices on the basis of information from 75 eligible trials. Five effect modifiers were able to explain a substantial amount of statistical heterogeneity. Physician adherence was improved by 62% (95% confidence interval (95% CI 29 to 104% or 29% (95% CI 5 to 60% in trials where other non-medical professionals or nurses were included in the implementation process. Improvement of physician adherence was more successful in primary and secondary prevention of cardiovascular diseases by around 30% (30%; 95% CI -2 to 71% and 31%; 95% CI 9 to 57%, respectively compared to tertiary prevention. This study aimed to identify effect modifiers of implementation strategies on physician adherence. Especially the cooperation of different health

9. Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system

International Nuclear Information System (INIS)

Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo

2000-01-01

Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency

10. Statistical evaluation and measuring strategy for extremely small line shifts

International Nuclear Information System (INIS)

Hansen, P.G.

1978-01-01

For a measuring situation limited by counting statistics, but where the level of precision is such that possible systematic errors are a major concern, it is proposed to determine the position of a spectral line from a measured line segment by applying a bias correction to the centre of gravity of the segment. This procedure is statistically highly efficient and not sensitive to small errors in assumptions about the line shape. The counting strategy for an instrument that takes data point by point is also considered. It is shown that an optimum (''two-point'') strategy exists; a scan of the central part of the line is 68% efficient by this standard. (Auth.)

11. A Statistical Approach for Deriving Key NFC Evaluation Criteria

Energy Technology Data Exchange (ETDEWEB)

Kim, S. K; Kang, G. B.; Ko, W. I [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Young, S. R.; Gao, R. X. [Univ. of Science and Technology, Daejeon (Korea, Republic of)

2014-02-15

This study suggests 5 evaluation criteria (safety and technology, environmental impact, economic feasibility, social factors, and institutional factors) and 24 evaluation indicators for a NFC (nuclear fuel cycle) derived using factor analysis. To do so, a survey using 1 on 1 interview was given to nuclear energy experts and local residents who live near nuclear power plants. In addition, by conducting a factor analysis, homogeneous evaluation indicators were grouped with the same evaluation criteria, and unnecessary evaluation criteria and evaluation indicators were dropped out. As a result of analyzing the weight of evaluation criteria with the sample of nuclear power experts and the general public, both sides recognized safety as the most important evaluation criterion, and the social factors such as public acceptance appeared to be ranked as more important evaluation criteria by the nuclear energy experts than the general public.

12. A Statistical Approach for Deriving Key NFC Evaluation Criteria

International Nuclear Information System (INIS)

Kim, S. K; Kang, G. B.; Ko, W. I; Young, S. R.; Gao, R. X.

2014-01-01

This study suggests 5 evaluation criteria (safety and technology, environmental impact, economic feasibility, social factors, and institutional factors) and 24 evaluation indicators for a NFC (nuclear fuel cycle) derived using factor analysis. To do so, a survey using 1 on 1 interview was given to nuclear energy experts and local residents who live near nuclear power plants. In addition, by conducting a factor analysis, homogeneous evaluation indicators were grouped with the same evaluation criteria, and unnecessary evaluation criteria and evaluation indicators were dropped out. As a result of analyzing the weight of evaluation criteria with the sample of nuclear power experts and the general public, both sides recognized safety as the most important evaluation criterion, and the social factors such as public acceptance appeared to be ranked as more important evaluation criteria by the nuclear energy experts than the general public

13. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

International Nuclear Information System (INIS)

Whitlock, C.H.; Kuo, C.Y.

1979-01-01

The paper attempts to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. It is reported that investigation of the signal response shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined. Laboratory data are used to demonstrate that the technique is applicable to water mixtures which contain constituents with both linear and nonlinear radiance gradients. Finally, it is concluded that instrument noise, ground-truth placement, and time lapse between remote sensor overpass and water sample operations are serious barriers to successful use of the technique

14. Dual Regression

OpenAIRE

2012-01-01

We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

15. The Crash Intensity Evaluation Using General Centrality Criterions and a Geographically Weighted Regression

Science.gov (United States)

Ghadiriyan Arani, M.; Pahlavani, P.; Effati, M.; Noori Alamooti, F.

2017-09-01

Today, one of the social problems influencing on the lives of many people is the road traffic crashes especially the highway ones. In this regard, this paper focuses on highway of capital and the most populous city in the U.S. state of Georgia and the ninth largest metropolitan area in the United States namely Atlanta. Geographically weighted regression and general centrality criteria are the aspects of traffic used for this article. In the first step, in order to estimate of crash intensity, it is needed to extract the dual graph from the status of streets and highways to use general centrality criteria. With the help of the graph produced, the criteria are: Degree, Pageranks, Random walk, Eccentricity, Closeness, Betweenness, Clustering coefficient, Eigenvector, and Straightness. The intensity of crash point is counted for every highway by dividing the number of crashes in that highway to the total number of crashes. Intensity of crash point is calculated for each highway. Then, criteria and crash point were normalized and the correlation between them was calculated to determine the criteria that are not dependent on each other. The proposed hybrid approach is a good way to regression issues because these effective measures result to a more desirable output. R2 values for geographically weighted regression using the Gaussian kernel was 0.539 and also 0.684 was obtained using a triple-core cube. The results showed that the triple-core cube kernel is better for modeling the crash intensity.

16. THE CRASH INTENSITY EVALUATION USING GENERAL CENTRALITY CRITERIONS AND A GEOGRAPHICALLY WEIGHTED REGRESSION

Directory of Open Access Journals (Sweden)

2017-09-01

Full Text Available Today, one of the social problems influencing on the lives of many people is the road traffic crashes especially the highway ones. In this regard, this paper focuses on highway of capital and the most populous city in the U.S. state of Georgia and the ninth largest metropolitan area in the United States namely Atlanta. Geographically weighted regression and general centrality criteria are the aspects of traffic used for this article. In the first step, in order to estimate of crash intensity, it is needed to extract the dual graph from the status of streets and highways to use general centrality criteria. With the help of the graph produced, the criteria are: Degree, Pageranks, Random walk, Eccentricity, Closeness, Betweenness, Clustering coefficient, Eigenvector, and Straightness. The intensity of crash point is counted for every highway by dividing the number of crashes in that highway to the total number of crashes. Intensity of crash point is calculated for each highway. Then, criteria and crash point were normalized and the correlation between them was calculated to determine the criteria that are not dependent on each other. The proposed hybrid approach is a good way to regression issues because these effective measures result to a more desirable output. R2 values for geographically weighted regression using the Gaussian kernel was 0.539 and also 0.684 was obtained using a triple-core cube. The results showed that the triple-core cube kernel is better for modeling the crash intensity.

17. Statistical evaluation of SAGE libraries: consequences for experimental design

NARCIS (Netherlands)

Ruijter, Jan M.; van Kampen, Antoine H. C.; Baas, Frank

2002-01-01

Since the introduction of serial analysis of gene expression (SAGE) as a method to quantitatively analyze the differential expression of genes, several statistical tests have been published for the pairwise comparison of SAGE libraries. Testing the difference between the number of specific tags

18. Statistical evaluation of major human errors during the development of new technological systems

International Nuclear Information System (INIS)

Campbell, G; Ott, K.O.

1979-01-01

Statistical procedures are presented to evaluate major human errors during the development of a new system, errors that have led or can lead to accidents or major failures. The first procedure aims at estimating the average residual occurrence rate for s or major failures after several have occurred. The procedure is solely based on the historical record. Certain idealizations are introduced that allow the application of a sound statistical evaluation procedure. These idealizations are practically realized to a sufficient degree such that the proposed estimation procedure yields meaningful results, even for situations with a sparse data base, represented by very few accidents. Under the assumption that the possible human-error-related failure times have exponential distributions, the statistical technique of isotonic regression is proposed to estimate the failure rates due to human design error at the failure times of the system. The last value in the sequence of estimates gives the residual accident chance. In addition, theactual situation is tested against the hypothesis that the failure rate of the system remains constant over time. This test determines the chance for a decreasing failure rate being incidental, rather than an indication of an actual learning process. Both techniques can be applied not merely to a single system but to an entire series of similar systems that a technology would generate, enabling the assessment of technological improvement. For the purpose of illustration, the nuclear decay of isotopes was chosen as an example, since the assumptions of the model are rigorously satisfied in this case. This application shows satisfactory agreement of the estimated and actual failure rates (which are exactly known in this example), although the estimation was deliberately based on a sparse historical record

19. Regression and statistical shape model based substitute CT generation for MRI alone external beam radiation therapy from standard clinical MRI sequences

Science.gov (United States)

Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.

2017-11-01

In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean  ±  standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.

20. Two statistics for evaluating parameter identifiability and error reduction

Science.gov (United States)

Doherty, John; Hunt, Randall J.

2009-01-01

Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.

1. A STATISTICAL APPROACH FOR DERIVING KEY NFC EVALUATION CRITERIA

Directory of Open Access Journals (Sweden)

S.K. KIM

2014-02-01

As a result of analyzing the weight of evaluation criteria with the sample of nuclear power experts and the general public, both sides recognized safety as the most important evaluation criterion, and the social factors such as public acceptance appeared to be ranked as more important evaluation criteria by the nuclear energy experts than the general public.

2. Evaluation of local corrosion life by statistical method

International Nuclear Information System (INIS)

Kato, Shunji; Kurosawa, Tatsuo; Takaku, Hiroshi; Kusanagi, Hideo; Hirano, Hideo; Kimura, Hideo; Hide, Koichiro; Kawasaki, Masayuki

1987-01-01

In this paper, for the purpose of achievement of life extension of light water reactor, we examined the evaluation of local corrosion by satistical method and its application of nuclear power plant components. There are many evaluation examples of maximum cracking depth of local corrosion by dowbly exponential distribution. This evaluation method has been established. But, it has not been established that we evaluate service lifes of construction materials by satistical method. In order to establish of service life evaluation by satistical method, we must strive to collect local corrosion dates and its analytical researchs. (author)

3. Quantile Regression Methods

DEFF Research Database (Denmark)

Fitzenberger, Bernd; Wilke, Ralf Andreas

2015-01-01

if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...

4. Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test

International Nuclear Information System (INIS)

Chang, Mu Seong; Choi, Jong Sik; Choi, Byung Oh; Kim, Do Sik

2015-01-01

A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and B10 life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles

5. Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test

Energy Technology Data Exchange (ETDEWEB)

Chang, Mu Seong; Choi, Jong Sik; Choi, Byung Oh; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

2015-12-15

A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and B10 life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

6. Additional methodology development for statistical evaluation of reactor safety analyses

International Nuclear Information System (INIS)

Marshall, J.A.; Shore, R.W.; Chay, S.C.; Mazumdar, M.

1977-03-01

The project described is motivated by the desire for methods to quantify uncertainties and to identify conservatisms in nuclear power plant safety analysis. The report examines statistical methods useful for assessing the probability distribution of output response from complex nuclear computer codes, considers sensitivity analysis and several other topics, and also sets the path for using the developed methods for realistic assessment of the design basis accident

7. Environmental offences in 1995. An evaluation of statistics

International Nuclear Information System (INIS)

Goertz, M.; Werner, J.; Sanchez de la Cerda, J.; Schwertfeger, C.; Winkler, K.

1997-01-01

This publication deals with the execution of environmental criminal law. On the basis of police and judicial statistics it is pointed out how often an environmental criminal offence was at least suspected by the police or law courts, how they reacted to their suspicion, which individual environmental criminal offences were committed particularly frequently, and what segment of the population the typical perpetrator belonged to. (orig./SR) [de

8. Evaluation of clustering statistics with N-body simulations

International Nuclear Information System (INIS)

Quinn, T.R.

1986-01-01

Two series of N-body simulations are used to determine the effectiveness of various clustering statistics in revealing initial conditions from evolved models. All the simulations contained 16384 particles and were integrated with the PPPM code. One series is a family of models with power at only one wavelength. The family contains five models with the wavelength of the power separated by factors of √2. The second series is a family of all equal power combinations of two wavelengths taken from the first series. The clustering statistics examined are the two point correlation function, the multiplicity function, the nearest neighbor distribution, the void probability distribution, the distribution of counts in cells, and the peculiar velocity distribution. It is found that the covariance function, the nearest neighbor distribution, and the void probability distribution are relatively insensitive to the initial conditions. The distribution of counts in cells show a little more sensitivity, but the multiplicity function is the best of the statistics considered for revealing the initial conditions

9. An evaluation of bias in propensity score-adjusted non-linear regression models.

Science.gov (United States)

Wan, Fei; Mitra, Nandita

2018-03-01

Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.

10. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

Energy Technology Data Exchange (ETDEWEB)

Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

2017-11-01

Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

11. Logistic regression function for detection of suspicious performance during baseline evaluations using concussion vital signs.

Science.gov (United States)

Hill, Benjamin David; Womble, Melissa N; Rohling, Martin L

2015-01-01

This study utilized logistic regression to determine whether performance patterns on Concussion Vital Signs (CVS) could differentiate known groups with either genuine or feigned performance. For the embedded measure development group (n = 174), clinical patients and undergraduate students categorized as feigning obtained significantly lower scores on the overall test battery mean for the CVS, Shipley-2 composite score, and California Verbal Learning Test-Second Edition subtests than did genuinely performing individuals. The final full model of 3 predictor variables (Verbal Memory immediate hits, Verbal Memory immediate correct passes, and Stroop Test complex reaction time correct) was significant and correctly classified individuals in their known group 83% of the time (sensitivity = .65; specificity = .97) in a mixed sample of young-adult clinical cases and simulators. The CVS logistic regression function was applied to a separate undergraduate college group (n = 378) that was asked to perform genuinely and identified 5% as having possibly feigned performance indicating a low false-positive rate. The failure rate was 11% and 16% at baseline cognitive testing in samples of high school and college athletes, respectively. These findings have particular relevance given the increasing use of computerized test batteries for baseline cognitive testing and return-to-play decisions after concussion.

12. Evaluation for moments of a ratio with application to regression estimation

OpenAIRE

Doukhan, Paul; Lang, Gabriel

2008-01-01

Ratios of random variables often appear in probability and statistical applications. We aim to approximate the moments of such ratios under several dependence assumptions. Extending the ideas in Collomb [C. R. Acad. Sci. Paris 285 (1977) 289–292], we propose sharper bounds for the moments of randomly weighted sums and for the Lp-deviations from the asymptotic normal law when the central limit theorem holds. We indicate suitable applications in finance and censored data analysis and focus on t...

13. Wind power statistics and an evaluation of wind energy density

Energy Technology Data Exchange (ETDEWEB)

Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)

1995-11-01

In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)

14. Bayesian statistical evaluation of peak area measurements in gamma spectrometry

International Nuclear Information System (INIS)

Silva, L.; Turkman, A.; Paulino, C.D.

2010-01-01

We analyze results from determinations of peak areas for a radioactive source containing several radionuclides. The statistical analysis was performed using Bayesian methods based on the usual Poisson model for observed counts. This model does not appear to be a very good assumption for the counting system under investigation, even though it is not questioned as a whole by the inferential procedures adopted. We conclude that, in order to avoid incorrect inferences on relevant quantities, one must proceed to a further study that allows us to include missing influence parameters and to select a model explaining the observed data much better.

15. Environmental offenses in 1999. An evaluation of statistics

International Nuclear Information System (INIS)

Goertz, M.; Werner, J.; Heinrich, M.

2000-01-01

A total of 43,382 known environmental offenses was recorded in 1999 as compared to 47,900 in 1998. There were 36,663 penal offenses (section 29 StGB), 48 penal offenses (section 28 StGB) and 6,671 offenses against other laws (BNatSchG, ChemG, etc.). This statistics covers chemical pollutants, radioactive materials, ionizing and non-ionizing radiation, noise and explosions. It is estimated that a much higher number of offenses went unnoticed [de

16. Regression analysis by example

CERN Document Server

Chatterjee, Samprit

2012-01-01

Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

17. Differentiating regressed melanoma from regressed lichenoid keratosis.

Science.gov (United States)

Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A

2017-04-01

Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

18. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms.

Science.gov (United States)

Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina

2017-04-01

The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

19. Engineering estimates versus impact evaluation of energy efficiency projects: Regression discontinuity evidence from a case study

International Nuclear Information System (INIS)

Lang, Corey; Siler, Matthew

2013-01-01

Energy efficiency upgrades have been gaining widespread attention across global channels as a cost-effective approach to addressing energy challenges. The cost-effectiveness of these projects is generally predicted using engineering estimates pre-implementation, often with little ex post analysis of project success. In this paper, for a suite of energy efficiency projects, we directly compare ex ante engineering estimates of energy savings to ex post econometric estimates that use 15-min interval, building-level energy consumption data. In contrast to most prior literature, our econometric results confirm the engineering estimates, even suggesting the engineering estimates were too modest. Further, we find heterogeneous efficiency impacts by time of day, suggesting select efficiency projects can be useful in reducing peak load. - Highlights: • Regression discontinuity used to estimate energy savings from efficiency projects. • Ex post econometric estimates validate ex ante engineering estimates of energy savings. • Select efficiency projects shown to reduce peak load

20. Evaluation of Land Use Regression Models for Nitrogen Dioxide and Benzene in Four US Cities

Directory of Open Access Journals (Sweden)

Shaibal Mukerjee

2012-01-01

Full Text Available Spatial analysis studies have included the application of land use regression models (LURs for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2 and volatile organic compounds (VOCs using passive samplers at urban air monitoring networks in El Paso and Dallas, TX, Detroit, MI, and Cleveland, OH to assess spatial variability and source influences. LURs were successfully developed to estimate pollutant concentrations throughout the study areas. Comparisons of development and predictive capabilities of LURs from these four cities are presented to address this issue of uniform application of LURs across study areas. Traffic and other urban variables were important predictors in the LURs although city-specific influences (such as border crossings were also important. In addition, transferability of variables or LURs from one city to another may be problematic due to intercity differences and data availability or comparability. Thus, developing common predictors in future LURs may be difficult.

1. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy

Science.gov (United States)

Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.

2015-06-01

Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).

2. Evaluating the effect of a third-party implementation of resolution recovery on the quality of SPECT bone scan imaging using visual grading regression.

Science.gov (United States)

Hay, Peter D; Smith, Julie; O'Connor, Richard A

2016-02-01

The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.

3. A new quantum statistical evaluation method for time correlation functions

International Nuclear Information System (INIS)

Loss, D.; Schoeller, H.

1989-01-01

Considering a system of N identical interacting particles, which obey Fermi-Dirac or Bose-Einstein statistics, the authors derive new formulas for correlation functions of the type C(t) = i= 1 N A i (t) Σ j=1 N B j > (where B j is diagonal in the free-particle states) in the thermodynamic limit. Thereby they apply and extend a superoperator formalism, recently developed for the derivation of long-time tails in semiclassical systems. As an illustrative application, the Boltzmann equation value of the time-integrated correlation function C(t) is derived in a straight-forward manner. Due to exchange effects, the obtained t-matrix and the resulting scattering cross section, which occurs in the Boltzmann collision operator, are now functionals of the Fermi-Dirac or Bose-Einstein distribution

4. Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions

Directory of Open Access Journals (Sweden)

Waldir de Carvalho Junior

2014-06-01

Full Text Available Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR and geostatistical (ordinary kriging and co-kriging. The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap. Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI, soil wetness index (SWI, normalized difference vegetation index (NDVI, and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.

5. Regression analysis of the structure function for reliability evaluation of continuous-state system

International Nuclear Information System (INIS)

Gamiz, M.L.; Martinez Miranda, M.D.

2010-01-01

Technical systems are designed to perform an intended task with an admissible range of efficiency. According to this idea, it is permissible that the system runs among different levels of performance, in addition to complete failure and the perfect functioning one. As a consequence, reliability theory has evolved from binary-state systems to the most general case of continuous-state system, in which the state of the system changes over time through some interval on the real number line. In this context, obtaining an expression for the structure function becomes difficult, compared to the discrete case, with difficulty increasing as the number of components of the system increases. In this work, we propose a method to build a structure function for a continuum system by using multivariate nonparametric regression techniques, in which certain analytical restrictions on the variable of interest must be taken into account. Once the structure function is obtained, some reliability indices of the system are estimated. We illustrate our method via several numerical examples.

6. Regression analysis of the structure function for reliability evaluation of continuous-state system

Energy Technology Data Exchange (ETDEWEB)

2010-02-15

Technical systems are designed to perform an intended task with an admissible range of efficiency. According to this idea, it is permissible that the system runs among different levels of performance, in addition to complete failure and the perfect functioning one. As a consequence, reliability theory has evolved from binary-state systems to the most general case of continuous-state system, in which the state of the system changes over time through some interval on the real number line. In this context, obtaining an expression for the structure function becomes difficult, compared to the discrete case, with difficulty increasing as the number of components of the system increases. In this work, we propose a method to build a structure function for a continuum system by using multivariate nonparametric regression techniques, in which certain analytical restrictions on the variable of interest must be taken into account. Once the structure function is obtained, some reliability indices of the system are estimated. We illustrate our method via several numerical examples.

7. A linear regression approach to evaluate the green supply chain management impact on industrial organizational performance.

Science.gov (United States)

Mumtaz, Ubaidullah; Ali, Yousaf; Petrillo, Antonella

2018-05-15

The increase in the environmental pollution is one of the most important topic in today's world. In this context, the industrial activities can pose a significant threat to the environment. To manage problems associate to industrial activities several methods, techniques and approaches have been developed. Green supply chain management (GSCM) is considered one of the most important "environmental management approach". In developing countries such as Pakistan the implementation of GSCM practices is still in its initial stages. Lack of knowledge about its effects on economic performance is the reason because of industries fear to implement these practices. The aim of this research is to perceive the effects of GSCM practices on organizational performance in Pakistan. In this research the GSCM practices considered are: internal practices, external practices, investment recovery and eco-design. While, the performance parameters considered are: environmental pollution, operational cost and organizational flexibility. A set of hypothesis propose the effect of each GSCM practice on the performance parameters. Factor analysis and linear regression are used to analyze the survey data of Pakistani industries, in order to authenticate these hypotheses. The findings of this research indicate a decrease in environmental pollution and operational cost with the implementation of GSCM practices, whereas organizational flexibility has not improved for Pakistani industries. These results aim to help managers regarding their decision of implementing GSCM practices in the industrial sector of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

8. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

International Nuclear Information System (INIS)

Fang, Tingting; Lahdelma, Risto

2016-01-01

Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

9. Evaluation of statistical models for forecast errors from the HBV model

Science.gov (United States)

Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

2010-04-01

SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

10. STATISTICAL EVALUATION OF EXAMINATION TESTS IN MATHEMATICS FOR ECONOMISTS

Directory of Open Access Journals (Sweden)

KASPŘÍKOVÁ, Nikola

2012-12-01

Full Text Available Examination results are rather important for many students with regard to their future profession development. Results of exams should be carefully inspected by the teachers to help improve design and evaluation of tests and education process in general. Analysis of examination papers in mathematics taken by students of basic mathematics course at University of Economics in Prague is reported. The first issue addressed is identification of significant dependencies between performance in particular problem areas covered in the test and also between particular items and total score in test or ability level as a latent trait. The assessment is first performed with Spearman correlation coefficient, items in the test are then evaluated within Item Response Theory framework. The second analytical task addressed is a search for groups of students who are similar with respect to performance in test. Cluster analysis is performed using partitioning around medoids method and final model selection is made according to average silhouette width. Results of clustering, which may be also considered in connection with setting of the minimum score for passing the exam, show that two groups of students can be identified. The group which may be called "well-performers" is the more clearly defined one.

11. Statistical evaluations of current sampling procedures and incomplete core recovery

International Nuclear Information System (INIS)

Heasler, P.G.; Jensen, L.

1994-03-01

This document develops two formulas that describe the effects of incomplete recovery on core sampling results for the Hanford waste tanks. The formulas evaluate incomplete core recovery from a worst-case (i.e.,biased) and best-case (i.e., unbiased) perspective. A core sampler is unbiased if the sample material recovered is a random sample of the material in the tank, while any sampler that preferentially recovers a particular type of waste over others is a biased sampler. There is strong evidence to indicate that the push-mode sampler presently used at the Hanford site is a biased one. The formulas presented here show the effects of incomplete core recovery on the accuracy of composition measurements, as functions of the vertical variability in the waste. These equations are evaluated using vertical variability estimates from previously sampled tanks (B110, U110, C109). Assuming that the values of vertical variability used in this study adequately describes the Hanford tank farm, one can use the formulas to compute the effect of incomplete recovery on the accuracy of an average constituent estimate. To determine acceptable recovery limits, we have assumed that the relative error of such an estimate should be no more than 20%

12. Evaluation of the comprehensive palatability of Japanese sake paired with dishes by multiple regression analysis based on subdomains.

Science.gov (United States)

Nakamura, Ryo; Nakano, Kumiko; Tamura, Hiroyasu; Mizunuma, Masaki; Fushiki, Tohru; Hirata, Dai

2017-08-01

Many factors contribute to palatability. In order to evaluate the palatability of Japanese alcohol sake paired with certain dishes by integrating multiple factors, here we applied an evaluation method previously reported for palatability of cheese by multiple regression analysis based on 3 subdomain factors (rewarding, cultural, and informational). We asked 94 Japanese participants/subjects to evaluate the palatability of sake (1st evaluation/E1 for the first cup, 2nd/E2 and 3rd/E3 for the palatability with aftertaste/afterglow of certain dishes) and to respond to a questionnaire related to 3 subdomains. In E1, 3 factors were extracted by a factor analysis, and the subsequent multiple regression analyses indicated that the palatability of sake was interpreted by mainly the rewarding. Further, the results of attribution-dissections in E1 indicated that 2 factors (rewarding and informational) contributed to the palatability. Finally, our results indicated that the palatability of sake was influenced by the dish eaten just before drinking.

13. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

Science.gov (United States)

Anderson, Allison P; Newman, Dava J; Welsch, Roy E

2015-07-01

Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

14. Statistical and Multifractal Evaluation of Soil Compaction in a Vineyard

Science.gov (United States)

Marinho, M.; Raposo, J. R.; Mirás Avalos, J. M.; Paz González, A.

2012-04-01

One of the detrimental effects caused by agricultural machines is soil compaction, which can be defined by an increase in soil bulk density. Soil compaction often has a negative impact on plant growth, since it reduces the macroporosity and soil permeability and increases resistance to penetration. Our research explored the effect of the agricultural machinery on soil when trafficking through a vineyard at a small spatial scale, based on the evaluation of the soil compaction status. The objectives of this study were: i) to quantify soil bulk density along transects following wine row, wheel track and outside track, and, ii) to characterize the variability of the bulk density along these transects using multifractal analysis. The field work was conducted at the experimental farm of EVEGA (Viticulture and Enology Centre of Galicia) located in Ponte San Clodio, Leiro, Orense, Spain. Three parallel transects were marked on positions with contrasting machine traffic effects, i.e. vine row, wheel-track and outside-track. Undisturbed samples were collected in 16 points of each transect, spaced 0.50 m apart, for bulk density determination using the cylinder method. Samples were taken in autumn 2011, after grape harvest. Since soil between vine rows was tilled and homogenized beginning spring 2011, cumulative effects of traffic during the vine growth period could be evaluated. The distribution patterns of soil bulk density were characterized by multifractal analysis carried out by the method of moments. Multifractality was assessed by several indexes derived from the mass exponent, τq, the generalized dimension, Dq, and the singularity spectrum, f(α), curves. Mean soil bulk density values determined for vine row, outside-track and wheel-track transects were 1.212 kg dm-3, 1.259 kg dm-3and 1.582 kg dm-3, respectively. The respective coefficients of variation (CV) for these three transects were 7.76%, 4.82% and 2.03%. Therefore mean bulk density under wheel-track was 30

15. Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

Directory of Open Access Journals (Sweden)

Pape Sarah A

2009-02-01

Full Text Available Abstract Background Laser-Doppler imaging (LDI of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA, site and cause of burn, day of LDI scan, burn center. It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are

16. Evaluating an Organizational-Level Occupational Health Intervention in a Combined Regression Discontinuity and Randomized Control Design.

