Classification and regression trees
Breiman, Leo; Olshen, Richard A; Stone, Charles J
1984-01-01
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
DEFF Research Database (Denmark)
Appelt, Ane L; Rønde, Heidi S
2013-01-01
The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....
Dynamic travel time estimation using regression trees.
2008-10-01
This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Short-term load forecasting with increment regression tree
Energy Technology Data Exchange (ETDEWEB)
Yang, Jingfei; Stenzel, Juergen [Darmstadt University of Techonology, Darmstadt 64283 (Germany)
2006-06-15
This paper presents a new regression tree method for short-term load forecasting. Both increment and non-increment tree are built according to the historical data to provide the data space partition and input variable selection. Support vector machine is employed to the samples of regression tree nodes for further fine regression. Results of different tree nodes are integrated through weighted average method to obtain the comprehensive forecasting result. The effectiveness of the proposed method is demonstrated through its application to an actual system. (author)
Mohammad, Fahim; Theisen-Toupal, Jesse C.; Arnaout, Ramy
2014-01-01
Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to thei...
Directory of Open Access Journals (Sweden)
Fahim Mohammad
Full Text Available Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal". We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV and area under the receiver-operator characteristic curve (ROC AUCs. Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.
Mohammad, Fahim; Theisen-Toupal, Jesse C; Arnaout, Ramy
2014-01-01
Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV) and area under the receiver-operator characteristic curve (ROC AUCs). Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis
Directory of Open Access Journals (Sweden)
Carlos Augusto Zangrando Toneli
2011-09-01
Full Text Available Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation.
Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M
2014-12-01
Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.
Iron Supplementation and Altitude: Decision Making Using a Regression Tree
Directory of Open Access Journals (Sweden)
Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore
2016-03-01
Full Text Available Altitude exposure increases the body’s need for iron (Gassmann and Muckenthaler, 2015, primarily to support accelerated erythropoiesis, yet clear supplementation guidelines do not exist. Athletes are typically recommended to ingest a daily oral iron supplement to facilitate altitude adaptations, and to help maintain iron balance. However, there is some debate as to whether athletes with otherwise healthy iron stores should be supplemented, due in part to concerns of iron overload. Excess iron in vital organs is associated with an increased risk of a number of conditions including cancer, liver disease and heart failure. Therefore clear guidelines are warranted and athletes should be discouraged from ‘self-prescribing” supplementation without medical advice. In the absence of prospective-controlled studies, decision tree analysis can be used to describe a data set, with the resultant regression tree serving as guide for clinical decision making. Here, we present a regression tree in the context of iron supplementation during altitude exposure, to examine the association between pre-altitude ferritin (Ferritin-Pre and the haemoglobin mass (Hbmass response, based on daily iron supplement dose. De-identified ferritin and Hbmass data from 178 athletes engaged in altitude training were extracted from the Australian Institute of Sport (AIS database. Altitude exposure was predominantly achieved via normobaric Live high: Train low (n = 147 at a simulated altitude of 3000 m for 2 to 4 weeks. The remaining athletes engaged in natural altitude training at venues ranging from 1350 to 2800 m for 3-4 weeks. Thus, the “hypoxic dose” ranged from ~890 km.h to ~1400 km.h. Ethical approval was granted by the AIS Human Ethics Committee, and athletes provided written informed consent. An in depth description and traditional analysis of the complete data set is presented elsewhere (Govus et al., 2015. Iron supplementation was prescribed by a sports physician
Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris
2016-09-01
Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have
U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...
Koon, Sharon; Petscher, Yaacov
2015-01-01
The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…
Susan L. King
2003-01-01
The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...
Regression: The Apple Does Not Fall Far From the Tree.
Vetter, Thomas R; Schober, Patrick
2018-05-15
Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.
Regression Nodes: Extending attack trees with data from social sciences
Bullee, Jan-Willem; Montoya, L.; Pieters, Wolter; Junger, Marianne; Hartel, Pieter H.
In the field of security, attack trees are often used to assess security vulnerabilities probabilistically in relation to multi-step attacks. The nodes are usually connected via AND-gates, where all children must be executed, or via OR-gates, where only one action is necessary for the attack step to
The process and utility of classification and regression tree methodology in nursing research.
Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda
2014-06-01
This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Stefanie M. Herrmann
2013-10-01
Full Text Available Field trees are an integral part of the farmed parkland landscape in West Africa and provide multiple benefits to the local environment and livelihoods. While field trees have received increasing interest in the context of strengthening resilience to climate variability and change, the actual extent of farmed parkland and spatial patterns of tree cover are largely unknown. We used the rule-based predictive modeling tool Cubist® to estimate field tree cover in the west-central agricultural region of Senegal. A collection of rules and associated multiple linear regression models was constructed from (1 a reference dataset of percent tree cover derived from very high spatial resolution data (2 m Orbview as the dependent variable, and (2 ten years of 10-day 250 m Moderate Resolution Imaging Spectrometer (MODIS Normalized Difference Vegetation Index (NDVI composites and derived phenological metrics as independent variables. Correlation coefficients between modeled and reference percent tree cover of 0.88 and 0.77 were achieved for training and validation data respectively, with absolute mean errors of 1.07 and 1.03 percent tree cover. The resulting map shows a west-east gradient from high tree cover in the peri-urban areas of horticulture and arboriculture to low tree cover in the more sparsely populated eastern part of the study area. A comparison of current (2000s tree cover along this gradient with historic cover as seen on Corona images reveals dynamics of change but also areas of remarkable stability of field tree cover since 1968. The proposed modeling approach can help to identify locations of high and low tree cover in dryland environments and guide ground studies and management interventions aimed at promoting the integration of field trees in agricultural systems.
Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett
2009-01-01
Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....
Directory of Open Access Journals (Sweden)
Suduan Chen
2014-01-01
Full Text Available As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.
Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De
2014-01-01
As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.
International Nuclear Information System (INIS)
Janssen, I.; Stebbings, J.H.
1990-01-01
In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs
Huang, C.; Townshend, J.R.G.
2003-01-01
A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.
Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H
2016-01-01
Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.
Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun
2006-01-01
In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.
Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn
2017-11-15
A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.
Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis
Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John
2012-01-01
Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…
What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis
Thomas, Emily H.; Galambos, Nora
2004-01-01
To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…
Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....
Cohen, Ira L.; Liu, Xudong; Hudson, Melissa; Gillis, Jennifer; Cavalari, Rachel N. S.; Romanczyk, Raymond G.; Karmel, Bernard Z.; Gardner, Judith M.
2016-01-01
In order to improve discrimination accuracy between Autism Spectrum Disorder (ASD) and similar neurodevelopmental disorders, a data mining procedure, Classification and Regression Trees (CART), was used on a large multi-site sample of PDD Behavior Inventory (PDDBI) forms on children with and without ASD. Discrimination accuracy exceeded 80%,…
Buchner, Florian; Wasem, Jürgen; Schillo, Sonja
2017-01-01
Risk equalization formulas have been refined since their introduction about two decades ago. Because of the complexity and the abundance of possible interactions between the variables used, hardly any interactions are considered. A regression tree is used to systematically search for interactions, a methodologically new approach in risk equalization. Analyses are based on a data set of nearly 2.9 million individuals from a major German social health insurer. A two-step approach is applied: In the first step a regression tree is built on the basis of the learning data set. Terminal nodes characterized by more than one morbidity-group-split represent interaction effects of different morbidity groups. In the second step the 'traditional' weighted least squares regression equation is expanded by adding interaction terms for all interactions detected by the tree, and regression coefficients are recalculated. The resulting risk adjustment formula shows an improvement in the adjusted R 2 from 25.43% to 25.81% on the evaluation data set. Predictive ratios are calculated for subgroups affected by the interactions. The R 2 improvement detected is only marginal. According to the sample level performance measures used, not involving a considerable number of morbidity interactions forms no relevant loss in accuracy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen. Fitzgerald
2012-01-01
Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...
Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees
Directory of Open Access Journals (Sweden)
Chen Xiaoyu
2007-12-01
Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.
Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones
International Nuclear Information System (INIS)
Rosli, A D; Baharudin, R; Hashim, H; Khairuzzaman, N A; Mohd Sampian, A F; Abdullah, N E; Kamaru'zzaman, M; Sulaiman, M S
2015-01-01
This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water. (paper)
[Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].
Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao
2016-03-01
Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.
Perceived Organizational Support for Enhancing Welfare at Work: A Regression Tree Model
Giorgi, Gabriele; Dubin, David; Perez, Javier Fiz
2016-01-01
When trying to examine outcomes such as welfare and well-being, research tends to focus on main effects and take into account limited numbers of variables at a time. There are a number of techniques that may help address this problem. For example, many statistical packages available in R provide easy-to-use methods of modeling complicated analysis such as classification and tree regression (i.e., recursive partitioning). The present research illustrates the value of recursive partitioning in the prediction of perceived organizational support in a sample of more than 6000 Italian bankers. Utilizing the tree function party package in R, we estimated a regression tree model predicting perceived organizational support from a multitude of job characteristics including job demand, lack of job control, lack of supervisor support, training, etc. The resulting model appears particularly helpful in pointing out several interactions in the prediction of perceived organizational support. In particular, training is the dominant factor. Another dimension that seems to influence organizational support is reporting (perceived communication about safety and stress concerns). Results are discussed from a theoretical and methodological point of view. PMID:28082924
Ebell, Mark H; Afonso, Anna M; Geocadin, Romergryko G
2013-12-01
To predict the likelihood that an inpatient who experiences cardiopulmonary arrest and undergoes cardiopulmonary resuscitation survives to discharge with good neurologic function or with mild deficits (Cerebral Performance Category score = 1). Classification and Regression Trees were used to develop branching algorithms that optimize the ability of a series of tests to correctly classify patients into two or more groups. Data from 2007 to 2008 (n = 38,092) were used to develop candidate Classification and Regression Trees models to predict the outcome of inpatient cardiopulmonary resuscitation episodes and data from 2009 (n = 14,435) to evaluate the accuracy of the models and judge the degree of over fitting. Both supervised and unsupervised approaches to model development were used. 366 hospitals participating in the Get With the Guidelines-Resuscitation registry. Adult inpatients experiencing an index episode of cardiopulmonary arrest and undergoing cardiopulmonary resuscitation in the hospital. The five candidate models had between 8 and 21 nodes and an area under the receiver operating characteristic curve from 0.718 to 0.766 in the derivation group and from 0.683 to 0.746 in the validation group. One of the supervised models had 14 nodes and classified 27.9% of patients as very unlikely to survive neurologically intact or with mild deficits (Tree models that predict survival to discharge with good neurologic function or with mild deficits following in-hospital cardiopulmonary arrest. Models like this can assist physicians and patients who are considering do-not-resuscitate orders.
Directory of Open Access Journals (Sweden)
Shokouh Taghipour Zahir
2013-01-01
Full Text Available Purpose. We sought to investigate the utility of classification and regression trees (CART classifier to differentiate benign from malignant nodules in patients referred for thyroid surgery. Methods. Clinical and demographic data of 271 patients referred to the Sadoughi Hospital during 2006–2011 were collected. In a two-step approach, a CART classifier was employed to differentiate patients with a high versus low risk of thyroid malignancy. The first step served as the screening procedure and was tailored to produce as few false negatives as possible. The second step identified those with the lowest risk of malignancy, chosen from a high risk population. Sensitivity, specificity, positive and negative predictive values (PPV and NPV of the optimal tree were calculated. Results. In the first step, age, sex, and nodule size contributed to the optimal tree. Ultrasonographic features were employed in the second step with hypoechogenicity and/or microcalcifications yielding the highest discriminatory ability. The combined tree produced a sensitivity and specificity of 80.0% (95% CI: 29.9–98.9 and 94.1% (95% CI: 78.9–99.0, respectively. NPV and PPV were 66.7% (41.1–85.6 and 97.0% (82.5–99.8, respectively. Conclusion. CART classifier reliably identifies patients with a low risk of malignancy who can avoid unnecessary surgery.
RE-Powering’s Electronic Decision Tree
Developed by US EPA's RE-Powering America's Land Initiative, the RE-Powering Decision Trees tool guides interested parties through a process to screen sites for their suitability for solar photovoltaics or wind installations
The Roots of Inequality: Estimating Inequality of Opportunity from Regression Trees
DEFF Research Database (Denmark)
Brunori, Paolo; Hufe, Paul; Mahler, Daniel Gerszon
2017-01-01
the risk of arbitrary and ad-hoc model selection. Second, they provide a standardized way of trading off upward and downward biases in inequality of opportunity estimations. Finally, regression trees can be graphically represented; their structure is immediate to read and easy to understand. This will make...... the measurement of inequality of opportunity more easily comprehensible to a large audience. These advantages are illustrated by an empirical application based on the 2011 wave of the European Union Statistics on Income and Living Conditions....
Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V
2012-01-01
In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999
van Veen, S H C M; van Kleef, R C; van de Ven, W P M M; van Vliet, R C J A
2018-02-01
This study explores the predictive power of interaction terms between the risk adjusters in the Dutch risk equalization (RE) model of 2014. Due to the sophistication of this RE-model and the complexity of the associations in the dataset (N = ~16.7 million), there are theoretically more than a million interaction terms. We used regression tree modelling, which has been applied rarely within the field of RE, to identify interaction terms that statistically significantly explain variation in observed expenses that is not already explained by the risk adjusters in this RE-model. The interaction terms identified were used as additional risk adjusters in the RE-model. We found evidence that interaction terms can improve the prediction of expenses overall and for specific groups in the population. However, the prediction of expenses for some other selective groups may deteriorate. Thus, interactions can reduce financial incentives for risk selection for some groups but may increase them for others. Furthermore, because regression trees are not robust, additional criteria are needed to decide which interaction terms should be used in practice. These criteria could be the right incentive structure for risk selection and efficiency or the opinion of medical experts. Copyright © 2017 John Wiley & Sons, Ltd.
Regression tree analysis for predicting body weight of Nigerian Muscovy duck (Cairina moschata
Directory of Open Access Journals (Sweden)
Oguntunji Abel Olusegun
2017-01-01
Full Text Available Morphometric parameters and their indices are central to the understanding of the type and function of livestock. The present study was conducted to predict body weight (BWT of adult Nigerian Muscovy ducks from nine (9 morphometric parameters and seven (7 body indices and also to identify the most important predictor of BWT among them using regression tree analysis (RTA. The experimental birds comprised of 1,020 adult male and female Nigerian Muscovy ducks randomly sampled in Rain Forest (203, Guinea Savanna (298 and Derived Savanna (519 agro-ecological zones. Result of RTA revealed that compactness; body girth and massiveness were the most important independent variables in predicting BWT and were used in constructing RT. The combined effect of the three predictors was very high and explained 91.00% of the observed variation of the target variable (BWT. The optimal regression tree suggested that Muscovy ducks with compactness >5.765 would be fleshy and have highest BWT. The result of the present study could be exploited by animal breeders and breeding companies in selection and improvement of BWT of Muscovy ducks.
Directory of Open Access Journals (Sweden)
M. Saki
2013-03-01
Full Text Available The relationship between plant species and environmental factors has always been a central issue in plant ecology. With rising power of statistical techniques, geo-statistics and geographic information systems (GIS, the development of predictive habitat distribution models of organisms has rapidly increased in ecology. This study aimed to evaluate the ability of Logistic Regression Tree model to create potential habitat map of Astragalus verus. This species produces Tragacanth and has economic value. A stratified- random sampling was applied to 100 sites (50 presence- 50 absence of given species, and produced environmental and edaphic factors maps by using Kriging and Inverse Distance Weighting methods in the ArcGIS software for the whole study area. Relationships between species occurrence and environmental factors were determined by Logistic Regression Tree model and extended to the whole study area. The results indicated species occurrence has strong correlation with environmental factors such as mean daily temperature and clay, EC and organic carbon content of the soil. Species occurrence showed direct relationship with mean daily temperature and clay and organic carbon, and inverse relationship with EC. Model accuracy was evaluated both by Cohen’s kappa statistics (κ and by area under Receiver Operating Characteristics curve based on independent test data set. Their values (kappa=0.9, Auc of ROC=0.96 indicated the high power of LRT to create potential habitat map on local scales. This model, therefore, can be applied to recognize potential sites for rangeland reclamation projects.
Directory of Open Access Journals (Sweden)
Kritski Afrânio
2006-02-01
Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.
Directory of Open Access Journals (Sweden)
Yoonseok Shin
2015-01-01
Full Text Available Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.
Prediction of cannabis and cocaine use in adolescence using decision trees and logistic regression
Directory of Open Access Journals (Sweden)
Alfonso L. Palmer
2010-01-01
Full Text Available Spain is one of the European countries with the highest prevalence of cannabis and cocaine use among young people. The aim of this study was to investigate the factors related to the consumption of cocaine and cannabis among adolescents. A questionnaire was administered to 9,284 students between 14 and 18 years of age in Palma de Mallorca (47.1% boys and 52.9% girls whose mean age was 15.59 years. Logistic regression and decision trees were carried out in order to model the consumption of cannabis and cocaine. The results show the use of legal substances and committing fraudulence or theft are the main variables that raise the odds of consuming cannabis. In boys, cannabis consumption and a family history of drug use increase the odds of consuming cocaine, whereas in girls the use of alcohol, behaviours of fraudulence or theft and difficulty in some personal skills influence their odds of consuming cocaine. Finally, ease of access to the substance greatly raises the odds of consuming cocaine and cannabis in both genders. Decision trees highlight the role of consuming other substances and committing fraudulence or theft. The results of this study gain importance when it comes to putting into practice effective prevention programmes.
Energy Technology Data Exchange (ETDEWEB)
Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)
2011-10-17
Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.
Integrating classification trees with local logistic regression in Intensive Care prognosis.
Abu-Hanna, Ameen; de Keizer, Nicolette
2003-01-01
Health care effectiveness and efficiency are under constant scrutiny especially when treatment is quite costly as in the Intensive Care (IC). Currently there are various international quality of care programs for the evaluation of IC. At the heart of such quality of care programs lie prognostic models whose prediction of patient mortality can be used as a norm to which actual mortality is compared. The current generation of prognostic models in IC are statistical parametric models based on logistic regression. Given a description of a patient at admission, these models predict the probability of his or her survival. Typically, this patient description relies on an aggregate variable, called a score, that quantifies the severity of illness of the patient. The use of a parametric model and an aggregate score form adequate means to develop models when data is relatively scarce but it introduces the risk of bias. This paper motivates and suggests a method for studying and improving the performance behavior of current state-of-the-art IC prognostic models. Our method is based on machine learning and statistical ideas and relies on exploiting information that underlies a score variable. In particular, this underlying information is used to construct a classification tree whose nodes denote patient sub-populations. For these sub-populations, local models, most notably logistic regression ones, are developed using only the total score variable. We compare the performance of this hybrid model to that of a traditional global logistic regression model. We show that the hybrid model not only provides more insight into the data but also has a better performance. We pay special attention to the precision aspect of model performance and argue why precision is more important than discrimination ability.
Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas
2015-04-01
The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine
Damghi, Nada; Khoudri, Ibtissam; Oualili, Latifa; Abidi, Khalid; Madani, Naoufel; Zeggwagh, Amine Ali; Abouqal, Redouane
2008-07-01
Meeting the needs of patients' family members becomes an essential part of responsibilities of intensive care unit physicians. The aim of this study was to evaluate the satisfaction of patients' family members using the Arabic version of the Society of Critical Care Medicine's Family Needs Assessment questionnaire and to assess the predictors of family satisfaction using the classification and regression tree method. The authors conducted a prospective study. This study was conducted at a 12-bed medical intensive care unit in Morocco. Family representatives (n = 194) of consecutive patients with a length of stay >48 hrs were included in the study. Intervention was the Society of Critical Care Medicine's Family Needs Assessment questionnaire. Demographic data for relatives included age, gender, relationship with patients, education level, and intensive care unit commuting time. Clinical data for patients included age, gender, diagnoses, intensive care unit length of stay, Acute Physiology and Chronic Health Evaluation, MacCabe index, Therapeutic Interventioning Scoring System, and mechanical ventilation. The Arabic version of the Society of Critical Care Medicine's Family Needs Assessment questionnaire was administered between the third and fifth days after admission. Of family representatives, 81% declared being satisfied with information provided by physicians, 27% would like more information about the diagnosis, 30% about prognosis, and 45% about treatment. In univariate analysis, family satisfaction (small Society of Critical Care Medicine's Family Needs Assessment questionnaire score) increased with a lower family education level (p = .005), when the information was given by a senior physician (p = .014), and when the Society of Critical Care Medicine's Family Needs Assessment questionnaire was administered by an investigator (p = .002). Multivariate analysis (classification and regression tree) showed that the education level was the predominant factor
Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat
2015-01-01
Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Mazenq, Julie; Dubus, Jean-Christophe; Gaudart, Jean; Charpin, Denis; Viudes, Gilles; Noel, Guilhem
2017-11-01
Particulate matter, nitrogen dioxide (NO 2 ) and ozone are recognized as the three pollutants that most significantly affect human health. Asthma is a multifactorial disease. However, the place of residence has rarely been investigated. We compared the impact of air pollution, measured near patients' homes, on emergency department (ED) visits for asthma or trauma (controls) within the Provence-Alpes-Côte-d'Azur region. Variables were selected using classification and regression trees on asthmatic and control population, 3-99 years, visiting ED from January 1 to December 31, 2013. Then in a nested case control study, randomization was based on the day of ED visit and on defined age groups. Pollution, meteorological, pollens and viral data measured that day were linked to the patient's ZIP code. A total of 794,884 visits were reported including 6250 for asthma and 278,192 for trauma. Factors associated with an excess risk of emergency visit for asthma included short-term exposure to NO 2 , female gender, high viral load and a combination of low temperature and high humidity. Short-term exposures to high NO 2 concentrations, as assessed close to the homes of the patients, were significantly associated with asthma-related ED visits in children and adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Differential Diagnosis of Erythmato-Squamous Diseases Using Classification and Regression Tree.
Maghooli, Keivan; Langarizadeh, Mostafa; Shahmoradi, Leila; Habibi-Koolaee, Mahdi; Jebraeily, Mohamad; Bouraghi, Hamid
2016-10-01
Differential diagnosis of Erythmato-Squamous Diseases (ESD) is a major challenge in the field of dermatology. The ESD diseases are placed into six different classes. Data mining is the process for detection of hidden patterns. In the case of ESD, data mining help us to predict the diseases. Different algorithms were developed for this purpose. we aimed to use the Classification and Regression Tree (CART) to predict differential diagnosis of ESD. we used the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. For this purpose, the dermatology data set from machine learning repository, UCI was obtained. The Clementine 12.0 software from IBM Company was used for modelling. In order to evaluation of the model we calculate the accuracy, sensitivity and specificity of the model. The proposed model had an accuracy of 94.84% (. 24.42) in order to correct prediction of the ESD disease. Results indicated that using of this classifier could be useful. But, it would be strongly recommended that the combination of machine learning methods could be more useful in terms of prediction of ESD.
Groundwater level prediction of landslide based on classification and regression tree
Directory of Open Access Journals (Sweden)
Yannan Zhao
2016-09-01
Full Text Available According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the change of groundwater level, the influential factors of groundwater level were selected. Then the classification and regression tree (CART model was constructed by the subset and used to predict the groundwater level. Through the verification, the predictive results of the test sample were consistent with the actually measured values, and the mean absolute error and relative error is 0.28 m and 1.15% respectively. To compare the support vector machine (SVM model constructed using the same set of factors, the mean absolute error and relative error of predicted results is 1.53 m and 6.11% respectively. It is indicated that CART model has not only better fitting and generalization ability, but also strong advantages in the analysis of landslide groundwater dynamic characteristics and the screening of important variables. It is an effective method for prediction of ground water level in landslides.
Directory of Open Access Journals (Sweden)
Josef Smolle
2001-01-01
Full Text Available Objective: To evaluate the feasibility of the CART (Classification and Regression Tree procedure for the recognition of microscopic structures in tissue counter analysis. Methods: Digital microscopic images of H&E stained slides of normal human skin and of primary malignant melanoma were overlayed with regularly distributed square measuring masks (elements and grey value, texture and colour features within each mask were recorded. In the learning set, elements were interactively labeled as representing either connective tissue of the reticular dermis, other tissue components or background. Subsequently, CART models were based on these data sets. Results: Implementation of the CART classification rules into the image analysis program showed that in an independent test set 94.1% of elements classified as connective tissue of the reticular dermis were correctly labeled. Automated measurements of the total amount of tissue and of the amount of connective tissue within a slide showed high reproducibility (r=0.97 and r=0.94, respectively; p < 0.001. Conclusions: CART procedure in tissue counter analysis yields simple and reproducible classification rules for tissue elements.