Science.gov (United States)

Sørensen, By Ole H

2016-10-01

Organizational-level occupational health interventions have great potential to improve employees' health and well-being. However, they often compare unfavourably to individual-level interventions. This calls for improving methods for designing, implementing and evaluating organizational interventions. This paper presents and discusses the regression discontinuity design because, like the randomized control trial, it is a strong summative experimental design, but it typically fits organizational-level interventions better. The paper explores advantages and disadvantages of a regression discontinuity design with an embedded randomized control trial. It provides an example from an intervention study focusing on reducing sickness absence in 196 preschools. The paper demonstrates that such a design fits the organizational context, because it allows management to focus on organizations or workgroups with the most salient problems. In addition, organizations may accept an embedded randomized design because the organizations or groups with most salient needs receive obligatory treatment as part of the regression discontinuity design. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

17. A haplotype regression approach for genetic evaluation using sequences from the 1000 bull genomes Project

International Nuclear Information System (INIS)

Lakhssassi, K.; González-Recio, O.

2017-01-01

Haplotypes from sequencing data may improve the prediction accuracy in genomic evaluations as haplotypes are in stronger linkage disequilibrium with quantitative trait loci than markers from SNP chips. This study focuses first, on the creation of haplotypes in a population sample of 450 Holstein animals, with full-sequence data from the 1000 bull genomes project; and second, on incorporating them into the whole genome prediction model. In total, 38,319,258 SNPs (and indels) from Next Generation Sequencing were included in the analysis. After filtering variants with minor allele frequency (MAF< 0.025) 13,912,326 SNPs were available for the haplotypes extraction with findhap.f90. The number of SNPs in the haploblocks was on average 924 SNP (166,552 bp). Unique haplotypes were around 97% in all chromosomes and were ignored leaving 153,428 haplotypes. Estimated haplotypes had a large contribution to the total variance of genomic estimated breeding values for kilogram of protein, Global Type Index, Somatic Cell Score and Days Open (between 32 and 99.9%). Haploblocks containing haplotypes with large effects were selected by filtering for each trait, haplotypes whose effect was larger/lower than the mean plus/minus 3 times the standard deviation (SD) and 1 SD above the mean of the haplotypes effect distribution. Results showed that filtering by 3 SD would not be enough to capture a large proportion of genetic variance, whereas filtering by 1 SD could be useful but model convergence should be considered. Additionally, sequence haplotypes were able to capture additional genetic variance to the polygenic effect for traits undergoing lower selection intensity like fertility and health traits.

18. A haplotype regression approach for genetic evaluation using sequences from the 1000 bull genomes Project

Energy Technology Data Exchange (ETDEWEB)

Lakhssassi, K.; González-Recio, O.

2017-07-01

Haplotypes from sequencing data may improve the prediction accuracy in genomic evaluations as haplotypes are in stronger linkage disequilibrium with quantitative trait loci than markers from SNP chips. This study focuses first, on the creation of haplotypes in a population sample of 450 Holstein animals, with full-sequence data from the 1000 bull genomes project; and second, on incorporating them into the whole genome prediction model. In total, 38,319,258 SNPs (and indels) from Next Generation Sequencing were included in the analysis. After filtering variants with minor allele frequency (MAF< 0.025) 13,912,326 SNPs were available for the haplotypes extraction with findhap.f90. The number of SNPs in the haploblocks was on average 924 SNP (166,552 bp). Unique haplotypes were around 97% in all chromosomes and were ignored leaving 153,428 haplotypes. Estimated haplotypes had a large contribution to the total variance of genomic estimated breeding values for kilogram of protein, Global Type Index, Somatic Cell Score and Days Open (between 32 and 99.9%). Haploblocks containing haplotypes with large effects were selected by filtering for each trait, haplotypes whose effect was larger/lower than the mean plus/minus 3 times the standard deviation (SD) and 1 SD above the mean of the haplotypes effect distribution. Results showed that filtering by 3 SD would not be enough to capture a large proportion of genetic variance, whereas filtering by 1 SD could be useful but model convergence should be considered. Additionally, sequence haplotypes were able to capture additional genetic variance to the polygenic effect for traits undergoing lower selection intensity like fertility and health traits.

19. U.S. Army Armament Research, Development and Engineering Center Grain Evaluation Software to Numerically Predict Linear Burn Regression for Solid Propellant Grain Geometries

Science.gov (United States)

2017-10-01

ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...distribution is unlimited. AD U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Munitions Engineering Technology Center Picatinny...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID

20. Regression Phalanxes

OpenAIRE

Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.

2017-01-01

Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...

1. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

Science.gov (United States)

Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

2016-01-13

A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

2. EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.

Science.gov (United States)

Tong, Xiaoxiao; Bentler, Peter M

2013-01-01

Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and two well-known robust test statistics. A modification to the Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies seven sample sizes and three distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ(2) test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed best overall, while the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.

3. Statistical modelling for precision agriculture: A case study in optimal environmental schedules for Agaricus Bisporus production via variable domain functional regression

Science.gov (United States)

Panayi, Efstathios; Kyriakides, George

2017-01-01

Quantifying the effects of environmental factors over the duration of the growing process on Agaricus Bisporus (button mushroom) yields has been difficult, as common functional data analysis approaches require fixed length functional data. The data available from commercial growers, however, is of variable duration, due to commercial considerations. We employ a recently proposed regression technique termed Variable-Domain Functional Regression in order to be able to accommodate these irregular-length datasets. In this way, we are able to quantify the contribution of covariates such as temperature, humidity and water spraying volumes across the growing process, and for different lengths of growing processes. Our results indicate that optimal oxygen and temperature levels vary across the growing cycle and we propose environmental schedules for these covariates to optimise overall yields. PMID:28961254

4. Using poisson regression to compare rates of unsatisfactory pap smears among gynecologists and to evaluate a performance improvement plan.

Science.gov (United States)

Wachtel, Mitchell S; Hatley, Warren G; de Riese, Cornelia

2009-01-01

To evaluate impact of a performance improvement (PI) plan implemented after initial analysis, comparing 7 gynecologists working in 2 clinics. From January to October 2005, unsatisfactory rates for gynecologists and clinics were calculated. A PI plan was instituted at the end of the first quarter of 2006. Unsatisfactory rates for each quarter of 2006 and the first quarter of 2007 were calculated. Poisson regression analyzed results. A total of 100 ThinPrep Pap smears initially deemed unsatisfactory underwent reprocessing and revaluation. The study's first part evaluated 2890 smears. Clinic unsatisfactory rates, 2.7% and 2.6%, were similar (p > 0.05). Gynecologists' unsatisfactory rates were 4.8-0.6%; differences between each of the highest 2 and lowest rates were significant (p improvement. Reprocessing ThinPrep smears is an important means of reducing unsatisfactory rates but should not be a substitute for attention to quality in sampling.

5. Program system for inclusion, settlement of account and statistical evaluation of on-line recherches

International Nuclear Information System (INIS)

Helmreich, F.; Nevyjel, A.

1981-03-01

The described program system is used for the automatisation of the administration in an information retrieval department. The data of the users and of every on line session are stored in two files and can be evaluated in different statistics. The data acquisition is done interactively, the statistic programs run as well in dialog and in batch. (author)

6. A software package for acquisition, accounting and statistical evaluation of on-line retrieval

International Nuclear Information System (INIS)

Helmreich, F.; Nevyjel, A.

1981-03-01

The described program system is used for the automatization of the administration in an information retrieval department. The data of the users and of every on line session are stored in two files and can be evaluated in different statistics. The data acquisition is done interactively, the statistic programs run as well in dialog and in batch. (author) [de

7. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method.

Science.gov (United States)

Peng, Ying; Li, Su-Ning; Pei, Xuexue; Hao, Kun

2018-03-01

Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.

8. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method

Directory of Open Access Journals (Sweden)

Ying Peng

2018-03-01

Full Text Available Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.

9. Regression Analysis

CERN Document Server

Freund, Rudolf J; Sa, Ping

2006-01-01

The book provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design

10. Multiple linear regression analysis

Science.gov (United States)

Edwards, T. R.

1980-01-01

Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

11. Evaluating clinical and public health interventions: a practical guide to study design and statistics

National Research Council Canada - National Science Library

Katz, Mitchell H

2010-01-01

... and observational studies. In addition to reviewing standard statistical analysis, the book has easy-to-follow explanations of cutting edge techniques for evaluating interventions, including propensity score analysis...

12. Using assemblage data in ecological indicators: A comparison and evaluation of commonly available statistical tools

Science.gov (United States)

Smith, Joseph M.; Mather, Martha E.

2012-01-01

Ecological indicators are science-based tools used to assess how human activities have impacted environmental resources. For monitoring and environmental assessment, existing species assemblage data can be used to make these comparisons through time or across sites. An impediment to using assemblage data, however, is that these data are complex and need to be simplified in an ecologically meaningful way. Because multivariate statistics are mathematical relationships, statistical groupings may not make ecological sense and will not have utility as indicators. Our goal was to define a process to select defensible and ecologically interpretable statistical simplifications of assemblage data in which researchers and managers can have confidence. For this, we chose a suite of statistical methods, compared the groupings that resulted from these analyses, identified convergence among groupings, then we interpreted the groupings using species and ecological guilds. When we tested this approach using a statewide stream fish dataset, not all statistical methods worked equally well. For our dataset, logistic regression (Log), detrended correspondence analysis (DCA), cluster analysis (CL), and non-metric multidimensional scaling (NMDS) provided consistent, simplified output. Specifically, the Log, DCA, CL-1, and NMDS-1 groupings were ≥60% similar to each other, overlapped with the fluvial-specialist ecological guild, and contained a common subset of species. Groupings based on number of species (e.g., Log, DCA, CL and NMDS) outperformed groupings based on abundance [e.g., principal components analysis (PCA) and Poisson regression]. Although the specific methods that worked on our test dataset have generality, here we are advocating a process (e.g., identifying convergent groupings with redundant species composition that are ecologically interpretable) rather than the automatic use of any single statistical tool. We summarize this process in step-by-step guidance for the

13. The Use of a Poisson Regression to Evaluate Antihistamines and Fatal Aircraft Mishaps in Instrument Meteorological Conditions.

Science.gov (United States)

Gildea, Kevin M; Hileman, Christy R; Rogers, Paul; Salazar, Guillermo J; Paskoff, Lawrence N

2018-04-01

Research indicates that first-generation antihistamine usage may impair pilot performance by increasing the likelihood of vestibular illusions, spatial disorientation, and/or cognitive impairment. Second- and third-generation antihistamines generally have fewer impairing side effects and are approved for pilot use. We hypothesized that toxicological findings positive for second- and third-generation antihistamines are less likely to be associated with pilots involved in fatal mishaps than first-generation antihistamines. The evaluated population consisted of 1475 U.S. civil pilots fatally injured between September 30, 2008, and October 1, 2014. Mishap factors evaluated included year, weather conditions, airman rating, recent airman flight time, quarter of year, and time of day. Due to the low prevalence of positive antihistamine findings, a count-based model was selected, which can account for rare outcomes. The means and variances were close for both regression models supporting the assumption that the data follow a Poisson distribution; first-generation antihistamine mishap airmen (N = 582, M = 0.17, S2 = 0.17) with second- and third-generation antihistamine mishap airmen (N = 116, M = 0.20, S2 = 0.18). The data indicate fewer airmen with second- and third-generation antihistamines than first-generation antihistamines in their system are fatally injured while flying in IMC conditions. Whether the lower incidence is a factor of greater usage of first-generation antihistamines versus second- and third-generation antihistamines by the pilot population or fewer deleterious side effects with second- and third-generation antihistamines is unclear. These results engender cautious optimism, but additional research is necessary to determine why these differences exist.Gildea KM, Hileman CR, Rogers P, Salazar GJ, Paskoff LN. The use of a Poisson regression to evaluate antihistamines and fatal aircraft mishaps in instrument meteorological conditions. Aerosp Med Hum Perform

14. A Matlab program for stepwise regression

Directory of Open Access Journals (Sweden)

Yanhong Qi

2016-03-01

Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

15. Evaluation and application of summary statistic imputation to discover new height-associated loci.

Science.gov (United States)

Rüeger, Sina; McDaid, Aaron; Kutalik, Zoltán

2018-05-01

As most of the heritability of complex traits is attributed to common and low frequency genetic variants, imputing them by combining genotyping chips and large sequenced reference panels is the most cost-effective approach to discover the genetic basis of these traits. Association summary statistics from genome-wide meta-analyses are available for hundreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it requires reimputation of the genetic data, rerunning the association scan, and meta-analysing the results. A much more efficient method is to directly impute the summary statistics, termed as summary statistics imputation, which we improved to accommodate variable sample size across SNVs. Its performance relative to genotype imputation and practical utility has not yet been fully investigated. To this end, we compared the two approaches on real (genotyped and imputed) data from 120K samples from the UK Biobank and show that, genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distinguishes true associations from null ones: We observed the largest differences in power for variants with low minor allele frequency and low imputation quality. For fixed false positive rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statistical power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations, we applied summary statistics imputation to the GIANT height meta-analysis summary statistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants published in an exome chip study. Our study demonstrates that summary statistics imputation is a very efficient and cost-effective way to identify and fine-map trait-associated loci. Moreover, the ability to impute summary statistics is important for follow-up analyses, such as Mendelian

16. Multivariate Regression of Liver on Intestine of Mice: A ...

African Journals Online (AJOL)

Multivariate Regression of Liver on Intestine of Mice: A Chemotherapeutic Evaluation of Plant ... Using an analysis of covariance model, the effects ... The findings revealed, with the aid of likelihood-ratio statistic, a marked improvement in

17. A statistical approach to evaluate hydrocarbon remediation in the unsaturated zone

International Nuclear Information System (INIS)

Hajali, P.; Marshall, T.; Overman, S.

1991-01-01

This paper presents an evaluation of performance and cleanup effectiveness of a vapor extraction system (VES) in extracting chlorinated hydrocarbons and petroleum-based hydrocarbons (mineral spirits) from the unsaturated zone. The statistical analysis of soil concentration data to evaluate the VES remediation success is described. The site is a former electronics refurbishing facility in southern California; soil contamination from organic solvents was found mainly in five areas (Area A through E) beneath two buildings. The evaluation begins with a brief description of the site background, discusses the statistical approach, and presents conclusions

18. A Formal Approach for RT-DVS Algorithms Evaluation Based on Statistical Model Checking

Directory of Open Access Journals (Sweden)

Shengxin Dai

2015-01-01

Full Text Available Energy saving is a crucial concern in embedded real time systems. Many RT-DVS algorithms have been proposed to save energy while preserving deadline guarantees. This paper presents a novel approach to evaluate RT-DVS algorithms using statistical model checking. A scalable framework is proposed for RT-DVS algorithms evaluation, in which the relevant components are modeled as stochastic timed automata, and the evaluation metrics including utilization bound, energy efficiency, battery awareness, and temperature awareness are expressed as statistical queries. Evaluation of these metrics is performed by verifying the corresponding queries using UPPAAL-SMC and analyzing the statistical information provided by the tool. We demonstrate the applicability of our framework via a case study of five classical RT-DVS algorithms.

19. Statistical evaluation of fracture characteristics of RPV steels in the ductile-brittle transition temperature region

International Nuclear Information System (INIS)

Kang, Sung Sik; Chi, Se Hwan; Hong, Jun Hwa

1998-01-01

The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a K IC -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel(RPV) steel. Most of the fracture toughness data were within the 95 percent confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data. (author)

20. Statistical evaluation of characteristic SDDLV-induced stress resultants to discriminate between undamaged and damaged elements

DEFF Research Database (Denmark)

Hansen, Lasse Majgaard; Johansen, Rasmus Johan; Ulriksen, Martin Dalgaard

2015-01-01

of modified characteristic stress resultants, which are compared to a pre-defined tolerance value, without any thorough statistical evaluation. In the present paper, it is tested whether three widely-used statistical pattern-recognition-based damage-detection methods can provide an effective statistical...... evaluation of the characteristic stress resultants, hence facilitating general discrimination between damaged and undamaged elements. The three detection methods in question enable outlier analysis on the basis of, respectively, Euclidian distance, Hotelling’s statistics, and Mahalanobis distance. The study...... alternately to an undamaged reference model with known stiffness matrix, hereby, theoretically, yielding characteristic stress resultants approaching zero in the damaged elements. At present, the discrimination between potentially damaged elements and undamaged ones is typically conducted on the basis...

1. Comparing the Goodness of Different Statistical Criteria for Evaluating the Soil Water Infiltration Models

Directory of Open Access Journals (Sweden)

S. Mirzaee

2016-02-01

Full Text Available Introduction: The infiltration process is one of the most important components of the hydrologic cycle. Quantifying the infiltration water into soil is of great importance in watershed management. Prediction of flooding, erosion and pollutant transport all depends on the rate of runoff which is directly affected by the rate of infiltration. Quantification of infiltration water into soil is also necessary to determine the availability of water for crop growth and to estimate the amount of additional water needed for irrigation. Thus, an accurate model is required to estimate infiltration of water into soil. The ability of physical and empirical models in simulation of soil processes is commonly measured through comparisons of simulated and observed values. For these reasons, a large variety of indices have been proposed and used over the years in comparison of infiltration water into soil models. Among the proposed indices, some are absolute criteria such as the widely used root mean square error (RMSE, while others are relative criteria (i.e. normalized such as the Nash and Sutcliffe (1970 efficiency criterion (NSE. Selecting and using appropriate statistical criteria to evaluate and interpretation of the results for infiltration water into soil models is essential because each of the used criteria focus on specific types of errors. Also, descriptions of various goodness of fit indices or indicators including their advantages and shortcomings, and rigorous discussions on the suitability of each index are very important. The objective of this study is to compare the goodness of different statistical criteria to evaluate infiltration of water into soil models. Comparison techniques were considered to define the best models: coefficient of determination (R2, root mean square error (RMSE, efficiency criteria (NSEI and modified forms (such as NSEjI, NSESQRTI, NSElnI and NSEiI. Comparatively little work has been carried out on the meaning and

2. Evaluating the performance of different predictor strategies in regression-based downscaling with a focus on glacierized mountain environments

Science.gov (United States)

Hofer, Marlis; Nemec, Johanna

2016-04-01

This study presents first steps towards verifying the hypothesis that uncertainty in global and regional glacier mass simulations can be reduced considerably by reducing the uncertainty in the high-resolution atmospheric input data. To this aim, we systematically explore the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in geo-environmentally and climatologically very distinct settings, all within highly complex topography and in the close proximity to mountain glaciers: (1) the Vernagtbach station in the Northern European Alps (VERNAGT), (2) the Artesonraju measuring site in the tropical South American Andes (ARTESON), and (3) the Brewster measuring site in the Southern Alps of New Zealand (BREWSTER). As the large-scale predictors, ERA interim reanalysis data are used. In the applied downscaling model training and evaluation procedures, particular emphasis is put on appropriately accounting for the pitfalls of limited and/or patchy observation records that are usually the only (if at all) available data from the glacierized mountain sites. Generalized linear models and beta regression are investigated as alternatives to ordinary least squares regression for the non-Gaussian target variables. By analyzing results for the three different sites, five predictands and for different times of the year, we look for systematic improvements in the downscaling models' skill specifically obtained by (i) using predictor data at the optimum scale rather than the minimum scale of the reanalysis data, (ii) identifying the optimum predictor allocation in the vertical, and (iii) considering multiple (variable, level and/or grid point) predictor options combined with state

3. Hong Kong Hospital Authority resource efficiency evaluation: Via a novel DEA-Malmquist model and Tobit regression model.

Science.gov (United States)

Guo, Hainan; Zhao, Yang; Niu, Tie; Tsui, Kwok-Leung

2017-01-01

The Hospital Authority (HA) is a statutory body managing all the public hospitals and institutes in Hong Kong (HK). In recent decades, Hong Kong Hospital Authority (HKHA) has been making efforts to improve the healthcare services, but there still exist some problems like unfair resource allocation and poor management, as reported by the Hong Kong medical legislative committee. One critical consequence of these problems is low healthcare efficiency of hospitals, leading to low satisfaction among patients. Moreover, HKHA also suffers from the conflict between limited resource and growing demand. An effective evaluation of HA is important for resource planning and healthcare decision making. In this paper, we propose a two-phase method to evaluate HA efficiency for reducing healthcare expenditure and improving healthcare service. Specifically, in Phase I, we measure the HKHA efficiency changes from 2000 to 2013 by applying a novel DEA-Malmquist index with undesirable factors. In Phase II, we further explore the impact of some exogenous factors (e.g., population density) on HKHA efficiency by Tobit regression model. Empirical results show that there are significant differences between the efficiencies of different hospitals and clusters. In particular, it is found that the public hospital serving in a richer district has a relatively lower efficiency. To a certain extent, this reflects the socioeconomic reality in HK that people with better economic condition prefers receiving higher quality service from the private hospitals.

4. Numerical evaluation of the statistical properties of a potential energy landscape

International Nuclear Information System (INIS)

Nave, E La; Sciortino, F; Tartaglia, P; Michele, C De; Mossa, S

2003-01-01

The techniques which allow the numerical evaluation of the statistical properties of the potential energy landscape for models of simple liquids are reviewed and critically discussed. Expressions for the liquid free energy and its vibrational and configurational components are reported. Finally, a possible model for the statistical properties of the landscape, which appears to describe correctly fragile liquids in the region where equilibrium simulations are feasible, is discussed

5. Autistic Regression

Science.gov (United States)

Matson, Johnny L.; Kozlowski, Alison M.

2010-01-01

Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…

6. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

Science.gov (United States)

2015-12-01

Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone

7. The Statistical Value Chain - a Benchmarking Checklist for Decision Makers to Evaluate Decision Support Seen from a Statistical Point-Of-View

DEFF Research Database (Denmark)

Herrmann, Ivan Tengbjerg; Henningsen, Geraldine; Wood, Christian D.

2013-01-01

quantitative methods exist for evaluating uncertainty—for example, Monte Carlo simulation—and such methods work very well when the AN is in full control of the data collection and model-building processes. In many cases, however, the AN is not in control of these processes. In this article we develop a simple...... method that a DM can employ in order to evaluate the process of decision support from a statistical point-of-view. We call this approach the “Statistical Value Chain” (SVC): a consecutive benchmarking checklist with eight steps that can be used to evaluate decision support seen from a statistical point-of-view....

8. Reliable change indices and standardized regression-based change score norms for evaluating neuropsychological change in children with epilepsy.

Science.gov (United States)

Busch, Robyn M; Lineweaver, Tara T; Ferguson, Lisa; Haut, Jennifer S

2015-06-01

Reliable change indices (RCIs) and standardized regression-based (SRB) change score norms permit evaluation of meaningful changes in test scores following treatment interventions, like epilepsy surgery, while accounting for test-retest reliability, practice effects, score fluctuations due to error, and relevant clinical and demographic factors. Although these methods are frequently used to assess cognitive change after epilepsy surgery in adults, they have not been widely applied to examine cognitive change in children with epilepsy. The goal of the current study was to develop RCIs and SRB change score norms for use in children with epilepsy. Sixty-three children with epilepsy (age range: 6-16; M=10.19, SD=2.58) underwent comprehensive neuropsychological evaluations at two time points an average of 12 months apart. Practice effect-adjusted RCIs and SRB change score norms were calculated for all cognitive measures in the battery. Practice effects were quite variable across the neuropsychological measures, with the greatest differences observed among older children, particularly on the Children's Memory Scale and Wisconsin Card Sorting Test. There was also notable variability in test-retest reliabilities across measures in the battery, with coefficients ranging from 0.14 to 0.92. Reliable change indices and SRB change score norms for use in assessing meaningful cognitive change in children following epilepsy surgery are provided for measures with reliability coefficients above 0.50. This is the first study to provide RCIs and SRB change score norms for a comprehensive neuropsychological battery based on a large sample of children with epilepsy. Tables to aid in evaluating cognitive changes in children who have undergone epilepsy surgery are provided for clinical use. An Excel sheet to perform all relevant calculations is also available to interested clinicians or researchers. Copyright © 2015 Elsevier Inc. All rights reserved.

9. Reliable Change Indices and Standardized Regression-Based Change Score Norms for Evaluating Neuropsychological Change in Children with Epilepsy

Science.gov (United States)

Busch, Robyn M.; Lineweaver, Tara T.; Ferguson, Lisa; Haut, Jennifer S.

2015-01-01

Reliable change index scores (RCIs) and standardized regression-based change score norms (SRBs) permit evaluation of meaningful changes in test scores following treatment interventions, like epilepsy surgery, while accounting for test-retest reliability, practice effects, score fluctuations due to error, and relevant clinical and demographic factors. Although these methods are frequently used to assess cognitive change after epilepsy surgery in adults, they have not been widely applied to examine cognitive change in children with epilepsy. The goal of the current study was to develop RCIs and SRBs for use in children with epilepsy. Sixty-three children with epilepsy (age range 6–16; M=10.19, SD=2.58) underwent comprehensive neuropsychological evaluations at two time points an average of 12 months apart. Practice adjusted RCIs and SRBs were calculated for all cognitive measures in the battery. Practice effects were quite variable across the neuropsychological measures, with the greatest differences observed among older children, particularly on the Children’s Memory Scale and Wisconsin Card Sorting Test. There was also notable variability in test-retest reliabilities across measures in the battery, with coefficients ranging from 0.14 to 0.92. RCIs and SRBs for use in assessing meaningful cognitive change in children following epilepsy surgery are provided for measures with reliability coefficients above 0.50. This is the first study to provide RCIs and SRBs for a comprehensive neuropsychological battery based on a large sample of children with epilepsy. Tables to aid in evaluating cognitive changes in children who have undergone epilepsy surgery are provided for clinical use. An excel sheet to perform all relevant calculations is also available to interested clinicians or researchers. PMID:26043163

10. Applied linear regression

CERN Document Server

Weisberg, Sanford

2013-01-01

Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

11. Applied logistic regression

CERN Document Server

Hosmer, David W; Sturdivant, Rodney X

2013-01-01

A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

12. Evaluation of undergraduate nursing students' attitudes towards statistics courses, before and after a course in applied statistics.

Science.gov (United States)

Hagen, Brad; Awosoga, Olu; Kellett, Peter; Dei, Samuel Ofori

2013-09-01

Undergraduate nursing students must often take a course in statistics, yet there is scant research to inform teaching pedagogy. The objectives of this study were to assess nursing students' overall attitudes towards statistics courses - including (among other things) overall fear and anxiety, preferred learning and teaching styles, and the perceived utility and benefit of taking a statistics course - before and after taking a mandatory course in applied statistics. The authors used a pre-experimental research design (a one-group pre-test/post-test research design), by administering a survey to nursing students at the beginning and end of the course. The study was conducted at a University in Western Canada that offers an undergraduate Bachelor of Nursing degree. Participants included 104 nursing students, in the third year of a four-year nursing program, taking a course in statistics. Although students only reported moderate anxiety towards statistics, student anxiety about statistics had dropped by approximately 40% by the end of the course. Students also reported a considerable and positive change in their attitudes towards learning in groups by the end of the course, a potential reflection of the team-based learning that was used. Students identified preferred learning and teaching approaches, including the use of real-life examples, visual teaching aids, clear explanations, timely feedback, and a well-paced course. Students also identified preferred instructor characteristics, such as patience, approachability, in-depth knowledge of statistics, and a sense of humor. Unfortunately, students only indicated moderate agreement with the idea that statistics would be useful and relevant to their careers, even by the end of the course. Our findings validate anecdotal reports on statistics teaching pedagogy, although more research is clearly needed, particularly on how to increase students' perceptions of the benefit and utility of statistics courses for their nursing

13. Linear regression

CERN Document Server

Olive, David J

2017-01-01

This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

14. Risk factors for subclinical intramammary infection in dairy goats in two longitudinal field studies evaluated by Bayesian logistic regression

DEFF Research Database (Denmark)

Koop, Gerrit; Collar, Carol A.; Toft, Nils

2013-01-01

Identification of risk factors for subclinical intramammary infections (IMI) in dairy goats should contribute to improved udder health. Intramammary infection may be diagnosed by bacteriological culture or by somatic cell count (SCC) of a milk sample. Both bacteriological culture and SCC are impe......Identification of risk factors for subclinical intramammary infections (IMI) in dairy goats should contribute to improved udder health. Intramammary infection may be diagnosed by bacteriological culture or by somatic cell count (SCC) of a milk sample. Both bacteriological culture and SCC...... are imperfect tests, particularly lacking sensitivity, which leads to misclassification and thus to biased estimates of odds ratios in risk factor studies. The objective of this study was to evaluate risk factors for the true (latent) IMI status of major pathogens in dairy goats. We used Bayesian logistic...... regression models that accounted for imperfect measurement of IMI by both culture and SCC. Udder half milk samples were collected from 530 Dutch and 438 California dairy goats in 10 herds on 3 occasions during lactation. Udder halves were classified as positive or negative for isolation of a major pathogen...

15. Evaluation of mechanical properties of steel wire ropes by statistical methods

Directory of Open Access Journals (Sweden)

Boroška Ján

1999-12-01

Full Text Available The contribution deals with the evaluation of mechanical properties of steel wire ropes using statistical methods from the viewpoint of the quality of single wires as well as the internal construction of the wire ropes. The evaluation is based on the loading capacity calculated from the strength, number of folds and torsions. For the better ilustration, a box plot has been constructed.

16. Evaluating an Active Learning Approach to Teaching Introductory Statistics: A Classroom Workbook Approach

Science.gov (United States)

Carlson, Kieth A.; Winquist, Jennifer R.

2011-01-01

The study evaluates a semester-long workbook curriculum approach to teaching a college level introductory statistics course. The workbook curriculum required students to read content before and during class and then work in groups to complete problems and answer conceptual questions pertaining to the material they read. Instructors spent class…

17. Statistical evaluation of an interlaboratory comparison for the determination of uranium by potentiometric titration

International Nuclear Information System (INIS)

Ketema, D.J.; Harry, R.J.S.; Zijp, W.L.

1990-09-01

Upon request of the ESARDA working group 'Low enriched uranium conversion - and fuel fabrication plants' an interlaboratory comparison was organized, to assess the precision and accuracy concerning the determination of uranium by the potentiometric titration method. This report presents the results of a statistical evaluation on the data of the first phase of this exercise. (author). 9 refs.; 5 figs.; 24 tabs

18. Nonlinear Regression with R

CERN Document Server

Ritz, Christian; Parmigiani, Giovanni

2009-01-01

R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

19. Mathematical statistics

CERN Document Server

Pestman, Wiebe R

2009-01-01

This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.

20. Incorporating big data into treatment plan evaluation: Development of statistical DVH metrics and visualization dashboards.

Science.gov (United States)

Mayo, Charles S; Yao, John; Eisbruch, Avraham; Balter, James M; Litzenberg, Dale W; Matuszak, Martha M; Kessler, Marc L; Weyburn, Grant; Anderson, Carlos J; Owen, Dawn; Jackson, William C; Haken, Randall Ten

2017-01-01

To develop statistical dose-volume histogram (DVH)-based metrics and a visualization method to quantify the comparison of treatment plans with historical experience and among different institutions. The descriptive statistical summary (ie, median, first and third quartiles, and 95% confidence intervals) of volume-normalized DVH curve sets of past experiences was visualized through the creation of statistical DVH plots. Detailed distribution parameters were calculated and stored in JavaScript Object Notation files to facilitate management, including transfer and potential multi-institutional comparisons. In the treatment plan evaluation, structure DVH curves were scored against computed statistical DVHs and weighted experience scores (WESs). Individual, clinically used, DVH-based metrics were integrated into a generalized evaluation metric (GEM) as a priority-weighted sum of normalized incomplete gamma functions. Historical treatment plans for 351 patients with head and neck cancer, 104 with prostate cancer who were treated with conventional fractionation, and 94 with liver cancer who were treated with stereotactic body radiation therapy were analyzed to demonstrate the usage of statistical DVH, WES, and GEM in a plan evaluation. A shareable dashboard plugin was created to display statistical DVHs and integrate GEM and WES scores into a clinical plan evaluation within the treatment planning system. Benchmarking with normal tissue complication probability scores was carried out to compare the behavior of GEM and WES scores. DVH curves from historical treatment plans were characterized and presented, with difficult-to-spare structures (ie, frequently compromised organs at risk) identified. Quantitative evaluations by GEM and/or WES compared favorably with the normal tissue complication probability Lyman-Kutcher-Burman model, transforming a set of discrete threshold-priority limits into a continuous model reflecting physician objectives and historical experience

1. Development and evaluation of a regression-based model to predict cesium-137 concentration ratios for saltwater fish

International Nuclear Information System (INIS)

Pinder, John E.; Rowan, David J.; Smith, Jim T.

2016-01-01

Data from published studies and World Wide Web sources were combined to develop a regression model to predict "1"3"7Cs concentration ratios for saltwater fish. Predictions were developed from 1) numeric trophic levels computed primarily from random resampling of known food items and 2) K concentrations in the saltwater for 65 samplings from 41 different species from both the Atlantic and Pacific Oceans. A number of different models were initially developed and evaluated for accuracy which was assessed as the ratios of independently measured concentration ratios to those predicted by the model. In contrast to freshwater systems, were K concentrations are highly variable and are an important factor in affecting fish concentration ratios, the less variable K concentrations in saltwater were relatively unimportant in affecting concentration ratios. As a result, the simplest model, which used only trophic level as a predictor, had comparable accuracies to more complex models that also included K concentrations. A test of model accuracy involving comparisons of 56 published concentration ratios from 51 species of marine fish to those predicted by the model indicated that 52 of the predicted concentration ratios were within a factor of 2 of the observed concentration ratios. - Highlights: • We developed a model to predict concentration ratios (C_r) for saltwater fish. • The model requires only a single input variable to predict C_r. • That variable is a mean numeric trophic level available at (fishbase.org). • The K concentrations in seawater were not an important predictor variable. • The median-to observed ratio for 56 independently measured C_r was 0.83.

2. Total-Factor Energy Efficiency (TFEE Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques

Directory of Open Access Journals (Sweden)

Jin-Peng Liu

2017-07-01

Full Text Available Under the background of a new round of power market reform, realizing the goals of energy saving and emission reduction, reducing the coal consumption and ensuring the sustainable development are the key issues for thermal power industry. With the biggest economy and energy consumption scales in the world, China should promote the energy efficiency of thermal power industry to solve these problems. Therefore, from multiple perspectives, the factors influential to the energy efficiency of thermal power industry were identified. Based on the economic, social and environmental factors, a combination model with Data Envelopment Analysis (DEA and Malmquist index was constructed to evaluate the total-factor energy efficiency (TFEE in thermal power industry. With the empirical studies from national and provincial levels, the TFEE index can be factorized into the technical efficiency index (TECH, the technical progress index (TPCH, the pure efficiency index (PECH and the scale efficiency index (SECH. The analysis showed that the TFEE was mainly determined by TECH and PECH. Meanwhile, by panel data regression model, unit coal consumption, talents and government supervision were selected as important indexes to have positive effects on TFEE in thermal power industry. In addition, the negative indexes, such as energy price and installed capacity, were also analyzed to control their undesired effects. Finally, considering the analysis results, measures for improving energy efficiency of thermal power industry were discussed widely, such as strengthening technology research and design (R&D, enforcing pollutant and emission reduction, distributing capital and labor rationally and improving the government supervision. Relative study results and suggestions can provide references for Chinese government and enterprises to enhance the energy efficiency level.

3. Performance evaluation of CT measurements made on step gauges using statistical methodologies

DEFF Research Database (Denmark)

Angel, J.; De Chiffre, L.; Kruth, J.P.

2015-01-01

In this paper, a study is presented in which statistical methodologies were applied to evaluate the measurement of step gauges on an X-ray computed tomography (CT) system. In particular, the effects of step gauge material density and orientation were investigated. The step gauges consist of uni......- and bidirectional lengths. By confirming the repeatability of measurements made on the test system, the number of required scans in the design of experiment (DOE) was reduced. The statistical model was checked using model adequacy principles; model adequacy checking is an important step in validating...

4. Statistical evaluations concerning the failure behaviour of formed parts with superheated steam flow. Pt. 1

International Nuclear Information System (INIS)

Oude-Hengel, H.H.; Vorwerk, K.; Heuser, F.W.; Boesebeck, K.

1976-01-01

Statistical evaluations concerning the failure behaviour of formed parts with superheated-steam flow were carried out using data from VdTUEV inventory and failure statistics. Due to the great number of results, the findings will be published in two volumes. This first part will describe and classify the stock of data and will make preliminary quantitative statements on failure behaviour. More differentiated statements are made possible by including the operation time and the number of start-ups per failed part. On the basis of time-constant failure rates some materials-specific statements are given. (orig./ORU) [de

5. Understanding poisson regression.

Science.gov (United States)

Hayat, Matthew J; Higgins, Melinda

2014-04-01

Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

6. The large break LOCA evaluation method with the simplified statistic approach

International Nuclear Information System (INIS)

Kamata, Shinya; Kubo, Kazuo

2004-01-01

USNRC published the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology to large break LOCA which supported the revised rule for Emergency Core Cooling System performance in 1989. In USNRC regulatory guide 1.157, it is required that the peak cladding temperature (PCT) cannot exceed 2200deg F with high probability 95th percentile. In recent years, overseas countries have developed statistical methodology and best estimate code with the model which can provide more realistic simulation for the phenomena based on the CSAU evaluation methodology. In order to calculate PCT probability distribution by Monte Carlo trials, there are approaches such as the response surface technique using polynomials, the order statistics method, etc. For the purpose of performing rational statistic analysis, Mitsubishi Heavy Industries, LTD (MHI) tried to develop the statistic LOCA method using the best estimate LOCA code MCOBRA/TRAC and the simplified code HOTSPOT. HOTSPOT is a Monte Carlo heat conduction solver to evaluate the uncertainties of the significant fuel parameters at the PCT positions of the hot rod. The direct uncertainty sensitivity studies can be performed without the response surface because the Monte Carlo simulation for key parameters can be performed in short time using HOTSPOT. With regard to the parameter uncertainties, MHI established the treatment that the bounding conditions are given for LOCA boundary and plant initial conditions, the Monte Carlo simulation using HOTSPOT is applied to the significant fuel parameters. The paper describes the large break LOCA evaluation method with the simplified statistic approach and the results of the application of the method to the representative four-loop nuclear power plant. (author)

7. Regression methods for medical research

CERN Document Server

Tai, Bee Choo

2013-01-01

Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

8. Boosted beta regression.

Directory of Open Access Journals (Sweden)

Matthias Schmid

Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

9. Development of a new statistical evaluation method for brain SPECT images

International Nuclear Information System (INIS)

Kawashima, Ryuta; Sato, Kazunori; Ito, Hiroshi; Koyama, Masamichi; Goto, Ryoui; Yoshioka, Seiro; Ono, Shuichi; Sato, Tachio; Fukuda, Hiroshi

1996-01-01

The purpose of this study was to develop a new statistical evaluation method for brain SPECT images. First, we made normal brain image databases using 99m Tc-ECD and SPECT in 10 normal subjects as described previously. Each SPECT images were globally normalized and anatomically standardized to the standard brain shape using Human Brain Atlas (HBA) of Roland et al. and each subject's X-CT. Then, mean and SD images were calculated voxel by voxel. For the next step, 99m Tc-ECD SPECT images of a patient were obtained, and global normalization and anatomical standardization were performed as the same way. Then, a statistical map was calculated as following voxel by voxel; (P-Mean)/SDx10+50, where P, mean and SD indicate voxel value of patient, mean and SD images of normal databases, respectively. We found this statistical map was helpful for clinical diagnosis of brain SPECT studies. (author)

10. Statistical approaches for evaluating body composition markers in clinical cancer research.

Science.gov (United States)

Bayar, Mohamed Amine; Antoun, Sami; Lanoy, Emilie

2017-04-01

The term 'morphomics' stands for the markers of body composition in muscle and adipose tissues. in recent years, as part of clinical cancer research, several associations between morphomics and outcome or toxicity were found in different treatment settings leading to a growing interest. we aim to review statistical approaches used to evaluate these markers and suggest practical statistical recommendations. Area covered: We identified statistical methods used recently to take into account properties of morphomics measurements. We also reviewed adjustment methods on major confounding factors such as gender and approaches to model morphomic data, especially mixed models for repeated measures. Finally, we focused on methods for determining a cut-off for a morphomic marker that could be used in clinical practice and how to assess its robustness. Expert commentary: From our review, we proposed 13 key points to strengthen analyses and reporting of clinical research assessing associations between morphomics and outcome or toxicity.

11. Evaluating statistical tests on OLAP cubes to compare degree of disease.

Science.gov (United States)

Ordonez, Carlos; Chen, Zhibo

2009-09-01

Statistical tests represent an important technique used to formulate and validate hypotheses on a dataset. They are particularly useful in the medical domain, where hypotheses link disease with medical measurements, risk factors, and treatment. In this paper, we propose to compute parametric statistical tests treating patient records as elements in a multidimensional cube. We introduce a technique that combines dimension lattice traversal and statistical tests to discover significant differences in the degree of disease within pairs of patient groups. In order to understand a cause-effect relationship, we focus on patient group pairs differing in one dimension. We introduce several optimizations to prune the search space, to discover significant group pairs, and to summarize results. We present experiments showing important medical findings and evaluating scalability with medical datasets.

12. Statistically based evaluation of toughness properties of components in older nuclear power stations

International Nuclear Information System (INIS)

Aurich, D.; Jaenicke, B.; Veith, H.

1996-01-01

The KTA code 3201.2 contains provisions for the evaluation of K Ic values measured in components, but there are no instructions on how to proceed. According to the present state of the art in science and technology, fracture toughness values K Ic (T) should be evaluated statistically in order to specify the relationship to the loading values K I (T). The 'Master Curve' concept of Wallin yields too flat a curve shape at high temperatures. The statistical evaluation of K Ic values can also be carried out with the KTA-K Ic reference temperature function assuming a normal distribution of the measuring values. The KTA-K Ic reference temperature curve approximately corresponds to a fracture probability of 5 % when the KTA-K Ic reference temperature function is used for the statistical evaluation of the test results. Conclusions for the assessment of the safe distances can be drawn from the steeper shape of the KTA-K Ic reference temperature function in comparison to the 'Master Curve'. (orig.) [de

13. Time-to-event methodology improved statistical evaluation in register-based health services research.

Science.gov (United States)

Bluhmki, Tobias; Bramlage, Peter; Volk, Michael; Kaltheuner, Matthias; Danne, Thomas; Rathmann, Wolfgang; Beyersmann, Jan

2017-02-01

Complex longitudinal sampling and the observational structure of patient registers in health services research are associated with methodological challenges regarding data management and statistical evaluation. We exemplify common pitfalls and want to stimulate discussions on the design, development, and deployment of future longitudinal patient registers and register-based studies. For illustrative purposes, we use data from the prospective, observational, German DIabetes Versorgungs-Evaluation register. One aim was to explore predictors for the initiation of a basal insulin supported therapy in patients with type 2 diabetes initially prescribed to glucose-lowering drugs alone. Major challenges are missing mortality information, time-dependent outcomes, delayed study entries, different follow-up times, and competing events. We show that time-to-event methodology is a valuable tool for improved statistical evaluation of register data and should be preferred to simple case-control approaches. Patient registers provide rich data sources for health services research. Analyses are accompanied with the trade-off between data availability, clinical plausibility, and statistical feasibility. Cox' proportional hazards model allows for the evaluation of the outcome-specific hazards, but prediction of outcome probabilities is compromised by missing mortality information. Copyright © 2016 Elsevier Inc. All rights reserved.

14. Monitoring and Evaluation; Statistical Support for Life-cycle Studies, 2003 Annual Report.

Energy Technology Data Exchange (ETDEWEB)

Skalski, John

2003-12-01

This report summarizes the statistical analysis and consulting activities performed under Contract No. 00004134, Project No. 199105100 funded by Bonneville Power Administration during 2003. These efforts are focused on providing real-time predictions of outmigration timing, assessment of life-history performance measures, evaluation of status and trends in recovery, and guidance on the design and analysis of Columbia Basin fish and wildlife studies monitoring and evaluation studies. The overall objective of the project is to provide BPA and the rest of the fisheries community with statistical guidance on design, analysis, and interpretation of monitoring data, which will lead to improved monitoring and evaluation of salmonid mitigation programs in the Columbia/Snake River Basin. This overall goal is being accomplished by making fisheries data readily available for public scrutiny, providing statistical guidance on the design and analyses of studies by hands-on support and written documents, and providing real-time analyses of tagging results during the smolt outmigration for review by decision makers. For a decade, this project has been providing in-season projections of smolt outmigration timing to assist in spill management. As many as 50 different fish stocks at 8 different hydroprojects are tracked and real-time to predict the 'percent of run to date' and 'date to specific percentile'. The project also conducts added-value analyses of historical tagging data to understand relationships between fish responses, environmental factors, and anthropogenic effects. The statistical analysis of historical tagging data crosses agency lines in order to assimilate information on salmon population dynamics irrespective of origin. The lessons learned from past studies are used to improve the design and analyses of future monitoring and evaluation efforts. Through these efforts, the project attempts to provide the fisheries community with reliable analyses

15. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

Science.gov (United States)

Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

2015-01-01

A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

16. Statistical evaluation of waveform collapse reveals scale-free properties of neuronal avalanches

Directory of Open Access Journals (Sweden)

Aleena eShaukat

2016-04-01

Full Text Available Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX, which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems.

17. Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing?

Science.gov (United States)

Grützun, V.; Quaas, J.; Morcrette, C. J.; Ament, F.

2013-09-01

Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the "perfect model approach." This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.

18. The issue of statistical power for overall model fit in evaluating structural equation models

Directory of Open Access Journals (Sweden)

Richard HERMIDA

2015-06-01

Full Text Available Statistical power is an important concept for psychological research. However, examining the power of a structural equation model (SEM is rare in practice. This article provides an accessible review of the concept of statistical power for the Root Mean Square Error of Approximation (RMSEA index of overall model fit in structural equation modeling. By way of example, we examine the current state of power in the literature by reviewing studies in top Industrial-Organizational (I/O Psychology journals using SEMs. Results indicate that in many studies, power is very low, which implies acceptance of invalid models. Additionally, we examined methodological situations which may have an influence on statistical power of SEMs. Results showed that power varies significantly as a function of model type and whether or not the model is the main model for the study. Finally, results indicated that power is significantly related to model fit statistics used in evaluating SEMs. The results from this quantitative review imply that researchers should be more vigilant with respect to power in structural equation modeling. We therefore conclude by offering methodological best practices to increase confidence in the interpretation of structural equation modeling results with respect to statistical power issues.

19. Evaluating the statistical methodology of randomized trials on dentin hypersensitivity management.

Science.gov (United States)

Matranga, Domenica; Matera, Federico; Pizzo, Giuseppe

2017-12-27

The present study aimed to evaluate the characteristics and quality of statistical methodology used in clinical studies on dentin hypersensitivity management. An electronic search was performed for data published from 2009 to 2014 by using PubMed, Ovid/MEDLINE, and Cochrane Library databases. The primary search terms were used in combination. Eligibility criteria included randomized clinical trials that evaluated the efficacy of desensitizing agents in terms of reducing dentin hypersensitivity. A total of 40 studies were considered eligible for assessment of quality statistical methodology. The four main concerns identified were i) use of nonparametric tests in the presence of large samples, coupled with lack of information about normality and equality of variances of the response; ii) lack of P-value adjustment for multiple comparisons; iii) failure to account for interactions between treatment and follow-up time; and iv) no information about the number of teeth examined per patient and the consequent lack of cluster-specific approach in data analysis. Owing to these concerns, statistical methodology was judged as inappropriate in 77.1% of the 35 studies that used parametric methods. Additional studies with appropriate statistical analysis are required to obtain appropriate assessment of the efficacy of desensitizing agents.

20. Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation

Science.gov (United States)

Platnick, Steven E.

2011-01-01

The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.

1. Vector regression introduced

Directory of Open Access Journals (Sweden)

Mok Tik

2014-06-01

Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

2. Statistical evaluation of internal contamination data in the man following the Chernobyl accident

International Nuclear Information System (INIS)

Tarroni, G.; Battisti, P.; Melandri, C.; Castellani, C.M.; Formignani, M.

1989-01-01

The main implications of the general interest derived from the statistical analysis of the internal human contamination data obtained by ENEA-PAS with Whole Body Counter mesurements performed in Bologna in consequence of the Chernobyl accident are presented. In particular the trend with time of the individual body activity of members of a homogeneous group, the variability of individual contamination in ralation to the mean contamination, the statistical distribution of the data, the significance of mean values concerning small, homogeneous groups of subjects, the difference between subjects of different sex and its trend with time, are examined. Finally, the substantial independence of the individual committed dose equivalent evaluation due to the Chernobyl contamination on the Whole from the hypothesized values of the metabolic parameters is pointed out when the evaluation is performed on the basis of direct measurements with a Whole Body Counter

3. Computer-based teaching and evaluation of introductory statistics for health science students: some lessons learned

Directory of Open Access Journals (Sweden)

Nuala Colgan

1994-12-01

Full Text Available In recent years, it has become possible to introduce health science students to statistical packages at an increasingly early stage in their undergraduate studies. This has enabled teaching to take place in a computer laboratory, using real data, and encouraging an exploratory and research-oriented approach. This paper briefly describes a hypertext Computer Based Tutorial (CBT concerned with descriptive statistics and introductory data analysis. The CBT has three primary objectives: the introduction of concepts, the facilitation of revision, and the acquisition of skills for project work. Objective testing is incorporated and used for both self-assessment and formal examination. Evaluation was carried out with a large group of Health Science students, heterogeneous with regard to their IT skills and basic numeracy. The results of the evaluation contain valuable lessons.

4. Some tendencies of the radioanalytical literature statistical games for trend evaluation. Pt. 1

International Nuclear Information System (INIS)

Braun, T.

1975-01-01

The distribution of the radioanalytical information sources was statistically evaluated by citation counting. Using some review and progress reports as object of the study, it seems that in the period 1956-1973 one witnesses a significant concentration of the radioanalytical information sources. Fundamental assumptions were that the information bank of each particular field is its published literature and that the most important and most characteristic information sources of a given field are surveyed in reviews and progress reports evaluating the published literature critically. The present study therefore analyses the references appended to some of such reviews and progress reports. The percentage distribution of the references of four reviews published between 1970 and 1975 was calculated with respects to their appearing in journals or nonjournals including books, conference proceedings, reports and patents. Statistic taken from 1.4 million references, which appeared in the 1961 literature, disclosed that 84% of these references are to journal articles. (F.Gy.)

5. SIIFSCOP - a computer package for statistical evaluations of stable isotopes in precipitation

International Nuclear Information System (INIS)

Hussain, Q.M.; Qureshi, R.M.; Sajjad, M.I.

1989-08-01

SIIFSCOP is a FORTRAN 77 computer package developed for the statistical evaluations of precipitation data using an IBM com patible PC-XT/AT. The report describes the terminology and equa tions on which the program is based. The required format of the input data, sample outputs and the program listing. Using the measured/calculated isotopic values and the available meteorological data several correlations may be calculated e.g. deuterium, temperature etc. (orig./A.B.)

6. A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

OpenAIRE

Robert K. Kaufmann; David I. Stern

2004-01-01

The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing thre...

7. Incorporating big data into treatment plan evaluation: Development of statistical DVH metrics and visualization dashboards

Directory of Open Access Journals (Sweden)

Charles S. Mayo, PhD

2017-07-01

Conclusions: Statistical DVH offers an easy-to-read, detailed, and comprehensive way to visualize the quantitative comparison with historical experiences and among institutions. WES and GEM metrics offer a flexible means of incorporating discrete threshold-prioritizations and historic context into a set of standardized scoring metrics. Together, they provide a practical approach for incorporating big data into clinical practice for treatment plan evaluations.

8. A regression model using sediment chemistry for the evaluation of marine environmental impacts associated with salmon aquaculture cage wastes

International Nuclear Information System (INIS)

Chou, C.L.; Haya, K.; Paon, L.A.; Moffatt, J.D.

2004-01-01

This study was undertaken to develop an approach for modelling changes of sediment chemistry related to the accumulation of aquaculture waste. Metal composition of sediment Al, Cu, Fe, Li, Mn, and Zn; organic carbon and 2 =0.945 compared to R 2 =0.653 for the regression model using unadjusted EMP for assessing the environmental conditions

9. Statistical evaluation of failures and repairs of the V-1 measuring and control system

International Nuclear Information System (INIS)

Laurinec, R.; Korec, J.; Mitosinka, J.; Zarnovican, V.

1984-01-01

A failure record card system was introduced for evaluating the reliability of the measurement and control equipment of the V-1 nuclear power plant. The SPU-800 microcomputer system is used for recording data on magnetic tape and their transmission to the central data processing department. The data are used for evaluating the reliability of components and circuits and a selection is made of the most failure-prone components, and the causes of failures are evaluated as are failure identification, repair and causes of outages. The system provides monthly, annual and total assessment data since the system was commissioned. The results of the statistical evaluation of failures are used for planning preventive maintenance and for determining optimal repair intervals. (E.S.)

10. An empirical tool to evaluate the safety of cyclists: Community based, macro-level collision prediction models using negative binomial regression.

Science.gov (United States)

Wei, Feng; Lovegrove, Gordon

2013-12-01

Today, North American governments are more willing to consider compact neighborhoods with increased use of sustainable transportation modes. Bicycling, one of the most effective modes for short trips with distances less than 5km is being encouraged. However, as vulnerable road users (VRUs), cyclists are more likely to be injured when involved in collisions. In order to create a safe road environment for them, evaluating cyclists' road safety at a macro level in a proactive way is necessary. In this paper, different generalized linear regression methods for collision prediction model (CPM) development are reviewed and previous studies on micro-level and macro-level bicycle-related CPMs are summarized. On the basis of insights gained in the exploration stage, this paper also reports on efforts to develop negative binomial models for bicycle-auto collisions at a community-based, macro-level. Data came from the Central Okanagan Regional District (CORD), of British Columbia, Canada. The model results revealed two types of statistical associations between collisions and each explanatory variable: (1) An increase in bicycle-auto collisions is associated with an increase in total lane kilometers (TLKM), bicycle lane kilometers (BLKM), bus stops (BS), traffic signals (SIG), intersection density (INTD), and arterial-local intersection percentage (IALP). (2) A decrease in bicycle collisions was found to be associated with an increase in the number of drive commuters (DRIVE), and in the percentage of drive commuters (DRP). These results support our hypothesis that in North America, with its current low levels of bicycle use (macro-level CPMs. Copyright © 2012. Published by Elsevier Ltd.

11. SEPARATION PHENOMENA LOGISTIC REGRESSION

Directory of Open Access Journals (Sweden)

Ikaro Daniel de Carvalho Barreto

2014-03-01

Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

12. Statistical properties of material strength for reliability evaluation of components of fast reactors. Austenitic stainless steels

International Nuclear Information System (INIS)

Takaya, Shigeru; Sasaki, Naoto; Tomobe, Masato

2015-03-01

Many efforts have been made to implement the System Based Code concept of which objective is to optimize margins dispersed in several codes and standards. Failure probability is expected to be a promising quantitative index for optimization of margins, and statistical information for random variables is needed to evaluate failure probability. Material strength like tensile strength is an important random variable, but the statistical information has not been provided enough yet. In this report, statistical properties of material strength such as creep rupture time, steady creep strain rate, yield stress, tensile stress, flow stress, fatigue life and cyclic stress-strain curve, were estimated for SUS304 and 316FR steel, which are typical structural materials for fast reactors. Other austenitic stainless steels like SUS316 were also used for statistical estimation of some material properties such as fatigue life. These materials are registered in the JSME code of design and construction of fast reactors, so test data used for developing the code were used as much as possible in this report. (author)

13. Evaluation of Solid Rocket Motor Component Data Using a Commercially Available Statistical Software Package

Science.gov (United States)

Stefanski, Philip L.

2015-01-01

Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.

14. Descriptive statistics: the specification of statistical measures and their presentation in tables and graphs. Part 7 of a series on evaluation of scientific publications.

Science.gov (United States)

Spriestersbach, Albert; Röhrig, Bernd; du Prel, Jean-Baptist; Gerhold-Ay, Aslihan; Blettner, Maria

2009-09-01

Descriptive statistics are an essential part of biometric analysis and a prerequisite for the understanding of further statistical evaluations, including the drawing of inferences. When data are well presented, it is usually obvious whether the author has collected and evaluated them correctly and in keeping with accepted practice in the field. Statistical variables in medicine may be of either the metric (continuous, quantitative) or categorical (nominal, ordinal) type. Easily understandable examples are given. Basic techniques for the statistical description of collected data are presented and illustrated with examples. The goal of a scientific study must always be clearly defined. The definition of the target value or clinical endpoint determines the level of measurement of the variables in question. Nearly all variables, whatever their level of measurement, can be usefully presented graphically and numerically. The level of measurement determines what types of diagrams and statistical values are appropriate. There are also different ways of presenting combinations of two independent variables graphically and numerically. The description of collected data is indispensable. If the data are of good quality, valid and important conclusions can already be drawn when they are properly described. Furthermore, data description provides a basis for inferential statistics.