Directory of Open Access Journals (Sweden)
I GEDE AGUS JIWADIANA
2015-11-01
Full Text Available The aim of this research is to determine the classification characteristics of traffic accidents in Denpasar city in January-July 2014 by using Classification And Regression Trees (CART. Then, for determine the explanatory variables into the main classifier of CART. The result showed that optimum CART generate three terminal node. First terminal node, there are 12 people were classified as heavy traffic accident characteritics with single accident, and second terminal nodes, there are 68 people were classified as minor traffic accident characteristics by type of traffic accident front-rear, front-front, front-side, pedestrians, side-side and location of traffic accident in district road and sub-district road. For third terminal node, there are 291 people were classified as medium traffic accident characteristics by type of traffic accident front-rear, front-front, front-side, pedestrians, side-side and location of traffic accident in municipality road and explanatory variables into the main splitter to make of CART is type of traffic accident with maximum homogeneity measure of 0.03252.
Estimating carbon and showing impacts of drought using satellite data in regression-tree models
Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.
2018-01-01
Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.
Regression trees modeling and forecasting of PM10 air pollution in urban areas
Stoimenova, M.; Voynikova, D.; Ivanov, A.; Gocheva-Ilieva, S.; Iliev, I.
2017-10-01
Fine particulate matter (PM10) air pollution is a serious problem affecting the health of the population in many Bulgarian cities. As an example, the object of this study is the pollution with PM10 of the town of Pleven, Northern Bulgaria. The measured concentrations of this air pollutant for this city consistently exceeded the permissible limits set by European and national legislation. Based on data for the last 6 years (2011-2016), the analysis shows that this applies both to the daily limit of 50 micrograms per cubic meter and the allowable number of daily concentration exceedances to 35 per year. Also, the average annual concentration of PM10 exceeded the prescribed norm of no more than 40 micrograms per cubic meter. The aim of this work is to build high performance mathematical models for effective prediction and forecasting the level of PM10 pollution. The study was conducted with the powerful flexible data mining technique Classification and Regression Trees (CART). The values of PM10 were fitted with respect to meteorological data such as maximum and minimum air temperature, relative humidity, wind speed and direction and others, as well as with time and autoregressive variables. As a result the obtained CART models demonstrate high predictive ability and fit the actual data with up to 80%. The best models were applied for forecasting the level pollution for 3 to 7 days ahead. An interpretation of the modeling results is presented.
Xie, Yang; Schreier, Günter; Chang, David C W; Neubauer, Sandra; Redmond, Stephen J; Lovell, Nigel H
2014-01-01
Healthcare administrators worldwide are striving to both lower the cost of care whilst improving the quality of care given. Therefore, better clinical and administrative decision making is needed to improve these issues. Anticipating outcomes such as number of hospitalization days could contribute to addressing this problem. In this paper, a method was developed, using large-scale health insurance claims data, to predict the number of hospitalization days in a population. We utilized a regression decision tree algorithm, along with insurance claim data from 300,000 individuals over three years, to provide predictions of number of days in hospital in the third year, based on medical admissions and claims data from the first two years. Our method performs well in the general population. For the population aged 65 years and over, the predictive model significantly improves predictions over a baseline method (predicting a constant number of days for each patient), and achieved a specificity of 70.20% and sensitivity of 75.69% in classifying these subjects into two categories of 'no hospitalization' and 'at least one day in hospital'.
Brabant, Marie-Eve; Hebert, Martine; Chagnon, Francois
2013-01-01
This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression,…
Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; Michael K. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Penelope Morgan
2006-01-01
We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived...
Thomas, Emily H.; Galambos, Nora
To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…
Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi
2017-06-01
Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p logistic regression model for the classification of risk groups for PTB.
Rovlias, Aristedis; Theodoropoulos, Spyridon; Papoutsakis, Dimitrios
2015-01-01
Background: Chronic subdural hematoma (CSDH) is one of the most common clinical entities in daily neurosurgical practice which carries a most favorable prognosis. However, because of the advanced age and medical problems of patients, surgical therapy is frequently associated with various complications. This study evaluated the clinical features, radiological findings, and neurological outcome in a large series of patients with CSDH. Methods: A classification and regression tree (CART) technique was employed in the analysis of data from 986 patients who were operated at Asclepeion General Hospital of Athens from January 1986 to December 2011. Burr holes evacuation with closed system drainage has been the operative technique of first choice at our institution for 29 consecutive years. A total of 27 prognostic factors were examined to predict the outcome at 3-month postoperatively. Results: Our results indicated that neurological status on admission was the best predictor of outcome. With regard to the other data, age, brain atrophy, thickness and density of hematoma, subdural accumulation of air, and antiplatelet and anticoagulant therapy were found to correlate significantly with prognosis. The overall cross-validated predictive accuracy of CART model was 85.34%, with a cross-validated relative error of 0.326. Conclusions: Methodologically, CART technique is quite different from the more commonly used methods, with the primary benefit of illustrating the important prognostic variables as related to outcome. Since, the ideal therapy for the treatment of CSDH is still under debate, this technique may prove useful in developing new therapeutic strategies and approaches for patients with CSDH. PMID:26257985
Kaskhedikar, Apoorva Prakash
According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI
Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L
2012-08-07
Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in
Directory of Open Access Journals (Sweden)
Andréa Gazzinelli
Full Text Available Praziquantel (PZQ is an effective chemotherapy for schistosomiasis mansoni and a mainstay for its control and potential elimination. However, it does not prevent against reinfection, which can occur rapidly in areas with active transmission. A guide to ranking the risk factors for Schistosoma mansoni reinfection would greatly contribute to prioritizing resources and focusing prevention and control measures to prevent rapid reinfection. The objective of the current study was to explore the relationship among the socioeconomic, demographic, and epidemiological factors that can influence reinfection by S. mansoni one year after successful treatment with PZQ in school-aged children in Northeastern Minas Gerais state Brazil. Parasitological, socioeconomic, demographic, and water contact information were surveyed in 506 S. mansoni-infected individuals, aged 6 to 15 years, resident in these endemic areas. Eligible individuals were treated with PZQ until they were determined to be negative by the absence of S. mansoni eggs in the feces on two consecutive days of Kato-Katz fecal thick smear. These individuals were surveyed again 12 months from the date of successful treatment with PZQ. A classification and regression tree modeling (CART was then used to explore the relationship between socioeconomic, demographic, and epidemiological variables and their reinfection status. The most important risk factor identified for S. mansoni reinfection was their "heavy" infection at baseline. Additional analyses, excluding heavy infection status, showed that lower socioeconomic status and a lower level of education of the household head were also most important risk factors for S. mansoni reinfection. Our results provide an important contribution toward the control and possible elimination of schistosomiasis by identifying three major risk factors that can be used for targeted treatment and monitoring of reinfection. We suggest that control measures that target
Comprehensive database of diameter-based biomass regressions for North American tree species
Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey
2004-01-01
A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation,...
Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y
2008-02-18
The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.
Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh
2017-08-01
The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations
Directory of Open Access Journals (Sweden)
Aguiar Fabio S
2012-08-01
Full Text Available Abstract Background Tuberculosis (TB remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART model was generated and validated. The area under the ROC curve (AUC, sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with
Tomczyk, Aleksandra; Ewertowski, Marek; White, Piran; Kasprzak, Leszek
2016-04-01
The dual role of many Protected Natural Areas in providing benefits for both conservation and recreation poses challenges for management. Although recreation-based damage to ecosystems can occur very quickly, restoration can take many years. The protection of conservation interests at the same as providing for recreation requires decisions to be made about how to prioritise and direct management actions. Trails are commonly used to divert visitors from the most important areas of a site, but high visitor pressure can lead to increases in trail width and a concomitant increase in soil erosion. Here we use detailed field data on condition of recreational trails in Gorce National Park, Poland, as the basis for a regression tree analysis to determine the factors influencing trail deterioration, and link specific trail impacts with environmental, use related and managerial factors. We distinguished 12 types of trails, characterised by four levels of degradation: (1) trails with an acceptable level of degradation; (2) threatened trails; (3) damaged trails; and (4) heavily damaged trails. Damaged trails were the most vulnerable of all trails and should be prioritised for appropriate conservation and restoration. We also proposed five types of monitoring of recreational trail conditions: (1) rapid inventory of negative impacts; (2) monitoring visitor numbers and variation in type of use; (3) change-oriented monitoring focusing on sections of trail which were subjected to changes in type or level of use or subjected to extreme weather events; (4) monitoring of dynamics of trail conditions; and (5) full assessment of trail conditions, to be carried out every 10-15 years. The application of the proposed framework can enhance the ability of Park managers to prioritise their trail management activities, enhancing trail conditions and visitor safety, while minimising adverse impacts on the conservation value of the ecosystem. A.M.T. was supported by the Polish Ministry of
Multiple Additive Regression Trees a Methodology for Predictive Data Mining for Fraud Detection
National Research Council Canada - National Science Library
da
2002-01-01
...) is using new and innovative techniques for fraud detection. Their primary techniques for fraud detection are the data mining tools of classification trees and neural networks as well as methods for pooling the results of multiple model fits...
Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding
2010-05-01
Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.
GuiaTreeKey, a multi-access electronic key to identify tree genera in French Guiana
Brousseau, Louise; Baraloto, Christopher
2016-01-01
The tropical rainforest of Amazonia is one of the most species-rich ecosystems on earth, with an estimated 16000 tree species. Due to this high diversity, botanical identification of trees in the Amazon is difficult, even to genus, often requiring the assistance of parataxonomists or taxonomic specialists. Advances in informatics tools offer a promising opportunity to develop user-friendly electronic keys to improve Amazonian tree identification. Here, we introduce an original mult...
Electronic Nose Odor Classification with Advanced Decision Tree Structures
Directory of Open Access Journals (Sweden)
S. Guney
2013-09-01
Full Text Available Electronic nose (e-nose is an electronic device which can measure chemical compounds in air and consequently classify different odors. In this paper, an e-nose device consisting of 8 different gas sensors was designed and constructed. Using this device, 104 different experiments involving 11 different odor classes (moth, angelica root, rose, mint, polis, lemon, rotten egg, egg, garlic, grass, and acetone were performed. The main contribution of this paper is the finding that using the chemical domain knowledge it is possible to train an accurate odor classification system. The domain knowledge about chemical compounds is represented by a decision tree whose nodes are composed of classifiers such as Support Vector Machines and k-Nearest Neighbor. The overall accuracy achieved with the proposed algorithm and the constructed e-nose device was 97.18 %. Training and testing data sets used in this paper are published online.
DEFF Research Database (Denmark)
Bou Kheir, Rania; Shomar, B.; Greve, Mogens Humlekrog
2014-01-01
Soil heavy metal pollution has been and continues to be a worldwide phenomenon that has attracted a great deal of attention from governments and regulatory bodies. In this context, our study used Geographic Information Systems (GIS) and regression-tree modeling (196 trees) to precisely quantify...... the relationships between four toxic heavy metals (Ni, Cr, Cd and As) and sixteen environmental parameters (e.g., parent material, slope gradient, proximity to roads, etc.) in the soils of northern Lebanon (as a case study of Mediterranean landscapes), and to detect the most important parameters that can be used...... between 68% and 100%), surroundings of waste areas (48 – 92%), proximity to roads (45 – 82%) and parent materials (57 – 73%) considerably influenced all investigated heavy metals, which is not the case of hydromorphological and soil properties. For instance, hydraulic conductivity (18 – 41%) and pH (23...
Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung
2017-04-01
Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An
International Nuclear Information System (INIS)
Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien
2015-01-01
Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables
Astuti, Yuniar Andi
2011-01-01
This study examines techniques Support Vector Regression and Decision Tree C4.5 has been used in studies in various fields, in order to know the advantages and disadvantages of both techniques that appear in Data Mining. From the ten studies that use both techniques, the results of the analysis showed that the accuracy of the SVR technique for 59,64% and C4.5 for 76,97% So in this study obtained a statement that C4.5 is better than SVR 097038020
Schumacher, Phyllis; Olinsky, Alan; Quinn, John; Smith, Richard
2010-01-01
The authors extended previous research by 2 of the authors who conducted a study designed to predict the successful completion of students enrolled in an actuarial program. They used logistic regression to determine the probability of an actuarial student graduating in the major or dropping out. They compared the results of this study with those…
L.R. Iverson; A.M. Prasad; A. Liaw
2004-01-01
More and better machine learning tools are becoming available for landscape ecologists to aid in understanding species-environment relationships and to map probable species occurrence now and potentially into the future. To thal end, we evaluated three statistical models: Regression Tree Analybib (RTA), Bagging Trees (BT) and Random Forest (RF) for their utility in...
Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu
2018-02-01
A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.
Directory of Open Access Journals (Sweden)
MILAD TAZIK
2017-11-01
Full Text Available Identifying cases in which road crashes result in fatality or injury of drivers may help improve their safety. In this study, datasets of crashes happened in TehranQom freeway, Iran, were examined by three models (multiple logistic regression, Bayesian logistic and classification tree to analyse the contribution of several variables to fatal accidents. For multiple logistic regression and Bayesian logistic models, the odds ratio was calculated for each variable. The model which best suited the identification of accident severity was determined based on AIC and DIC criteria. Based on the results of these two models, rollover crashes (OR = 14.58, %95 CI: 6.8-28.6, not using of seat belt (OR = 5.79, %95 CI: 3.1-9.9, exceeding speed limits (OR = 4.02, %95 CI: 1.8-7.9 and being female (OR = 2.91, %95 CI: 1.1-6.1 were the most important factors in fatalities of drivers. In addition, the results of the classification tree model have verified the findings of the other models.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
GuiaTreeKey, a multi-access electronic key to identify tree genera in French Guiana.
Engel, Julien; Brousseau, Louise; Baraloto, Christopher
2016-01-01
The tropical rainforest of Amazonia is one of the most species-rich ecosystems on earth, with an estimated 16000 tree species. Due to this high diversity, botanical identification of trees in the Amazon is difficult, even to genus, often requiring the assistance of parataxonomists or taxonomic specialists. Advances in informatics tools offer a promising opportunity to develop user-friendly electronic keys to improve Amazonian tree identification. Here, we introduce an original multi-access electronic key for the identification of 389 tree genera occurring in French Guiana terra-firme forests, based on a set of 79 morphological characters related to vegetative, floral and fruit characters. Its purpose is to help Amazonian tree identification and to support the dissemination of botanical knowledge to non-specialists, including forest workers, students and researchers from other scientific disciplines. The electronic key is accessible with the free access software Xper ², and the database is publicly available on figshare: https://figshare.com/s/75d890b7d707e0ffc9bf (doi: 10.6084/m9.figshare.2682550).
Directory of Open Access Journals (Sweden)
Paul Robert Martin Werfette
2010-06-01
Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation, (;; Keywords: QSAR, antimalarial, artemisinin, principal component regression
Smith, R.; Kasprzyk, J. R.; Balaji, R.
2017-12-01
In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.
Directory of Open Access Journals (Sweden)
David J. Purpura
2017-12-01
Full Text Available Many children struggle to successfully acquire early mathematics skills. Theoretical and empirical evidence has pointed to deficits in domain-specific skills (e.g., non-symbolic mathematics skills or domain-general skills (e.g., executive functioning and language as underlying low mathematical performance. In the current study, we assessed a sample of 113 three- to five-year old preschool children on a battery of domain-specific and domain-general factors in the fall and spring of their preschool year to identify Time 1 (fall factors associated with low performance in mathematics knowledge at Time 2 (spring. We used the exploratory approach of classification and regression tree analyses, a strategy that uses step-wise partitioning to create subgroups from a larger sample using multiple predictors, to identify the factors that were the strongest classifiers of low performance for younger and older preschool children. Results indicated that the most consistent classifier of low mathematics performance at Time 2 was children’s Time 1 mathematical language skills. Further, other distinct classifiers of low performance emerged for younger and older children. These findings suggest that risk classification for low mathematics performance may differ depending on children’s age.
Chiang, Peggy Pei-Chia; Xie, Jing; Keeffe, Jill Elizabeth
2011-04-25
To identify the critical success factors (CSF) associated with coverage of low vision services. Data were collected from a survey distributed to Vision 2020 contacts, government, and non-government organizations (NGOs) in 195 countries. The Classification and Regression Tree Analysis (CART) was used to identify the critical success factors of low vision service coverage. Independent variables were sourced from the survey: policies, epidemiology, provision of services, equipment and infrastructure, barriers to services, human resources, and monitoring and evaluation. Socioeconomic and demographic independent variables: health expenditure, population statistics, development status, and human resources in general, were sourced from the World Health Organization (WHO), World Bank, and the United Nations (UN). The findings identified that having >50% of children obtaining devices when prescribed (χ(2) = 44; P 3 rehabilitation workers per 10 million of population (χ(2) = 4.50; P = 0.034), higher percentage of population urbanized (χ(2) = 14.54; P = 0.002), a level of private investment (χ(2) = 14.55; P = 0.015), and being fully funded by government (χ(2) = 6.02; P = 0.014), are critical success factors associated with coverage of low vision services. This study identified the most important predictors for countries with better low vision coverage. The CART is a useful and suitable methodology in survey research and is a novel way to simplify a complex global public health issue in eye care.
Heddam, Salim; Kisi, Ozgur
2018-04-01
In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.
Directory of Open Access Journals (Sweden)
Yingxin Gu
2016-11-01
Full Text Available Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD between the predicted and actual NDVI (scaled NDVI, value from 0–200 and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4, which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.
Al-Khaja, Nawal
2007-01-01
This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.
Chen, Wei; Li, Hui; Hou, Enke; Wang, Shengquan; Wang, Guirong; Panahi, Mahdi; Li, Tao; Peng, Tao; Guo, Chen; Niu, Chao; Xiao, Lele; Wang, Jiale; Xie, Xiaoshen; Ahmad, Baharin Bin
2018-09-01
The aim of the current study was to produce groundwater spring potential maps using novel ensemble weights-of-evidence (WoE) with logistic regression (LR) and functional tree (FT) models. First, a total of 66 springs were identified by field surveys, out of which 70% of the spring locations were used for training the models and 30% of the spring locations were employed for the validation process. Second, a total of 14 affecting factors including aspect, altitude, slope, plan curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), lithology, normalized difference vegetation index (NDVI), land use, soil, distance to roads, and distance to streams was used to analyze the spatial relationship between these affecting factors and spring occurrences. Multicollinearity analysis and feature selection of the correlation attribute evaluation (CAE) method were employed to optimize the affecting factors. Subsequently, the novel ensembles of the WoE, LR, and FT models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) curves, standard error, confidence interval (CI) at 95%, and significance level P were employed to validate and compare the performance of three models. Overall, all three models performed well for groundwater spring potential evaluation. The prediction capability of the FT model, with the highest AUC values, the smallest standard errors, the narrowest CIs, and the smallest P values for the training and validation datasets, is better compared to those of other models. The groundwater spring potential maps can be adopted for the management of water resources and land use by planners and engineers. Copyright © 2018 Elsevier B.V. All rights reserved.
Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.
2012-01-01
agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.
International Nuclear Information System (INIS)
Althuwaynee, Omar F; Pradhan, Biswajeet; Ahmad, Noordin
2014-01-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies
Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin
2014-06-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.
Lazaridis, D.C.; Verbesselt, J.; Robinson, A.P.
2011-01-01
Constructing models can be complicated when the available fitting data are highly correlated and of high dimension. However, the complications depend on whether the goal is prediction instead of estimation. We focus on predicting tree mortality (measured as the number of dead trees) from change
Directory of Open Access Journals (Sweden)
Artur Wnorowski
2017-06-01
Full Text Available Tree saps are nourishing biological media commonly used for beverage and syrup production. Although the nutritional aspect of tree saps is widely acknowledged, the exact relationship between the sap composition, origin, and effect on the metabolic rate of human cells is still elusive. Thus, we collected saps from seven different tree species and conducted composition-activity analysis. Saps from trees of Betulaceae, but not from Salicaceae, Sapindaceae, nor Juglandaceae families, were increasing the metabolic rate of HepG2 cells, as measured using tetrazolium-based assay. Content of glucose, fructose, sucrose, chlorides, nitrates, sulphates, fumarates, malates, and succinates in sap samples varied across different tree species. Grade correspondence analysis clustered trees based on the saps’ chemical footprint indicating its usability in chemotaxonomy. Multiple regression modeling showed that glucose and fumarate present in saps from silver birch (Betula pendula Roth., black alder (Alnus glutinosa Gaertn., and European hornbeam (Carpinus betulus L. are positively affecting the metabolic activity of HepG2 cells.
Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok
2013-02-01
The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic
Directory of Open Access Journals (Sweden)
Brian A. Johnson
2018-01-01
Full Text Available The advent of very high resolution (VHR satellite imagery and the development of Geographic Object-Based Image Analysis (GEOBIA have led to many new opportunities for fine-scale land cover mapping, especially in urban areas. Image segmentation is an important step in the GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image segments closely match real-world objects of interest. In the remote sensing community, segmentation is frequently performed using the multiresolution segmentation (MRS algorithm, which is tuned through three user-defined parameters (the scale, shape/color, and compactness/smoothness parameters. The scale parameter (SP is the most important parameter and governs the average size of generated image segments. Existing automatic methods to determine suitable SPs for segmentation are scene-specific and often computationally intensive, so an approach to estimating appropriate SPs that is generalizable (i.e., not scene-specific could speed up the GEOBIA workflow considerably. In this study, we attempted to identify generalizable SPs for five common urban land cover types (buildings, vegetation, roads, bare soil, and water through meta-analysis and nonlinear regression tree (RT modeling. First, we performed a literature search of recent studies that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used, the image properties (i.e., spatial and radiometric resolutions, and the land cover classes mapped. Using this data extracted from the literature, we constructed RT models for each land cover class to predict suitable SP values based on the: image spatial resolution, image radiometric resolution, shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative analysis of results, we found that for all land cover classes except water, relatively accurate SPs could be identified using our RT modeling results. The main advantage of our
Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.
2012-06-01
In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).
Electronic Nose to Determine the Maturity Index of the Tree Tomato (Cyphomandra Betacea Sendt
Directory of Open Access Journals (Sweden)
Durán-Acevedo Cristhian Manuel
2014-07-01
Full Text Available This paper presents the development of an Electronic Nose for nondestructive monitoring of tree tomato ripening process (Cyphomandra Betacea Sendt. An array of 16 chemical gas sensors was arranged for the detection of three ripeness levels of tree types of tomato (green, ripe and overripe. A Probabilistic Neural Network (PNN as variable selection technique (Simulated Annealing was coupled to improve the result and the PCA (Principal Component Analysis technique was applied to discriminate each one of volatile compounds. A number of measures for physicochemical tests were analyzed with the goal of evaluating the physical, chemical and sensory properties (i.e, pH, acidity and Brix of the product, and the results of the Electronic Nose were compared. The olfactory system was able to classify the samples of tree tomato in three different stages with very high accuracy, to reach a success rate 99.886% in classification.
Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.
2008-01-01
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742
Strobl, Carolin; Malley, James; Tutz, Gerhard
2009-01-01
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
Directory of Open Access Journals (Sweden)
Regis Wendpouire Oubida
2015-03-01
Full Text Available Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13 to 0.32 and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP, and mean annual precipitation (MAP. These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.