15. Statistical Evaluation of the Emissions Level Of CO, CO2 and HC Generated by Passenger Cars

Directory of Open Access Journals (Sweden)

Claudiu Ursu

2014-12-01

Full Text Available This paper aims to make an evaluation of differences emission level of CO, CO2 and HC generated by passenger cars in different walking regimes and times, to identify measures of reducing pollution. Was analyzed a sample of Dacia Logan passenger cars (n = 515, made during the period 2004-2007, equipped with spark ignition engines, assigned to emission standards EURO 3 (E3 and EURO4 (E4. These cars were evaluated at periodical technical inspection (ITP by two times in the two walk regimes (slow idle and accelerated idle. Using the t test for paired samples (Paired Samples T Test, the results showed that there are significant differences between emissions levels (CO, CO2, HC generated by Dacia Logan passenger cars at both assessments, and regression analysis showed that these differences are not significantly influenced by turnover differences.

16. Multicollinearity and Regression Analysis

Science.gov (United States)

Daoud, Jamal I.

2017-12-01

In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

17. Statistics of meteorology for dose evaluation of crews of nuclear ship

International Nuclear Information System (INIS)

Imai, Kazuhiko; Chino, Masamichi

1981-01-01

For the purpose of the dose evaluation of crews of a nuclear ship, the statistics of wind speed and direction relative to the ship is discussed, using wind data which are reported from ships crusing sea around Japan Island. The analysis on the data shows that the occurrence frequency of wind speed can be fitted with the γ-distribution having parameter p around 3 and wind direction frequency can be treated as a uniform distribution. Using these distributions and taking the ship speed u 3 and the long-term mean speed of natural wind anti u as constant parameters, frequency distribution of wind speed and direction relative to the ship was calculated and statistical quantities necessary for dose evaluation were obtained in the way similar to the procedure for reactor sites on land. The 97% value of wind speed u 97 , which should be used in the dose evaluation for accidental releases may give conservative doses, if it is evaluated as follows, u 97 = 0.64 u sub(s) in the cases u sub(s) > anti u, and u 97 = 0.86 anti u in the cases u sub(s) < anti u including u sub(s) = 0. (author)

18. Evaluating Statistical Process Control (SPC) techniques and computing the uncertainty of force calibrations

Science.gov (United States)

Navard, Sharon E.

1989-01-01

In recent years there has been a push within NASA to use statistical techniques to improve the quality of production. Two areas where statistics are used are in establishing product and process quality control of flight hardware and in evaluating the uncertainty of calibration of instruments. The Flight Systems Quality Engineering branch is responsible for developing and assuring the quality of all flight hardware; the statistical process control methods employed are reviewed and evaluated. The Measurement Standards and Calibration Laboratory performs the calibration of all instruments used on-site at JSC as well as those used by all off-site contractors. These calibrations must be performed in such a way as to be traceable to national standards maintained by the National Institute of Standards and Technology, and they must meet a four-to-one ratio of the instrument specifications to calibrating standard uncertainty. In some instances this ratio is not met, and in these cases it is desirable to compute the exact uncertainty of the calibration and determine ways of reducing it. A particular example where this problem is encountered is with a machine which does automatic calibrations of force. The process of force calibration using the United Force Machine is described in detail. The sources of error are identified and quantified when possible. Suggestions for improvement are made.

19. Classification and regression trees

CERN Document Server

Breiman, Leo; Olshen, Richard A; Stone, Charles J

1984-01-01

The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

20. Statistical methods for the evaluation of educational services and quality of products

CERN Document Server

Bini, Matilde; Piccolo, Domenico; Salmaso, Luigi

2009-01-01

The book presents statistical methods and models that can usefully support the evaluation of educational services and quality of products. The evaluation of educational services, as well as the analysis of judgments and preferences, poses severe methodological challenges because of the presence of the following aspects: the observational nature of the context, which is associated with the problems of selection bias and presence of nuisance factors; the hierarchical structure of the data (multilevel analysis); the multivariate and qualitative nature of the dependent variable; the presence of non observable factors, e.g. the satisfaction, calling for the use of latent variables models; the simultaneous presence of components of pleasure and components of uncertainty in the explication of the judgments, that asks for the specification and estimation of mixture models. The contributions concern methodological advances developed mostly with reference to specific problems of evaluation using real data sets.

1. The Australasian Resuscitation in Sepsis Evaluation (ARISE) trial statistical analysis plan.

Science.gov (United States)

Delaney, Anthony P; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve

2013-09-01

The Australasian Resuscitation in Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the emergency department with severe sepsis. In keeping with current practice, and considering aspects of trial design and reporting specific to non-pharmacological interventions, our plan outlines the principles and methods for analysing and reporting the trial results. The document is prepared before completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and before completion of the two related international studies. Our statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. We reviewed the data collected by the research team as specified in the study protocol and detailed in the study case report form. We describe information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation, other related therapies and other relevant data with appropriate comparisons between groups. We define the primary, secondary and tertiary outcomes for the study, with description of the planned statistical analyses. We have developed a statistical analysis plan with a trial profile, mock-up tables and figures. We describe a plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies and adverse events. We describe the primary, secondary and tertiary outcomes with identification of subgroups to be analysed. We have developed a statistical analysis plan for the ARISE study, available in the public domain, before the completion of recruitment into the study. This will minimise analytical bias and

2. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion.

Science.gov (United States)

Bieber, Frederick R; Buckleton, John S; Budowle, Bruce; Butler, John M; Coble, Michael D

2016-08-31

The evaluation and interpretation of forensic DNA mixture evidence faces greater interpretational challenges due to increasingly complex mixture evidence. Such challenges include: casework involving low quantity or degraded evidence leading to allele and locus dropout; allele sharing of contributors leading to allele stacking; and differentiation of PCR stutter artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength of the evidence when inclusion of a specific known individual(s) is determined, and the approaches used must be supportable. There are concerns that methods utilized for interpretation of complex forensic DNA mixtures may not be implemented properly in some casework. Similar questions are being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpretation for current and previous casework. Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures are described. Given the most common method for statistical evaluation of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use is the focus of this article. Formulae and other supporting materials are provided. Guidance and details of a DNA mixture interpretation protocol is provided for application of the CPI/CPE method in the analysis of more complex forensic DNA mixtures. This description, in turn, should help reduce the variability of interpretation with application of this methodology and thereby improve the quality of DNA mixture interpretation throughout the forensic community.

3. Modelos de regressão aleatória para avaliação da curva de crescimento em matrizes de codorna de corte Random regression models for growth evaluation of meat-type quail hens

Directory of Open Access Journals (Sweden)

Bruno Bastos Teixeira

2012-09-01

4. Quantitative Evaluation of Hybrid Aspen Xylem and Immunolabeling Patterns Using Image Analysis and Multivariate Statistics

Directory of Open Access Journals (Sweden)

David Sandquist

2015-06-01

Full Text Available A new method is presented for quantitative evaluation of hybrid aspen genotype xylem morphology and immunolabeling micro-distribution. This method can be used as an aid in assessing differences in genotypes from classic tree breeding studies, as well as genetically engineered plants. The method is based on image analysis, multivariate statistical evaluation of light, and immunofluorescence microscopy images of wood xylem cross sections. The selected immunolabeling antibodies targeted five different epitopes present in aspen xylem cell walls. Twelve down-regulated hybrid aspen genotypes were included in the method development. The 12 knock-down genotypes were selected based on pre-screening by pyrolysis-IR of global chemical content. The multivariate statistical evaluations successfully identified comparative trends for modifications in the down-regulated genotypes compared to the unmodified control, even when no definitive conclusions could be drawn from individual studied variables alone. Of the 12 genotypes analyzed, three genotypes showed significant trends for modifications in both morphology and immunolabeling. Six genotypes showed significant trends for modifications in either morphology or immunocoverage. The remaining three genotypes did not show any significant trends for modification.

5. GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments

Directory of Open Access Journals (Sweden)

Kohlbacher Oliver

2008-12-01

Full Text Available Abstract Background High-throughput methods that allow for measuring the expression of thousands of genes or proteins simultaneously have opened new avenues for studying biochemical processes. While the noisiness of the data necessitates an extensive pre-processing of the raw data, the high dimensionality requires effective statistical analysis methods that facilitate the identification of crucial biological features and relations. For these reasons, the evaluation and interpretation of expression data is a complex, labor-intensive multi-step process. While a variety of tools for normalizing, analysing, or visualizing expression profiles has been developed in the last years, most of these tools offer only functionality for accomplishing certain steps of the evaluation pipeline. Results Here, we present a web-based toolbox that provides rich functionality for all steps of the evaluation pipeline. Our tool GeneTrailExpress offers besides standard normalization procedures powerful statistical analysis methods for studying a large variety of biological categories and pathways. Furthermore, an integrated graph visualization tool, BiNA, enables the user to draw the relevant biological pathways applying cutting-edge graph-layout algorithms. Conclusion Our gene expression toolbox with its interactive visualization of the pathways and the expression values projected onto the nodes will simplify the analysis and interpretation of biochemical pathways considerably.

6. Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic.

Science.gov (United States)

Wang, Ming; Long, Qi

2016-09-01

Prediction models for disease risk and prognosis play an important role in biomedical research, and evaluating their predictive accuracy in the presence of censored data is of substantial interest. The standard concordance (c) statistic has been extended to provide a summary measure of predictive accuracy for survival models. Motivated by a prostate cancer study, we address several issues associated with evaluating survival prediction models based on c-statistic with a focus on estimators using the technique of inverse probability of censoring weighting (IPCW). Compared to the existing work, we provide complete results on the asymptotic properties of the IPCW estimators under the assumption of coarsening at random (CAR), and propose a sensitivity analysis under the mechanism of noncoarsening at random (NCAR). In addition, we extend the IPCW approach as well as the sensitivity analysis to high-dimensional settings. The predictive accuracy of prediction models for cancer recurrence after prostatectomy is assessed by applying the proposed approaches. We find that the estimated predictive accuracy for the models in consideration is sensitive to NCAR assumption, and thus identify the best predictive model. Finally, we further evaluate the performance of the proposed methods in both settings of low-dimensional and high-dimensional data under CAR and NCAR through simulations. © 2016, The International Biometric Society.

7. Evaluating the statistical power of DNA-based identification, exemplified by 'The missing grandchildren of Argentina'.

Science.gov (United States)

Kling, Daniel; Egeland, Thore; Piñero, Mariana Herrera; Vigeland, Magnus Dehli

2017-11-01

Methods and implementations of DNA-based identification are well established in several forensic contexts. However, assessing the statistical power of these methods has been largely overlooked, except in the simplest cases. In this paper we outline general methods for such power evaluation, and apply them to a large set of family reunification cases, where the objective is to decide whether a person of interest (POI) is identical to the missing person (MP) in a family, based on the DNA profile of the POI and available family members. As such, this application closely resembles database searching and disaster victim identification (DVI). If parents or children of the MP are available, they will typically provide sufficient statistical evidence to settle the case. However, if one must resort to more distant relatives, it is not a priori obvious that a reliable conclusion is likely to be reached. In these cases power evaluation can be highly valuable, for instance in the recruitment of additional family members. To assess the power in an identification case, we advocate the combined use of two statistics: the Probability of Exclusion, and the Probability of Exceedance. The former is the probability that the genotypes of a random, unrelated person are incompatible with the available family data. If this is close to 1, it is likely that a conclusion will be achieved regarding general relatedness, but not necessarily the specific relationship. To evaluate the ability to recognize a true match, we use simulations to estimate exceedance probabilities, i.e. the probability that the likelihood ratio will exceed a given threshold, assuming that the POI is indeed the MP. All simulations are done conditionally on available family data. Such conditional simulations have a long history in medical linkage analysis, but to our knowledge this is the first systematic forensic genetics application. Also, for forensic markers mutations cannot be ignored and therefore current models and

8. Scientific Opinion on Statistical considerations for the safety evaluation of GMOs

DEFF Research Database (Denmark)

Sørensen, Ilona Kryspin

in the experimental design of field trials, such as the inclusion of commercial varieties, in order to ensure sufficient statistical power and reliable estimation of natural variability. A graphical representation is proposed to allow the comparison of the GMO, its conventional counterpart and the commercial...... such estimates are unavailable may they be estimated from databases or literature. Estimated natural variability should be used to specify equivalence limits to test the difference between the GMO and the commercial varieties. Adjustments to these equivalence limits allow a simple graphical representation so...... in this opinion may be used, in certain cases, for the evaluation of GMOs other than plants....

9. Explanation of the methods employed in the statistical evaluation of SALE program data

International Nuclear Information System (INIS)

Bracey, J.T.; Soriano, M.

1981-01-01

The analysis of Safeguards Analytical Laboratory Evaluation (SALE) bimonthly data is described. Statistical procedures are discussed in Section A, followed by the descriptions of tabular and graphic values in Section B. Calculation formulae for the various statistics in the reports are presented in Section C. SALE data reported to New Brunswick Laboratory (NBL) are entered into a computerized system through routine data processing procedures. Bimonthly and annual reports are generated from this data system. In the bimonthly data analysis, data from the six most recent reporting periods of each laboratory-material-analytical method combination are utilized. Analysis results in the bimonthly reports are only presented for those participants who have reported data at least once during the last 12-month period. Reported values are transformed to relative percent difference values calculated by [(reported value - reference value)/reference value] x 100. Analysis of data is performed on these transformed values. Accordingly, the results given in the bimonthly report are (relative) percent differences (% DIFF). Suspect, large variations are verified with individual participants to eliminate errors in the transcription process. Statistical extreme values are not excluded from bimonthly analysis; all data are used

10. Statistical re-evaluation of the ASME KIC and KIR fracture toughness reference curves

International Nuclear Information System (INIS)

Wallin, K.

1999-01-01

Historically the ASME reference curves have been treated as representing absolute deterministic lower bound curves of fracture toughness. In reality, this is not the case. They represent only deterministic lower bound curves to a specific set of data, which represent a certain probability range. A recently developed statistical lower bound estimation method called the 'master curve', has been proposed as a candidate for a new lower bound reference curve concept. From a regulatory point of view, the master curve is somewhat problematic in that it does not claim to be an absolute deterministic lower bound, but corresponds to a specific theoretical failure probability that can be chosen freely based on application. In order to be able to substitute the old ASME reference curves with lower bound curves based on the master curve concept, the inherent statistical nature (and confidence level) of the ASME reference curves must be revealed. In order to estimate the true inherent level of safety, represented by the reference curves, the original database was re-evaluated with statistical methods and compared to an analysis based on the master curve concept. The analysis reveals that the 5% lower bound master curve has the same inherent degree of safety as originally intended for the K IC -reference curve. Similarly, the 1% lower bound master curve corresponds to the K IR -reference curve. (orig.)

11. Evaluating the One-in-Five Statistic: Women's Risk of Sexual Assault While in College.

Science.gov (United States)

Muehlenhard, Charlene L; Peterson, Zoë D; Humphreys, Terry P; Jozkowski, Kristen N

In 2014, U.S. president Barack Obama announced a White House Task Force to Protect Students From Sexual Assault, noting that "1 in 5 women on college campuses has been sexually assaulted during their time there." Since then, this one-in-five statistic has permeated public discourse. It is frequently reported, but some commentators have criticized it as exaggerated. Here, we address the question, "What percentage of women are sexually assaulted while in college?" After discussing definitions of sexual assault, we systematically review available data, focusing on studies that used large, representative samples of female undergraduates and multiple behaviorally specific questions. We conclude that one in five is a reasonably accurate average across women and campuses. We also review studies that are inappropriately cited as either supporting or debunking the one-in-five statistic; we explain why they do not adequately address this question. We identify and evaluate several assumptions implicit in the public discourse (e.g., the assumption that college students are at greater risk than nonstudents). Given the empirical support for the one-in-five statistic, we suggest that the controversy occurs because of misunderstandings about studies' methods and results and because this topic has implications for gender relations, power, and sexuality; this controversy is ultimately about values.

12. Statistical re-evaluation of the ASME KIC and KIR fracture toughness reference curves

International Nuclear Information System (INIS)

Wallin, K.; Rintamaa, R.

1998-01-01

Historically the ASME reference curves have been treated as representing absolute deterministic lower bound curves of fracture toughness. In reality, this is not the case. They represent only deterministic lower bound curves to a specific set of data, which represent a certain probability range. A recently developed statistical lower bound estimation method called the 'Master curve', has been proposed as a candidate for a new lower bound reference curve concept. From a regulatory point of view, the Master curve is somewhat problematic in that it does not claim to be an absolute deterministic lower bound, but corresponds to a specific theoretical failure probability that can be chosen freely based on application. In order to be able to substitute the old ASME reference curves with lower bound curves based on the master curve concept, the inherent statistical nature (and confidence level) of the ASME reference curves must be revealed. In order to estimate the true inherent level of safety, represented by the reference curves, the original data base was re-evaluated with statistical methods and compared to an analysis based on the master curve concept. The analysis reveals that the 5% lower bound Master curve has the same inherent degree of safety as originally intended for the K IC -reference curve. Similarly, the 1% lower bound Master curve corresponds to the K IR -reference curve. (orig.)

13. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement

Science.gov (United States)

Azorin-Molina, Cesar; Asin, Jesus; McVicar, Tim R.; Minola, Lorenzo; Lopez-Moreno, Juan I.; Vicente-Serrano, Sergio M.; Chen, Deliang

2018-05-01

Recent studies on observed wind variability have revealed a decline (termed "stilling") of near-surface wind speed during the last 30-50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014-2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer.

14. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

Science.gov (United States)

de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

2013-08-01

Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

15. Small nodule detectability evaluation using a generalized scan-statistic model

International Nuclear Information System (INIS)

Popescu, Lucretiu M; Lewitt, Robert M

2006-01-01

In this paper is investigated the use of the scan statistic for evaluating the detectability of small nodules in medical images. The scan-statistic method is often used in applications in which random fields must be searched for abnormal local features. Several results of the detection with localization theory are reviewed and a generalization is presented using the noise nodule distribution obtained by scanning arbitrary areas. One benefit of the noise nodule model is that it enables determination of the scan-statistic distribution by using only a few image samples in a way suitable both for simulation and experimental setups. Also, based on the noise nodule model, the case of multiple targets per image is addressed and an image abnormality test using the likelihood ratio and an alternative test using multiple decision thresholds are derived. The results obtained reveal that in the case of low contrast nodules or multiple nodules the usual test strategy based on a single decision threshold underperforms compared with the alternative tests. That is a consequence of the fact that not only the contrast or the size, but also the number of suspicious nodules is a clue indicating the image abnormality. In the case of the likelihood ratio test, the multiple clues are unified in a single decision variable. Other tests that process multiple clues differently do not necessarily produce a unique ROC curve, as shown in examples using a test involving two decision thresholds. We present examples with two-dimensional time-of-flight (TOF) and non-TOF PET image sets analysed using the scan statistic for different search areas, as well as the fixed position observer

16. Statistical evaluation of the analytical method involved in French nuclear glasses leaching rate determination

Energy Technology Data Exchange (ETDEWEB)

Broudic, V.; Marques, C.; Bonnal, M

2004-07-01

Chemical durability studies of nuclear glasses involves a large number of water leaching experiments at different temperatures and pressures on both, glasses doped with fission products and actinides and non radioactive surrogates. The leaching rates of these glasses are evaluated through ICPAES analysis of the leachate over time. This work presents a statistical evaluation of the analysis method used to determine the concentrations of various vitreous matrix constituents: Si, B, Na, Al, Ca, Li as major elements and Ba, Cr, Fe, Mn, Mo, Ni, P, Sr, Zn, Zr as minor elements. Calibration characteristics, limits of detection, limits of quantification and uncertainties quantification are illustrated with different examples of analysis performed on surrogates and on radioactive leachates in glove box. (authors)

17. A Blended Learning Experience in Statistics for Psychology Students Using the Evaluation as a Learning Tool

Directory of Open Access Journals (Sweden)

Alberto VALENTÍN CENTENO

2016-05-01

Full Text Available Teaching statistics course Applied Psychology, was based on different teaching models that incorporate active teaching methodologies. In this experience have combined approaches that prioritize the use of ICT with other where evaluation becomes an element of learning. This has involved the use of virtual platforms to support teaching that facilitate learning and activities where no face-to-face are combined. The design of the components of the course is inspired by the dimensions proposed by Carless (2003 model. This model uses evaluation as a learning element. The development of this experience has shown how the didactic proposal has been positively interpreted by students. Students recognized that they had to learn and deeply understand the basic concepts of the subject, so that they can teach and assess their peers.

18. Laser ektacytometry and evaluation of statistical characteristics of inhomogeneous ensembles of red blood cells

Science.gov (United States)

Nikitin, S. Yu.; Priezzhev, A. V.; Lugovtsov, A. E.; Ustinov, V. D.; Razgulin, A. V.

2014-10-01

The paper is devoted to development of the laser ektacytometry technique for evaluation of the statistical characteristics of inhomogeneous ensembles of red blood cells (RBCs). We have analyzed theoretically laser beam scattering by the inhomogeneous ensembles of elliptical discs, modeling red blood cells in the ektacytometer. The analysis shows that the laser ektacytometry technique allows for quantitative evaluation of such population characteristics of RBCs as the cells mean shape, the cells deformability variance and asymmetry of the cells distribution in the deformability. Moreover, we show that the deformability distribution itself can be retrieved by solving a specific Fredholm integral equation of the first kind. At this stage we do not take into account the scatter in the RBC sizes.

19. Statistical evaluation of the analytical method involved in French nuclear glasses leaching rate determination

International Nuclear Information System (INIS)

Broudic, V.; Marques, C.; Bonnal, M.

2004-01-01

Chemical durability studies of nuclear glasses involves a large number of water leaching experiments at different temperatures and pressures on both, glasses doped with fission products and actinides and non radioactive surrogates. The leaching rates of these glasses are evaluated through ICPAES analysis of the leachate over time. This work presents a statistical evaluation of the analysis method used to determine the concentrations of various vitreous matrix constituents: Si, B, Na, Al, Ca, Li as major elements and Ba, Cr, Fe, Mn, Mo, Ni, P, Sr, Zn, Zr as minor elements. Calibration characteristics, limits of detection, limits of quantification and uncertainties quantification are illustrated with different examples of analysis performed on surrogates and on radioactive leachates in glove box. (authors)

20. A commercial microbial enhanced oil recovery process: statistical evaluation of a multi-project database

Energy Technology Data Exchange (ETDEWEB)

Portwood, J.T.

1995-12-31

This paper discusses a database of information collected and organized during the past eight years from 2,000 producing oil wells in the United States, all of which have been treated with special applications techniques developed to improve the effectiveness of MEOR technology. The database, believed to be the first of its kind, has been generated for the purpose of statistically evaluating the effectiveness and economics of the MEOR process in a wide variety of oil reservoir environments, and is a tool that can be used to improve the predictability of treatment response. The information in the database has also been evaluated to determine which, if any, reservoir characteristics are dominant factors in determining the applicability of MEOR.

1. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

Science.gov (United States)

Tsutsumi, Morito; Seya, Hajime

2009-12-01

This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

2. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh

Directory of Open Access Journals (Sweden)

Md. Bodrud-Doza

2016-04-01

Full Text Available This study investigates the groundwater quality in the Faridpur district of central Bangladesh based on preselected 60 sample points. Water evaluation indices and a number of statistical approaches such as multivariate statistics and geostatistics are applied to characterize water quality, which is a major factor for controlling the groundwater quality in term of drinking purposes. The study reveal that EC, TDS, Ca2+, total As and Fe values of groundwater samples exceeded Bangladesh and international standards. Ground water quality index (GWQI exhibited that about 47% of the samples were belonging to good quality water for drinking purposes. The heavy metal pollution index (HPI, degree of contamination (Cd, heavy metal evaluation index (HEI reveal that most of the samples belong to low level of pollution. However, Cd provide better alternative than other indices. Principle component analysis (PCA suggests that groundwater quality is mainly related to geogenic (rock–water interaction and anthropogenic source (agrogenic and domestic sewage in the study area. Subsequently, the findings of cluster analysis (CA and correlation matrix (CM are also consistent with the PCA results. The spatial distributions of groundwater quality parameters are determined by geostatistical modeling. The exponential semivariagram model is validated as the best fitted models for most of the indices values. It is expected that outcomes of the study will provide insights for decision makers taking proper measures for groundwater quality management in central Bangladesh.

3. Statistical evaluation of the degree of nominal convergence of the inflation rate in Romania

Directory of Open Access Journals (Sweden)

Mihai GHEORGHE

2011-07-01

Full Text Available Nominal convergence is a process that is characterised by the gradual harmonisation, to a relatively high degree, of the national institutions and policies of the Member States with those of the EU, in the monetary and financial fields.The birth of nominal convergence is marked by the Maastricht Treaty, by means of which the criteria required for adopting the euro were established. One of the criteria refers to price stability (inflation rate, which is measured by the Harmonised Index of Consumer Prices. A Member State meets this criterion if it has a price performance that is sustainable and an average rate of inflation, observed over a period of one year before the examination,that does not exceed by more than 1.5 percentage point that of, at most, the three best performing Member States in terms of price stability.The article proposes a model for the statistical evaluation of the degree to which the nominal convergence criterion related to price stability is met. The evaluation is based on the following pillars: a theoretical synthesis of the Harmonised Index of Consumer Prices, a statistical analysis concerning the evolution of inflation in Romania and the gap vis-à-vis the reference value for meeting the nominal convergence criterion.

4. IMPORTANCE OF MATERIAL BALANCES AND THEIR STATISTICAL EVALUATION IN RUSSIAN MATERIAL, PROTECTION, CONTROL AND ACCOUNTING

International Nuclear Information System (INIS)

Fishbone, L.G.

1999-01-01

While substantial work has been performed in the Russian MPC and A Program, much more needs to be done at Russian nuclear facilities to complete four necessary steps. These are (1) periodically measuring the physical inventory of nuclear material, (2) continuously measuring the flows of nuclear material, (3) using the results to close the material balance, particularly at bulk processing facilities, and (4) statistically evaluating any apparent loss of nuclear material. The periodic closing of material balances provides an objective test of the facility's system of nuclear material protection, control and accounting. The statistical evaluation using the uncertainties associated with individual measurement systems involved in the calculation of the material balance provides a fair standard for concluding whether the apparent loss of nuclear material means a diversion or whether the facility's accounting system needs improvement. In particular, if unattractive flow material at a facility is not measured well, the accounting system cannot readily detect the loss of attractive material if the latter substantially derives from the former

5. Statistical evaluation of GLONASS amplitude scintillation over low latitudes in the Brazilian territory

Science.gov (United States)

de Oliveira Moraes, Alison; Muella, Marcio T. A. H.; de Paula, Eurico R.; de Oliveira, César B. A.; Terra, William P.; Perrella, Waldecir J.; Meibach-Rosa, Pâmela R. P.

2018-04-01

The ionospheric scintillation, generated by the ionospheric plasma irregularities, affects the radio signals that pass through it. Their effects are widely studied in the literature with two different approaches. The first one deals with the use of radio signals to study and understand the morphology of this phenomenon, while the second one seeks to understand and model how much this phenomenon interferes in the radio signals and consequently in the services to which these systems work. The interest of several areas, particularly to those that are life critical, has increased using the concept of satellite multi-constellation, which consists of receiving, processing and using data from different navigation and positioning systems. Although there is a vast literature analyzing the effects of ionospheric scintillation on satellite navigation systems, the number of studies using signals received from the Russian satellite positioning system (named GLONASS) is still very rare. This work presents for the first time in the Brazilian low-latitude sector a statistical analysis of ionospheric scintillation data for all levels of magnetic activities obtained by a set of scintillation monitors that receive signals from the GLONASS system. In this study, data collected from four stations were used in the analysis; Fortaleza, Presidente Prudente, São José dos Campos and Porto Alegre. The GLONASS L-band signals were analyzed for the period from December 21, 2012 to June 20, 2016, which includes the peak of the solar cycle 24 that occurred in 2014. The main characteristics of scintillation presented in this study include: (1) the statistical evaluation of seasonal and solar activity, showing the chances that an user on similar geophysical conditions may be susceptible to the effects of ionospheric scintillation; (2) a temporal analysis based on the local time distribution of scintillation at different seasons and intensity levels; and (3) the evaluation of number of

6. Partial discharge testing: a progress report. Statistical evaluation of PD data

International Nuclear Information System (INIS)

Warren, V.; Allan, J.

2005-01-01

It has long been known that comparing the partial discharge results obtained from a single machine is a valuable tool enabling companies to observe the gradual deterioration of a machine stator winding and thus plan appropriate maintenance for the machine. In 1998, at the annual Iris Rotating Machines Conference (IRMC), a paper was presented that compared thousands of PD test results to establish the criteria for comparing results from different machines and the expected PD levels. At subsequent annual Iris conferences, using similar analytical procedures, papers were presented that supported the previous criteria and: in 1999, established sensor location as an additional criterion; in 2000, evaluated the effect of insulation type and age on PD activity; in 2001, evaluated the effect of manufacturer on PD activity; in 2002, evaluated the effect of operating pressure for hydrogen-cooled machines; in 2003, evaluated the effect of insulation type and setting Trac alarms; in 2004, re-evaluated the effect of manufacturer on PD activity. Before going further in database analysis procedures, it would be prudent to statistically evaluate the anecdotal evidence observed to date. The goal was to determine which variables of machine conditions greatly influenced the PD results and which didn't. Therefore, this year's paper looks at the impact of operating voltage, machine type and winding type on the test results for air-cooled machines. Because of resource constraints, only data collected through 2003 was used; however, as before, it is still standardized for frequency bandwidth and pruned to include only full-load-hot (FLH) results collected for one sensor on operating machines. All questionable data, or data from off-line testing or unusual machine conditions was excluded, leaving 6824 results. Calibration of on-line PD test results is impractical; therefore, only results obtained using the same method of data collection and noise separation techniques are compared. For

7. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

Science.gov (United States)

Foster, Guy M.; Graham, Jennifer L.

2016-04-06

The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes

8. Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization

Science.gov (United States)

Shrivastava, Prashant Kumar; Pandey, Arun Kumar

2018-03-01

The Inconel-718 is one of the most demanding advanced engineering materials because of its superior quality. The conventional machining techniques are facing many problems to cut intricate profiles on these materials due to its minimum thermal conductivity, minimum elastic property and maximum chemical affinity at magnified temperature. The laser beam cutting is one of the advanced cutting method that may be used to achieve the geometrical accuracy with more precision by the suitable management of input process parameters. In this research work, the experimental investigation during the pulsed Nd:YAG laser cutting of Inconel-718 has been carried out. The experiments have been conducted by using the well planned orthogonal array L27. The experimentally measured values of different quality characteristics have been used for developing the second order regression models of bottom kerf deviation (KD), bottom kerf width (KW) and kerf taper (KT). The developed models of different quality characteristics have been utilized as a quality function for single-objective optimization by using particle swarm optimization (PSO) method. The optimum results obtained by the proposed hybrid methodology have been compared with experimental results. The comparison of optimized results with the experimental results shows that an individual improvement of 75%, 12.67% and 33.70% in bottom kerf deviation, bottom kerf width, and kerf taper has been observed. The parametric effects of different most significant input process parameters on quality characteristics have also been discussed.

9. Evaluation of modulation transfer function of optical lens system by support vector regression methodologies - A comparative study

Science.gov (United States)

Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.

2014-07-01

The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.

10. Relative accuracy of spatial predictive models for lynx Lynx canadensis derived using logistic regression-AIC, multiple criteria evaluation and Bayesian approaches

Directory of Open Access Journals (Sweden)

Shelley M. ALEXANDER

2009-02-01

Full Text Available We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS-based approaches: logistic regression and Akaike’s Information Criterion (AIC, Multiple Criteria Evaluation (MCE, and Bayesian Analysis (specifically Dempster-Shafer theory. We used lynx Lynx canadensis as our focal species, and developed our environment relationship model using track data collected in Banff National Park, Alberta, Canada, during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy, the failure to predict a species where it occurred (omission error and the prediction of presence where there was absence (commission error. Our overall accuracy showed the logistic regression approach was the most accurate (74.51%. The multiple criteria evaluation was intermediate (39.22%, while the Dempster-Shafer (D-S theory model was the poorest (29.90%. However, omission and commission error tell us a different story: logistic regression had the lowest commission error, while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least, the logistic regression model is optimal. However, where sample size is small or the species is very rare, it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer that would over-predict, protect more sites, and thereby minimize the risk of missing critical habitat in conservation plans[Current Zoology 55(1: 28 – 40, 2009].

11. Visual classification of very fine-grained sediments: Evaluation through univariate and multivariate statistics

Science.gov (United States)

Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.

1980-01-01

Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.

12. Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods

Directory of Open Access Journals (Sweden)

A. Casanueva

2013-08-01

Full Text Available The study of extreme events has become of great interest in recent years due to their direct impact on society. Extremes are usually evaluated by using extreme indicators, based on order statistics on the tail of the probability distribution function (typically percentiles. In this study, we focus on the tail of the distribution of daily maximum and minimum temperatures. For this purpose, we analyse high (95th and low (5th percentiles in daily maximum and minimum temperatures on the Iberian Peninsula, respectively, derived from different downscaling methods (statistical and dynamical. First, we analyse the performance of reanalysis-driven downscaling methods in present climate conditions. The comparison among the different methods is performed in terms of the bias of seasonal percentiles, considering as observations the public gridded data sets E-OBS and Spain02, and obtaining an estimation of both the mean and spatial percentile errors. Secondly, we analyse the increments of future percentile projections under the SRES A1B scenario and compare them with those corresponding to the mean temperature, showing that their relative importance depends on the method, and stressing the need to consider an ensemble of methodologies.

13. Evaluating correlation between geometrical relationship and dose difference caused by respiratory motion using statistical analysis

Energy Technology Data Exchange (ETDEWEB)

Shin, Dong Seok; Kim, Dong Su; Kim, Tae Ho; Kim, Kyeong Hyeon; Yoon, Do Kun; Suh, Tae Suk [The Catholic University of Korea, Seoul (Korea, Republic of); Kang, Seong Hee [Seoul National University Hospital, Seoul (Korea, Republic of); Cho, Min Seok [Asan Medical Center, Seoul (Korea, Republic of); Noh, Yu Yoon [Eulji University Hospital, Daejeon (Korea, Republic of)

2017-04-15

Three-dimensional dose (3D dose) can consider coverage of moving target, however it is difficult to provide dosimetric effect which occurs by respiratory motions. Four-dimensional dose (4D dose) which uses deformable image registration (DIR) algorithm from four-dimensional computed tomography (4DCT) images can consider dosimetric effect by respiratory motions. The dose difference between 3D dose and 4D dose can be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value. No significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.

14. Implementation of Statistical Process Control: Evaluating the Mechanical Performance of a Candidate Silicone Elastomer Docking Seal

Science.gov (United States)

Oravec, Heather Ann; Daniels, Christopher C.

2014-01-01

The National Aeronautics and Space Administration has been developing a novel docking system to meet the requirements of future exploration missions to low-Earth orbit and beyond. A dynamic gas pressure seal is located at the main interface between the active and passive mating components of the new docking system. This seal is designed to operate in the harsh space environment, but is also to perform within strict loading requirements while maintaining an acceptable level of leak rate. In this study, a candidate silicone elastomer seal was designed, and multiple subscale test articles were manufactured for evaluation purposes. The force required to fully compress each test article at room temperature was quantified and found to be below the maximum allowable load for the docking system. However, a significant amount of scatter was observed in the test results. Due to the stochastic nature of the mechanical performance of this candidate docking seal, a statistical process control technique was implemented to isolate unusual compression behavior from typical mechanical performance. The results of this statistical analysis indicated a lack of process control, suggesting a variation in the manufacturing phase of the process. Further investigation revealed that changes in the manufacturing molding process had occurred which may have influenced the mechanical performance of the seal. This knowledge improves the chance of this and future space seals to satisfy or exceed design specifications.

15. Jsub(Ic)-testing of A-533 B - statistical evaluation of some different testing techniques

International Nuclear Information System (INIS)

Nilsson, F.

1978-01-01

The purpose of the present study was to compare statistically some different methods for the evaluation of fracture toughness of the nuclear reactor material A-533 B. Since linear elastic fracture mechanics is not applicable to this material at the interesting temperature (275 0 C), the so-called Jsub(Ic) testing method was employed. Two main difficulties are inherent in this type of testing. The first one is to determine the quantity J as a function of the deflection of the three-point bend specimens used. Three different techniques were used, the first two based on the experimentally observed input of energy to the specimen and the third employing finite element calculations. The second main problem is to determine the point when crack growth begins. For this, two methods were used, a direct electrical method and the indirect R-curve method. A total of forty specimens were tested at two laboratories. No statistically significant different results were obtained from the respective laboratories. The three methods of calculating J yielded somewhat different results, although the discrepancy was small. Also the two methods of determination of the growth initiation point yielded consistent results. The R-curve method, however, exhibited a larger uncertainty as measured by the standard deviation. The resulting Jsub(Ic) value also agreed well with earlier presented results. The relative standard deviation was of the order of 25%, which is quite small for this type of experiment. (author)

16. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

International Nuclear Information System (INIS)

Chou, C.J.; Johnson, V.G.

2000-01-01

The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

17. Developing Statistical Evaluation Model of Introduction Effect of MSW Thermal Recycling

Science.gov (United States)

Aoyama, Makoto; Kato, Takeyoshi; Suzuoki, Yasuo

For the effective utilization of municipal solid waste (MSW) through a thermal recycling, new technologies, such as an incineration plant using a Molten Carbonate Fuel Cell (MCFC), are being developed. The impact of new technologies should be evaluated statistically for various municipalities, so that the target of technological development or potential cost reduction due to the increased cumulative number of installed system can be discussed. For this purpose, we developed a model for discussing the impact of new technologies, where a statistical mesh data set was utilized to estimate the heat demand around the incineration plant. This paper examines a case study by using a developed model, where a conventional type and a MCFC type MSW incineration plant is compared in terms of the reduction in primary energy and the revenue by both electricity and heat supply. Based on the difference in annual revenue, we calculate the allowable investment in MCFC-type MSW incineration plant in addition to conventional plant. The results suggest that allowable investment can be about 30 millions yen/(t/day) in small municipalities, while it is only 10 millions yen/(t/day) in large municipalities. The sensitive analysis shows the model can be useful for discussing the difference of impact of material recycling of plastics on thermal recycling technologies.

18. Evaluating statistical approaches to leverage large clinical datasets for uncovering therapeutic and adverse medication effects.

Science.gov (United States)

Choi, Leena; Carroll, Robert J; Beck, Cole; Mosley, Jonathan D; Roden, Dan M; Denny, Joshua C; Van Driest, Sara L

2018-04-18

Phenome-wide association studies (PheWAS) have been used to discover many genotype-phenotype relationships and have the potential to identify therapeutic and adverse drug outcomes using longitudinal data within electronic health records (EHRs). However, the statistical methods for PheWAS applied to longitudinal EHR medication data have not been established. In this study, we developed methods to address two challenges faced with reuse of EHR for this purpose: confounding by indication, and low exposure and event rates. We used Monte Carlo simulation to assess propensity score (PS) methods, focusing on two of the most commonly used methods, PS matching and PS adjustment, to address confounding by indication. We also compared two logistic regression approaches (the default of Wald vs. Firth's penalized maximum likelihood, PML) to address complete separation due to sparse data with low exposure and event rates. PS adjustment resulted in greater power than propensity score matching, while controlling Type I error at 0.05. The PML method provided reasonable p-values, even in cases with complete separation, with well controlled Type I error rates. Using PS adjustment and the PML method, we identify novel latent drug effects in pediatric patients exposed to two common antibiotic drugs, ampicillin and gentamicin. R packages PheWAS and EHR are available at https://github.com/PheWAS/PheWAS and at CRAN (https://www.r-project.org/), respectively. The R script for data processing and the main analysis is available at https://github.com/choileena/EHR. leena.choi@vanderbilt.edu. Supplementary data are available at Bioinformatics online.

19. Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes

KAUST Repository

Yoon, Seyoon

2014-03-01

High-Volume Fly Ash (HVFA) concretes are seen by many as a feasible solution for sustainable, low embodied carbon construction. At the moment, fly ash is classified as a waste by-product, primarily of thermal power stations. In this paper the authors experimentally and statistically investigated the effects of mix-design factors on the mechanical properties of high-volume class F fly ash concretes. A total of 240 and 32 samples were produced and tested in the laboratory to measure compressive strength and Young\\'s modulus respectively. Applicability of the CEB-FIP (Comite Euro-international du Béton - Fédération Internationale de la Précontrainte) and ACI (American Concrete Institute) Building Model Code (Thomas, 2010; ACI Committee 209, 1982) [1,2] to the experimentally-derived mechanical property data for HVFA concretes was established. Furthermore, using multiple linear regression analysis, Mean Squared Residuals (MSRs) were obtained to determine whether a weight- or volume-based mix proportion is better to predict the mechanical properties of HVFA concrete. The significance levels of the design factors, which indicate how significantly the factors affect the HVFA concrete\\'s mechanical properties, were determined using analysis of variance (ANOVA) tests. The results show that a weight-based mix proportion is a slightly better predictor of mechanical properties than volume-based one. The significance level of fly ash substitution rate was higher than that of w/b ratio initially but reduced over time. © 2014 Elsevier Ltd. All rights reserved.

20. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

Science.gov (United States)

Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

2016-04-01

High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m-3), moderate (50-99 s m-3), high (100-149 s m-3) and very high (150 < n s m-3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

1. Development and evaluation of a regression-based model to predict cesium concentration ratios for freshwater fish

International Nuclear Information System (INIS)

Pinder, John E.; Rowan, David J.; Rasmussen, Joseph B.; Smith, Jim T.; Hinton, Thomas G.; Whicker, F.W.

2014-01-01

Data from published studies and World Wide Web sources were combined to produce and test a regression model to predict Cs concentration ratios for freshwater fish species. The accuracies of predicted concentration ratios, which were computed using 1) species trophic levels obtained from random resampling of known food items and 2) K concentrations in the water for 207 fish from 44 species and 43 locations, were tested against independent observations of ratios for 57 fish from 17 species from 25 locations. Accuracy was assessed as the percent of observed to predicted ratios within factors of 2 or 3. Conservatism, expressed as the lack of under prediction, was assessed as the percent of observed to predicted ratios that were less than 2 or less than 3. The model's median observed to predicted ratio was 1.26, which was not significantly different from 1, and 50% of the ratios were between 0.73 and 1.85. The percentages of ratios within factors of 2 or 3 were 67 and 82%, respectively. The percentages of ratios that were <2 or <3 were 79 and 88%, respectively. An example for Perca fluviatilis demonstrated that increased prediction accuracy could be obtained when more detailed knowledge of diet was available to estimate trophic level. - Highlights: • We developed a model to predict Cs concentration ratios for freshwater fish species. • The model uses only two variables to predict a species CR for any location. • One variable is the K concentration in the freshwater. • The other is a species mean trophic level measure easily obtained from (fishbase.org). • The median observed to predicted ratio for 57 independent test cases was 1.26

2. riskRegression

DEFF Research Database (Denmark)

Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

2017-01-01

In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...

3. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

Science.gov (United States)

Naik, Ganesh R; Kumar, Dinesh K

2011-01-01

The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

4. Statistical Evaluation of the Azimuth and Elevation Angles Seen at the Output of the Receiving Antenna

Science.gov (United States)

Ziolkowski, Cezary; Kelner, Jan M.

2018-04-01

A method to evaluate the statistical properties of the reception angle seen at the input receiver that considers the receiving antenna pattern is presented. In particular, the impact of the direction and beamwidth of the antenna pattern on distribution of the reception angle is shown on the basis of 3D simulation studies. The obtained results show significant differences between distributions of angle of arrival and angle of reception. This means that the presented new method allows assessing the impact of the receiving antenna pattern on the correlation and spectral characteristics at the receiver input in simulation studies of wireless channel. The use of this method also provides an opportunity for analysis of a co-existence between small cells and wireless backhaul, what is currently a significant problem in designing 5G networks.

5. Statistical evaluation of the dose-distribution charts of the National Computerized Irradiation Planning Network

International Nuclear Information System (INIS)

Varjas, Geza; Jozsef, Gabor; Gyenes, Gyoergy; Petranyi, Julia; Bozoky, Laszlo; Pataki, Gezane

1985-01-01

The establishment of the National Computerized Irradiation Planning Network allowed to perform the statistical evaluation presented in this report. During the first 5 years 13389 dose-distribution charts were calculated for the treatment of 5320 patients, i.e. in average, 2,5 dose-distribution chart-variants per patient. This number practically did not change in the last 4 years. The irradiation plan of certain tumour localizations was performed on the basis of the calculation of, in average, 1.6-3.0 dose-distribution charts. Recently, radiation procedures assuring optimal dose-distribution, such as the use of moving fields, and two- or three-irradiation fields, are gaining grounds. (author)

6. Evaluation of statistical control charts for on-line radiation monitoring

International Nuclear Information System (INIS)

Hughes, L.D.; DeVol, T.A.

2008-01-01

Statistical control charts are presented for the evaluation of time series radiation counter data from flow cells used for monitoring of low levels of 99 TcO 4 - in environmental solutions. Control chart methods consisted of the 3-sigma (3σ) chart, the cumulative sum (CUSUM) chart, and the exponentially weighted moving average (EWMA) chart. Each method involves a control limit based on the detector background which constitutes the detection limit. Both the CUSUM and EWMA charts are suitable to detect and estimate sample concentration requiring less solution volume than when using a 3? control chart. Data presented here indicate that the overall accuracy and precision of the CUSUM method is the best. (author)

7. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

Directory of Open Access Journals (Sweden)

Nsikak U Benson

Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

8. Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff.

Science.gov (United States)

Toranjian, Amin; Marofi, Safar

2017-05-01

Heavy metal pollution in urban runoff causes severe environmental damage. Identification of these pollutants and their statistical analysis is necessary to provide management guidelines. In this study, 45 continuous probability distribution functions were selected to fit the Cd and Pb data in the runoff events of an urban area during October 2014-May 2015. The sampling was conducted from the outlet of the city basin during seven precipitation events. For evaluation and ranking of the functions, we used the goodness of fit Kolmogorov-Smirnov and Anderson-Darling tests. The results of Cd analysis showed that Hyperbolic Secant, Wakeby and Log-Pearson 3 are suitable for frequency analysis of the event mean concentration (EMC), the instantaneous concentration series (ICS) and instantaneous concentration of each event (ICEE), respectively. In addition, the LP3, Wakeby and Generalized Extreme Value functions were chosen for the EMC, ICS and ICEE related to Pb contamination.

9. Damage localization by statistical evaluation of signal-processed mode shapes

DEFF Research Database (Denmark)

Ulriksen, Martin Dalgaard; Damkilde, Lars

2015-01-01

Due to their inherent ability to provide structural information on a local level, mode shapes and their derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in th...... is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.......) and subsequent application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact damage-induced, outlier analysis of principal components of the signal-processed mode shapes...

10. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

International Nuclear Information System (INIS)

Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Lee, Byung In; Kim, Ok Joon; Kim, Min Jung; Jeon, Jeong Dong

1999-01-01

Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

11. An Evaluation of Mesoscale Model Based Model Output Statistics (MOS) During the 2002 Olympic and Paralympic Winter Games

National Research Council Canada - National Science Library

Hart, Kenneth

2003-01-01

The skill of a mesoscale model based Model Output Statistics (MOS) system that provided hourly forecasts for 18 sites over northern Utah during the 2002 Winter Olympic and Paralympic Games is evaluated...

12. The use of artificial neural network analysis and multiple regression for trap quality evaluation: a case study of the Northern Kuqa Depression of Tarim Basin in western China

Energy Technology Data Exchange (ETDEWEB)

Guangren Shi; Xingxi Zhou; Guangya Zhang; Xiaofeng Shi; Honghui Li [Research Institute of Petroleum Exploration and Development, Beijing (China)

2004-03-01

Artificial neural network analysis is found to be far superior to multiple regression when applied to the evaluation of trap quality in the Northern Kuqa Depression, a gas-rich depression of Tarim Basin in western China. This is because this technique can correlate the complex and non-linear relationship between trap quality and related geological factors, whereas multiple regression can only describe a linear relationship. However, multiple regression can work as an auxiliary tool, as it is suited to high-speed calculations and can indicate the degree of dependence between the trap quality and its related geological factors which artificial neural network analysis cannot. For illustration, we have investigated 30 traps in the Northern Kuqa Depression. For each of the traps, the values of 14 selected geological factors were all known. While geologists were also able to assign individual trap quality values to 27 traps, they were less certain about the values for the other three traps. Multiple regression and artificial neural network analysis were, therefore, respectively used to ascertain these values. Data for the 27 traps were used as known sample data, while the three traps were used as prediction candidates. Predictions from artificial neural network analysis are found to agree with exploration results: where simulation predicted high trap quality, commercial quality flows were afterwards found, and where low trap quality is indicated, no such discoveries have yet been made. On the other hand, multiple regression results indicate the order of dependence of the trap quality on geological factors, which reconciles with what geologists have commonly recognized. We can conclude, therefore, that the application of artificial neural network analysis with the aid of multiple regression to trap evaluation in the Northern Kuqa Depression has been quite successful. To ensure the precision of the above mentioned geological factors and their related parameters for each

13. Unbalanced Regressions and the Predictive Equation

DEFF Research Database (Denmark)

Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...

14. Empirical and Statistical Evaluation of the Effectiveness of Four Lossless Data Compression Algorithms

Directory of Open Access Journals (Sweden)

N. A. Azeez

2017-04-01

Full Text Available Data compression is the process of reducing the size of a file to effectively reduce storage space and communication cost. The evolvement in technology and digital age has led to an unparalleled usage of digital files in this current decade. The usage of data has resulted to an increase in the amount of data being transmitted via various channels of data communication which has prompted the need to look into the current lossless data compression algorithms to check for their level of effectiveness so as to maximally reduce the bandwidth requirement in communication and transfer of data. Four lossless data compression algorithm: Lempel-Ziv Welch algorithm, Shannon-Fano algorithm, Adaptive Huffman algorithm and Run-Length encoding have been selected for implementation. The choice of these algorithms was based on their similarities, particularly in application areas. Their level of efficiency and effectiveness were evaluated using some set of predefined performance evaluation metrics namely compression ratio, compression factor, compression time, saving percentage, entropy and code efficiency. The algorithms implementation was done in the NetBeans Integrated Development Environment using Java as the programming language. Through the statistical analysis performed using Boxplot and ANOVA and comparison made on the four algo

15. Statistical analysis of correlated experimental data and neutron cross section evaluation

International Nuclear Information System (INIS)

1998-01-01

The technique for evaluation of neutron cross sections on the basis of statistical analysis of correlated experimental data is presented. The most important stages of evaluation beginning from compilation of correlation matrix for measurement uncertainties till representation of the analysis results in the ENDF-6 format are described in details. Special attention is paid to restrictions (positive uncertainty) on covariation matrix of approximate parameters uncertainties generated within the method of least square fit which is derived from physical reasons. The requirements for source experimental data assuring satisfaction of the restrictions mentioned above are formulated. Correlation matrices of measurement uncertainties in particular should be also positively determined. Variants of modelling the positively determined correlation matrices of measurement uncertainties in a situation when their consequent calculation on the basis of experimental information is impossible are discussed. The technique described is used for creating the new generation of estimates of dosimetric reactions cross sections for the first version of the Russian dosimetric file (including nontrivial covariation information)

16. Examining publication bias—a simulation-based evaluation of statistical tests on publication bias

Directory of Open Access Journals (Sweden)

Andreas Schneck

2017-11-01

Full Text Available Background Publication bias is a form of scientific misconduct. It threatens the validity of research results and the credibility of science. Although several tests on publication bias exist, no in-depth evaluations are available that examine which test performs best for different research settings. Methods Four tests on publication bias, Egger’s test (FAT, p-uniform, the test of excess significance (TES, as well as the caliper test, were evaluated in a Monte Carlo simulation. Two different types of publication bias and its degree (0%, 50%, 100% were simulated. The type of publication bias was defined either as file-drawer, meaning the repeated analysis of new datasets, or p-hacking, meaning the inclusion of covariates in order to obtain a significant result. In addition, the underlying effect (β = 0, 0.5, 1, 1.5, effect heterogeneity, the number of observations in the simulated primary studies (N = 100, 500, and the number of observations for the publication bias tests (K = 100, 1,000 were varied. Results All tests evaluated were able to identify publication bias both in the file-drawer and p-hacking condition. The false positive rates were, with the exception of the 15%- and 20%-caliper test, unbiased. The FAT had the largest statistical power in the file-drawer conditions, whereas under p-hacking the TES was, except under effect heterogeneity, slightly better. The CTs were, however, inferior to the other tests under effect homogeneity and had a decent statistical power only in conditions with 1,000 primary studies. Discussion The FAT is recommended as a test for publication bias in standard meta-analyses with no or only small effect heterogeneity. If two-sided publication bias is suspected as well as under p-hacking the TES is the first alternative to the FAT. The 5%-caliper test is recommended under conditions of effect heterogeneity and a large number of primary studies, which may be found if publication bias is examined in a

17. Evaluation of the applicability in the future climate of a statistical downscaling method in France

Science.gov (United States)

Dayon, G.; Boé, J.; Martin, E.

2013-12-01

The uncertainties in climate projections during the next decades generally remain large, with an important contribution of internal climate variability. To quantify and capture the impact of those uncertainties in impact projections, multi-model and multi-member approaches are essential. Statistical downscaling (SD) methods are computationally inexpensive allowing for large ensemble approaches. The main weakness of SD is that it relies on a stationarity hypothesis, namely that the statistical relation established in the present climate remains valid in the climate change context. In this study, the evaluation of SD methods developed for a future study of hydrological changes during the next decades over France is presented, focusing on precipitation. The SD methods are all based on the analogs method which is quite simple to set up and permits to easily test different combinations of predictors, the only changing parameter in the methods discussed in this presentation. The basic idea of the analogs method is that for a same large scale climatic state, the state of local variables will be identical. In a climate change context, the statistical relation established on past climate is assumed to remain valid in the future climate. In practice, this stationarity assumption is impossible to verify until the future climate is effectively observed. It is possible to evaluate the ability of SD methods to reproduce the interannual variability in the present climate, but this approach does not guarantee their validity in the future climate as the mechanisms that play in the interannual and climate change contexts may not be identical. Another common approach is to test whether a SD method is able to reproduce observed, as they may be partly caused by climate changes. The observed trends in precipitation are compared to those obtained by downscaling 4 different atmospheric reanalyses with analogs methods. The uncertainties in downscaled trends due to renalyses are very large

18. Logistic regression models

CERN Document Server

Hilbe, Joseph M

2009-01-01

This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

19. Evaluating the Use of Random Distribution Theory to Introduce Statistical Inference Concepts to Business Students

Science.gov (United States)

Larwin, Karen H.; Larwin, David A.

2011-01-01

Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…

20. Evaluation of Theoretical and Empirical Characteristics of the Communication, Language, and Statistics Survey (CLASS)

Science.gov (United States)

Wagler, Amy E.; Lesser, Lawrence M.

2018-01-01

The interaction between language and the learning of statistical concepts has been receiving increased attention. The Communication, Language, And Statistics Survey (CLASS) was developed in response to the need to focus on dynamics of language in light of the culturally and linguistically diverse environments of introductory statistics classrooms.…

1. Multivariate Regression Analysis and Slaughter Livestock,

Science.gov (United States)

AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

2. A statistical approach to evaluate flood risk at the regional level: an application to Italy

Science.gov (United States)

Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea

2016-04-01

Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate

3. ERROR DISTRIBUTION EVALUATION OF THE THIRD VANISHING POINT BASED ON RANDOM STATISTICAL SIMULATION

Directory of Open Access Journals (Sweden)

C. Li

2012-07-01

Full Text Available POS, integrated by GPS / INS (Inertial Navigation Systems, has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems. However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY. How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

4. Error Distribution Evaluation of the Third Vanishing Point Based on Random Statistical Simulation

Science.gov (United States)

Li, C.