Ozge, C; Toros, F; Bayramkaya, E; Camdeviren, H; Sasmaz, T
2006-08-01
The purpose of this study is to evaluate the most important sociodemographic factors on smoking status of high school students using a broad randomised epidemiological survey. Using in-class, self administered questionnaire about their sociodemographic variables and smoking behaviour, a representative sample of total 3304 students of preparatory, 9th, 10th, and 11th grades, from 22 randomly selected schools of Mersin, were evaluated and discriminative factors have been determined using appropriate statistics. In addition to binary logistic regression analysis, the study evaluated combined effects of these factors using classification and regression tree methodology, as a new statistical method. The data showed that 38% of the students reported lifetime smoking and 16.9% of them reported current smoking with a male predominancy and increasing prevalence by age. Second hand smoking was reported at a 74.3% frequency with father predominance (56.6%). The significantly important factors that affect current smoking in these age groups were increased by household size, late birth rank, certain school types, low academic performance, increased second hand smoking, and stress (especially reported as separation from a close friend or because of violence at home). Classification and regression tree methodology showed the importance of some neglected sociodemographic factors with a good classification capacity. It was concluded that, as closely related with sociocultural factors, smoking was a common problem in this young population, generating important academic and social burden in youth life and with increasing data about this behaviour and using new statistical methods, effective coping strategies could be composed.
Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.
2014-12-01
This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust
DEFF Research Database (Denmark)
Greve, Mogens Humlekrog; Bou Kheir, Rania; Greve, Mette Balslev
2012-01-01
Soil texture is an important soil characteristic that drives crop production and field management, and is the basis for environmental monitoring (including soil quality and sustainability, hydrological and ecological processes, and climate change simulations). The combination of coarse sand, fine...... sand, silt, and clay in soil determines its textural classification. This study used Geographic Information Systems (GIS) and regression-tree modeling to precisely quantify the relationships between the soil texture fractions and different environmental parameters on a national scale, and to detect...... precipitation, seasonal precipitation to statistically explain soil texture fractions field/laboratory measurements (45,224 sampling sites) in the area of interest (Denmark). The developed strongest relationships were associated with clay and silt, variance being equal to 60%, followed by coarse sand (54...
Yamashita, Takashi; Kart, Cary S; Noe, Douglas A
2012-12-01
Type 2 diabetes is known to contribute to health disparities in the U.S. and failure to adhere to recommended self-care behaviors is a contributing factor. Intervention programs face difficulties as a result of patient diversity and limited resources. With data from the 2005 Behavioral Risk Factor Surveillance System, this study employs a logistic regression tree algorithm to identify characteristics of sub-populations with type 2 diabetes according to their reported frequency of adherence to four recommended diabetes self-care behaviors including blood glucose monitoring, foot examination, eye examination and HbA1c testing. Using Andersen's health behavior model, need factors appear to dominate the definition of which sub-groups were at greatest risk for low as well as high adherence. Findings demonstrate the utility of easily interpreted tree diagrams to design specific culturally appropriate intervention programs targeting sub-populations of diabetes patients who need to improve their self-care behaviors. Limitations and contributions of the study are discussed.
Kabeshova, A; Annweiler, C; Fantino, B; Philip, T; Gromov, V A; Launay, C P; Beauchet, O
2014-06-01
Regression tree (RT) analyses are particularly adapted to explore the risk of recurrent falling according to various combinations of fall risk factors compared to logistic regression models. The aims of this study were (1) to determine which combinations of fall risk factors were associated with the occurrence of recurrent falls in older community-dwellers, and (2) to compare the efficacy of RT and multiple logistic regression model for the identification of recurrent falls. A total of 1,760 community-dwelling volunteers (mean age ± standard deviation, 71.0 ± 5.1 years; 49.4 % female) were recruited prospectively in this cross-sectional study. Age, gender, polypharmacy, use of psychoactive drugs, fear of falling (FOF), cognitive disorders and sad mood were recorded. In addition, the history of falls within the past year was recorded using a standardized questionnaire. Among 1,760 participants, 19.7 % (n = 346) were recurrent fallers. The RT identified 14 nodes groups and 8 end nodes with FOF as the first major split. Among participants with FOF, those who had sad mood and polypharmacy formed the end node with the greatest OR for recurrent falls (OR = 6.06 with p falls (OR = 0.25 with p factors for recurrent falls, the combination most associated with recurrent falls involving FOF, sad mood and polypharmacy. The FOF emerged as the risk factor strongly associated with recurrent falls. In addition, RT and multiple logistic regression were not sensitive enough to identify the majority of recurrent fallers but appeared efficient in detecting individuals not at risk of recurrent falls.
Directory of Open Access Journals (Sweden)
Francesco Cerasoli
Full Text Available Boosted Regression Trees (BRT is one of the modelling techniques most recently applied to biodiversity conservation and it can be implemented with presence-only data through the generation of artificial absences (pseudo-absences. In this paper, three pseudo-absences generation techniques are compared, namely the generation of pseudo-absences within target-group background (TGB, testing both the weighted (WTGB and unweighted (UTGB scheme, and the generation at random (RDM, evaluating their performance and applicability in distribution modelling and species conservation. The choice of the target group fell on amphibians, because of their rapid decline worldwide and the frequent lack of guidelines for conservation strategies and regional-scale planning, which instead could be provided through an appropriate implementation of SDMs. Bufo bufo, Salamandrina perspicillata and Triturus carnifex were considered as target species, in order to perform our analysis with species having different ecological and distributional characteristics. The study area is the "Gran Sasso-Monti della Laga" National Park, which hosts 15 Natura 2000 sites and represents one of the most important biodiversity hotspots in Europe. Our results show that the model calibration ameliorates when using the target-group based pseudo-absences compared to the random ones, especially when applying the WTGB. Contrarily, model discrimination did not significantly vary in a consistent way among the three approaches with respect to the tree target species. Both WTGB and RDM clearly isolate the highly contributing variables, supplying many relevant indications for species conservation actions. Moreover, the assessment of pairwise variable interactions and their three-dimensional visualization further increase the amount of useful information for protected areas' managers. Finally, we suggest the use of RDM as an admissible alternative when it is not possible to individuate a suitable set of
Directory of Open Access Journals (Sweden)
José A. Delgado
2012-01-01
Full Text Available Forest structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area are important for the assessment of wood volume and biomass and represent key forest inventory attributes. Forest inventory information is required to support sustainable management, carbon accounting, and policy development activities. Digital image processing of remotely sensed imagery is increasingly utilized to assist traditional, more manual, methods in the estimation of forest structural attributes over extensive areas, also enabling evaluation of change over time. Empirical attribute estimation with remotely sensed data is frequently employed, yet with known limitations, especially over complex environments such as Mediterranean forests. In this study, the capacity of high spatial resolution (HSR imagery and related techniques to model structural parameters at the stand level (n = 490 in Mediterranean pines in Central Spain is tested using data from the commercial satellite QuickBird-2. Spectral and spatial information derived from multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively served to model structural parameters. Classification and Regression Tree Analysis (CART was selected for the modeling of attributes. Accurate models were produced of quadratic mean diameter (QMD (R2 = 0.8; RMSE = 0.13 m with an average error of 17% while basal area (BA models produced an average error of 22% (RMSE = 5.79 m2/ha. When the measured number of trees per unit area (N was categorized, as per frequent forest management practices, CART models correctly classified 70% of the stands, with all other stands classified in an adjacent class. The accuracy of the attributes estimated here is expected to be better when canopy cover is more open and attribute values are at the lower end of the range present, as related in the pattern of the residuals found in this study. Our findings indicate that attributes derived from
Hutton, Eileen K; Simioni, Julia C; Thabane, Lehana
2017-08-01
Among women with a fetus with a non-cephalic presentation, external cephalic version (ECV) has been shown to reduce the rate of breech presentation at birth and cesarean birth. Compared with ECV at term, beginning ECV prior to 37 weeks' gestation decreases the number of infants in a non-cephalic presentation at birth. The purpose of this secondary analysis was to investigate factors associated with a successful ECV procedure and to present this in a clinically useful format. Data were collected as part of the Early ECV Pilot and Early ECV2 Trials, which randomized 1776 women with a fetus in breech presentation to either early ECV (34-36 weeks' gestation) or delayed ECV (at or after 37 weeks). The outcome of interest was successful ECV, defined as the fetus being in a cephalic presentation immediately following the procedure, as well as at the time of birth. The importance of several factors in predicting successful ECV was investigated using two statistical methods: logistic regression and classification and regression tree (CART) analyses. Among nulliparas, non-engagement of the presenting part and an easily palpable fetal head were independently associated with success. Among multiparas, non-engagement of the presenting part, gestation less than 37 weeks and an easily palpable fetal head were found to be independent predictors of success. These findings were consistent with results of the CART analyses. Regardless of parity, descent of the presenting part was the most discriminating factor in predicting successful ECV and cephalic presentation at birth. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.
2016-06-01
Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).
Sayegh, Arwa; Tate, James E.; Ropkins, Karl
2016-02-01
Oxides of Nitrogen (NOx) is a major component of photochemical smog and its constituents are considered principal traffic-related pollutants affecting human health. This study investigates the influence of background concentrations of NOx, traffic density, and prevailing meteorological conditions on roadside concentrations of NOx at UK urban, open motorway, and motorway tunnel sites using the statistical approach Boosted Regression Trees (BRT). BRT models have been fitted using hourly concentration, traffic, and meteorological data for each site. The models predict, rank, and visualise the relationship between model variables and roadside NOx concentrations. A strong relationship between roadside NOx and monitored local background concentrations is demonstrated. Relationships between roadside NOx and other model variables have been shown to be strongly influenced by the quality and resolution of background concentrations of NOx, i.e. if it were based on monitored data or modelled prediction. The paper proposes a direct method of using site-specific fundamental diagrams for splitting traffic data into four traffic states: free-flow, busy-flow, congested, and severely congested. Using BRT models, the density of traffic (vehicles per kilometre) was observed to have a proportional influence on the concentrations of roadside NOx, with different fitted regression line slopes for the different traffic states. When other influences are conditioned out, the relationship between roadside concentrations and ambient air temperature suggests NOx concentrations reach a minimum at around 22 °C with high concentrations at low ambient air temperatures which could be associated to restricted atmospheric dispersion and/or to changes in road traffic exhaust emission characteristics at low ambient air temperatures. This paper uses BRT models to study how different critical factors, and their relative importance, influence the variation of roadside NOx concentrations. The paper
Yu, Huibin; Song, Yonghui; Liu, Ruixia; Pan, Hongwei; Xiang, Liancheng; Qian, Feng
2014-10-01
The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimentation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryptophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by self-organizing map. These components showed good positive linear correlations with dissolved organic carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic microorganisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART analysis can be a nondestructive effective method for characterizing structural component of DOM fractions and monitoring organic matter removal in wastewater treatment process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
César Lavorenti
1990-01-01
Full Text Available O presente trabalho foi realizado com o objetivo de determinar a existência e as magnitudes de correlações e regressões lineares simples em plântulas jovens de seringueira (Hevea spp., para melhor condução de seleção nos futuros trabalhos de melhoramento. Foram utilizadas médias de produção de borracha seca por plântulas por corte, através do teste Hamaker-Morris-Mann (P; circunferência do caule (CC; espessura de casca (EC; número de anéis (NA; diâmetro dos vasos (DV; densidade dos vasos laticíleros (D e distância média entre anéis de vasos consecutivos (DMEAVC em um viveiro de cruzamento com três anos e meio de idade. Os resultados mostraram, entre outros fatores, que as correlações lineares simples de P com CC, EC, NA, D, DV e DMEAVC foram, respectivamente, r =t 0,61, 0,34, 0,28, 0,29, 0,43 e -0,13. As correlações de CC com EC, NA, D, DV e DMEAVC foram: 0,65, 0,22, 0,37, 0,33 e 0,096 respectivamente. Estudos de regressão linear simples de P com CC, EC, NA, DV, D e DMEAVC sugerem que CC foi o caráter independente mais significativo, contribuindo com 36% da variação em P. Em relação ao vigor, a regressão de CC com os respectivos caracteres sugere que EC foi o único caráter que contribuiu significativamente para a variação de CC com 42%. As altas correlações observadas da produção com circunferência do caule e com espessura de casca evidenciam a possibilidade de obter genótipos jovens de boa capacidade produtiva e grande vigor, através de seleção precoce dessas variáveis.This study was undertaken aiming to determine the existence of linear correlations, based on simple regression studies for a better improvement of young rubber tree (Hevea spp. breeding and selection. The characters studied were: yield of dry rubber per tapping by Hamaker-Morris-Mann test tapping (P, mean gurth (CC, bark thickness (EC, number of latex vessel rings (NA, diameter of latex vesseis (DV, density of latex vesseis per 5mm
Energy Technology Data Exchange (ETDEWEB)
Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Caixa Postal 3037, Lavras, Minas Gerais (Brazil); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)
2017-02-15
S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)
International Nuclear Information System (INIS)
Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T.; Scarpelli, A.P.B.
2017-01-01
S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)
Directory of Open Access Journals (Sweden)
Rohulla Kosari Langari
2014-02-01
Full Text Available Change the world through information technology and Internet development, has created competitive knowledge in the field of electronic commerce, lead to increasing in competitive potential among organizations. In this condition The increasing rate of commercial deals developing guaranteed with speed and light quality is due to provide dynamic system of electronic banking until by using modern technology to facilitate electronic business process. Internet banking is enumerate as a potential opportunity the fundamental pillars and determinates of e-banking that in cyber space has been faced with various obstacles and threats. One of this challenge is complete uncertainty in security guarantee of financial transactions also exist of suspicious and unusual behavior with mail fraud for financial abuse. Now various systems because of intelligence mechanical methods and data mining technique has been designed for fraud detection in users’ behaviors and applied in various industrial such as insurance, medicine and banking. Main of article has been recognizing of unusual users behaviors in e-banking system. Therefore, detection behavior user and categories of emerged patterns to paper the conditions for predicting unauthorized penetration and detection of suspicious behavior. Since detection behavior user in internet system has been uncertainty and records of transactions can be useful to understand these movement and therefore among machine method, decision tree technique is considered common tool for classification and prediction, therefore in this research at first has determinate banking effective variable and weight of everything in internet behaviors production and in continuation combining of various behaviors manner draw out such as the model of inductive rules to provide ability recognizing of different behaviors. At least trend of four algorithm Chaid, ex_Chaid, C4.5, C5.0 has compared and evaluated for classification and detection of exist
Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu
2012-05-01
To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving
DEFF Research Database (Denmark)
Petersen, Mette Bisgaard; Tolver, Anders; Husted, Louise
2016-01-01
-off value of 7 mmol/L had a sensitivity of 0.66 and a specificity of 0.92 in predicting survival. In independent test data, the sensitivity was 0.69 and the specificity was 0.76. At the observed survival rate (38%), the optimal decision tree identified horses as non-survivors when the Lac at admission...... admitted with acute colitis (trees, as well as random...
Directory of Open Access Journals (Sweden)
Lucinda Pfalzer
2013-06-01
Full Text Available Background/Purpose: Over 1/3 of adults over age 65 experiences at least one fall each year. This pilot report uses a classification regression tree analysis (CART to model the outcomes for balance/risk of falls from the Gentiva® Safe Strides® Program (SSP. Methods/Outcomes: SSP is a home-based balance/fall prevention program designed to treat root causes of a patient
Spady, Richard; Stouli, Sami
2012-01-01
We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...
De novo analysis of electron impact mass spectra using fragmentation trees
International Nuclear Information System (INIS)
Hufsky, Franziska; Rempt, Martin; Rasche, Florian; Pohnert, Georg; Böcker, Sebastian
2012-01-01
Highlights: ► We present a method for de novo analysis of accurate mass EI mass spectra of small molecules. ► This method identifies the molecular ion and thus the molecular formula where the molecular ion is present in the spectrum. ► Fragmentation trees are constructed by automated signal extraction and evaluation. ► These trees explain relevant fragmentation reactions. ► This method will be very helpful in the automated analysis of unknown metabolites. - Abstract: The automated fragmentation analysis of high resolution EI mass spectra based on a fragmentation tree algorithm is introduced. Fragmentation trees are constructed from EI spectra by automated signal extraction and evaluation. These trees explain relevant fragmentation reactions and assign molecular formulas to fragments. The method enables the identification of the molecular ion and the molecular formula of a metabolite if the molecular ion is present in the spectrum. These identifications are independent of existing library knowledge and, thus, support assignment and structural elucidation of unknown compounds. The method works even if the molecular ion is of very low abundance or hidden under contaminants with higher masses. We apply the algorithm to a selection of 50 derivatized and underivatized metabolites and demonstrate that in 78% of cases the molecular ion can be correctly assigned. The automatically constructed fragmentation trees correspond very well to published mechanisms and allow the assignment of specific relevant fragments and fragmentation pathways even in the most complex EI-spectra in our dataset. This method will be very helpful in the automated analysis of metabolites that are not included in common libraries and it thus has the potential to support the explorative character of metabolomics studies.
Energy Technology Data Exchange (ETDEWEB)
Lopes, J.A Pecas; Vasconcelos, Maria Helena O.P. de [Instituto de Engenharia de Sistemas e Computadores (INESC), Porto (Portugal). E-mail: jpl@riff.fe.up.pt; hvasconcelos@inescn.pt
1999-07-01
This paper describes in a synthetic manner the technology adopted to define structures used in the fast evaluation of dynamic safety of isolated network with high level of eolic production contribution. This methodology uses hybrid regression trees, which allows the quantification the endurance connected to the dynamic behavior of these networks by emulating the frequency minimum deviation that will be experienced by the system when submitted toa pre-defined perturbation. Also, new procedures for data automatic generation are presented, which will be used for construction and measurements of the evaluation structures performance. The paper describes the Terceira island - Acores archipelago network study case.
International Nuclear Information System (INIS)
Ballini, J.-P.; Cazes, P.; Turpin, P.-Y.
1976-01-01
Analysing the histogram of anode pulse amplitudes allows a discussion of the hypothesis that has been proposed to account for the statistical processes of secondary multiplication in a photomultiplier. In an earlier work, good agreement was obtained between experimental and reconstructed spectra, assuming a first dynode distribution including two Poisson distributions of distinct mean values. This first approximation led to a search for a method which could give the weights of several Poisson distributions of distinct mean values. Three methods have been briefly exposed: classical linear regression, constraint regression (d'Esopo's method), and regression on variables subject to error. The use of these methods gives an approach of the frequency function which represents the dispersion of the punctual mean gain around the whole first dynode mean gain value. Comparison between this function and the one employed in Polya distribution allows the statement that the latter is inadequate to describe the statistical process of secondary multiplication. Numerous spectra obtained with two kinds of photomultiplier working under different physical conditions have been analysed. Then two points are discussed: - Does the frequency function represent the dynode structure and the interdynode collection process. - Is the model (the multiplication process of all dynodes but the first one, is Poissonian) valid whatever the photomultiplier and the utilization conditions. (Auth.)
International Nuclear Information System (INIS)
Rudie, N.J.
1976-01-01
The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry
Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.
2017-01-01
Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...
Clinical application of 3D reconstruction of tracheobronchial tree with electron beam CT
International Nuclear Information System (INIS)
Yao Zhenwei; Shen Tianzhen
2002-01-01
Objective: To explore the clinical promise of CT 3D reconstruction of tracheobronchial tree (TBT) by analyzing 73 cases retrospectively. Methods: All the 73 cases were collected from October 1997 to February 2000, who were scanned by EBCT with 130 kV and 630 mA. The scanning method was continuous volume scan, the slice thickness were 3 mm or 1.5 mm. All cross-sectional images were transmitted to the INSIGHT workstation and reconstructed with SSD (shaded surface display), and the threshold setting were -500 to -300 HU. Results: 3D reconstruction of TBT with EBCT could reveal the abnormal changes of TBT by many kinds of diseases including central cancer, inflammation, bronchiectasis, saber-sheath trachea, trachea cancer, congenital disorders, post-surgical changes of lung cancer, and stenoses by adjacent benign or malignant diseases. It could be used to locate the stenoses and measure stenotic extent. Of the 35 central cancer cases with 3D reconstruction, 6 cases were pestle obstructed, 15 cases cone obstructed, 5 cases interrupted irregularly, 8 cases with eccentric stenoses, and 1 case with right stem destroyed and right upper lobe bronchus obstructed. Conclusion: 3D reconstruction of TBT has characteristic sign in the diagnosis or differential diagnosis of central airway's benign or malignant stenoses, and it is of instructional value in clinical use
Sariyar, M; Borg, A; Pommerening, K
2012-10-01
Supervised record linkage methods often require a clerical review to gain informative training data. Active learning means to actively prompt the user to label data with special characteristics in order to minimise the review costs. We conducted an empirical evaluation to investigate whether a simple active learning strategy using binary comparison patterns is sufficient or if string metrics together with a more sophisticated algorithm are necessary to achieve high accuracies with a small training set. Based on medical registry data with different numbers of attributes, we used active learning to acquire training sets for classification trees, which were then used to classify the remaining data. Active learning for binary patterns means that every distinct comparison pattern represents a stratum from which one item is sampled. Active learning for patterns consisting of the Levenshtein string metric values uses an iterative process where the most informative and representative examples are added to the training set. In this context, we extended the active learning strategy by Sarawagi and Bhamidipaty (2002). On the original data set, active learning based on binary comparison patterns leads to the best results. When dropping four or six attributes, using string metrics leads to better results. In both cases, not more than 200 manually reviewed training examples are necessary. In record linkage applications where only forename, name and birthday are available as attributes, we suggest the sophisticated active learning strategy based on string metrics in order to achieve highly accurate results. We recommend the simple strategy if more attributes are available, as in our study. In both cases, active learning significantly reduces the amount of manual involvement in training data selection compared to usual record linkage settings. Copyright © 2012 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Javier Trujillano
2008-02-01
Full Text Available Objetivo: : Realizar una aproximación a la metodología de árboles de decisión tipo CART (Classification and Regression Trees desarrollando un modelo para calcular la probabilidad de muerte hospitalaria en infarto agudo de miocardio (IAM. Método: Se utiliza el conjunto mínimo básico de datos al alta hospitalaria (CMBD de Andalucía, Cataluña, Madrid y País Vasco de los años 2001 y 2002, que incluye los casos con IAM como diagnóstico principal. Los 33.203 pacientes se dividen aleatoriamente (70 y 30 % en grupo de desarrollo (GD = 23.277 y grupo de validación (GV = 9.926. Como CART se utiliza un modelo inductivo basado en el algoritmo de Breiman, con análisis de sensibilidad mediante el índice de Gini y sistema de validación cruzada. Se compara con un modelo de regresión logística (RL y una red neuronal artificial (RNA (multilayer perceptron. Los modelos desarrollados se contrastan en el GV y sus propiedades se comparan con el área bajo la curva ROC (ABC (intervalo de confianza del 95%. Resultados: En el GD el CART con ABC = 0,85 (0,86-0,88, RL 0,87 (0,86-0,88 y RNA 0,85 (0,85-0,86. En el GV el CART con ABC = 0,85 (0,85-0,88, RL 0,86 (0,85-0,88 y RNA 0,84 (0,83-0,86. Conclusiones: Los 3 modelos obtienen resultados similares en su capacidad de discriminación. El modelo CART ofrece como ventaja su simplicidad de uso y de interpretación, ya que las reglas de decisión que generan pueden aplicarse sin necesidad de procesos matemáticos.Objective: To provide an overview of decision trees based on CART (Classification and Regression Trees methodology. As an example, we developed a CART model intended to estimate the probability of intrahospital death from acute myocardial infarction (AMI. Method: We employed the minimum data set (MDS of Andalusia, Catalonia, Madrid and the Basque Country (2001-2002, which included 33,203 patients with a diagnosis of AMI. The 33,203 patients were randomly divided (70% and 30% into the development (DS
Matson, Johnny L.; Kozlowski, Alison M.
2010-01-01
Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…
Directory of Open Access Journals (Sweden)
Abraham Pouliakis
2015-01-01
Full Text Available Objective. Nowadays numerous ancillary techniques detecting HPV DNA and mRNA compete with cytology; however no perfect test exists; in this study we evaluated classification and regression trees (CARTs for the production of triage rules and estimate the risk for cervical intraepithelial neoplasia (CIN in cases with ASCUS+ in cytology. Study Design. We used 1625 cases. In contrast to other approaches we used missing data to increase the data volume, obtain more accurate results, and simulate real conditions in the everyday practice of gynecologic clinics and laboratories. The proposed CART was based on the cytological result, HPV DNA typing, HPV mRNA detection based on NASBA and flow cytometry, p16 immunocytochemical expression, and finally age and parous status. Results. Algorithms useful for the triage of women were produced; gynecologists could apply these in conjunction with available examination results and conclude to an estimation of the risk for a woman to harbor CIN expressed as a probability. Conclusions. The most important test was the cytological examination; however the CART handled cases with inadequate cytological outcome and increased the diagnostic accuracy by exploiting the results of ancillary techniques even if there were inadequate missing data. The CART performance was better than any other single test involved in this study.