2012-07-01

POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

5. Meta-regression analysis to evaluate relationships between maternal blood levels of placentation biomarkers and low delivery weight.

Science.gov (United States)

Goto, Eita

2018-05-03

6. A statistical approach to evaluate the performance of cardiac biomarkers in predicting death due to acute myocardial infarction: time-dependent ROC curve

Science.gov (United States)

Karaismailoğlu, Eda; Dikmen, Zeliha Günnur; Akbıyık, Filiz; Karaağaoğlu, Ahmet Ergun

2018-04-30

Background/aim: Myoglobin, cardiac troponin T, B-type natriuretic peptide (BNP), and creatine kinase isoenzyme MB (CK-MB) are frequently used biomarkers for evaluating risk of patients admitted to an emergency department with chest pain. Recently, time- dependent receiver operating characteristic (ROC) analysis has been used to evaluate the predictive power of biomarkers where disease status can change over time. We aimed to determine the best set of biomarkers that estimate cardiac death during follow-up time. We also obtained optimal cut-off values of these biomarkers, which differentiates between patients with and without risk of death. A web tool was developed to estimate time intervals in risk. Materials and methods: A total of 410 patients admitted to the emergency department with chest pain and shortness of breath were included. Cox regression analysis was used to determine an optimal set of biomarkers that can be used for estimating cardiac death and to combine the significant biomarkers. Time-dependent ROC analysis was performed for evaluating performances of significant biomarkers and a combined biomarker during 240 h. The bootstrap method was used to compare statistical significance and the Youden index was used to determine optimal cut-off values. Results : Myoglobin and BNP were significant by multivariate Cox regression analysis. Areas under the time-dependent ROC curves of myoglobin and BNP were about 0.80 during 240 h, and that of the combined biomarker (myoglobin + BNP) increased to 0.90 during the first 180 h. Conclusion: Although myoglobin is not clinically specific to a cardiac event, in our study both myoglobin and BNP were found to be statistically significant for estimating cardiac death. Using this combined biomarker may increase the power of prediction. Our web tool can be useful for evaluating the risk status of new patients and helping clinicians in making decisions.

7. Assessing risk factors for periodontitis using regression

Science.gov (United States)

Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

2013-10-01

Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

8. Comments on Brodsky's statistical methods for evaluating epidemiological results, and reply by Brodsky, A

International Nuclear Information System (INIS)

Frome, E.L.; Khare, M.

1980-01-01

Brodsky's paper 'A Statistical Method for Testing Epidemiological Results, as applied to the Hanford Worker Population', (Health Phys., 36, 611-628, 1979) proposed two test statistics for use in comparing the survival experience of a group of employees and controls. This letter states that both of the test statistics were computed using incorrect formulas and concludes that the results obtained using these statistics may also be incorrect. In his reply Brodsky concurs with the comments on the proper formulation of estimates of pooled standard errors in constructing test statistics but believes that the erroneous formulation does not invalidate the major points, results and discussions of his paper. (author)

Science.gov (United States)

Anvari, Arash; Halpern, Elkan F; Samir, Anthony E

2015-10-01

Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.

10. Notes on the Implementation of Non-Parametric Statistics within the Westinghouse Realistic Large Break LOCA Evaluation Model (ASTRUM)

International Nuclear Information System (INIS)

Frepoli, Cesare; Oriani, Luca

2006-01-01

In recent years, non-parametric or order statistics methods have been widely used to assess the impact of the uncertainties within Best-Estimate LOCA evaluation models. The bounding of the uncertainties is achieved with a direct Monte Carlo sampling of the uncertainty attributes, with the minimum trial number selected to 'stabilize' the estimation of the critical output values (peak cladding temperature (PCT), local maximum oxidation (LMO), and core-wide oxidation (CWO A non-parametric order statistics uncertainty analysis was recently implemented within the Westinghouse Realistic Large Break LOCA evaluation model, also referred to as 'Automated Statistical Treatment of Uncertainty Method' (ASTRUM). The implementation or interpretation of order statistics in safety analysis is not fully consistent within the industry. This has led to an extensive public debate among regulators and researchers which can be found in the open literature. The USNRC-approved Westinghouse method follows a rigorous implementation of the order statistics theory, which leads to the execution of 124 simulations within a Large Break LOCA analysis. This is a solid approach which guarantees that a bounding value (at 95% probability) of the 95 th percentile for each of the three 10 CFR 50.46 ECCS design acceptance criteria (PCT, LMO and CWO) is obtained. The objective of this paper is to provide additional insights on the ASTRUM statistical approach, with a more in-depth analysis of pros and cons of the order statistics and of the Westinghouse approach in the implementation of this statistical methodology. (authors)

11. Regression: A Bibliography.

Science.gov (United States)

Pedrini, D. T.; Pedrini, Bonnie C.

Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

12. Testing Heteroscedasticity in Robust Regression

Czech Academy of Sciences Publication Activity Database

Kalina, Jan

2011-01-01

Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf

13. Forecasting with Dynamic Regression Models

CERN Document Server

Pankratz, Alan

2012-01-01

One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

14. Credit Scoring Problem Based on Regression Analysis

OpenAIRE

2014-01-01

ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

15. Two Paradoxes in Linear Regression Analysis

Science.gov (United States)

FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

2016-01-01

Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

16. Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model

Directory of Open Access Journals (Sweden)

T. M. Saloranta

2012-11-01

Full Text Available Daily maps of snow conditions have been produced in Norway with the seNorge snow model since 2004. The seNorge snow model operates with 1 × 1 km resolution, uses gridded observations of daily temperature and precipitation as its input forcing, and simulates, among others, snow water equivalent (SWE, snow depth (SD, and the snow bulk density (ρ. In this paper the set of equations contained in the seNorge model code is described and a thorough spatiotemporal statistical evaluation of the model performance from 1957–2011 is made using the two major sets of extensive in situ snow measurements that exist for Norway. The evaluation results show that the seNorge model generally overestimates both SWE and ρ, and that the overestimation of SWE increases with elevation throughout the snow season. However, the R2-values for model fit are 0.60 for (log-transformed SWE and 0.45 for ρ, indicating that after removal of the detected systematic model biases (e.g. by recalibrating the model or expressing snow conditions in relative units the model performs rather well. The seNorge model provides a relatively simple, not very data-demanding, yet nonetheless process-based method to construct snow maps of high spatiotemporal resolution. It is an especially well suited alternative for operational snow mapping in regions with rugged topography and large spatiotemporal variability in snow conditions, as is the case in the mountainous Norway.

17. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations

Directory of Open Access Journals (Sweden)

ROBSON B. DE LIMA

2017-08-01

Full Text Available ABSTRACT Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005 generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005 is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

18. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations.

Science.gov (United States)

Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C

2017-01-01

Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

19. EVALUATION OF PHOTOGRAMMETRIC BLOCK ORIENTATION USING QUALITY DESCRIPTORS FROM STATISTICALLY FILTERED TIE POINTS

Directory of Open Access Journals (Sweden)

A. Calantropio

2018-05-01

Full Text Available Due to the increasing number of low-cost sensors, widely accessible on the market, and because of the supposed granted correctness of the semi-automatic workflow for 3D reconstruction, highly implemented in the recent commercial software, more and more users operate nowadays without following the rigorousness of classical photogrammetric methods. This behaviour often naively leads to 3D products that lacks metric quality assessment. This paper proposes and analyses an approach that gives the users the possibility to preserve the trustworthiness of the metric information inherent in the 3D model, without sacrificing the automation offered by modern photogrammetry software. At the beginning, the importance of Data Quality Assessment is outlined, together with some recall of photogrammetry best practices. With the purpose of guiding the user through a correct pipeline for a certified 3D model reconstruction, an operative workflow is proposed, focusing on the first part of the object reconstruction steps (tie-points extraction, camera calibration, and relative orientation. A new GUI (Graphical User Interface developed for the open source MicMac suite is then presented, and a sample dataset is used for the evaluation of the photogrammetric block orientation using statistically obtained quality descriptors. The results and the future directions are then presented and discussed.

20. Do Different Mental Models Influence Cybersecurity Behavior? Evaluations via Statistical Reasoning Performance

Directory of Open Access Journals (Sweden)

Gary L. Brase

2017-11-01

Full Text Available Cybersecurity research often describes people as understanding internet security in terms of metaphorical mental models (e.g., disease risk, physical security risk, or criminal behavior risk. However, little research has directly evaluated if this is an accurate or productive framework. To assess this question, two experiments asked participants to respond to a statistical reasoning task framed in one of four different contexts (cybersecurity, plus the above alternative models. Each context was also presented using either percentages or natural frequencies, and these tasks were followed by a behavioral likelihood rating. As in previous research, consistent use of natural frequencies promoted correct Bayesian reasoning. There was little indication, however, that any of the alternative mental models generated consistently better understanding or reasoning over the actual cybersecurity context. There was some evidence that different models had some effects on patterns of responses, including the behavioral likelihood ratings, but these effects were small, as compared to the effect of the numerical format manipulation. This points to a need to improve the content of actual internet security warnings, rather than working to change the models users have of warnings.

1. Do Different Mental Models Influence Cybersecurity Behavior? Evaluations via Statistical Reasoning Performance.

Science.gov (United States)

Brase, Gary L; Vasserman, Eugene Y; Hsu, William

2017-01-01

Cybersecurity research often describes people as understanding internet security in terms of metaphorical mental models (e.g., disease risk, physical security risk, or criminal behavior risk). However, little research has directly evaluated if this is an accurate or productive framework. To assess this question, two experiments asked participants to respond to a statistical reasoning task framed in one of four different contexts (cybersecurity, plus the above alternative models). Each context was also presented using either percentages or natural frequencies, and these tasks were followed by a behavioral likelihood rating. As in previous research, consistent use of natural frequencies promoted correct Bayesian reasoning. There was little indication, however, that any of the alternative mental models generated consistently better understanding or reasoning over the actual cybersecurity context. There was some evidence that different models had some effects on patterns of responses, including the behavioral likelihood ratings, but these effects were small, as compared to the effect of the numerical format manipulation. This points to a need to improve the content of actual internet security warnings, rather than working to change the models users have of warnings.

2. Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner

KAUST Repository

Kruse, Stephan

2018-04-11

Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.

3. Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner

KAUST Repository

Kruse, Stephan; Mansour, Mohy S.; Elbaz, Ayman M.; Varea, Emilien; Grü nefeld, Gerd; Beeckmann, Joachim; Pitsch, Heinz

2018-01-01

Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.

4. Using Statistical and Probabilistic Methods to Evaluate Health Risk Assessment: A Case Study

Directory of Open Access Journals (Sweden)

Hongjing Wu

2014-06-01

Full Text Available The toxic chemical and heavy metals within wastewater can cause serious adverse impacts on human health. Health risk assessment (HRA is an effective tool for supporting decision-making and corrective actions in water quality management. HRA can also help people understand the water quality and quantify the adverse effects of pollutants on human health. Due to the imprecision of data, measurement error and limited available information, uncertainty is inevitable in the HRA process. The purpose of this study is to integrate statistical and probabilistic methods to deal with censored and limited numbers of input data to improve the reliability of the non-cancer HRA of dermal contact exposure to contaminated river water by considering uncertainty. A case study in the Kelligrews River in St. John’s, Canada, was conducted to demonstrate the feasibility and capacity of the proposed approach. Five heavy metals were selected to evaluate the risk level, including arsenic, molybdenum, zinc, uranium and manganese. The results showed that the probability of the total hazard index of dermal exposure exceeding 1 is very low, and there is no obvious evidence of risk in the study area.

5. Statistical evaluation of variables affecting occurrence of hydrocarbons in aquifers used for public supply, California

Science.gov (United States)

Landon, Matthew K.; Burton, Carmen A.; Davis, Tracy A.; Belitz, Kenneth; Johnson, Tyler D.

2014-01-01

The variables affecting the occurrence of hydrocarbons in aquifers used for public supply in California were assessed based on statistical evaluation of three large statewide datasets; gasoline oxygenates also were analyzed for comparison with hydrocarbons. Benzene is the most frequently detected (1.7%) compound among 17 hydrocarbons analyzed at generally low concentrations (median detected concentration 0.024 μg/l) in groundwater used for public supply in California; methyl tert-butyl ether (MTBE) is the most frequently detected (5.8%) compound among seven oxygenates analyzed (median detected concentration 0.1 μg/l). At aquifer depths used for public supply, hydrocarbons and MTBE rarely co-occur and are generally related to different variables; in shallower groundwater, co-occurrence is more frequent and there are similar relations to the density or proximity of potential sources. Benzene concentrations are most strongly correlated with reducing conditions, regardless of groundwater age and depth. Multiple lines of evidence indicate that benzene and other hydrocarbons detected in old, deep, and/or brackish groundwater result from geogenic sources of oil and gas. However, in recently recharged (since ~1950), generally shallower groundwater, higher concentrations and detection frequencies of benzene and hydrocarbons were associated with a greater proportion of commercial land use surrounding the well, likely reflecting effects of anthropogenic sources, particularly in combination with reducing conditions.

6. Implementation of Statistical Methods and SWOT Analysis for Evaluation of Metal Waste Management in Engineering Company

Directory of Open Access Journals (Sweden)

Záhorská Renáta

2016-12-01

Full Text Available This paper presents the results of the waste management research in a selected engineering company RIBE Slovakia, k. s., Nitra factory. Within of its manufacturing programme, the mentioned factory uses wide range of the manufacturing technologies (cutting operations, metal cold-forming, thread rolling, metal surface finishing, automatic sorting, metrology, assembly, with the aim to produce the final products – connecting components (fasteners delivered to many industrial fields (agricultural machinery manufacturers, car industry, etc.. There were obtained data characterizing production technologies and the range of manufactured products. The key attention is paid to the classification of waste produced by engineering production and to waste management within the company. Within the research, there were obtained data characterizing the time course of production of various waste types and these data were evaluated by means of statistical method using STATGRAPHICS. Based on the application of SWOT analysis, there is objectively assessed the waste management in the company in terms of strengths and weaknesses, as well as determination of the opportunities and potential threats. Results obtained by the SWOT analysis application have allowed to come to conclusion that the company RIBE Slovakia, k. s., Nitra factory has well organized waste management system. The fact that the waste management system is incorporated into the company management system can be considered as an advantage.

7. Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River

Directory of Open Access Journals (Sweden)

Teck-Yee Ling

2017-01-01

Full Text Available The present study evaluated the spatial variations of surface water quality in a tropical river using multivariate statistical techniques, including cluster analysis (CA and principal component analysis (PCA. Twenty physicochemical parameters were measured at 30 stations along the Batang Baram and its tributaries. The water quality of the Batang Baram was categorized as “slightly polluted” where the chemical oxygen demand and total suspended solids were the most deteriorated parameters. The CA grouped the 30 stations into four clusters which shared similar characteristics within the same cluster, representing the upstream, middle, and downstream regions of the main river and the tributaries from the middle to downstream regions of the river. The PCA has determined a reduced number of six principal components that explained 83.6% of the data set variance. The first PC indicated that the total suspended solids, turbidity, and hydrogen sulphide were the dominant polluting factors which is attributed to the logging activities, followed by the five-day biochemical oxygen demand, total phosphorus, organic nitrogen, and nitrate-nitrogen in the second PC which are related to the discharges from domestic wastewater. The components also imply that logging activities are the major anthropogenic activities responsible for water quality variations in the Batang Baram when compared to the domestic wastewater discharge.

8. Statistical Evaluation of the Identified Structural Parameters of an idling Offshore Wind Turbine

International Nuclear Information System (INIS)

Kramers, Hendrik C.; Van der Valk, Paul L.C.; Van Wingerden, Jan-Willem

2016-01-01

With the increased need for renewable energy, new offshore wind farms are being developed at an unprecedented scale. However, as the costs of offshore wind energy are still too high, design optimization and new innovations are required for lowering its cost. The design of modern day offshore wind turbines relies on numerical models for estimating ultimate and fatigue loads of the turbines. The dynamic behavior and the resulting structural loading of the turbines is determined for a large part by its structural properties, such as the natural frequencies and damping ratios. Hence, it is important to obtain accurate estimates of these modal properties. For this purpose stochastic subspace identification (SSI), in combination with clustering and statistical evaluation methods, is used to obtain the variance of the identified modal properties of an installed 3.6MW offshore wind turbine in idling conditions. It is found that one is able to obtain confidence intervals for the means of eigenfrequencies and damping ratios of the fore-aft and side-side modes of the wind turbine. (paper)

9. Correlation and simple linear regression.

Science.gov (United States)

Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

2003-06-01

In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

10. Numerical and Qualitative Contrasts of Two Statistical Models for Water Quality Change in Tidal Waters

Science.gov (United States)

Two statistical approaches, weighted regression on time, discharge, and season and generalized additive models, have recently been used to evaluate water quality trends in estuaries. Both models have been used in similar contexts despite differences in statistical foundations and...

11. Application of a statistical thermal design procedure to evaluate the PWR DNBR safety analysis limits

International Nuclear Information System (INIS)

Robeyns, J.; Parmentier, F.; Peeters, G.

2001-01-01

In the framework of safety analysis for the Belgian nuclear power plants and for the reload compatibility studies, Tractebel Energy Engineering (TEE) has developed, to define a 95/95 DNBR criterion, a statistical thermal design method based on the analytical full statistical approach: the Statistical Thermal Design Procedure (STDP). In that methodology, each DNBR value in the core assemblies is calculated with an adapted CHF (Critical Heat Flux) correlation implemented in the sub-channel code Cobra for core thermal hydraulic analysis. The uncertainties of the correlation are represented by the statistical parameters calculated from an experimental database. The main objective of a sub-channel analysis is to prove that in all class 1 and class 2 situations, the minimum DNBR (Departure from Nucleate Boiling Ratio) remains higher than the Safety Analysis Limit (SAL). The SAL value is calculated from the Statistical Design Limit (SDL) value adjusted with some penalties and deterministic factors. The search of a realistic value for the SDL is the objective of the statistical thermal design methods. In this report, we apply a full statistical approach to define the DNBR criterion or SDL (Statistical Design Limit) with the strict observance of the design criteria defined in the Standard Review Plan. The same statistical approach is used to define the expected number of rods experiencing DNB. (author)

12. The evaluation of the statistical monomineral thermobarometric methods for the reconstruction of the lithospheric mantle structure

Science.gov (United States)

Ashchepkov, I.; Vishnyakova, E.

2009-04-01

The modified versions of the thermobarometers for the mantle assemblages were revised sing statistical calibrations on the results of Opx thermobarometry. The modifications suggest the calculation of the Fe# of coexisting olivine Fe#Ol according to the statistical approximations by the regressions obtained from the xenoliths from kimberlite data base including >700 associations. They allow reproduces the Opx based TP estimates and to receive the complete set of the TP values for mantle xenoliths and xenocrysts. For GARNET Three variants of barometer give similar results. The first is published (Ashchepkov, 2006). The second is calculating the Al2O3 from Garnet for Orthopyroxene according to procedure: xCrOpx=Cr2O3/CaO)/FeO/MgO/500 xAlOpx=1/(3875*(exp(Cr2O3^0.2/CaO)-0.3)*CaO/989+16)-XcrOpx Al2O3=xAlOp*24.64/Cr2O3^0.2*CaO/2.+FeO*(ToK-501)/1002 And then it suppose using of the Al2O3 in Opx barometer (McGregor, 1974). The third variant is transformation of the G. Grutter (2006) method by introducing of the influence of temperature. P=40+(Cr2O3)-4.5)*10/3-20/7*CaO+(ToC)*0.0000751*MgO)*CaO+2.45*Cr2O3*(7-xv(5,8)) -Fe*0.5 with the correction for P>55: P=55+(P-55)*55/(1+0.9*P) Average from this three methods give appropriate values comparable with determined with (McGregor,1974) barometer. Temperature are estimating according to transformed Krogh thermometer Fe#Ol_Gar=Fe#Gar/2+(T(K)-1420)*0.000112+0.01 For the deep seated associations P>55 kbar T=T-(0.25/(0.4-0.004*(20-P))-0.38/Ca)*275+51*Ca*Cr2-378*CaO-0.51)-Cr/Ca2*5+Mg/(Fe+0.0001)*17.4 ILMENITE P= ((TiO2-23.)*2.15-(T0-973)/20*MgO*Cr2O3 and next P=(60-P)/6.1+P ToK is determined according to (Taylor et al , 1998) Fe#Ol_Chr =(Fe/(Fe+Mg)ilm -0.35)/2.252-0.0000351*(T(K)-973) CHROMITE The equations for PT estimates with chromite compositions P=Cr/(Cr+Al)*T(K)/14.+Ti*0.10 with the next iteration P=-0.0053*P^2+1.1292*P+5.8059 +0.00135*T(K)*Ti*410-8.2 For P> 57 P=P+(P-57)*2.75 Temperature estimates are according to the O

13. The Canadian Precipitation Analysis (CaPA): Evaluation of the statistical interpolation scheme

Science.gov (United States)

Evans, Andrea; Rasmussen, Peter; Fortin, Vincent

2013-04-01

CaPA (Canadian Precipitation Analysis) is a data assimilation system which employs statistical interpolation to combine observed precipitation with gridded precipitation fields produced by Environment Canada's Global Environmental Multiscale (GEM) climate model into a final gridded precipitation analysis. Precipitation is important in many fields and applications, including agricultural water management projects, flood control programs, and hydroelectric power generation planning. Precipitation is a key input to hydrological models, and there is a desire to have access to the best available information about precipitation in time and space. The principal goal of CaPA is to produce this type of information. In order to perform the necessary statistical interpolation, CaPA requires the estimation of a semi-variogram. This semi-variogram is used to describe the spatial correlations between precipitation innovations, defined as the observed precipitation amounts minus the GEM forecasted amounts predicted at the observation locations. Currently, CaPA uses a single isotropic variogram across the entire analysis domain. The present project investigates the implications of this choice by first conducting a basic variographic analysis of precipitation innovation data across the Canadian prairies, with specific interest in identifying and quantifying potential anisotropy within the domain. This focus is further expanded by identifying the effect of storm type on the variogram. The ultimate goal of the variographic analysis is to develop improved semi-variograms for CaPA that better capture the spatial complexities of precipitation over the Canadian prairies. CaPA presently applies a Box-Cox data transformation to both the observations and the GEM data, prior to the calculation of the innovations. The data transformation is necessary to satisfy the normal distribution assumption, but introduces a significant bias. The second part of the investigation aims at devising a bias

14. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

Energy Technology Data Exchange (ETDEWEB)

GREER DA; THIEN MG

2012-01-12

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

15. Statistical distribution sampling

Science.gov (United States)

Johnson, E. S.

1975-01-01

Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.

16. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)

Science.gov (United States)

2011-07-01

SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model

17. Heterogeneity index evaluated by slope of linear regression on 18F-FDG PET/CT as a prognostic marker for predicting tumor recurrence in pancreatic ductal adenocarcinoma

International Nuclear Information System (INIS)

Kim, Yong-il; Kim, Yong Joong; Paeng, Jin Chul; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook

2017-01-01

18 F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been investigated as a method to predict pancreatic cancer recurrence after pancreatic surgery. We evaluated the recently introduced heterogeneity indices of 18 F-FDG PET/CT used for predicting pancreatic cancer recurrence after surgery and compared them with current clinicopathologic and 18 F-FDG PET/CT parameters. A total of 93 pancreatic ductal adenocarcinoma patients (M:F = 60:33, mean age = 64.2 ± 9.1 years) who underwent preoperative 18 F-FDG PET/CT following pancreatic surgery were retrospectively enrolled. The standardized uptake values (SUVs) and tumor-to-background ratios (TBR) were measured on each 18 F-FDG PET/CT, as metabolic parameters. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were examined as volumetric parameters. The coefficient of variance (heterogeneity index-1; SUVmean divided by the standard deviation) and linear regression slopes (heterogeneity index-2) of the MTV, according to SUV thresholds of 2.0, 2.5 and 3.0, were evaluated as heterogeneity indices. Predictive values of clinicopathologic and 18 F-FDG PET/CT parameters and heterogeneity indices were compared in terms of pancreatic cancer recurrence. Seventy patients (75.3%) showed recurrence after pancreatic cancer surgery (mean recurrence = 9.4 ± 8.4 months). Comparing the recurrence and no recurrence patients, all of the 18 F-FDG PET/CT parameters and heterogeneity indices demonstrated significant differences. In univariate Cox-regression analyses, MTV (P = 0.013), TLG (P = 0.007), and heterogeneity index-2 (P = 0.027) were significant. Among the clinicopathologic parameters, CA19-9 (P = 0.025) and venous invasion (P = 0.002) were selected as significant parameters. In multivariate Cox-regression analyses, MTV (P = 0.005), TLG (P = 0.004), and heterogeneity index-2 (P = 0.016) with venous invasion (P < 0.001, 0.001, and 0.001, respectively) demonstrated significant results

18. Beginning statistics with data analysis

CERN Document Server

Mosteller, Frederick; Rourke, Robert EK

2013-01-01

This introduction to the world of statistics covers exploratory data analysis, methods for collecting data, formal statistical inference, and techniques of regression and analysis of variance. 1983 edition.

19. A comparative empirical analysis of statistical models for evaluating highway segment crash frequency

Directory of Open Access Journals (Sweden)

Bismark R.D.K. Agbelie

2016-08-01

Full Text Available The present study conducted an empirical highway segment crash frequency analysis on the basis of fixed-parameters negative binomial and random-parameters negative binomial models. Using a 4-year data from a total of 158 highway segments, with a total of 11,168 crashes, the results from both models were presented, discussed, and compared. About 58% of the selected variables produced normally distributed parameters across highway segments, while the remaining produced fixed parameters. The presence of a noise barrier along a highway segment would increase mean annual crash frequency by 0.492 for 88.21% of the highway segments, and would decrease crash frequency for 11.79% of the remaining highway segments. Besides, the number of vertical curves per mile along a segment would increase mean annual crash frequency by 0.006 for 84.13% of the highway segments, and would decrease crash frequency for 15.87% of the remaining highway segments. Thus, constraining the parameters to be fixed across all highway segments would lead to an inaccurate conclusion. Although, the estimated parameters from both models showed consistency in direction, the magnitudes were significantly different. Out of the two models, the random-parameters negative binomial model was found to be statistically superior in evaluating highway segment crashes compared with the fixed-parameters negative binomial model. On average, the marginal effects from the fixed-parameters negative binomial model were observed to be significantly overestimated compared with those from the random-parameters negative binomial model.

20. Pulmonary complications of liver transplantation: radiological appearance and statistical evaluation of risk factors in 300 cases

International Nuclear Information System (INIS)

Golfieri, R.; Giampalma, E.; D'Arienzo, P.; Maffei, M.; Muzzi, C.; Tancioni, S.; Gavelli, G.; Morselli Labate, A.M.; Sama, C.; Jovine, E.; Grazi, G.L.; Mazziotti, A.; Cavallari, A.

2000-01-01

The aim of this study was to evaluate the incidence, radiographic appearance, time of onset, outcome and risk factors of non-infectious and infectious pulmonary complications following liver transplantation. Chest X-ray features of 300 consecutive patients who had undergone 333 liver transplants over an 11-year period were analysed: the type of pulmonary complication, the infecting pathogens and the mean time of their occurrence are described. The main risk factors for lung infections were quantified through univariate and multivariate statistical analysis. Non-infectious pulmonary abnormalities (atelectasis and/or pleural effusion: 86.7%) and pulmonary oedema (44.7%) appeared during the first postoperative week. Infectious pneumonia was observed in 13.7%, with a mortality of 36.6%. Bacterial and viral pneumonia made up the bulk of infections (63.4 and 29.3%, respectively) followed by fungal infiltrates (24.4%). A fairly good correlation between radiological chest X-ray pattern, time of onset and the cultured microorganisms has been observed in all cases. In multivariate analysis, persistent non-infectious abnormalities and pulmonary oedema were identified as the major independent predictors of posttransplant pneumonia, followed by prolonged assisted mechanical ventilation and traditional caval anastomosis. A ''pneumonia-risk score'' was calculated: low-risk score ( 3.30) population. The ''pneumonia-risk score'' identifies a specific group of patients in whom closer radiographic monitoring is recommended. In addition, a highly significant correlation (p<0.001) was observed between pneumonia-risk score and the expected survival, thus confirming pulmonary infections as a major cause of death in OLT recipients. (orig.)

1. T2* Mapping Provides Information That Is Statistically Comparable to an Arthroscopic Evaluation of Acetabular Cartilage.

Science.gov (United States)

Morgan, Patrick; Nissi, Mikko J; Hughes, John; Mortazavi, Shabnam; Ellerman, Jutta

2017-07-01

Objectives The purpose of this study was to validate T2* mapping as an objective, noninvasive method for the prediction of acetabular cartilage damage. Methods This is the second step in the validation of T2*. In a previous study, we established a quantitative predictive model for identifying and grading acetabular cartilage damage. In this study, the model was applied to a second cohort of 27 consecutive hips to validate the model. A clinical 3.0-T imaging protocol with T2* mapping was used. Acetabular regions of interest (ROI) were identified on magnetic resonance and graded using the previously established model. Each ROI was then graded in a blinded fashion by arthroscopy. Accurate surgical location of ROIs was facilitated with a 2-dimensional map projection of the acetabulum. A total of 459 ROIs were studied. Results When T2* mapping and arthroscopic assessment were compared, 82% of ROIs were within 1 Beck group (of a total 6 possible) and 32% of ROIs were classified identically. Disease prediction based on receiver operating characteristic curve analysis demonstrated a sensitivity of 0.713 and a specificity of 0.804. Model stability evaluation required no significant changes to the predictive model produced in the initial study. Conclusions These results validate that T2* mapping provides statistically comparable information regarding acetabular cartilage when compared to arthroscopy. In contrast to arthroscopy, T2* mapping is quantitative, noninvasive, and can be used in follow-up. Unlike research quantitative magnetic resonance protocols, T2* takes little time and does not require a contrast agent. This may facilitate its use in the clinical sphere.

2. Evaluating risk factors for endemic human Salmonella Enteritidis infections with different phage types in Ontario, Canada using multinomial logistic regression and a case-case study approach

Directory of Open Access Journals (Sweden)

Varga Csaba

2012-10-01

Full Text Available Abstract Background Identifying risk factors for Salmonella Enteritidis (SE infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68 and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94, after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors.

3. PROCEDURE FOR THE EVALUATION OF MEASURED DATA IN TERMS OF VIBRATION DIAGNOSTICS BY APPLICATION OF A MULTIDIMENSIONAL STATISTICAL MODEL

Directory of Open Access Journals (Sweden)

Tomas TOMKO

2016-06-01

Full Text Available The evaluation process of measured data in terms of vibration diagnosis is problematic for timeline constructors. The complexity of such an evaluation is compounded by the fact that it is a process involving a large amount of disparate measurement data. One of the most effective analytical approaches when dealing with large amounts of data is to engage in a process using multidimensional statistical methods, which can provide a picture of the current status of the flexibility of the machinery. The more methods that are used, the more precise the statistical analysis of measurement data, making it possible to obtain a better picture of the current condition of the machinery.

4. Statistical program for the data evaluation of a thermal ionization mass spectrometer

Energy Technology Data Exchange (ETDEWEB)

van Raaphorst, J. G.

1978-12-15

A computer program has been written to statistically analyze mass spectrometer measurements. The program tests whether the difference between signal and background intensities is statistically significant, corrects for signal drift in the measured values, and calculates ratios against the main isotope from the corrected intensities. Repeated ratio value measurements are screened for outliers using the Dixon statistical test. Means of ratios and the coefficient of variation are calculated and reported. The computer program is written in Basic and is available for anyone who is interested.

5. Regression Models for Repairable Systems

Czech Academy of Sciences Publication Activity Database

Novák, Petr

2015-01-01

Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

6. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration

NARCIS (Netherlands)

de Groot, Marius; Vernooij, Meike W.; Klein, Stefan; Ikram, M. Arfan; Vos, Frans M.; Smith, Stephen M.; Niessen, Wiro J.; Andersson, Jesper L. R.

2013-01-01

Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS

7. Development of a statistical shape model of multi-organ and its performance evaluation

International Nuclear Information System (INIS)

Nakada, Misaki; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru

2010-01-01

Existing statistical shape modeling methods for an organ can not take into account the correlation between neighboring organs. This study focuses on a level set distribution model and proposes two modeling methods for multiple organs that can take into account the correlation between neighboring organs. The first method combines level set functions of multiple organs into a vector. Subsequently it analyses the distribution of the vectors of a training dataset by a principal component analysis and builds a multiple statistical shape model. Second method constructs a statistical shape model for each organ independently and assembles component scores of different organs in a training dataset so as to generate a vector. It analyses the distribution of the vectors of to build a statistical shape model of multiple organs. This paper shows results of applying the proposed methods trained by 15 abdominal CT volumes to unknown 8 CT volumes. (author)

8. Improving alignment in Tract-based spatial statistics : Evaluation and optimization of image registration

NARCIS (Netherlands)

De Groot, M.; Vernooij, M.W.; Klein, S.; Arfan Ikram, M.; Vos, F.M.; Smith, S.M.; Niessen, W.J.; Andersson, J.L.R.

2013-01-01

Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS

9. A statistical method for evaluation of the experimental phase equilibrium data of simple clathrate hydrates

DEFF Research Database (Denmark)

2012-01-01

We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot, and the r......We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot...... in exponential form is used to represent/predict the hydrate dissociation pressures for three-phase equilibrium conditions (liquid water/ice–vapor-hydrate). The investigated hydrate formers are methane, ethane, propane, carbon dioxide, nitrogen, and hydrogen sulfide. It is interpreted from the obtained results...

10. Evaluation of significantly modified water bodies in Vojvodina by using multivariate statistical techniques

Directory of Open Access Journals (Sweden)

Vujović Svetlana R.

2013-01-01

Full Text Available This paper illustrates the utility of multivariate statistical techniques for analysis and interpretation of water quality data sets and identification of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Multivariate statistical techniques, such as factor analysis (FA/principal component analysis (PCA and cluster analysis (CA, were applied for the evaluation of variations and for the interpretation of a water quality data set of the natural water bodies obtained during 2010 year of monitoring of 13 parameters at 33 different sites. FA/PCA attempts to explain the correlations between the observations in terms of the underlying factors, which are not directly observable. Factor analysis is applied to physico-chemical parameters of natural water bodies with the aim classification and data summation as well as segmentation of heterogeneous data sets into smaller homogeneous subsets. Factor loadings were categorized as strong and moderate corresponding to the absolute loading values of >0.75, 0.75-0.50, respectively. Four principal factors were obtained with Eigenvalues >1 summing more than 78 % of the total variance in the water data sets, which is adequate to give good prior information regarding data structure. Each factor that is significantly related to specific variables represents a different dimension of water quality. The first factor F1 accounting for 28 % of the total variance and represents the hydrochemical dimension of water quality. The second factor F2 accounting for 18% of the total variance and may be taken factor of water eutrophication. The third factor F3 accounting 17 % of the total variance and represents the influence of point sources of pollution on water quality. The fourth factor F4 accounting 13 % of the total variance and may be taken as an ecological dimension of water quality. Cluster analysis (CA is an

11. Dynamic Regression Model for Evaluating the Association Between Atmospheric Conditions and Deaths due to Respiratory Diseases in São Paulo, Brazil

Directory of Open Access Journals (Sweden)

Ana Carla dos Santos Gomes

Full Text Available Abstract The article reports the modeling of mortality due to respiratory diseases emanating from atmospheric conditions, capturing significant associations and verifying the ability of stochastic modeling to predict deaths arising from the relationship between weather conditions and air pollution. The statistical methods used in the analysis were cross-correlation and pre-whitening, in addition to dynamic regression modeling combining the dynamics of time series and the effect of explanatory variables. The results show there are significant associations between mortality and sulfur dioxide, air temperature, atmospheric pressure, relative humidity, and autoregressive structure. The cross-correlations captured significant lags between atmospheric variables and deaths, of two months for SO2 and relative humidity, eleven months for PM10, seven months for O3, and eight months for air temperature and the cross-correlation without lag with NO2. With CO variables, precipitation and atmospheric pressure, cross-correlations were not detected. Stochastic modeling showed that deaths due to respiratory diseases can be predicted from the combination of meteorological and air pollution variables, especially considering the existing trend and seasonality.

12. Integration of logistic regression and multicriteria land evaluation to simulation establishment of sustainable paddy field zone in Indramayu Regency, West Java Province, Indonesia

Science.gov (United States)

Nahib, Irmadi; Suryanta, Jaka; Niedyawati; Kardono, Priyadi; Turmudi; Lestari, Sri; Windiastuti, Rizka

2018-05-01

13. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

OpenAIRE

Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

2013-01-01

Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

14. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

Science.gov (United States)

Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

2016-12-22

Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at

15. A framework for evaluating innovative statistical and risk assessment tools to solve environment restoration problems

International Nuclear Information System (INIS)

Hassig, N.L.; Gilbert, R.O.; Pulsipher, B.A.

1991-09-01

Environmental restoration activities at the US Department of Energy (DOE) Hanford site face complex issues due to history of varied past contaminant disposal practices. Data collection and analysis required for site characterization, pathway modeling, and remediation selection decisions must deal with inherent uncertainties and unique problems associated with the restoration. A framework for working through the statistical aspects of the site characterization and remediation selection problems is needed. This framework would facilitate the selection of appropriate statistical tools for solving unique aspects of the environmental restoration problem. This paper presents a framework for selecting appropriate statistical and risk assessment methods. The following points will be made: (1) pathway modelers and risk assessors often recognize that ''some type'' of statistical methods are required but don't work with statisticians on tools development in the early planning phases of the project; (2) statistical tools selection and development are problem-specific and often site-specific, further indicating a need for up-front involvement of statisticians; and (3) the right tool, applied in the right way can minimize sampling costs, get as much information as possible out of the data that does exist, provide consistency and defensibility for the results, and given structure and quantitative measures to decision risks and uncertainties

16. Gaussian process regression analysis for functional data

CERN Document Server

Shi, Jian Qing

2011-01-01

Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

17. To the problem of the statistical basis of evaluation of the mechanical safety factor

International Nuclear Information System (INIS)

Tsyganov, S.V.

2009-01-01

The methodology applied for the safety factor assessment of the WWER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (Authors)

18. The System of Indicators for the Statistical Evaluation of Market Conjuncture

Directory of Open Access Journals (Sweden)

Chernenko Daryna I.

2017-04-01

Full Text Available The article is aimed at systematizing and improving the system of statistical indicators for the market of laboratory health services (LHS and developing methods for their calculation. In the course of formation of the system of statistical indicators for the market of LHS, allocation of nine blocks has been proposed: market size; proportionality of market; market demand; market proposal; level and dynamics of prices; variation of the LHS; dynamics, development trends, and cycles of the market; market structure; level of competition and monopolization. The proposed system of statistical indicators together with methods for their calculation should ensure studying the trends and regularities in formation of the market for laboratory health services in Ukraine.

19. To the problem of the statistical basis of evaluation of the mechanical safety factor

International Nuclear Information System (INIS)

Tsyganov, S.

2009-01-01

The methodology applied for the safety factor assessment of the VVER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (author)

20. Reduced Rank Regression

DEFF Research Database (Denmark)

Johansen, Søren

2008-01-01

The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

1. Principal component regression analysis with SPSS.

Science.gov (United States)

Liu, R X; Kuang, J; Gong, Q; Hou, X L

2003-06-01

The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

2. Statistical evaluation of a project to estimate fish trajectories through the intakes of Kaplan hydropower turbines

Science.gov (United States)

Sutton, Virginia Kay

This paper examines statistical issues associated with estimating paths of juvenile salmon through the intakes of Kaplan turbines. Passive sensors, hydrophones, detecting signals from ultrasonic transmitters implanted in individual fish released into the preturbine region were used to obtain the information to estimate fish paths through the intake. Aim and location of the sensors affects the spatial region in which the transmitters can be detected, and formulas relating this region to sensor aiming directions are derived. Cramer-Rao lower bounds for the variance of estimators of fish location are used to optimize placement of each sensor. Finally, a statistical methodology is developed for analyzing angular data collected from optimally placed sensors.

3. Fortification of Wheat Bread with Agroindustry By-Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure.

Science.gov (United States)

Martins, Z E; Pinho, O; Ferreira, I M P L V O

2017-09-01

The use of agroindustry by-products (BP) for fortification of wheat bread can be an alternative to waste disposal because BP are appealing sources of dietary fiber. Moreover, it may also contribute to indirect income generation. In this study, sensory, color, and crumb structure properties of breads fortified with fiber rich fraction recovered from four types of agroindustry BP were tested, namely orange (OE), pomegranate (PE), elderberry (EE), and spent yeast (YE). Statistical models for sensory preference evaluation and correlation with color and crumb structure were developed. External preference mapping indicated consumer preferences and enabled selection of the concentrations of BP fibre-rich fraction with best acceptance, namely 7.0% EE, 2.5% OE, 5.0% PE, and 2.5% YE. Data collected from image analysis complemented sensory profile information, whereas multivariate PLS regression provided information on the relationship between "crust color" and "crumb color" and instrumental data. Regression models developed for both sensory attributes presented good fitting (R 2 Y > 0.700) and predictive ability (Q 2 > 0.500), with low RMSE. Crust and crumb a* parameters had a positive influence on "crust color" and "crumb color" models, while crust L* and b* had a negative influence. © 2017 Institute of Food Technologists®.

4. Evaluation of trauma care using TRISS method: the role of adjusted misclassification rate and adjusted w-statistic

Directory of Open Access Journals (Sweden)

Bytyçi Cen I

2009-01-01

Full Text Available Abstract Background Major trauma is a leading cause of death worldwide. Evaluation of trauma care using Trauma Injury and Injury Severity Score (TRISS method is focused in trauma outcome (deaths and survivors. For testing TRISS method TRISS misclassification rate is used. Calculating w-statistic, as a difference between observed and TRISS expected survivors, we compare our trauma care results with the TRISS standard. Aim The aim of this study is to analyze interaction between misclassification rate and w-statistic and to adjust these parameters to be closer to the truth. Materials and methods Analysis of components of TRISS misclassification rate and w-statistic and actual trauma outcome. Results The component of false negative (FN (by TRISS method unexpected deaths has two parts: preventable (Pd and non-preventable (nonPd trauma deaths. Pd represents inappropriate trauma care of an institution; otherwise nonpreventable trauma deaths represents errors in TRISS method. Removing patients with preventable trauma deaths we get an Adjusted misclassification rate: (FP + FN - Pd/N or (b+c-Pd/N. Substracting nonPd from FN value in w-statistic formula we get an Adjusted w-statistic: [FP-(FN - nonPd]/N, respectively (FP-Pd/N, or (b-Pd/N. Conclusion Because adjusted formulas clean method from inappropriate trauma care, and clean trauma care from the methods error, TRISS adjusted misclassification rate and adjusted w-statistic gives more realistic results and may be used in researches of trauma outcome.

5. Evaluation of trauma care using TRISS method: the role of adjusted misclassification rate and adjusted w-statistic.

Science.gov (United States)

Llullaku, Sadik S; Hyseni, Nexhmi Sh; Bytyçi, Cen I; Rexhepi, Sylejman K

2009-01-15

Major trauma is a leading cause of death worldwide. Evaluation of trauma care using Trauma Injury and Injury Severity Score (TRISS) method is focused in trauma outcome (deaths and survivors). For testing TRISS method TRISS misclassification rate is used. Calculating w-statistic, as a difference between observed and TRISS expected survivors, we compare our trauma care results with the TRISS standard. The aim of this study is to analyze interaction between misclassification rate and w-statistic and to adjust these parameters to be closer to the truth. Analysis of components of TRISS misclassification rate and w-statistic and actual trauma outcome. The component of false negative (FN) (by TRISS method unexpected deaths) has two parts: preventable (Pd) and non-preventable (nonPd) trauma deaths. Pd represents inappropriate trauma care of an institution; otherwise nonpreventable trauma deaths represents errors in TRISS method. Removing patients with preventable trauma deaths we get an Adjusted misclassification rate: (FP + FN - Pd)/N or (b+c-Pd)/N. Substracting nonPd from FN value in w-statistic formula we get an Adjusted w-statistic: [FP-(FN - nonPd)]/N, respectively (FP-Pd)/N, or (b-Pd)/N). Because adjusted formulas clean method from inappropriate trauma care, and clean trauma care from the methods error, TRISS adjusted misclassification rate and adjusted w-statistic gives more realistic results and may be used in researches of trauma outcome.

6. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

Science.gov (United States)

Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

2013-06-01

Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

7. Statistics to the Rescue!: Using Data to Evaluate a Manufacturing Process

Science.gov (United States)

Keithley, Michael G.

2009-01-01

The use of statistics and process controls is too often overlooked in educating students. This article describes an activity appropriate for high school students who have a background in material processing. It gives them a chance to advance their knowledge by determining whether or not a manufacturing process works well. The activity follows a…

8. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China

International Nuclear Information System (INIS)

Chen Kouping; Jiao, Jiu J.; Huang Jianmin; Huang Runqiu

2007-01-01

Multivariate statistical techniques are efficient ways to display complex relationships among many objects. An attempt was made to study the data of trace elements in groundwater using multivariate statistical techniques such as principal component analysis (PCA), Q-mode factor analysis and cluster analysis. The original matrix consisted of 17 trace elements estimated from 55 groundwater samples colleted in 27 wells located in a coastal area in Shenzhen, China. PCA results show that trace elements of V, Cr, As, Mo, W, and U with greatest positive loadings typically occur as soluble oxyanions in oxidizing waters, while Mn and Co with greatest negative loadings are generally more soluble within oxygen depleted groundwater. Cluster analyses demonstrate that most groundwater samples collected from the same well in the study area during summer and winter still fall into the same group. This study also demonstrates the usefulness of multivariate statistical analysis in hydrochemical studies. - Multivariate statistical analysis was used to investigate relationships among trace elements and factors controlling trace element distribution in groundwater

9. Robust statistical methods for significance evaluation and applications in cancer driver detection and biomarker discovery

DEFF Research Database (Denmark)

2017-01-01

In the present thesis I develop, implement and apply statistical methods for detecting genomic elements implicated in cancer development and progression. This is done in two separate bodies of work. The first uses the somatic mutation burden to distinguish cancer driver mutations from passenger m...

10. Statistical Power in Evaluations That Investigate Effects on Multiple Outcomes: A Guide for Researchers

Science.gov (United States)

Porter, Kristin E.

2016-01-01

In education research and in many other fields, researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple…

11. Statistical evaluation of the data obtained from the K East Basin Sandfilter Backwash Pit samples

International Nuclear Information System (INIS)

Welsh, T.L.

1994-01-01

Samples were obtained from different locations from the K Each Sandfilter Backwash Pit to characterize the sludge material. These samples were analyzed chemically for elements, radionuclides, and residual compounds. The analytical results were statistically analyzed to determine the mean analyte content and the associated variability for each mean value

12. Statistical Power in Evaluations That Investigate Effects on Multiple Outcomes: A Guide for Researchers

Science.gov (United States)

Porter, Kristin E.

2018-01-01

Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…

13. Evaluating effects of residential treatment for juvenile offenders by statistical metaanalysis : A review

NARCIS (Netherlands)

Grietens, H; Hellinckx, W

Statistical metaanalyses on the effects of residential treatment for juvenile offenders were reviewed to examine the mean effect sizes and reductions of recidivism reported for this group. Five metaanalyses (three on North American and two on European studies) were selected and synthesized in a

14. Evaluating Two Models of Collaborative Tests in an Online Introductory Statistics Course

Science.gov (United States)

Björnsdóttir, Auðbjörg; Garfield, Joan; Everson, Michelle

2015-01-01

This study explored the use of two different types of collaborative tests in an online introductory statistics course. A study was designed and carried out to investigate three research questions: (1) What is the difference in students' learning between using consensus and non-consensus collaborative tests in the online environment?, (2) What is…

15. Statistical approach To understand MALDI-TOFMS matrices : discovery and evaluation of new MALDI matrices

NARCIS (Netherlands)

Meier, M.A.R.; Adams, N.; Schubert, U.S.

2007-01-01

A statistical approach is described to better understand the role of the matrix during a MALDI-TOFMS expt. Potential matrix mols. were selected based on a rational exptl. design and subsequently screened in order to investigate whether a certain compd. can act as a matrix for synthetic polymers. The

16. Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes

KAUST Repository

Yoon, Seyoon; Monteiro, Paulo J.M.; Macphee, Donald E.; Glasser, Fredrik P.; Imbabi, Mohammed Salah-Eldin

2014-01-01

the authors experimentally and statistically investigated the effects of mix-design factors on the mechanical properties of high-volume class F fly ash concretes. A total of 240 and 32 samples were produced and tested in the laboratory to measure compressive

17. Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes

Science.gov (United States)

Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca

2007-01-01

The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...

18. Evaluation of Multiple Linear Regression-Based Limited Sampling Strategies for Enteric-Coated Mycophenolate Sodium in Adult Kidney Transplant Recipients.

Science.gov (United States)

Brooks, Emily K; Tett, Susan E; Isbel, Nicole M; McWhinney, Brett; Staatz, Christine E

2018-04-01

Although multiple linear regression-based limited sampling strategies (LSSs) have been published for enteric-coated mycophenolate sodium, none have been evaluated for the prediction of subsequent mycophenolic acid (MPA) exposure. This study aimed to examine the predictive performance of the published LSS for the estimation of future MPA area under the concentration-time curve from 0 to 12 hours (AUC0-12) in renal transplant recipients. Total MPA plasma concentrations were measured in 20 adult renal transplant patients on 2 occasions a week apart. All subjects received concomitant tacrolimus and were approximately 1 month after transplant. Samples were taken at 0, 0.33, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, and 8 hours and 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4, 6, 9, and 12 hours after dose on the first and second sampling occasion, respectively. Predicted MPA AUC0-12 was calculated using 19 published LSSs and data from the first or second sampling occasion for each patient and compared with the second occasion full MPA AUC0-12 calculated using the linear trapezoidal rule. Bias (median percentage prediction error) and imprecision (median absolute prediction error) were determined. Median percentage prediction error and median absolute prediction error for the prediction of full MPA AUC0-12 were multiple linear regression-based LSS was not possible without concentrations up to at least 8 hours after the dose.

19. Special study for the statistical evaluation of groundwater data trends. Final report

International Nuclear Information System (INIS)

1993-05-01

Analysis of trends over time in the concentrations of chemicals in groundwater at Uranium Mill Tailings Remedial Action (UMTRA) Project sites can provide valuable information for monitoring the performance of disposal cells and the effectiveness of groundwater restoration activities. Random variation in data may obscure real trends or may produce the illusion of a trend where none exists, so statistical methods are needed to reliably detect and estimate trends. Trend analysis includes both trend detection and estimation. Trend detection uses statistical hypothesis testing and provides a yes or no answer regarding the existence of a trend. Hypothesis tests try to reach a balance between false negative and false positive conclusions. To quantify the magnitude of a trend, estimation is required. This report presents the statistical concepts that are necessary for understanding trend analysis. The types of patterns most likely to occur in UMTRA data sets are emphasized. Two general approaches to analyzing data for trends are proposed and recommendations are given to assist UMTRA Project staff in selecting an appropriate method for their site data. Trend analysis is much more difficult when data contain values less than the reported laboratory detection limit. The complications that arise are explained. This report also discusses the impact of data collection procedures on statistical trend methods and offers recommendations to improve the efficiency of the methods and reduce sampling costs. Guidance for determining how many sampling rounds might be needed by statistical methods to detect trends of various magnitudes is presented. This information could be useful in planning site monitoring activities

20. Statistical Analyses of Second Indoor Bio-Release Field Evaluation Study at Idaho National Laboratory

Energy Technology Data Exchange (ETDEWEB)

Amidan, Brett G.; Pulsipher, Brent A.; Matzke, Brett D.

2009-12-17

In September 2008 a large-scale testing operation (referred to as the INL-2 test) was performed within a two-story building (PBF-632) at the Idaho National Laboratory (INL). The report “Operational Observations on the INL-2 Experiment” defines the seven objectives for this test and discusses the results and conclusions. This is further discussed in the introduction of this report. The INL-2 test consisted of five tests (events) in which a floor (level) of the building was contaminated with the harmless biological warfare agent simulant Bg and samples were taken in most, if not all, of the rooms on the contaminated floor. After the sampling, the building was decontaminated, and the next test performed. Judgmental samples and probabilistic samples were determined and taken during each test. Vacuum, wipe, and swab samples were taken within each room. The purpose of this report is to study an additional four topics that were not within the scope of the original report. These topics are: 1) assess the quantitative assumptions about the data being normally or log-normally distributed; 2) evaluate differences and quantify the sample to sample variability within a room and across the rooms; 3) perform geostatistical types of analyses to study spatial correlations; and 4) quantify the differences observed between surface types and sampling methods for each scenario and study the consistency across the scenarios. The following four paragraphs summarize the results of each of the four additional analyses. All samples after decontamination came back negative. Because of this, it was not appropriate to determine if these clearance samples were normally distributed. As Table 1 shows, the characterization data consists of values between and inclusive of 0 and 100 CFU/cm2 (100 was the value assigned when the number is too numerous to count). The 100 values are generally much bigger than the rest of the data, causing the data to be right skewed. There are also a significant

1. Fungible weights in logistic regression.

Science.gov (United States)

Jones, Jeff A; Waller, Niels G

2016-06-01

In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

2. Statistical identifiability and convergence evaluation for nonlinear pharmacokinetic models with particle swarm optimization.

Science.gov (United States)

Kim, Seongho; Li, Lang

2014-02-01

The statistical identifiability of nonlinear pharmacokinetic (PK) models with the Michaelis-Menten (MM) kinetic equation is considered using a global optimization approach, which is particle swarm optimization (PSO). If a model is statistically non-identifiable, the conventional derivative-based estimation approach is often terminated earlier without converging, due to the singularity. To circumvent this difficulty, we develop a derivative-free global optimization algorithm by combining PSO with a derivative-free local optimization algorithm to improve the rate of convergence of PSO. We further propose an efficient approach to not only checking the convergence of estimation but also detecting the identifiability of nonlinear PK models. PK simulation studies demonstrate that the convergence and identifiability of the PK model can be detected efficiently through the proposed approach. The proposed approach is then applied to clinical PK data along with a two-compartmental model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

3. A statistical framework for evaluating neural networks to predict recurrent events in breast cancer

Science.gov (United States)

Gorunescu, Florin; Gorunescu, Marina; El-Darzi, Elia; Gorunescu, Smaranda

2010-07-01

Breast cancer is the second leading cause of cancer deaths in women today. Sometimes, breast cancer can return after primary treatment. A medical diagnosis of recurrent cancer is often a more challenging task than the initial one. In this paper, we investigate the potential contribution of neural networks (NNs) to support health professionals in diagnosing such events. The NN algorithms are tested and applied to two different datasets. An extensive statistical analysis has been performed to verify our experiments. The results show that a simple network structure for both the multi-layer perceptron and radial basis function can produce equally good results, not all attributes are needed to train these algorithms and, finally, the classification performances of all algorithms are statistically robust. Moreover, we have shown that the best performing algorithm will strongly depend on the features of the datasets, and hence, there is not necessarily a single best classifier.

4. Statistically sound evaluation of trace element depth profiles by ion beam analysis

International Nuclear Information System (INIS)

Schmid, K.; Toussaint, U. von

2012-01-01

This paper presents the underlying physics and statistical models that are used in the newly developed program NRADC for fully automated deconvolution of trace level impurity depth profiles from ion beam data. The program applies Bayesian statistics to find the most probable depth profile given ion beam data measured at different energies and angles for a single sample. Limiting the analysis to % level amounts of material allows one to linearize the forward calculation of ion beam data which greatly improves the computation speed. This allows for the first time to apply the maximum likelihood approach to both the fitting of the experimental data and the determination of confidence intervals of the depth profiles for real world applications. The different steps during the automated deconvolution will be exemplified by applying the program to artificial and real experimental data.

5. Possible uses of animal databases for further statistical evaluation and modeling

International Nuclear Information System (INIS)

Griffith, W.C.; Boecker, B.B.; Gerber, G.B.