Pouliakis, Abraham; Karakitsou, Efrossyni; Chrelias, Charalampos; Pappas, Asimakis; Panayiotides, Ioannis; Valasoulis, George; Kyrgiou, Maria; Paraskevaidis, Evangelos; Karakitsos, Petros
2015-01-01
Nowadays numerous ancillary techniques detecting HPV DNA and mRNA compete with cytology; however no perfect test exists; in this study we evaluated classification and regression trees (CARTs) for the production of triage rules and estimate the risk for cervical intraepithelial neoplasia (CIN) in cases with ASCUS+ in cytology. We used 1625 cases. In contrast to other approaches we used missing data to increase the data volume, obtain more accurate results, and simulate real conditions in the everyday practice of gynecologic clinics and laboratories. The proposed CART was based on the cytological result, HPV DNA typing, HPV mRNA detection based on NASBA and flow cytometry, p16 immunocytochemical expression, and finally age and parous status. Algorithms useful for the triage of women were produced; gynecologists could apply these in conjunction with available examination results and conclude to an estimation of the risk for a woman to harbor CIN expressed as a probability. The most important test was the cytological examination; however the CART handled cases with inadequate cytological outcome and increased the diagnostic accuracy by exploiting the results of ancillary techniques even if there were inadequate missing data. The CART performance was better than any other single test involved in this study.
Directory of Open Access Journals (Sweden)
Santana Isabel
2011-08-01
Full Text Available Abstract Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI, but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing.
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Directory of Open Access Journals (Sweden)
Ziping WANG
2011-09-01
Full Text Available Background and objective It has been proven that gefitinib produces only 10%-20% tumor regression in heavily pretreated, unselected non-small cell lung cancer (NSCLC patients as the second- and third-line setting. Asian, female, nonsmokers and adenocarcinoma are favorable factors; however, it is difficult to find a patient satisfying all the above clinical characteristics. The aim of this study is to identify novel predicting factors, and to explore the interactions between clinical variables and their impact on the survival of Chinese patients with advanced NSCLC who were heavily treated with gefitinib in the second- or third-line setting. Methods The clinical and follow-up data of 127 advanced NSCLC patients referred to the Cancer Hospital & Institute, Chinese Academy of Medical Sciences from March 2005 to March 2010 were analyzed. Multivariate analysis of progression-free survival (PFS was performed using recursive partitioning, which is referred to as the classification and regression tree (CART analysis. Results The median PFS of 127 eligible consecutive advanced NSCLC patients was 8.0 months (95%CI: 5.8-10.2. CART was performed with an initial split on first-line chemotherapy outcomes and a second split on patients’ age. Three terminal subgroups were formed. The median PFS of the three subsets ranged from 1.0 month (95%CI: 0.8-1.2 for those with progressive disease outcome after the first-line chemotherapy subgroup, 10 months (95%CI: 7.0-13.0 in patients with a partial response or stable disease in first-line chemotherapy and age <70, and 22.0 months for patients obtaining a partial response or stable disease in first-line chemotherapy at age 70-81 (95%CI: 3.8-40.1. Conclusion Partial response, stable disease in first-line chemotherapy and age ≥ 70 are closely correlated with long-term survival treated by gefitinib as a second- or third-line setting in advanced NSCLC. CART can be used to identify previously unappreciated patient
Markham, Francis; Young, Martin; Doran, Bruce; Sugden, Mark
2017-05-23
Many jurisdictions regularly conduct surveys to estimate the prevalence of problem gambling in their adult populations. However, the comparison of such estimates is problematic due to methodological variations between studies. Total consumption theory suggests that an association between mean electronic gaming machine (EGM) and casino gambling losses and problem gambling prevalence estimates may exist. If this is the case, then changes in EGM losses may be used as a proxy indicator for changes in problem gambling prevalence. To test for this association this study examines the relationship between aggregated losses on electronic gaming machines (EGMs) and problem gambling prevalence estimates for Australian states and territories between 1994 and 2016. A Bayesian meta-regression analysis of 41 cross-sectional problem gambling prevalence estimates was undertaken using EGM gambling losses, year of survey and methodological variations as predictor variables. General population studies of adults in Australian states and territory published before 1 July 2016 were considered in scope. 41 studies were identified, with a total of 267,367 participants. Problem gambling prevalence, moderate-risk problem gambling prevalence, problem gambling screen, administration mode and frequency threshold were extracted from surveys. Administrative data on EGM and casino gambling loss data were extracted from government reports and expressed as the proportion of household disposable income lost. Money lost on EGMs is correlated with problem gambling prevalence. An increase of 1% of household disposable income lost on EGMs and in casinos was associated with problem gambling prevalence estimates that were 1.33 times higher [95% credible interval 1.04, 1.71]. There was no clear association between EGM losses and moderate-risk problem gambling prevalence estimates. Moderate-risk problem gambling prevalence estimates were not explained by the models (I 2 ≥ 0.97; R 2 ≤ 0.01). The
Directory of Open Access Journals (Sweden)
Francis Markham
2017-05-01
Full Text Available Abstract Background Many jurisdictions regularly conduct surveys to estimate the prevalence of problem gambling in their adult populations. However, the comparison of such estimates is problematic due to methodological variations between studies. Total consumption theory suggests that an association between mean electronic gaming machine (EGM and casino gambling losses and problem gambling prevalence estimates may exist. If this is the case, then changes in EGM losses may be used as a proxy indicator for changes in problem gambling prevalence. To test for this association this study examines the relationship between aggregated losses on electronic gaming machines (EGMs and problem gambling prevalence estimates for Australian states and territories between 1994 and 2016. Methods A Bayesian meta-regression analysis of 41 cross-sectional problem gambling prevalence estimates was undertaken using EGM gambling losses, year of survey and methodological variations as predictor variables. General population studies of adults in Australian states and territory published before 1 July 2016 were considered in scope. 41 studies were identified, with a total of 267,367 participants. Problem gambling prevalence, moderate-risk problem gambling prevalence, problem gambling screen, administration mode and frequency threshold were extracted from surveys. Administrative data on EGM and casino gambling loss data were extracted from government reports and expressed as the proportion of household disposable income lost. Results Money lost on EGMs is correlated with problem gambling prevalence. An increase of 1% of household disposable income lost on EGMs and in casinos was associated with problem gambling prevalence estimates that were 1.33 times higher [95% credible interval 1.04, 1.71]. There was no clear association between EGM losses and moderate-risk problem gambling prevalence estimates. Moderate-risk problem gambling prevalence estimates were not explained by
IND - THE IND DECISION TREE PACKAGE
Buntine, W.
1994-01-01
A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The
Keitel, Kristina; D'Acremont, Valérie
2018-04-20
The lack of effective, integrated diagnostic tools pose a major challenge to the primary care management of febrile childhood illnesses. These limitations are especially evident in low-resource settings and are often inappropriately compensated by antimicrobial over-prescription. Interactive electronic decision trees (IEDTs) have the potential to close these gaps: guiding antibiotic use and better identifying serious disease. This narrative review summarizes existing IEDTs, to provide an overview of their degree of validation, as well as to identify gaps in current knowledge and prospects for future innovation. Structured literature review in PubMed and Embase complemented by google search and contact with developers. Six integrated IEDTs were identified: three (eIMCI, REC, and Bangladesh digital IMCI) based on Integrated Management of Childhood Illnesses (IMCI); four (SL eCCM, MEDSINC, e-iCCM, and D-Tree eCCM) on Integrated Community Case Management (iCCM); two (ALMANACH, MSFeCARE) with a modified IMCI content; and one (ePOCT) that integrates novel content with biomarker testing. The types of publications and evaluation studies varied greatly: the content and evidence-base was published for two (ALMANACH and ePOCT), ALMANACH and ePOCT were validated in efficacy studies. Other types of evaluations, such as compliance, acceptability were available for D-Tree eCCM, eIMCI, ALMANACH. Several evaluations are still ongoing. Future prospects include conducting effectiveness and impact studies using data gathered through larger studies to adapt the medical content to local epidemiology, improving the software and sensors, and Assessing factors that influence compliance and scale-up. IEDTs are valuable tools that have the potential to improve management of febrile children in primary care and increase the rational use of diagnostics and antimicrobials. Next steps in the evidence pathway should be larger effectiveness and impact studies (including cost analysis) and
DIF Trees: Using Classification Trees to Detect Differential Item Functioning
Vaughn, Brandon K.; Wang, Qiu
2010-01-01
A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…
Differentiating regressed melanoma from regressed lichenoid keratosis.
Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A
2017-04-01
Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Laurent P. René de Cotret
2017-07-01
Full Text Available The general problem of background subtraction in ultrafast electron powder diffraction (UEPD is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT wavelet transforms when applied to simulated UEPD data on the M1–R phase transition in VO2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
Indian Academy of Sciences (India)
Flowering Trees. Boswellia serrata Roxb. ex Colebr. (Indian Frankincense tree) of Burseraceae is a large-sized deciduous tree that is native to India. Bark is thin, greenish-ash-coloured that exfoliates into smooth papery flakes. Stem exudes pinkish resin ... Fruit is a three-valved capsule. A green gum-resin exudes from the ...
Indian Academy of Sciences (India)
IAS Admin
Flowering Trees. Ailanthus excelsa Roxb. (INDIAN TREE OF. HEAVEN) of Simaroubaceae is a lofty tree with large pinnately compound alternate leaves, which are ... inflorescences, unisexual and greenish-yellow. Fruits are winged, wings many-nerved. Wood is used in making match sticks. 1. Male flower; 2. Female flower.
Indian Academy of Sciences (India)
Flowering Trees. Gyrocarpus americanus Jacq. (Helicopter Tree) of Hernandiaceae is a moderate size deciduous tree that grows to about 12 m in height with a smooth, shining, greenish-white bark. The leaves are ovate, rarely irregularly ... flowers which are unpleasant smelling. Fruit is a woody nut with two long thin wings.
Indian Academy of Sciences (India)
More Details Fulltext PDF. Volume 8 Issue 8 August 2003 pp 112-112 Flowering Trees. Zizyphus jujuba Lam. of Rhamnaceae · More Details Fulltext PDF. Volume 8 Issue 9 September 2003 pp 97-97 Flowering Trees. Moringa oleifera · More Details Fulltext PDF. Volume 8 Issue 10 October 2003 pp 100-100 Flowering Trees.
Tree compression with top trees
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Landau, Gad M.
2013-01-01
We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...
Tree compression with top trees
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Landau, Gad M.
2015-01-01
We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
... Blog Vision Awards Common Allergens Tree Nut Allergy Tree Nut Allergy Learn about tree nut allergy, how ... a Tree Nut Label card . Allergic Reactions to Tree Nuts Tree nuts can cause a severe and ...
Indian Academy of Sciences (India)
medium-sized handsome tree with a straight bole that branches at the top. Leaves are once pinnate, with two to three pairs of leaflets. Young parts of the tree are velvety. Inflorescence is a branched raceme borne at the branch ends. Flowers are large, white, attractive, and fragrant. Corolla is funnel-shaped. Fruit is an ...
Indian Academy of Sciences (India)
Cassia siamia Lamk. (Siamese tree senna) of Caesalpiniaceae is a small or medium size handsome tree. Leaves are alternate, pinnately compound and glandular, upto 18 cm long with 8–12 pairs of leaflets. Inflorescence is axillary or terminal and branched. Flowering lasts for a long period from March to February. Fruit is ...
Indian Academy of Sciences (India)
Flowering Trees. Cerbera manghasL. (SEA MANGO) of Apocynaceae is a medium-sized evergreen coastal tree with milky latex. The bark is grey-brown, thick and ... Fruit is large. (5–10 cm long), oval containing two flattened seeds and resembles a mango, hence the name Mangas or. Manghas. Leaves and fruits contain ...
Indian Academy of Sciences (India)
user
Flowering Trees. Gliricidia sepium(Jacq.) Kunta ex Walp. (Quickstick) of Fabaceae is a small deciduous tree with. Pinnately compound leaves. Flower are prroduced in large number in early summer on terminal racemes. They are attractive, pinkish-white and typically like bean flowers. Fruit is a few-seeded flat pod.
Indian Academy of Sciences (India)
Flowering Trees. Acrocarpus fraxinifolius Wight & Arn. (PINK CEDAR, AUSTRALIAN ASH) of. Caesalpiniaceae is a lofty unarmed deciduous native tree that attains a height of 30–60m with buttresses. Bark is thin and light grey. Leaves are compound and bright red when young. Flowers in dense, erect, axillary racemes.
Tolman, Marvin
2005-01-01
Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…
DEFF Research Database (Denmark)
Halkjær From, Andreas; Schlichtkrull, Anders; Villadsen, Jørgen
2018-01-01
We formally prove in Isabelle/HOL two properties of an algorithm for laying out trees visually. The first property states that removing layout annotations recovers the original tree. The second property states that nodes are placed at least a unit of distance apart. We have yet to formalize three...
Indian Academy of Sciences (India)
Srimath
Grevillea robusta A. Cunn. ex R. Br. (Sil- ver Oak) of Proteaceae is a daintily lacy ornamental tree while young and growing into a mighty tree (45 m). Young shoots are silvery grey and the leaves are fern- like. Flowers are golden-yellow in one- sided racemes (10 cm). Fruit is a boat- shaped, woody follicle.
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
Baños, Hector; Bushek, Nathaniel; Davidson, Ruth; Gross, Elizabeth; Harris, Pamela E.; Krone, Robert; Long, Colby; Stewart, Allen; Walker, Robert
2016-01-01
We introduce the package PhylogeneticTrees for Macaulay2 which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals.
Ormeño, M. I.; Faúndez-Abans, M.; Cavada, G.
2003-08-01
A importância deste trabalho deve-se à seleção de objetos ainda não tratados particularmente como uma família e ao emprego de procedimento estatístico robusto que não precisa de pressupostos ou condições de contorno. Contribui, assim, ao melhor entendimento do cenário das Galáxias Aneladas do diagrama de Hubble via classificação e estudo de subclasses. Selecionaram-se 100 galáxias possuidoras de dois anéis do Catalog of Southern Ringed Galaxies compilado por Ronald Buta, de modo a construir uma amostra completa em termos de conhecimento dos semi-eixos dos anéis interno e externo projetados no plano do céu. Visando uma possível classificação destas galáxias aneladas normais em famílias de acordo com as características geométricas dos anéis, empregou-se primeiramente a Análise de Aglomerados (ferramenta de classificação: medições de semelhança em um espaço bidimensional) para explorar a possível existência de famílias. As variáveis analisadas foram: os diâmetros interiores menores d(I) e maiores D(I), os diâmetros exteriores menores d(E) e maiores D(E), e os ângulos de inclinação dos semi-eixos maiores interiores q(I) e exteriores q(E) dos anéis. Como metodologia de discriminação, empregou-se a construção de Árvores de Classificação. As árvores de classificação constituem um método de discriminação alternativo aos modelos clássicos, tais como a Análise Discriminante e a Regressão Logística, onde uma base de dados é dividida em partições (subgrupos) da árvore por ação de um predictor (variável específica). Os pacotes estatísticos utilizados para o processamento da informação foram: SAS versão 8.0 (Statistical Analisys System) e CART versão 3.6.3. Esta análise estatística sugere a existência de três possíveis famílias de galáxias bianeladas, com base apenas na geometria dos anéis. Como forma exploratória inicial deste resultado, a construção de um diagrama BT (magnitude total) versus o
Decision trees in epidemiological research
Directory of Open Access Journals (Sweden)
Ashwini Venkatasubramaniam
2017-09-01
Full Text Available Abstract Background In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. Main text We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART technique and the newer Conditional Inference tree (CTree technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Conclusions Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.
Decision trees in epidemiological research.
Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone
2017-01-01
In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.
DEFF Research Database (Denmark)
Fitzenberger, Bernd; Wilke, Ralf Andreas
2015-01-01
if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...
Indian Academy of Sciences (India)
Srimath
shaped corolla. Fruit is large, ellipsoidal, green with a hard and smooth shell containing numerous flattened seeds, which are embedded in fleshy pulp. Calabash tree is commonly grown in the tropical gardens of the world as a botanical oddity.
Du, Ding-Zhu
2001-01-01
This book is a collection of articles studying various Steiner tree prob lems with applications in industries, such as the design of electronic cir cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Sch...
Understanding logistic regression analysis
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...
Introduction to regression graphics
Cook, R Dennis
2009-01-01
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava
Alternative Methods of Regression
Birkes, David
2011-01-01
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Understanding logistic regression analysis.
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Hosmer, David W; Sturdivant, Rodney X
2013-01-01
A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-
Indian Academy of Sciences (India)
deciduous tree with irregularly-shaped trunk, greyish-white scaly bark and milky latex. Leaves in opposite pairs are simple, oblong and whitish beneath. Flowers that occur in branched inflorescence are white, 2–. 3cm across and fragrant. Calyx is glandular inside. Petals bear numerous linear white scales, the corollary.
Indian Academy of Sciences (India)
Berrya cordifolia (Willd.) Burret (Syn. B. ammonilla Roxb.) – Trincomali Wood of Tiliaceae is a tall evergreen tree with straight trunk, smooth brownish-grey bark and simple broad leaves. Inflorescence is much branched with white flowers. Stamens are many with golden yellow anthers. Fruit is a capsule with six spreading ...
Indian Academy of Sciences (India)
Canthium parviflorum Lam. of Rubiaceae is a large shrub that often grows into a small tree with conspicuous spines. Leaves are simple, in pairs at each node and are shiny. Inflorescence is an axillary few-flowered cymose fascicle. Flowers are small (less than 1 cm across), 4-merous and greenish-white. Fruit is ellipsoid ...
Indian Academy of Sciences (India)
sriranga
Hook.f. ex Brandis (Yellow. Cadamba) of Rubiaceae is a large and handsome deciduous tree. Leaves are simple, large, orbicular, and drawn abruptly at the apex. Flowers are small, yellowish and aggregate into small spherical heads. The corolla is funnel-shaped with five stamens inserted at its mouth. Fruit is a capsule.
Indian Academy of Sciences (India)
Celtis tetrandra Roxb. of Ulmaceae is a moderately large handsome deciduous tree with green branchlets and grayish-brown bark. Leaves are simple with three to four secondary veins running parallel to the mid vein. Flowers are solitary, male, female and bisexual and inconspicuous. Fruit is berry-like, small and globose ...
Indian Academy of Sciences (India)
IAS Admin
Aglaia elaeagnoidea (A.Juss.) Benth. of Meliaceae is a small-sized evergreen tree of both moist and dry deciduous forests. The leaves are alternate and pinnately compound, terminating in a single leaflet. Leaflets are more or less elliptic with entire margin. Flowers are small on branched inflorescence. Fruit is a globose ...
Indian Academy of Sciences (India)
user
Flowers are borne on stiff bunches terminally on short shoots. They are 2-3 cm across, white, sweet-scented with light-brown hairy sepals and many stamens. Loquat fruits are round or pear-shaped, 3-5 cm long and are edible. A native of China, Loquat tree is grown in parks as an ornamental and also for its fruits.
Indian Academy of Sciences (India)
mid-sized slow-growing evergreen tree with spreading branches that form a dense crown. The bark is smooth, thick, dark and flakes off in large shreds. Leaves are thick, oblong, leathery and bright red when young. The female flowers are drooping and are larger than male flowers. Fruit is large, red in color and velvety.
Indian Academy of Sciences (India)
Andira inermis (wright) DC. , Dog Almond of Fabaceae is a handsome lofty evergreen tree. Leaves are alternate and pinnately compound with 4–7 pairs of leaflets. Flowers are fragrant and are borne on compact branched inflorescences. Fruit is ellipsoidal one-seeded drupe that is peculiar to members of this family.
Indian Academy of Sciences (India)
narrow towards base. Flowers are large and attrac- tive, but emit unpleasant foetid smell. They appear in small numbers on erect terminal clusters and open at night. Stamens are numerous, pink or white. Style is slender and long, terminating in a small stigma. Fruit is green, ovoid and indistinctly lobed. Flowering Trees.
Indian Academy of Sciences (India)
Muntingia calabura L. (Singapore cherry) of. Elaeocarpaceae is a medium size handsome ever- green tree. Leaves are simple and alternate with sticky hairs. Flowers are bisexual, bear numerous stamens, white in colour and arise in the leaf axils. Fruit is a berry, edible with several small seeds embedded in a fleshy pulp ...
Indian Academy of Sciences (India)
. Stamens are fused into a purple staminal tube that is toothed. Fruit is about 0.5 in. across, nearly globose, generally 5-seeded, green but yellow when ripe, quite smooth at first but wrinkled in drying, remaining long on the tree ajier ripening.
Mark J. Ambrose
2012-01-01
Tree mortality is a natural process in all forest ecosystems. However, extremely high mortality also can be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....
Indian Academy of Sciences (India)
Guaiacum officinale L. (LIGNUM-VITAE) of Zygophyllaceae is a dense-crowned, squat, knobbly, rough and twisted medium-sized ev- ergreen tree with mottled bark. The wood is very hard and resinous. Leaves are compound. The leaflets are smooth, leathery, ovate-ellipti- cal and appear in two pairs. Flowers (about 1.5.
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Directory of Open Access Journals (Sweden)
Paulo Eduardo Telles dos Santos
2010-06-01
Full Text Available By the assessment of ten technological traits of eucalypt wood for sawn timber and energy purposes,
it was developed a multivariate statistical procedure in order to determine the sequence of logs to be sampled, in such a way to represent all statistical variation contained within the tree and, accordingly, to establish the appropriate sampling intensity. In the present work, it was used a total of 40 logs from four trees of Eucalyptus grandis provenance Concórdia-SC aged 18 years. By using principal components regression analysis and stepwise selection techniques, it was showed that only two logs, corresponding to the first (0.05 m to 2.60 m and fourth (8.85 m to 11.40 m positions into the tree, contained 99.2 % of the total variation detected originally. In the case of adopting a single log, the recommendation was over the fourth log, which represented 97.5 % of the total
amount of the original variation. For the referred population, the statistical procedure contributed substantially to reduce the high time-consuming and financial costs that are normally associated to studies oriented to this goal, without affecting the original statistical information exhibited by the whole group of logs that would be usually sampled.A partir da avaliação de dez características tecnológicas de madeira de eucalipto para fins de serraria e energia, desenvolveu-se procedimento estatístico multivariado para se determinar a seqüência de toras a ser amostrada, de forma a representar acumuladamente toda a variação estatística presente na árvore e, com isso, estabelecer a intensidade adequada de amostragem. Neste estudo, foram utilizadas 40 toras oriundas de quatro árvores de Eucalyptus grandis aos 18 anos de idade procedentes de Concórdia, SC. Com o uso de técnicas de regressão multivariada de componentes principais e seleção por etapas, chegou-se à conclusão que amostrandose apenas duas toras, correspondentes à primeira (0,05 m a 2
2001-01-01
International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational
Directory of Open Access Journals (Sweden)
Mok Tik
2014-06-01
Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.
Multicollinearity and Regression Analysis
Daoud, Jamal I.
2017-12-01
In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.
Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei
2014-01-01
Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountains. To test the hypothesis, we used IKONOS images and WorldView-1 image to identify the tree locations and developed a logistic regression model using topographical variables to identify the dominant controls of the tree locations. The results showed that aspect, wetness, and slope were dominant controls for tree locations on western side of the mountains, whereas altitude, SPI, and aspect were the dominant factors on northern side. The upmost altitude a tree can currently reach was 2140 m asl on the northern side and 2060 m asl on western side. The model predicted results showed that habitats above the current tree line on the both sides were available for trees. Tree recruitments under the current tree line may take advantage of the available habitats at higher elevations based on the current tree location. Our research confirmed the controlling effects of topography on the tree locations in the tree line ecotone of Changbai Mountains and suggested that it was essential to assess the tree response to topography in the research of tree line ecotone.
DEFF Research Database (Denmark)
Bache, Stefan Holst
A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....
Surface tree languages and parallel derivation trees
Engelfriet, Joost
1976-01-01
The surface tree languages obtained by top-down finite state transformation of monadic trees are exactly the frontier-preserving homomorphic images of sets of derivation trees of ETOL systems. The corresponding class of tree transformation languages is therefore equal to the class of ETOL languages.
Multiple linear regression analysis
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Bayesian ARTMAP for regression.
Sasu, L M; Andonie, R
2013-10-01
Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
and Multinomial Logistic Regression
African Journals Online (AJOL)
This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).
Mechanisms of neuroblastoma regression
Brodeur, Garrett M.; Bagatell, Rochelle
2014-01-01
Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179
Log and tree sawing times for hardwood mills
Everette D. Rast
1974-01-01
Data on 6,850 logs and 1,181 trees were analyzed to predict sawing times. For both logs and trees, regression equations were derived that express (in minutes) sawing time per log or tree and per Mbf. For trees, merchantable height is expressed in number of logs as well as in feet. One of the major uses for the tables of average sawing times is as a bench mark against...
E.G. McPherson; F. Ferrini
2010-01-01
We know that âtrees are good,â and most people believe this to be true. But if this is so, why are so many trees neglected, and so many tree wells empty? An individualâs attitude toward trees may result from their firsthand encounters with specific trees. Understanding how attitudes about trees are shaped, particularly aversion to trees, is critical to the business of...
Ridge Regression Signal Processing
Kuhl, Mark R.
1990-01-01
The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.
Subset selection in regression
Miller, Alan
2002-01-01
Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...
Better Autologistic Regression
Directory of Open Access Journals (Sweden)
Mark A. Wolters
2017-11-01
Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.
Regression in organizational leadership.
Kernberg, O F
1979-02-01
The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.
Hilbe, Joseph M
2009-01-01
This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...
DEFF Research Database (Denmark)
Bahr, Patrick
2012-01-01
Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular...
David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry. Bond
2015-01-01
Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...
Steganalysis using logistic regression
Lubenko, Ivans; Ker, Andrew D.
2011-02-01
We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.
SEPARATION PHENOMENA LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
Ikaro Daniel de Carvalho Barreto
2014-03-01
Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Adaptive Metric Kernel Regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Trees cared for and managed by the City of Pittsburgh Department of Public Works Forestry Division. Tree Benefits are calculated using the National Tree Benefit...
A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees
2016-09-01
Trees by DaHan Liao Approved for public release; distribution is unlimited. NOTICES Disclaimers The findings...for Evaluating Electromagnetic Scattering from Trees by DaHan Liao Sensors and Electron Devices Directorate, ARL...Technique for Evaluating Electromagnetic Scattering from Trees 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
DEFF Research Database (Denmark)
Hansen, Henrik; Tarp, Finn
2001-01-01
This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes.......This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Prediction of strontium bromide laser efficiency using cluster and decision tree analysis
Directory of Open Access Journals (Sweden)
Iliev Iliycho
2018-01-01
Full Text Available Subject of investigation is a new high-powered strontium bromide (SrBr2 vapor laser emitting in multiline region of wavelengths. The laser is an alternative to the atom strontium lasers and electron free lasers, especially at the line 6.45 μm which line is used in surgery for medical processing of biological tissues and bones with minimal damage. In this paper the experimental data from measurements of operational and output characteristics of the laser are statistically processed by means of cluster analysis and tree-based regression techniques. The aim is to extract the more important relationships and dependences from the available data which influence the increase of the overall laser efficiency. There are constructed and analyzed a set of cluster models. It is shown by using different cluster methods that the seven investigated operational characteristics (laser tube diameter, length, supplied electrical power, and others and laser efficiency are combined in 2 clusters. By the built regression tree models using Classification and Regression Trees (CART technique there are obtained dependences to predict the values of efficiency, and especially the maximum efficiency with over 95% accuracy.
Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun
2016-07-01
In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Categorizing ideas about trees: a tree of trees.
Fisler, Marie; Lecointre, Guillaume
2013-01-01
The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a "tree of trees." Then, we categorize schools of tree-representations. Classical schools like "cladists" and "pheneticists" are recovered but others are not: "gradists" are separated into two blocks, one of them being called here "grade theoreticians." We propose new interesting categories like the "buffonian school," the "metaphoricians," and those using "strictly genealogical classifications." We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization.
E. Gregory McPherson; Paula J. Peper
2012-01-01
This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...
Kevin T. Smith
2009-01-01
Landscape trees have real value and contribute to making livable communities. Making the most of that value requires providing trees with the proper care and attention. As potentially large and long-lived organisms, trees benefit from commitment to regular care that respects the natural tree system. This system captures, transforms, and uses energy to survive, grow,...
Interpretable Predictive Models for Knowledge Discovery from Home-Care Electronic Health Records
Directory of Open Access Journals (Sweden)
Bonnie L. Westra
2011-01-01
Full Text Available The purpose of this methodological study was to compare methods of developing predictive rules that are parsimonious and clinically interpretable from electronic health record (EHR home visit data, contrasting logistic regression with three data mining classification models. We address three problems commonly encountered in EHRs: the value of including clinically important variables with little variance, handling imbalanced datasets, and ease of interpretation of the resulting predictive models. Logistic regression and three classification models using Ripper, decision trees, and Support Vector Machines were applied to a case study for one outcome of improvement in oral medication management. Predictive rules for logistic regression, Ripper, and decision trees are reported and results compared using F-measures for data mining models and area under the receiver-operating characteristic curve for all models. The rules generated by the three classification models provide potentially novel insights into mining EHRs beyond those provided by standard logistic regression, and suggest steps for further study.
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Recursive Algorithm For Linear Regression
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang
2011-06-01
Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.
Louis R Iverson; Anantha M. Prasad; Mark W. Schwartz; Mark W. Schwartz
2005-01-01
We predict current distribution and abundance for tree species present in eastern North America, and subsequently estimate potential suitable habitat for those species under a changed climate with 2 x CO2. We used a series of statistical models (i.e., Regression Tree Analysis (RTA), Multivariate Adaptive Regression Splines (MARS), Bagging Trees (...
International Nuclear Information System (INIS)
Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.
1981-01-01
This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation
Mary Torsello; Toni McLellan
The goals of hazard tree management programs are to maximize public safety and maintain a healthy sustainable tree resource. Although hazard tree management frequently targets removal of trees or parts of trees that attract wildlife, it can take into account a diversity of tree values. With just a little extra planning, hazard tree management can be highly beneficial...
Transferability of decision trees for land cover classification in a ...
African Journals Online (AJOL)
This paper attempts to derive classification rules from training data of four Landsat-8 scenes by using the classification and regression tree (CART) implementation of the decision tree algorithm. The transferability of the ruleset was evaluated by classifying two adjacent scenes. The classification of the four mosaicked scenes ...
Developing Models to Forcast Sales of Natural Christmas Trees
Lawrence D. Garrett; Thomas H. Pendleton
1977-01-01
A study of practices for marketing Christmas trees in Winston-Salem, North Carolina, and Denver, Colorado, revealed that such factors as retail lot competition, tree price, consumer traffic, and consumer income were very important in determining a particular retailer's sales. Analyses of 4 years of market data were used in developing regression models for...
Modeling Caribbean tree stem diameters from tree height and crown width measurements
Thomas Brandeis; KaDonna Randolph; Mike Strub
2009-01-01
Regression models to predict diameter at breast height (DBH) as a function of tree height and maximum crown radius were developed for Caribbean forests based on data collected by the U.S. Forest Service in the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. The model predicting DBH from tree height fit reasonably well (R2 = 0.7110), with...
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Regression in autistic spectrum disorders.
Stefanatos, Gerry A
2008-12-01
A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.
DEFF Research Database (Denmark)
Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid
2015-01-01
We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...
Linear regression in astronomy. I
Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh
1990-01-01
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
2011-03-01
To minimize the severity of run-off-road collisions of vehicles with trees, departments of transportation (DOTs) : commonly establish clear zones for trees and other fixed objects. Caltrans clear zone on freeways is 30 feet : minimum (40 feet pref...
Buntine, Wray
1994-01-01
IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.
Linear regression in astronomy. II
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Time-adaptive quantile regression
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik
2008-01-01
and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....
Minnesota's Forest Trees. Revised.
Miles, William R.; Fuller, Bruce L.
This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Sioutas, Spyros; Pantazos, Kostas
2015-01-01
We present a new overlay, called the Deterministic Decentralized tree (D2-tree). The D2-tree compares favorably to other overlays for the following reasons: (a) it provides matching and better complexities, which are deterministic for the supported operations; (b) the management of nodes (peers...
DEFF Research Database (Denmark)
Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid
2013-01-01
We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...
Sweeney, Debra; Rounds, Judy
2011-01-01
Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…
DEFF Research Database (Denmark)
Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.
cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Quantile regression theory and applications
Davino, Cristina; Vistocco, Domenico
2013-01-01
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and
TreePics: visualizing trees with pictures
Directory of Open Access Journals (Sweden)
Nicolas Puillandre
2017-09-01
Full Text Available While many programs are available to edit phylogenetic trees, associating pictures with branch tips in an efficient and automatic way is not an available option. Here, we present TreePics, a standalone software that uses a web browser to visualize phylogenetic trees in Newick format and that associates pictures (typically, pictures of the voucher specimens to the tip of each branch. Pictures are visualized as thumbnails and can be enlarged by a mouse rollover. Further, several pictures can be selected and displayed in a separate window for visual comparison. TreePics works either online or in a full standalone version, where it can display trees with several thousands of pictures (depending on the memory available. We argue that TreePics can be particularly useful in a preliminary stage of research, such as to quickly detect conflicts between a DNA-based phylogenetic tree and morphological variation, that may be due to contamination that needs to be removed prior to final analyses, or the presence of species complexes.
Distribution of cavity trees in midwestern old-growth and second-growth forests
Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen
2003-01-01
We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...
Smith, Paul F; Ganesh, Siva; Liu, Ping
2013-10-30
Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.
Interspecific variation in tree seedlings establishment in canopy gaps in relation to tree density
Energy Technology Data Exchange (ETDEWEB)
Reader, R.J.; Bonser, S.P.; Duralia, T.E.; Bricker, B.D. [Guelph Univ., ON (Canada). Dept. of Botany
1995-10-01
We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33% or 66% removal of tree basal area from 0.01ha, 0.05ha or 0.20ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with log{sub e} tree density as the independent variable accounted for between 93% and 98% of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density. 17 refs, 1 fig, 3 tabs
Panel Smooth Transition Regression Models
DEFF Research Database (Denmark)
González, Andrés; Terasvirta, Timo; Dijk, Dick van
We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Logistic Regression: Concept and Application
Cokluk, Omay
2010-01-01
The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…
International Nuclear Information System (INIS)
Balasubramanian, K.
1982-01-01
A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees
Refining discordant gene trees.
Górecki, Pawel; Eulenstein, Oliver
2014-01-01
Evolutionary studies are complicated by discordance between gene trees and the species tree in which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism. We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the deep coalescence and the Robinson-Foulds costs. Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for unrooted and non-binary gene trees together with the linear time reductions provided here for computing these costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.
Fungible weights in logistic regression.
Jones, Jeff A; Waller, Niels G
2016-06-01
In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
International Nuclear Information System (INIS)
Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei
2007-01-01
Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age
Tumor regression patterns in retinoblastoma
International Nuclear Information System (INIS)
Zafar, S.N.; Siddique, S.N.; Zaheer, N.
2016-01-01
To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author)
Regression to Causality : Regression-style presentation influences causal attribution
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...
Regression analysis with categorized regression calibrated exposure: some interesting findings
Directory of Open Access Journals (Sweden)
Hjartåker Anette
2006-07-01
Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Logic regression and its extensions.
Schwender, Holger; Ruczinski, Ingo
2010-01-01
Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Eman M Dokla
Full Text Available This study provides a comprehensive computational procedure for the discovery of novel urea-based antineoplastic kinase inhibitors while focusing on diversification of both chemotype and selectivity pattern. It presents a systematic structural analysis of the different binding motifs of urea-based kinase inhibitors and the corresponding configurations of the kinase enzymes. The computational model depends on simultaneous application of two protocols. The first protocol applies multiple consecutive validated virtual screening filters including SMARTS, support vector-machine model (ROC = 0.98, Bayesian model (ROC = 0.86 and structure-based pharmacophore filters based on urea-based kinase inhibitors complexes retrieved from literature. This is followed by hits profiling against different extended electron distribution (XED based field templates representing different kinase targets. The second protocol enables cancericidal activity verification by using the algorithm of feature trees (Ftrees similarity searching against NCI database. Being a proof-of-concept study, this combined procedure was experimentally validated by its utilization in developing a novel series of urea-based derivatives of strong anticancer activity. This new series is based on 3-benzylbenzo[d]thiazol-2(3H-one scaffold which has interesting chemical feasibility and wide diversification capability. Antineoplastic activity of this series was assayed in vitro against NCI 60 tumor-cell lines showing very strong inhibition of GI(50 as low as 0.9 uM. Additionally, its mechanism was unleashed using KINEX™ protein kinase microarray-based small molecule inhibitor profiling platform and cell cycle analysis showing a peculiar selectivity pattern against Zap70, c-src, Mink1, csk and MeKK2 kinases. Interestingly, it showed activity on syk kinase confirming the recent studies finding of the high activity of diphenyl urea containing compounds against this kinase. Allover, the new series
Abstract Expression Grammar Symbolic Regression
Korns, Michael F.
This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.
Quantile Regression With Measurement Error
Wei, Ying; Carroll, Raymond J.
2009-01-01
. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a
From Rasch scores to regression
DEFF Research Database (Denmark)
Christensen, Karl Bang
2006-01-01
Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....
Testing Heteroscedasticity in Robust Regression
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2011-01-01
Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf
Regression methods for medical research
Tai, Bee Choo
2013-01-01
Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the
Forecasting with Dynamic Regression Models
Pankratz, Alan
2012-01-01
One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.
Favre, Charles
2004-01-01
This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.
Directory of Open Access Journals (Sweden)
Drzewiecki Wojciech
2016-12-01
Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.
Root and Branch Reform: Teaching City Kids about Urban Trees
Walker, Mark
2017-01-01
In today's electronic age, suburban and city children are increasingly disconnected with the natural world. Studying trees allows children to learn about the world they live in and can teach a variety of useful topics contained within the National Curriculum in England. Knowledge of trees is specifically required in the science curriculum at key…
Coded Splitting Tree Protocols
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar
2013-01-01
This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...
Morocco - Fruit Tree Productivity
Millennium Challenge Corporation — Date Tree Irrigation Project: The specific objectives of this evaluation are threefold: - Performance evaluation of project activities, like the mid-term evaluation,...
Wood density variation and tree ring distinctness in Gmelina arborea trees by x-ray densitometry
Directory of Open Access Journals (Sweden)
Roger Moya
2009-03-01
Full Text Available Due to its relationship with other properties, wood density is the main wood quality parameter. Modern, accuratemethods such as X-ray densitometry - are applied to determine the spatial distribution of density in wood sections and to evaluatewood quality. The objectives of this study were to determinate the influence of growing conditions on wood density variation andtree ring demarcation of gmelina trees from fast growing plantations in Costa Rica. The wood density was determined by X-raydensitometry method. Wood samples were cut from gmelina trees and were exposed to low X-rays. The radiographic films weredeveloped and scanned using a 256 gray scale with 1000 dpi resolution and the wood density was determined by CRAD and CERDsoftware. The results showed tree-ring boundaries were distinctly delimited in trees growing in site with rainfall lower than 2510 mm/year. It was demonstrated that tree age, climatic conditions and management of plantation affects wood density and its variability. Thespecific effect of variables on wood density was quantified by for multiple regression method. It was determined that tree yearexplained 25.8% of the total variation of density and 19.9% were caused by climatic condition where the tree growing. Wood densitywas less affected by the intensity of forest management with 5.9% of total variation.
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Kevin T. Smith
2009-01-01
Trees and tree care can capture the best of people's motivations and intentions. Trees are living memorials that help communities heal at sites of national tragedy, such as Oklahoma City and the World Trade Center. We mark the places of important historical events by the trees that grew nearby even if the original tree, such as the Charter Oak in Connecticut or...
Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula
2011-01-01
Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.
Producing The New Regressive Left
DEFF Research Database (Denmark)
Crone, Christine
members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...
A Matlab program for stepwise regression
Directory of Open Access Journals (Sweden)
Yanhong Qi
2016-03-01
Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
Regression filter for signal resolution
International Nuclear Information System (INIS)
Matthes, W.
1975-01-01
The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
International Nuclear Information System (INIS)
Kalay, Z; Ben-Naim, E
2015-01-01
We study fragmentation of a random recursive tree into a forest by repeated removal of nodes. The initial tree consists of N nodes and it is generated by sequential addition of nodes with each new node attaching to a randomly-selected existing node. As nodes are removed from the tree, one at a time, the tree dissolves into an ensemble of separate trees, namely, a forest. We study statistical properties of trees and nodes in this heterogeneous forest, and find that the fraction of remaining nodes m characterizes the system in the limit N→∞. We obtain analytically the size density ϕ s of trees of size s. The size density has power-law tail ϕ s ∼s −α with exponent α=1+(1/m). Therefore, the tail becomes steeper as further nodes are removed, and the fragmentation process is unusual in that exponent α increases continuously with time. We also extend our analysis to the case where nodes are added as well as removed, and obtain the asymptotic size density for growing trees. (paper)
J.R. Simpson; E.G. McPherson
2011-01-01
Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes...
L. Linsen; B.J. Karis; E.G. McPherson; B. Hamann
2005-01-01
In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic- looking and non-...
Indian Academy of Sciences (India)
Adansonia digitata L. ( The Baobab Tree) of Bombacaceae is a tree with swollen trunk that attains a dia. of 10m. Leaves are digitately compound with leaflets up to 18cm. long. Flowers are large, solitary, waxy white, and open at dusk. They open in 30 seconds and are bat pollinated. Stamens are many. Fruit is about 30 cm ...
International Nuclear Information System (INIS)
Bass, L.; Wynholds, H.W.; Porterfield, W.R.
1975-01-01
Described is an operational system that enables the user, through an intelligent graphics terminal, to construct, modify, analyze, and store fault trees. With this system, complex engineering designs can be analyzed. This paper discusses the system and its capabilities. Included is a brief discussion of fault tree analysis, which represents an aspect of reliability and safety modeling
Tree biology and dendrochemistry
Kevin T. Smith; Walter C. Shortle
1996-01-01
Dendrochemistry, the interpretation of elemental analysis of dated tree rings, can provide a temporal record of environmental change. Using the dendrochemical record requires an understanding of tree biology. In this review, we pose four questions concerning assumptions that underlie recent dendrochemical research: 1) Does the chemical composition of the wood directly...
Harvey A. Holt
1989-01-01
Controlling individual unwanted trees in forest stands is a readily accepted method for improving the value of future harvests. The practice is especially important in mixed hardwood forests where species differ considerably in value and within species individual trees differ in quality. Individual stem control is a mechanical or chemical weeding operation that...
Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren
2017-01-01
This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Matching Subsequences in Trees
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li
2009-01-01
Given two rooted, labeled trees P and T the tree path subsequence problem is to determine which paths in P are subsequences of which paths in T. Here a path begins at the root and ends at a leaf. In this paper we propose this problem as a useful query primitive for XML data, and provide new...
Environmental tritium in trees
International Nuclear Information System (INIS)
Brown, R.M.
1979-01-01
The distribution of environmental tritium in the free water and organically bound hydrogen of trees growing in the vicinity of the Chalk River Nuclear Laboratories (CRNL) has been studied. The regional dispersal of HTO in the atmosphere has been observed by surveying the tritium content of leaf moisture. Measurement of the distribution of organically bound tritium in the wood of tree ring sequences has given information on past concentrations of HTO taken up by trees growing in the CRNL Liquid Waste Disposal Area. For samples at background environmental levels, cellulose separation and analysis was done. The pattern of bomb tritium in precipitation of 1955-68 was observed to be preserved in the organically bound tritium of a tree ring sequence. Reactor tritium was discernible in a tree growing at a distance of 10 km from CRNL. These techniques provide convenient means of monitoring dispersal of HTO from nuclear facilities. (author)
Generalising tree traversals and tree transformations to DAGs
DEFF Research Database (Denmark)
Bahr, Patrick; Axelsson, Emil
2017-01-01
We present a recursion scheme based on attribute grammars that can be transparently applied to trees and acyclic graphs. Our recursion scheme allows the programmer to implement a tree traversal or a tree transformation and then apply it to compact graph representations of trees instead. The resul......We present a recursion scheme based on attribute grammars that can be transparently applied to trees and acyclic graphs. Our recursion scheme allows the programmer to implement a tree traversal or a tree transformation and then apply it to compact graph representations of trees instead...... as the complementing theory with a number of examples....
Measuring performance in health care: case-mix adjustment by boosted decision trees.
Neumann, Anke; Holstein, Josiane; Le Gall, Jean-Roger; Lepage, Eric
2004-10-01
The purpose of this paper is to investigate the suitability of boosted decision trees for the case-mix adjustment involved in comparing the performance of various health care entities. First, we present logistic regression, decision trees, and boosted decision trees in a unified framework. Second, we study in detail their application for two common performance indicators, the mortality rate in intensive care and the rate of potentially avoidable hospital readmissions. For both examples the technique of boosting decision trees outperformed standard prognostic models, in particular linear logistic regression models, with regard to predictive power. On the other hand, boosting decision trees was computationally demanding and the resulting models were rather complex and needed additional tools for interpretation. Boosting decision trees represents a powerful tool for case-mix adjustment in health care performance measurement. Depending on the specific priorities set in each context, the gain in predictive power might compensate for the inconvenience in the use of boosted decision trees.
Cactus: An Introduction to Regression
Hyde, Hartley
2008-01-01
When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…
Regression Models for Repairable Systems
Czech Academy of Sciences Publication Activity Database
Novák, Petr
2015-01-01
Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf
Survival analysis II: Cox regression
Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.
2011-01-01
In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the
Kernel regression with functional response
Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe
2011-01-01
We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.
An overview of decision tree applied to power systems
DEFF Research Database (Denmark)
Liu, Leo; Rather, Zakir Hussain; Chen, Zhe
2013-01-01
The corrosive volume of available data in electric power systems motivate the adoption of data mining techniques in the emerging field of power system data analytics. The mainstream of data mining algorithm applied to power system, Decision Tree (DT), also named as Classification And Regression...... Tree (CART), has gained increasing interests because of its high performance in terms of computational efficiency, uncertainty manageability, and interpretability. This paper presents an overview of a variety of DT applications to power systems for better interfacing of power systems with data...... analytics. The fundamental knowledge of CART algorithm is also introduced which is then followed by examples of both classification tree and regression tree with the help of case study for security assessment of Danish power system....
Characteristics of the tree-drawing test in chronic schizophrenia.
Kaneda, Ayako; Yasui-Furukori, Norio; Saito, Manabu; Sugawara, Norio; Nakagami, Taku; Furukori, Hanako; Kaneko, Sunao
2010-04-01
A tree-drawing test acts as both a projective psychological examination as well as a supplementary psychodiagnostic tool. There is little information relating the characteristics of schizophrenia and the tree-drawing test. The present study compared the structural and morphological differences in the results of the tree-drawing test between schizophrenic patients and healthy individuals, as well as between schizophrenic patients who responded well to treatment and those who responded poorly. The subjects included 202 chronic schizophrenic patients and 113 healthy individuals. The schizophrenic patients were categorized as 'good responders' or 'poor responders' based on their response to medical treatments. The tree-drawing test was performed on all subjects. The tree drawn by each subject was analyzed structurally and morphologically. There were significant differences between the trunk and branches drawn by schizophrenic patients and those drawn by healthy controls. There were no significant differences between the good responders and the poor responders in any aspect of the tree drawings. Multiple regression models showed that the ratio of the tree area to the total area of the drawing paper, the width of the trunk, the trunk base opening, and the size of the branch ends were significantly associated with schizophrenia. The present study suggests that the trees drawn by schizophrenic patients are significantly different from those drawn by healthy individuals, but among schizophrenic patients, it is difficult to distinguish between good responders and poor responders using the tree-drawing test.
A recursive algorithm for trees and forests
Guo, Song; Guo, Victor J. W.