1995-01-01

Many studies have been performed in animals which mimic potential exposures of people in order to understand how factors modify radiation dose-response relationships. Cooperative analyses by investigators in different laboratories have a large potential for strengthening the conclusions that can be drawn from individual studies. When information on each animal is combined, then formal tests can be made to demonstrate that apparent consistencies or inconsistencies are statistically significant. Statistical methods must be carefully chosen so that differences between laboratories or studies can be controlled or described as part of the analysis in the interpretation of the conclusions. In this report, the example of bone cancer of the large number of studies of modifying factors for bone cancer available from studies in US and European laboratories

6. The use of statistical methods for censored data to evaluate the activity concentration of Pb-210 in beans (Phaseolus vulgaris L.).

Science.gov (United States)

Mingote, Raquel M; Nogueira, Regina A

2016-10-01

A survey of 210 Pb activity concentration, one of the major internal natural radiation sources to man, has been carried in the most common species of beans (Phaseolus vulgaris L.) grown and consumed in Brazil. The representative bean types chosen, Carioca beans and black type sown in the Brazilian Midwestern and Southern regions, have been collected in this study and 210 Pb determined by liquid scintillation spectrometry after separation with chromatographic extraction using Sr-resin. Available values in data set of radioactivity in Brazil (GEORAD) on the 210 Pb activity concentration in black beans grown in Southeastern region have been added to the results of this study with the purpose of to amplify the population considered. Concerning the multiple detection limits and due to the high level of censored observations, a robust semi-parametric statistical method called regression on order statistics (ROS) has been employed to provide a reference value of the 210 Pb in Brazilian beans, which amounted to 41 mBq kg -1 fresh wt. The results suggest that the 210 Pb activity concentration in carioca beans is lower than in black beans. Also evaluated was the 210 Pb activity concentration in vegetable component of a typical diet, which displays lower values than those shown in the literature for food consumed in Europe. Copyright Â© 2016 Elsevier Ltd. All rights reserved.

7. Statistical evaluation of recorded knowledge in nuclear and other instrumental analytical techniques

International Nuclear Information System (INIS)

Braun, T.

1987-01-01

The main points addressed in this study are the following: Statistical distribution patterns of published literature on instrumental analytical techniques 1981-1984; structure of scientific literature and heuristics for identifying active specialities and emerging hot spot research areas in instrumental analytical techniques; growth and growth rates of the literature in some of the identified hot research areas; quality and quantity in instrumental analytical research output. (orig.)

8. Statistical Association Criteria in Forensic Psychiatry–A criminological evaluation of casuistry

Science.gov (United States)

Gheorghiu, V; Buda, O; Popescu, I; Trandafir, MS

2011-01-01

Purpose. Identification of potential shared primary psychoprophylaxis and crime prevention is measured by analyzing the rate of commitments for patients–subjects to forensic examination. Material and method. The statistic trial is a retrospective, document–based study. The statistical lot consists of 770 initial examination reports performed and completed during the whole year 2007, primarily analyzed in order to summarize the data within the National Institute of Forensic Medicine, Bucharest, Romania (INML), with one of the group variables being ‘particularities of the psychiatric patient history’, containing the items ‘forensic onset’, ‘commitments within the last year prior to the examination’ and ‘absence of commitments within the last year prior to the examination’. The method used was the Kendall bivariate correlation. For this study, the authors separately analyze only the two items regarding commitments by other correlation alternatives and by modern, elaborate statistical analyses, i.e. recording of the standard case study variables, Kendall bivariate correlation, cross tabulation, factor analysis and hierarchical cluster analysis. Results. The results are varied, from theoretically presumed clinical nosography (such as schizophrenia or manic depression), to non–presumed (conduct disorders) or unexpected behavioral acts, and therefore difficult to interpret. Conclusions. One took into consideration the features of the batch as well as the results of the previous standard correlation of the whole statistical lot. The authors emphasize the role of medical security measures that are actually applied in the therapeutic management in general and in risk and second offence management in particular, as well as the role of forensic psychiatric examinations in the detection of certain aspects related to the monitoring of mental patients. PMID:21505571

9. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

Science.gov (United States)

Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

2018-09-01

This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

10. A laboratory evaluation of the influence of weighing gauges performance on extreme events statistics

Science.gov (United States)

Colli, Matteo; Lanza, Luca

2014-05-01

The effects of inaccurate ground based rainfall measurements on the information derived from rain records is yet not much documented in the literature. La Barbera et al. (2002) investigated the propagation of the systematic mechanic errors of tipping bucket type rain gauges (TBR) into the most common statistics of rainfall extremes, e.g. in the assessment of the return period T (or the related non-exceedance probability) of short-duration/high intensity events. Colli et al. (2012) and Lanza et al. (2012) extended the analysis to a 22-years long precipitation data set obtained from a virtual weighing type gauge (WG). The artificial WG time series was obtained basing on real precipitation data measured at the meteo-station of the University of Genova and modelling the weighing gauge output as a linear dynamic system. This approximation was previously validated with dedicated laboratory experiments and is based on the evidence that the accuracy of WG measurements under real world/time varying rainfall conditions is mainly affected by the dynamic response of the gauge (as revealed during the last WMO Field Intercomparison of Rainfall Intensity Gauges). The investigation is now completed by analyzing actual measurements performed by two common weighing gauges, the OTT Pluvio2 load-cell gauge and the GEONOR T-200 vibrating-wire gauge, since both these instruments demonstrated very good performance under previous constant flow rate calibration efforts. A laboratory dynamic rainfall generation system has been arranged and validated in order to simulate a number of precipitation events with variable reference intensities. Such artificial events were generated basing on real world rainfall intensity (RI) records obtained from the meteo-station of the University of Genova so that the statistical structure of the time series is preserved. The influence of the WG RI measurements accuracy on the associated extreme events statistics is analyzed by comparing the original intensity

11. Evaluation of PDA Technical Report No 33. Statistical Testing Recommendations for a Rapid Microbiological Method Case Study.

Science.gov (United States)

Murphy, Thomas; Schwedock, Julie; Nguyen, Kham; Mills, Anna; Jones, David

2015-01-01

New recommendations for the validation of rapid microbiological methods have been included in the revised Technical Report 33 release from the PDA. The changes include a more comprehensive review of the statistical methods to be used to analyze data obtained during validation. This case study applies those statistical methods to accuracy, precision, ruggedness, and equivalence data obtained using a rapid microbiological methods system being evaluated for water bioburden testing. Results presented demonstrate that the statistical methods described in the PDA Technical Report 33 chapter can all be successfully applied to the rapid microbiological method data sets and gave the same interpretation for equivalence to the standard method. The rapid microbiological method was in general able to pass the requirements of PDA Technical Report 33, though the study shows that there can be occasional outlying results and that caution should be used when applying statistical methods to low average colony-forming unit values. Prior to use in a quality-controlled environment, any new method or technology has to be shown to work as designed by the manufacturer for the purpose required. For new rapid microbiological methods that detect and enumerate contaminating microorganisms, additional recommendations have been provided in the revised PDA Technical Report No. 33. The changes include a more comprehensive review of the statistical methods to be used to analyze data obtained during validation. This paper applies those statistical methods to analyze accuracy, precision, ruggedness, and equivalence data obtained using a rapid microbiological method system being validated for water bioburden testing. The case study demonstrates that the statistical methods described in the PDA Technical Report No. 33 chapter can be successfully applied to rapid microbiological method data sets and give the same comparability results for similarity or difference as the standard method. © PDA, Inc

12. Understanding Statistics - Cancer Statistics

Science.gov (United States)

Annual reports of U.S. cancer statistics including new cases, deaths, trends, survival, prevalence, lifetime risk, and progress toward Healthy People targets, plus statistical summaries for a number of common cancer types.

13. Global optimization based on noisy evaluations: An empirical study of two statistical approaches

International Nuclear Information System (INIS)

Vazquez, Emmanuel; Villemonteix, Julien; Sidorkiewicz, Maryan; Walter, Eric

2008-01-01

The optimization of the output of complex computer codes has often to be achieved with a small budget of evaluations. Algorithms dedicated to such problems have been developed and compared, such as the Expected Improvement algorithm (El) or the Informational Approach to Global Optimization (IAGO). However, the influence of noisy evaluation results on the outcome of these comparisons has often been neglected, despite its frequent appearance in industrial problems. In this paper, empirical convergence rates for El and IAGO are compared when an additive noise corrupts the result of an evaluation. IAGO appears more efficient than El and various modifications of El designed to deal with noisy evaluations. Keywords. Global optimization; computer simulations; kriging; Gaussian process; noisy evaluations.

14. Evaluation of Induced Settlements of Piled Rafts in the Coupled Static-Dynamic Loads Using Neural Networks and Evolutionary Polynomial Regression

Directory of Open Access Journals (Sweden)

Ali Ghorbani

2017-01-01

Full Text Available Coupled Piled Raft Foundations (CPRFs are broadly applied to share heavy loads of superstructures between piles and rafts and reduce total and differential settlements. Settlements induced by static/coupled static-dynamic loads are one of the main concerns of engineers in designing CPRFs. Evaluation of induced settlements of CPRFs has been commonly carried out using three-dimensional finite element/finite difference modeling or through expensive real-scale/prototype model tests. Since the analyses, especially in the case of coupled static-dynamic loads, are not simply conducted, this paper presents two practical methods to gain the values of settlement. First, different nonlinear finite difference models under different static and coupled static-dynamic loads are developed to calculate exerted settlements. Analyses are performed with respect to different axial loads and pile’s configurations, numbers, lengths, diameters, and spacing for both loading cases. Based on the results of well-validated three-dimensional finite difference modeling, artificial neural networks and evolutionary polynomial regressions are then applied and introduced as capable methods to accurately present both static and coupled static-dynamic settlements. Also, using a sensitivity analysis based on Cosine Amplitude Method, axial load is introduced as the most influential parameter, while the ratio l/d is reported as the least effective parameter on the settlements of CPRFs.

15. Critical evaluation of national vital statistics: the case of preterm birth trends in Portugal.

Science.gov (United States)

Correia, Sofia; Rodrigues, Teresa; Montenegro, Nuno; Barros, Henrique

2015-11-01

Using vital statistics, the Portuguese National Health Plan predicts that 14% of live births will be preterm in 2016. The prediction was based on a preterm birth rise from 5.9% in 2000 to 8.8% in 2009. However, the same source showed an actual decline from 2010 onwards. To assess the plausibility of national preterm birth trends, we aimed to compare the evolution of preterm birth and low birthweight rates between vital statistics and a hospital database. A time-trend analysis (2004-2011) of preterm birth (rates was conducted using data on singleton births from the national birth certificates (n = 801,783) and an electronic maternity unit database (n = 21,392). Annual prevalence estimates, ratios of preterm birth:low birthweight and adjusted prevalence ratios were estimated to compare data sources. Although the national prevalence of preterm birth increased from 2004 (5.4%), particularly between 2006 and 2009 (highest rate was 7.5% in 2007), and decreased after 2009 (5.7% in 2011), the prevalence at the maternity unit remained constant. Between 2006 and 2009, preterm birth was almost 1.4 times higher in the national statistics (using the national or the catchment region samples) than in the maternity unit, but no differences were found for low birthweight. Portuguese preterm birth prevalence seems biased between 2006 and 2009, suggesting that early term babies were misclassified as preterm. As civil registration systems are important to support public health decisions, monitoring strategies should be taken to assure good quality data. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.

16. Statistical Analysis and Evaluation of the Depth of the Ruts on Lithuanian State Significance Roads

Directory of Open Access Journals (Sweden)

Erinijus Getautis

2011-04-01

Full Text Available The aim of this work is to gather information about the national flexible pavement roads ruts depth, to determine its statistical dispersijon index and to determine their validity for needed requirements. Analysis of scientific works of ruts apearance in the asphalt and their influence for driving is presented in this work. Dynamical models of ruts in asphalt are presented in the work as well. Experimental outcome data of rut depth dispersijon in the national highway of Lithuania Vilnius – Kaunas is prepared. Conclusions are formulated and presented. Article in Lithuanian

17. A statistical evaluation of the design and precision of the shrimp trawl survey off West Greenland

DEFF Research Database (Denmark)

Folmer, Ole; Pennington, M.

2000-01-01

statistical techniques were used to estimate two indices of shrimp abundance and their precision, and to determine the effective sample sizes for estimates of length-frequency distributions. It is concluded that the surveys produce a fairly precise abundance index, and that given the relatively small...... effective sample size, reducing tow duration to 15 min would increase overall survey precision. An unexpected outcome of the analysis is that the density of shrimp appears to have been fairly stable over the last 11 years. (C) 2000 Elsevier Science B.V. All rights reserved....

18. Radiographic evaluation and statistical analysis of canine skull form: Dolichocephaly, mesocephaly and brachycephaly

International Nuclear Information System (INIS)

Regodon, S.; Robina, A.; Franco, A.; Vivo, J.M.; Lignereux, Y.

1991-01-01

Cranio-encephalic morphology of three breeds of dogs (Greyhound, Pointer and Pekinese at the rate of 10 subjects, 5 males and 5 females, in each one) has been radiologically observed. Radiographic negatives in dorso-ventral and latero-lateral positions were taken and analyzed before and after the visualisation of the encephalic cavity using baryum sulfat. 18 cranio-encephalic measurements were chosen and interpreted statistically. The results showed that certain variables were more closely correlated with morphologic types of the cranium than others. We discuss the validity of the data applied for clinical diagnostic or osteo-archeology determinations

19. Statistical evaluation of Pacific Northwest Residential Energy Consumption Survey weather data

Energy Technology Data Exchange (ETDEWEB)

Tawil, J.J.

1986-02-01

This report addresses an issue relating to energy consumption and conservation in the residential sector. BPA has obtained two meteorological data bases for use with its 1983 Pacific Northwest Residential Energy Survey (PNWRES). One data base consists of temperature data from weather stations; these have been aggregated to form a second data base that covers the National Oceanographic and Atmospheric Administration (NOAA) climatic divisions. At BPA's request, Pacific Northwest Laboratory has produced a household energy use model for both electricity and natural gas in order to determine whether the statistically estimated parameters of the model significantly differ when the two different meteorological data bases are used.

20. Statistical evaluation of mature landfill leachate treatment by homogeneous catalytic ozonation

Directory of Open Access Journals (Sweden)

A. L. C. Peixoto

2010-12-01

Full Text Available This study presents the results of a mature landfill leachate treated by a homogeneous catalytic ozonation process with ions Fe2+ and Fe3+ at acidic pH. Quality assessments were performed using Taguchi's method (L8 design. Strong synergism was observed statistically between molecular ozone and ferric ions, pointing to their catalytic effect on •OH generation. The achievement of better organic matter depollution rates requires an ozone flow of 5 L h-1 (590 mg h-1 O3 and a ferric ion concentration of 5 mg L-1.

1. An Overview of Short-term Statistical Forecasting Methods

DEFF Research Database (Denmark)

Elias, Russell J.; Montgomery, Douglas C.; Kulahci, Murat

2006-01-01

An overview of statistical forecasting methodology is given, focusing on techniques appropriate to short- and medium-term forecasts. Topics include basic definitions and terminology, smoothing methods, ARIMA models, regression methods, dynamic regression models, and transfer functions. Techniques...... for evaluating and monitoring forecast performance are also summarized....

2. Development of 4S and related technologies. (3) Statistical evaluation of safety performance of 4S on ULOF event

International Nuclear Information System (INIS)

Ishii, Kyoko; Matsumiya, Hisato; Horie, Hideki; Miyagi, Kazumi

2009-01-01

The purpose of this work is to evaluate quantitatively and statistically the safety performance of Super-Safe, Small, and Simple reactor (4S) by analyzing with ARGO code, a plant dynamics code for a sodium-cooled fast reactor. In this evaluation, an Anticipated Transient Without Scram (ATWS) is assumed, and an Unprotected Loss of Flow (ULOF) event is selected as a typical ATWS case. After a metric concerned with safety design is defined as performance factor a Phenomena Identification Ranking Table (PIRT) is produced in order to select the plausible phenomena that affect the metric. Then a sensitivity analysis is performed for the parameters related to the selected plausible phenomena. Finally the metric is evaluated with statistical methods whether it satisfies the given safety acceptance criteria. The result is as follows: The Cumulative Damage Fraction (CDF) for the cladding is defined as a metric, and the statistical estimation of the one-sided upper tolerance limit of 95 percent probability at a 95 percent confidence level in CDF is within the safety acceptance criterion; CDF < 0.1. The result shows that the 4S safety performance is acceptable in the ULOF event. (author)

3. Evaluation of Two Statistical Methods Provides Insights into the Complex Patterns of Alternative Polyadenylation Site Switching

Science.gov (United States)

Li, Jie; Li, Rui; You, Leiming; Xu, Anlong; Fu, Yonggui; Huang, Shengfeng

2015-01-01

Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3’-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3’-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3’-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified. PMID:25875641

4. A Bayesian statistical analysis of mouse dermal tumor promotion assay data for evaluating cigarette smoke condensate.

Science.gov (United States)

Kathman, Steven J; Potts, Ryan J; Ayres, Paul H; Harp, Paul R; Wilson, Cody L; Garner, Charles D

2010-10-01

The mouse dermal assay has long been used to assess the dermal tumorigenicity of cigarette smoke condensate (CSC). This mouse skin model has been developed for use in carcinogenicity testing utilizing the SENCAR mouse as the standard strain. Though the model has limitations, it remains as the most relevant method available to study the dermal tumor promoting potential of mainstream cigarette smoke. In the typical SENCAR mouse CSC bioassay, CSC is applied for 29 weeks following the application of a tumor initiator such as 7,12-dimethylbenz[a]anthracene (DMBA). Several endpoints are considered for analysis including: the percentage of animals with at least one mass, latency, and number of masses per animal. In this paper, a relatively straightforward analytic model and procedure is presented for analyzing the time course of the incidence of masses. The procedure considered here takes advantage of Bayesian statistical techniques, which provide powerful methods for model fitting and simulation. Two datasets are analyzed to illustrate how the model fits the data, how well the model may perform in predicting data from such trials, and how the model may be used as a decision tool when comparing the dermal tumorigenicity of cigarette smoke condensate from multiple cigarette types. The analysis presented here was developed as a statistical decision tool for differentiating between two or more prototype products based on the dermal tumorigenicity. Copyright (c) 2010 Elsevier Inc. All rights reserved.

5. EVALUATION OF SEMANTIC SIMILARITY FOR SENTENCES IN NATURAL LANGUAGE BY MATHEMATICAL STATISTICS METHODS

Directory of Open Access Journals (Sweden)

A. E. Pismak

2016-03-01

Full Text Available Subject of Research. The paper is focused on Wiktionary articles structural organization in the aspect of its usage as the base for semantic network. Wiktionary community references, article templates and articles markup features are analyzed. The problem of numerical estimation for semantic similarity of structural elements in Wiktionary articles is considered. Analysis of existing software for semantic similarity estimation of such elements is carried out; algorithms of their functioning are studied; their advantages and disadvantages are shown. Methods. Mathematical statistics methods were used to analyze Wiktionary articles markup features. The method of semantic similarity computing based on statistics data for compared structural elements was proposed.Main Results. We have concluded that there is no possibility for direct use of Wiktionary articles as the source for semantic network. We have proposed to find hidden similarity between article elements, and for that purpose we have developed the algorithm for calculation of confidence coefficients proving that each pair of sentences is semantically near. The research of quantitative and qualitative characteristics for the developed algorithm has shown its major performance advantage over the other existing solutions in the presence of insignificantly higher error rate. Practical Relevance. The resulting algorithm may be useful in developing tools for automatic Wiktionary articles parsing. The developed method could be used in computing of semantic similarity for short text fragments in natural language in case of algorithm performance requirements are higher than its accuracy specifications.

6. Some aspects of statistic evaluation of fast reactor fuel element reliability

International Nuclear Information System (INIS)

Proshkin, A.A.; Likhachev, Yu.I.; Tuzov, A.N.; Zabud'ko, L.M.

1980-01-01

Certain aspects of application of statistical methods in forecasting operating ability of fuel elements of fast reactors with liquid-metal-heat-carriers are considered. Results of statistical analysis of fuel element operating ability with oxide fuel (U, Pu)O 2 under stationary regime of fast power reactor capacity are given. The analysis carried out permits to single out the main parameters, considerably affecting the calculated determination of fuel element operating ability. It is shown that parameters which introduce the greatest uncertainty are: steel creep rate - up to 30%; steel swelling - up to 20%; fuel ceep rate - up to 30%, fuel swelling - up to 20%, the coating material corrosion - up to 15%; contact conductivity of the fuel-coating gap - up to 10%. Contribution of these parameters in every given case is different depending on the construction, operation conditions and fuel element cross section considered. Contribution of the coating temperature uncertainty to the total dispersion does not exceed several per cent. It is shown that for the given reactor operation conditions the number of fuel elements depressurized increases with the burn out almost exponentially, starting from the burn out higher than 7% of heavy atoms

7. Improving esthetic results in benign parotid surgery: statistical evaluation of facelift approach, sternocleidomastoid flap, and superficial musculoaponeurotic system flap application.

Science.gov (United States)

Bianchi, Bernardo; Ferri, Andrea; Ferrari, Silvano; Copelli, Chiara; Sesenna, Enrico

2011-04-01

The purpose of this article was to analyze the efficacy of facelift incision, sternocleidomastoid muscle flap, and superficial musculoaponeurotic system flap for improving the esthetic results in patients undergoing partial parotidectomy for benign parotid tumor resection. The usefulness of partial parotidectomy is discussed, and a statistical evaluation of the esthetic results was performed. From January 1, 1996, to January 1, 2007, 274 patients treated for benign parotid tumors were studied. Of these, 172 underwent partial parotidectomy. The 172 patients were divided into 4 groups: partial parotidectomy with classic or modified Blair incision without reconstruction (group 1), partial parotidectomy with facelift incision and without reconstruction (group 2), partial parotidectomy with facelift incision associated with sternocleidomastoid muscle flap (group 3), and partial parotidectomy with facelift incision associated with superficial musculoaponeurotic system flap (group 4). Patients were considered, after a follow-up of at least 18 months, for functional and esthetic evaluation. The functional outcome was assessed considering the facial nerve function, Frey syndrome, and recurrence. The esthetic evaluation was performed by inviting the patients and a blind panel of 1 surgeon and 2 secretaries of the department to give a score of 1 to 10 to assess the final cosmetic outcome. The statistical analysis was finally performed using the Mann-Whitney U test for nonparametric data to compare the different group results. P less than .05 was considered significant. No recurrence developed in any of the 4 groups or in any of the 274 patients during the follow-up period. The statistical analysis, comparing group 1 and the other groups, revealed a highly significant statistical difference (P esthetic results in benign parotid surgery. The evaluation of functional complications and the recurrence rate in this series of patients has confirmed that this technique can be safely

8. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

International Nuclear Information System (INIS)

Edjabou, Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

2015-01-01

Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single

9. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

Energy Technology Data Exchange (ETDEWEB)

Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Petersen, Claus [Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen (Denmark); Scheutz, Charlotte; Astrup, Thomas Fruergaard [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

2015-02-15

Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single

10. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures

Directory of Open Access Journals (Sweden)

Scheid Anika

2012-07-01

Full Text Available Abstract Background Over the past years, statistical and Bayesian approaches have become increasingly appreciated to address the long-standing problem of computational RNA structure prediction. Recently, a novel probabilistic method for the prediction of RNA secondary structures from a single sequence has been studied which is based on generating statistically representative and reproducible samples of the entire ensemble of feasible structures for a particular input sequence. This method samples the possible foldings from a distribution implied by a sophisticated (traditional or length-dependent stochastic context-free grammar (SCFG that mirrors the standard thermodynamic model applied in modern physics-based prediction algorithms. Specifically, that grammar represents an exact probabilistic counterpart to the energy model underlying the Sfold software, which employs a sampling extension of the partition function (PF approach to produce statistically representative subsets of the Boltzmann-weighted ensemble. Although both sampling approaches have the same worst-case time and space complexities, it has been indicated that they differ in performance (both with respect to prediction accuracy and quality of generated samples, where neither of these two competing approaches generally outperforms the other. Results In this work, we will consider the SCFG based approach in order to perform an analysis on how the quality of generated sample sets and the corresponding prediction accuracy changes when different degrees of disturbances are incorporated into the needed sampling probabilities. This is motivated by the fact that if the results prove to be resistant to large errors on the distinct sampling probabilities (compared to the exact ones, then it will be an indication that these probabilities do not need to be computed exactly, but it may be sufficient and more efficient to approximate them. Thus, it might then be possible to decrease the worst

11. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

DEFF Research Database (Denmark)

Edjabou, Vincent Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona

2015-01-01

Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both...... comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub......-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10-50 waste fractions, organised according to a three-level (tiered approach) facilitating,comparison of the waste data between individual sub-areas with different fractionation (waste...

12. Environmental offences in 1995. An evaluation of statistics; Umweltdelikte 1995. Eine Auswertung der Statistiken

Energy Technology Data Exchange (ETDEWEB)

Goertz, M.; Werner, J.; Sanchez de la Cerda, J.; Schwertfeger, C.; Winkler, K.

1997-06-01

This publication deals with the execution of environmental criminal law. On the basis of police and judicial statistics it is pointed out how often an environmental criminal offence was at least suspected by the police or law courts, how they reacted to their suspicion, which individual environmental criminal offences were committed particularly frequently, and what segment of the population the typical perpetrator belonged to. (orig./SR) [Deutsch] Mit der vorliegenden Schrift soll ein Blick auf den Vollzug des Umweltstrafrechts geworfen werden. Auf der Basis der Polizei- und Gerichtsstatistiken wird dargelegt, wie oft bei diesen Stellen mindestens der Verdacht einer Umweltstraftat bestand, wie auf diesen Verdacht reagiert wurde, welche einzelnen Umweltstraftaten besonders haeufig registriert wurden und aus welchem Personenkreis der tpische Taeter stammt. (orig./SR)

13. A multi-criteria evaluation system for marine litter pollution based on statistical analyses of OSPAR beach litter monitoring time series.

Science.gov (United States)

Schulz, Marcus; Neumann, Daniel; Fleet, David M; Matthies, Michael

2013-12-01

During the last decades, marine pollution with anthropogenic litter has become a worldwide major environmental concern. Standardized monitoring of litter since 2001 on 78 beaches selected within the framework of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) has been used to identify temporal trends of marine litter. Based on statistical analyses of this dataset a two-part multi-criteria evaluation system for beach litter pollution of the North-East Atlantic and the North Sea is proposed. Canonical correlation analyses, linear regression analyses, and non-parametric analyses of variance were used to identify different temporal trends. A classification of beaches was derived from cluster analyses and served to define different states of beach quality according to abundances of 17 input variables. The evaluation system is easily applicable and relies on the above-mentioned classification and on significant temporal trends implied by significant rank correlations. Copyright © 2013 Elsevier Ltd. All rights reserved.

14. Statistical evaluation of steam condensation loads in pressure suppression pool, (1)

International Nuclear Information System (INIS)

Kukita, Yutaka; Takeshita, Isao; Namatame, Ken; Shiba, Masayoshi; Kato, Masami; Moriya, Kumiaki.

1981-10-01

The LOCA steam condensation loads in the BWR pressure suppression pool was evaluated with use of the test data obtained in the first eight tests of the JAERI Full-Scale Mark II CRT Program. Through this evaluation, finite desynchronization between the vent pressures during the chugging and the condensation oscillation phases was identified and quantified. The characteristics of the pressure oscillation propagation through the vent pipe and in the pool water, the fluid-structure-interaction (FSI) effects on the pool pressure loads, and the characteristics of the vent lateral loads were also investigated. (author)

15. Supporting Regularized Logistic Regression Privately and Efficiently

Science.gov (United States)

Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

2016-01-01

As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738

16. Supporting Regularized Logistic Regression Privately and Efficiently.

Science.gov (United States)

Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

2016-01-01

As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.

17. Supporting Regularized Logistic Regression Privately and Efficiently.

Directory of Open Access Journals (Sweden)

Wenfa Li

Full Text Available As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.

18. Applied regression analysis a research tool

CERN Document Server

Pantula, Sastry; Dickey, David

1998-01-01

Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

19. On logistic regression analysis of dichotomized responses.

Science.gov (United States)

Lu, Kaifeng

2017-01-01