2017-01-01
Trees or rooted trees have been generously studied in the literature. A forest is a set of trees or rooted trees. Here we give recurrence relations between the number of some kind of rooted forest with $k$ roots and that with $k+1$ roots on $\\{1,2,\\ldots,n\\}$. Classical formulas for counting various trees such as rooted trees, bipartite trees, tripartite trees, plane trees, $k$-ary plane trees, $k$-edge colored trees follow immediately from our recursive relations.
Phylogenetic trees in bioinformatics
Energy Technology Data Exchange (ETDEWEB)
Burr, Tom L [Los Alamos National Laboratory
2008-01-01
Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Moruz, Gabriel
2006-01-01
It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...
Renormalization of QED with planar binary trees
International Nuclear Information System (INIS)
Brouder, C.
2001-01-01
The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)
More Trees, More Poverty? The Socioeconomic Effects of Tree Plantations in Chile, 2001-2011
Andersson, Krister; Lawrence, Duncan; Zavaleta, Jennifer; Guariguata, Manuel R.
2016-01-01
Tree plantations play a controversial role in many nations' efforts to balance goals for economic development, ecological conservation, and social justice. This paper seeks to contribute to this debate by analyzing the socioeconomic impact of such plantations. We focus our study on Chile, a country that has experienced extraordinary growth of industrial tree plantations. Our analysis draws on a unique dataset with longitudinal observations collected in 180 municipal territories during 2001-2011. Employing panel data regression techniques, we find that growth in plantation area is associated with higher than average rates of poverty during this period.
Global variation in woodpecker species richness shaped by tree availability
DEFF Research Database (Denmark)
Ilsoe, Sigrid Kistrup; Kissling, W. Daniel; Fjeldsa, Jon
2017-01-01
. Location: Global. Methods: We used spatial and non-spatial regressions to test for relationships between broad-scale woodpecker species richness and predictor variables describing current and deep-time availability of trees, current climate, Quaternary climate change, human impact, topographical...... a negative indirect effect on woodpecker species richness. Main conclusions: Global species richness of woodpeckers is primarily shaped by current tree cover and precipitation, reflecting a strong biotic association between woodpeckers and trees. Human influence can have a negative effect on woodpecker....... As an example, woodpeckers (Picidae) are closely associated with trees and woody habitats because of multiple morphological and ecological specializations. In this study, we test whether this strong biotic association causes woodpecker diversity to be closely linked to tree availability at a global scale...
International Nuclear Information System (INIS)
Aldama, Mariana Espinosa
2015-01-01
The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion. (paper)
Visualizing phylogenetic tree landscapes.
Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A
2017-02-02
Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D
Quantile Regression With Measurement Error
Wei, Ying
2009-08-27
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.
Multivariate and semiparametric kernel regression
Härdle, Wolfgang; Müller, Marlene
1997-01-01
The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...
Regression algorithm for emotion detection
Berthelon , Franck; Sander , Peter
2013-01-01
International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...
Directional quantile regression in R
Czech Academy of Sciences Publication Activity Database
Boček, Pavel; Šiman, Miroslav
2017-01-01
Roč. 53, č. 3 (2017), s. 480-492 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : multivariate quantile * regression quantile * halfspace depth * depth contour Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf
Generalized allometric regression to estimate biomass of Populus in short-rotation coppice
Energy Technology Data Exchange (ETDEWEB)
Ben Brahim, Mohammed; Gavaland, Andre; Cabanettes, Alain [INRA Centre de Toulouse, Castanet-Tolosane Cedex (France). Unite Agroforesterie et Foret Paysanne
2000-07-01
Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.
Polylinear regression analysis in radiochemistry
International Nuclear Information System (INIS)
Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.
1995-01-01
A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis
Quantitative electron microscope autoradiography: application of multiple linear regression analysis
International Nuclear Information System (INIS)
Markov, D.V.
1986-01-01
A new method for the analysis of high resolution EM autoradiographs is described. It identifies labelled cell organelle profiles in sections on a strictly statistical basis and provides accurate estimates for their radioactivity without the need to make any assumptions about their size, shape and spatial arrangement. (author)
Gaussian Process Regression Model in Spatial Logistic Regression
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Tree-growth analyses to estimate tree species' drought tolerance
Eilmann, B.; Rigling, A.
2012-01-01
Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree
Big trees, old trees, and growth factor tables
Kevin T. Smith
2018-01-01
The potential for a tree to reach a great size and to live a long life frequently captures the public's imagination. Sometimes the desire to know the age of an impressively large tree is simple curiosity. For others, the date-of-tree establishment can make a big diff erence for management, particularly for trees at historic sites or those mentioned in property...
A bijection between phylogenetic trees and plane oriented recursive trees
Prodinger, Helmut
2017-01-01
Phylogenetic trees are binary nonplanar trees with labelled leaves, and plane oriented recursive trees are planar trees with an increasing labelling. Both families are enumerated by double factorials. A bijection is constructed, using the respective representations a 2-partitions and trapezoidal words.
A Suffix Tree Or Not a Suffix Tree?
DEFF Research Database (Denmark)
Starikovskaya, Tatiana; Vildhøj, Hjalte Wedel
2015-01-01
In this paper we study the structure of suffix trees. Given an unlabeled tree r on n nodes and suffix links of its internal nodes, we ask the question “Is r a suffix tree?”, i.e., is there a string S whose suffix tree has the same topological structure as r? We place no restrictions on S, in part...
Minnesota Department of Natural Resources — The National Land Cover Database 2001 tree canopy layer for Minnesota (mapping zones 39-42, 50-51) was produced through a cooperative project conducted by the...
DEFF Research Database (Denmark)
Lobo, Albin
Climate change creates new challenges in forest management. The increase in temperature may in the long run be beneficial for the forests in the northern latitudes, but the high rate at which climate change is predicted to proceed will make adaptation difficult because trees are long living sessile...... organisms. The aim of the present thesis is therefore to explore genetic resilience and phenotypic plasticity mechanisms that allows trees to adapt and evolve with changing climates. The thesis focus on the abiotic factors associated with climate change, especially raised temperatures and lack...... age of these tree species and the uncertainty around the pace and effect of climate, it remains an open question if the native populations can respond fast enough. Phenotypic plasticity through epigenetic regulation of spring phenology is found to be present in a tree species which might act...
International Nuclear Information System (INIS)
Keeney, R.; Renn, O.; Winterfeldt, D. von; Kotte, U.
1985-01-01
What are the targets and criteria on which national energy policy should be based. What priorities should be set, and how can different social interests be matched. To answer these questions, a new instrument of decision theory is presented which has been applied with good results to controversial political issues in the USA. The new technique is known under the name of value tree analysis. Members of important West German organisations (BDI, VDI, RWE, the Catholic and Protestant Church, Deutscher Naturschutzring, and ecological research institutions) were asked about the goals of their organisations. These goals were then ordered systematically and arranged in a hierarchical tree structure. The value trees of different groups can be combined into a catalogue of social criteria of acceptability and policy assessment. The authors describe the philosophy and methodology of value tree analysis and give an outline of its application in the development of a socially acceptable energy policy. (orig.) [de
DEFF Research Database (Denmark)
Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter
2007-01-01
We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....
DEFF Research Database (Denmark)
Jaeger, Manfred
2006-01-01
We introduce type extension trees as a formal representation language for complex combinatorial features of relational data. Based on a very simple syntax this language provides a unified framework for expressing features as diverse as embedded subgraphs on the one hand, and marginal counts...... of attribute values on the other. We show by various examples how many existing relational data mining techniques can be expressed as the problem of constructing a type extension tree and a discriminant function....
2014-01-01
With a view to creating new landscapes and making its population of trees safer and healthier, this winter CERN will complete the tree-felling campaign started in 2010. Tree felling will take place between 15 and 22 November on the Swiss part of the Meyrin site. This work is being carried out above all for safety reasons. The trees to be cut down are at risk of falling as they are too old and too tall to withstand the wind. In addition, the roots of poplar trees are very powerful and spread widely, potentially damaging underground networks, pavements and roadways. Compensatory tree planting campaigns will take place in the future, subject to the availability of funding, with the aim of creating coherent landscapes while also respecting the functional constraints of the site. These matters are being considered in close collaboration with the Geneva nature and countryside directorate (Direction générale de la nature et du paysage, DGNP). GS-SE Group
E.G. McPherson
2007-01-01
Benefit-based tree valuation provides alternative estimates of the fair and reasonable value of trees while illustrating the relative contribution of different benefit types. This study compared estimates of tree value obtained using cost- and benefit-based approaches. The cost-based approach used the Council of Landscape and Tree Appraisers trunk formula method, and...
Attack Trees with Sequential Conjunction
Jhawar, Ravi; Kordy, Barbara; Mauw, Sjouke; Radomirović, Sasa; Trujillo-Rasua, Rolando
2015-01-01
We provide the first formal foundation of SAND attack trees which are a popular extension of the well-known attack trees. The SAND at- tack tree formalism increases the expressivity of attack trees by intro- ducing the sequential conjunctive operator SAND. This operator enables the modeling of
Nishina, K.; Takenaka, C.; Ishizuka, S.; Hashimoto, S.; Yagai, Y.
2012-12-01
Some forest operations such as thinning and harvesting management could cause changes in N cycling and N2O emission from soils, since thinning and harvesting managements are accompanied with changes in aboveground environments such as an increase of slash falling and solar radiation on the forest floor. However, a considerable uncertainty exists in effects of thinning and harvesting on N2O fluxes regarding changes in belowground environments by cutting trees. To focus on the effect of changes in belowground environments on the N2O emissions from soils, we conducted a tree manipulation experiment in Japanese cedar (Cryptomeria japonica) stand without soil compaction and slash falling near the chambers and measured N2O flux at 50 cm and 150 cm distances from the tree trunk (stump) before and after cutting. We targeted 5 trees for the manipulation and established the measurement chambers to the 4 directions around each targeted tree relative to upper slope (upper, left, right, lower positions). We evaluated the effect of logging on the emission by using hierarchical Bayesian model. HB model can evaluate the variability in observed data and their uncertainties in the estimation with various probability distributions. Moreover, the HB model can easily accommodate the non-linear relationship among the N2O emissions and the environmental factors, and explicitly take non-independent data (nested structure of data) for the estimation into account by using random effects in the model. Our results showed tree cutting stimulated N2O emission from soils, and also that the increase of N2O flux depended on the distance from the trunk (stump): the increase of N2O flux at 50 cm from the trunk (stump) was greater than that of 150 cm from the trunk. The posterior simulation of the HB model indicated that the stimulation of N2O emission by tree cut- ting could reach up to 200 cm in our experimental plot. By tree cutting, the estimated N2O emission at 0-40 cm from the trunk doubled
Spontaneous regression of pulmonary bullae
International Nuclear Information System (INIS)
Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.
2002-01-01
The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd
Quantum algorithm for linear regression
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Increased spruce tree growth in Central Europe since 1960s.
Cienciala, Emil; Altman, Jan; Doležal, Jiří; Kopáček, Jiří; Štěpánek, Petr; Ståhl, Göran; Tumajer, Jan
2018-04-01
Tree growth response to recent environmental changes is of key interest for forest ecology. This study addressed the following questions with respect to Norway spruce (Picea abies, L. Karst.) in Central Europe: Has tree growth accelerated during the last five decades? What are the main environmental drivers of the observed tree radial stem growth and how much variability can be explained by them? Using a nationwide dendrochronological sampling of Norway spruce in the Czech Republic (1246 trees, 266 plots), novel regional tree-ring width chronologies for 40(±10)- and 60(±10)-year old trees were assembled, averaged across three elevation zones (break points at 500 and 700m). Correspondingly averaged drivers, including temperature, precipitation, nitrogen (N) deposition and ambient CO 2 concentration, were used in a general linear model (GLM) to analyze the contribution of these in explaining tree ring width variability for the period from 1961 to 2013. Spruce tree radial stem growth responded strongly to the changing environment in Central Europe during the period, with a mean tree ring width increase of 24 and 32% for the 40- and 60-year old trees, respectively. The indicative General Linear Model analysis identified CO 2 , precipitation during the vegetation season, spring air temperature (March-May) and N-deposition as the significant covariates of growth, with the latter including interactions with elevation zones. The regression models explained 57% and 55% of the variability in the two tree ring width chronologies, respectively. Growth response to N-deposition showed the highest variability along the elevation gradient with growth stimulation/limitation at sites below/above 700m. A strong sensitivity of stem growth to CO 2 was also indicated, suggesting that the effect of rising ambient CO 2 concentration (direct or indirect by increased water use efficiency) should be considered in analyses of long-term growth together with climatic factors and N
Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders
2013-01-01
Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree
Prediction, Regression and Critical Realism
DEFF Research Database (Denmark)
Næss, Petter
2004-01-01
This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...
On Weighted Support Vector Regression
DEFF Research Database (Denmark)
Han, Xixuan; Clemmensen, Line Katrine Harder
2014-01-01
We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...
Visualization of Uncertain Contour Trees
DEFF Research Database (Denmark)
Kraus, Martin
2010-01-01
Contour trees can represent the topology of large volume data sets in a relatively compact, discrete data structure. However, the resulting trees often contain many thousands of nodes; thus, many graph drawing techniques fail to produce satisfactory results. Therefore, several visualization methods...... were proposed recently for the visualization of contour trees. Unfortunately, none of these techniques is able to handle uncertain contour trees although any uncertainty of the volume data inevitably results in partially uncertain contour trees. In this work, we visualize uncertain contour trees...... by combining the contour trees of two morphologically filtered versions of a volume data set, which represent the range of uncertainty. These two contour trees are combined and visualized within a single image such that a range of potential contour trees is represented by the resulting visualization. Thus...
Early evolution without a tree of life.
Martin, William F
2011-06-30
Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.
Diffusion on a disordered Cayley tree
International Nuclear Information System (INIS)
Brezini, A.; Olivier, G.
1983-08-01
The model proposed recently by Brezini to calculate the average probability and the average size of the localization domain for an electron being localized at a given site in a disordered Cayley tree, is extended to the case of a uniform distribution for site energies. Thus, numerical results are presented in the limit of weak disorder and particular attention is paid to the states near the mobility edge. (author)
DEFF Research Database (Denmark)
Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria
2012-01-01
The Ising model on a class of infinite random trees is defined as a thermodynamiclimit of finite systems. A detailed description of the corresponding distribution of infinite spin configurations is given. As an application, we study the magnetization properties of such systems and prove that they......The Ising model on a class of infinite random trees is defined as a thermodynamiclimit of finite systems. A detailed description of the corresponding distribution of infinite spin configurations is given. As an application, we study the magnetization properties of such systems and prove...... that they exhibit no spontaneous magnetization. Furthermore, the values of the Hausdorff and spectral dimensions of the underlying trees are calculated and found to be, respectively,¯dh =2 and¯ds = 4/3....
Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research
He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne
2018-01-01
In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…
Weighted linear regression using D2H and D2 as the independent variables
Hans T. Schreuder; Michael S. Williams
1998-01-01
Several error structures for weighted regression equations used for predicting volume were examined for 2 large data sets of felled and standing loblolly pine trees (Pinus taeda L.). The generally accepted model with variance of error proportional to the value of the covariate squared ( D2H = diameter squared times height or D...
Hierarchical Matching and Regression with Application to Photometric Redshift Estimation
Murtagh, Fionn
2017-06-01
This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.
ColorTree: a batch customization tool for phylogenic trees.
Chen, Wei-Hua; Lercher, Martin J
2009-07-31
Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files.
A Branch-and-Price approach to find optimal decision trees
Firat, M.; Crognier, Guillaume; Gabor, Adriana; Zhang, Y.
2018-01-01
In Artificial Intelligence (AI) field, decision trees have gained certain importance due to their effectiveness in solving classification and regression problems. Recently, in the literature we see finding optimal decision trees are formulated as Mixed Integer Linear Programming (MILP) models. This
DEFF Research Database (Denmark)
Sitchinava, Nodar; Zeh, Norbert
2012-01-01
We present the parallel buffer tree, a parallel external memory (PEM) data structure for batched search problems. This data structure is a non-trivial extension of Arge's sequential buffer tree to a private-cache multiprocessor environment and reduces the number of I/O operations by the number of...... in the optimal OhOf(psortN + K/PB) parallel I/O complexity, where K is the size of the output reported in the process and psortN is the parallel I/O complexity of sorting N elements using P processors....
Credit Scoring Problem Based on Regression Analysis
Khassawneh, Bashar Suhil Jad Allah
2014-01-01
ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Socio-economic determinants of growing trees on farms in the middle hills of Nepal
DEFF Research Database (Denmark)
Oli, B.N.; Treue, Thorsten; Larsen, Helle Overgaard
2015-01-01
were found. The Shannon–Wiener index was 2.46 and Simpson’s Dominance index was 0.15. Trees on farmland contributed on average 43 % of households’ firewood and fodder consumption. Apparent determinants of tree growing were identified through OLS regression; they included size of land and livestock......On-farm tree growing is potentially important for livelihood strategies and forest conservation, and varies greatly according to local contexts. A detailed knowledge base is therefore needed, requiring, inter alia, the documentation of factors associated with growing trees on farms. The present...... study surveyed 304 randomly sampled households in ten community forestry user groups in Nepal, eliciting data on demographics, income and consumption of tree products. All trees on households’ farm land were registered by species. Farmers had on average 65 trees per hectare and a total of 92 species...
Runtime Optimizations for Tree-Based Machine Learning Models
N. Asadi; J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)
2014-01-01
htmlabstractTree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression
Modelling dimensional growth of three street tree species in the ...
African Journals Online (AJOL)
The results could also be used in the process of modelling energy use reduction, air pollution uptake, rainfall interception, carbon sequestration and microclimate modification of urban forests such as those found in the City of Tshwane. Keywords: allometry; regression; size relationships; tree growth; urban forests. Southern ...
Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.
2017-12-01
The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.
Measuring urban tree loss dynamics across residential landscapes.
Ossola, Alessandro; Hopton, Matthew E
2018-01-15
The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to decreases in canopy cover. However, this provides little information about location and structural characteristics of trees lost, as well as environmental and social factors affecting tree loss dynamics. This is particularly relevant in residential landscapes where access to residential parcels for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 444 census tracts. Position and stem height of trees lost were extracted from canopy height models calculated as the difference between final (year 5) and initial (year 0) vegetation height derived from LiDAR. Multivariate regression models were used to predict number and height of tree stems lost in residential parcels in each census tract based on urban morphological and socio-economic variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee over 5years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km 2 . Average stem height was 10.16m, though trees lost in Denver were taller compared to Milwaukee. The number of stems lost was higher in neighborhoods with higher canopy cover and developed before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. The study provides a simple method for measuring urban tree loss dynamics within and across entire cities, and represents a further step toward high resolution assessments of the three-dimensional change of urban vegetation at large spatial scales. Published by
Embedding complete ternary tree in hypercubes using AVL trees
S.A. Choudum; I. Raman (Indhumathi)
2008-01-01
htmlabstractA complete ternary tree is a tree in which every non-leaf vertex has exactly three children. We prove that a complete ternary tree of height h, TTh, is embeddable in a hypercube of dimension . This result coincides with the result of [2]. However, in this paper, the embedding utilizes
Balgooy, van M.M.J.
1998-01-01
With the publication of the second volume of the series ‘Malesian Seed Plants’, entitled ‘Portraits of Tree Families’, I would like to refer to the Introduction of the first volume, ‘Spot-characters’ for a historical background and an explanation of the aims of this series. The present book treats
Indian Academy of Sciences (India)
Melia dubia Cav. of Meliaceae is a large deciduous tree. Leaves are compound with toothed leaflets. Flowers are small, greenish-yellow in much-branched inflorescences. Fruits are green, ellipsoidal with a single seed covered by hard portion ( as in a mango fruit) and surrounded by fleshy pulp outside. The bark is bitter ...
Programming macro tree transducers
DEFF Research Database (Denmark)
Bahr, Patrick; Day, Laurence E.
2013-01-01
transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...
Mark J. Ambrose
2014-01-01
Tree mortality is a natural process in all forest ecosystems. Extremely high mortality, however, can also be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....
A Universal Phylogenetic Tree.
Offner, Susan
2001-01-01
Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)
Czech Academy of Sciences Publication Activity Database
Balcar, B.; Doucha, Michal; Hrušák, M.
2015-01-01
Roč. 32, č. 1 (2015), s. 69-81 ISSN 0167-8094 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : forcing * Boolean algebras * base tree Subject RIV: BA - General Mathematics Impact factor: 0.614, year: 2015 http://link.springer.com/article/10.1007/s11083-013-9316-2
International Nuclear Information System (INIS)
Richard, Jean-Marc
2010-01-01
A brief review review is presented of models tentatively leading to stable multiquarks. A new attempt is presented, based on a Steiner-tree model of confinement, which is inspired by by QCD. It leads to more attraction than the empirical colour-additive model used in earlier multiquark calculations, and predict several multiquark states in configurations with different flavours.
Schooling, J. T.; Carlyle-Moses, D. E.
2013-12-01
Stemflow, SF, represents that portion of precipitation that is intercepted by a tree's canopy and diverted to the ground at the tree base by flowing along branches and down the bole. The focused input of water and nutrients associated with SF have been shown to be of hydrological and biogeochemical importance in a number of plant communities and forest environments. Although the concentrated water volume and the nutrient / pollutant fluxes associated with SF in urban areas may be highly relevant for stormwater quantity and quality management, they have received only minor study in built environments. In an urban park in Kamloops, British Columbia, Canada, SF volumes generated from 40 deciduous trees representing 22 species were sampled on a precipitation event basis over a period of 16 months. Using this data, we derived the threshold rainfall depth required for SF initiation from each tree by taking the absolute value of the y-intercept of the linear regression of SF volume versus rainfall depth divided by the slope of that regression. The SF discharge rate once the threshold rainfall depth had been reached was taken as the slope of the linear regression equation. Thus, a simplified SF equation was developed: SFv = QSF x (Pg = Pg''), where SFv is stemflow volume (litres), QSF is the discharge rate (litres / mm), and Pg and Pg' represent the precipitation depth and the threshold precipitation depth, respectively. We then examined the influence of meteorological factors (precipitation type [rain / snow / rain + snow], precipitation depth, rainfall intensity, wind speed and direction, and vapour pressure deficit), and tree characteristics (tree diameter at breast height, tree height, leaf size and orientation, bark roughness, crown projection area, leaf area index, canopy cover fraction, branching angle, the proportion of the crown that was comprised of branches, and overlap with other tree canopies) on QSF and Pg' in order to expand on the simplified model and
McLaughlin, Samuel B; Wullschleger, Stan D; Nosal, Miloslav
2003-11-01
To evaluate indicators of whole-tree physiological responses to climate stress, we determined seasonal, daily and diurnal patterns of growth and water use in 10 yellow poplar (Liriodendron tulipifera L.) trees in a stand recently released from competition. Precise measurements of stem increment and sap flow made with automated electronic dendrometers and thermal dissipation probes, respectively, indicated close temporal linkages between water use and patterns of stem shrinkage and swelling during daily cycles of water depletion and recharge of extensible outer-stem tissues. These cycles also determined net daily basal area increment. Multivariate regression models based on a 123-day data series showed that daily diameter increments were related negatively to vapor pressure deficit (VPD), but positively to precipitation and temperature. The same model form with slight changes in coefficients yielded coefficients of determination of about 0.62 (0.57-0.66) across data subsets that included widely variable growth rates and VPDs. Model R2 was improved to 0.75 by using 3-day running mean daily growth data. Rapid recovery of stem diameter growth following short-term, diurnal reductions in VPD indicated that water stored in extensible stem tissues was part of a fast recharge system that limited hydration changes in the cambial zone during periods of water stress. There were substantial differences in the seasonal dynamics of growth among individual trees, and analyses indicated that faster-growing trees were more positively affected by precipitation, solar irradiance and temperature and more negatively affected by high VPD than slower-growing trees. There were no negative effects of ozone on daily growth rates in a year of low ozone concentrations.
Tree Transduction Tools for Cdec
Directory of Open Access Journals (Sweden)
Austin Matthews
2014-09-01
Full Text Available We describe a collection of open source tools for learning tree-to-string and tree-to-tree transducers and the extensions to the cdec decoder that enable translation with these. Our modular, easy-to-extend tools extract rules from trees or forests aligned to strings and trees subject to different structural constraints. A fast, multithreaded implementation of the Cohn and Blunsom (2009 model for extracting compact tree-to-string rules is also included. The implementation of the tree composition algorithm used by cdec is described, and translation quality and decoding time results are presented. Our experimental results add to the body of evidence suggesting that tree transducers are a compelling option for translation, particularly when decoding speed and translation model size are important.
Selecting Landscape Plants: Shade Trees
Relf, Diane; Appleton, Bonnie Lee, 1948-2012; Close, David
2015-01-01
Because of the permanency of trees and their importance in the landscape, care must be taken to select the best species for each situation. This publication goes over how to choose landscape trees that are shade tolerant.
Adjustable chain trees for proteins
DEFF Research Database (Denmark)
Winter, Pawel; Fonseca, Rasmus
2012-01-01
A chain tree is a data structure for changing protein conformations. It enables very fast detection of clashes and free energy potential calculations. A modified version of chain trees that adjust themselves to the changing conformations of folding proteins is introduced. This results in much...... tighter bounding volume hierarchies and therefore fewer intersection checks. Computational results indicate that the efficiency of the adjustable chain trees is significantly improved compared to the traditional chain trees....
Introduction to fault tree analysis
International Nuclear Information System (INIS)
Barlow, R.E.; Lambert, H.E.
1975-01-01
An elementary, engineering oriented introduction to fault tree analysis is presented. The basic concepts, techniques and applications of fault tree analysis, FTA, are described. The two major steps of FTA are identified as (1) the construction of the fault tree and (2) its evaluation. The evaluation of the fault tree can be qualitative or quantitative depending upon the scope, extensiveness and use of the analysis. The advantages, limitations and usefulness of FTA are discussed
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Fault tree analysis: concepts and techniques
International Nuclear Information System (INIS)
Fussell, J.B.
1976-01-01
Concepts and techniques of fault tree analysis have been developed over the past decade and now predictions from this type analysis are important considerations in the design of many systems such as aircraft, ships and their electronic systems, missiles, and nuclear reactor systems. Routine, hardware-oriented fault tree construction can be automated; however, considerable effort is needed in this area to get the methodology into production status. When this status is achieved, the entire analysis of hardware systems will be automated except for the system definition step. Automated analysis is not undesirable; to the contrary, when verified on adequately complex systems, automated analysis could well become a routine analysis. It could also provide an excellent start for a more in-depth fault tree analysis that includes environmental effects, common mode failure, and human errors. The automated analysis is extremely fast and frees the analyst from the routine hardware-oriented fault tree construction, as well as eliminates logic errors and errors of oversight in this part of the analysis. Automated analysis then affords the analyst a powerful tool to allow his prime efforts to be devoted to unearthing more subtle aspects of the modes of failure of the system
Gear, Jim
1993-01-01
The Re-Think Tree is a simple framework to help individuals assess and improve their behaviors related to environmental issues. The branches of the tree in order of priority are refuse, reduce, re-use, and recycle. Roots of the tree include such things as public opinion, education, and watchdog groups. (KS)
Nyhuis, Jane
Referring as often as possible to traditional Hopi practices and to materials readily available on the reservation, the illustrated booklet provides information on the care and maintenance of young fruit trees. An introduction to fruit trees explains the special characteristics of new trees, e.g., grafting, planting pits, and watering. The…
Rectilinear Full Steiner Tree Generation
DEFF Research Database (Denmark)
Zachariasen, Martin
1999-01-01
The fastest exact algorithm (in practice) for the rectilinear Steiner tree problem in the plane uses a two-phase scheme: First, a small but sufficient set of full Steiner trees (FSTs) is generated and then a Steiner minimum tree is constructed from this set by using simple backtrack search, dynamic...
Inferences from growing trees backwards
David W. Green; Kent A. McDonald
1997-01-01
The objective of this paper is to illustrate how longitudinal stress wave techniques can be useful in tracking the future quality of a growing tree. Monitoring the quality of selected trees in a plantation forest could provide early input to decisions on the effectiveness of management practices, or future utilization options, for trees in a plantation. There will...
Genetic transformation of forest trees
African Journals Online (AJOL)
Admin
In this review, the recent progress on genetic transformation of forest trees were discussed. Its described also, different applications of genetic engineering for improving forest trees or understanding the mechanisms governing genes expression in woody plants. Key words: Genetic transformation, transgenic forest trees, ...
Price, B; Gomez, A; Mathys, L; Gardi, O; Schellenberger, A; Ginzler, C; Thürig, E
2017-03-01
Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R 2 of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.
TREE SELECTING AND TREE RING MEASURING IN DENDROCHRONOLOGICAL INVESTIGATIONS
Directory of Open Access Journals (Sweden)
Sefa Akbulut
2004-04-01
Full Text Available Dendrochronology is a method of dating which makes use of the annual nature of tree growth. Dendrochronology may be divided into a number of subfields, each of which covers one or more aspects of the use of tree ring data: dendroclimatology, dendrogeomorphology, dendrohydrology, dendroecology, dendroarchaelogy, and dendrogylaciology. Basic of all form the analysis of the tree rings. The wood or tree rings can aid to dating past events about climatology, ecology, geology, hydrology. Dendrochronological studies are conducted either on increment cores or on discs. It may be seen abnormalities on tree rings during the measurement like that false rings, missing rings, reaction wood. Like that situation, increment cores must be extracted from four different sides of each tree and be studied as more as on tree.
Tree Colors: Color Schemes for Tree-Structured Data.
Tennekes, Martijn; de Jonge, Edwin
2014-12-01
We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.
A deterministic model for the growth of non-conducting electrical tree structures
International Nuclear Information System (INIS)
Dodd, S J
2003-01-01
Electrical treeing is of interest to the electrical generation, transmission and distribution industries as it is one of the causes of insulation failure in electrical machines, switchgear and transformer bushings. In this paper a deterministic electrical tree growth model is described. The model is based on electrostatics and local electron avalanches to model partial discharge activity within the growing tree structure. Damage to the resin surrounding the tree structure is dependent on the local electrostatic energy dissipation by partial discharges within the tree structure and weighted by the magnitudes of the local electric fields in the resin surrounding the tree structure. The model is successful in simulating the formation of branched structures without the need of a random variable, a requirement of previous stochastic models. Instability in the spatial development of partial discharges within the tree structure takes the role of the stochastic element as used in previous models to produce branched tree structures. The simulated electrical trees conform to the experimentally observed behaviour; tree length versus time and electrical tree growth rate as a function of applied voltage for non-conducting electrical trees. The phase synchronous partial discharge activity and the spatial distribution of emitted light from the tree structure are also in agreement with experimental data for non-conducting trees as grown in a flexible epoxy resin and in polyethylene. The fact that similar tree growth behaviour is found using pure amorphous (epoxy resin) and semicrystalline (polyethylene) materials demonstrate that neither annealed or quenched noise, representing material inhomogeneity, is required for the formation of irregular branched structures (electrical trees). Instead, as shown in this paper, branched growth can occur due to the instability of individual discharges within the tree structure
Rate of tree carbon accumulation increases continuously with tree size.
Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A
2014-03-06
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G
2017-12-19
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Unbalanced Regressions and the Predictive Equation
DEFF Research Database (Denmark)
Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo
Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...
Semiparametric regression during 2003–2007
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2009-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Regression Analysis by Example. 5th Edition
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Standards for Standardized Logistic Regression Coefficients
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
A Seemingly Unrelated Poisson Regression Model
King, Gary
1989-01-01
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
International Nuclear Information System (INIS)
1981-09-01
Suggestion are made concerning the method of the fault tree analysis, the use of certain symbols in the examination of system failures. This purpose of the fault free analysis is to find logical connections of component or subsystem failures leading to undesirable occurrances. The results of these examinations are part of the system assessment concerning operation and safety. The objectives of the analysis are: systematical identification of all possible failure combinations (causes) leading to a specific undesirable occurrance, finding of reliability parameters such as frequency of failure combinations, frequency of the undesirable occurrance or non-availability of the system when required. The fault tree analysis provides a near and reconstructable documentation of the examination. (orig./HP) [de
International Nuclear Information System (INIS)
Brandhuber, Andreas; Spence, Bill; Travaglini, Gabriele
2011-01-01
We review two novel techniques used to calculate tree-level scattering amplitudes efficiently: MHV diagrams, and on-shell recursion relations. For the MHV diagrams, we consider applications to tree-level amplitudes and focus in particular on the N=4 supersymmetric formulation. We also briefly describe the derivation of loop amplitudes using MHV diagrams. For the recursion relations, after presenting their general proof, we discuss several applications to massless theories with and without supersymmetry, to theories with massive particles, and to graviton amplitudes in general relativity. This article is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to 'Scattering amplitudes in gauge theories'. (review)
Tree Rings: Timekeepers of the Past.
Phipps, R. L.; McGowan, J.
One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…
Directory of Open Access Journals (Sweden)
Rob Garbutt
2013-10-01
Full Text Available Our paper focuses on the materiality, cultural history and cultural relations of selected artworks in the exhibition Wood for the trees (Lismore Regional Gallery, New South Wales, Australia, 10 June – 17 July 2011. The title of the exhibition, intentionally misreading the aphorism “Can’t see the wood for the trees”, by reading the wood for the resource rather than the collective wood[s], implies conservation, preservation, and the need for sustaining the originating resource. These ideas have particular resonance on the NSW far north coast, a region once rich in rainforest. While the Indigenous population had sustainable practices of forest and land management, the colonists deployed felling and harvesting in order to convert the value of the local, abundant rainforest trees into high-value timber. By the late twentieth century, however, a new wave of settlers launched a protest movements against the proposed logging of remnant rainforest at Terania Creek and elsewhere in the region. Wood for the trees, curated by Gallery Director Brett Adlington, plays on this dynamic relationship between wood, trees and people. We discuss the way selected artworks give expression to the themes or concepts of productive labour, nature and culture, conservation and sustainability, and memory. The artworks include Watjinbuy Marrawilil’s (1980 Carved ancestral figure ceremonial pole, Elizabeth Stops’ (2009/10 Explorations into colonisation, Hossein Valamanesh’s (2008 Memory stick, and AñA Wojak’s (2008 Unread book (in a forgotten language. Our art writing on the works, a practice informed by Bal (2002, Muecke (2008 and Papastergiadis (2004, becomes a conversation between the works and the themes or concepts. As a form of material excess of the most productive kind (Grosz, 2008, p. 7, art seeds a response to that which is in the air waiting to be said of the past, present and future.
Productivity of the supply system based on whole-tree bundling
Energy Technology Data Exchange (ETDEWEB)
Laitila, J. (Finnish Forest Research Inst., Joensuu (Finland)), Email: juha.laitila@metla.fi; Jylhae, P. (Finnish Forest Research Inst., Kannus (Finland)), Email: paula.jylha@metla.fi; Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi
2009-07-01
In the present study, time consumption models for bundle harvesting and forwarding were created by applying regression analyses. The time studies related to on-road transportation were created by applying regression analyses. The time studies related to on-road transportation were focused on comparing the terminal times spent on handling of whole-tree bundles and conventional 5-m pulpwood. The number of whole-tree bundles per truck load and the weights of the payloads were also recorded. The forwarding productivity of whole-tree bundles was about double compared to conventional pulpwood and whole-trees. In on-road transportation, the mean loading and unloading time of whole-tree bundles per truck load was 46 % higher compared to that of conventional 5-m pulpwood. The second prototype of the bundle harvester is under construction, and the time studies are to be continued after accomplishing the machine in the autumn 2009. (orig.)
Recursive Trees for Practical ORAM
Directory of Open Access Journals (Sweden)
Moataz Tarik
2015-06-01
Full Text Available We present a new, general data structure that reduces the communication cost of recent tree-based ORAMs. Contrary to ORAM trees with constant height and path lengths, our new construction r-ORAM allows for trees with varying shorter path length. Accessing an element in the ORAM tree results in different communication costs depending on the location of the element. The main idea behind r-ORAM is a recursive ORAM tree structure, where nodes in the tree are roots of other trees. While this approach results in a worst-case access cost (tree height at most as any recent tree-based ORAM, we show that the average cost saving is around 35% for recent binary tree ORAMs. Besides reducing communication cost, r-ORAM also reduces storage overhead on the server by 4% to 20% depending on the ORAM’s client memory type. To prove r-ORAM’s soundness, we conduct a detailed overflow analysis. r-ORAM’s recursive approach is general in that it can be applied to all recent tree ORAMs, both constant and poly-log client memory ORAMs. Finally, we implement and benchmark r-ORAM in a practical setting to back up our theoretical claims.
Mathematical foundations of event trees
International Nuclear Information System (INIS)
Papazoglou, Ioannis A.
1998-01-01
A mathematical foundation from first principles of event trees is presented. The main objective of this formulation is to offer a formal basis for developing automated computer assisted construction techniques for event trees. The mathematical theory of event trees is based on the correspondence between the paths of the tree and the elements of the outcome space of a joint event. The concept of a basic cylinder set is introduced to describe joint event outcomes conditional on specific outcomes of basic events or unconditional on the outcome of basic events. The concept of outcome space partition is used to describe the minimum amount of information intended to be preserved by the event tree representation. These concepts form the basis for an algorithm for systematic search for and generation of the most compact (reduced) form of an event tree consistent with the minimum amount of information the tree should preserve. This mathematical foundation allows for the development of techniques for automated generation of event trees corresponding to joint events which are formally described through other types of graphical models. Such a technique has been developed for complex systems described by functional blocks and it is reported elsewhere. On the quantification issue of event trees, a formal definition of a probability space corresponding to the event tree outcomes is provided. Finally, a short discussion is offered on the relationship of the presented mathematical theory with the more general use of event trees in reliability analysis of dynamic systems
Making CSB + -Trees Processor Conscious
DEFF Research Database (Denmark)
Samuel, Michael; Pedersen, Anders Uhl; Bonnet, Philippe
2005-01-01
of the CSB+-tree. We argue that it is necessary to consider a larger group of parameters in order to adapt CSB+-tree to processor architectures as different as Pentium and Itanium. We identify this group of parameters and study how it impacts the performance of CSB+-tree on Itanium 2. Finally, we propose......Cache-conscious indexes, such as CSB+-tree, are sensitive to the underlying processor architecture. In this paper, we focus on how to adapt the CSB+-tree so that it performs well on a range of different processor architectures. Previous work has focused on the impact of node size on the performance...... a systematic method for adapting CSB+-tree to new platforms. This work is a first step towards integrating CSB+-tree in MySQL’s heap storage manager....
Submodular unsplittable flow on trees
DEFF Research Database (Denmark)
Adamaszek, Anna Maria; Chalermsook, Parinya; Ene, Alina
2016-01-01
We study the Unsplittable Flow problem (UFP) on trees with a submodular objective function. The input to this problem is a tree with edge capacities and a collection of tasks, each characterized by a source node, a sink node, and a demand. A subset of the tasks is feasible if the tasks can...... simultaneously send their demands from the source to the sink without violating the edge capacities. The goal is to select a feasible subset of the tasks that maximizes a submodular objective function. Our main result is an O(k log n)-approximation algorithm for Submodular UFP on trees where k denotes...... the pathwidth of the given tree. Since every tree has pathwidth O(log n), we obtain an O(log2 n) approximation for arbitrary trees. This is the first non-trivial approximation guarantee for the problem and it matches the best approximation known for UFP on trees with a linear objective function. Our main...
Khina, Anatoly
2016-08-15
We consider the problem of stabilizing an unstable plant driven by bounded noise over a digital noisy communication link, a scenario at the heart of networked control. To stabilize such a plant, one needs real-time encoding and decoding with an error probability profile that decays exponentially with the decoding delay. The works of Schulman and Sahai over the past two decades have developed the notions of tree codes and anytime capacity, and provided the theoretical framework for studying such problems. Nonetheless, there has been little practical progress in this area due to the absence of explicit constructions of tree codes with efficient encoding and decoding algorithms. Recently, linear time-invariant tree codes were proposed to achieve the desired result under maximum-likelihood decoding. In this work, we take one more step towards practicality, by showing that these codes can be efficiently decoded using sequential decoding algorithms, up to some loss in performance (and with some practical complexity caveats). We supplement our theoretical results with numerical simulations that demonstrate the effectiveness of the decoder in a control system setting.
Rate of tree carbon accumulation increases continuously with tree size
Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.
2014-01-01
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Spontaneous regression of a congenital melanocytic nevus
Directory of Open Access Journals (Sweden)
Amiya Kumar Nath
2011-01-01
Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.
Many units in public housing or other low-income urban dwellings may have elevated pesticide residues, given recurring infestation, but it would be logistically and economically infeasible to sample a large number of units to identify highly exposed households to design interven...
Greg C. Liknes; Christopher W. Woodall; Charles H. Perry
2009-01-01
Climate information frequently is included in geospatial modeling efforts to improve the predictive capability of other data sources. The selection of an appropriate climate data source requires consideration given the number of choices available. With regard to climate data, there are a variety of parameters (e.g., temperature, humidity, precipitation), time intervals...
A Multi-industry Default Prediction Model using Logistic Regression and Decision Tree
Suresh Ramakrishnan; Maryam Mirzaei; Mahmoud Bekri
2015-01-01
The accurate prediction of corporate bankruptcy for the firms in different industries is of a great concern to investors and creditors, as the reduction of creditors’ risk and a considerable amount of saving for an industry economy can be possible. Financial statements vary between industries. Therefore, economic intuition suggests that industry effects should be an important component in bankruptcy prediction. This study attempts to detail the characteristics of each industry using sector in...
Multi-site solar power forecasting using gradient boosted regression trees
DEFF Research Database (Denmark)
Persson, Caroline Stougård; Bacher, Peder; Shiga, Takahiro
2017-01-01
The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical pow...
DEFF Research Database (Denmark)
Bou Kheir, Rania; Greve, Mogens Humlekrog; Deroin, Jean-Paul
2013-01-01
Soil contamination by heavy metals has become a widespread dangerous problem in many parts of the world, including the Mediterranean environments. This is closely related to the increase irrigation by waste waters, to the uncontrolled application of sewage sludge, industrial effluents, pesticides...... and fertilizers, to the rapid urbanization, to the atmospheric deposition of dust and aerosols, to the vehicular emissions and to many other negative human activities. In this context, this paper predicts the spatial distribution and concentration level of copper (Cu) in the 195km2 of Nahr el-Jawz watershed......H, hydraulical conductivity, organic matter, stoniness ratio, soil depth, slope gradient, slope aspect, slope curvature, land cover/use, distance to drainage line, proximity to roads, nearness to cities, and surroundings to waste areas) were generated from satellite imageries, Digital Elevation Models (DEMs...
Decision Tree of Occupational Lung Cancer Using Classification and Regression Analysis
Directory of Open Access Journals (Sweden)
Tae-Woo Kim
2010-12-01
Conclusion: We found that exposure to lung carcinogens, latency and smoking history were predictive factors of approval for occupational lung cancer. Further studies for work-relatedness of occupational disease are needed.
Integrating classification trees with local logistic regression in Intensive Care prognosis
Abu-Hanna, Ameen; de Keizer, Nicolette
2003-01-01
Health care effectiveness and efficiency are under constant scrutiny especially when treatment is quite costly as in the Intensive Care (IC). Currently there are various international quality of care programs for the evaluation of IC. At the heart of such quality of care programs lie prognostic
Behavior of cesium-134 in the tea tree
International Nuclear Information System (INIS)
Xu Yinliang; Chen Kaixuan; Chen Chuangqun
1996-01-01
The radioactivity changes of 134 Cs in the aged and the young leaves followed an exponential regression function after spraying 134 Cs in the tea trees. Contamination by spraying 134 Cs greatly harmed tea tree and by irrigating or mixing 134 Cs with soil resulted in a potential endangerment. The concentrating ability of tea leaves for 134 CS was very low and K value was 0.02. After the fresh tea leaves were processed to dry tea, the content of 134 Cs decreased by about 13.3%. When the tea leaves were soaked in hot water, the extraction ratio was around 83.6%
On Determining if Tree-based Networks Contain Fixed Trees.
Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine
2016-05-01
We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.
Trees in the city: valuing street trees in Portland, Oregon
G.H. Donovan; D.T. Butry
2010-01-01
We use a hedonic price model to simultaneously estimate the effects of street trees on the sales price and the time-on-market (TOM) of houses in Portland. Oregon. On average, street trees add $8,870 to sales price and reduce TOM by 1.7 days. In addition, we found that the benefits of street trees spill over to neighboring houses. Because the provision and maintenance...
Systolic trees and systolic language recognition by tree automata
Energy Technology Data Exchange (ETDEWEB)
Steinby, M
1983-01-01
K. Culik II, J. Gruska, A. Salomaa and D. Wood have studied the language recognition capabilities of certain types of systolically operating networks of processors (see research reports Cs-81-32, Cs-81-36 and Cs-82-01, Univ. of Waterloo, Ontario, Canada). In this paper, their model for systolic VLSI trees is formalised in terms of standard tree automaton theory, and the way in which some known facts about recognisable forests and tree transductions can be applied in VLSI tree theory is demonstrated. 13 references.
Dendrochronological Investigations of Valonia Oak Trees in Western Greece
Directory of Open Access Journals (Sweden)
Andreas Papadopoulos
2016-06-01
Full Text Available Background and Purpose: Valonia oak (Quercus ithaburensis subsp. macrolepis (Kotschy Hedge & Yalt. is an east Mediterranean endemic, xerothermic and deciduous tree of particular interest in forestry. There has been a growing demand lately to include the species in reforestations in Greece which also increased the interest to investigate its response to climate change. The main purpose of this research is to study valonia oak from a dendrochronological – dendroclimatological point of view within its Mediterranean distribution range. Materials and Methods: Sampling took place in characteristic valonia oak stands where cross sections or tree-cores were taken from 40 trees. The cross sections and the tree-cores were prepared and cross-dated using standard dendrochronological methods and tree-ring widths were measured to the nearest 0.001 mm using the Windendro software program. The ARSTAN program was used to standardize the tree-ring data and to calculate dendrochronological statistical parameters. The inter-annual variability of tree-ring width and the radial growth trend were examined. Finally, tree-ring widths to climate relationships were calculated by orthogonal regression in combination with the bootstrap procedure using master residual chronology and monthly precipitation, temperature data and scPDSI drought index, from October of the n-1 year up to November of the n year. Results: The master chronology of valonia oak trees in Western Greece reaches 365 years, with an average ring width of 0.89 mm and with mean sensitivity being 0.21. The variation of the tree-ring widths indicates the influence of climate and human intervention in the past. Tree-ring to climate relationships show that valonia oak growth is positively affected by precipitations in January and March and by drought reduction during June and July. Conclusions: Valonia oak in Western Greece is a species of great interest for dendrochronological and dendroclimatological studies
Applied regression analysis a research tool
Pantula, Sastry; Dickey, David
1998-01-01
Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...
Energy Technology Data Exchange (ETDEWEB)
Chadoeuf, J.; Joannes, H.; Nandris, D.; Pierrat, J.C.
1988-12-01
The spread of root diseases in rubber tree (Hevea brasiliensis) due to Rigidoporus lignosus and Phellinus noxius was investigated epidemiologically using data collected every 6 month during a 6-year survey in a plantation. The aim of the present study is to see what factors could predict whether a given tree would be infested at the following inspection. Using a qualitative regression method we expressed the probability of pathogenic attack on a tree in terms of three factors: the state of health of the surrounding trees, the method used to clear the forest prior to planting, and evolution with time. The effects of each factor were ranked, and the roles of the various classes of neighbors were established and quantified. Variability between successive inspections was small, and the method of forest clearing was important only while primary inocula in the soil were still infectious. The state of health of the immediate neighbors was most significant; more distant neighbors in the same row had some effect; interrow spread was extremely rare. This investigation dealt only with trees as individuals, and further study of the interrelationships of groups of trees is needed.
Regression models of reactor diagnostic signals
International Nuclear Information System (INIS)
Vavrin, J.
1989-01-01
The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
On the impact of trees on dispersion processes of traffic emissions in street canyons
Gromke, C.B.; Ruck, B.
2009-01-01
Wind-tunnel studies of dispersion processes of traffic exhaust in urban street canyons with tree planting were performed and tracer gas concentrations using electron capture detection (ECD) and flow fields using laser Doppler velocimetry (LDV) were measured. It was found that tree planting reduces
Shan Gao; Xiping Wang; Michael C. Wiemann; Brian K. Brashaw; Robert J. Ross; Lihai Wang
2017-01-01
Key message Field methods for rapid determination of wood density in trees have evolved from increment borer, torsiometer, Pilodyn, and nail withdrawal into sophisticated electronic tools of resistance drilling measurement. A partial resistance drilling approach coupled with knowledge of internal tree density distribution may...
Tree felling: a necessary evil
CERN Bulletin
2013-01-01
CERN started a campaign of tree felling in 2010 for safety reasons, and it will continue this year in various parts of the Meyrin site. As in previous years, the trees cut down in 2013 will be recycled and some will be replaced. Diseased tree that had to be cut down on the Meyrin site. In association with the Geneva nature and countryside directorate (Direction générale de la nature et du paysage, DGNP), CERN commissioned the Geneva school of landscaping, engineering and architecture (Haute école du paysage, d’ingénierie et d’architecture, HEPIA) to compile an inventory of the trees on the Meyrin site. In total, 1285 trees (excluding poplars) were recorded. 75.5% of these trees were declared to be in a good state of health (i.e. 971 trees), 21.5% in a moderate state of health (276 trees) and 3% in a poor state of health (38 trees). As for the poplars, the 236 specimens recorded on the Meyrin site were judged to be too old, to...
Human decision error (HUMDEE) trees
International Nuclear Information System (INIS)
Ostrom, L.T.
1993-01-01
Graphical presentations of human actions in incident and accident sequences have been used for many years. However, for the most part, human decision making has been underrepresented in these trees. This paper presents a method of incorporating the human decision process into graphical presentations of incident/accident sequences. This presentation is in the form of logic trees. These trees are called Human Decision Error Trees or HUMDEE for short. The primary benefit of HUMDEE trees is that they graphically illustrate what else the individuals involved in the event could have done to prevent either the initiation or continuation of the event. HUMDEE trees also present the alternate paths available at the operator decision points in the incident/accident sequence. This is different from the Technique for Human Error Rate Prediction (THERP) event trees. There are many uses of these trees. They can be used for incident/accident investigations to show what other courses of actions were available and for training operators. The trees also have a consequence component so that not only the decision can be explored, also the consequence of that decision
Phylogenetic trees and Euclidean embeddings.
Layer, Mark; Rhodes, John A
2017-01-01
It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.
DIOECY EFFECT ON GROWTH OF PLANTED Araucaria angustifolia Bert. O. Kuntze TREES
Directory of Open Access Journals (Sweden)
Afonso Figueiredo Filho
2015-09-01
Full Text Available The aim of the study was to evaluate the influence of dioecy on the growth in diameter at breast height (DBH, individual basal area, total height and individual volume of planted Araucaria angustifolia trees. The data came from 60 trees (30 male trees and 30 female trees sampled from a 30-year-old plantation in Paraná State. Complete stem analysis was used to recover historical tree growth. The Chapman-Richards model was fitted in order to represent the growth and yield of the dendrometric variables for female and male Araucaria trees. Weighted non-linear least squared method was used in the fitting process and the inverse variance was used as weight to solve the problem of heteroscedasticity. The test to verify the equality of parameters and the identity of non-linear regression models proposed by Regazzi (2003 was used to test the influence of dioecy on growth. Dioecy significantly influenced the growth of Araucaria, and female trees have higher growth in diameter, individual basal area and individual volume, while male trees showed better height development. The asymptotic coefficient of the Chapman-Richards model showed that male trees have a higher asymptotic height than female trees.
Occurrence of leguminous trees
Energy Technology Data Exchange (ETDEWEB)
Kirkbride, J.H.; Arkcoll, D.B.A.; Turnbull, J.W.; Magalhaes, L.M.S.; Fernandes, N.P.
1984-01-01
Five papers from the symposium are presented. Kirkbride, J.H. Jr.; Legumes of the cerrado. pp 23-46 (Refs. 55) A review is given. Some 548 legume species in 59 genera are listed that have been reported from cerrado vegetation. Felker, P.; Legume trees in semi-arid and arid areas. pp 47-59 (Refs. 41) A review is given of worldwide research activities. Arkcoll, D.B.; A comparison of some fast growing species suitable for woodlots in the wet tropics. pp 61-68 (Refs. 9) Studies are described near Manaus on intensive silviculture (for fuelwood production) of Eucalyptus deglupta, Cedrelinga catanaeformis (catenaeformis), Jacaranda copaia, and Inga edulis. Turnbull, J.W.; Six phyllodinous Acacia species for planting in the humid tropical lowlands. pp 69-73 (Refs. 14) Distribution, ecology, growth, and utilization are described for A. auriculiformis, A. mangium, A. aulacocarpa, A. crassicarpa, A. cincinnata, and A. polystachya. Magalhaes, L.M.S., Fernandes, N.P.; Experimental stands of leguminous trees in the Manaus region. pp 75-79 (Refs. 8) Performance up to age 20 yr of Cedrelinga catenaeformis, Dalbergia nigra, Dinizia excelsa, Dipteryx odorata, Dipteryx sp., Diplotropis sp., Eperua bijuga, Pithecellobium racemosum, Vouacapoua pallidior, and Hymenaea sp. is described.
Hwang, FK; Winter, P
1992-01-01
The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues. This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most...
Rasmuson, Marianne
2008-02-01
Heredity can be followed in persons or in genes. Persons can be identified only a few generations back, but simplified models indicate that universal ancestors to all now living persons have occurred in the past. Genetic variability can be characterized as variants of DNA sequences. Data are available only from living persons, but from the pattern of variation gene trees can be inferred by means of coalescence models. The merging of lines backwards in time leads to a MRCA (most recent common ancestor). The time and place of living for this inferred person can give insights in human evolutionary history. Demographic processes are incorporated in the model, but since culture and customs are known to influence demography the models used ought to be tested against available genealogy. The Icelandic data base offers a possibility to do so and points to some discrepancies. Mitochondrial DNA and Y chromosome patterns give a rather consistent view of human evolutionary history during the latest 100 000 years but the earlier epochs of human evolution demand gene trees with longer branches. The results of such studies reveal as yet unsolved problems about the sources of our genome.
Energy Technology Data Exchange (ETDEWEB)
Morozov, Dmitriy; Weber, Gunther
2013-01-08
Improved simulations and sensors are producing datasets whose increasing complexity exhausts our ability to visualize and comprehend them directly. To cope with this problem, we can detect and extract significant features in the data and use them as the basis for subsequent analysis. Topological methods are valuable in this context because they provide robust and general feature definitions. As the growth of serial computational power has stalled, data analysis is becoming increasingly dependent on massively parallel machines. To satisfy the computational demand created by complex datasets, algorithms need to effectively utilize these computer architectures. The main strength of topological methods, their emphasis on global information, turns into an obstacle during parallelization. We present two approaches to alleviate this problem. We develop a distributed representation of the merge tree that avoids computing the global tree on a single processor and lets us parallelize subsequent queries. To account for the increasing number of cores per processor, we develop a new data structure that lets us take advantage of multiple shared-memory cores to parallelize the work on a single node. Finally, we present experiments that illustrate the strengths of our approach as well as help identify future challenges.
Early evolution without a tree of life
Directory of Open Access Journals (Sweden)
Martin William F
2011-06-01
Full Text Available Abstract Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre.
Regression modeling methods, theory, and computation with SAS
Panik, Michael
2009-01-01
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,
Energy Technology Data Exchange (ETDEWEB)
Kalla, J.C.
1977-01-01
Stepwise regression analysis suggested that tree height and collar diameter were, in general, the morphological parameters that most reliably predicted fuel yield in Acacia nilotica, A. tortilis, Albizzia lebbek, Azadirachta indica and Prosopis juliflora.
Visualizing Individual Tree Differences in Tree-Ring Studies
Directory of Open Access Journals (Sweden)
Mario Trouillier
2018-04-01
Full Text Available Averaging tree-ring measurements from multiple individuals is one of the most common procedures in dendrochronology. It serves to filter out noise from individual differences between trees, such as competition, height, and micro-site effects, which ideally results in a site chronology sensitive to regional scale factors such as climate. However, the climate sensitivity of individual trees can be modulated by factors like competition, height, and nitrogen deposition, calling attention to whether average chronologies adequately assess climatic growth-control. In this study, we demonstrate four simple but effective methods to visually assess differences between individual trees. Using individual tree climate-correlations we: (1 employed jitter plots with superimposed metadata to assess potential causes for these differences; (2 plotted the frequency distributions of climate correlations over time as heat maps; (3 mapped the spatial distribution of climate sensitivity over time to assess spatio-temporal dynamics; and (4 used t-distributed Stochastic Neighborhood Embedding (t-SNE to assess which trees were generally more similar in terms of their tree-ring pattern and their correlation with climate variables. This suite of exploratory methods can indicate if individuals in tree-ring datasets respond differently to climate variability, and therefore, should not solely be explored with climate correlations of the mean population chronology.
Tree Size Comparison of Some Important Street Trees Growing at ...
African Journals Online (AJOL)
PROF HORSFALL
More research is needed on these trees for healthy environment of city. The present ..... use and CO2 emissions from power plants. Environ. Poll. .... Anna. Bot., 65:567-574. Kozlowski, T.T., 1971. Growth and Development of. Trees. Vol. 1.
Relating phylogenetic trees to transmission trees of infectious disease outbreaks.
Ypma, Rolf J F; van Ballegooijen, W Marijn; Wallinga, Jacco
2013-11-01
Transmission events are the fundamental building blocks of the dynamics of any infectious disease. Much about the epidemiology of a disease can be learned when these individual transmission events are known or can be estimated. Such estimations are difficult and generally feasible only when detailed epidemiological data are available. The genealogy estimated from genetic sequences of sampled pathogens is another rich source of information on transmission history. Optimal inference of transmission events calls for the combination of genetic data and epidemiological data into one joint analysis. A key difficulty is that the transmission tree, which describes the transmission events between infected hosts, differs from the phylogenetic tree, which describes the ancestral relationships between pathogens sampled from these hosts. The trees differ both in timing of the internal nodes and in topology. These differences become more pronounced when a higher fraction of infected hosts is sampled. We show how the phylogenetic tree of sampled pathogens is related to the transmission tree of an outbreak of an infectious disease, by the within-host dynamics of pathogens. We provide a statistical framework to infer key epidemiological and mutational parameters by simultaneously estimating the phylogenetic tree and the transmission tree. We test the approach using simulations and illustrate its use on an outbreak of foot-and-mouth disease. The approach unifies existing methods in the emerging field of phylodynamics with transmission tree reconstruction methods that are used in infectious disease epidemiology.
Picking a tree: habitat use by the tree agama, Acanthocercus ...
African Journals Online (AJOL)
We studied tree agama (Acanthocercus a. atricollis) habitat use in the Magaliesberg mountain range in northern South Africa using sightings of marked individuals, and in a few cases, radio-telemetry. Acanthocercus a. atricollis preferentially selected thorn trees (46%; Acacia karroo), followed by common sugarbush (10%; ...
Patterns and drivers of scattered tree loss in agricultural landscapes
DEFF Research Database (Denmark)
Plieninger, Tobias; Levers, Christian; Mantel, Martin
2015-01-01
of high nature conservation value) for a region in Southwestern Germany for the 1968 2009 period and to identify the driving forces of this decline. We derived orchard meadow loss from 1968 and 2009 aerial images and used a boosted regression trees modelling framework to assess the relative importance......Scattered trees support high levels of farmland biodiversity and ecosystem services in agricultural landscapes, but they are threatened by agricultural intensification, urbanization, and land abandonment. This study aimed to map and quantify the decline of orchard meadows (scattered fruit trees...... economic profitability and increase opportunity costs for orchards, providing incentives for converting orchard meadows to other, more profitable land uses. These insights could be taken up by local- and regional-level conservation policies to identify the sites of persistent orchard meadows...
Discrete Discriminant analysis based on tree-structured graphical models
DEFF Research Database (Denmark)
Perez de la Cruz, Gonzalo; Eslava, Guillermina
The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant a...... analysis based on tree{structured graphical models is a simple nonlinear method competitive with, and sometimes superior to, other well{known linear methods like those assuming mutual independence between variables and linear logistic regression.......The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant...
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
A Simulation Investigation of Principal Component Regression.
Allen, David E.
Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…
Hierarchical regression analysis in structural Equation Modeling
de Jong, P.F.
1999-01-01
In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main
Categorical regression dose-response modeling
The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...
Variable importance in latent variable regression models
Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.
2014-01-01
The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable
Stepwise versus Hierarchical Regression: Pros and Cons
Lewis, Mitzi
2007-01-01
Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…
Suppression Situations in Multiple Linear Regression
Shieh, Gwowen
2006-01-01
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Gibrat’s law and quantile regressions
DEFF Research Database (Denmark)
Distante, Roberta; Petrella, Ivan; Santoro, Emiliano
2017-01-01
The nexus between firm growth, size and age in U.S. manufacturing is examined through the lens of quantile regression models. This methodology allows us to overcome serious shortcomings entailed by linear regression models employed by much of the existing literature, unveiling a number of important...
Regression Analysis and the Sociological Imagination
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Repeated Results Analysis for Middleware Regression Benchmarking
Czech Academy of Sciences Publication Activity Database
Bulej, Lubomír; Kalibera, T.; Tůma, P.
2005-01-01
Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005
Principles of Quantile Regression and an Application
Chen, Fang; Chalhoub-Deville, Micheline
2014-01-01
Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…
ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES
RUSCHENDORF, L; DEVALK, [No Value
We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive
Regression of environmental noise in LIGO data
International Nuclear Information System (INIS)
Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G
2015-01-01
We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)
Pathological assessment of liver fibrosis regression
Directory of Open Access Journals (Sweden)
WANG Bingqiong
2017-03-01
Full Text Available Hepatic fibrosis is the common pathological outcome of chronic hepatic diseases. An accurate assessment of fibrosis degree provides an important reference for a definite diagnosis of diseases, treatment decision-making, treatment outcome monitoring, and prognostic evaluation. At present, many clinical studies have proven that regression of hepatic fibrosis and early-stage liver cirrhosis can be achieved by effective treatment, and a correct evaluation of fibrosis regression has become a hot topic in clinical research. Liver biopsy has long been regarded as the gold standard for the assessment of hepatic fibrosis, and thus it plays an important role in the evaluation of fibrosis regression. This article reviews the clinical application of current pathological staging systems in the evaluation of fibrosis regression from the perspectives of semi-quantitative scoring system, quantitative approach, and qualitative approach, in order to propose a better pathological evaluation system for the assessment of fibrosis regression.
Should metacognition be measured by logistic regression?
Rausch, Manuel; Zehetleitner, Michael
2017-03-01
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Charles; Alena, Richard L.; Robinson, Peter
2004-01-01
We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.
Better trees through systematic breeding
Robert Z. Callaham
1957-01-01
Today I would like to tell you briefly about the efforts of forest geneticists to improve the quality of forest trees. What do we mean by quality? Here, the consumer has the first word. The trees we produce are primarily for timber production, and the timber growing and wood-using industries give us our guidelines. Nevertheless, many of the characteristics sought by...
Tree physiology and bark beetles
Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood
2015-01-01
Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...
Tree Hydraulics: How Sap Rises
Denny, Mark
2012-01-01
Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…
Boosted decision trees and applications
International Nuclear Information System (INIS)
Coadou, Y.
2013-01-01
Decision trees are a machine learning technique more and more commonly used in high energy physics, while it has been widely used in the social sciences. After introducing the concepts of decision trees, this article focuses on its application in particle physics. (authors)
Who pays for tree improvement?
Tom D. Byram; E. M. Raley
2011-01-01
Tree improvement has been one of the most successful collaborative research efforts in history, eliciting participation from a wide variety of players. This effort has included state forestry agencies, research universities, integrated forest industries, and the USDA Forest Service. Tree improvement was organized through cooperatives whose objectives were to distribute...
Borgs, C.; Chayes, J.T.; Hofstad, van der R.W.; Slade, G.
1999-01-01
We introduce a mean-field model of lattice trees based on embeddings into d of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade [9], and provides an
Niemeijer, Meindert; Dumitrescu, Alina V.; van Ginneken, Bram; Abrámoff, Michael D.
2011-03-01
Parameters extracted from the vasculature on the retina are correlated with various conditions such as diabetic retinopathy and cardiovascular diseases such as stroke. Segmentation of the vasculature on the retina has been a topic that has received much attention in the literature over the past decade. Analysis of the segmentation result, however, has only received limited attention with most works describing methods to accurately measure the width of the vessels. Analyzing the connectedness of the vascular network is an important step towards the characterization of the complete vascular tree. The retinal vascular tree, from an image interpretation point of view, originates at the optic disc and spreads out over the retina. The tree bifurcates and the vessels also cross each other. The points where this happens form the key to determining the connectedness of the complete tree. We present a supervised method to detect the bifurcations and crossing points of the vasculature of the retina. The method uses features extracted from the vasculature as well as the image in a location regression approach to find those locations of the segmented vascular tree where the bifurcation or crossing occurs (from here, POI, points of interest). We evaluate the method on the publicly available DRIVE database in which an ophthalmologist has marked the POI.
Chilling and heat requirements for flowering in temperate fruit trees.
Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike
2014-08-01
Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.
Chilling and heat requirements for flowering in temperate fruit trees
Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike
2014-08-01
Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.
Modelling tree biomasses in Finland
Energy Technology Data Exchange (ETDEWEB)
Repola, J.
2013-06-01
Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of
Directory of Open Access Journals (Sweden)
V. I. Polyakov
2014-10-01
Full Text Available In 2001 six permanent sample plots (PSP were established in forest stands differing in degrees of damage by pollution from the Norilsk industrial region. In 2004 the second forest inventory was carried out at these PSP for evaluation of pollutant impacts on stand condition changes. During both inventory procedures the vigor state of every tree was visually categorized according to 6-points scale of «Forest health regulations in Russian Federation». The changeover of tree into fall was also taken into account. Two types of Markov’s models simulating thinning process in tree stands within different ecological conditions has been developed: 1 based on assessment for probability of tree survival during three years; 2 in terms of evaluation of matrix for probability on change of vigor state category in the same period. The reconstruction of tree mortality from 1979 after industrial complex «Nadezda» setting into operation was realized on the basis of probability estimation of dead standing trees conservation during three years observed. The forecast of situation was carried out up to 2030. Using logistic regression the probability of tree survival was established depending on four factors: degree of tree damage by pollutants, tree species, stand location in relief and tree age. The acquired results make it possible to single out an impact of pollutants to tree stands’ resistance from other factors. There was revealed the percent of tree fall, resulted by pollution. The evaluation scale of SO2 gas resistance of tree species was constructed: birch, spruce, larch. Larch showed the highest percent of fall because of pollution.
Fitting Markovian binary trees using global and individual demographic data
Hautphenne, Sophie; Massaro, Melanie; Turner, Katharine
2017-01-01
We consider a class of branching processes called Markovian binary trees, in which the individuals lifetime and reproduction epochs are modeled using a transient Markovian arrival process (TMAP). We estimate the parameters of the TMAP based on population data containing information on age-specific fertility and mortality rates. Depending on the degree of detail of the available data, a weighted non-linear regression method or a maximum likelihood method is applied. We discuss the optimal choi...
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
Totally optimal decision trees for Boolean functions
Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail
2016-01-01
We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters
Electronics and electronic systems
Olsen, George H
1987-01-01
Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p
Variable and subset selection in PLS regression
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2001-01-01
The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...
Applied Regression Modeling A Business Approach
Pardoe, Iain
2012-01-01
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a
TREE STEM AND CANOPY BIOMASS ESTIMATES FROM TERRESTRIAL LASER SCANNING DATA
Directory of Open Access Journals (Sweden)
K. Olofsson
2017-10-01
Full Text Available In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10–15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.
Modeling and Testing Landslide Hazard Using Decision Tree
Directory of Open Access Journals (Sweden)
Mutasem Sh. Alkhasawneh
2014-01-01
Full Text Available This paper proposes a decision tree model for specifying the importance of 21 factors causing the landslides in a wide area of Penang Island, Malaysia. These factors are vegetation cover, distance from the fault line, slope angle, cross curvature, slope aspect, distance from road, geology, diagonal length, longitude curvature, rugosity, plan curvature, elevation, rain perception, soil texture, surface area, distance from drainage, roughness, land cover, general curvature, tangent curvature, and profile curvature. Decision tree models are used for prediction, classification, and factors importance and are usually represented by an easy to interpret tree like structure. Four models were created using Chi-square Automatic Interaction Detector (CHAID, Exhaustive CHAID, Classification and Regression Tree (CRT, and Quick-Unbiased-Efficient Statistical Tree (QUEST. Twenty-one factors were extracted using digital elevation models (DEMs and then used as input variables for the models. A data set of 137570 samples was selected for each variable in the analysis, where 68786 samples represent landslides and 68786 samples represent no landslides. 10-fold cross-validation was employed for testing the models. The highest accuracy was achieved using Exhaustive CHAID (82.0% compared to CHAID (81.9%, CRT (75.6%, and QUEST (74.0% model. Across the four models, five factors were identified as most important factors which are slope angle, distance from drainage, surface area, slope aspect, and cross curvature.
Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.
2018-03-01
Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.
Trends and Tipping Points of Drought-induced Tree Mortality
Huang, K.; Yi, C.; Wu, D.; Zhou, T.; Zhao, X.; Blanford, W. J.; Wei, S.; Wu, H.; Du, L.
2014-12-01
Drought-induced tree mortality worldwide has been recently reported in a review of the literature by Allen et al. (2010). However, a quantitative relationship between widespread loss of forest from mortality and drought is still a key knowledge gap. Specifically, the field lacks quantitative knowledge of tipping point in trees when coping with water stress, which inhibits the assessments of how climate change affects the forest ecosystem. We investigate the statistical relationships for different (seven) conifer species between Ring Width Index (RWI) and Standardized Precipitation Evapotranspiration Index (SPEI), based on 411 chronologies from the International Tree-Ring Data Bank across 11 states of the western United States. We found robust species-specific relationships between RWI and SPEI for all seven conifer species at dry condition. The regression models show that the RWI decreases with SPEI decreasing (drying) and more than 76% variation of tree growth (RWI) can be explained by the drought index (SPEI). However, when soil water is sufficient (i.e., SPEI>SPEIu), soil water is no longer a restrictive factor for tree growth and, therefore, the RWI shows a weak correlation with SPEI. Based on the statistical models, we derived the tipping point of SPEI (SPEItp) where the RWI equals 0, which means the carbon efflux by tree respiration equals carbon influx by tree photosynthesis. When the severity of drought exceeds this tipping point(i.e. SPEIsupported by the Fund for Creative Research Groups of National Natural Science Foundation of China (No. 41321001), the National Basic Research Program of China (No. 2012CB955401), the New Century Excellent Talents in University (No. NCET-10-0251), U.S. PSC-CUNY Award (PSC-CUNY-ENHC-44-83) and the High Technology Research and Development Program of China (No. 2013AA122801).
Vectors, a tool in statistical regression theory
Corsten, L.C.A.
1958-01-01
Using linear algebra this thesis developed linear regression analysis including analysis of variance, covariance analysis, special experimental designs, linear and fertility adjustments, analysis of experiments at different places and times. The determination of the orthogonal projection, yielding
Genetics Home Reference: caudal regression syndrome
... umbilical artery: Further support for a caudal regression-sirenomelia spectrum. Am J Med Genet A. 2007 Dec ... AK, Dickinson JE, Bower C. Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am ...
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Fuzzy multiple linear regression: A computational approach
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
Computing multiple-output regression quantile regions
Czech Academy of Sciences Publication Activity Database
Paindaveine, D.; Šiman, Miroslav
2012-01-01
Roč. 56, č. 4 (2012), s. 840-853 ISSN 0167-9473 R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : halfspace depth * multiple-output regression * parametric linear programming * quantile regression Subject RIV: BA - General Mathematics Impact factor: 1.304, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf
There is No Quantum Regression Theorem
International Nuclear Information System (INIS)
Ford, G.W.; OConnell, R.F.
1996-01-01
The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society
Caudal regression syndrome : a case report
International Nuclear Information System (INIS)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun
1998-01-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging
Caudal regression syndrome : a case report
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun [Chungang Gil Hospital, Incheon (Korea, Republic of)
1998-07-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging.